]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/hppa-tdep.c
CARP: --enable-build-warnings=-Werror: Fix problems stopping GDB being
[thirdparty/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <signal.h>
38
39 #ifdef COFF_ENCAPSULATE
40 #include "a.out.encap.h"
41 #else
42 #endif
43
44 /*#include <sys/user.h> After a.out.h */
45 #include <sys/file.h>
46 #include "gdb_stat.h"
47 #include "wait.h"
48
49 #include "gdbcore.h"
50 #include "gdbcmd.h"
51 #include "target.h"
52 #include "symfile.h"
53 #include "objfiles.h"
54
55 static int extract_5_load PARAMS ((unsigned int));
56
57 static unsigned extract_5R_store PARAMS ((unsigned int));
58
59 static unsigned extract_5r_store PARAMS ((unsigned int));
60
61 static void find_dummy_frame_regs PARAMS ((struct frame_info *,
62 struct frame_saved_regs *));
63
64 static int find_proc_framesize PARAMS ((CORE_ADDR));
65
66 static int find_return_regnum PARAMS ((CORE_ADDR));
67
68 struct unwind_table_entry *find_unwind_entry PARAMS ((CORE_ADDR));
69
70 static int extract_17 PARAMS ((unsigned int));
71
72 static unsigned deposit_21 PARAMS ((unsigned int, unsigned int));
73
74 static int extract_21 PARAMS ((unsigned));
75
76 static unsigned deposit_14 PARAMS ((int, unsigned int));
77
78 static int extract_14 PARAMS ((unsigned));
79
80 static void unwind_command PARAMS ((char *, int));
81
82 static int low_sign_extend PARAMS ((unsigned int, unsigned int));
83
84 static int sign_extend PARAMS ((unsigned int, unsigned int));
85
86 static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
87
88 static int hppa_alignof PARAMS ((struct type *));
89
90 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
91
92 static int is_branch PARAMS ((unsigned long));
93
94 static int inst_saves_gr PARAMS ((unsigned long));
95
96 static int inst_saves_fr PARAMS ((unsigned long));
97
98 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
99
100 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
101
102 static int compare_unwind_entries PARAMS ((const void *, const void *));
103
104 static void read_unwind_info PARAMS ((struct objfile *));
105
106 static void internalize_unwinds PARAMS ((struct objfile *,
107 struct unwind_table_entry *,
108 asection *, unsigned int,
109 unsigned int, CORE_ADDR));
110 static void pa_print_registers PARAMS ((char *, int, int));
111 static void pa_print_fp_reg PARAMS ((int));
112
113
114 /* Should call_function allocate stack space for a struct return? */
115 int
116 hppa_use_struct_convention (gcc_p, type)
117 int gcc_p;
118 struct type *type;
119 {
120 return (TYPE_LENGTH (type) > 8);
121 }
122
123 \f
124 /* Routines to extract various sized constants out of hppa
125 instructions. */
126
127 /* This assumes that no garbage lies outside of the lower bits of
128 value. */
129
130 static int
131 sign_extend (val, bits)
132 unsigned val, bits;
133 {
134 return (int)(val >> (bits - 1) ? (-1 << bits) | val : val);
135 }
136
137 /* For many immediate values the sign bit is the low bit! */
138
139 static int
140 low_sign_extend (val, bits)
141 unsigned val, bits;
142 {
143 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
144 }
145
146 /* extract the immediate field from a ld{bhw}s instruction */
147
148 #if 0
149
150 unsigned
151 get_field (val, from, to)
152 unsigned val, from, to;
153 {
154 val = val >> 31 - to;
155 return val & ((1 << 32 - from) - 1);
156 }
157
158 unsigned
159 set_field (val, from, to, new_val)
160 unsigned *val, from, to;
161 {
162 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
163 return *val = *val & mask | (new_val << (31 - from));
164 }
165
166 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
167
168 int
169 extract_3 (word)
170 unsigned word;
171 {
172 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
173 }
174
175 #endif
176
177 static int
178 extract_5_load (word)
179 unsigned word;
180 {
181 return low_sign_extend (word >> 16 & MASK_5, 5);
182 }
183
184 #if 0
185
186 /* extract the immediate field from a st{bhw}s instruction */
187
188 int
189 extract_5_store (word)
190 unsigned word;
191 {
192 return low_sign_extend (word & MASK_5, 5);
193 }
194
195 #endif /* 0 */
196
197 /* extract the immediate field from a break instruction */
198
199 static unsigned
200 extract_5r_store (word)
201 unsigned word;
202 {
203 return (word & MASK_5);
204 }
205
206 /* extract the immediate field from a {sr}sm instruction */
207
208 static unsigned
209 extract_5R_store (word)
210 unsigned word;
211 {
212 return (word >> 16 & MASK_5);
213 }
214
215 /* extract an 11 bit immediate field */
216
217 #if 0
218
219 int
220 extract_11 (word)
221 unsigned word;
222 {
223 return low_sign_extend (word & MASK_11, 11);
224 }
225
226 #endif
227
228 /* extract a 14 bit immediate field */
229
230 static int
231 extract_14 (word)
232 unsigned word;
