]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/hppa-tdep.c
Fix TYPE_HIGH_BOUND for TYPE_CODE_RANGE using arbitrary TYPE_NFIELDS in
[thirdparty/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA-RISC architecture.
2
3 Copyright (C) 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24
25 #include "defs.h"
26 #include "bfd.h"
27 #include "inferior.h"
28 #include "regcache.h"
29 #include "completer.h"
30 #include "osabi.h"
31 #include "gdb_assert.h"
32 #include "arch-utils.h"
33 /* For argument passing to the inferior */
34 #include "symtab.h"
35 #include "dis-asm.h"
36 #include "trad-frame.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
39
40 #include "gdbcore.h"
41 #include "gdbcmd.h"
42 #include "gdbtypes.h"
43 #include "objfiles.h"
44 #include "hppa-tdep.h"
45
46 static int hppa_debug = 0;
47
48 /* Some local constants. */
49 static const int hppa32_num_regs = 128;
50 static const int hppa64_num_regs = 96;
51
52 /* hppa-specific object data -- unwind and solib info.
53 TODO/maybe: think about splitting this into two parts; the unwind data is
54 common to all hppa targets, but is only used in this file; we can register
55 that separately and make this static. The solib data is probably hpux-
56 specific, so we can create a separate extern objfile_data that is registered
57 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
58 const struct objfile_data *hppa_objfile_priv_data = NULL;
59
60 /* Get at various relevent fields of an instruction word. */
61 #define MASK_5 0x1f
62 #define MASK_11 0x7ff
63 #define MASK_14 0x3fff
64 #define MASK_21 0x1fffff
65
66 /* Sizes (in bytes) of the native unwind entries. */
67 #define UNWIND_ENTRY_SIZE 16
68 #define STUB_UNWIND_ENTRY_SIZE 8
69
70 /* Routines to extract various sized constants out of hppa
71 instructions. */
72
73 /* This assumes that no garbage lies outside of the lower bits of
74 value. */
75
76 int
77 hppa_sign_extend (unsigned val, unsigned bits)
78 {
79 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
80 }
81
82 /* For many immediate values the sign bit is the low bit! */
83
84 int
85 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
86 {
87 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
88 }
89
90 /* Extract the bits at positions between FROM and TO, using HP's numbering
91 (MSB = 0). */
92
93 int
94 hppa_get_field (unsigned word, int from, int to)
95 {
96 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
97 }
98
99 /* extract the immediate field from a ld{bhw}s instruction */
100
101 int
102 hppa_extract_5_load (unsigned word)
103 {
104 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
105 }
106
107 /* extract the immediate field from a break instruction */
108
109 unsigned
110 hppa_extract_5r_store (unsigned word)
111 {
112 return (word & MASK_5);
113 }
114
115 /* extract the immediate field from a {sr}sm instruction */
116
117 unsigned
118 hppa_extract_5R_store (unsigned word)
119 {
120 return (word >> 16 & MASK_5);
121 }
122
123 /* extract a 14 bit immediate field */
124
125 int
126 hppa_extract_14 (unsigned word)
127 {
128 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
129 }
130
131 /* extract a 21 bit constant */
132
133 int
134 hppa_extract_21 (unsigned word)
135 {
136 int val;
137
138 word &= MASK_21;
139 word <<= 11;
140 val = hppa_get_field (word, 20, 20);
141 val <<= 11;
142 val |= hppa_get_field (word, 9, 19);
143 val <<= 2;
144 val |= hppa_get_field (word, 5, 6);
145 val <<= 5;
146 val |= hppa_get_field (word, 0, 4);
147 val <<= 2;
148 val |= hppa_get_field (word, 7, 8);
149 return hppa_sign_extend (val, 21) << 11;
150 }
151
152 /* extract a 17 bit constant from branch instructions, returning the
153 19 bit signed value. */
154
155 int
156 hppa_extract_17 (unsigned word)
157 {
158 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
159 hppa_get_field (word, 29, 29) << 10 |
160 hppa_get_field (word, 11, 15) << 11 |
161 (word & 0x1) << 16, 17) << 2;
162 }
163
164 CORE_ADDR
165 hppa_symbol_address(const char *sym)
166 {
167 struct minimal_symbol *minsym;
168
169 minsym = lookup_minimal_symbol (sym, NULL, NULL);
170 if (minsym)
171 return SYMBOL_VALUE_ADDRESS (minsym);
172 else
173 return (CORE_ADDR)-1;
174 }
175
176 struct hppa_objfile_private *
177 hppa_init_objfile_priv_data (struct objfile *objfile)
178 {
179 struct hppa_objfile_private *priv;
180
181 priv = (struct hppa_objfile_private *)
182 obstack_alloc (&objfile->objfile_obstack,
183 sizeof (struct hppa_objfile_private));
184 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
185 memset (priv, 0, sizeof (*priv));
186
187 return priv;
188 }
189 \f
190
191 /* Compare the start address for two unwind entries returning 1 if
192 the first address is larger than the second, -1 if the second is
193 larger than the first, and zero if they are equal. */
194
195 static int
196 compare_unwind_entries (const void *arg1, const void *arg2)
197 {
198 const struct unwind_table_entry *a = arg1;
199 const struct unwind_table_entry *b = arg2;
200
201 if (a->region_start > b->region_start)
202 return 1;
203 else if (a->region_start < b->region_start)
204 return -1;
205 else
206 return 0;
207 }
208
209 static void
210 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
211 {
212 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
213 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
214 {
215 bfd_vma value = section->vma - section->filepos;
216 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
217
218 if (value < *low_text_segment_address)
219 *low_text_segment_address = value;
220 }
221 }
222
223 static void
224 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
225 asection *section, unsigned int entries, unsigned int size,
226 CORE_ADDR text_offset)
227 {
228 /* We will read the unwind entries into temporary memory, then
229 fill in the actual unwind table. */
230
231 if (size > 0)
232 {
233 struct gdbarch *gdbarch = get_objfile_arch (objfile);
234 unsigned long tmp;
235 unsigned i;
236 char *buf = alloca (size);
237 CORE_ADDR low_text_segment_address;
238
239 /* For ELF targets, then unwinds are supposed to
240 be segment relative offsets instead of absolute addresses.
241
242 Note that when loading a shared library (text_offset != 0) the
243 unwinds are already relative to the text_offset that will be
244 passed in. */
245 if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0)
246 {
247 low_text_segment_address = -1;
248
249 bfd_map_over_sections (objfile->obfd,
250 record_text_segment_lowaddr,
251 &low_text_segment_address);
252
253 text_offset = low_text_segment_address;
254 }
255 else if (gdbarch_tdep (gdbarch)->solib_get_text_base)
256 {
257 text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile);
258 }
259
260 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
261
262 /* Now internalize the information being careful to handle host/target
263 endian issues. */
264 for (i = 0; i < entries; i++)
265 {
266 table[i].region_start = bfd_get_32 (objfile->obfd,
267 (bfd_byte *) buf);
268 table[i].region_start += text_offset;
269 buf += 4;
270 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
271 table[i].region_end += text_offset;
272 buf += 4;
273 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
274 buf += 4;
275 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
276 table[i].Millicode = (tmp >> 30) & 0x1;
277 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
278 table[i].Region_description = (tmp >> 27) & 0x3;
279 table[i].reserved = (tmp >> 26) & 0x1;
280 table[i].Entry_SR = (tmp >> 25) & 0x1;
281 table[i].Entry_FR = (tmp >> 21) & 0xf;
282 table[i].Entry_GR = (tmp >> 16) & 0x1f;
283 table[i].Args_stored = (tmp >> 15) & 0x1;
284 table[i].Variable_Frame = (tmp >> 14) & 0x1;
285 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
286 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
287 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
288 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
289 table[i].sr4export = (tmp >> 9) & 0x1;
290 table[i].cxx_info = (tmp >> 8) & 0x1;
291 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
292 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
293 table[i].reserved1 = (tmp >> 5) & 0x1;
294 table[i].Save_SP = (tmp >> 4) & 0x1;
295 table[i].Save_RP = (tmp >> 3) & 0x1;
296 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
297 table[i].save_r19 = (tmp >> 1) & 0x1;
298 table[i].Cleanup_defined = tmp & 0x1;
299 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
300 buf += 4;
301 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
302 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
303 table[i].Large_frame = (tmp >> 29) & 0x1;
304 table[i].alloca_frame = (tmp >> 28) & 0x1;
305 table[i].reserved2 = (tmp >> 27) & 0x1;
306 table[i].Total_frame_size = tmp & 0x7ffffff;
307
308 /* Stub unwinds are handled elsewhere. */
309 table[i].stub_unwind.stub_type = 0;
310 table[i].stub_unwind.padding = 0;
311 }
312 }
313 }
314
315 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
316 the object file. This info is used mainly by find_unwind_entry() to find
317 out the stack frame size and frame pointer used by procedures. We put
318 everything on the psymbol obstack in the objfile so that it automatically
319 gets freed when the objfile is destroyed. */
320
321 static void
322 read_unwind_info (struct objfile *objfile)
323 {
324 asection *unwind_sec, *stub_unwind_sec;
325 unsigned unwind_size, stub_unwind_size, total_size;
326 unsigned index, unwind_entries;
327 unsigned stub_entries, total_entries;
328 CORE_ADDR text_offset;
329 struct hppa_unwind_info *ui;
330 struct hppa_objfile_private *obj_private;
331
332 text_offset = ANOFFSET (objfile->section_offsets, 0);
333 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
334 sizeof (struct hppa_unwind_info));
335
336 ui->table = NULL;
337 ui->cache = NULL;
338 ui->last = -1;
339
340 /* For reasons unknown the HP PA64 tools generate multiple unwinder
341 sections in a single executable. So we just iterate over every
342 section in the BFD looking for unwinder sections intead of trying
343 to do a lookup with bfd_get_section_by_name.
344
345 First determine the total size of the unwind tables so that we
346 can allocate memory in a nice big hunk. */
347 total_entries = 0;
348 for (unwind_sec = objfile->obfd->sections;
349 unwind_sec;
350 unwind_sec = unwind_sec->next)
351 {
352 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
353 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
354 {
355 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
356 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
357
358 total_entries += unwind_entries;
359 }
360 }
361
362 /* Now compute the size of the stub unwinds. Note the ELF tools do not
363 use stub unwinds at the current time. */
364 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
365
366 if (stub_unwind_sec)
367 {
368 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
369 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
370 }
371 else
372 {
373 stub_unwind_size = 0;
374 stub_entries = 0;
375 }
376
377 /* Compute total number of unwind entries and their total size. */
378 total_entries += stub_entries;
379 total_size = total_entries * sizeof (struct unwind_table_entry);
380
381 /* Allocate memory for the unwind table. */
382 ui->table = (struct unwind_table_entry *)
383 obstack_alloc (&objfile->objfile_obstack, total_size);
384 ui->last = total_entries - 1;
385
386 /* Now read in each unwind section and internalize the standard unwind
387 entries. */
388 index = 0;
389 for (unwind_sec = objfile->obfd->sections;
390 unwind_sec;
391 unwind_sec = unwind_sec->next)
392 {
393 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
394 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
395 {
396 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
397 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
398
399 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
400 unwind_entries, unwind_size, text_offset);
401 index += unwind_entries;
402 }
403 }
404
405 /* Now read in and internalize the stub unwind entries. */
406 if (stub_unwind_size > 0)
407 {
408 unsigned int i;
409 char *buf = alloca (stub_unwind_size);
410
411 /* Read in the stub unwind entries. */
412 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
413 0, stub_unwind_size);
414
415 /* Now convert them into regular unwind entries. */
416 for (i = 0; i < stub_entries; i++, index++)
417 {
418 /* Clear out the next unwind entry. */
419 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
420
421 /* Convert offset & size into region_start and region_end.
