]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/hppa-tdep.c
The point of these changes is to avoid reading the frame pointer
[thirdparty/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Machine-dependent code which would otherwise be in inflow.c and core.c,
2 for GDB, the GNU debugger. This code is for the HP PA-RISC cpu.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <sys/dir.h>
38 #include <signal.h>
39 #include <sys/ioctl.h>
40
41 #ifdef COFF_ENCAPSULATE
42 #include "a.out.encap.h"
43 #else
44 #include <a.out.h>
45 #endif
46 #ifndef N_SET_MAGIC
47 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
48 #endif
49
50 /*#include <sys/user.h> After a.out.h */
51 #include <sys/file.h>
52 #include <sys/stat.h>
53 #include <machine/psl.h>
54 #include "wait.h"
55
56 #include "gdbcore.h"
57 #include "gdbcmd.h"
58 #include "target.h"
59 #include "symfile.h"
60 #include "objfiles.h"
61
62 static int restore_pc_queue PARAMS ((struct frame_saved_regs *fsr));
63 static int hppa_alignof PARAMS ((struct type *arg));
64 CORE_ADDR frame_saved_pc PARAMS ((FRAME frame));
65 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
66 static int is_branch PARAMS ((unsigned long));
67 static int inst_saves_gr PARAMS ((unsigned long));
68 static int inst_saves_fr PARAMS ((unsigned long));
69 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
70 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
71 static int compare_unwind_entries PARAMS ((const struct unwind_table_entry *,
72 const struct unwind_table_entry *));
73 static void read_unwind_info PARAMS ((struct objfile *));
74 static void internalize_unwinds PARAMS ((struct objfile *,
75 struct unwind_table_entry *,
76 asection *, unsigned int,
77 unsigned int));
78
79 \f
80 /* Routines to extract various sized constants out of hppa
81 instructions. */
82
83 /* This assumes that no garbage lies outside of the lower bits of
84 value. */
85
86 int
87 sign_extend (val, bits)
88 unsigned val, bits;
89 {
90 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
91 }
92
93 /* For many immediate values the sign bit is the low bit! */
94
95 int
96 low_sign_extend (val, bits)
97 unsigned val, bits;
98 {
99 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
100 }
101 /* extract the immediate field from a ld{bhw}s instruction */
102
103 unsigned
104 get_field (val, from, to)
105 unsigned val, from, to;
106 {
107 val = val >> 31 - to;
108 return val & ((1 << 32 - from) - 1);
109 }
110
111 unsigned
112 set_field (val, from, to, new_val)
113 unsigned *val, from, to;
114 {
115 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
116 return *val = *val & mask | (new_val << (31 - from));
117 }
118
119 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
120
121 extract_3 (word)
122 unsigned word;
123 {
124 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
125 }
126
127 extract_5_load (word)
128 unsigned word;
129 {
130 return low_sign_extend (word >> 16 & MASK_5, 5);
131 }
132
133 /* extract the immediate field from a st{bhw}s instruction */
134
135 int
136 extract_5_store (word)
137 unsigned word;
138 {
139 return low_sign_extend (word & MASK_5, 5);
140 }
141
142 /* extract the immediate field from a break instruction */
143
144 unsigned
145 extract_5r_store (word)
146 unsigned word;
147 {
148 return (word & MASK_5);
149 }
150
151 /* extract the immediate field from a {sr}sm instruction */
152
153 unsigned
154 extract_5R_store (word)
155 unsigned word;
156 {
157 return (word >> 16 & MASK_5);
158 }
159
160 /* extract an 11 bit immediate field */
161
162 int
163 extract_11 (word)
164 unsigned word;
165 {
166 return low_sign_extend (word & MASK_11, 11);
167 }
168
169 /* extract a 14 bit immediate field */
170
171 int
172 extract_14 (word)
173 unsigned word;
174 {
175 return low_sign_extend (word & MASK_14, 14);
176 }
177
178 /* deposit a 14 bit constant in a word */
179
180 unsigned
181 deposit_14 (opnd, word)
182 int opnd;
183 unsigned word;
184 {
185 unsigned sign = (opnd < 0 ? 1 : 0);
186
187 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
188 }
189
190 /* extract a 21 bit constant */
191
192 int
193 extract_21 (word)
194 unsigned word;
195 {
196 int val;
197
198 word &= MASK_21;
199 word <<= 11;
200 val = GET_FIELD (word, 20, 20);
201 val <<= 11;
202 val |= GET_FIELD (word, 9, 19);
203 val <<= 2;
204 val |= GET_FIELD (word, 5, 6);
205 val <<= 5;
206 val |= GET_FIELD (word, 0, 4);
207 val <<= 2;
208 val |= GET_FIELD (word, 7, 8);
209 return sign_extend (val, 21) << 11;
210 }
211
212 /* deposit a 21 bit constant in a word. Although 21 bit constants are
213 usually the top 21 bits of a 32 bit constant, we assume that only
214 the low 21 bits of opnd are relevant */
215
216 unsigned
217 deposit_21 (opnd, word)
218 unsigned opnd, word;
219 {
220 unsigned val = 0;
221
222 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
223 val <<= 2;
224 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
225 val <<= 2;
226 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
227 val <<= 11;
228 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
229 val <<= 1;
230 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
231 return word | val;
232 }
233
234 /* extract a 12 bit constant from branch instructions */
235
236 int
237 extract_12 (word)
238 unsigned word;
239 {
240 return sign_extend (GET_FIELD (word, 19, 28) |
241 GET_FIELD (word, 29, 29) << 10 |
242 (word & 0x1) << 11, 12) << 2;
243 }
244
245 /* extract a 17 bit constant from branch instructions, returning the
246 19 bit signed value. */
247
248 int
249 extract_17 (word)
250 unsigned word;
251 {
252 return sign_extend (GET_FIELD (word, 19, 28) |
253 GET_FIELD (word, 29, 29) << 10 |
254 GET_FIELD (word, 11, 15) << 11 |
255 (word & 0x1) << 16, 17) << 2;
256 }
257 \f
258
259 /* Compare the start address for two unwind entries returning 1 if
260 the first address is larger than the second, -1 if the second is
261 larger than the first, and zero if they are equal. */
262
263 static int
264 compare_unwind_entries (a, b)
265 const struct unwind_table_entry *a;
266 const struct unwind_table_entry *b;
267 {
268 if (a->region_start > b->region_start)
269 return 1;
270 else if (a->region_start < b->region_start)
271 return -1;
272 else
273 return 0;
274 }
275
276 static void
277 internalize_unwinds (objfile, table, section, entries, size)
278 struct objfile *objfile;
279 struct unwind_table_entry *table;
280 asection *section;
281 unsigned int entries, size;
282 {
283 /* We will read the unwind entries into temporary memory, then
284 fill in the actual unwind table. */
285 if (size > 0)
286 {
287 unsigned long tmp;
288 unsigned i;
289 char *buf = alloca (size);
290
291 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
292
293 /* Now internalize the information being careful to handle host/target
294 endian issues. */
295 for (i = 0; i < entries; i++)
296 {
297 table[i].region_start = bfd_get_32 (objfile->obfd,
298 (bfd_byte *)buf);
299 buf += 4;
300 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
301 buf += 4;
302 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
303 buf += 4;
304 table[i].Cannot_unwind = (tmp >> 31) & 0x1;;
305 table[i].Millicode = (tmp >> 30) & 0x1;
306 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
307 table[i].Region_description = (tmp >> 27) & 0x3;
308 table[i].reserved1 = (tmp >> 26) & 0x1;
309 table[i].Entry_SR = (tmp >> 25) & 0x1;
310 table[i].Entry_FR = (tmp >> 21) & 0xf;
311 table[i].Entry_GR = (tmp >> 16) & 0x1f;
312 table[i].Args_stored = (tmp >> 15) & 0x1;
313 table[i].Variable_Frame = (tmp >> 14) & 0x1;
314 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
315 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
316 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
317 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
318 table[i].Ada_Region = (tmp >> 9) & 0x1;
319 table[i].reserved2 = (tmp >> 5) & 0xf;
320 table[i].Save_SP = (tmp >> 4) & 0x1;
321 table[i].Save_RP = (tmp >> 3) & 0x1;
322 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
323 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
324 table[i].Cleanup_defined = tmp & 0x1;
325 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
326 buf += 4;
327 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
328 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
329 table[i].Large_frame = (tmp >> 29) & 0x1;
330 table[i].reserved4 = (tmp >> 27) & 0x3;
331 table[i].Total_frame_size = tmp & 0x7ffffff;
332 }
333 }
334 }
335
336 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
337 the object file. This info is used mainly by find_unwind_entry() to find
338 out the stack frame size and frame pointer used by procedures. We put
339 everything on the psymbol obstack in the objfile so that it automatically
340 gets freed when the objfile is destroyed. */
341
342 static void
343 read_unwind_info (objfile)
344 struct objfile *objfile;
345 {
346 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
347 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
348 unsigned index, unwind_entries, elf_unwind_entries;
349 unsigned stub_entries, total_entries;
350 struct obj_unwind_info *ui;
351
352 ui = obstack_alloc (&objfile->psymbol_obstack,
353 sizeof (struct obj_unwind_info));
354
355 ui->table = NULL;
356 ui->cache = NULL;
357 ui->last = -1;
358
359 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
360 section in ELF at the moment. */
361 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
362 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
363 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
364
365 /* Get sizes and unwind counts for all sections. */
366 if (unwind_sec)
367 {
368 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
369 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
370 }
371 else
372 {
373 unwind_size = 0;
374 unwind_entries = 0;
375 }
376
377 if (elf_unwind_sec)
378 {
379 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
380 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
381 }
382 else
383 {
384 elf_unwind_size = 0;
385 elf_unwind_entries = 0;
386 }
387
388 if (stub_unwind_sec)
389 {
390 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
391 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
392 }
393 else
394 {
395 stub_unwind_size = 0;
396 stub_entries = 0;
397 }
398
399 /* Compute total number of unwind entries and their total size. */
400 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
401 total_size = total_entries * sizeof (struct unwind_table_entry);
402
403 /* Allocate memory for the unwind table. */
404 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
405 ui->last = total_entries - 1;
406
407 /* Internalize the standard unwind entries. */
408 index = 0;
409 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
410 unwind_entries, unwind_size);
411 index += unwind_entries;
412 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
413 elf_unwind_entries, elf_unwind_size);
414 index += elf_unwind_entries;
415
416 /* Now internalize the stub unwind entries. */
417 if (stub_unwind_size > 0)
418 {
419 unsigned int i;
420 char *buf = alloca (stub_unwind_size);
421
422 /* Read in the stub unwind entries. */
423 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
424 0, stub_unwind_size);
425
426 /* Now convert them into regular unwind entries. */
427 for (i = 0; i < stub_entries; i++, index++)
428 {
429 /* Clear out the next unwind entry. */
430 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
431
432 /* Convert offset & size into region_start and region_end.
