]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/hppa-tdep.c
* hppa-tdep.c (hppa_fix_call_dummy): Use an alternate method for
[thirdparty/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Machine-dependent code which would otherwise be in inflow.c and core.c,
2 for GDB, the GNU debugger. This code is for the HP PA-RISC cpu.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <sys/dir.h>
38 #include <signal.h>
39 #include <sys/ioctl.h>
40
41 #ifdef COFF_ENCAPSULATE
42 #include "a.out.encap.h"
43 #else
44 #include <a.out.h>
45 #endif
46 #ifndef N_SET_MAGIC
47 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
48 #endif
49
50 /*#include <sys/user.h> After a.out.h */
51 #include <sys/file.h>
52 #include <sys/stat.h>
53 #include <machine/psl.h>
54 #include "wait.h"
55
56 #include "gdbcore.h"
57 #include "gdbcmd.h"
58 #include "target.h"
59 #include "symfile.h"
60 #include "objfiles.h"
61
62 static int restore_pc_queue PARAMS ((struct frame_saved_regs *fsr));
63 static int hppa_alignof PARAMS ((struct type *arg));
64 CORE_ADDR frame_saved_pc PARAMS ((FRAME frame));
65 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
66 static int is_branch PARAMS ((unsigned long));
67 static int inst_saves_gr PARAMS ((unsigned long));
68 static int inst_saves_fr PARAMS ((unsigned long));
69 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
70 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
71
72 \f
73 /* Routines to extract various sized constants out of hppa
74 instructions. */
75
76 /* This assumes that no garbage lies outside of the lower bits of
77 value. */
78
79 int
80 sign_extend (val, bits)
81 unsigned val, bits;
82 {
83 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
84 }
85
86 /* For many immediate values the sign bit is the low bit! */
87
88 int
89 low_sign_extend (val, bits)
90 unsigned val, bits;
91 {
92 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
93 }
94 /* extract the immediate field from a ld{bhw}s instruction */
95
96 unsigned
97 get_field (val, from, to)
98 unsigned val, from, to;
99 {
100 val = val >> 31 - to;
101 return val & ((1 << 32 - from) - 1);
102 }
103
104 unsigned
105 set_field (val, from, to, new_val)
106 unsigned *val, from, to;
107 {
108 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
109 return *val = *val & mask | (new_val << (31 - from));
110 }
111
112 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
113
114 extract_3 (word)
115 unsigned word;
116 {
117 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
118 }
119
120 extract_5_load (word)
121 unsigned word;
122 {
123 return low_sign_extend (word >> 16 & MASK_5, 5);
124 }
125
126 /* extract the immediate field from a st{bhw}s instruction */
127
128 int
129 extract_5_store (word)
130 unsigned word;
131 {
132 return low_sign_extend (word & MASK_5, 5);
133 }
134
135 /* extract the immediate field from a break instruction */
136
137 unsigned
138 extract_5r_store (word)
139 unsigned word;
140 {
141 return (word & MASK_5);
142 }
143
144 /* extract the immediate field from a {sr}sm instruction */
145
146 unsigned
147 extract_5R_store (word)
148 unsigned word;
149 {
150 return (word >> 16 & MASK_5);
151 }
152
153 /* extract an 11 bit immediate field */
154
155 int
156 extract_11 (word)
157 unsigned word;
158 {
159 return low_sign_extend (word & MASK_11, 11);
160 }
161
162 /* extract a 14 bit immediate field */
163
164 int
165 extract_14 (word)
166 unsigned word;
167 {
168 return low_sign_extend (word & MASK_14, 14);
169 }
170
171 /* deposit a 14 bit constant in a word */
172
173 unsigned
174 deposit_14 (opnd, word)
175 int opnd;
176 unsigned word;
177 {
178 unsigned sign = (opnd < 0 ? 1 : 0);
179
180 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
181 }
182
183 /* extract a 21 bit constant */
184
185 int
186 extract_21 (word)
187 unsigned word;
188 {
189 int val;
190
191 word &= MASK_21;
192 word <<= 11;
193 val = GET_FIELD (word, 20, 20);
194 val <<= 11;
195 val |= GET_FIELD (word, 9, 19);
196 val <<= 2;
197 val |= GET_FIELD (word, 5, 6);
198 val <<= 5;
199 val |= GET_FIELD (word, 0, 4);
200 val <<= 2;
201 val |= GET_FIELD (word, 7, 8);
202 return sign_extend (val, 21) << 11;
203 }
204
205 /* deposit a 21 bit constant in a word. Although 21 bit constants are
206 usually the top 21 bits of a 32 bit constant, we assume that only
207 the low 21 bits of opnd are relevant */
208
209 unsigned
210 deposit_21 (opnd, word)
211 unsigned opnd, word;
212 {
213 unsigned val = 0;
214
215 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
216 val <<= 2;
217 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
218 val <<= 2;
219 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
220 val <<= 11;
221 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
222 val <<= 1;
223 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
224 return word | val;
225 }
226
227 /* extract a 12 bit constant from branch instructions */
228
229 int
230 extract_12 (word)
231 unsigned word;
232 {
233 return sign_extend (GET_FIELD (word, 19, 28) |
234 GET_FIELD (word, 29, 29) << 10 |
235 (word & 0x1) << 11, 12) << 2;
236 }
237
238 /* extract a 17 bit constant from branch instructions, returning the
239 19 bit signed value. */
240
241 int
242 extract_17 (word)
243 unsigned word;
244 {
245 return sign_extend (GET_FIELD (word, 19, 28) |
246 GET_FIELD (word, 29, 29) << 10 |
247 GET_FIELD (word, 11, 15) << 11 |
248 (word & 0x1) << 16, 17) << 2;
249 }
250 \f
251 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
252 of the objfiles seeking the unwind table entry for this PC. Each objfile
253 contains a sorted list of struct unwind_table_entry. Since we do a binary
254 search of the unwind tables, we depend upon them to be sorted. */
255
256 static struct unwind_table_entry *
257 find_unwind_entry(pc)
258 CORE_ADDR pc;
259 {
260 int first, middle, last;
261 struct objfile *objfile;
262
263 ALL_OBJFILES (objfile)
264 {
265 struct obj_unwind_info *ui;
266
267 ui = OBJ_UNWIND_INFO (objfile);
268
269 if (!ui)
270 continue;
271
272 /* First, check the cache */
273
274 if (ui->cache
275 && pc >= ui->cache->region_start
276 && pc <= ui->cache->region_end)
277 return ui->cache;
278
279 /* Not in the cache, do a binary search */
280
281 first = 0;
282 last = ui->last;
283
284 while (first <= last)
285 {
286 middle = (first + last) / 2;
287 if (pc >= ui->table[middle].region_start
288 && pc <= ui->table[middle].region_end)
289 {
290 ui->cache = &ui->table[middle];
291 return &ui->table[middle];
292 }
293
294 if (pc < ui->table[middle].region_start)
295 last = middle - 1;
296 else
297 first = middle + 1;
298 }
299 } /* ALL_OBJFILES() */
300 return NULL;
301 }
302
303 /* Called to determine if PC is in an interrupt handler of some
304 kind. */
305
306 static int
307 pc_in_interrupt_handler (pc)
308 CORE_ADDR pc;
309 {
310 struct unwind_table_entry *u;
311 struct minimal_symbol *msym_us;
312
313 u = find_unwind_entry (pc);
314 if (!u)
315 return 0;
316
317 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
318 its frame isn't a pure interrupt frame. Deal with this. */
319 msym_us = lookup_minimal_symbol_by_pc (pc);
320
321 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
322 }
323
324 /* Called when no unwind descriptor was found for PC. Returns 1 if it
325 appears that PC is in a linker stub. */
326
327 static int
328 pc_in_linker_stub (pc)
329 CORE_ADDR pc;
330 {
331 int found_magic_instruction = 0;
332 int i;
333 char buf[4];
334
335 /* If unable to read memory, assume pc is not in a linker stub. */
336 if (target_read_memory (pc, buf, 4) != 0)