422 Stuff away the stub type into "reserved" fields. */
423 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
424 (bfd_byte *) buf);
425 ui->table[index].region_start += text_offset;
426 buf += 4;
427 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
428 (bfd_byte *) buf);
429 buf += 2;
430 ui->table[index].region_end
431 = ui->table[index].region_start + 4 *
432 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
433 buf += 2;
434 }
435
436 }
437
438 /* Unwind table needs to be kept sorted. */
439 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
440 compare_unwind_entries);
441
442 /* Keep a pointer to the unwind information. */
443 obj_private = (struct hppa_objfile_private *)
444 objfile_data (objfile, hppa_objfile_priv_data);
445 if (obj_private == NULL)
446 obj_private = hppa_init_objfile_priv_data (objfile);
447
448 obj_private->unwind_info = ui;
449 }
450
451 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
452 of the objfiles seeking the unwind table entry for this PC. Each objfile
453 contains a sorted list of struct unwind_table_entry. Since we do a binary
454 search of the unwind tables, we depend upon them to be sorted. */
455
456 struct unwind_table_entry *
457 find_unwind_entry (CORE_ADDR pc)
458 {
459 int first, middle, last;
460 struct objfile *objfile;
461 struct hppa_objfile_private *priv;
462
463 if (hppa_debug)
464 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
465 paddr_nz (pc));
466
467 /* A function at address 0? Not in HP-UX! */
468 if (pc == (CORE_ADDR) 0)
469 {
470 if (hppa_debug)
471 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
472 return NULL;
473 }
474
475 ALL_OBJFILES (objfile)
476 {
477 struct hppa_unwind_info *ui;
478 ui = NULL;
479 priv = objfile_data (objfile, hppa_objfile_priv_data);
480 if (priv)
481 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
482
483 if (!ui)
484 {
485 read_unwind_info (objfile);
486 priv = objfile_data (objfile, hppa_objfile_priv_data);
487 if (priv == NULL)
488 error (_("Internal error reading unwind information."));
489 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
490 }
491
492 /* First, check the cache */
493
494 if (ui->cache
495 && pc >= ui->cache->region_start
496 && pc <= ui->cache->region_end)
497 {
498 if (hppa_debug)
499 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
500 paddr_nz ((uintptr_t) ui->cache));
501 return ui->cache;
502 }
503
504 /* Not in the cache, do a binary search */
505
506 first = 0;
507 last = ui->last;
508
509 while (first <= last)
510 {
511 middle = (first + last) / 2;
512 if (pc >= ui->table[middle].region_start
513 && pc <= ui->table[middle].region_end)
514 {
515 ui->cache = &ui->table[middle];
516 if (hppa_debug)
517 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
518 paddr_nz ((uintptr_t) ui->cache));
519 return &ui->table[middle];
520 }
521
522 if (pc < ui->table[middle].region_start)
523 last = middle - 1;
524 else
525 first = middle + 1;
526 }
527 } /* ALL_OBJFILES() */
528
529 if (hppa_debug)
530 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
531
532 return NULL;
533 }
534
535 /* The epilogue is defined here as the area either on the `bv' instruction
536 itself or an instruction which destroys the function's stack frame.
537
538 We do not assume that the epilogue is at the end of a function as we can
539 also have return sequences in the middle of a function. */
540 static int
541 hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
542 {
543 unsigned long status;
544 unsigned int inst;
545 char buf[4];
546 int off;
547
548 status = target_read_memory (pc, buf, 4);
549 if (status != 0)
550 return 0;
551
552 inst = extract_unsigned_integer (buf, 4);
553
554 /* The most common way to perform a stack adjustment ldo X(sp),sp
555 We are destroying a stack frame if the offset is negative. */
556 if ((inst & 0xffffc000) == 0x37de0000
557 && hppa_extract_14 (inst) < 0)
558 return 1;
559
560 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
561 if (((inst & 0x0fc010e0) == 0x0fc010e0
562 || (inst & 0x0fc010e0) == 0x0fc010e0)
563 && hppa_extract_14 (inst) < 0)
564 return 1;
565
566 /* bv %r0(%rp) or bv,n %r0(%rp) */
567 if (inst == 0xe840c000 || inst == 0xe840c002)
568 return 1;
569
570 return 0;
571 }
572
573 static const unsigned char *
574 hppa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
575 {
576 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
577 (*len) = sizeof (breakpoint);
578 return breakpoint;
579 }
580
581 /* Return the name of a register. */
582
583 static const char *
584 hppa32_register_name (struct gdbarch *gdbarch, int i)
585 {
586 static char *names[] = {
587 "flags", "r1", "rp", "r3",
588 "r4", "r5", "r6", "r7",
589 "r8", "r9", "r10", "r11",
590 "r12", "r13", "r14", "r15",
591 "r16", "r17", "r18", "r19",
592 "r20", "r21", "r22", "r23",
593 "r24", "r25", "r26", "dp",
594 "ret0", "ret1", "sp", "r31",
595 "sar", "pcoqh", "pcsqh", "pcoqt",
596 "pcsqt", "eiem", "iir", "isr",
597 "ior", "ipsw", "goto", "sr4",
598 "sr0", "sr1", "sr2", "sr3",
599 "sr5", "sr6", "sr7", "cr0",
600 "cr8", "cr9", "ccr", "cr12",
601 "cr13", "cr24", "cr25", "cr26",
602 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
603 "fpsr", "fpe1", "fpe2", "fpe3",
604 "fpe4", "fpe5", "fpe6", "fpe7",
605 "fr4", "fr4R", "fr5", "fr5R",
606 "fr6", "fr6R", "fr7", "fr7R",
607 "fr8", "fr8R", "fr9", "fr9R",
608 "fr10", "fr10R", "fr11", "fr11R",
609 "fr12", "fr12R", "fr13", "fr13R",
610 "fr14", "fr14R", "fr15", "fr15R",
611 "fr16", "fr16R", "fr17", "fr17R",
612 "fr18", "fr18R", "fr19", "fr19R",
613 "fr20", "fr20R", "fr21", "fr21R",
614 "fr22", "fr22R", "fr23", "fr23R",
615 "fr24", "fr24R", "fr25", "fr25R",
616 "fr26", "fr26R", "fr27", "fr27R",
617 "fr28", "fr28R", "fr29", "fr29R",
618 "fr30", "fr30R", "fr31", "fr31R"
619 };
620 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
621 return NULL;
622 else
623 return names[i];
624 }
625
626 static const char *
627 hppa64_register_name (struct gdbarch *gdbarch, int i)
628 {
629 static char *names[] = {
630 "flags", "r1", "rp", "r3",
631 "r4", "r5", "r6", "r7",
632 "r8", "r9", "r10", "r11",
633 "r12", "r13", "r14", "r15",
634 "r16", "r17", "r18", "r19",
635 "r20", "r21", "r22", "r23",
636 "r24", "r25", "r26", "dp",
637 "ret0", "ret1", "sp", "r31",
638 "sar", "pcoqh", "pcsqh", "pcoqt",
639 "pcsqt", "eiem", "iir", "isr",
640 "ior", "ipsw", "goto", "sr4",
641 "sr0", "sr1", "sr2", "sr3",
642 "sr5", "sr6", "sr7", "cr0",
643 "cr8", "cr9", "ccr", "cr12",
644 "cr13", "cr24", "cr25", "cr26",
645 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
646 "fpsr", "fpe1", "fpe2", "fpe3",
647 "fr4", "fr5", "fr6", "fr7",
648 "fr8", "fr9", "fr10", "fr11",
649 "fr12", "fr13", "fr14", "fr15",
650 "fr16", "fr17", "fr18", "fr19",
651 "fr20", "fr21", "fr22", "fr23",
652 "fr24", "fr25", "fr26", "fr27",
653 "fr28", "fr29", "fr30", "fr31"
654 };
655 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
656 return NULL;
657 else
658 return names[i];
659 }
660
661 /* Map dwarf DBX register numbers to GDB register numbers. */
662 static int
663 hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
664 {
665 /* The general registers and the sar are the same in both sets. */
666 if (reg <= 32)
667 return reg;
668
669 /* fr4-fr31 are mapped from 72 in steps of 2. */
670 if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1))
671 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
672
673 warning (_("Unmapped DWARF DBX Register #%d encountered."), reg);
674 return -1;
675 }
676
677 /* This function pushes a stack frame with arguments as part of the
678 inferior function calling mechanism.
679
680 This is the version of the function for the 32-bit PA machines, in
681 which later arguments appear at lower addresses. (The stack always
682 grows towards higher addresses.)
683
684 We simply allocate the appropriate amount of stack space and put
685 arguments into their proper slots. */
686
687 static CORE_ADDR
688 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
689 struct regcache *regcache, CORE_ADDR bp_addr,
690 int nargs, struct value **args, CORE_ADDR sp,
691 int struct_return, CORE_ADDR struct_addr)
692 {
693 /* Stack base address at which any pass-by-reference parameters are
694 stored. */
695 CORE_ADDR struct_end = 0;
696 /* Stack base address at which the first parameter is stored. */
697 CORE_ADDR param_end = 0;
698
699 /* The inner most end of the stack after all the parameters have
700 been pushed. */
701 CORE_ADDR new_sp = 0;
702
703 /* Two passes. First pass computes the location of everything,
704 second pass writes the bytes out. */
705 int write_pass;
706
707 /* Global pointer (r19) of the function we are trying to call. */
708 CORE_ADDR gp;
709
710 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
711
712 for (write_pass = 0; write_pass < 2; write_pass++)
713 {
714 CORE_ADDR struct_ptr = 0;
715 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
716 struct_ptr is adjusted for each argument below, so the first
717 argument will end up at sp-36. */
718 CORE_ADDR param_ptr = 32;
719 int i;
720 int small_struct = 0;
721
722 for (i = 0; i < nargs; i++)
723 {
724 struct value *arg = args[i];
725 struct type *type = check_typedef (value_type (arg));
726 /* The corresponding parameter that is pushed onto the
727 stack, and [possibly] passed in a register. */
728 char param_val[8];
729 int param_len;
730 memset (param_val, 0, sizeof param_val);
731 if (TYPE_LENGTH (type) > 8)
732 {
733 /* Large parameter, pass by reference. Store the value
734 in "struct" area and then pass its address. */
735 param_len = 4;
736 struct_ptr += align_up (TYPE_LENGTH (type), 8);
737 if (write_pass)
738 write_memory (struct_end - struct_ptr, value_contents (arg),
739 TYPE_LENGTH (type));
740 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
741 }
742 else if (TYPE_CODE (type) == TYPE_CODE_INT
743 || TYPE_CODE (type) == TYPE_CODE_ENUM)
744 {
745 /* Integer value store, right aligned. "unpack_long"
746 takes care of any sign-extension problems. */
747 param_len = align_up (TYPE_LENGTH (type), 4);
748 store_unsigned_integer (param_val, param_len,
749 unpack_long (type,
750 value_contents (arg)));
751 }
752 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
753 {
754 /* Floating point value store, right aligned. */
755 param_len = align_up (TYPE_LENGTH (type), 4);
756 memcpy (param_val, value_contents (arg), param_len);
757 }
758 else
759 {
760 param_len = align_up (TYPE_LENGTH (type), 4);
761
762 /* Small struct value are stored right-aligned. */
763 memcpy (param_val + param_len - TYPE_LENGTH (type),
764 value_contents (arg), TYPE_LENGTH (type));
765
766 /* Structures of size 5, 6 and 7 bytes are special in that
767 the higher-ordered word is stored in the lower-ordered
768 argument, and even though it is a 8-byte quantity the
769 registers need not be 8-byte aligned. */
770 if (param_len > 4 && param_len < 8)
771 small_struct = 1;
772 }
773
774 param_ptr += param_len;
775 if (param_len == 8 && !small_struct)
776 param_ptr = align_up (param_ptr, 8);
777
778 /* First 4 non-FP arguments are passed in gr26-gr23.