433 Stuff away the stub type into "reserved" fields. */
434 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
435 (bfd_byte *) buf);
436 buf += 4;
437 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
438 (bfd_byte *) buf);
439 buf += 2;
440 ui->table[index].region_end
441 = ui->table[index].region_start + 4 *
442 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
443 buf += 2;
444 }
445
446 }
447
448 /* Unwind table needs to be kept sorted. */
449 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
450 compare_unwind_entries);
451
452 /* Keep a pointer to the unwind information. */
453 objfile->obj_private = (PTR) ui;
454 }
455
456 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
457 of the objfiles seeking the unwind table entry for this PC. Each objfile
458 contains a sorted list of struct unwind_table_entry. Since we do a binary
459 search of the unwind tables, we depend upon them to be sorted. */
460
461 static struct unwind_table_entry *
462 find_unwind_entry(pc)
463 CORE_ADDR pc;
464 {
465 int first, middle, last;
466 struct objfile *objfile;
467
468 ALL_OBJFILES (objfile)
469 {
470 struct obj_unwind_info *ui;
471
472 ui = OBJ_UNWIND_INFO (objfile);
473
474 if (!ui)
475 {
476 read_unwind_info (objfile);
477 ui = OBJ_UNWIND_INFO (objfile);
478 }
479
480 /* First, check the cache */
481
482 if (ui->cache
483 && pc >= ui->cache->region_start
484 && pc <= ui->cache->region_end)
485 return ui->cache;
486
487 /* Not in the cache, do a binary search */
488
489 first = 0;
490 last = ui->last;
491
492 while (first <= last)
493 {
494 middle = (first + last) / 2;
495 if (pc >= ui->table[middle].region_start
496 && pc <= ui->table[middle].region_end)
497 {
498 ui->cache = &ui->table[middle];
499 return &ui->table[middle];
500 }
501
502 if (pc < ui->table[middle].region_start)
503 last = middle - 1;
504 else
505 first = middle + 1;
506 }
507 } /* ALL_OBJFILES() */
508 return NULL;
509 }
510
511 /* start-sanitize-hpread */
512 /* Return the adjustment necessary to make for addresses on the stack
513 as presented by hpread.c.
514
515 This is necessary because of the stack direction on the PA and the
516 bizarre way in which someone (?) decided they wanted to handle
517 frame pointerless code in GDB. */
518 int
519 hpread_adjust_stack_address (func_addr)
520 CORE_ADDR func_addr;
521 {
522 struct unwind_table_entry *u;
523
524 u = find_unwind_entry (func_addr);
525 if (!u)
526 return 0;
527 else
528 return u->Total_frame_size << 3;
529 }
530 /* end-sanitize-hpread */
531
532 /* Called to determine if PC is in an interrupt handler of some
533 kind. */
534
535 static int
536 pc_in_interrupt_handler (pc)
537 CORE_ADDR pc;
538 {
539 struct unwind_table_entry *u;
540 struct minimal_symbol *msym_us;
541
542 u = find_unwind_entry (pc);
543 if (!u)
544 return 0;
545
546 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
547 its frame isn't a pure interrupt frame. Deal with this. */
548 msym_us = lookup_minimal_symbol_by_pc (pc);
549
550 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
551 }
552
553 /* Called when no unwind descriptor was found for PC. Returns 1 if it
554 appears that PC is in a linker stub. */
555
556 static int
557 pc_in_linker_stub (pc)
558 CORE_ADDR pc;
559 {
560 int found_magic_instruction = 0;
561 int i;
562 char buf[4];
563
564 /* If unable to read memory, assume pc is not in a linker stub. */
565 if (target_read_memory (pc, buf, 4) != 0)
566 return 0;
567
568 /* We are looking for something like
569
570 ; $$dyncall jams RP into this special spot in the frame (RP')
571 ; before calling the "call stub"
572 ldw -18(sp),rp
573
574 ldsid (rp),r1 ; Get space associated with RP into r1
575 mtsp r1,sp ; Move it into space register 0
576 be,n 0(sr0),rp) ; back to your regularly scheduled program
577 */
578
579 /* Maximum known linker stub size is 4 instructions. Search forward
580 from the given PC, then backward. */
581 for (i = 0; i < 4; i++)
582 {
583 /* If we hit something with an unwind, stop searching this direction. */
584
585 if (find_unwind_entry (pc + i * 4) != 0)
586 break;
587
588 /* Check for ldsid (rp),r1 which is the magic instruction for a
589 return from a cross-space function call. */
590 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
591 {
592 found_magic_instruction = 1;
593 break;
594 }
595 /* Add code to handle long call/branch and argument relocation stubs
596 here. */
597 }
598
599 if (found_magic_instruction != 0)
600 return 1;
601
602 /* Now look backward. */
603 for (i = 0; i < 4; i++)
604 {
605 /* If we hit something with an unwind, stop searching this direction. */
606
607 if (find_unwind_entry (pc - i * 4) != 0)
608 break;
609
610 /* Check for ldsid (rp),r1 which is the magic instruction for a
611 return from a cross-space function call. */
612 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
613 {
614 found_magic_instruction = 1;
615 break;
616 }
617 /* Add code to handle long call/branch and argument relocation stubs
618 here. */
619 }
620 return found_magic_instruction;
621 }
622
623 static int
624 find_return_regnum(pc)
625 CORE_ADDR pc;
626 {
627 struct unwind_table_entry *u;
628
629 u = find_unwind_entry (pc);
630
631 if (!u)
632 return RP_REGNUM;
633
634 if (u->Millicode)
635 return 31;
636
637 return RP_REGNUM;
638 }
639
640 /* Return size of frame, or -1 if we should use a frame pointer. */
641 int
642 find_proc_framesize (pc)
643 CORE_ADDR pc;
644 {
645 struct unwind_table_entry *u;
646 struct minimal_symbol *msym_us;
647
648 u = find_unwind_entry (pc);
649
650 if (!u)
651 {
652 if (pc_in_linker_stub (pc))
653 /* Linker stubs have a zero size frame. */
654 return 0;
655 else
656 return -1;
657 }
658
659 msym_us = lookup_minimal_symbol_by_pc (pc);
660
661 /* If Save_SP is set, and we're not in an interrupt or signal caller,
662 then we have a frame pointer. Use it. */
663 if (u->Save_SP && !pc_in_interrupt_handler (pc)
664 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
665 return -1;
666
667 return u->Total_frame_size << 3;
668 }
669
670 /* Return offset from sp at which rp is saved, or 0 if not saved. */
671 static int rp_saved PARAMS ((CORE_ADDR));
672
673 static int
674 rp_saved (pc)
675 CORE_ADDR pc;
676 {
677 struct unwind_table_entry *u;
678
679 u = find_unwind_entry (pc);
680
681 if (!u)
682 {
683 if (pc_in_linker_stub (pc))
684 /* This is the so-called RP'. */
685 return -24;
686 else
687 return 0;
688 }
689
690 if (u->Save_RP)
691 return -20;
692 else if (u->stub_type != 0)
693 {
694 switch (u->stub_type)
695 {
696 case EXPORT:
697 return -24;
698 case PARAMETER_RELOCATION:
699 return -8;
700 default:
701 return 0;
702 }
703 }
704 else
705 return 0;
706 }
707 \f
708 int
709 frameless_function_invocation (frame)
710 FRAME frame;
711 {
712 struct unwind_table_entry *u;
713
714 u = find_unwind_entry (frame->pc);
715
716 if (u == 0)
717 return 0;
718
719 return (u->Total_frame_size == 0 && u->stub_type == 0);
720 }
721
722 CORE_ADDR
723 saved_pc_after_call (frame)
724 FRAME frame;
725 {
726 int ret_regnum;
727 CORE_ADDR pc;
728 struct unwind_table_entry *u;
729
730 ret_regnum = find_return_regnum (get_frame_pc (frame));
731 pc = read_register (ret_regnum) & ~0x3;
732
