]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/hppa-tdep.c
* hppa-tdep.c (pc_in_linker_stub): Move decl to beginning of file.
[thirdparty/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Machine-dependent code which would otherwise be in inflow.c and core.c,
2 for GDB, the GNU debugger. This code is for the HP PA-RISC cpu.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <sys/dir.h>
38 #include <signal.h>
39 #include <sys/ioctl.h>
40
41 #ifdef COFF_ENCAPSULATE
42 #include "a.out.encap.h"
43 #else
44 #include <a.out.h>
45 #endif
46 #ifndef N_SET_MAGIC
47 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
48 #endif
49
50 /*#include <sys/user.h> After a.out.h */
51 #include <sys/file.h>
52 #include <sys/stat.h>
53 #include <machine/psl.h>
54 #include "wait.h"
55
56 #include "gdbcore.h"
57 #include "gdbcmd.h"
58 #include "target.h"
59 #include "symfile.h"
60 #include "objfiles.h"
61
62 static int restore_pc_queue PARAMS ((struct frame_saved_regs *fsr));
63 static int hppa_alignof PARAMS ((struct type *arg));
64 CORE_ADDR frame_saved_pc PARAMS ((FRAME frame));
65 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
66 static int is_branch PARAMS ((unsigned long));
67 static int inst_saves_gr PARAMS ((unsigned long));
68 static int inst_saves_fr PARAMS ((unsigned long));
69 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
70 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
71
72 \f
73 /* Routines to extract various sized constants out of hppa
74 instructions. */
75
76 /* This assumes that no garbage lies outside of the lower bits of
77 value. */
78
79 int
80 sign_extend (val, bits)
81 unsigned val, bits;
82 {
83 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
84 }
85
86 /* For many immediate values the sign bit is the low bit! */
87
88 int
89 low_sign_extend (val, bits)
90 unsigned val, bits;
91 {
92 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
93 }
94 /* extract the immediate field from a ld{bhw}s instruction */
95
96 unsigned
97 get_field (val, from, to)
98 unsigned val, from, to;
99 {
100 val = val >> 31 - to;
101 return val & ((1 << 32 - from) - 1);
102 }
103
104 unsigned
105 set_field (val, from, to, new_val)
106 unsigned *val, from, to;
107 {
108 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
109 return *val = *val & mask | (new_val << (31 - from));
110 }
111
112 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
113
114 extract_3 (word)
115 unsigned word;
116 {
117 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
118 }
119
120 extract_5_load (word)
121 unsigned word;
122 {
123 return low_sign_extend (word >> 16 & MASK_5, 5);
124 }
125
126 /* extract the immediate field from a st{bhw}s instruction */
127
128 int
129 extract_5_store (word)
130 unsigned word;
131 {
132 return low_sign_extend (word & MASK_5, 5);
133 }
134
135 /* extract the immediate field from a break instruction */
136
137 unsigned
138 extract_5r_store (word)
139 unsigned word;
140 {
141 return (word & MASK_5);
142 }
143
144 /* extract the immediate field from a {sr}sm instruction */
145
146 unsigned
147 extract_5R_store (word)
148 unsigned word;
149 {
150 return (word >> 16 & MASK_5);
151 }
152
153 /* extract an 11 bit immediate field */
154
155 int
156 extract_11 (word)
157 unsigned word;
158 {
159 return low_sign_extend (word & MASK_11, 11);
160 }
161
162 /* extract a 14 bit immediate field */
163
164 int
165 extract_14 (word)
166 unsigned word;
167 {
168 return low_sign_extend (word & MASK_14, 14);
169 }
170
171 /* deposit a 14 bit constant in a word */
172
173 unsigned
174 deposit_14 (opnd, word)
175 int opnd;
176 unsigned word;
177 {
178 unsigned sign = (opnd < 0 ? 1 : 0);
179
180 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
181 }
182
183 /* extract a 21 bit constant */
184
185 int
186 extract_21 (word)
187 unsigned word;
188 {
189 int val;
190
191 word &= MASK_21;
192 word <<= 11;
193 val = GET_FIELD (word, 20, 20);
194 val <<= 11;
195 val |= GET_FIELD (word, 9, 19);
196 val <<= 2;
197 val |= GET_FIELD (word, 5, 6);
198 val <<= 5;
199 val |= GET_FIELD (word, 0, 4);
200 val <<= 2;
201 val |= GET_FIELD (word, 7, 8);
202 return sign_extend (val, 21) << 11;
203 }
204
205 /* deposit a 21 bit constant in a word. Although 21 bit constants are
206 usually the top 21 bits of a 32 bit constant, we assume that only
207 the low 21 bits of opnd are relevant */
208
209 unsigned
210 deposit_21 (opnd, word)
211 unsigned opnd, word;
212 {
213 unsigned val = 0;
214
215 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
216 val <<= 2;
217 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
218 val <<= 2;
219 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
220 val <<= 11;
221 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
222 val <<= 1;
223 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
224 return word | val;
225 }
226
227 /* extract a 12 bit constant from branch instructions */
228
229 int
230 extract_12 (word)
231 unsigned word;
232 {
233 return sign_extend (GET_FIELD (word, 19, 28) |
234 GET_FIELD (word, 29, 29) << 10 |
235 (word & 0x1) << 11, 12) << 2;
236 }
237
238 /* extract a 17 bit constant from branch instructions, returning the
239 19 bit signed value. */
240
241 int
242 extract_17 (word)
243 unsigned word;
244 {
245 return sign_extend (GET_FIELD (word, 19, 28) |
246 GET_FIELD (word, 29, 29) << 10 |
247 GET_FIELD (word, 11, 15) << 11 |
248 (word & 0x1) << 16, 17) << 2;
249 }
250 \f
251 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
252 of the objfiles seeking the unwind table entry for this PC. Each objfile
253 contains a sorted list of struct unwind_table_entry. Since we do a binary
254 search of the unwind tables, we depend upon them to be sorted. */
255
256 static struct unwind_table_entry *
257 find_unwind_entry(pc)
258 CORE_ADDR pc;
259 {
260 int first, middle, last;
261 struct objfile *objfile;
262
263 ALL_OBJFILES (objfile)
264 {
265 struct obj_unwind_info *ui;
266
267 ui = OBJ_UNWIND_INFO (objfile);
268
269 if (!ui)
270 continue;
271