779 First 4 32-bit FP arguments are passed in fr4L-fr7L.
780 First 2 64-bit FP arguments are passed in fr5 and fr7.
781
782 The rest go on the stack, starting at sp-36, towards lower
783 addresses. 8-byte arguments must be aligned to a 8-byte
784 stack boundary. */
785 if (write_pass)
786 {
787 write_memory (param_end - param_ptr, param_val, param_len);
788
789 /* There are some cases when we don't know the type
790 expected by the callee (e.g. for variadic functions), so
791 pass the parameters in both general and fp regs. */
792 if (param_ptr <= 48)
793 {
794 int grreg = 26 - (param_ptr - 36) / 4;
795 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
796 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
797
798 regcache_cooked_write (regcache, grreg, param_val);
799 regcache_cooked_write (regcache, fpLreg, param_val);
800
801 if (param_len > 4)
802 {
803 regcache_cooked_write (regcache, grreg + 1,
804 param_val + 4);
805
806 regcache_cooked_write (regcache, fpreg, param_val);
807 regcache_cooked_write (regcache, fpreg + 1,
808 param_val + 4);
809 }
810 }
811 }
812 }
813
814 /* Update the various stack pointers. */
815 if (!write_pass)
816 {
817 struct_end = sp + align_up (struct_ptr, 64);
818 /* PARAM_PTR already accounts for all the arguments passed
819 by the user. However, the ABI mandates minimum stack
820 space allocations for outgoing arguments. The ABI also
821 mandates minimum stack alignments which we must
822 preserve. */
823 param_end = struct_end + align_up (param_ptr, 64);
824 }
825 }
826
827 /* If a structure has to be returned, set up register 28 to hold its
828 address */
829 if (struct_return)
830 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
831
832 gp = tdep->find_global_pointer (gdbarch, function);
833
834 if (gp != 0)
835 regcache_cooked_write_unsigned (regcache, 19, gp);
836
837 /* Set the return address. */
838 if (!gdbarch_push_dummy_code_p (gdbarch))
839 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
840
841 /* Update the Stack Pointer. */
842 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
843
844 return param_end;
845 }
846
847 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
848 Runtime Architecture for PA-RISC 2.0", which is distributed as part
849 as of the HP-UX Software Transition Kit (STK). This implementation
850 is based on version 3.3, dated October 6, 1997. */
851
852 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
853
854 static int
855 hppa64_integral_or_pointer_p (const struct type *type)
856 {
857 switch (TYPE_CODE (type))
858 {
859 case TYPE_CODE_INT:
860 case TYPE_CODE_BOOL:
861 case TYPE_CODE_CHAR:
862 case TYPE_CODE_ENUM:
863 case TYPE_CODE_RANGE:
864 {
865 int len = TYPE_LENGTH (type);
866 return (len == 1 || len == 2 || len == 4 || len == 8);
867 }
868 case TYPE_CODE_PTR:
869 case TYPE_CODE_REF:
870 return (TYPE_LENGTH (type) == 8);
871 default:
872 break;
873 }
874
875 return 0;
876 }
877
878 /* Check whether TYPE is a "Floating Scalar Type". */
879
880 static int
881 hppa64_floating_p (const struct type *type)
882 {
883 switch (TYPE_CODE (type))
884 {
885 case TYPE_CODE_FLT:
886 {
887 int len = TYPE_LENGTH (type);
888 return (len == 4 || len == 8 || len == 16);
889 }
890 default:
891 break;
892 }
893
894 return 0;
895 }
896
897 /* If CODE points to a function entry address, try to look up the corresponding
898 function descriptor and return its address instead. If CODE is not a
899 function entry address, then just return it unchanged. */
900 static CORE_ADDR
901 hppa64_convert_code_addr_to_fptr (CORE_ADDR code)
902 {
903 struct obj_section *sec, *opd;
904
905 sec = find_pc_section (code);
906
907 if (!sec)
908 return code;
909
910 /* If CODE is in a data section, assume it's already a fptr. */
911 if (!(sec->the_bfd_section->flags & SEC_CODE))
912 return code;
913
914 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
915 {
916 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
917 break;
918 }
919
920 if (opd < sec->objfile->sections_end)
921 {
922 CORE_ADDR addr;
923
924 for (addr = obj_section_addr (opd);
925 addr < obj_section_endaddr (opd);
926 addr += 2 * 8)
927 {
928 ULONGEST opdaddr;
929 char tmp[8];
930
931 if (target_read_memory (addr, tmp, sizeof (tmp)))
932 break;
933 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp));
934
935 if (opdaddr == code)
936 return addr - 16;
937 }
938 }
939
940 return code;
941 }
942
943 static CORE_ADDR
944 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
945 struct regcache *regcache, CORE_ADDR bp_addr,
946 int nargs, struct value **args, CORE_ADDR sp,
947 int struct_return, CORE_ADDR struct_addr)
948 {
949 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
950 int i, offset = 0;
951 CORE_ADDR gp;
952
953 /* "The outgoing parameter area [...] must be aligned at a 16-byte
954 boundary." */
955 sp = align_up (sp, 16);
956
957 for (i = 0; i < nargs; i++)
958 {
959 struct value *arg = args[i];
960 struct type *type = value_type (arg);
961 int len = TYPE_LENGTH (type);
962 const bfd_byte *valbuf;
963 bfd_byte fptrbuf[8];
964 int regnum;
965
966 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
967 offset = align_up (offset, 8);
968
969 if (hppa64_integral_or_pointer_p (type))
970 {
971 /* "Integral scalar parameters smaller than 64 bits are
972 padded on the left (i.e., the value is in the
973 least-significant bits of the 64-bit storage unit, and
974 the high-order bits are undefined)." Therefore we can
975 safely sign-extend them. */
976 if (len < 8)
977 {
978 arg = value_cast (builtin_type_int64, arg);
979 len = 8;
980 }
981 }
982 else if (hppa64_floating_p (type))
983 {
984 if (len > 8)
985 {
986 /* "Quad-precision (128-bit) floating-point scalar
987 parameters are aligned on a 16-byte boundary." */
988 offset = align_up (offset, 16);
989
990 /* "Double-extended- and quad-precision floating-point
991 parameters within the first 64 bytes of the parameter
992 list are always passed in general registers." */
993 }
994 else
995 {
996 if (len == 4)
997 {
998 /* "Single-precision (32-bit) floating-point scalar
999 parameters are padded on the left with 32 bits of
1000 garbage (i.e., the floating-point value is in the
1001 least-significant 32 bits of a 64-bit storage
1002 unit)." */
1003 offset += 4;
1004 }
1005
1006 /* "Single- and double-precision floating-point
1007 parameters in this area are passed according to the
1008 available formal parameter information in a function
1009 prototype. [...] If no prototype is in scope,
1010 floating-point parameters must be passed both in the
1011 corresponding general registers and in the
1012 corresponding floating-point registers." */
1013 regnum = HPPA64_FP4_REGNUM + offset / 8;
1014
1015 if (regnum < HPPA64_FP4_REGNUM + 8)
1016 {
1017 /* "Single-precision floating-point parameters, when
1018 passed in floating-point registers, are passed in
1019 the right halves of the floating point registers;
1020 the left halves are unused." */
1021 regcache_cooked_write_part (regcache, regnum, offset % 8,
1022 len, value_contents (arg));
1023 }
1024 }
1025 }
1026 else
1027 {
1028 if (len > 8)
1029 {
1030 /* "Aggregates larger than 8 bytes are aligned on a
1031 16-byte boundary, possibly leaving an unused argument
1032 slot, which is filled with garbage. If necessary,
1033 they are padded on the right (with garbage), to a
1034 multiple of 8 bytes." */
1035 offset = align_up (offset, 16);
1036 }
1037 }
1038
1039 /* If we are passing a function pointer, make sure we pass a function
1040 descriptor instead of the function entry address. */
1041 if (TYPE_CODE (type) == TYPE_CODE_PTR
1042 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1043 {
1044 ULONGEST codeptr, fptr;
1045
1046 codeptr = unpack_long (type, value_contents (arg));
1047 fptr = hppa64_convert_code_addr_to_fptr (codeptr);
1048 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), fptr);
1049 valbuf = fptrbuf;
1050 }
1051 else
1052 {
1053 valbuf = value_contents (arg);
1054 }
1055
1056 /* Always store the argument in memory. */
1057 write_memory (sp + offset, valbuf, len);
1058
1059 regnum = HPPA_ARG0_REGNUM - offset / 8;
1060 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1061 {
1062 regcache_cooked_write_part (regcache, regnum,
1063 offset % 8, min (len, 8), valbuf);
1064 offset += min (len, 8);
1065 valbuf += min (len, 8);
1066 len -= min (len, 8);
1067 regnum--;
1068 }
1069
1070 offset += len;
1071 }
1072
1073 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1074 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1075
1076 /* Allocate the outgoing parameter area. Make sure the outgoing
1077 parameter area is multiple of 16 bytes in length. */
1078 sp += max (align_up (offset, 16), 64);
1079
1080 /* Allocate 32-bytes of scratch space. The documentation doesn't
1081 mention this, but it seems to be needed. */
1082 sp += 32;
1083
1084 /* Allocate the frame marker area. */
1085 sp += 16;
1086
1087 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1088 its address. */
1089 if (struct_return)
1090 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1091
1092 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1093 gp = tdep->find_global_pointer (gdbarch, function);
1094 if (gp != 0)
1095 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1096
1097 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1098 if (!gdbarch_push_dummy_code_p (gdbarch))
1099 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1100
1101 /* Set up GR30 to hold the stack pointer (sp). */
1102 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1103
1104 return sp;
1105 }
1106 \f
1107
1108 /* Handle 32/64-bit struct return conventions. */
1109
1110 static enum return_value_convention
1111 hppa32_return_value (struct gdbarch *gdbarch, struct type *func_type,
1112 struct type *type, struct regcache *regcache,
1113 gdb_byte *readbuf, const gdb_byte *writebuf)
1114 {
1115 if (TYPE_LENGTH (type) <= 2 * 4)
1116 {
1117 /* The value always lives in the right hand end of the register
1118 (or register pair)? */
1119 int b;
1120 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1121 int part = TYPE_LENGTH (type) % 4;
1122 /* The left hand register contains only part of the value,
1123 transfer that first so that the rest can be xfered as entire
1124 4-byte registers. */
1125 if (part > 0)
1126 {
1127 if (readbuf != NULL)
1128 regcache_cooked_read_part (regcache, reg, 4 - part,
1129 part, readbuf);
1130 if (writebuf != NULL)
1131 regcache_cooked_write_part (regcache, reg, 4 - part,
1132 part, writebuf);
1133 reg++;
1134 }
1135 /* Now transfer the remaining register values. */
1136 for (b = part; b < TYPE_LENGTH (type); b += 4)
1137 {
1138 if (readbuf != NULL)
1139 regcache_cooked_read (regcache, reg, readbuf + b);
1140 if (writebuf != NULL)
1141 regcache_cooked_write (regcache, reg, writebuf + b);
1142 reg++;
1143 }
1144 return RETURN_VALUE_REGISTER_CONVENTION;
1145 }
1146 else
1147 return RETURN_VALUE_STRUCT_CONVENTION;
1148 }
1149
1150 static enum return_value_convention
1151 hppa64_return_value (struct gdbarch *gdbarch, struct type *func_type,
1152 struct type *type, struct regcache *regcache,
1153 gdb_byte *readbuf, const gdb_byte *writebuf)
1154 {
1155 int len = TYPE_LENGTH (type);
1156 int regnum, offset;
1157
1158 if (len > 16)
1159 {
1160 /* All return values larget than 128 bits must be aggregate
1161 return values. */
1162 gdb_assert (!hppa64_integral_or_pointer_p (type));
1163 gdb_assert (!hppa64_floating_p (type));
1164
1165 /* "Aggregate return values larger than 128 bits are returned in
1166 a buffer allocated by the caller. The address of the buffer
1167 must be passed in GR 28." */
1168 return RETURN_VALUE_STRUCT_CONVENTION;
1169 }
1170
1171 if (hppa64_integral_or_pointer_p (type))
1172 {
1173 /* "Integral return values are returned in GR 28. Values
1174 smaller than 64 bits are padded on the left (with garbage)." */
1175 regnum = HPPA_RET0_REGNUM;
1176 offset = 8 - len;
1177 }
1178 else if (hppa64_floating_p (type))
1179 {
1180 if (len > 8)
1181 {
1182 /* "Double-extended- and quad-precision floating-point
1183 values are returned in GRs 28 and 29. The sign,
1184 exponent, and most-significant bits of the mantissa are
1185 returned in GR 28; the least-significant bits of the
1186 mantissa are passed in GR 29. For double-extended
1187 precision values, GR 29 is padded on the right with 48
1188 bits of garbage." */
1189 regnum = HPPA_RET0_REGNUM;
1190 offset = 0;
1191 }
1192 else
1193 {
1194 /* "Single-precision and double-precision floating-point
1195 return values are returned in FR 4R (single precision) or
1196 FR 4 (double-precision)." */
1197 regnum = HPPA64_FP4_REGNUM;
1198 offset = 8 - len;
1199 }
1200 }
1201 else
1202 {
1203 /* "Aggregate return values up to 64 bits in size are returned
1204 in GR 28. Aggregates smaller than 64 bits are left aligned
1205 in the register; the pad bits on the right are undefined."