733 /* If PC is in a linker stub, then we need to dig the address
734 the stub will return to out of the stack. */
735 u = find_unwind_entry (pc);
736 if (u && u->stub_type != 0)
737 return frame_saved_pc (frame);
738 else
739 return pc;
740 }
741 \f
742 CORE_ADDR
743 frame_saved_pc (frame)
744 FRAME frame;
745 {
746 CORE_ADDR pc = get_frame_pc (frame);
747 struct unwind_table_entry *u;
748
749 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
750 at the base of the frame in an interrupt handler. Registers within
751 are saved in the exact same order as GDB numbers registers. How
752 convienent. */
753 if (pc_in_interrupt_handler (pc))
754 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
755
756 /* Deal with signal handler caller frames too. */
757 if (frame->signal_handler_caller)
758 {
759 CORE_ADDR rp;
760 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
761 return rp;
762 }
763
764 if (frameless_function_invocation (frame))
765 {
766 int ret_regnum;
767
768 ret_regnum = find_return_regnum (pc);
769
770 /* If the next frame is an interrupt frame or a signal
771 handler caller, then we need to look in the saved
772 register area to get the return pointer (the values
773 in the registers may not correspond to anything useful). */
774 if (frame->next
775 && (frame->next->signal_handler_caller
776 || pc_in_interrupt_handler (frame->next->pc)))
777 {
778 struct frame_info *fi;
779 struct frame_saved_regs saved_regs;
780
781 fi = get_frame_info (frame->next);
782 get_frame_saved_regs (fi, &saved_regs);
783 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
784 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
785 else
786 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
787 }
788 else
789 pc = read_register (ret_regnum) & ~0x3;
790 }
791 else
792 {
793 int rp_offset;
794
795 restart:
796 rp_offset = rp_saved (pc);
797 /* Similar to code in frameless function case. If the next
798 frame is a signal or interrupt handler, then dig the right
799 information out of the saved register info. */
800 if (rp_offset == 0
801 && frame->next
802 && (frame->next->signal_handler_caller
803 || pc_in_interrupt_handler (frame->next->pc)))
804 {
805 struct frame_info *fi;
806 struct frame_saved_regs saved_regs;
807
808 fi = get_frame_info (frame->next);
809 get_frame_saved_regs (fi, &saved_regs);
810 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
811 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
812 else
813 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
814 }
815 else if (rp_offset == 0)
816 pc = read_register (RP_REGNUM) & ~0x3;
817 else
818 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
819 }
820
821 /* If PC is inside a linker stub, then dig out the address the stub
822 will return to. */
823 u = find_unwind_entry (pc);
824 if (u && u->stub_type != 0)
825 goto restart;
826
827 return pc;
828 }
829 \f
830 /* We need to correct the PC and the FP for the outermost frame when we are
831 in a system call. */
832
833 void
834 init_extra_frame_info (fromleaf, frame)
835 int fromleaf;
836 struct frame_info *frame;
837 {
838 int flags;
839 int framesize;
840
841 if (frame->next && !fromleaf)
842 return;
843
844 /* If the next frame represents a frameless function invocation
845 then we have to do some adjustments that are normally done by
846 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
847 if (fromleaf)
848 {
849 /* Find the framesize of *this* frame without peeking at the PC
850 in the current frame structure (it isn't set yet). */
851 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
852
853 /* Now adjust our base frame accordingly. If we have a frame pointer
854 use it, else subtract the size of this frame from the current
855 frame. (we always want frame->frame to point at the lowest address
856 in the frame). */
857 if (framesize == -1)
858 frame->frame = read_register (FP_REGNUM);
859 else
860 frame->frame -= framesize;
861 return;
862 }
863
864 flags = read_register (FLAGS_REGNUM);
865 if (flags & 2) /* In system call? */
866 frame->pc = read_register (31) & ~0x3;
867
868 /* The outermost frame is always derived from PC-framesize
869
870 One might think frameless innermost frames should have
871 a frame->frame that is the same as the parent's frame->frame.
872 That is wrong; frame->frame in that case should be the *high*
873 address of the parent's frame. It's complicated as hell to
874 explain, but the parent *always* creates some stack space for
875 the child. So the child actually does have a frame of some
876 sorts, and its base is the high address in its parent's frame. */
877 framesize = find_proc_framesize(frame->pc);
878 if (framesize == -1)
879 frame->frame = read_register (FP_REGNUM);
880 else
881 frame->frame = read_register (SP_REGNUM) - framesize;
882 }
883 \f
884 /* Given a GDB frame, determine the address of the calling function's frame.
885 This will be used to create a new GDB frame struct, and then
886 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
887
888 This may involve searching through prologues for several functions
889 at boundaries where GCC calls HP C code, or where code which has
890 a frame pointer calls code without a frame pointer. */
891
892
893 FRAME_ADDR
894 frame_chain (frame)
895 struct frame_info *frame;
896 {
897 int my_framesize, caller_framesize;
898 struct unwind_table_entry *u;
899 CORE_ADDR frame_base;
900
901 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
902 are easy; at *sp we have a full save state strucutre which we can
903 pull the old stack pointer from. Also see frame_saved_pc for
904 code to dig a saved PC out of the save state structure. */
905 if (pc_in_interrupt_handler (frame->pc))
906 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
907 else if (frame->signal_handler_caller)
908 {
909 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
910 }
911 else
912 frame_base = frame->frame;
913
914 /* Get frame sizes for the current frame and the frame of the
915 caller. */
916 my_framesize = find_proc_framesize (frame->pc);
917 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
918
919 /* If caller does not have a frame pointer, then its frame
920 can be found at current_frame - caller_framesize. */
921 if (caller_framesize != -1)
922 return frame_base - caller_framesize;
923
924 /* Both caller and callee have frame pointers and are GCC compiled
925 (SAVE_SP bit in unwind descriptor is on for both functions.
926 The previous frame pointer is found at the top of the current frame. */
927 if (caller_framesize == -1 && my_framesize == -1)
928 return read_memory_integer (frame_base, 4);
929
930 /* Caller has a frame pointer, but callee does not. This is a little
931 more difficult as GCC and HP C lay out locals and callee register save
932 areas very differently.
933
934 The previous frame pointer could be in a register, or in one of
935 several areas on the stack.
936
937 Walk from the current frame to the innermost frame examining
938 unwind descriptors to determine if %r3 ever gets saved into the
939 stack. If so return whatever value got saved into the stack.
940 If it was never saved in the stack, then the value in %r3 is still
941 valid, so use it.