337 return 0;
338
339 /* We are looking for something like
340
341 ; $$dyncall jams RP into this special spot in the frame (RP')
342 ; before calling the "call stub"
343 ldw -18(sp),rp
344
345 ldsid (rp),r1 ; Get space associated with RP into r1
346 mtsp r1,sp ; Move it into space register 0
347 be,n 0(sr0),rp) ; back to your regularly scheduled program
348 */
349
350 /* Maximum known linker stub size is 4 instructions. Search forward
351 from the given PC, then backward. */
352 for (i = 0; i < 4; i++)
353 {
354 /* If we hit something with an unwind, stop searching this direction. */
355
356 if (find_unwind_entry (pc + i * 4) != 0)
357 break;
358
359 /* Check for ldsid (rp),r1 which is the magic instruction for a
360 return from a cross-space function call. */
361 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
362 {
363 found_magic_instruction = 1;
364 break;
365 }
366 /* Add code to handle long call/branch and argument relocation stubs
367 here. */
368 }
369
370 if (found_magic_instruction != 0)
371 return 1;
372
373 /* Now look backward. */
374 for (i = 0; i < 4; i++)
375 {
376 /* If we hit something with an unwind, stop searching this direction. */
377
378 if (find_unwind_entry (pc - i * 4) != 0)
379 break;
380
381 /* Check for ldsid (rp),r1 which is the magic instruction for a
382 return from a cross-space function call. */
383 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
384 {
385 found_magic_instruction = 1;
386 break;
387 }
388 /* Add code to handle long call/branch and argument relocation stubs
389 here. */
390 }
391 return found_magic_instruction;
392 }
393
394 static int
395 find_return_regnum(pc)
396 CORE_ADDR pc;
397 {
398 struct unwind_table_entry *u;
399
400 u = find_unwind_entry (pc);
401
402 if (!u)
403 return RP_REGNUM;
404
405 if (u->Millicode)
406 return 31;
407
408 return RP_REGNUM;
409 }
410
411 /* Return size of frame, or -1 if we should use a frame pointer. */
412 int
413 find_proc_framesize (pc)
414 CORE_ADDR pc;
415 {
416 struct unwind_table_entry *u;
417 struct minimal_symbol *msym_us;
418
419 u = find_unwind_entry (pc);
420
421 if (!u)
422 {
423 if (pc_in_linker_stub (pc))
424 /* Linker stubs have a zero size frame. */
425 return 0;
426 else
427 return -1;
428 }
429
430 msym_us = lookup_minimal_symbol_by_pc (pc);
431
432 /* If Save_SP is set, and we're not in an interrupt or signal caller,
433 then we have a frame pointer. Use it. */
434 if (u->Save_SP && !pc_in_interrupt_handler (pc)
435 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
436 return -1;
437
438 return u->Total_frame_size << 3;
439 }
440
441 /* Return offset from sp at which rp is saved, or 0 if not saved. */
442 static int rp_saved PARAMS ((CORE_ADDR));
443
444 static int
445 rp_saved (pc)
446 CORE_ADDR pc;
447 {
448 struct unwind_table_entry *u;
449
450 u = find_unwind_entry (pc);
451
452 if (!u)
453 {
454 if (pc_in_linker_stub (pc))
455 /* This is the so-called RP'. */
456 return -24;
457 else
458 return 0;
459 }
460
461 if (u->Save_RP)
462 return -20;
463 else if (u->stub_type != 0)
464 {
465 switch (u->stub_type)
466 {
467 case EXPORT:
468 return -24;
469 case PARAMETER_RELOCATION:
470 return -8;
471 default:
472 return 0;
473 }
474 }
475 else
476 return 0;
477 }
478 \f
479 int
480 frameless_function_invocation (frame)
481 FRAME frame;
482 {
483 struct unwind_table_entry *u;
484
485 u = find_unwind_entry (frame->pc);
486
487 if (u == 0)
488 return frameless_look_for_prologue (frame);
489
490 return (u->Total_frame_size == 0 && u->stub_type == 0);
491 }
492
493 CORE_ADDR
494 saved_pc_after_call (frame)
495 FRAME frame;
496 {
497 int ret_regnum;
498
499 ret_regnum = find_return_regnum (get_frame_pc (frame));
500
501 return read_register (ret_regnum) & ~0x3;
502 }
503 \f
504 CORE_ADDR
505 frame_saved_pc (frame)
506 FRAME frame;
507 {
508 CORE_ADDR pc = get_frame_pc (frame);
509
510 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
511 at the base of the frame in an interrupt handler. Registers within
512 are saved in the exact same order as GDB numbers registers. How
513 convienent. */
514 if (pc_in_interrupt_handler (pc))
515 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
516
517 /* Deal with signal handler caller frames too. */
518 if (frame->signal_handler_caller)
519 {
520 CORE_ADDR rp;
521 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
522 return rp;
523 }
524
525 if (frameless_function_invocation (frame))
526 {
527 int ret_regnum;
528
529 ret_regnum = find_return_regnum (pc);
530
531 /* If the next frame is an interrupt frame or a signal
532 handler caller, then we need to look in the saved
533 register area to get the return pointer (the values
534 in the registers may not correspond to anything useful). */
535 if (frame->next
536 && (frame->next->signal_handler_caller
537 || pc_in_interrupt_handler (frame->next->pc)))
538 {
539 struct frame_info *fi;
540 struct frame_saved_regs saved_regs;
541
542 fi = get_frame_info (frame->next);
543 get_frame_saved_regs (fi, &saved_regs);
544 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM] & 0x2, 4))
545 return read_memory_integer (saved_regs.regs[31], 4);
546 else
547 return read_memory_integer (saved_regs.regs[RP_REGNUM], 4);
548 }
549 else
550 return read_register (ret_regnum) & ~0x3;
551 }
552 else
553 {
554 int rp_offset = rp_saved (pc);
555
556 /* Similar to code in frameless function case. If the next
557 frame is a signal or interrupt handler, then dig the right
558 information out of the saved register info. */
559 if (rp_offset == 0
560 && frame->next
561 && (frame->next->signal_handler_caller
562 || pc_in_interrupt_handler (frame->next->pc)))
563 {
564 struct frame_info *fi;
565 struct frame_saved_regs saved_regs;
566
567 fi = get_frame_info (frame->next);
568 get_frame_saved_regs (fi, &saved_regs);
569 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM] & 0x2, 4))
570 return read_memory_integer (saved_regs.regs[31], 4);
571 else
572 return read_memory_integer (saved_regs.regs[RP_REGNUM], 4);
573 }
574 else if (rp_offset == 0)
575 return read_register (RP_REGNUM) & ~0x3;
576 else
577 return read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
578 }
579 }
580 \f
581 /* We need to correct the PC and the FP for the outermost frame when we are
582 in a system call. */
583
584 void
585 init_extra_frame_info (fromleaf, frame)
586 int fromleaf;
587 struct frame_info *frame;
588 {
589 int flags;
590 int framesize;
591
592 if (frame->next && !fromleaf)
593 return;
594
595 /* If the next frame represents a frameless function invocation
596 then we have to do some adjustments that are normally done by
597 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
598 if (fromleaf)
599 {
600 /* Find the framesize of *this* frame without peeking at the PC
601 in the current frame structure (it isn't set yet). */
602 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
603
604 /* Now adjust our base frame accordingly. If we have a frame pointer
605 use it, else subtract the size of this frame from the current
606 frame. (we always want frame->frame to point at the lowest address
607 in the frame). */
608 if (framesize == -1)
609 frame->frame = read_register (FP_REGNUM);
610 else
611 frame->frame -= framesize;
612 return;
613 }
614
615 flags = read_register (FLAGS_REGNUM);
616 if (flags & 2) /* In system call? */
617 frame->pc = read_register (31) & ~0x3;
618
619 /* The outermost frame is always derived from PC-framesize
620
621 One might think frameless innermost frames should have
622 a frame->frame that is the same as the parent's frame->frame.