1206
1207 "Aggregate return values between 65 and 128 bits are returned
1208 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1209 the remaining bits are placed, left aligned, in GR 29. The
1210 pad bits on the right of GR 29 (if any) are undefined." */
1211 regnum = HPPA_RET0_REGNUM;
1212 offset = 0;
1213 }
1214
1215 if (readbuf)
1216 {
1217 while (len > 0)
1218 {
1219 regcache_cooked_read_part (regcache, regnum, offset,
1220 min (len, 8), readbuf);
1221 readbuf += min (len, 8);
1222 len -= min (len, 8);
1223 regnum++;
1224 }
1225 }
1226
1227 if (writebuf)
1228 {
1229 while (len > 0)
1230 {
1231 regcache_cooked_write_part (regcache, regnum, offset,
1232 min (len, 8), writebuf);
1233 writebuf += min (len, 8);
1234 len -= min (len, 8);
1235 regnum++;
1236 }
1237 }
1238
1239 return RETURN_VALUE_REGISTER_CONVENTION;
1240 }
1241 \f
1242
1243 static CORE_ADDR
1244 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1245 struct target_ops *targ)
1246 {
1247 if (addr & 2)
1248 {
1249 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
1250 CORE_ADDR plabel = addr & ~3;
1251 return read_memory_typed_address (plabel, func_ptr_type);
1252 }
1253
1254 return addr;
1255 }
1256
1257 static CORE_ADDR
1258 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1259 {
1260 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1261 and not _bit_)! */
1262 return align_up (addr, 64);
1263 }
1264
1265 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1266
1267 static CORE_ADDR
1268 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1269 {
1270 /* Just always 16-byte align. */
1271 return align_up (addr, 16);
1272 }
1273
1274 CORE_ADDR
1275 hppa_read_pc (struct regcache *regcache)
1276 {
1277 ULONGEST ipsw;
1278 ULONGEST pc;
1279
1280 regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
1281 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
1282
1283 /* If the current instruction is nullified, then we are effectively
1284 still executing the previous instruction. Pretend we are still
1285 there. This is needed when single stepping; if the nullified
1286 instruction is on a different line, we don't want GDB to think
1287 we've stepped onto that line. */
1288 if (ipsw & 0x00200000)
1289 pc -= 4;
1290
1291 return pc & ~0x3;
1292 }
1293
1294 void
1295 hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
1296 {
1297 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1298 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
1299 }
1300
1301 /* return the alignment of a type in bytes. Structures have the maximum
1302 alignment required by their fields. */
1303
1304 static int
1305 hppa_alignof (struct type *type)
1306 {
1307 int max_align, align, i;
1308 CHECK_TYPEDEF (type);
1309 switch (TYPE_CODE (type))
1310 {
1311 case TYPE_CODE_PTR:
1312 case TYPE_CODE_INT:
1313 case TYPE_CODE_FLT:
1314 return TYPE_LENGTH (type);
1315 case TYPE_CODE_ARRAY:
1316 return hppa_alignof (TYPE_INDEX_TYPE (type));
1317 case TYPE_CODE_STRUCT:
1318 case TYPE_CODE_UNION:
1319 max_align = 1;
1320 for (i = 0; i < TYPE_NFIELDS (type); i++)
1321 {
1322 /* Bit fields have no real alignment. */
1323 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1324 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
1325 {
1326 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1327 max_align = max (max_align, align);
1328 }
1329 }
1330 return max_align;
1331 default:
1332 return 4;
1333 }
1334 }
1335
1336 /* For the given instruction (INST), return any adjustment it makes
1337 to the stack pointer or zero for no adjustment.
1338
1339 This only handles instructions commonly found in prologues. */
1340
1341 static int
1342 prologue_inst_adjust_sp (unsigned long inst)
1343 {
1344 /* This must persist across calls. */
1345 static int save_high21;
1346
1347 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1348 if ((inst & 0xffffc000) == 0x37de0000)
1349 return hppa_extract_14 (inst);
1350
1351 /* stwm X,D(sp) */
1352 if ((inst & 0xffe00000) == 0x6fc00000)
1353 return hppa_extract_14 (inst);
1354
1355 /* std,ma X,D(sp) */
1356 if ((inst & 0xffe00008) == 0x73c00008)
1357 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1358
1359 /* addil high21,%r30; ldo low11,(%r1),%r30)
1360 save high bits in save_high21 for later use. */
1361 if ((inst & 0xffe00000) == 0x2bc00000)
1362 {
1363 save_high21 = hppa_extract_21 (inst);
1364 return 0;
1365 }
1366
1367 if ((inst & 0xffff0000) == 0x343e0000)
1368 return save_high21 + hppa_extract_14 (inst);
1369
1370 /* fstws as used by the HP compilers. */
1371 if ((inst & 0xffffffe0) == 0x2fd01220)
1372 return hppa_extract_5_load (inst);
1373
1374 /* No adjustment. */
1375 return 0;
1376 }
1377
1378 /* Return nonzero if INST is a branch of some kind, else return zero. */
1379
1380 static int
1381 is_branch (unsigned long inst)
1382 {
1383 switch (inst >> 26)
1384 {
1385 case 0x20:
1386 case 0x21:
1387 case 0x22:
1388 case 0x23:
1389 case 0x27:
1390 case 0x28:
1391 case 0x29:
1392 case 0x2a:
1393 case 0x2b:
1394 case 0x2f:
1395 case 0x30:
1396 case 0x31:
1397 case 0x32:
1398 case 0x33:
1399 case 0x38:
1400 case 0x39:
1401 case 0x3a:
1402 case 0x3b:
1403 return 1;
1404
1405 default:
1406 return 0;
1407 }
1408 }
1409
1410 /* Return the register number for a GR which is saved by INST or
1411 zero it INST does not save a GR. */
1412
1413 static int
1414 inst_saves_gr (unsigned long inst)
1415 {
1416 /* Does it look like a stw? */
1417 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1418 || (inst >> 26) == 0x1f
1419 || ((inst >> 26) == 0x1f
1420 && ((inst >> 6) == 0xa)))
1421 return hppa_extract_5R_store (inst);
1422
1423 /* Does it look like a std? */
1424 if ((inst >> 26) == 0x1c
1425 || ((inst >> 26) == 0x03
1426 && ((inst >> 6) & 0xf) == 0xb))
1427 return hppa_extract_5R_store (inst);
1428
1429 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1430 if ((inst >> 26) == 0x1b)
1431 return hppa_extract_5R_store (inst);
1432
1433 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1434 too. */
1435 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1436 || ((inst >> 26) == 0x3
1437 && (((inst >> 6) & 0xf) == 0x8
1438 || (inst >> 6) & 0xf) == 0x9))
1439 return hppa_extract_5R_store (inst);
1440
1441 return 0;
1442 }
1443
1444 /* Return the register number for a FR which is saved by INST or
1445 zero it INST does not save a FR.
1446
1447 Note we only care about full 64bit register stores (that's the only
1448 kind of stores the prologue will use).
1449
1450 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1451
1452 static int
1453 inst_saves_fr (unsigned long inst)
1454 {
1455 /* is this an FSTD ? */
1456 if ((inst & 0xfc00dfc0) == 0x2c001200)
1457 return hppa_extract_5r_store (inst);
1458 if ((inst & 0xfc000002) == 0x70000002)
1459 return hppa_extract_5R_store (inst);
1460 /* is this an FSTW ? */
1461 if ((inst & 0xfc00df80) == 0x24001200)
1462 return hppa_extract_5r_store (inst);
1463 if ((inst & 0xfc000002) == 0x7c000000)
1464 return hppa_extract_5R_store (inst);
1465 return 0;
1466 }
1467
1468 /* Advance PC across any function entry prologue instructions
1469 to reach some "real" code.
1470
1471 Use information in the unwind table to determine what exactly should
1472 be in the prologue. */
1473
1474
1475 static CORE_ADDR
1476 skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1477 int stop_before_branch)
1478 {
1479 char buf[4];
1480 CORE_ADDR orig_pc = pc;
1481 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1482 unsigned long args_stored, status, i, restart_gr, restart_fr;
1483 struct unwind_table_entry *u;
1484 int final_iteration;
1485
1486 restart_gr = 0;
1487 restart_fr = 0;
1488
1489 restart:
1490 u = find_unwind_entry (pc);
1491 if (!u)
1492 return pc;
1493
1494 /* If we are not at the beginning of a function, then return now. */
1495 if ((pc & ~0x3) != u->region_start)
1496 return pc;
1497
1498 /* This is how much of a frame adjustment we need to account for. */
1499 stack_remaining = u->Total_frame_size << 3;
1500
1501 /* Magic register saves we want to know about. */
1502 save_rp = u->Save_RP;
1503 save_sp = u->Save_SP;
1504
1505 /* An indication that args may be stored into the stack. Unfortunately
1506 the HPUX compilers tend to set this in cases where no args were
1507 stored too!. */
1508 args_stored = 1;
1509
1510 /* Turn the Entry_GR field into a bitmask. */
1511 save_gr = 0;
1512 for (i = 3; i < u->Entry_GR + 3; i++)
1513 {
1514 /* Frame pointer gets saved into a special location. */
1515 if (u->Save_SP && i == HPPA_FP_REGNUM)
1516 continue;
1517
1518 save_gr |= (1 << i);
1519 }
1520 save_gr &= ~restart_gr;
1521
1522 /* Turn the Entry_FR field into a bitmask too. */
1523 save_fr = 0;
1524 for (i = 12; i < u->Entry_FR + 12; i++)
1525 save_fr |= (1 << i);
1526 save_fr &= ~restart_fr;
1527
1528 final_iteration = 0;
1529
1530 /* Loop until we find everything of interest or hit a branch.
1531
1532 For unoptimized GCC code and for any HP CC code this will never ever
1533 examine any user instructions.
1534
1535 For optimzied GCC code we're faced with problems. GCC will schedule
1536 its prologue and make prologue instructions available for delay slot
1537 filling. The end result is user code gets mixed in with the prologue
1538 and a prologue instruction may be in the delay slot of the first branch
1539 or call.
1540
1541 Some unexpected things are expected with debugging optimized code, so
1542 we allow this routine to walk past user instructions in optimized
1543 GCC code. */
1544 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1545 || args_stored)
1546 {
1547 unsigned int reg_num;
1548 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1549 unsigned long old_save_rp, old_save_sp, next_inst;
1550
1551 /* Save copies of all the triggers so we can compare them later
1552 (only for HPC). */
1553 old_save_gr = save_gr;
1554 old_save_fr = save_fr;
1555 old_save_rp = save_rp;
1556 old_save_sp = save_sp;
1557 old_stack_remaining = stack_remaining;
1558
1559 status = target_read_memory (pc, buf, 4);
1560 inst = extract_unsigned_integer (buf, 4);
1561
1562 /* Yow! */
1563 if (status != 0)
1564 return pc;
1565
1566 /* Note the interesting effects of this instruction. */
1567 stack_remaining -= prologue_inst_adjust_sp (inst);
1568
1569 /* There are limited ways to store the return pointer into the
1570 stack. */
1571 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1572 save_rp = 0;
1573
1574 /* These are the only ways we save SP into the stack. At this time
1575 the HP compilers never bother to save SP into the stack. */
1576 if ((inst & 0xffffc000) == 0x6fc10000
1577 || (inst & 0xffffc00c) == 0x73c10008)
1578 save_sp = 0;
1579
1580 /* Are we loading some register with an offset from the argument
1581 pointer? */
1582 if ((inst & 0xffe00000) == 0x37a00000
1583 || (inst & 0xffffffe0) == 0x081d0240)
1584 {
1585 pc += 4;
1586 continue;
1587 }
1588
1589 /* Account for general and floating-point register saves. */
1590 reg_num = inst_saves_gr (inst);
1591 save_gr &= ~(1 << reg_num);
1592
1593 /* Ugh. Also account for argument stores into the stack.