942
943 We use information from unwind descriptors to determine if %r3
944 is saved into the stack (Entry_GR field has this information). */
945
946 while (frame)
947 {
948 u = find_unwind_entry (frame->pc);
949
950 if (!u)
951 {
952 /* We could find this information by examining prologues. I don't
953 think anyone has actually written any tools (not even "strip")
954 which leave them out of an executable, so maybe this is a moot
955 point. */
956 warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc);
957 return 0;
958 }
959
960 /* Entry_GR specifies the number of callee-saved general registers
961 saved in the stack. It starts at %r3, so %r3 would be 1. */
962 if (u->Entry_GR >= 1 || u->Save_SP
963 || frame->signal_handler_caller
964 || pc_in_interrupt_handler (frame->pc))
965 break;
966 else
967 frame = frame->next;
968 }
969
970 if (frame)
971 {
972 /* We may have walked down the chain into a function with a frame
973 pointer. */
974 if (u->Save_SP
975 && !frame->signal_handler_caller
976 && !pc_in_interrupt_handler (frame->pc))
977 return read_memory_integer (frame->frame, 4);
978 /* %r3 was saved somewhere in the stack. Dig it out. */
979 else
980 {
981 struct frame_info *fi;
982 struct frame_saved_regs saved_regs;
983
984 fi = get_frame_info (frame);
985 get_frame_saved_regs (fi, &saved_regs);
986 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
987 }
988 }
989 else
990 {
991 /* The value in %r3 was never saved into the stack (thus %r3 still
992 holds the value of the previous frame pointer). */
993 return read_register (FP_REGNUM);
994 }
995 }
996
997 \f
998 /* To see if a frame chain is valid, see if the caller looks like it
999 was compiled with gcc. */
1000
1001 int
1002 frame_chain_valid (chain, thisframe)
1003 FRAME_ADDR chain;
1004 FRAME thisframe;
1005 {
1006 struct minimal_symbol *msym_us;
1007 struct minimal_symbol *msym_start;
1008 struct unwind_table_entry *u, *next_u = NULL;
1009 FRAME next;
1010
1011 if (!chain)
1012 return 0;
1013
1014 u = find_unwind_entry (thisframe->pc);
1015
1016 if (u == NULL)
1017 return 1;
1018
1019 /* We can't just check that the same of msym_us is "_start", because
1020 someone idiotically decided that they were going to make a Ltext_end
1021 symbol with the same address. This Ltext_end symbol is totally
1022 indistinguishable (as nearly as I can tell) from the symbol for a function
1023 which is (legitimately, since it is in the user's namespace)
1024 named Ltext_end, so we can't just ignore it. */
1025 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1026 msym_start = lookup_minimal_symbol ("_start", NULL);
1027 if (msym_us
1028 && msym_start
1029 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1030 return 0;
1031
1032 next = get_next_frame (thisframe);
1033 if (next)
1034 next_u = find_unwind_entry (next->pc);
1035
1036 /* If this frame does not save SP, has no stack, isn't a stub,
1037 and doesn't "call" an interrupt routine or signal handler caller,
1038 then its not valid. */
1039 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1040 || (thisframe->next && thisframe->next->signal_handler_caller)
1041 || (next_u && next_u->HP_UX_interrupt_marker))
1042 return 1;
1043
1044 if (pc_in_linker_stub (thisframe->pc))
1045 return 1;
1046
1047 return 0;
1048 }
1049
1050 /*
1051 * These functions deal with saving and restoring register state
1052 * around a function call in the inferior. They keep the stack
1053 * double-word aligned; eventually, on an hp700, the stack will have
1054 * to be aligned to a 64-byte boundary.
1055 */
1056
1057 int
1058 push_dummy_frame ()
1059 {
1060 register CORE_ADDR sp;
1061 register int regnum;
1062 int int_buffer;
1063 double freg_buffer;
1064
1065 /* Space for "arguments"; the RP goes in here. */
1066 sp = read_register (SP_REGNUM) + 48;
1067 int_buffer = read_register (RP_REGNUM) | 0x3;
1068 write_memory (sp - 20, (char *)&int_buffer, 4);
1069
1070 int_buffer = read_register (FP_REGNUM);
1071 write_memory (sp, (char *)&int_buffer, 4);
1072
1073 write_register (FP_REGNUM, sp);
1074
1075 sp += 8;
1076
1077 for (regnum = 1; regnum < 32; regnum++)
1078 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1079 sp = push_word (sp, read_register (regnum));
1080
1081 sp += 4;
1082
1083 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1084 {
1085 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1086 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1087 }
1088 sp = push_word (sp, read_register (IPSW_REGNUM));
1089 sp = push_word (sp, read_register (SAR_REGNUM));
1090 sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
1091 sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
1092 sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
1093 sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
1094 write_register (SP_REGNUM, sp);
1095 }
1096
1097 find_dummy_frame_regs (frame, frame_saved_regs)
1098 struct frame_info *frame;
1099 struct frame_saved_regs *frame_saved_regs;
1100 {
1101 CORE_ADDR fp = frame->frame;
1102 int i;
1103
1104 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
1105 frame_saved_regs->regs[FP_REGNUM] = fp;
1106 frame_saved_regs->regs[1] = fp + 8;
1107
1108 for (fp += 12, i = 3; i < 32; i++)
1109 {
1110 if (i != FP_REGNUM)
1111 {
1112 frame_saved_regs->regs[i] = fp;
1113 fp += 4;
1114 }
1115 }
1116
1117 fp += 4;
1118 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1119 frame_saved_regs->regs[i] = fp;
1120
1121 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1122 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1123 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1124 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1125 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1126 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1127 }
1128
1129 int
1130 hppa_pop_frame ()
1131 {
1132 register FRAME frame = get_current_frame ();
1133 register CORE_ADDR fp;
1134 register int regnum;
1135 struct frame_saved_regs fsr;
1136 struct frame_info *fi;
1137 double freg_buffer;
1138
1139 fi = get_frame_info (frame);
1140 fp = fi->frame;
1141 get_frame_saved_regs (fi, &fsr);
1142
1143 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1144 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1145 restore_pc_queue (&fsr);
1146 #endif
1147
1148 for (regnum = 31; regnum > 0; regnum--)
1149 if (fsr.regs[regnum])
1150 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1151
1152 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1153 if (fsr.regs[regnum])
1154 {
1155 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1156 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1157 }
1158
1159 if (fsr.regs[IPSW_REGNUM])
1160 write_register (IPSW_REGNUM,
1161 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1162
1163 if (fsr.regs[SAR_REGNUM])
1164 write_register (SAR_REGNUM,
1165 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1166
1167 /* If the PC was explicitly saved, then just restore it. */
1168 if (fsr.regs[PCOQ_TAIL_REGNUM])
1169 write_register (PCOQ_TAIL_REGNUM,
1170 read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));
1171
1172 /* Else use the value in %rp to set the new PC. */
1173 else
1174 target_write_pc (read_register (RP_REGNUM), 0);
1175
1176 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1177
1178 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1179 write_register (SP_REGNUM, fp - 48);
1180 else
1181 write_register (SP_REGNUM, fp);
1182
1183 flush_cached_frames ();
1184 }
1185
1186 /*
1187 * After returning to a dummy on the stack, restore the instruction
1188 * queue space registers. */
1189
1190 static int
1191 restore_pc_queue (fsr)
1192 struct frame_saved_regs *fsr;
1193 {
1194 CORE_ADDR pc = read_pc ();
1195 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1196 int pid;
1197 struct target_waitstatus w;
1198 int insn_count;
1199
1200 /* Advance past break instruction in the call dummy. */
1201 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1202 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1203
1204 /*
1205 * HPUX doesn't let us set the space registers or the space
1206 * registers of the PC queue through ptrace. Boo, hiss.
1207 * Conveniently, the call dummy has this sequence of instructions
1208 * after the break:
1209 * mtsp r21, sr0
1210 * ble,n 0(sr0, r22)
1211 *
1212 * So, load up the registers and single step until we are in the
1213 * right place.