623 That is wrong; frame->frame in that case should be the *high*
624 address of the parent's frame. It's complicated as hell to
625 explain, but the parent *always* creates some stack space for
626 the child. So the child actually does have a frame of some
627 sorts, and its base is the high address in its parent's frame. */
628 framesize = find_proc_framesize(frame->pc);
629 if (framesize == -1)
630 frame->frame = read_register (FP_REGNUM);
631 else
632 frame->frame = read_register (SP_REGNUM) - framesize;
633 }
634 \f
635 /* Given a GDB frame, determine the address of the calling function's frame.
636 This will be used to create a new GDB frame struct, and then
637 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
638
639 This may involve searching through prologues for several functions
640 at boundaries where GCC calls HP C code, or where code which has
641 a frame pointer calls code without a frame pointer. */
642
643
644 FRAME_ADDR
645 frame_chain (frame)
646 struct frame_info *frame;
647 {
648 int my_framesize, caller_framesize;
649 struct unwind_table_entry *u;
650 CORE_ADDR frame_base;
651
652 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
653 are easy; at *sp we have a full save state strucutre which we can
654 pull the old stack pointer from. Also see frame_saved_pc for
655 code to dig a saved PC out of the save state structure. */
656 if (pc_in_interrupt_handler (frame->pc))
657 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
658 else if (frame->signal_handler_caller)
659 {
660 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
661 }
662 else
663 frame_base = frame->frame;
664
665 /* Get frame sizes for the current frame and the frame of the
666 caller. */
667 my_framesize = find_proc_framesize (frame->pc);
668 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
669
670 /* If caller does not have a frame pointer, then its frame
671 can be found at current_frame - caller_framesize. */
672 if (caller_framesize != -1)
673 return frame_base - caller_framesize;
674
675 /* Both caller and callee have frame pointers and are GCC compiled
676 (SAVE_SP bit in unwind descriptor is on for both functions.
677 The previous frame pointer is found at the top of the current frame. */
678 if (caller_framesize == -1 && my_framesize == -1)
679 return read_memory_integer (frame_base, 4);
680
681 /* Caller has a frame pointer, but callee does not. This is a little
682 more difficult as GCC and HP C lay out locals and callee register save
683 areas very differently.
684
685 The previous frame pointer could be in a register, or in one of
686 several areas on the stack.
687
688 Walk from the current frame to the innermost frame examining
689 unwind descriptors to determine if %r3 ever gets saved into the
690 stack. If so return whatever value got saved into the stack.
691 If it was never saved in the stack, then the value in %r3 is still
692 valid, so use it.
693
694 We use information from unwind descriptors to determine if %r3
695 is saved into the stack (Entry_GR field has this information). */
696
697 while (frame)
698 {
699 u = find_unwind_entry (frame->pc);
700
701 if (!u)
702 {
703 /* We could find this information by examining prologues. I don't
704 think anyone has actually written any tools (not even "strip")
705 which leave them out of an executable, so maybe this is a moot
706 point. */
707 warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc);
708 return 0;
709 }
710
711 /* Entry_GR specifies the number of callee-saved general registers
712 saved in the stack. It starts at %r3, so %r3 would be 1. */
713 if (u->Entry_GR >= 1 || u->Save_SP
714 || frame->signal_handler_caller
715 || pc_in_interrupt_handler (frame->pc))
716 break;
717 else
718 frame = frame->next;
719 }
720
721 if (frame)
722 {
723 /* We may have walked down the chain into a function with a frame
724 pointer. */
725 if (u->Save_SP
726 && !frame->signal_handler_caller
727 && !pc_in_interrupt_handler (frame->pc))
728 return read_memory_integer (frame->frame, 4);
729 /* %r3 was saved somewhere in the stack. Dig it out. */
730 else
731 {
732 struct frame_info *fi;
733 struct frame_saved_regs saved_regs;
734
735 fi = get_frame_info (frame);
736 get_frame_saved_regs (fi, &saved_regs);
737 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
738 }
739 }
740 else
741 {
742 /* The value in %r3 was never saved into the stack (thus %r3 still
743 holds the value of the previous frame pointer). */
744 return read_register (FP_REGNUM);
745 }
746 }
747
748 \f
749 /* To see if a frame chain is valid, see if the caller looks like it
750 was compiled with gcc. */
751
752 int
753 frame_chain_valid (chain, thisframe)
754 FRAME_ADDR chain;
755 FRAME thisframe;
756 {
757 struct minimal_symbol *msym_us;
758 struct minimal_symbol *msym_start;
759 struct unwind_table_entry *u, *next_u = NULL;
760 FRAME next;
761
762 if (!chain)
763 return 0;
764
765 u = find_unwind_entry (thisframe->pc);
766
767 if (u == NULL)
768 return 1;
769
770 /* We can't just check that the same of msym_us is "_start", because
771 someone idiotically decided that they were going to make a Ltext_end
772 symbol with the same address. This Ltext_end symbol is totally
773 indistinguishable (as nearly as I can tell) from the symbol for a function
774 which is (legitimately, since it is in the user's namespace)
775 named Ltext_end, so we can't just ignore it. */
776 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
777 msym_start = lookup_minimal_symbol ("_start", NULL);
778 if (msym_us
779 && msym_start
780 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
781 return 0;
782
783 next = get_next_frame (thisframe);
784 if (next)
785 next_u = find_unwind_entry (next->pc);
786
787 /* If this frame does not save SP, has no stack, isn't a stub,
788 and doesn't "call" an interrupt routine or signal handler caller,
789 then its not valid. */
790 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
791 || (thisframe->next && thisframe->next->signal_handler_caller)
792 || (next_u && next_u->HP_UX_interrupt_marker))
793 return 1;
794
795 if (pc_in_linker_stub (thisframe->pc))
796 return 1;
797
798 return 0;
799 }
800
801 /*
802 * These functions deal with saving and restoring register state
803 * around a function call in the inferior. They keep the stack
804 * double-word aligned; eventually, on an hp700, the stack will have
805 * to be aligned to a 64-byte boundary.