1594 Unfortunately args_stored only tells us that some arguments
1595 where stored into the stack. Not how many or what kind!
1596
1597 This is a kludge as on the HP compiler sets this bit and it
1598 never does prologue scheduling. So once we see one, skip past
1599 all of them. We have similar code for the fp arg stores below.
1600
1601 FIXME. Can still die if we have a mix of GR and FR argument
1602 stores! */
1603 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1604 && reg_num <= 26)
1605 {
1606 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1607 && reg_num <= 26)
1608 {
1609 pc += 4;
1610 status = target_read_memory (pc, buf, 4);
1611 inst = extract_unsigned_integer (buf, 4);
1612 if (status != 0)
1613 return pc;
1614 reg_num = inst_saves_gr (inst);
1615 }
1616 args_stored = 0;
1617 continue;
1618 }
1619
1620 reg_num = inst_saves_fr (inst);
1621 save_fr &= ~(1 << reg_num);
1622
1623 status = target_read_memory (pc + 4, buf, 4);
1624 next_inst = extract_unsigned_integer (buf, 4);
1625
1626 /* Yow! */
1627 if (status != 0)
1628 return pc;
1629
1630 /* We've got to be read to handle the ldo before the fp register
1631 save. */
1632 if ((inst & 0xfc000000) == 0x34000000
1633 && inst_saves_fr (next_inst) >= 4
1634 && inst_saves_fr (next_inst)
1635 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1636 {
1637 /* So we drop into the code below in a reasonable state. */
1638 reg_num = inst_saves_fr (next_inst);
1639 pc -= 4;
1640 }
1641
1642 /* Ugh. Also account for argument stores into the stack.
1643 This is a kludge as on the HP compiler sets this bit and it
1644 never does prologue scheduling. So once we see one, skip past
1645 all of them. */
1646 if (reg_num >= 4
1647 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1648 {
1649 while (reg_num >= 4
1650 && reg_num
1651 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1652 {
1653 pc += 8;
1654 status = target_read_memory (pc, buf, 4);
1655 inst = extract_unsigned_integer (buf, 4);
1656 if (status != 0)
1657 return pc;
1658 if ((inst & 0xfc000000) != 0x34000000)
1659 break;
1660 status = target_read_memory (pc + 4, buf, 4);
1661 next_inst = extract_unsigned_integer (buf, 4);
1662 if (status != 0)
1663 return pc;
1664 reg_num = inst_saves_fr (next_inst);
1665 }
1666 args_stored = 0;
1667 continue;
1668 }
1669
1670 /* Quit if we hit any kind of branch. This can happen if a prologue
1671 instruction is in the delay slot of the first call/branch. */
1672 if (is_branch (inst) && stop_before_branch)
1673 break;
1674
1675 /* What a crock. The HP compilers set args_stored even if no
1676 arguments were stored into the stack (boo hiss). This could
1677 cause this code to then skip a bunch of user insns (up to the
1678 first branch).
1679
1680 To combat this we try to identify when args_stored was bogusly
1681 set and clear it. We only do this when args_stored is nonzero,
1682 all other resources are accounted for, and nothing changed on
1683 this pass. */
1684 if (args_stored
1685 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1686 && old_save_gr == save_gr && old_save_fr == save_fr
1687 && old_save_rp == save_rp && old_save_sp == save_sp
1688 && old_stack_remaining == stack_remaining)
1689 break;
1690
1691 /* Bump the PC. */
1692 pc += 4;
1693
1694 /* !stop_before_branch, so also look at the insn in the delay slot
1695 of the branch. */
1696 if (final_iteration)
1697 break;
1698 if (is_branch (inst))
1699 final_iteration = 1;
1700 }
1701
1702 /* We've got a tenative location for the end of the prologue. However
1703 because of limitations in the unwind descriptor mechanism we may
1704 have went too far into user code looking for the save of a register
1705 that does not exist. So, if there registers we expected to be saved
1706 but never were, mask them out and restart.
1707
1708 This should only happen in optimized code, and should be very rare. */
1709 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1710 {
1711 pc = orig_pc;
1712 restart_gr = save_gr;
1713 restart_fr = save_fr;
1714 goto restart;
1715 }
1716
1717 return pc;
1718 }
1719
1720
1721 /* Return the address of the PC after the last prologue instruction if
1722 we can determine it from the debug symbols. Else return zero. */
1723
1724 static CORE_ADDR
1725 after_prologue (CORE_ADDR pc)
1726 {
1727 struct symtab_and_line sal;
1728 CORE_ADDR func_addr, func_end;
1729 struct symbol *f;
1730
1731 /* If we can not find the symbol in the partial symbol table, then
1732 there is no hope we can determine the function's start address
1733 with this code. */
1734 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1735 return 0;
1736
1737 /* Get the line associated with FUNC_ADDR. */
1738 sal = find_pc_line (func_addr, 0);
1739
1740 /* There are only two cases to consider. First, the end of the source line
1741 is within the function bounds. In that case we return the end of the
1742 source line. Second is the end of the source line extends beyond the
1743 bounds of the current function. We need to use the slow code to
1744 examine instructions in that case.
1745
1746 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1747 the wrong thing to do. In fact, it should be entirely possible for this
1748 function to always return zero since the slow instruction scanning code
1749 is supposed to *always* work. If it does not, then it is a bug. */
1750 if (sal.end < func_end)
1751 return sal.end;
1752 else
1753 return 0;
1754 }
1755
1756 /* To skip prologues, I use this predicate. Returns either PC itself
1757 if the code at PC does not look like a function prologue; otherwise
1758 returns an address that (if we're lucky) follows the prologue.
1759
1760 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1761 It doesn't necessarily skips all the insns in the prologue. In fact
1762 we might not want to skip all the insns because a prologue insn may
1763 appear in the delay slot of the first branch, and we don't want to
1764 skip over the branch in that case. */
1765
1766 static CORE_ADDR
1767 hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1768 {
1769 unsigned long inst;
1770 int offset;
1771 CORE_ADDR post_prologue_pc;
1772 char buf[4];
1773
1774 /* See if we can determine the end of the prologue via the symbol table.
1775 If so, then return either PC, or the PC after the prologue, whichever
1776 is greater. */
1777
1778 post_prologue_pc = after_prologue (pc);
1779
1780 /* If after_prologue returned a useful address, then use it. Else
1781 fall back on the instruction skipping code.
1782
1783 Some folks have claimed this causes problems because the breakpoint
1784 may be the first instruction of the prologue. If that happens, then
1785 the instruction skipping code has a bug that needs to be fixed. */
1786 if (post_prologue_pc != 0)
1787 return max (pc, post_prologue_pc);
1788 else
1789 return (skip_prologue_hard_way (gdbarch, pc, 1));
1790 }
1791
1792 /* Return an unwind entry that falls within the frame's code block. */
1793
1794 static struct unwind_table_entry *
1795 hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
1796 {
1797 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1798
1799 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1800 result of get_frame_address_in_block implies a problem.
1801 The bits should have been removed earlier, before the return
1802 value of frame_pc_unwind. That might be happening already;
1803 if it isn't, it should be fixed. Then this call can be
1804 removed. */
1805 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
1806 return find_unwind_entry (pc);
1807 }
1808
1809 struct hppa_frame_cache
1810 {
1811 CORE_ADDR base;
1812 struct trad_frame_saved_reg *saved_regs;
1813 };
1814
1815 static struct hppa_frame_cache *
1816 hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
1817 {
1818 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1819 struct hppa_frame_cache *cache;
1820 long saved_gr_mask;
1821 long saved_fr_mask;
1822 CORE_ADDR this_sp;
1823 long frame_size;
1824 struct unwind_table_entry *u;
1825 CORE_ADDR prologue_end;
1826 int fp_in_r1 = 0;
1827 int i;
1828
1829 if (hppa_debug)
1830 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1831 frame_relative_level(this_frame));
1832
1833 if ((*this_cache) != NULL)
1834 {
1835 if (hppa_debug)
1836 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1837 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1838 return (*this_cache);
1839 }
1840 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1841 (*this_cache) = cache;
1842 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1843
1844 /* Yow! */
1845 u = hppa_find_unwind_entry_in_block (this_frame);
1846 if (!u)
1847 {
1848 if (hppa_debug)
1849 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1850 return (*this_cache);
1851 }
1852
1853 /* Turn the Entry_GR field into a bitmask. */
1854 saved_gr_mask = 0;
1855 for (i = 3; i < u->Entry_GR + 3; i++)
1856 {
1857 /* Frame pointer gets saved into a special location. */
1858 if (u->Save_SP && i == HPPA_FP_REGNUM)
1859 continue;
1860
1861 saved_gr_mask |= (1 << i);
1862 }
1863
1864 /* Turn the Entry_FR field into a bitmask too. */
1865 saved_fr_mask = 0;
1866 for (i = 12; i < u->Entry_FR + 12; i++)
1867 saved_fr_mask |= (1 << i);
1868
1869 /* Loop until we find everything of interest or hit a branch.
1870
1871 For unoptimized GCC code and for any HP CC code this will never ever
1872 examine any user instructions.
1873
1874 For optimized GCC code we're faced with problems. GCC will schedule
1875 its prologue and make prologue instructions available for delay slot
1876 filling. The end result is user code gets mixed in with the prologue
1877 and a prologue instruction may be in the delay slot of the first branch
1878 or call.
1879
1880 Some unexpected things are expected with debugging optimized code, so
1881 we allow this routine to walk past user instructions in optimized
1882 GCC code. */
1883 {
1884 int final_iteration = 0;
1885 CORE_ADDR pc, start_pc, end_pc;
1886 int looking_for_sp = u->Save_SP;
1887 int looking_for_rp = u->Save_RP;
1888 int fp_loc = -1;
1889
1890 /* We have to use skip_prologue_hard_way instead of just
1891 skip_prologue_using_sal, in case we stepped into a function without
1892 symbol information. hppa_skip_prologue also bounds the returned
1893 pc by the passed in pc, so it will not return a pc in the next
1894 function.
1895
1896 We used to call hppa_skip_prologue to find the end of the prologue,
1897 but if some non-prologue instructions get scheduled into the prologue,
1898 and the program is compiled with debug information, the "easy" way
1899 in hppa_skip_prologue will return a prologue end that is too early
1900 for us to notice any potential frame adjustments. */
1901
1902 /* We used to use get_frame_func to locate the beginning of the
1903 function to pass to skip_prologue. However, when objects are
1904 compiled without debug symbols, get_frame_func can return the wrong
1905 function (or 0). We can do better than that by using unwind records.
1906 This only works if the Region_description of the unwind record
1907 indicates that it includes the entry point of the function.