272 /* First, check the cache */
273
274 if (ui->cache
275 && pc >= ui->cache->region_start
276 && pc <= ui->cache->region_end)
277 return ui->cache;
278
279 /* Not in the cache, do a binary search */
280
281 first = 0;
282 last = ui->last;
283
284 while (first <= last)
285 {
286 middle = (first + last) / 2;
287 if (pc >= ui->table[middle].region_start
288 && pc <= ui->table[middle].region_end)
289 {
290 ui->cache = &ui->table[middle];
291 return &ui->table[middle];
292 }
293
294 if (pc < ui->table[middle].region_start)
295 last = middle - 1;
296 else
297 first = middle + 1;
298 }
299 } /* ALL_OBJFILES() */
300 return NULL;
301 }
302
303 /* Called to determine if PC is in an interrupt handler of some
304 kind. */
305
306 static int
307 pc_in_interrupt_handler (pc)
308 CORE_ADDR pc;
309 {
310 struct unwind_table_entry *u;
311 struct minimal_symbol *msym_us;
312
313 u = find_unwind_entry (pc);
314 if (!u)
315 return 0;
316
317 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
318 its frame isn't a pure interrupt frame. Deal with this. */
319 msym_us = lookup_minimal_symbol_by_pc (pc);
320
321 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
322 }
323
324 /* Called when no unwind descriptor was found for PC. Returns 1 if it
325 appears that PC is in a linker stub. */
326
327 static int
328 pc_in_linker_stub (pc)
329 CORE_ADDR pc;
330 {
331 int found_magic_instruction = 0;
332 int i;
333 char buf[4];
334
335 /* If unable to read memory, assume pc is not in a linker stub. */
336 if (target_read_memory (pc, buf, 4) != 0)
337 return 0;
338
339 /* We are looking for something like
340
341 ; $$dyncall jams RP into this special spot in the frame (RP')
342 ; before calling the "call stub"
343 ldw -18(sp),rp
344
345 ldsid (rp),r1 ; Get space associated with RP into r1
346 mtsp r1,sp ; Move it into space register 0
347 be,n 0(sr0),rp) ; back to your regularly scheduled program
348 */
349
350 /* Maximum known linker stub size is 4 instructions. Search forward
351 from the given PC, then backward. */
352 for (i = 0; i < 4; i++)
353 {
354 /* If we hit something with an unwind, stop searching this direction. */
355
356 if (find_unwind_entry (pc + i * 4) != 0)
357 break;
358
359 /* Check for ldsid (rp),r1 which is the magic instruction for a
360 return from a cross-space function call. */
361 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
362 {
363 found_magic_instruction = 1;
364 break;
365 }
366 /* Add code to handle long call/branch and argument relocation stubs
367 here. */
368 }
369
370 if (found_magic_instruction != 0)
371 return 1;
372
373 /* Now look backward. */
374 for (i = 0; i < 4; i++)
375 {
376 /* If we hit something with an unwind, stop searching this direction. */
377
378 if (find_unwind_entry (pc - i * 4) != 0)
379 break;
380
381 /* Check for ldsid (rp),r1 which is the magic instruction for a
382 return from a cross-space function call. */
383 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
384 {
385 found_magic_instruction = 1;
386 break;
387 }
388 /* Add code to handle long call/branch and argument relocation stubs
389 here. */
390 }
391 return found_magic_instruction;
392 }
393
394 static int
395 find_return_regnum(pc)
396 CORE_ADDR pc;
397 {
398 struct unwind_table_entry *u;
399
400 u = find_unwind_entry (pc);
401
402 if (!u)
403 return RP_REGNUM;
404
405 if (u->Millicode)
406 return 31;
407
408 return RP_REGNUM;
409 }
410
411 /* Return size of frame, or -1 if we should use a frame pointer. */
412 int
413 find_proc_framesize (pc)
414 CORE_ADDR pc;
415 {
416 struct unwind_table_entry *u;
417 struct minimal_symbol *msym_us;
418
419 u = find_unwind_entry (pc);
420
421 if (!u)
422 {
423 if (pc_in_linker_stub (pc))
424 /* Linker stubs have a zero size frame. */
425 return 0;
426 else
427 return -1;
428 }
429
430 msym_us = lookup_minimal_symbol_by_pc (pc);
431
432 /* If Save_SP is set, and we're not in an interrupt or signal caller,
433 then we have a frame pointer. Use it. */
434 if (u->Save_SP && !pc_in_interrupt_handler (pc)
435 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
436 return -1;
437
438 return u->Total_frame_size << 3;
439 }
440
441 /* Return offset from sp at which rp is saved, or 0 if not saved. */
442 static int rp_saved PARAMS ((CORE_ADDR));
443
444 static int
445 rp_saved (pc)
446 CORE_ADDR pc;
447 {
448 struct unwind_table_entry *u;
449
450 u = find_unwind_entry (pc);
451
452 if (!u)
453 {
454 if (pc_in_linker_stub (pc))
455 /* This is the so-called RP'. */
456 return -24;
457 else
458 return 0;
459 }
460
461 if (u->Save_RP)
462 return -20;
463 else if (u->stub_type != 0)
464 {
465 switch (u->stub_type)
466 {
467 case EXPORT:
468 return -24;
469 case PARAMETER_RELOCATION:
470 return -8;
471 default:
472 return 0;
473 }
474 }
475 else
476 return 0;
477 }
478 \f
479 int
480 frameless_function_invocation (frame)
481 FRAME frame;
482 {
483 struct unwind_table_entry *u;
484
485 u = find_unwind_entry (frame->pc);
486
487 if (u == 0)
488 return frameless_look_for_prologue (frame);
489
490 return (u->Total_frame_size == 0 && u->stub_type == 0);
491 }
492
493 CORE_ADDR
494 saved_pc_after_call (frame)
495 FRAME frame;
496 {
497 int ret_regnum;
498
499 ret_regnum = find_return_regnum (get_frame_pc (frame));
500
501 return read_register (ret_regnum) & ~0x3;
502 }
503 \f
504 CORE_ADDR
505 frame_saved_pc (frame)
506 FRAME frame;
507 {
508 CORE_ADDR pc = get_frame_pc (frame);
509
510 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
511 at the base of the frame in an interrupt handler. Registers within
512 are saved in the exact same order as GDB numbers registers. How
513 convienent. */
514 if (pc_in_interrupt_handler (pc))
515 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
516
517 /* Deal with signal handler caller frames too. */
518 if (frame->signal_handler_caller)
519 {
520 CORE_ADDR rp;
521 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
522 return rp;
523 }
524
525 if (frameless_function_invocation (frame))
526 {
527 int ret_regnum;
528
529 ret_regnum = find_return_regnum (pc);