806 */
807
808 int
809 push_dummy_frame ()
810 {
811 register CORE_ADDR sp;
812 register int regnum;
813 int int_buffer;
814 double freg_buffer;
815
816 /* Space for "arguments"; the RP goes in here. */
817 sp = read_register (SP_REGNUM) + 48;
818 int_buffer = read_register (RP_REGNUM) | 0x3;
819 write_memory (sp - 20, (char *)&int_buffer, 4);
820
821 int_buffer = read_register (FP_REGNUM);
822 write_memory (sp, (char *)&int_buffer, 4);
823
824 write_register (FP_REGNUM, sp);
825
826 sp += 8;
827
828 for (regnum = 1; regnum < 32; regnum++)
829 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
830 sp = push_word (sp, read_register (regnum));
831
832 sp += 4;
833
834 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
835 {
836 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
837 sp = push_bytes (sp, (char *)&freg_buffer, 8);
838 }
839 sp = push_word (sp, read_register (IPSW_REGNUM));
840 sp = push_word (sp, read_register (SAR_REGNUM));
841 sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
842 sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
843 sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
844 sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
845 write_register (SP_REGNUM, sp);
846 }
847
848 find_dummy_frame_regs (frame, frame_saved_regs)
849 struct frame_info *frame;
850 struct frame_saved_regs *frame_saved_regs;
851 {
852 CORE_ADDR fp = frame->frame;
853 int i;
854
855 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
856 frame_saved_regs->regs[FP_REGNUM] = fp;
857 frame_saved_regs->regs[1] = fp + 8;
858
859 for (fp += 12, i = 3; i < 32; i++)
860 {
861 if (i != FP_REGNUM)
862 {
863 frame_saved_regs->regs[i] = fp;
864 fp += 4;
865 }
866 }
867
868 fp += 4;
869 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
870 frame_saved_regs->regs[i] = fp;
871
872 frame_saved_regs->regs[IPSW_REGNUM] = fp;
873 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
874 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
875 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
876 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
877 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
878 }
879
880 int
881 hppa_pop_frame ()
882 {
883 register FRAME frame = get_current_frame ();
884 register CORE_ADDR fp;
885 register int regnum;
886 struct frame_saved_regs fsr;
887 struct frame_info *fi;
888 double freg_buffer;
889
890 fi = get_frame_info (frame);
891 fp = fi->frame;
892 get_frame_saved_regs (fi, &fsr);
893
894 #ifndef NO_PC_SPACE_QUEUE_RESTORE
895 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
896 restore_pc_queue (&fsr);
897 #endif
898
899 for (regnum = 31; regnum > 0; regnum--)
900 if (fsr.regs[regnum])
901 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
902
903 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
904 if (fsr.regs[regnum])
905 {
906 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
907 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
908 }
909
910 if (fsr.regs[IPSW_REGNUM])
911 write_register (IPSW_REGNUM,
912 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
913
914 if (fsr.regs[SAR_REGNUM])
915 write_register (SAR_REGNUM,
916 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
917
918 /* If the PC was explicitly saved, then just restore it. */
919 if (fsr.regs[PCOQ_TAIL_REGNUM])
920 write_register (PCOQ_TAIL_REGNUM,
921 read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));
922
923 /* Else use the value in %rp to set the new PC. */
924 else
925 target_write_pc (read_register (RP_REGNUM));
926
927 write_register (FP_REGNUM, read_memory_integer (fp, 4));
928
929 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
930 write_register (SP_REGNUM, fp - 48);
931 else
932 write_register (SP_REGNUM, fp);
933
934 flush_cached_frames ();
935 set_current_frame (create_new_frame (read_register (FP_REGNUM),
936 read_pc ()));
937 }
938
939 /*
940 * After returning to a dummy on the stack, restore the instruction
941 * queue space registers. */
942
943 static int
944 restore_pc_queue (fsr)
945 struct frame_saved_regs *fsr;
946 {
947 CORE_ADDR pc = read_pc ();
948 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
949 int pid;
950 struct target_waitstatus w;
951 int insn_count;
952
953 /* Advance past break instruction in the call dummy. */
954 write_register (PCOQ_HEAD_REGNUM, pc + 4);
955 write_register (PCOQ_TAIL_REGNUM, pc + 8);
956
957 /*
958 * HPUX doesn't let us set the space registers or the space
959 * registers of the PC queue through ptrace. Boo, hiss.
960 * Conveniently, the call dummy has this sequence of instructions
961 * after the break:
962 * mtsp r21, sr0
963 * ble,n 0(sr0, r22)
964 *
965 * So, load up the registers and single step until we are in the
966 * right place.
967 */
968
969 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
970 write_register (22, new_pc);
971
972 for (insn_count = 0; insn_count < 3; insn_count++)
973 {
974 /* FIXME: What if the inferior gets a signal right now? Want to
975 merge this into wait_for_inferior (as a special kind of
976 watchpoint? By setting a breakpoint at the end? Is there
977 any other choice? Is there *any* way to do this stuff with
978 ptrace() or some equivalent?). */
979 resume (1, 0);
980 target_wait (inferior_pid, &w);
981
982 if (w.kind == TARGET_WAITKIND_SIGNALLED)
983 {
984 stop_signal = w.value.sig;
985 terminal_ours_for_output ();
986 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
987 target_signal_to_name (stop_signal),
988 target_signal_to_string (stop_signal));
989 gdb_flush (gdb_stdout);
990 return 0;
991 }
992 }
993 target_terminal_ours ();
994 fetch_inferior_registers (-1);
995 return 1;
996 }
997
998 CORE_ADDR
999 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1000 int nargs;
1001 value_ptr *args;
1002 CORE_ADDR sp;
1003 int struct_return;
1004 CORE_ADDR struct_addr;
1005 {
1006 /* array of arguments' offsets */
1007 int *offset = (int *)alloca(nargs * sizeof (int));
1008 int cum = 0;
1009 int i, alignment;
1010
1011 for (i = 0; i < nargs; i++)
1012 {
1013 /* Coerce chars to int & float to double if necessary */
1014 args[i] = value_arg_coerce (args[i]);
1015
1016 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1017
1018 /* value must go at proper alignment. Assume alignment is a
1019 power of two.*/
1020 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1021 if (cum % alignment)
1022 cum = (cum + alignment) & -alignment;
1023 offset[i] = -cum;
1024 }
1025 sp += max ((cum + 7) & -8, 16);
1026
1027 for (i = 0; i < nargs; i++)
1028 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1029 TYPE_LENGTH (VALUE_TYPE (args[i])));
1030
1031 if (struct_return)
1032 write_register (28, struct_addr);
1033 return sp + 32;
1034 }
1035
1036 /*
1037 * Insert the specified number of args and function address
1038 * into a call sequence of the above form stored at DUMMYNAME.