1908 HP compilers sometimes generate unwind records for regions that
1909 do not include the entry or exit point of a function. GNU tools
1910 do not do this. */
1911
1912 if ((u->Region_description & 0x2) == 0)
1913 start_pc = u->region_start;
1914 else
1915 start_pc = get_frame_func (this_frame);
1916
1917 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
1918 end_pc = get_frame_pc (this_frame);
1919
1920 if (prologue_end != 0 && end_pc > prologue_end)
1921 end_pc = prologue_end;
1922
1923 frame_size = 0;
1924
1925 for (pc = start_pc;
1926 ((saved_gr_mask || saved_fr_mask
1927 || looking_for_sp || looking_for_rp
1928 || frame_size < (u->Total_frame_size << 3))
1929 && pc < end_pc);
1930 pc += 4)
1931 {
1932 int reg;
1933 char buf4[4];
1934 long inst;
1935
1936 if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
1937 {
1938 error (_("Cannot read instruction at 0x%s."), paddr_nz (pc));
1939 return (*this_cache);
1940 }
1941
1942 inst = extract_unsigned_integer (buf4, sizeof buf4);
1943
1944 /* Note the interesting effects of this instruction. */
1945 frame_size += prologue_inst_adjust_sp (inst);
1946
1947 /* There are limited ways to store the return pointer into the
1948 stack. */
1949 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1950 {
1951 looking_for_rp = 0;
1952 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1953 }
1954 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1955 {
1956 looking_for_rp = 0;
1957 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1958 }
1959 else if (inst == 0x0fc212c1
1960 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
1961 {
1962 looking_for_rp = 0;
1963 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1964 }
1965
1966 /* Check to see if we saved SP into the stack. This also
1967 happens to indicate the location of the saved frame
1968 pointer. */
1969 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1970 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1971 {
1972 looking_for_sp = 0;
1973 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1974 }
1975 else if (inst == 0x08030241) /* copy %r3, %r1 */
1976 {
1977 fp_in_r1 = 1;
1978 }
1979
1980 /* Account for general and floating-point register saves. */
1981 reg = inst_saves_gr (inst);
1982 if (reg >= 3 && reg <= 18
1983 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1984 {
1985 saved_gr_mask &= ~(1 << reg);
1986 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1987 /* stwm with a positive displacement is a _post_
1988 _modify_. */
1989 cache->saved_regs[reg].addr = 0;
1990 else if ((inst & 0xfc00000c) == 0x70000008)
1991 /* A std has explicit post_modify forms. */
1992 cache->saved_regs[reg].addr = 0;
1993 else
1994 {
1995 CORE_ADDR offset;
1996
1997 if ((inst >> 26) == 0x1c)
1998 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1999 else if ((inst >> 26) == 0x03)
2000 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
2001 else
2002 offset = hppa_extract_14 (inst);
2003
2004 /* Handle code with and without frame pointers. */
2005 if (u->Save_SP)
2006 cache->saved_regs[reg].addr = offset;
2007 else
2008 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
2009 }
2010 }
2011
2012 /* GCC handles callee saved FP regs a little differently.
2013
2014 It emits an instruction to put the value of the start of
2015 the FP store area into %r1. It then uses fstds,ma with a
2016 basereg of %r1 for the stores.
2017
2018 HP CC emits them at the current stack pointer modifying the
2019 stack pointer as it stores each register. */
2020
2021 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2022 if ((inst & 0xffffc000) == 0x34610000
2023 || (inst & 0xffffc000) == 0x37c10000)
2024 fp_loc = hppa_extract_14 (inst);
2025
2026 reg = inst_saves_fr (inst);
2027 if (reg >= 12 && reg <= 21)
2028 {
2029 /* Note +4 braindamage below is necessary because the FP
2030 status registers are internally 8 registers rather than
2031 the expected 4 registers. */
2032 saved_fr_mask &= ~(1 << reg);
2033 if (fp_loc == -1)
2034 {
2035 /* 1st HP CC FP register store. After this
2036 instruction we've set enough state that the GCC and
2037 HPCC code are both handled in the same manner. */
2038 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
2039 fp_loc = 8;
2040 }
2041 else
2042 {
2043 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2044 fp_loc += 8;
2045 }
2046 }
2047
2048 /* Quit if we hit any kind of branch the previous iteration. */
2049 if (final_iteration)
2050 break;
2051 /* We want to look precisely one instruction beyond the branch
2052 if we have not found everything yet. */
2053 if (is_branch (inst))
2054 final_iteration = 1;
2055 }
2056 }
2057
2058 {
2059 /* The frame base always represents the value of %sp at entry to
2060 the current function (and is thus equivalent to the "saved"
2061 stack pointer. */
2062 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2063 HPPA_SP_REGNUM);
2064 CORE_ADDR fp;
2065
2066 if (hppa_debug)
2067 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
2068 "prologue_end=0x%s) ",
2069 paddr_nz (this_sp),
2070 paddr_nz (get_frame_pc (this_frame)),
2071 paddr_nz (prologue_end));
2072
2073 /* Check to see if a frame pointer is available, and use it for
2074 frame unwinding if it is.
2075
2076 There are some situations where we need to rely on the frame
2077 pointer to do stack unwinding. For example, if a function calls
2078 alloca (), the stack pointer can get adjusted inside the body of
2079 the function. In this case, the ABI requires that the compiler
2080 maintain a frame pointer for the function.
2081
2082 The unwind record has a flag (alloca_frame) that indicates that
2083 a function has a variable frame; unfortunately, gcc/binutils
2084 does not set this flag. Instead, whenever a frame pointer is used
2085 and saved on the stack, the Save_SP flag is set. We use this to
2086 decide whether to use the frame pointer for unwinding.
2087
2088 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2089 instead of Save_SP. */
2090
2091 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
2092
2093 if (u->alloca_frame)
2094 fp -= u->Total_frame_size << 3;
2095
2096 if (get_frame_pc (this_frame) >= prologue_end
2097 && (u->Save_SP || u->alloca_frame) && fp != 0)
2098 {
2099 cache->base = fp;
2100
2101 if (hppa_debug)
2102 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer]",
2103 paddr_nz (cache->base));
2104 }
2105 else if (u->Save_SP
2106 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2107 {
2108 /* Both we're expecting the SP to be saved and the SP has been
2109 saved. The entry SP value is saved at this frame's SP
2110 address. */
2111 cache->base = read_memory_integer
2112 (this_sp, gdbarch_ptr_bit (gdbarch) / 8);
2113
2114 if (hppa_debug)
2115 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved]",
2116 paddr_nz (cache->base));
2117 }
2118 else
2119 {
2120 /* The prologue has been slowly allocating stack space. Adjust
2121 the SP back. */
2122 cache->base = this_sp - frame_size;
2123 if (hppa_debug)
2124 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust]",
2125 paddr_nz (cache->base));
2126
2127 }
2128 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2129 }
2130
2131 /* The PC is found in the "return register", "Millicode" uses "r31"
2132 as the return register while normal code uses "rp". */
2133 if (u->Millicode)
2134 {
2135 if (trad_frame_addr_p (cache->saved_regs, 31))
2136 {
2137 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2138 if (hppa_debug)
2139 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2140 }
2141 else
2142 {
2143 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
2144 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2145 if (hppa_debug)
2146 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2147 }
2148 }
2149 else
2150 {
2151 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2152 {
2153 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2154 cache->saved_regs[HPPA_RP_REGNUM];
2155 if (hppa_debug)
2156 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2157 }
2158 else
2159 {
2160 ULONGEST rp = get_frame_register_unsigned (this_frame,
2161 HPPA_RP_REGNUM);
2162 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2163 if (hppa_debug)
2164 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2165 }
2166 }
2167
2168 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2169 frame. However, there is a one-insn window where we haven't saved it
2170 yet, but we've already clobbered it. Detect this case and fix it up.
2171
2172 The prologue sequence for frame-pointer functions is:
2173 0: stw %rp, -20(%sp)
2174 4: copy %r3, %r1
2175 8: copy %sp, %r3
2176 c: stw,ma %r1, XX(%sp)
2177
2178 So if we are at offset c, the r3 value that we want is not yet saved
2179 on the stack, but it's been overwritten. The prologue analyzer will
2180 set fp_in_r1 when it sees the copy insn so we know to get the value
2181 from r1 instead. */
2182 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2183 && fp_in_r1)
2184 {
2185 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
2186 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2187 }
2188
2189 {
2190 /* Convert all the offsets into addresses. */
2191 int reg;
2192 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
2193 {
2194 if (trad_frame_addr_p (cache->saved_regs, reg))
2195 cache->saved_regs[reg].addr += cache->base;
2196 }
2197 }
2198
2199 {
2200 struct gdbarch_tdep *tdep;
2201
2202 tdep = gdbarch_tdep (gdbarch);
2203
2204 if (tdep->unwind_adjust_stub)
2205 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
2206 }
2207
2208 if (hppa_debug)
2209 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
2210 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
2211 return (*this_cache);
2212 }
2213
2214 static void
2215 hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2216 struct frame_id *this_id)
2217 {
2218 struct hppa_frame_cache *info;
2219 CORE_ADDR pc = get_frame_pc (this_frame);
2220 struct unwind_table_entry *u;
2221
2222 info = hppa_frame_cache (this_frame, this_cache);
2223 u = hppa_find_unwind_entry_in_block (this_frame);
2224
2225 (*this_id) = frame_id_build (info->base, u->region_start);
2226 }
2227
2228 static struct value *
2229 hppa_frame_prev_register (struct frame_info *this_frame,
2230 void **this_cache, int regnum)
2231 {
2232 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2233
2234 return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum);
2235 }
2236
2237 static int
2238 hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2239 struct frame_info *this_frame, void **this_cache)
2240 {
2241 if (hppa_find_unwind_entry_in_block (this_frame))
2242 return 1;
2243
2244 return 0;
2245 }
2246
2247 static const struct frame_unwind hppa_frame_unwind =
2248 {
2249 NORMAL_FRAME,
2250 hppa_frame_this_id,
2251 hppa_frame_prev_register,
2252 NULL,
2253 hppa_frame_unwind_sniffer
2254 };
2255
2256 /* This is a generic fallback frame unwinder that kicks in if we fail all
2257 the other ones. Normally we would expect the stub and regular unwinder
2258 to work, but in some cases we might hit a function that just doesn't
2259 have any unwind information available. In this case we try to do
2260 unwinding solely based on code reading. This is obviously going to be
2261 slow, so only use this as a last resort. Currently this will only
2262 identify the stack and pc for the frame. */
2263
2264 static struct hppa_frame_cache *
2265 hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
2266 {
2267 struct hppa_frame_cache *cache;
2268 unsigned int frame_size = 0;
2269 int found_rp = 0;
2270 CORE_ADDR start_pc;
2271
2272 if (hppa_debug)
2273 fprintf_unfiltered (gdb_stdlog,
2274 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2275 frame_relative_level (this_frame));
2276
2277 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2278 (*this_cache) = cache;
2279 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2280
2281 start_pc = get_frame_func (this_frame);
2282 if (start_pc)
2283 {
2284 CORE_ADDR cur_pc = get_frame_pc (this_frame);
2285 CORE_ADDR pc;
2286
2287 for (pc = start_pc; pc < cur_pc; pc += 4)
2288 {
2289 unsigned int insn;
2290
2291 insn = read_memory_unsigned_integer (pc, 4);
2292 frame_size += prologue_inst_adjust_sp (insn);
2293
2294 /* There are limited ways to store the return pointer into the
2295 stack. */
2296 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2297 {
2298 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2299 found_rp = 1;
2300 }
2301 else if (insn == 0x0fc212c1
2302 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2303 {
2304 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2305 found_rp = 1;
2306 }
2307 }
2308 }
2309
2310 if (hppa_debug)
2311 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2312 frame_size, found_rp);
2313
2314 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2315 cache->base -= frame_size;
2316 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2317
2318 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2319 {
2320 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2321 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2322 cache->saved_regs[HPPA_RP_REGNUM];
2323 }
2324 else
2325 {
2326 ULONGEST rp;
2327 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
2328 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2329 }
2330
2331 return cache;
2332 }
2333
2334 static void
2335 hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
2336 struct frame_id *this_id)
2337 {
2338 struct hppa_frame_cache *info =
2339 hppa_fallback_frame_cache (this_frame, this_cache);
2340
2341 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2342 }
2343
2344 static struct value *
2345 hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2346 void **this_cache, int regnum)