530
531 /* If the next frame is an interrupt frame or a signal
532 handler caller, then we need to look in the saved
533 register area to get the return pointer (the values
534 in the registers may not correspond to anything useful). */
535 if (frame->next
536 && (frame->next->signal_handler_caller
537 || pc_in_interrupt_handler (frame->next->pc)))
538 {
539 struct frame_info *fi;
540 struct frame_saved_regs saved_regs;
541
542 fi = get_frame_info (frame->next);
543 get_frame_saved_regs (fi, &saved_regs);
544 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM] & 0x2, 4))
545 return read_memory_integer (saved_regs.regs[31], 4);
546 else
547 return read_memory_integer (saved_regs.regs[RP_REGNUM], 4);
548 }
549 else
550 return read_register (ret_regnum) & ~0x3;
551 }
552 else
553 {
554 int rp_offset = rp_saved (pc);
555
556 /* Similar to code in frameless function case. If the next
557 frame is a signal or interrupt handler, then dig the right
558 information out of the saved register info. */
559 if (rp_offset == 0
560 && frame->next
561 && (frame->next->signal_handler_caller
562 || pc_in_interrupt_handler (frame->next->pc)))
563 {
564 struct frame_info *fi;
565 struct frame_saved_regs saved_regs;
566
567 fi = get_frame_info (frame->next);
568 get_frame_saved_regs (fi, &saved_regs);
569 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM] & 0x2, 4))
570 return read_memory_integer (saved_regs.regs[31], 4);
571 else
572 return read_memory_integer (saved_regs.regs[RP_REGNUM], 4);
573 }
574 else if (rp_offset == 0)
575 return read_register (RP_REGNUM) & ~0x3;
576 else
577 return read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
578 }
579 }
580 \f
581 /* We need to correct the PC and the FP for the outermost frame when we are
582 in a system call. */
583
584 void
585 init_extra_frame_info (fromleaf, frame)
586 int fromleaf;
587 struct frame_info *frame;
588 {
589 int flags;
590 int framesize;
591
592 if (frame->next && !fromleaf)
593 return;
594
595 /* If the next frame represents a frameless function invocation
596 then we have to do some adjustments that are normally done by
597 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
598 if (fromleaf)
599 {
600 /* Find the framesize of *this* frame without peeking at the PC
601 in the current frame structure (it isn't set yet). */
602 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
603
604 /* Now adjust our base frame accordingly. If we have a frame pointer
605 use it, else subtract the size of this frame from the current
606 frame. (we always want frame->frame to point at the lowest address
607 in the frame). */
608 if (framesize == -1)
609 frame->frame = read_register (FP_REGNUM);
610 else
611 frame->frame -= framesize;
612 return;
613 }
614
615 flags = read_register (FLAGS_REGNUM);
616 if (flags & 2) /* In system call? */
617 frame->pc = read_register (31) & ~0x3;
618
619 /* The outermost frame is always derived from PC-framesize
620
621 One might think frameless innermost frames should have
622 a frame->frame that is the same as the parent's frame->frame.
623 That is wrong; frame->frame in that case should be the *high*
624 address of the parent's frame. It's complicated as hell to
625 explain, but the parent *always* creates some stack space for
626 the child. So the child actually does have a frame of some
627 sorts, and its base is the high address in its parent's frame. */
628 framesize = find_proc_framesize(frame->pc);
629 if (framesize == -1)
630 frame->frame = read_register (FP_REGNUM);
631 else
632 frame->frame = read_register (SP_REGNUM) - framesize;
633 }
634 \f
635 /* Given a GDB frame, determine the address of the calling function's frame.
636 This will be used to create a new GDB frame struct, and then
637 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
638
639 This may involve searching through prologues for several functions
640 at boundaries where GCC calls HP C code, or where code which has
641 a frame pointer calls code without a frame pointer. */
642
643
644 FRAME_ADDR
645 frame_chain (frame)
646 struct frame_info *frame;
647 {
648 int my_framesize, caller_framesize;
649 struct unwind_table_entry *u;
650 CORE_ADDR frame_base;
651
652 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
653 are easy; at *sp we have a full save state strucutre which we can
654 pull the old stack pointer from. Also see frame_saved_pc for
655 code to dig a saved PC out of the save state structure. */
656 if (pc_in_interrupt_handler (frame->pc))
657 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
658 else if (frame->signal_handler_caller)
659 {
660 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
661 }
662 else
663 frame_base = frame->frame;
664
665 /* Get frame sizes for the current frame and the frame of the
666 caller. */
667 my_framesize = find_proc_framesize (frame->pc);
668 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
669
670 /* If caller does not have a frame pointer, then its frame
671 can be found at current_frame - caller_framesize. */
672 if (caller_framesize != -1)
673 return frame_base - caller_framesize;
674
675 /* Both caller and callee have frame pointers and are GCC compiled
676 (SAVE_SP bit in unwind descriptor is on for both functions.
677 The previous frame pointer is found at the top of the current frame. */
678 if (caller_framesize == -1 && my_framesize == -1)
679 return read_memory_integer (frame_base, 4);
680
681 /* Caller has a frame pointer, but callee does not. This is a little
682 more difficult as GCC and HP C lay out locals and callee register save
683 areas very differently.
684
685 The previous frame pointer could be in a register, or in one of
686 several areas on the stack.
687
688 Walk from the current frame to the innermost frame examining
689 unwind descriptors to determine if %r3 ever gets saved into the
690 stack. If so return whatever value got saved into the stack.
691 If it was never saved in the stack, then the value in %r3 is still
692 valid, so use it.