1039 *
1040 * On the hppa we need to call the stack dummy through $$dyncall.
1041 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1042 * real_pc, which is the location where gdb should start up the
1043 * inferior to do the function call.
1044 */
1045
1046 CORE_ADDR
1047 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1048 char *dummy;
1049 CORE_ADDR pc;
1050 CORE_ADDR fun;
1051 int nargs;
1052 value_ptr *args;
1053 struct type *type;
1054 int gcc_p;
1055 {
1056 CORE_ADDR dyncall_addr, sr4export_addr;
1057 struct minimal_symbol *msymbol;
1058 int flags = read_register (FLAGS_REGNUM);
1059 struct unwind_table_entry *u;
1060
1061 msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
1062 if (msymbol == NULL)
1063 error ("Can't find an address for $$dyncall trampoline");
1064
1065 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1066
1067 /* If we are calling an import stub (eg calling into a dynamic library)
1068 then have sr4export call the magic __d_plt_call routine which is linked
1069 in from end.o. (You can't use _sr4export to call the import stub as
1070 the value in sp-24 will get fried and you end up returning to the
1071 wrong location. You can't call the import stub directly as the code
1072 to bind the PLT entry to a function can't return to a stack address.) */
1073 u = find_unwind_entry (fun);
1074 if (u && u->stub_type == IMPORT)
1075 {
1076 CORE_ADDR new_fun;
1077 msymbol = lookup_minimal_symbol ("__d_plt_call", (struct objfile *) NULL);
1078 if (msymbol == NULL)
1079 error ("Can't find an address for __d_plt_call trampoline");
1080
1081 /* This is where sr4export will jump to. */
1082 new_fun = SYMBOL_VALUE_ADDRESS (msymbol);
1083
1084 /* We have to store the address of the stub in __shlib_funcptr. */
1085 msymbol = lookup_minimal_symbol ("__shlib_funcptr",
1086 (struct objfile *)NULL);
1087 if (msymbol == NULL)
1088 error ("Can't find an address for __shlib_funcptr");
1089
1090 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1091 fun = new_fun;
1092
1093 }
1094
1095 /* We still need sr4export's address too. */
1096 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
1097 if (msymbol == NULL)
1098 error ("Can't find an address for _sr4export trampoline");
1099
1100 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1101
1102 store_unsigned_integer
1103 (&dummy[9*REGISTER_SIZE],
1104 REGISTER_SIZE,
1105 deposit_21 (fun >> 11,
1106 extract_unsigned_integer (&dummy[9*REGISTER_SIZE],
1107 REGISTER_SIZE)));
1108 store_unsigned_integer
1109 (&dummy[10*REGISTER_SIZE],
1110 REGISTER_SIZE,
1111 deposit_14 (fun & MASK_11,
1112 extract_unsigned_integer (&dummy[10*REGISTER_SIZE],
1113 REGISTER_SIZE)));
1114 store_unsigned_integer
1115 (&dummy[12*REGISTER_SIZE],
1116 REGISTER_SIZE,
1117 deposit_21 (sr4export_addr >> 11,
1118 extract_unsigned_integer (&dummy[12*REGISTER_SIZE],
1119 REGISTER_SIZE)));
1120 store_unsigned_integer
1121 (&dummy[13*REGISTER_SIZE],
1122 REGISTER_SIZE,
1123 deposit_14 (sr4export_addr & MASK_11,
1124 extract_unsigned_integer (&dummy[13*REGISTER_SIZE],
1125 REGISTER_SIZE)));
1126
1127 write_register (22, pc);
1128
1129 /* If we are in a syscall, then we should call the stack dummy
1130 directly. $$dyncall is not needed as the kernel sets up the
1131 space id registers properly based on the value in %r31. In
1132 fact calling $$dyncall will not work because the value in %r22
1133 will be clobbered on the syscall exit path. */
1134 if (flags & 2)
1135 return pc;
1136 else
1137 return dyncall_addr;
1138
1139 }
1140
1141 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1142 bits. */
1143 CORE_ADDR
1144 target_read_pc ()
1145 {
1146 int flags = read_register (FLAGS_REGNUM);
1147
1148 if (flags & 2)
1149 return read_register (31) & ~0x3;
1150 return read_register (PC_REGNUM) & ~0x3;
1151 }
1152
1153 /* Write out the PC. If currently in a syscall, then also write the new
1154 PC value into %r31. */
1155 void
1156 target_write_pc (v)
1157 CORE_ADDR v;
1158 {
1159 int flags = read_register (FLAGS_REGNUM);
1160
1161 /* If in a syscall, then set %r31. Also make sure to get the
1162 privilege bits set correctly. */
1163 if (flags & 2)
1164 write_register (31, (long) (v | 0x3));
1165
1166 write_register (PC_REGNUM, (long) v);
1167 write_register (NPC_REGNUM, (long) v + 4);
1168 }
1169
1170 /* return the alignment of a type in bytes. Structures have the maximum
1171 alignment required by their fields. */
1172
1173 static int
1174 hppa_alignof (arg)
1175 struct type *arg;
1176 {
1177 int max_align, align, i;
1178 switch (TYPE_CODE (arg))
1179 {
1180 case TYPE_CODE_PTR:
1181 case TYPE_CODE_INT:
1182 case TYPE_CODE_FLT:
1183 return TYPE_LENGTH (arg);
1184 case TYPE_CODE_ARRAY:
1185 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1186 case TYPE_CODE_STRUCT:
1187 case TYPE_CODE_UNION:
1188 max_align = 2;
1189 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1190 {
1191 /* Bit fields have no real alignment. */
1192 if (!TYPE_FIELD_BITPOS (arg, i))
1193 {
1194 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1195 max_align = max (max_align, align);
1196 }
1197 }
1198 return max_align;
1199 default:
1200 return 4;
1201 }
1202 }
1203
1204 /* Print the register regnum, or all registers if regnum is -1 */
1205
1206 pa_do_registers_info (regnum, fpregs)
1207 int regnum;
1208 int fpregs;
1209 {
1210 char raw_regs [REGISTER_BYTES];
1211 int i;
1212
1213 for (i = 0; i < NUM_REGS; i++)
1214 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1215 if (regnum == -1)
1216 pa_print_registers (raw_regs, regnum, fpregs);
1217 else if (regnum < FP0_REGNUM)
1218 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1219 REGISTER_BYTE (regnum)));
1220 else
1221 pa_print_fp_reg (regnum);
1222 }
1223
1224 pa_print_registers (raw_regs, regnum, fpregs)
1225 char *raw_regs;
1226 int regnum;
1227 int fpregs;
1228 {
1229 int i;
1230
1231 for (i = 0; i < 18; i++)
1232 printf_unfiltered ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
1233 reg_names[i],
1234 *(int *)(raw_regs + REGISTER_BYTE (i)),
1235 reg_names[i + 18],
1236 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
1237 reg_names[i + 36],
1238 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
1239 reg_names[i + 54],
1240 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
1241
1242 if (fpregs)
1243 for (i = 72; i < NUM_REGS; i++)
1244 pa_print_fp_reg (i);
1245 }
1246
1247 pa_print_fp_reg (i)
1248 int i;
1249 {
1250 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1251 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1252
1253 /* Get 32bits of data. */
1254 read_relative_register_raw_bytes (i, raw_buffer);
1255
1256 /* Put it in the buffer. No conversions are ever necessary. */
1257 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1258
1259 fputs_filtered (reg_names[i], gdb_stdout);
1260 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1261 fputs_filtered ("(single precision) ", gdb_stdout);
1262
1263 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1264 1, 0, Val_pretty_default);
1265 printf_filtered ("\n");
1266
1267 /* If "i" is even, then this register can also be a double-precision
1268 FP register. Dump it out as such. */
1269 if ((i % 2) == 0)
1270 {
1271 /* Get the data in raw format for the 2nd half. */
1272 read_relative_register_raw_bytes (i + 1, raw_buffer);
1273
1274 /* Copy it into the appropriate part of the virtual buffer. */
1275 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1276 REGISTER_RAW_SIZE (i));
1277
1278 /* Dump it as a double. */
1279 fputs_filtered (reg_names[i], gdb_stdout);
1280 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1281 fputs_filtered ("(double precision) ", gdb_stdout);
1282
1283 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1284 1, 0, Val_pretty_default);
1285 printf_filtered ("\n");
1286 }
1287 }
1288
1289 /* Figure out if PC is in a trampoline, and if so find out where
1290 the trampoline will jump to. If not in a trampoline, return zero.