1214 */
1215
1216 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1217 write_register (22, new_pc);
1218
1219 for (insn_count = 0; insn_count < 3; insn_count++)
1220 {
1221 /* FIXME: What if the inferior gets a signal right now? Want to
1222 merge this into wait_for_inferior (as a special kind of
1223 watchpoint? By setting a breakpoint at the end? Is there
1224 any other choice? Is there *any* way to do this stuff with
1225 ptrace() or some equivalent?). */
1226 resume (1, 0);
1227 target_wait (inferior_pid, &w);
1228
1229 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1230 {
1231 stop_signal = w.value.sig;
1232 terminal_ours_for_output ();
1233 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1234 target_signal_to_name (stop_signal),
1235 target_signal_to_string (stop_signal));
1236 gdb_flush (gdb_stdout);
1237 return 0;
1238 }
1239 }
1240 target_terminal_ours ();
1241 target_fetch_registers (-1);
1242 return 1;
1243 }
1244
1245 CORE_ADDR
1246 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1247 int nargs;
1248 value_ptr *args;
1249 CORE_ADDR sp;
1250 int struct_return;
1251 CORE_ADDR struct_addr;
1252 {
1253 /* array of arguments' offsets */
1254 int *offset = (int *)alloca(nargs * sizeof (int));
1255 int cum = 0;
1256 int i, alignment;
1257
1258 for (i = 0; i < nargs; i++)
1259 {
1260 /* Coerce chars to int & float to double if necessary */
1261 args[i] = value_arg_coerce (args[i]);
1262
1263 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1264
1265 /* value must go at proper alignment. Assume alignment is a
1266 power of two.*/
1267 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1268 if (cum % alignment)
1269 cum = (cum + alignment) & -alignment;
1270 offset[i] = -cum;
1271 }
1272 sp += max ((cum + 7) & -8, 16);
1273
1274 for (i = 0; i < nargs; i++)
1275 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1276 TYPE_LENGTH (VALUE_TYPE (args[i])));
1277
1278 if (struct_return)
1279 write_register (28, struct_addr);
1280 return sp + 32;
1281 }
1282
1283 /*
1284 * Insert the specified number of args and function address
1285 * into a call sequence of the above form stored at DUMMYNAME.
1286 *
1287 * On the hppa we need to call the stack dummy through $$dyncall.
1288 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1289 * real_pc, which is the location where gdb should start up the
1290 * inferior to do the function call.
1291 */
1292
1293 CORE_ADDR
1294 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1295 char *dummy;
1296 CORE_ADDR pc;
1297 CORE_ADDR fun;
1298 int nargs;
1299 value_ptr *args;
1300 struct type *type;
1301 int gcc_p;
1302 {
1303 CORE_ADDR dyncall_addr, sr4export_addr;
1304 struct minimal_symbol *msymbol;
1305 int flags = read_register (FLAGS_REGNUM);
1306 struct unwind_table_entry *u;
1307
1308 msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
1309 if (msymbol == NULL)
1310 error ("Can't find an address for $$dyncall trampoline");
1311
1312 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1313
1314 /* FUN could be a procedure label, in which case we have to get
1315 its real address and the value of its GOT/DP. */
1316 if (fun & 0x2)
1317 {
1318 /* Get the GOT/DP value for the target function. It's
1319 at *(fun+4). Note the call dummy is *NOT* allowed to
1320 trash %r19 before calling the target function. */
1321 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1322
1323 /* Now get the real address for the function we are calling, it's
1324 at *fun. */
1325 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1326 }
1327
1328 /* If we are calling an import stub (eg calling into a dynamic library)
1329 then have sr4export call the magic __d_plt_call routine which is linked
1330 in from end.o. (You can't use _sr4export to call the import stub as
1331 the value in sp-24 will get fried and you end up returning to the
1332 wrong location. You can't call the import stub directly as the code
1333 to bind the PLT entry to a function can't return to a stack address.) */
1334 u = find_unwind_entry (fun);
1335 if (u && u->stub_type == IMPORT)
1336 {
1337 CORE_ADDR new_fun;
1338 msymbol = lookup_minimal_symbol ("__d_plt_call", (struct objfile *) NULL);
1339 if (msymbol == NULL)
1340 error ("Can't find an address for __d_plt_call trampoline");
1341
1342 /* This is where sr4export will jump to. */
1343 new_fun = SYMBOL_VALUE_ADDRESS (msymbol);
1344
1345 /* We have to store the address of the stub in __shlib_funcptr. */
1346 msymbol = lookup_minimal_symbol ("__shlib_funcptr",
1347 (struct objfile *)NULL);
1348 if (msymbol == NULL)
1349 error ("Can't find an address for __shlib_funcptr");
1350
1351 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1352 fun = new_fun;
1353
1354 }
1355
1356 /* We still need sr4export's address too. */
1357 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
1358 if (msymbol == NULL)
1359 error ("Can't find an address for _sr4export trampoline");
1360
1361 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1362
1363 store_unsigned_integer
1364 (&dummy[9*REGISTER_SIZE],
1365 REGISTER_SIZE,
1366 deposit_21 (fun >> 11,
1367 extract_unsigned_integer (&dummy[9*REGISTER_SIZE],
1368 REGISTER_SIZE)));
1369 store_unsigned_integer
1370 (&dummy[10*REGISTER_SIZE],
1371 REGISTER_SIZE,
1372 deposit_14 (fun & MASK_11,
1373 extract_unsigned_integer (&dummy[10*REGISTER_SIZE],
1374 REGISTER_SIZE)));
1375 store_unsigned_integer
1376 (&dummy[12*REGISTER_SIZE],
1377 REGISTER_SIZE,
1378 deposit_21 (sr4export_addr >> 11,
1379 extract_unsigned_integer (&dummy[12*REGISTER_SIZE],
1380 REGISTER_SIZE)));
1381 store_unsigned_integer
1382 (&dummy[13*REGISTER_SIZE],
1383 REGISTER_SIZE,
1384 deposit_14 (sr4export_addr & MASK_11,
1385 extract_unsigned_integer (&dummy[13*REGISTER_SIZE],
1386 REGISTER_SIZE)));
1387
1388 write_register (22, pc);
1389
1390 /* If we are in a syscall, then we should call the stack dummy
1391 directly. $$dyncall is not needed as the kernel sets up the
1392 space id registers properly based on the value in %r31. In
1393 fact calling $$dyncall will not work because the value in %r22
1394 will be clobbered on the syscall exit path. */
1395 if (flags & 2)
1396 return pc;
1397 else
1398 return dyncall_addr;
1399
1400 }
1401
1402 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1403 bits. */
1404 CORE_ADDR
1405 target_read_pc (pid)
1406 int pid;
1407 {
1408 int flags = read_register (FLAGS_REGNUM);
1409
1410 if (flags & 2)
1411 return read_register (31) & ~0x3;
1412 return read_register (PC_REGNUM) & ~0x3;
1413 }
1414
1415 /* Write out the PC. If currently in a syscall, then also write the new
1416 PC value into %r31. */
1417 void
1418 target_write_pc (v, pid)
1419 CORE_ADDR v;
1420 int pid;
1421 {
1422 int flags = read_register (FLAGS_REGNUM);
1423
1424 /* If in a syscall, then set %r31. Also make sure to get the
1425 privilege bits set correctly. */
1426 if (flags & 2)
1427 write_register (31, (long) (v | 0x3));
1428
1429 write_register (PC_REGNUM, (long) v);
1430 write_register (NPC_REGNUM, (long) v + 4);
1431 }
1432
1433 /* return the alignment of a type in bytes. Structures have the maximum
1434 alignment required by their fields. */
1435
1436 static int
1437 hppa_alignof (arg)
1438 struct type *arg;
1439 {
1440 int max_align, align, i;
1441 switch (TYPE_CODE (arg))
1442 {
1443 case TYPE_CODE_PTR:
1444 case TYPE_CODE_INT:
1445 case TYPE_CODE_FLT:
1446 return TYPE_LENGTH (arg);
1447 case TYPE_CODE_ARRAY:
1448 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1449 case TYPE_CODE_STRUCT:
1450 case TYPE_CODE_UNION:
1451 max_align = 2;
1452 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1453 {
1454 /* Bit fields have no real alignment. */
1455 if (!TYPE_FIELD_BITPOS (arg, i))
1456 {
1457 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1458 max_align = max (max_align, align);
1459 }
1460 }
1461 return max_align;
1462 default:
1463 return 4;
1464 }
1465 }
1466
1467 /* Print the register regnum, or all registers if regnum is -1 */
1468
1469 pa_do_registers_info (regnum, fpregs)
1470 int regnum;
1471 int fpregs;
1472 {
1473 char raw_regs [REGISTER_BYTES];
1474 int i;
1475
1476 for (i = 0; i < NUM_REGS; i++)
1477 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1478 if (regnum == -1)
1479 pa_print_registers (raw_regs, regnum, fpregs);
1480 else if (regnum < FP0_REGNUM)
1481 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1482 REGISTER_BYTE (regnum)));
1483 else
1484 pa_print_fp_reg (regnum);
1485 }
1486
1487 pa_print_registers (raw_regs, regnum, fpregs)
1488 char *raw_regs;
1489 int regnum;
1490 int fpregs;
1491 {
1492 int i;
1493
1494 for (i = 0; i < 18; i++)
1495 printf_unfiltered ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
1496 reg_names[i],
1497 *(int *)(raw_regs + REGISTER_BYTE (i)),
1498 reg_names[i + 18],
1499 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
1500 reg_names[i + 36],
1501 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
1502 reg_names[i + 54],
1503 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
1504
1505 if (fpregs)
1506 for (i = 72; i < NUM_REGS; i++)
1507 pa_print_fp_reg (i);
1508 }
1509
1510 pa_print_fp_reg (i)
1511 int i;
1512 {
1513 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1514 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1515
1516 /* Get 32bits of data. */
1517 read_relative_register_raw_bytes (i, raw_buffer);
1518
1519 /* Put it in the buffer. No conversions are ever necessary. */
1520 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1521
1522 fputs_filtered (reg_names[i], gdb_stdout);
1523 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1524 fputs_filtered ("(single precision) ", gdb_stdout);
1525
1526 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1527 1, 0, Val_pretty_default);
1528 printf_filtered ("\n");
1529
1530 /* If "i" is even, then this register can also be a double-precision
1531 FP register. Dump it out as such. */
1532 if ((i % 2) == 0)
1533 {
1534 /* Get the data in raw format for the 2nd half. */
1535 read_relative_register_raw_bytes (i + 1, raw_buffer);
1536
1537 /* Copy it into the appropriate part of the virtual buffer. */
1538 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1539 REGISTER_RAW_SIZE (i));
1540
1541 /* Dump it as a double. */
1542 fputs_filtered (reg_names[i], gdb_stdout);
1543 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1544 fputs_filtered ("(double precision) ", gdb_stdout);
1545
1546 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1547 1, 0, Val_pretty_default);
1548 printf_filtered ("\n");
1549 }
1550 }
1551
1552 /* Figure out if PC is in a trampoline, and if so find out where
1553 the trampoline will jump to. If not in a trampoline, return zero.