693
694 We use information from unwind descriptors to determine if %r3
695 is saved into the stack (Entry_GR field has this information). */
696
697 while (frame)
698 {
699 u = find_unwind_entry (frame->pc);
700
701 if (!u)
702 {
703 /* We could find this information by examining prologues. I don't
704 think anyone has actually written any tools (not even "strip")
705 which leave them out of an executable, so maybe this is a moot
706 point. */
707 warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc);
708 return 0;
709 }
710
711 /* Entry_GR specifies the number of callee-saved general registers
712 saved in the stack. It starts at %r3, so %r3 would be 1. */
713 if (u->Entry_GR >= 1 || u->Save_SP
714 || frame->signal_handler_caller
715 || pc_in_interrupt_handler (frame->pc))
716 break;
717 else
718 frame = frame->next;
719 }
720
721 if (frame)
722 {
723 /* We may have walked down the chain into a function with a frame
724 pointer. */
725 if (u->Save_SP
726 && !frame->signal_handler_caller
727 && !pc_in_interrupt_handler (frame->pc))
728 return read_memory_integer (frame->frame, 4);
729 /* %r3 was saved somewhere in the stack. Dig it out. */
730 else
731 {
732 struct frame_info *fi;
733 struct frame_saved_regs saved_regs;
734
735 fi = get_frame_info (frame);
736 get_frame_saved_regs (fi, &saved_regs);
737 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
738 }
739 }
740 else
741 {
742 /* The value in %r3 was never saved into the stack (thus %r3 still
743 holds the value of the previous frame pointer). */
744 return read_register (FP_REGNUM);
745 }
746 }
747
748 \f
749 /* To see if a frame chain is valid, see if the caller looks like it
750 was compiled with gcc. */
751
752 int
753 frame_chain_valid (chain, thisframe)
754 FRAME_ADDR chain;
755 FRAME thisframe;
756 {
757 struct minimal_symbol *msym_us;
758 struct minimal_symbol *msym_start;
759 struct unwind_table_entry *u, *next_u = NULL;
760 FRAME next;
761
762 if (!chain)
763 return 0;
764
765 u = find_unwind_entry (thisframe->pc);
766
767 if (u == NULL)
768 return 1;
769
770 /* We can't just check that the same of msym_us is "_start", because
771 someone idiotically decided that they were going to make a Ltext_end
772 symbol with the same address. This Ltext_end symbol is totally
773 indistinguishable (as nearly as I can tell) from the symbol for a function
774 which is (legitimately, since it is in the user's namespace)
775 named Ltext_end, so we can't just ignore it. */
776 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
777 msym_start = lookup_minimal_symbol ("_start", NULL);
778 if (msym_us
779 && msym_start
780 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
781 return 0;
782
783 next = get_next_frame (thisframe);
784 if (next)
785 next_u = find_unwind_entry (next->pc);
786
787 /* If this frame does not save SP, has no stack, isn't a stub,
788 and doesn't "call" an interrupt routine or signal handler caller,
789 then its not valid. */
790 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
791 || (thisframe->next && thisframe->next->signal_handler_caller)
792 || (next_u && next_u->HP_UX_interrupt_marker))
793 return 1;
794
795 if (pc_in_linker_stub (thisframe->pc))
796 return 1;
797
798 return 0;
799 }
800
801 /*
802 * These functions deal with saving and restoring register state
803 * around a function call in the inferior. They keep the stack
804 * double-word aligned; eventually, on an hp700, the stack will have
805 * to be aligned to a 64-byte boundary.
806 */
807
808 int
809 push_dummy_frame ()
810 {
811 register CORE_ADDR sp;
812 register int regnum;
813 int int_buffer;
814 double freg_buffer;
815
816 /* Space for "arguments"; the RP goes in here. */
817 sp = read_register (SP_REGNUM) + 48;
818 int_buffer = read_register (RP_REGNUM) | 0x3;
819 write_memory (sp - 20, (char *)&int_buffer, 4);
820
821 int_buffer = read_register (FP_REGNUM);
822 write_memory (sp, (char *)&int_buffer, 4);
823
824 write_register (FP_REGNUM, sp);
825
826 sp += 8;
827
828 for (regnum = 1; regnum < 32; regnum++)
829 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
830 sp = push_word (sp, read_register (regnum));
831
832 sp += 4;
833
834 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
835 {
836 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
837 sp = push_bytes (sp, (char *)&freg_buffer, 8);
838 }
839 sp = push_word (sp, read_register (IPSW_REGNUM));
840 sp = push_word (sp, read_register (SAR_REGNUM));
841 sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
842 sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
843 sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
844 sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
845 write_register (SP_REGNUM, sp);
846 }
847
848 find_dummy_frame_regs (frame, frame_saved_regs)
849 struct frame_info *frame;
850 struct frame_saved_regs *frame_saved_regs;
851 {
852 CORE_ADDR fp = frame->frame;
853 int i;
854
855 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
856 frame_saved_regs->regs[FP_REGNUM] = fp;
857 frame_saved_regs->regs[1] = fp + 8;
858
859 for (fp += 12, i = 3; i < 32; i++)
860 {
861 if (i != FP_REGNUM)
862 {
863 frame_saved_regs->regs[i] = fp;
864 fp += 4;
865 }
866 }
867
868 fp += 4;
869 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
870 frame_saved_regs->regs[i] = fp;
871
872 frame_saved_regs->regs[IPSW_REGNUM] = fp;
873 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
874 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
875 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
876 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
877 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
878 }
879
880 int
881 hppa_pop_frame ()
882 {
883 register FRAME frame = get_current_frame ();
884 register CORE_ADDR fp;
885 register int regnum;
886 struct frame_saved_regs fsr;
887 struct frame_info *fi;
888 double freg_buffer;
889
890 fi = get_frame_info (frame);
891 fp = fi->frame;
892 get_frame_saved_regs (fi, &fsr);
893
894 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
895 restore_pc_queue (&fsr);
896
897 for (regnum = 31; regnum > 0; regnum--)
898 if (fsr.regs[regnum])
899 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
900
901 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
902 if (fsr.regs[regnum])
903 {
904 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
905 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
906 }
907
908 if (fsr.regs[IPSW_REGNUM])
909 write_register (IPSW_REGNUM,
910 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
911
912 if (fsr.regs[SAR_REGNUM])
913 write_register (SAR_REGNUM,
914 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
915
916 /* If the PC was explicitly saved, then just restore it. */
917 if (fsr.regs[PCOQ_TAIL_REGNUM])
918 write_register (PCOQ_TAIL_REGNUM,
919 read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));
920
921 /* Else use the value in %rp to set the new PC. */
922 else
923 target_write_pc (read_register (RP_REGNUM));
924
925 write_register (FP_REGNUM, read_memory_integer (fp, 4));
926
927 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
928 write_register (SP_REGNUM, fp - 48);
929 else
930 write_register (SP_REGNUM, fp);
931
932 flush_cached_frames ();
933 set_current_frame (create_new_frame (read_register (FP_REGNUM),
934 read_pc ()));
935 }
936
937 /*
938 * After returning to a dummy on the stack, restore the instruction
939 * queue space registers. */
940
941 static int
942 restore_pc_queue (fsr)
943 struct frame_saved_regs *fsr;
944 {
945 CORE_ADDR pc = read_pc ();
946 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
947 int pid;
948 struct target_waitstatus w;
949 int insn_count;
950
951 /* Advance past break instruction in the call dummy. */
952 write_register (PCOQ_HEAD_REGNUM, pc + 4);
953 write_register (PCOQ_TAIL_REGNUM, pc + 8);
954
955 /*
956 * HPUX doesn't let us set the space registers or the space
957 * registers of the PC queue through ptrace. Boo, hiss.