2347 {
2348 struct hppa_frame_cache *info =
2349 hppa_fallback_frame_cache (this_frame, this_cache);
2350
2351 return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum);
2352 }
2353
2354 static const struct frame_unwind hppa_fallback_frame_unwind =
2355 {
2356 NORMAL_FRAME,
2357 hppa_fallback_frame_this_id,
2358 hppa_fallback_frame_prev_register,
2359 NULL,
2360 default_frame_sniffer
2361 };
2362
2363 /* Stub frames, used for all kinds of call stubs. */
2364 struct hppa_stub_unwind_cache
2365 {
2366 CORE_ADDR base;
2367 struct trad_frame_saved_reg *saved_regs;
2368 };
2369
2370 static struct hppa_stub_unwind_cache *
2371 hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
2372 void **this_cache)
2373 {
2374 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2375 struct hppa_stub_unwind_cache *info;
2376 struct unwind_table_entry *u;
2377
2378 if (*this_cache)
2379 return *this_cache;
2380
2381 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2382 *this_cache = info;
2383 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2384
2385 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2386
2387 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2388 {
2389 /* HPUX uses export stubs in function calls; the export stub clobbers
2390 the return value of the caller, and, later restores it from the
2391 stack. */
2392 u = find_unwind_entry (get_frame_pc (this_frame));
2393
2394 if (u && u->stub_unwind.stub_type == EXPORT)
2395 {
2396 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2397
2398 return info;
2399 }
2400 }
2401
2402 /* By default we assume that stubs do not change the rp. */
2403 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2404
2405 return info;
2406 }
2407
2408 static void
2409 hppa_stub_frame_this_id (struct frame_info *this_frame,
2410 void **this_prologue_cache,
2411 struct frame_id *this_id)
2412 {
2413 struct hppa_stub_unwind_cache *info
2414 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2415
2416 if (info)
2417 *this_id = frame_id_build (info->base, get_frame_func (this_frame));
2418 else
2419 *this_id = null_frame_id;
2420 }
2421
2422 static struct value *
2423 hppa_stub_frame_prev_register (struct frame_info *this_frame,
2424 void **this_prologue_cache, int regnum)
2425 {
2426 struct hppa_stub_unwind_cache *info
2427 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2428
2429 if (info == NULL)
2430 error (_("Requesting registers from null frame."));
2431
2432 return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum);
2433 }
2434
2435 static int
2436 hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2437 struct frame_info *this_frame,
2438 void **this_cache)
2439 {
2440 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2441 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2442 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2443
2444 if (pc == 0
2445 || (tdep->in_solib_call_trampoline != NULL
2446 && tdep->in_solib_call_trampoline (pc, NULL))
2447 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
2448 return 1;
2449 return 0;
2450 }
2451
2452 static const struct frame_unwind hppa_stub_frame_unwind = {
2453 NORMAL_FRAME,
2454 hppa_stub_frame_this_id,
2455 hppa_stub_frame_prev_register,
2456 NULL,
2457 hppa_stub_unwind_sniffer
2458 };
2459
2460 static struct frame_id
2461 hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2462 {
2463 return frame_id_build (get_frame_register_unsigned (this_frame,
2464 HPPA_SP_REGNUM),
2465 get_frame_pc (this_frame));
2466 }
2467
2468 CORE_ADDR
2469 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2470 {
2471 ULONGEST ipsw;
2472 CORE_ADDR pc;
2473
2474 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2475 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2476
2477 /* If the current instruction is nullified, then we are effectively
2478 still executing the previous instruction. Pretend we are still
2479 there. This is needed when single stepping; if the nullified
2480 instruction is on a different line, we don't want GDB to think
2481 we've stepped onto that line. */
2482 if (ipsw & 0x00200000)
2483 pc -= 4;
2484
2485 return pc & ~0x3;
2486 }
2487
2488 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2489 Return NULL if no such symbol was found. */
2490
2491 struct minimal_symbol *
2492 hppa_lookup_stub_minimal_symbol (const char *name,
2493 enum unwind_stub_types stub_type)
2494 {
2495 struct objfile *objfile;
2496 struct minimal_symbol *msym;
2497
2498 ALL_MSYMBOLS (objfile, msym)
2499 {
2500 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
2501 {
2502 struct unwind_table_entry *u;
2503
2504 u = find_unwind_entry (SYMBOL_VALUE (msym));
2505 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2506 return msym;
2507 }
2508 }
2509
2510 return NULL;
2511 }
2512
2513 static void
2514 unwind_command (char *exp, int from_tty)
2515 {
2516 CORE_ADDR address;
2517 struct unwind_table_entry *u;
2518
2519 /* If we have an expression, evaluate it and use it as the address. */
2520
2521 if (exp != 0 && *exp != 0)
2522 address = parse_and_eval_address (exp);
2523 else
2524 return;
2525
2526 u = find_unwind_entry (address);
2527
2528 if (!u)
2529 {
2530 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2531 return;
2532 }
2533
2534 printf_unfiltered ("unwind_table_entry (0x%lx):\n", (unsigned long)u);
2535
2536 printf_unfiltered ("\tregion_start = ");
2537 print_address (u->region_start, gdb_stdout);
2538 gdb_flush (gdb_stdout);
2539
2540 printf_unfiltered ("\n\tregion_end = ");
2541 print_address (u->region_end, gdb_stdout);
2542 gdb_flush (gdb_stdout);
2543
2544 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2545
2546 printf_unfiltered ("\n\tflags =");
2547 pif (Cannot_unwind);
2548 pif (Millicode);
2549 pif (Millicode_save_sr0);
2550 pif (Entry_SR);
2551 pif (Args_stored);
2552 pif (Variable_Frame);
2553 pif (Separate_Package_Body);
2554 pif (Frame_Extension_Millicode);
2555 pif (Stack_Overflow_Check);
2556 pif (Two_Instruction_SP_Increment);
2557 pif (sr4export);
2558 pif (cxx_info);
2559 pif (cxx_try_catch);
2560 pif (sched_entry_seq);
2561 pif (Save_SP);
2562 pif (Save_RP);
2563 pif (Save_MRP_in_frame);
2564 pif (save_r19);
2565 pif (Cleanup_defined);
2566 pif (MPE_XL_interrupt_marker);
2567 pif (HP_UX_interrupt_marker);
2568 pif (Large_frame);
2569 pif (alloca_frame);
2570
2571 putchar_unfiltered ('\n');
2572
2573 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2574
2575 pin (Region_description);
2576 pin (Entry_FR);
2577 pin (Entry_GR);
2578 pin (Total_frame_size);
2579
2580 if (u->stub_unwind.stub_type)
2581 {
2582 printf_unfiltered ("\tstub type = ");
2583 switch (u->stub_unwind.stub_type)
2584 {
2585 case LONG_BRANCH:
2586 printf_unfiltered ("long branch\n");
2587 break;
2588 case PARAMETER_RELOCATION:
2589 printf_unfiltered ("parameter relocation\n");
2590 break;
2591 case EXPORT:
2592 printf_unfiltered ("export\n");
2593 break;
2594 case IMPORT:
2595 printf_unfiltered ("import\n");
2596 break;
2597 case IMPORT_SHLIB:
2598 printf_unfiltered ("import shlib\n");
2599 break;
2600 default:
2601 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2602 }
2603 }
2604 }
2605
2606 /* Return the GDB type object for the "standard" data type of data in
2607 register REGNUM. */
2608
2609 static struct type *
2610 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2611 {
2612 if (regnum < HPPA_FP4_REGNUM)
2613 return builtin_type_uint32;
2614 else
2615 return builtin_type_ieee_single;
2616 }
2617
2618 static struct type *
2619 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2620 {
2621 if (regnum < HPPA64_FP4_REGNUM)
2622 return builtin_type_uint64;
2623 else
2624 return builtin_type_ieee_double;
2625 }
2626
2627 /* Return non-zero if REGNUM is not a register available to the user
2628 through ptrace/ttrace. */
2629
2630 static int
2631 hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2632 {
2633 return (regnum == 0
2634 || regnum == HPPA_PCSQ_HEAD_REGNUM
2635 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2636 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2637 }
2638
2639 static int
2640 hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2641 {
2642 /* cr26 and cr27 are readable (but not writable) from userspace. */
2643 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2644 return 0;
2645 else
2646 return hppa32_cannot_store_register (gdbarch, regnum);
2647 }
2648
2649 static int
2650 hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2651 {
2652 return (regnum == 0
2653 || regnum == HPPA_PCSQ_HEAD_REGNUM
2654 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2655 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2656 }
2657
2658 static int
2659 hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2660 {
2661 /* cr26 and cr27 are readable (but not writable) from userspace. */
2662 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2663 return 0;
2664 else
2665 return hppa64_cannot_store_register (gdbarch, regnum);
2666 }
2667
2668 static CORE_ADDR
2669 hppa_smash_text_address (struct gdbarch *gdbarch, CORE_ADDR addr)
2670 {
2671 /* The low two bits of the PC on the PA contain the privilege level.
2672 Some genius implementing a (non-GCC) compiler apparently decided
2673 this means that "addresses" in a text section therefore include a
2674 privilege level, and thus symbol tables should contain these bits.
2675 This seems like a bonehead thing to do--anyway, it seems to work
2676 for our purposes to just ignore those bits. */
2677
2678 return (addr &= ~0x3);
2679 }
2680
2681 /* Get the ARGIth function argument for the current function. */
2682
2683 static CORE_ADDR
2684 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2685 struct type *type)
2686 {
2687 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2688 }
2689
2690 static void
2691 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2692 int regnum, gdb_byte *buf)
2693 {
2694 ULONGEST tmp;
2695
2696 regcache_raw_read_unsigned (regcache, regnum, &tmp);
2697 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2698 tmp &= ~0x3;
2699 store_unsigned_integer (buf, sizeof tmp, tmp);
2700 }
2701
2702 static CORE_ADDR
2703 hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
2704 {
2705 return 0;
2706 }
2707
2708 struct value *
2709 hppa_frame_prev_register_helper (struct frame_info *this_frame,
2710 struct trad_frame_saved_reg saved_regs[],
2711 int regnum)
2712 {
2713 struct gdbarch *arch = get_frame_arch (this_frame);
2714
2715 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2716 {
2717 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2718 CORE_ADDR pc;
2719 struct value *pcoq_val =
2720 trad_frame_get_prev_register (this_frame, saved_regs,
2721 HPPA_PCOQ_HEAD_REGNUM);
2722
2723 pc = extract_unsigned_integer (value_contents_all (pcoq_val), size);
2724 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
2725 }
2726
2727 /* Make sure the "flags" register is zero in all unwound frames.
2728 The "flags" registers is a HP-UX specific wart, and only the code
2729 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2730 with it here. This shouldn't affect other systems since those
2731 should provide zero for the "flags" register anyway. */
2732 if (regnum == HPPA_FLAGS_REGNUM)
2733 return frame_unwind_got_constant (this_frame, regnum, 0);
2734
2735 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
2736 }
2737 \f
2738
2739 /* An instruction to match. */
2740 struct insn_pattern
2741 {
2742 unsigned int data; /* See if it matches this.... */
2743 unsigned int mask; /* ... with this mask. */
2744 };
2745
2746 /* See bfd/elf32-hppa.c */
2747 static struct insn_pattern hppa_long_branch_stub[] = {
2748 /* ldil LR'xxx,%r1 */
2749 { 0x20200000, 0xffe00000 },
2750 /* be,n RR'xxx(%sr4,%r1) */
2751 { 0xe0202002, 0xffe02002 },
2752 { 0, 0 }
2753 };
2754
2755 static struct insn_pattern hppa_long_branch_pic_stub[] = {
2756 /* b,l .+8, %r1 */
2757 { 0xe8200000, 0xffe00000 },
2758 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2759 { 0x28200000, 0xffe00000 },
2760 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2761 { 0xe0202002, 0xffe02002 },
2762 { 0, 0 }
2763 };
2764
2765 static struct insn_pattern hppa_import_stub[] = {
2766 /* addil LR'xxx, %dp */
2767 { 0x2b600000, 0xffe00000 },
2768 /* ldw RR'xxx(%r1), %r21 */
2769 { 0x48350000, 0xffffb000 },
2770 /* bv %r0(%r21) */
2771 { 0xeaa0c000, 0xffffffff },
2772 /* ldw RR'xxx+4(%r1), %r19 */
2773 { 0x48330000, 0xffffb000 },
2774 { 0, 0 }
2775 };
2776
2777 static struct insn_pattern hppa_import_pic_stub[] = {
2778 /* addil LR'xxx,%r19 */
2779 { 0x2a600000, 0xffe00000 },
2780 /* ldw RR'xxx(%r1),%r21 */
2781 { 0x48350000, 0xffffb000 },
2782 /* bv %r0(%r21) */
2783 { 0xeaa0c000, 0xffffffff },
2784 /* ldw RR'xxx+4(%r1),%r19 */
2785 { 0x48330000, 0xffffb000 },
2786 { 0, 0 },
2787 };
2788
2789 static struct insn_pattern hppa_plt_stub[] = {
2790 /* b,l 1b, %r20 - 1b is 3 insns before here */
2791 { 0xea9f1fdd, 0xffffffff },
2792 /* depi 0,31,2,%r20 */
2793 { 0xd6801c1e, 0xffffffff },
2794 { 0, 0 }
2795 };
2796
2797 static struct insn_pattern hppa_sigtramp[] = {
2798 /* ldi 0, %r25 or ldi 1, %r25 */
2799 { 0x34190000, 0xfffffffd },
2800 /* ldi __NR_rt_sigreturn, %r20 */
2801 { 0x3414015a, 0xffffffff },
2802 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
2803 { 0xe4008200, 0xffffffff },
2804 /* nop */
2805 { 0x08000240, 0xffffffff },
2806 { 0, 0 }
2807 };
2808
2809 /* Maximum number of instructions on the patterns above. */
2810 #define HPPA_MAX_INSN_PATTERN_LEN 4
2811
2812 /* Return non-zero if the instructions at PC match the series
2813 described in PATTERN, or zero otherwise. PATTERN is an array of
2814 'struct insn_pattern' objects, terminated by an entry whose mask is
2815 zero.