1554
1555 Simple code examination probably is not a good idea since the code
1556 sequences in trampolines can also appear in user code.
1557
1558 We use unwinds and information from the minimal symbol table to
1559 determine when we're in a trampoline. This won't work for ELF
1560 (yet) since it doesn't create stub unwind entries. Whether or
1561 not ELF will create stub unwinds or normal unwinds for linker
1562 stubs is still being debated.
1563
1564 This should handle simple calls through dyncall or sr4export,
1565 long calls, argument relocation stubs, and dyncall/sr4export
1566 calling an argument relocation stub. It even handles some stubs
1567 used in dynamic executables. */
1568
1569 CORE_ADDR
1570 skip_trampoline_code (pc, name)
1571 CORE_ADDR pc;
1572 char *name;
1573 {
1574 long orig_pc = pc;
1575 long prev_inst, curr_inst, loc;
1576 static CORE_ADDR dyncall = 0;
1577 static CORE_ADDR sr4export = 0;
1578 struct minimal_symbol *msym;
1579 struct unwind_table_entry *u;
1580
1581 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1582 new exec file */
1583
1584 if (!dyncall)
1585 {
1586 msym = lookup_minimal_symbol ("$$dyncall", NULL);
1587 if (msym)
1588 dyncall = SYMBOL_VALUE_ADDRESS (msym);
1589 else
1590 dyncall = -1;
1591 }
1592
1593 if (!sr4export)
1594 {
1595 msym = lookup_minimal_symbol ("_sr4export", NULL);
1596 if (msym)
1597 sr4export = SYMBOL_VALUE_ADDRESS (msym);
1598 else
1599 sr4export = -1;
1600 }
1601
1602 /* Addresses passed to dyncall may *NOT* be the actual address
1603 of the funtion. So we may have to do something special. */
1604 if (pc == dyncall)
1605 {
1606 pc = (CORE_ADDR) read_register (22);
1607
1608 /* If bit 30 (counting from the left) is on, then pc is the address of
1609 the PLT entry for this function, not the address of the function
1610 itself. Bit 31 has meaning too, but only for MPE. */
1611 if (pc & 0x2)
1612 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
1613 }
1614 else if (pc == sr4export)
1615 pc = (CORE_ADDR) (read_register (22));
1616
1617 /* Get the unwind descriptor corresponding to PC, return zero
1618 if no unwind was found. */
1619 u = find_unwind_entry (pc);
1620 if (!u)
1621 return 0;
1622
1623 /* If this isn't a linker stub, then return now. */
1624 if (u->stub_type == 0)
1625 return orig_pc == pc ? 0 : pc & ~0x3;
1626
1627 /* It's a stub. Search for a branch and figure out where it goes.
1628 Note we have to handle multi insn branch sequences like ldil;ble.
1629 Most (all?) other branches can be determined by examining the contents
1630 of certain registers and the stack. */
1631 loc = pc;
1632 curr_inst = 0;
1633 prev_inst = 0;
1634 while (1)
1635 {
1636 /* Make sure we haven't walked outside the range of this stub. */
1637 if (u != find_unwind_entry (loc))
1638 {
1639 warning ("Unable to find branch in linker stub");
1640 return orig_pc == pc ? 0 : pc & ~0x3;
1641 }
1642
1643 prev_inst = curr_inst;
1644 curr_inst = read_memory_integer (loc, 4);
1645
1646 /* Does it look like a branch external using %r1? Then it's the
1647 branch from the stub to the actual function. */
1648 if ((curr_inst & 0xffe0e000) == 0xe0202000)
1649 {
1650 /* Yup. See if the previous instruction loaded
1651 a value into %r1. If so compute and return the jump address. */
1652 if ((prev_inst & 0xffe00000) == 0x20200000)
1653 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
1654 else
1655 {
1656 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
1657 return orig_pc == pc ? 0 : pc & ~0x3;
1658 }
1659 }
1660
1661 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
1662 branch from the stub to the actual function. */
1663 else if ((curr_inst & 0xffe0e000) == 0xe8400000
1664 || (curr_inst & 0xffe0e000) == 0xe8000000)
1665 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
1666
1667 /* Does it look like bv (rp)? Note this depends on the
1668 current stack pointer being the same as the stack
1669 pointer in the stub itself! This is a branch on from the
1670 stub back to the original caller. */
1671 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
1672 {
1673 /* Yup. See if the previous instruction loaded
1674 rp from sp - 8. */
1675 if (prev_inst == 0x4bc23ff1)
1676 return (read_memory_integer
1677 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
1678 else
1679 {
1680 warning ("Unable to find restore of %%rp before bv (%%rp).");
1681 return orig_pc == pc ? 0 : pc & ~0x3;
1682 }
1683 }
1684
1685 /* What about be,n 0(sr0,%rp)? It's just another way we return to
1686 the original caller from the stub. Used in dynamic executables. */
1687 else if (curr_inst == 0xe0400002)
1688 {
1689 /* The value we jump to is sitting in sp - 24. But that's
1690 loaded several instructions before the be instruction.
1691 I guess we could check for the previous instruction being
1692 mtsp %r1,%sr0 if we want to do sanity checking. */
1693 return (read_memory_integer
1694 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
1695 }
1696
1697 /* Haven't found the branch yet, but we're still in the stub.
1698 Keep looking. */
1699 loc += 4;
1700 }
1701 }
1702
1703 /* For the given instruction (INST), return any adjustment it makes
1704 to the stack pointer or zero for no adjustment.