958 * Conveniently, the call dummy has this sequence of instructions
959 * after the break:
960 * mtsp r21, sr0
961 * ble,n 0(sr0, r22)
962 *
963 * So, load up the registers and single step until we are in the
964 * right place.
965 */
966
967 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
968 write_register (22, new_pc);
969
970 for (insn_count = 0; insn_count < 3; insn_count++)
971 {
972 /* FIXME: What if the inferior gets a signal right now? Want to
973 merge this into wait_for_inferior (as a special kind of
974 watchpoint? By setting a breakpoint at the end? Is there
975 any other choice? Is there *any* way to do this stuff with
976 ptrace() or some equivalent?). */
977 resume (1, 0);
978 target_wait (inferior_pid, &w);
979
980 if (w.kind == TARGET_WAITKIND_SIGNALLED)
981 {
982 stop_signal = w.value.sig;
983 terminal_ours_for_output ();
984 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
985 target_signal_to_name (stop_signal),
986 target_signal_to_string (stop_signal));
987 gdb_flush (gdb_stdout);
988 return 0;
989 }
990 }
991 target_terminal_ours ();
992 fetch_inferior_registers (-1);
993 return 1;
994 }
995
996 CORE_ADDR
997 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
998 int nargs;
999 value *args;
1000 CORE_ADDR sp;
1001 int struct_return;
1002 CORE_ADDR struct_addr;
1003 {
1004 /* array of arguments' offsets */
1005 int *offset = (int *)alloca(nargs * sizeof (int));
1006 int cum = 0;
1007 int i, alignment;
1008
1009 for (i = 0; i < nargs; i++)
1010 {
1011 /* Coerce chars to int & float to double if necessary */
1012 args[i] = value_arg_coerce (args[i]);
1013
1014 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1015
1016 /* value must go at proper alignment. Assume alignment is a
1017 power of two.*/
1018 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1019 if (cum % alignment)
1020 cum = (cum + alignment) & -alignment;
1021 offset[i] = -cum;
1022 }
1023 sp += max ((cum + 7) & -8, 16);
1024
1025 for (i = 0; i < nargs; i++)
1026 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1027 TYPE_LENGTH (VALUE_TYPE (args[i])));
1028
1029 if (struct_return)
1030 write_register (28, struct_addr);
1031 return sp + 32;
1032 }
1033
1034 /*
1035 * Insert the specified number of args and function address
1036 * into a call sequence of the above form stored at DUMMYNAME.
1037 *
1038 * On the hppa we need to call the stack dummy through $$dyncall.
1039 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1040 * real_pc, which is the location where gdb should start up the
1041 * inferior to do the function call.
1042 */
1043
1044 CORE_ADDR
1045 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1046 char *dummy;
1047 CORE_ADDR pc;
1048 CORE_ADDR fun;
1049 int nargs;
1050 value *args;
1051 struct type *type;
1052 int gcc_p;
1053 {
1054 CORE_ADDR dyncall_addr, sr4export_addr;
1055 struct minimal_symbol *msymbol;
1056 int flags = read_register (FLAGS_REGNUM);
1057
1058 msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
1059 if (msymbol == NULL)
1060 error ("Can't find an address for $$dyncall trampoline");
1061
1062 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1063
1064 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
1065 if (msymbol == NULL)
1066 error ("Can't find an address for _sr4export trampoline");
1067
1068 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1069
1070 store_unsigned_integer
1071 (&dummy[9*REGISTER_SIZE],
1072 REGISTER_SIZE,
1073 deposit_21 (fun >> 11,
1074 extract_unsigned_integer (&dummy[9*REGISTER_SIZE],
1075 REGISTER_SIZE)));
1076 store_unsigned_integer
1077 (&dummy[10*REGISTER_SIZE],
1078 REGISTER_SIZE,
1079 deposit_14 (fun & MASK_11,
1080 extract_unsigned_integer (&dummy[10*REGISTER_SIZE],
1081 REGISTER_SIZE)));
1082 store_unsigned_integer
1083 (&dummy[12*REGISTER_SIZE],
1084 REGISTER_SIZE,
1085 deposit_21 (sr4export_addr >> 11,
1086 extract_unsigned_integer (&dummy[12*REGISTER_SIZE],
1087 REGISTER_SIZE)));
1088 store_unsigned_integer
1089 (&dummy[13*REGISTER_SIZE],
1090 REGISTER_SIZE,
1091 deposit_14 (sr4export_addr & MASK_11,
1092 extract_unsigned_integer (&dummy[13*REGISTER_SIZE],
1093 REGISTER_SIZE)));
1094
1095 write_register (22, pc);
1096
1097 /* If we are in a syscall, then we should call the stack dummy
1098 directly. $$dyncall is not needed as the kernel sets up the
1099 space id registers properly based on the value in %r31. In
1100 fact calling $$dyncall will not work because the value in %r22
1101 will be clobbered on the syscall exit path. */
1102 if (flags & 2)
1103 return pc;
1104 else
1105 return dyncall_addr;
1106
1107 }
1108
1109 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1110 bits. */
1111 CORE_ADDR
1112 target_read_pc ()
1113 {
1114 int flags = read_register (FLAGS_REGNUM);
1115
1116 if (flags & 2)
1117 return read_register (31) & ~0x3;
1118 return read_register (PC_REGNUM) & ~0x3;
1119 }
1120
1121 /* Write out the PC. If currently in a syscall, then also write the new
1122 PC value into %r31. */
1123 void
1124 target_write_pc (v)
1125 CORE_ADDR v;
1126 {
1127 int flags = read_register (FLAGS_REGNUM);
1128
1129 /* If in a syscall, then set %r31. Also make sure to get the
1130 privilege bits set correctly. */
1131 if (flags & 2)
1132 write_register (31, (long) (v | 0x3));
1133
1134 write_register (PC_REGNUM, (long) v);
1135 write_register (NPC_REGNUM, (long) v + 4);
1136 }
1137
1138 /* return the alignment of a type in bytes. Structures have the maximum
1139 alignment required by their fields. */
1140
1141 static int
1142 hppa_alignof (arg)
1143 struct type *arg;
1144 {
1145 int max_align, align, i;
1146 switch (TYPE_CODE (arg))
1147 {