1291
1292 Simple code examination probably is not a good idea since the code
1293 sequences in trampolines can also appear in user code.
1294
1295 We use unwinds and information from the minimal symbol table to
1296 determine when we're in a trampoline. This won't work for ELF
1297 (yet) since it doesn't create stub unwind entries. Whether or
1298 not ELF will create stub unwinds or normal unwinds for linker
1299 stubs is still being debated.
1300
1301 This should handle simple calls through dyncall or sr4export,
1302 long calls, argument relocation stubs, and dyncall/sr4export
1303 calling an argument relocation stub. It even handles some stubs
1304 used in dynamic executables. */
1305
1306 CORE_ADDR
1307 skip_trampoline_code (pc, name)
1308 CORE_ADDR pc;
1309 char *name;
1310 {
1311 long orig_pc = pc;
1312 long prev_inst, curr_inst, loc;
1313 static CORE_ADDR dyncall = 0;
1314 static CORE_ADDR sr4export = 0;
1315 struct minimal_symbol *msym;
1316 struct unwind_table_entry *u;
1317
1318 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1319 new exec file */
1320
1321 if (!dyncall)
1322 {
1323 msym = lookup_minimal_symbol ("$$dyncall", NULL);
1324 if (msym)
1325 dyncall = SYMBOL_VALUE_ADDRESS (msym);
1326 else
1327 dyncall = -1;
1328 }
1329
1330 if (!sr4export)
1331 {
1332 msym = lookup_minimal_symbol ("_sr4export", NULL);
1333 if (msym)
1334 sr4export = SYMBOL_VALUE_ADDRESS (msym);
1335 else
1336 sr4export = -1;
1337 }
1338
1339 /* Addresses passed to dyncall may *NOT* be the actual address
1340 of the funtion. So we may have to do something special. */
1341 if (pc == dyncall)
1342 {
1343 pc = (CORE_ADDR) read_register (22);
1344
1345 /* If bit 30 (counting from the left) is on, then pc is the address of
1346 the PLT entry for this function, not the address of the function
1347 itself. Bit 31 has meaning too, but only for MPE. */
1348 if (pc & 0x2)
1349 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
1350 }
1351 else if (pc == sr4export)
1352 pc = (CORE_ADDR) (read_register (22));
1353
1354 /* Get the unwind descriptor corresponding to PC, return zero
1355 if no unwind was found. */
1356 u = find_unwind_entry (pc);
1357 if (!u)
1358 return 0;
1359
1360 /* If this isn't a linker stub, then return now. */
1361 if (u->stub_type == 0)
1362 return orig_pc == pc ? 0 : pc & ~0x3;
1363
1364 /* It's a stub. Search for a branch and figure out where it goes.
1365 Note we have to handle multi insn branch sequences like ldil;ble.
1366 Most (all?) other branches can be determined by examining the contents
1367 of certain registers and the stack. */
1368 loc = pc;
1369 curr_inst = 0;
1370 prev_inst = 0;
1371 while (1)
1372 {
1373 /* Make sure we haven't walked outside the range of this stub. */
1374 if (u != find_unwind_entry (loc))
1375 {
1376 warning ("Unable to find branch in linker stub");
1377 return orig_pc == pc ? 0 : pc & ~0x3;
1378 }
1379
1380 prev_inst = curr_inst;
1381 curr_inst = read_memory_integer (loc, 4);
1382
1383 /* Does it look like a branch external using %r1? Then it's the
1384 branch from the stub to the actual function. */
1385 if ((curr_inst & 0xffe0e000) == 0xe0202000)
1386 {
1387 /* Yup. See if the previous instruction loaded
1388 a value into %r1. If so compute and return the jump address. */
1389 if ((prev_inst & 0xffe00000) == 0x20202000)
1390 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
1391 else
1392 {
1393 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
1394 return orig_pc == pc ? 0 : pc & ~0x3;
1395 }
1396 }
1397
1398 /* Does it look like bl X,rp? Another way to do a branch from the
1399 stub to the actual function. */
1400 else if ((curr_inst & 0xffe0e000) == 0xe8400000)
1401 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
1402
1403 /* Does it look like bv (rp)? Note this depends on the
1404 current stack pointer being the same as the stack
1405 pointer in the stub itself! This is a branch on from the
1406 stub back to the original caller. */
1407 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
1408 {
1409 /* Yup. See if the previous instruction loaded
1410 rp from sp - 8. */
1411 if (prev_inst == 0x4bc23ff1)
1412 return (read_memory_integer
1413 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
1414 else
1415 {
1416 warning ("Unable to find restore of %%rp before bv (%%rp).");
1417 return orig_pc == pc ? 0 : pc & ~0x3;
1418 }
1419 }
1420
1421 /* What about be,n 0(sr0,%rp)? It's just another way we return to
1422 the original caller from the stub. Used in dynamic executables. */
1423 else if (curr_inst == 0xe0400002)
1424 {
1425 /* The value we jump to is sitting in sp - 24. But that's
1426 loaded several instructions before the be instruction.
1427 I guess we could check for the previous instruction being
1428 mtsp %r1,%sr0 if we want to do sanity checking. */
1429 return (read_memory_integer
1430 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
1431 }
1432
1433 /* Haven't found the branch yet, but we're still in the stub.
1434 Keep looking. */
1435 loc += 4;
1436 }
1437 }
1438
1439 /* For the given instruction (INST), return any adjustment it makes
1440 to the stack pointer or zero for no adjustment.