1705
1706 This only handles instructions commonly found in prologues. */
1707
1708 static int
1709 prologue_inst_adjust_sp (inst)
1710 unsigned long inst;
1711 {
1712 /* This must persist across calls. */
1713 static int save_high21;
1714
1715 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1716 if ((inst & 0xffffc000) == 0x37de0000)
1717 return extract_14 (inst);
1718
1719 /* stwm X,D(sp) */
1720 if ((inst & 0xffe00000) == 0x6fc00000)
1721 return extract_14 (inst);
1722
1723 /* addil high21,%r1; ldo low11,(%r1),%r30)
1724 save high bits in save_high21 for later use. */
1725 if ((inst & 0xffe00000) == 0x28200000)
1726 {
1727 save_high21 = extract_21 (inst);
1728 return 0;
1729 }
1730
1731 if ((inst & 0xffff0000) == 0x343e0000)
1732 return save_high21 + extract_14 (inst);
1733
1734 /* fstws as used by the HP compilers. */
1735 if ((inst & 0xffffffe0) == 0x2fd01220)
1736 return extract_5_load (inst);
1737
1738 /* No adjustment. */
1739 return 0;
1740 }
1741
1742 /* Return nonzero if INST is a branch of some kind, else return zero. */
1743
1744 static int
1745 is_branch (inst)
1746 unsigned long inst;
1747 {
1748 switch (inst >> 26)
1749 {
1750 case 0x20:
1751 case 0x21:
1752 case 0x22:
1753 case 0x23:
1754 case 0x28:
1755 case 0x29:
1756 case 0x2a:
1757 case 0x2b:
1758 case 0x30:
1759 case 0x31:
1760 case 0x32:
1761 case 0x33:
1762 case 0x38:
1763 case 0x39:
1764 case 0x3a:
1765 return 1;
1766
1767 default:
1768 return 0;
1769 }
1770 }
1771
1772 /* Return the register number for a GR which is saved by INST or
1773 zero it INST does not save a GR. */
1774
1775 static int
1776 inst_saves_gr (inst)
1777 unsigned long inst;
1778 {
1779 /* Does it look like a stw? */
1780 if ((inst >> 26) == 0x1a)
1781 return extract_5R_store (inst);
1782
1783 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1784 if ((inst >> 26) == 0x1b)
1785 return extract_5R_store (inst);
1786
1787 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1788 too. */
1789 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
1790 return extract_5R_store (inst);
1791
1792 return 0;
1793 }
1794
1795 /* Return the register number for a FR which is saved by INST or
1796 zero it INST does not save a FR.
1797
1798 Note we only care about full 64bit register stores (that's the only
1799 kind of stores the prologue will use).
1800
1801 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1802
1803 static int
1804 inst_saves_fr (inst)
1805 unsigned long inst;
1806 {
1807 if ((inst & 0xfc00dfc0) == 0x2c001200)
1808 return extract_5r_store (inst);
1809 return 0;
1810 }
1811
1812 /* Advance PC across any function entry prologue instructions
1813 to reach some "real" code.
1814
1815 Use information in the unwind table to determine what exactly should
1816 be in the prologue. */
1817
1818 CORE_ADDR
1819 skip_prologue (pc)
1820 CORE_ADDR pc;
1821 {
1822 char buf[4];
1823 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1824 unsigned long args_stored, status, i;
1825 struct unwind_table_entry *u;
1826
1827 u = find_unwind_entry (pc);
1828 if (!u)
1829 return pc;
1830
1831 /* If we are not at the beginning of a function, then return now. */
1832 if ((pc & ~0x3) != u->region_start)
1833 return pc;
1834
1835 /* This is how much of a frame adjustment we need to account for. */
1836 stack_remaining = u->Total_frame_size << 3;
1837
1838 /* Magic register saves we want to know about. */
1839 save_rp = u->Save_RP;
1840 save_sp = u->Save_SP;
1841
1842 /* An indication that args may be stored into the stack. Unfortunately
1843 the HPUX compilers tend to set this in cases where no args were
1844 stored too!. */
1845 args_stored = u->Args_stored;
1846
1847 /* Turn the Entry_GR field into a bitmask. */
1848 save_gr = 0;
1849 for (i = 3; i < u->Entry_GR + 3; i++)
1850 {
1851 /* Frame pointer gets saved into a special location. */
1852 if (u->Save_SP && i == FP_REGNUM)
1853 continue;
1854
1855 save_gr |= (1 << i);
1856 }
1857
1858 /* Turn the Entry_FR field into a bitmask too. */
1859 save_fr = 0;
1860 for (i = 12; i < u->Entry_FR + 12; i++)
1861 save_fr |= (1 << i);
1862
1863 /* Loop until we find everything of interest or hit a branch.
1864
1865 For unoptimized GCC code and for any HP CC code this will never ever
1866 examine any user instructions.
1867
1868 For optimzied GCC code we're faced with problems. GCC will schedule
1869 its prologue and make prologue instructions available for delay slot
1870 filling. The end result is user code gets mixed in with the prologue
1871 and a prologue instruction may be in the delay slot of the first branch
1872 or call.
1873
1874 Some unexpected things are expected with debugging optimized code, so
1875 we allow this routine to walk past user instructions in optimized
1876 GCC code. */
1877 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1878 || args_stored)
1879 {
1880 unsigned int reg_num;
1881 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1882 unsigned long old_save_rp, old_save_sp, old_args_stored, next_inst;
1883
1884 /* Save copies of all the triggers so we can compare them later
1885 (only for HPC). */
1886 old_save_gr = save_gr;
1887 old_save_fr = save_fr;
1888 old_save_rp = save_rp;
1889 old_save_sp = save_sp;
1890 old_stack_remaining = stack_remaining;
1891
1892 status = target_read_memory (pc, buf, 4);
1893 inst = extract_unsigned_integer (buf, 4);
1894
1895 /* Yow! */
1896 if (status != 0)
1897 return pc;
1898
1899 /* Note the interesting effects of this instruction. */
1900 stack_remaining -= prologue_inst_adjust_sp (inst);
1901
1902 /* There is only one instruction used for saving RP into the stack. */
1903 if (inst == 0x6bc23fd9)
1904 save_rp = 0;
1905
1906 /* This is the only way we save SP into the stack. At this time
1907 the HP compilers never bother to save SP into the stack. */
1908 if ((inst & 0xffffc000) == 0x6fc10000)
1909 save_sp = 0;
1910
1911 /* Account for general and floating-point register saves. */
1912 reg_num = inst_saves_gr (inst);
1913 save_gr &= ~(1 << reg_num);
1914
1915 /* Ugh. Also account for argument stores into the stack.
1916 Unfortunately args_stored only tells us that some arguments
1917 where stored into the stack. Not how many or what kind!
1918
1919 This is a kludge as on the HP compiler sets this bit and it
1920 never does prologue scheduling. So once we see one, skip past
1921 all of them. We have similar code for the fp arg stores below.
1922
1923 FIXME. Can still die if we have a mix of GR and FR argument
1924 stores! */
1925 if (reg_num >= 23 && reg_num <= 26)
1926 {
1927 while (reg_num >= 23 && reg_num <= 26)
1928 {
1929 pc += 4;
1930 status = target_read_memory (pc, buf, 4);
1931 inst = extract_unsigned_integer (buf, 4);
1932 if (status != 0)
1933 return pc;
1934 reg_num = inst_saves_gr (inst);
1935 }
1936 args_stored = 0;
1937 continue;
1938 }
1939
1940 reg_num = inst_saves_fr (inst);
1941 save_fr &= ~(1 << reg_num);
1942
1943 status = target_read_memory (pc + 4, buf, 4);
1944 next_inst = extract_unsigned_integer (buf, 4);
1945
1946 /* Yow! */
1947 if (status != 0)
1948 return pc;
1949
1950 /* We've got to be read to handle the ldo before the fp register
1951 save. */
1952 if ((inst & 0xfc000000) == 0x34000000
1953 && inst_saves_fr (next_inst) >= 4
1954 && inst_saves_fr (next_inst) <= 7)
1955 {
1956 /* So we drop into the code below in a reasonable state. */
1957 reg_num = inst_saves_fr (next_inst);
1958 pc -= 4;
1959 }
1960
1961 /* Ugh. Also account for argument stores into the stack.
1962 This is a kludge as on the HP compiler sets this bit and it
1963 never does prologue scheduling. So once we see one, skip past
1964 all of them. */
1965 if (reg_num >= 4 && reg_num <= 7)
1966 {
1967 while (reg_num >= 4 && reg_num <= 7)
1968 {
1969 pc += 8;
1970 status = target_read_memory (pc, buf, 4);
1971 inst = extract_unsigned_integer (buf, 4);
1972 if (status != 0)
1973 return pc;
1974 if ((inst & 0xfc000000) != 0x34000000)
1975 break;
1976 status = target_read_memory (pc + 4, buf, 4);
1977 next_inst = extract_unsigned_integer (buf, 4);
1978 if (status != 0)
1979 return pc;
1980 reg_num = inst_saves_fr (next_inst);
1981 }
1982 args_stored = 0;
1983 continue;
1984 }
1985
1986 /* Quit if we hit any kind of branch. This can happen if a prologue
1987 instruction is in the delay slot of the first call/branch. */
1988 if (is_branch (inst))
1989 break;
1990
1991 /* What a crock. The HP compilers set args_stored even if no
1992 arguments were stored into the stack (boo hiss). This could
1993 cause this code to then skip a bunch of user insns (up to the
1994 first branch).