1148 case TYPE_CODE_PTR:
1149 case TYPE_CODE_INT:
1150 case TYPE_CODE_FLT:
1151 return TYPE_LENGTH (arg);
1152 case TYPE_CODE_ARRAY:
1153 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1154 case TYPE_CODE_STRUCT:
1155 case TYPE_CODE_UNION:
1156 max_align = 2;
1157 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1158 {
1159 /* Bit fields have no real alignment. */
1160 if (!TYPE_FIELD_BITPOS (arg, i))
1161 {
1162 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1163 max_align = max (max_align, align);
1164 }
1165 }
1166 return max_align;
1167 default:
1168 return 4;
1169 }
1170 }
1171
1172 /* Print the register regnum, or all registers if regnum is -1 */
1173
1174 pa_do_registers_info (regnum, fpregs)
1175 int regnum;
1176 int fpregs;
1177 {
1178 char raw_regs [REGISTER_BYTES];
1179 int i;
1180
1181 for (i = 0; i < NUM_REGS; i++)
1182 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1183 if (regnum == -1)
1184 pa_print_registers (raw_regs, regnum, fpregs);
1185 else if (regnum < FP0_REGNUM)
1186 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1187 REGISTER_BYTE (regnum)));
1188 else
1189 pa_print_fp_reg (regnum);
1190 }
1191
1192 pa_print_registers (raw_regs, regnum, fpregs)
1193 char *raw_regs;
1194 int regnum;
1195 int fpregs;
1196 {
1197 int i;
1198
1199 for (i = 0; i < 18; i++)
1200 printf_unfiltered ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
1201 reg_names[i],
1202 *(int *)(raw_regs + REGISTER_BYTE (i)),
1203 reg_names[i + 18],
1204 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
1205 reg_names[i + 36],
1206 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
1207 reg_names[i + 54],
1208 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
1209
1210 if (fpregs)
1211 for (i = 72; i < NUM_REGS; i++)
1212 pa_print_fp_reg (i);
1213 }
1214
1215 pa_print_fp_reg (i)
1216 int i;
1217 {
1218 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1219 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1220
1221 /* Get the data in raw format. */
1222 read_relative_register_raw_bytes (i, raw_buffer);
1223
1224 /* Convert raw data to virtual format if necessary. */
1225 #ifdef REGISTER_CONVERTIBLE
1226 if (REGISTER_CONVERTIBLE (i))
1227 {
1228 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
1229 raw_buffer, virtual_buffer);
1230 }
1231 else
1232 #endif
1233 memcpy (virtual_buffer, raw_buffer,
1234 REGISTER_VIRTUAL_SIZE (i));
1235
1236 fputs_filtered (reg_names[i], gdb_stdout);
1237 print_spaces_filtered (15 - strlen (reg_names[i]), gdb_stdout);
1238
1239 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1240 1, 0, Val_pretty_default);
1241 printf_filtered ("\n");
1242 }
1243
1244 /* Function calls that pass into a new compilation unit must pass through a
1245 small piece of code that does long format (`external' in HPPA parlance)
1246 jumps. We figure out where the trampoline is going to end up, and return
1247 the PC of the final destination. If we aren't in a trampoline, we just
1248 return NULL.
1249
1250 For computed calls, we just extract the new PC from r22. */
1251
1252 CORE_ADDR
1253 skip_trampoline_code (pc, name)
1254 CORE_ADDR pc;
1255 char *name;
1256 {
1257 long inst0, inst1;
1258 static CORE_ADDR dyncall = 0;
1259 struct minimal_symbol *msym;
1260
1261 /* FIXME XXX - dyncall must be initialized whenever we get a new exec file */
1262
1263 if (!dyncall)
1264 {
1265 msym = lookup_minimal_symbol ("$$dyncall", NULL);
1266 if (msym)
1267 dyncall = SYMBOL_VALUE_ADDRESS (msym);
1268 else
1269 dyncall = -1;
1270 }
1271
1272 if (pc == dyncall)
1273 return (CORE_ADDR)(read_register (22) & ~0x3);
1274
1275 inst0 = read_memory_integer (pc, 4);
1276 inst1 = read_memory_integer (pc+4, 4);
1277
1278 if ( (inst0 & 0xffe00000) == 0x20200000 /* ldil xxx, r1 */
1279 && (inst1 & 0xffe0e002) == 0xe0202002) /* be,n yyy(sr4, r1) */
1280 pc = extract_21 (inst0) + extract_17 (inst1);
1281 else
1282 pc = (CORE_ADDR)NULL;
1283
1284 return pc;
1285 }
1286
1287 /* For the given instruction (INST), return any adjustment it makes
1288 to the stack pointer or zero for no adjustment.
1289
1290 This only handles instructions commonly found in prologues. */
1291
1292 static int
1293 prologue_inst_adjust_sp (inst)
1294 unsigned long inst;
1295 {
1296 /* This must persist across calls. */
1297 static int save_high21;
1298
1299 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1300 if ((inst & 0xffffc000) == 0x37de0000)
1301 return extract_14 (inst);
1302
1303 /* stwm X,D(sp) */
1304 if ((inst & 0xffe00000) == 0x6fc00000)
1305 return extract_14 (inst);
1306
1307 /* addil high21,%r1; ldo low11,(%r1),%r30)
1308 save high bits in save_high21 for later use. */
1309 if ((inst & 0xffe00000) == 0x28200000)
1310 {
1311 save_high21 = extract_21 (inst);
1312 return 0;
1313 }
1314
1315 if ((inst & 0xffff0000) == 0x343e0000)
1316 return save_high21 + extract_14 (inst);
1317
1318 /* fstws as used by the HP compilers. */
1319 if ((inst & 0xffffffe0) == 0x2fd01220)
1320 return extract_5_load (inst);
1321
1322 /* No adjustment. */
1323 return 0;
1324 }
1325
1326 /* Return nonzero if INST is a branch of some kind, else return zero. */
1327
1328 static int
1329 is_branch (inst)
1330 unsigned long inst;
1331 {
1332 switch (inst >> 26)
1333 {
1334 case 0x20:
1335 case 0x21:
1336 case 0x22:
1337 case 0x23:
1338 case 0x28:
1339 case 0x29:
1340 case 0x2a:
1341 case 0x2b:
1342 case 0x30:
1343 case 0x31:
1344 case 0x32:
1345 case 0x33:
1346 case 0x38:
1347 case 0x39:
1348 case 0x3a:
1349 return 1;
1350
1351 default:
1352 return 0;
1353 }
1354 }
1355
1356 /* Return the register number for a GR which is saved by INST or
1357 zero it INST does not save a GR.