1441
1442 This only handles instructions commonly found in prologues. */
1443
1444 static int
1445 prologue_inst_adjust_sp (inst)
1446 unsigned long inst;
1447 {
1448 /* This must persist across calls. */
1449 static int save_high21;
1450
1451 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1452 if ((inst & 0xffffc000) == 0x37de0000)
1453 return extract_14 (inst);
1454
1455 /* stwm X,D(sp) */
1456 if ((inst & 0xffe00000) == 0x6fc00000)
1457 return extract_14 (inst);
1458
1459 /* addil high21,%r1; ldo low11,(%r1),%r30)
1460 save high bits in save_high21 for later use. */
1461 if ((inst & 0xffe00000) == 0x28200000)
1462 {
1463 save_high21 = extract_21 (inst);
1464 return 0;
1465 }
1466
1467 if ((inst & 0xffff0000) == 0x343e0000)
1468 return save_high21 + extract_14 (inst);
1469
1470 /* fstws as used by the HP compilers. */
1471 if ((inst & 0xffffffe0) == 0x2fd01220)
1472 return extract_5_load (inst);
1473
1474 /* No adjustment. */
1475 return 0;
1476 }
1477
1478 /* Return nonzero if INST is a branch of some kind, else return zero. */
1479
1480 static int
1481 is_branch (inst)
1482 unsigned long inst;
1483 {
1484 switch (inst >> 26)
1485 {
1486 case 0x20:
1487 case 0x21:
1488 case 0x22:
1489 case 0x23:
1490 case 0x28:
1491 case 0x29:
1492 case 0x2a:
1493 case 0x2b:
1494 case 0x30:
1495 case 0x31:
1496 case 0x32:
1497 case 0x33:
1498 case 0x38:
1499 case 0x39:
1500 case 0x3a:
1501 return 1;
1502
1503 default:
1504 return 0;
1505 }
1506 }
1507
1508 /* Return the register number for a GR which is saved by INST or
1509 zero it INST does not save a GR.
1510
1511 Note we only care about full 32bit register stores (that's the only
1512 kind of stores the prologue will use). */
1513
1514 static int
1515 inst_saves_gr (inst)
1516 unsigned long inst;
1517 {
1518 /* Does it look like a stw? */
1519 if ((inst >> 26) == 0x1a)
1520 return extract_5R_store (inst);
1521
1522 /* Does it look like a stwm? */
1523 if ((inst >> 26) == 0x1b)
1524 return extract_5R_store (inst);
1525
1526 return 0;
1527 }
1528
1529 /* Return the register number for a FR which is saved by INST or
1530 zero it INST does not save a FR.
1531
1532 Note we only care about full 64bit register stores (that's the only
1533 kind of stores the prologue will use). */
1534
1535 static int
1536 inst_saves_fr (inst)
1537 unsigned long inst;
1538 {
1539 if ((inst & 0xfc1fffe0) == 0x2c101220)
1540 return extract_5r_store (inst);
1541 return 0;
1542 }
1543
1544 /* Advance PC across any function entry prologue instructions
1545 to reach some "real" code.
1546
1547 Use information in the unwind table to determine what exactly should
1548 be in the prologue. */
1549
1550 CORE_ADDR
1551 skip_prologue (pc)
1552 CORE_ADDR pc;
1553 {
1554 char buf[4];
1555 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1556 int status, i;
1557 struct unwind_table_entry *u;
1558
1559 u = find_unwind_entry (pc);
1560 if (!u)
1561 return pc;
1562
1563 /* If we are not at the beginning of a function, then return now. */
1564 if ((pc & ~0x3) != u->region_start)
1565 return pc;
1566
1567 /* This is how much of a frame adjustment we need to account for. */
1568 stack_remaining = u->Total_frame_size << 3;
1569
1570 /* Magic register saves we want to know about. */
1571 save_rp = u->Save_RP;
1572 save_sp = u->Save_SP;
1573
1574 /* Turn the Entry_GR field into a bitmask. */
1575 save_gr = 0;
1576 for (i = 3; i < u->Entry_GR + 3; i++)
1577 {
1578 /* Frame pointer gets saved into a special location. */
1579 if (u->Save_SP && i == FP_REGNUM)
1580 continue;
1581
1582 save_gr |= (1 << i);
1583 }
1584
1585 /* Turn the Entry_FR field into a bitmask too. */
1586 save_fr = 0;
1587 for (i = 12; i < u->Entry_FR + 12; i++)
1588 save_fr |= (1 << i);
1589
1590 /* Loop until we find everything of interest or hit a branch.
1591
1592 For unoptimized GCC code and for any HP CC code this will never ever
1593 examine any user instructions.
1594
1595 For optimzied GCC code we're faced with problems. GCC will schedule
1596 its prologue and make prologue instructions available for delay slot
1597 filling. The end result is user code gets mixed in with the prologue
1598 and a prologue instruction may be in the delay slot of the first branch
1599 or call.
1600
1601 Some unexpected things are expected with debugging optimized code, so
1602 we allow this routine to walk past user instructions in optimized
1603 GCC code. */
1604 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1605 {
1606 status = target_read_memory (pc, buf, 4);
1607 inst = extract_unsigned_integer (buf, 4);
1608
1609 /* Yow! */
1610 if (status != 0)
1611 return pc;
1612
1613 /* Note the interesting effects of this instruction. */
1614 stack_remaining -= prologue_inst_adjust_sp (inst);
1615
1616 /* There is only one instruction used for saving RP into the stack. */
1617 if (inst == 0x6bc23fd9)
1618 save_rp = 0;
1619
1620 /* This is the only way we save SP into the stack. At this time
1621 the HP compilers never bother to save SP into the stack. */
1622 if ((inst & 0xffffc000) == 0x6fc10000)
1623 save_sp = 0;
1624
1625 /* Account for general and floating-point register saves. */
1626 save_gr &= ~(1 << inst_saves_gr (inst));
1627 save_fr &= ~(1 << inst_saves_fr (inst));
1628
1629 /* Quit if we hit any kind of branch. This can happen if a prologue
1630 instruction is in the delay slot of the first call/branch. */
1631 if (is_branch (inst))
1632 break;
1633
1634 /* Bump the PC. */
1635 pc += 4;
1636 }
1637
1638 return pc;
1639 }
1640
1641 /* Put here the code to store, into a struct frame_saved_regs,
1642 the addresses of the saved registers of frame described by FRAME_INFO.