1995
1996 To combat this we try to identify when args_stored was bogusly
1997 set and clear it. We only do this when args_stored is nonzero,
1998 all other resources are accounted for, and nothing changed on
1999 this pass. */
2000 if (args_stored
2001 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2002 && old_save_gr == save_gr && old_save_fr == save_fr
2003 && old_save_rp == save_rp && old_save_sp == save_sp
2004 && old_stack_remaining == stack_remaining)
2005 break;
2006
2007 /* Bump the PC. */
2008 pc += 4;
2009 }
2010
2011 return pc;
2012 }
2013
2014 /* Put here the code to store, into a struct frame_saved_regs,
2015 the addresses of the saved registers of frame described by FRAME_INFO.
2016 This includes special registers such as pc and fp saved in special
2017 ways in the stack frame. sp is even more special:
2018 the address we return for it IS the sp for the next frame. */
2019
2020 void
2021 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
2022 struct frame_info *frame_info;
2023 struct frame_saved_regs *frame_saved_regs;
2024 {
2025 CORE_ADDR pc;
2026 struct unwind_table_entry *u;
2027 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2028 int status, i, reg;
2029 char buf[4];
2030 int fp_loc = -1;
2031
2032 /* Zero out everything. */
2033 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2034
2035 /* Call dummy frames always look the same, so there's no need to
2036 examine the dummy code to determine locations of saved registers;
2037 instead, let find_dummy_frame_regs fill in the correct offsets
2038 for the saved registers. */
2039 if ((frame_info->pc >= frame_info->frame
2040 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2041 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2042 + 6 * 4)))
2043 find_dummy_frame_regs (frame_info, frame_saved_regs);
2044
2045 /* Interrupt handlers are special too. They lay out the register
2046 state in the exact same order as the register numbers in GDB. */
2047 if (pc_in_interrupt_handler (frame_info->pc))
2048 {
2049 for (i = 0; i < NUM_REGS; i++)
2050 {
2051 /* SP is a little special. */
2052 if (i == SP_REGNUM)
2053 frame_saved_regs->regs[SP_REGNUM]
2054 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
2055 else
2056 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
2057 }
2058 return;
2059 }
2060
2061 /* Handle signal handler callers. */
2062 if (frame_info->signal_handler_caller)
2063 {
2064 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
2065 return;
2066 }
2067
2068 /* Get the starting address of the function referred to by the PC
2069 saved in frame_info. */
2070 pc = get_pc_function_start (frame_info->pc);
2071
2072 /* Yow! */
2073 u = find_unwind_entry (pc);
2074 if (!u)
2075 return;
2076
2077 /* This is how much of a frame adjustment we need to account for. */
2078 stack_remaining = u->Total_frame_size << 3;
2079
2080 /* Magic register saves we want to know about. */
2081 save_rp = u->Save_RP;
2082 save_sp = u->Save_SP;
2083
2084 /* Turn the Entry_GR field into a bitmask. */
2085 save_gr = 0;
2086 for (i = 3; i < u->Entry_GR + 3; i++)
2087 {
2088 /* Frame pointer gets saved into a special location. */
2089 if (u->Save_SP && i == FP_REGNUM)
2090 continue;
2091
2092 save_gr |= (1 << i);
2093 }
2094
2095 /* Turn the Entry_FR field into a bitmask too. */
2096 save_fr = 0;
2097 for (i = 12; i < u->Entry_FR + 12; i++)
2098 save_fr |= (1 << i);
2099
2100 /* The frame always represents the value of %sp at entry to the
2101 current function (and is thus equivalent to the "saved" stack
2102 pointer. */
2103 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
2104
2105 /* Loop until we find everything of interest or hit a branch.
2106
2107 For unoptimized GCC code and for any HP CC code this will never ever
2108 examine any user instructions.
2109
2110 For optimzied GCC code we're faced with problems. GCC will schedule
2111 its prologue and make prologue instructions available for delay slot
2112 filling. The end result is user code gets mixed in with the prologue
2113 and a prologue instruction may be in the delay slot of the first branch
2114 or call.
2115
2116 Some unexpected things are expected with debugging optimized code, so
2117 we allow this routine to walk past user instructions in optimized
2118 GCC code. */
2119 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2120 {
2121 status = target_read_memory (pc, buf, 4);
2122 inst = extract_unsigned_integer (buf, 4);
2123
2124 /* Yow! */
2125 if (status != 0)
2126 return;
2127
2128 /* Note the interesting effects of this instruction. */
2129 stack_remaining -= prologue_inst_adjust_sp (inst);
2130
2131 /* There is only one instruction used for saving RP into the stack. */
2132 if (inst == 0x6bc23fd9)
2133 {
2134 save_rp = 0;
2135 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
2136 }
2137
2138 /* Just note that we found the save of SP into the stack. The
2139 value for frame_saved_regs was computed above. */
2140 if ((inst & 0xffffc000) == 0x6fc10000)
2141 save_sp = 0;
2142
2143 /* Account for general and floating-point register saves. */
2144 reg = inst_saves_gr (inst);
2145 if (reg >= 3 && reg <= 18
2146 && (!u->Save_SP || reg != FP_REGNUM))
2147 {
2148 save_gr &= ~(1 << reg);
2149
2150 /* stwm with a positive displacement is a *post modify*. */
2151 if ((inst >> 26) == 0x1b
2152 && extract_14 (inst) >= 0)
2153 frame_saved_regs->regs[reg] = frame_info->frame;
2154 else
2155 {
2156 /* Handle code with and without frame pointers. */
2157 if (u->Save_SP)
2158 frame_saved_regs->regs[reg]
2159 = frame_info->frame + extract_14 (inst);
2160 else
2161 frame_saved_regs->regs[reg]
2162 = frame_info->frame + (u->Total_frame_size << 3)
2163 + extract_14 (inst);
2164 }
2165 }
2166
2167
2168 /* GCC handles callee saved FP regs a little differently.
2169
2170 It emits an instruction to put the value of the start of
2171 the FP store area into %r1. It then uses fstds,ma with
2172 a basereg of %r1 for the stores.
2173
2174 HP CC emits them at the current stack pointer modifying
2175 the stack pointer as it stores each register. */
2176
2177 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2178 if ((inst & 0xffffc000) == 0x34610000
2179 || (inst & 0xffffc000) == 0x37c10000)
2180 fp_loc = extract_14 (inst);
2181
2182 reg = inst_saves_fr (inst);
2183 if (reg >= 12 && reg <= 21)
2184 {
2185 /* Note +4 braindamage below is necessary because the FP status
2186 registers are internally 8 registers rather than the expected
2187 4 registers. */
2188 save_fr &= ~(1 << reg);
2189 if (fp_loc == -1)
2190 {
2191 /* 1st HP CC FP register store. After this instruction
2192 we've set enough state that the GCC and HPCC code are
2193 both handled in the same manner. */
2194 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
2195 fp_loc = 8;
2196 }
2197 else
2198 {
2199 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
2200 = frame_info->frame + fp_loc;
2201 fp_loc += 8;
2202 }
2203 }
2204
2205 /* Quit if we hit any kind of branch. This can happen if a prologue
2206 instruction is in the delay slot of the first call/branch. */
2207 if (is_branch (inst))
2208 break;
2209
2210 /* Bump the PC. */
2211 pc += 4;
2212 }
2213 }
2214
2215 #ifdef MAINTENANCE_CMDS
2216
2217 static void
2218 unwind_command (exp, from_tty)
2219 char *exp;
2220 int from_tty;
2221 {
2222 CORE_ADDR address;
2223 union
2224 {
2225 int *foo;
2226 struct unwind_table_entry *u;
2227 } xxx;
2228
2229 /* If we have an expression, evaluate it and use it as the address. */
2230
2231 if (exp != 0 && *exp != 0)
2232 address = parse_and_eval_address (exp);
2233 else
2234 return;
2235
2236 xxx.u = find_unwind_entry (address);
2237
2238 if (!xxx.u)
2239 {
2240 printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address);
2241 return;
2242 }
2243
2244 printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
2245 xxx.foo[3]);
2246 }
2247 #endif /* MAINTENANCE_CMDS */
2248
2249 void
2250 _initialize_hppa_tdep ()
2251 {
2252 #ifdef MAINTENANCE_CMDS
2253 add_cmd ("unwind", class_maintenance, unwind_command,
2254 "Print unwind table entry at given address.",
2255 &maintenanceprintlist);
2256 #endif /* MAINTENANCE_CMDS */
2257 }