2816
2817 When the match is successful, fill INSN[i] with what PATTERN[i]
2818 matched. */
2819
2820 static int
2821 hppa_match_insns (CORE_ADDR pc, struct insn_pattern *pattern,
2822 unsigned int *insn)
2823 {
2824 CORE_ADDR npc = pc;
2825 int i;
2826
2827 for (i = 0; pattern[i].mask; i++)
2828 {
2829 gdb_byte buf[HPPA_INSN_SIZE];
2830
2831 target_read_memory (npc, buf, HPPA_INSN_SIZE);
2832 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE);
2833 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2834 npc += 4;
2835 else
2836 return 0;
2837 }
2838
2839 return 1;
2840 }
2841
2842 /* This relaxed version of the insstruction matcher allows us to match
2843 from somewhere inside the pattern, by looking backwards in the
2844 instruction scheme. */
2845
2846 static int
2847 hppa_match_insns_relaxed (CORE_ADDR pc, struct insn_pattern *pattern,
2848 unsigned int *insn)
2849 {
2850 int offset, len = 0;
2851
2852 while (pattern[len].mask)
2853 len++;
2854
2855 for (offset = 0; offset < len; offset++)
2856 if (hppa_match_insns (pc - offset * HPPA_INSN_SIZE, pattern, insn))
2857 return 1;
2858
2859 return 0;
2860 }
2861
2862 static int
2863 hppa_in_dyncall (CORE_ADDR pc)
2864 {
2865 struct unwind_table_entry *u;
2866
2867 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2868 if (!u)
2869 return 0;
2870
2871 return (pc >= u->region_start && pc <= u->region_end);
2872 }
2873
2874 int
2875 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
2876 {
2877 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2878 struct unwind_table_entry *u;
2879
2880 if (in_plt_section (pc, name) || hppa_in_dyncall (pc))
2881 return 1;
2882
2883 /* The GNU toolchain produces linker stubs without unwind
2884 information. Since the pattern matching for linker stubs can be
2885 quite slow, so bail out if we do have an unwind entry. */
2886
2887 u = find_unwind_entry (pc);
2888 if (u != NULL)
2889 return 0;
2890
2891 return (hppa_match_insns_relaxed (pc, hppa_import_stub, insn)
2892 || hppa_match_insns_relaxed (pc, hppa_import_pic_stub, insn)
2893 || hppa_match_insns_relaxed (pc, hppa_long_branch_stub, insn)
2894 || hppa_match_insns_relaxed (pc, hppa_long_branch_pic_stub, insn));
2895 }
2896
2897 /* This code skips several kind of "trampolines" used on PA-RISC
2898 systems: $$dyncall, import stubs and PLT stubs. */
2899
2900 CORE_ADDR
2901 hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2902 {
2903 struct gdbarch *gdbarch = get_frame_arch (frame);
2904 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
2905
2906 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2907 int dp_rel;
2908
2909 /* $$dyncall handles both PLABELs and direct addresses. */
2910 if (hppa_in_dyncall (pc))
2911 {
2912 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
2913
2914 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2915 if (pc & 0x2)
2916 pc = read_memory_typed_address (pc & ~0x3, func_ptr_type);
2917
2918 return pc;
2919 }
2920
2921 dp_rel = hppa_match_insns (pc, hppa_import_stub, insn);
2922 if (dp_rel || hppa_match_insns (pc, hppa_import_pic_stub, insn))
2923 {
2924 /* Extract the target address from the addil/ldw sequence. */
2925 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2926
2927 if (dp_rel)
2928 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
2929 else
2930 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
2931
2932 /* fallthrough */
2933 }
2934
2935 if (in_plt_section (pc, NULL))
2936 {
2937 pc = read_memory_typed_address (pc, func_ptr_type);
2938
2939 /* If the PLT slot has not yet been resolved, the target will be
2940 the PLT stub. */
2941 if (in_plt_section (pc, NULL))
2942 {
2943 /* Sanity check: are we pointing to the PLT stub? */
2944 if (!hppa_match_insns (pc, hppa_plt_stub, insn))
2945 {
2946 warning (_("Cannot resolve PLT stub at 0x%s."), paddr_nz (pc));
2947 return 0;
2948 }
2949
2950 /* This should point to the fixup routine. */
2951 pc = read_memory_typed_address (pc + 8, func_ptr_type);
2952 }
2953 }
2954
2955 return pc;
2956 }
2957 \f
2958
2959 /* Here is a table of C type sizes on hppa with various compiles
2960 and options. I measured this on PA 9000/800 with HP-UX 11.11
2961 and these compilers:
2962
2963 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2964 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2965 /opt/aCC/bin/aCC B3910B A.03.45
2966 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2967
2968 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2969 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2970 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2971 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2972 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2973 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2974 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2975 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2976
2977 Each line is:
2978
2979 compiler and options
2980 char, short, int, long, long long
2981 float, double, long double
2982 char *, void (*)()
2983
2984 So all these compilers use either ILP32 or LP64 model.
2985 TODO: gcc has more options so it needs more investigation.
2986
2987 For floating point types, see:
2988
2989 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2990 HP-UX floating-point guide, hpux 11.00
2991
2992 -- chastain 2003-12-18 */
2993
2994 static struct gdbarch *
2995 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2996 {
2997 struct gdbarch_tdep *tdep;
2998 struct gdbarch *gdbarch;
2999
3000 /* Try to determine the ABI of the object we are loading. */
3001 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
3002 {
3003 /* If it's a SOM file, assume it's HP/UX SOM. */
3004 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
3005 info.osabi = GDB_OSABI_HPUX_SOM;
3006 }
3007
3008 /* find a candidate among the list of pre-declared architectures. */
3009 arches = gdbarch_list_lookup_by_info (arches, &info);
3010 if (arches != NULL)
3011 return (arches->gdbarch);
3012
3013 /* If none found, then allocate and initialize one. */
3014 tdep = XZALLOC (struct gdbarch_tdep);
3015 gdbarch = gdbarch_alloc (&info, tdep);
3016
3017 /* Determine from the bfd_arch_info structure if we are dealing with
3018 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3019 then default to a 32bit machine. */
3020 if (info.bfd_arch_info != NULL)
3021 tdep->bytes_per_address =
3022 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3023 else
3024 tdep->bytes_per_address = 4;
3025
3026 tdep->find_global_pointer = hppa_find_global_pointer;
3027
3028 /* Some parts of the gdbarch vector depend on whether we are running
3029 on a 32 bits or 64 bits target. */
3030 switch (tdep->bytes_per_address)
3031 {
3032 case 4:
3033 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3034 set_gdbarch_register_name (gdbarch, hppa32_register_name);
3035 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3036 set_gdbarch_cannot_store_register (gdbarch,
3037 hppa32_cannot_store_register);
3038 set_gdbarch_cannot_fetch_register (gdbarch,
3039 hppa32_cannot_fetch_register);
3040 break;
3041 case 8:
3042 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3043 set_gdbarch_register_name (gdbarch, hppa64_register_name);
3044 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3045 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3046 set_gdbarch_cannot_store_register (gdbarch,
3047 hppa64_cannot_store_register);
3048 set_gdbarch_cannot_fetch_register (gdbarch,
3049 hppa64_cannot_fetch_register);
3050 break;
3051 default:
3052 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3053 tdep->bytes_per_address);
3054 }
3055
3056 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3057 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3058
3059 /* The following gdbarch vector elements are the same in both ILP32
3060 and LP64, but might show differences some day. */
3061 set_gdbarch_long_long_bit (gdbarch, 64);
3062 set_gdbarch_long_double_bit (gdbarch, 128);
3063 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3064
3065 /* The following gdbarch vector elements do not depend on the address
3066 size, or in any other gdbarch element previously set. */
3067 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3068 set_gdbarch_in_function_epilogue_p (gdbarch,
3069 hppa_in_function_epilogue_p);
3070 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3071 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3072 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3073 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
3074 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
3075 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3076 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3077 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3078
3079 /* Helper for function argument information. */
3080 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3081
3082 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3083
3084 /* When a hardware watchpoint triggers, we'll move the inferior past
3085 it by removing all eventpoints; stepping past the instruction
3086 that caused the trigger; reinserting eventpoints; and checking
3087 whether any watched location changed. */
3088 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3089
3090 /* Inferior function call methods. */
3091 switch (tdep->bytes_per_address)
3092 {
3093 case 4:
3094 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3095 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3096 set_gdbarch_convert_from_func_ptr_addr
3097 (gdbarch, hppa32_convert_from_func_ptr_addr);
3098 break;
3099 case 8:
3100 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3101 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3102 break;
3103 default:
3104 internal_error (__FILE__, __LINE__, _("bad switch"));
3105 }
3106
3107 /* Struct return methods. */
3108 switch (tdep->bytes_per_address)
3109 {
3110 case 4:
3111 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3112 break;
3113 case 8:
3114 set_gdbarch_return_value (gdbarch, hppa64_return_value);
3115 break;
3116 default:
3117 internal_error (__FILE__, __LINE__, _("bad switch"));
3118 }
3119
3120 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
3121 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3122
3123 /* Frame unwind methods. */
3124 set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
3125 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3126
3127 /* Hook in ABI-specific overrides, if they have been registered. */
3128 gdbarch_init_osabi (info, gdbarch);
3129
3130 /* Hook in the default unwinders. */
3131 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3132 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3133 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
3134
3135 return gdbarch;
3136 }
3137
3138 static void
3139 hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3140 {
3141 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3142
3143 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3144 tdep->bytes_per_address);
3145 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3146 }
3147
3148 void
3149 _initialize_hppa_tdep (void)
3150 {
3151 struct cmd_list_element *c;
3152
3153 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3154
3155 hppa_objfile_priv_data = register_objfile_data ();
3156
3157 add_cmd ("unwind", class_maintenance, unwind_command,
3158 _("Print unwind table entry at given address."),
3159 &maintenanceprintlist);
3160
3161 /* Debug this files internals. */
3162 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3163 Set whether hppa target specific debugging information should be displayed."),
3164 _("\
3165 Show whether hppa target specific debugging information is displayed."), _("\
3166 This flag controls whether hppa target specific debugging information is\n\
3167 displayed. This information is particularly useful for debugging frame\n\
3168 unwinding problems."),
3169 NULL,
3170 NULL, /* FIXME: i18n: hppa debug flag is %s. */
3171 &setdebuglist, &showdebuglist);
3172 }