1358
1359 Note we only care about full 32bit register stores (that's the only
1360 kind of stores the prologue will use). */
1361
1362 static int
1363 inst_saves_gr (inst)
1364 unsigned long inst;
1365 {
1366 /* Does it look like a stw? */
1367 if ((inst >> 26) == 0x1a)
1368 return extract_5R_store (inst);
1369
1370 /* Does it look like a stwm? */
1371 if ((inst >> 26) == 0x1b)
1372 return extract_5R_store (inst);
1373
1374 return 0;
1375 }
1376
1377 /* Return the register number for a FR which is saved by INST or
1378 zero it INST does not save a FR.
1379
1380 Note we only care about full 64bit register stores (that's the only
1381 kind of stores the prologue will use). */
1382
1383 static int
1384 inst_saves_fr (inst)
1385 unsigned long inst;
1386 {
1387 if ((inst & 0xfc1fffe0) == 0x2c101220)
1388 return extract_5r_store (inst);
1389 return 0;
1390 }
1391
1392 /* Advance PC across any function entry prologue instructions
1393 to reach some "real" code.
1394
1395 Use information in the unwind table to determine what exactly should
1396 be in the prologue. */
1397
1398 CORE_ADDR
1399 skip_prologue(pc)
1400 CORE_ADDR pc;
1401 {
1402 char buf[4];
1403 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1404 int status, i;
1405 struct unwind_table_entry *u;
1406
1407 u = find_unwind_entry (pc);
1408 if (!u)
1409 return 0;
1410
1411 /* This is how much of a frame adjustment we need to account for. */
1412 stack_remaining = u->Total_frame_size << 3;
1413
1414 /* Magic register saves we want to know about. */
1415 save_rp = u->Save_RP;
1416 save_sp = u->Save_SP;
1417
1418 /* Turn the Entry_GR field into a bitmask. */
1419 save_gr = 0;
1420 for (i = 3; i < u->Entry_GR + 3; i++)
1421 {
1422 /* Frame pointer gets saved into a special location. */
1423 if (u->Save_SP && i == FP_REGNUM)
1424 continue;
1425
1426 save_gr |= (1 << i);
1427 }
1428
1429 /* Turn the Entry_FR field into a bitmask too. */
1430 save_fr = 0;
1431 for (i = 12; i < u->Entry_FR + 12; i++)
1432 save_fr |= (1 << i);
1433
1434 /* Loop until we find everything of interest or hit a branch.
1435
1436 For unoptimized GCC code and for any HP CC code this will never ever
1437 examine any user instructions.
1438
1439 For optimzied GCC code we're faced with problems. GCC will schedule
1440 its prologue and make prologue instructions available for delay slot
1441 filling. The end result is user code gets mixed in with the prologue
1442 and a prologue instruction may be in the delay slot of the first branch
1443 or call.
1444
1445 Some unexpected things are expected with debugging optimized code, so
1446 we allow this routine to walk past user instructions in optimized
1447 GCC code. */
1448 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1449 {
1450 status = target_read_memory (pc, buf, 4);
1451 inst = extract_unsigned_integer (buf, 4);
1452
1453 /* Yow! */
1454 if (status != 0)
1455 return pc;
1456
1457 /* Note the interesting effects of this instruction. */
1458 stack_remaining -= prologue_inst_adjust_sp (inst);
1459
1460 /* There is only one instruction used for saving RP into the stack. */
1461 if (inst == 0x6bc23fd9)
1462 save_rp = 0;
1463
1464 /* This is the only way we save SP into the stack. At this time
1465 the HP compilers never bother to save SP into the stack. */
1466 if ((inst & 0xffffc000) == 0x6fc10000)
1467 save_sp = 0;
1468
1469 /* Account for general and floating-point register saves. */
1470 save_gr &= ~(1 << inst_saves_gr (inst));
1471 save_fr &= ~(1 << inst_saves_fr (inst));
1472
1473 /* Quit if we hit any kind of branch. This can happen if a prologue
1474 instruction is in the delay slot of the first call/branch. */
1475 if (is_branch (inst))
1476 break;
1477
1478 /* Bump the PC. */
1479 pc += 4;
1480 }
1481
1482 return pc;
1483 }
1484
1485 /* Put here the code to store, into a struct frame_saved_regs,
1486 the addresses of the saved registers of frame described by FRAME_INFO.