1643 This includes special registers such as pc and fp saved in special
1644 ways in the stack frame. sp is even more special:
1645 the address we return for it IS the sp for the next frame. */
1646
1647 void
1648 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
1649 struct frame_info *frame_info;
1650 struct frame_saved_regs *frame_saved_regs;
1651 {
1652 CORE_ADDR pc;
1653 struct unwind_table_entry *u;
1654 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1655 int status, i, reg;
1656 char buf[4];
1657 int fp_loc = -1;
1658
1659 /* Zero out everything. */
1660 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
1661
1662 /* Call dummy frames always look the same, so there's no need to
1663 examine the dummy code to determine locations of saved registers;
1664 instead, let find_dummy_frame_regs fill in the correct offsets
1665 for the saved registers. */
1666 if ((frame_info->pc >= frame_info->frame
1667 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
1668 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
1669 + 6 * 4)))
1670 find_dummy_frame_regs (frame_info, frame_saved_regs);
1671
1672 /* Interrupt handlers are special too. They lay out the register
1673 state in the exact same order as the register numbers in GDB. */
1674 if (pc_in_interrupt_handler (frame_info->pc))
1675 {
1676 for (i = 0; i < NUM_REGS; i++)
1677 {
1678 /* SP is a little special. */
1679 if (i == SP_REGNUM)
1680 frame_saved_regs->regs[SP_REGNUM]
1681 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
1682 else
1683 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
1684 }
1685 return;
1686 }
1687
1688 /* Handle signal handler callers. */
1689 if (frame_info->signal_handler_caller)
1690 {
1691 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
1692 return;
1693 }
1694
1695 /* Get the starting address of the function referred to by the PC
1696 saved in frame_info. */
1697 pc = get_pc_function_start (frame_info->pc);
1698
1699 /* Yow! */
1700 u = find_unwind_entry (pc);
1701 if (!u)
1702 return;
1703
1704 /* This is how much of a frame adjustment we need to account for. */
1705 stack_remaining = u->Total_frame_size << 3;
1706
1707 /* Magic register saves we want to know about. */
1708 save_rp = u->Save_RP;
1709 save_sp = u->Save_SP;
1710
1711 /* Turn the Entry_GR field into a bitmask. */
1712 save_gr = 0;
1713 for (i = 3; i < u->Entry_GR + 3; i++)
1714 {
1715 /* Frame pointer gets saved into a special location. */
1716 if (u->Save_SP && i == FP_REGNUM)
1717 continue;
1718
1719 save_gr |= (1 << i);
1720 }
1721
1722 /* Turn the Entry_FR field into a bitmask too. */
1723 save_fr = 0;
1724 for (i = 12; i < u->Entry_FR + 12; i++)
1725 save_fr |= (1 << i);
1726
1727 /* The frame always represents the value of %sp at entry to the
1728 current function (and is thus equivalent to the "saved" stack
1729 pointer. */
1730 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
1731
1732 /* Loop until we find everything of interest or hit a branch.
1733
1734 For unoptimized GCC code and for any HP CC code this will never ever
1735 examine any user instructions.
1736
1737 For optimzied GCC code we're faced with problems. GCC will schedule
1738 its prologue and make prologue instructions available for delay slot
1739 filling. The end result is user code gets mixed in with the prologue
1740 and a prologue instruction may be in the delay slot of the first branch
1741 or call.
1742
1743 Some unexpected things are expected with debugging optimized code, so
1744 we allow this routine to walk past user instructions in optimized
1745 GCC code. */
1746 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1747 {
1748 status = target_read_memory (pc, buf, 4);
1749 inst = extract_unsigned_integer (buf, 4);
1750
1751 /* Yow! */
1752 if (status != 0)
1753 return;
1754
1755 /* Note the interesting effects of this instruction. */
1756 stack_remaining -= prologue_inst_adjust_sp (inst);
1757
1758 /* There is only one instruction used for saving RP into the stack. */
1759 if (inst == 0x6bc23fd9)
1760 {
1761 save_rp = 0;
1762 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
1763 }
1764
1765 /* Just note that we found the save of SP into the stack. The
1766 value for frame_saved_regs was computed above. */
1767 if ((inst & 0xffffc000) == 0x6fc10000)
1768 save_sp = 0;
1769
1770 /* Account for general and floating-point register saves. */
1771 reg = inst_saves_gr (inst);
1772 if (reg >= 3 && reg <= 18
1773 && (!u->Save_SP || reg != FP_REGNUM))
1774 {
1775 save_gr &= ~(1 << reg);
1776
1777 /* stwm with a positive displacement is a *post modify*. */
1778 if ((inst >> 26) == 0x1b
1779 && extract_14 (inst) >= 0)
1780 frame_saved_regs->regs[reg] = frame_info->frame;
1781 else
1782 {
1783 /* Handle code with and without frame pointers. */
1784 if (u->Save_SP)
1785 frame_saved_regs->regs[reg]
1786 = frame_info->frame + extract_14 (inst);
1787 else
1788 frame_saved_regs->regs[reg]
1789 = frame_info->frame + (u->Total_frame_size << 3)
1790 + extract_14 (inst);
1791 }
1792 }
1793
1794
1795 /* GCC handles callee saved FP regs a little differently.
1796
1797 It emits an instruction to put the value of the start of
1798 the FP store area into %r1. It then uses fstds,ma with
1799 a basereg of %r1 for the stores.
1800
1801 HP CC emits them at the current stack pointer modifying
1802 the stack pointer as it stores each register. */
1803
1804 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1805 if ((inst & 0xffffc000) == 0x34610000
1806 || (inst & 0xffffc000) == 0x37c10000)
1807 fp_loc = extract_14 (inst);
1808
1809 reg = inst_saves_fr (inst);
1810 if (reg >= 12 && reg <= 21)
1811 {
1812 /* Note +4 braindamage below is necessary because the FP status
1813 registers are internally 8 registers rather than the expected
1814 4 registers. */
1815 save_fr &= ~(1 << reg);
1816 if (fp_loc == -1)
1817 {
1818 /* 1st HP CC FP register store. After this instruction
1819 we've set enough state that the GCC and HPCC code are
1820 both handled in the same manner. */
1821 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
1822 fp_loc = 8;
1823 }
1824 else
1825 {
1826 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
1827 = frame_info->frame + fp_loc;
1828 fp_loc += 8;
1829 }
1830 }
1831
1832 /* Quit if we hit any kind of branch. This can happen if a prologue
1833 instruction is in the delay slot of the first call/branch. */
1834 if (is_branch (inst))
1835 break;
1836
1837 /* Bump the PC. */
1838 pc += 4;
1839 }
1840 }
1841
1842 #ifdef MAINTENANCE_CMDS
1843
1844 static void
1845 unwind_command (exp, from_tty)
1846 char *exp;
1847 int from_tty;
1848 {
1849 CORE_ADDR address;
1850 union
1851 {
1852 int *foo;
1853 struct unwind_table_entry *u;
1854 } xxx;
1855
1856 /* If we have an expression, evaluate it and use it as the address. */
1857
1858 if (exp != 0 && *exp != 0)
1859 address = parse_and_eval_address (exp);
1860 else
1861 return;
1862
1863 xxx.u = find_unwind_entry (address);
1864
1865 if (!xxx.u)
1866 {
1867 printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address);
1868 return;
1869 }
1870
1871 printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
1872 xxx.foo[3]);
1873 }
1874 #endif /* MAINTENANCE_CMDS */
1875
1876 void
1877 _initialize_hppa_tdep ()
1878 {
1879 #ifdef MAINTENANCE_CMDS
1880 add_cmd ("unwind", class_maintenance, unwind_command,
1881 "Print unwind table entry at given address.",
1882 &maintenanceprintlist);
1883 #endif /* MAINTENANCE_CMDS */
1884 }