1487 This includes special registers such as pc and fp saved in special
1488 ways in the stack frame. sp is even more special:
1489 the address we return for it IS the sp for the next frame. */
1490
1491 void
1492 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
1493 struct frame_info *frame_info;
1494 struct frame_saved_regs *frame_saved_regs;
1495 {
1496 CORE_ADDR pc;
1497 struct unwind_table_entry *u;
1498 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1499 int status, i, reg;
1500 char buf[4];
1501 int fp_loc = -1;
1502
1503 /* Zero out everything. */
1504 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
1505
1506 /* Call dummy frames always look the same, so there's no need to
1507 examine the dummy code to determine locations of saved registers;
1508 instead, let find_dummy_frame_regs fill in the correct offsets
1509 for the saved registers. */
1510 if ((frame_info->pc >= frame_info->frame
1511 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
1512 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
1513 + 6 * 4)))
1514 find_dummy_frame_regs (frame_info, frame_saved_regs);
1515
1516 /* Interrupt handlers are special too. They lay out the register
1517 state in the exact same order as the register numbers in GDB. */
1518 if (pc_in_interrupt_handler (frame_info->pc))
1519 {
1520 for (i = 0; i < NUM_REGS; i++)
1521 {
1522 /* SP is a little special. */
1523 if (i == SP_REGNUM)
1524 frame_saved_regs->regs[SP_REGNUM]
1525 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
1526 else
1527 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
1528 }
1529 return;
1530 }
1531
1532 /* Handle signal handler callers. */
1533 if (frame_info->signal_handler_caller)
1534 {
1535 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
1536 return;
1537 }
1538
1539 /* Get the starting address of the function referred to by the PC
1540 saved in frame_info. */
1541 pc = get_pc_function_start (frame_info->pc);
1542
1543 /* Yow! */
1544 u = find_unwind_entry (pc);
1545 if (!u)
1546 return;
1547
1548 /* This is how much of a frame adjustment we need to account for. */
1549 stack_remaining = u->Total_frame_size << 3;
1550
1551 /* Magic register saves we want to know about. */
1552 save_rp = u->Save_RP;
1553 save_sp = u->Save_SP;
1554
1555 /* Turn the Entry_GR field into a bitmask. */
1556 save_gr = 0;
1557 for (i = 3; i < u->Entry_GR + 3; i++)
1558 {
1559 /* Frame pointer gets saved into a special location. */
1560 if (u->Save_SP && i == FP_REGNUM)
1561 continue;
1562
1563 save_gr |= (1 << i);
1564 }
1565
1566 /* Turn the Entry_FR field into a bitmask too. */
1567 save_fr = 0;
1568 for (i = 12; i < u->Entry_FR + 12; i++)
1569 save_fr |= (1 << i);
1570
1571 /* The frame always represents the value of %sp at entry to the
1572 current function (and is thus equivalent to the "saved" stack
1573 pointer. */
1574 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
1575
1576 /* Loop until we find everything of interest or hit a branch.
1577
1578 For unoptimized GCC code and for any HP CC code this will never ever
1579 examine any user instructions.
1580
1581 For optimzied GCC code we're faced with problems. GCC will schedule
1582 its prologue and make prologue instructions available for delay slot
1583 filling. The end result is user code gets mixed in with the prologue
1584 and a prologue instruction may be in the delay slot of the first branch
1585 or call.
1586
1587 Some unexpected things are expected with debugging optimized code, so
1588 we allow this routine to walk past user instructions in optimized
1589 GCC code. */
1590 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1591 {
1592 status = target_read_memory (pc, buf, 4);
1593 inst = extract_unsigned_integer (buf, 4);
1594
1595 /* Yow! */
1596 if (status != 0)
1597 return;
1598
1599 /* Note the interesting effects of this instruction. */
1600 stack_remaining -= prologue_inst_adjust_sp (inst);
1601
1602 /* There is only one instruction used for saving RP into the stack. */
1603 if (inst == 0x6bc23fd9)
1604 {
1605 save_rp = 0;
1606 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
1607 }
1608
1609 /* Just note that we found the save of SP into the stack. The
1610 value for frame_saved_regs was computed above. */
1611 if ((inst & 0xffffc000) == 0x6fc10000)
1612 save_sp = 0;
1613
1614 /* Account for general and floating-point register saves. */
1615 reg = inst_saves_gr (inst);
1616 if (reg >= 3 && reg <= 18
1617 && (!u->Save_SP || reg != FP_REGNUM))
1618 {
1619 save_gr &= ~(1 << reg);
1620
1621 /* stwm with a positive displacement is a *post modify*. */
1622 if ((inst >> 26) == 0x1b
1623 && extract_14 (inst) >= 0)
1624 frame_saved_regs->regs[reg] = frame_info->frame;
1625 else
1626 {
1627 /* Handle code with and without frame pointers. */
1628 if (u->Save_SP)
1629 frame_saved_regs->regs[reg]
1630 = frame_info->frame + extract_14 (inst);
1631 else
1632 frame_saved_regs->regs[reg]
1633 = frame_info->frame + (u->Total_frame_size << 3)
1634 + extract_14 (inst);
1635 }
1636 }
1637
1638
1639 /* GCC handles callee saved FP regs a little differently.
1640
1641 It emits an instruction to put the value of the start of
1642 the FP store area into %r1. It then uses fstds,ma with
1643 a basereg of %r1 for the stores.
1644
1645 HP CC emits them at the current stack pointer modifying
1646 the stack pointer as it stores each register. */
1647
1648 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1649 if ((inst & 0xffffc000) == 0x34610000
1650 || (inst & 0xffffc000) == 0x37c10000)
1651 fp_loc = extract_14 (inst);
1652
1653 reg = inst_saves_fr (inst);
1654 if (reg >= 12 && reg <= 21)
1655 {
1656 /* Note +4 braindamage below is necessary because the FP status
1657 registers are internally 8 registers rather than the expected
1658 4 registers. */
1659 save_fr &= ~(1 << reg);
1660 if (fp_loc == -1)
1661 {
1662 /* 1st HP CC FP register store. After this instruction
1663 we've set enough state that the GCC and HPCC code are
1664 both handled in the same manner. */
1665 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
1666 fp_loc = 8;
1667 }
1668 else
1669 {
1670 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
1671 = frame_info->frame + fp_loc;
1672 fp_loc += 8;
1673 }
1674 }
1675
1676 /* Quit if we hit any kind of branch. This can happen if a prologue
1677 instruction is in the delay slot of the first call/branch. */
1678 if (is_branch (inst))
1679 break;
1680
1681 /* Bump the PC. */
1682 pc += 4;
1683 }
1684 }
1685
1686 #ifdef MAINTENANCE_CMDS
1687
1688 static void
1689 unwind_command (exp, from_tty)
1690 char *exp;
1691 int from_tty;
1692 {
1693 CORE_ADDR address;
1694 union
1695 {
1696 int *foo;
1697 struct unwind_table_entry *u;
1698 } xxx;
1699
1700 /* If we have an expression, evaluate it and use it as the address. */
1701
1702 if (exp != 0 && *exp != 0)
1703 address = parse_and_eval_address (exp);
1704 else
1705 return;
1706
1707 xxx.u = find_unwind_entry (address);
1708
1709 if (!xxx.u)
1710 {
1711 printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address);
1712 return;
1713 }
1714
1715 printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
1716 xxx.foo[3]);
1717 }
1718 #endif /* MAINTENANCE_CMDS */
1719
1720 void
1721 _initialize_hppa_tdep ()
1722 {
1723 #ifdef MAINTENANCE_CMDS
1724 add_cmd ("unwind", class_maintenance, unwind_command,
1725 "Print unwind table entry at given address.",
1726 &maintenanceprintlist);
1727 #endif /* MAINTENANCE_CMDS */
1728 }