233 {
234 return low_sign_extend (word & MASK_14, 14);
235 }
236
237 /* deposit a 14 bit constant in a word */
238
239 static unsigned
240 deposit_14 (opnd, word)
241 int opnd;
242 unsigned word;
243 {
244 unsigned sign = (opnd < 0 ? 1 : 0);
245
246 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
247 }
248
249 /* extract a 21 bit constant */
250
251 static int
252 extract_21 (word)
253 unsigned word;
254 {
255 int val;
256
257 word &= MASK_21;
258 word <<= 11;
259 val = GET_FIELD (word, 20, 20);
260 val <<= 11;
261 val |= GET_FIELD (word, 9, 19);
262 val <<= 2;
263 val |= GET_FIELD (word, 5, 6);
264 val <<= 5;
265 val |= GET_FIELD (word, 0, 4);
266 val <<= 2;
267 val |= GET_FIELD (word, 7, 8);
268 return sign_extend (val, 21) << 11;
269 }
270
271 /* deposit a 21 bit constant in a word. Although 21 bit constants are
272 usually the top 21 bits of a 32 bit constant, we assume that only
273 the low 21 bits of opnd are relevant */
274
275 static unsigned
276 deposit_21 (opnd, word)
277 unsigned opnd, word;
278 {
279 unsigned val = 0;
280
281 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
282 val <<= 2;
283 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
284 val <<= 2;
285 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
286 val <<= 11;
287 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
288 val <<= 1;
289 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
290 return word | val;
291 }
292
293 /* extract a 12 bit constant from branch instructions */
294
295 #if 0
296
297 int
298 extract_12 (word)
299 unsigned word;
300 {
301 return sign_extend (GET_FIELD (word, 19, 28) |
302 GET_FIELD (word, 29, 29) << 10 |
303 (word & 0x1) << 11, 12) << 2;
304 }
305
306 /* Deposit a 17 bit constant in an instruction (like bl). */
307
308 unsigned int
309 deposit_17 (opnd, word)
310 unsigned opnd, word;
311 {
312 word |= GET_FIELD (opnd, 15 + 0, 15 + 0); /* w */
313 word |= GET_FIELD (opnd, 15 + 1, 15 + 5) << 16; /* w1 */
314 word |= GET_FIELD (opnd, 15 + 6, 15 + 6) << 2; /* w2[10] */
315 word |= GET_FIELD (opnd, 15 + 7, 15 + 16) << 3; /* w2[0..9] */
316
317 return word;
318 }
319
320 #endif
321
322 /* extract a 17 bit constant from branch instructions, returning the
323 19 bit signed value. */
324
325 static int
326 extract_17 (word)
327 unsigned word;
328 {
329 return sign_extend (GET_FIELD (word, 19, 28) |
330 GET_FIELD (word, 29, 29) << 10 |
331 GET_FIELD (word, 11, 15) << 11 |
332 (word & 0x1) << 16, 17) << 2;
333 }
334 \f
335
336 /* Compare the start address for two unwind entries returning 1 if
337 the first address is larger than the second, -1 if the second is
338 larger than the first, and zero if they are equal. */
339
340 static int
341 compare_unwind_entries (arg1, arg2)
342 const void *arg1;
343 const void *arg2;
344 {
345 const struct unwind_table_entry *a = arg1;
346 const struct unwind_table_entry *b = arg2;
347
348 if (a->region_start > b->region_start)
349 return 1;
350 else if (a->region_start < b->region_start)
351 return -1;
352 else
353 return 0;
354 }
355
356 static void
357 internalize_unwinds (objfile, table, section, entries, size, text_offset)
358 struct objfile *objfile;
359 struct unwind_table_entry *table;
360 asection *section;
361 unsigned int entries, size;
362 CORE_ADDR text_offset;
363 {
364 /* We will read the unwind entries into temporary memory, then
365 fill in the actual unwind table. */
366 if (size > 0)
367 {
368 unsigned long tmp;
369 unsigned i;
370 char *buf = alloca (size);
371
372 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
373
374 /* Now internalize the information being careful to handle host/target
375 endian issues. */
376 for (i = 0; i < entries; i++)
377 {
378 table[i].region_start = bfd_get_32 (objfile->obfd,
379 (bfd_byte *)buf);
380 table[i].region_start += text_offset;
381 buf += 4;
382 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
383 table[i].region_end += text_offset;
384 buf += 4;
385 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
386 buf += 4;
387 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
388 table[i].Millicode = (tmp >> 30) & 0x1;
389 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
390 table[i].Region_description = (tmp >> 27) & 0x3;
391 table[i].reserved1 = (tmp >> 26) & 0x1;
392 table[i].Entry_SR = (tmp >> 25) & 0x1;
393 table[i].Entry_FR = (tmp >> 21) & 0xf;
394 table[i].Entry_GR = (tmp >> 16) & 0x1f;
395 table[i].Args_stored = (tmp >> 15) & 0x1;
396 table[i].Variable_Frame = (tmp >> 14) & 0x1;
397 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
398 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
399 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
400 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
401 table[i].Ada_Region = (tmp >> 9) & 0x1;
402 table[i].reserved2 = (tmp >> 5) & 0xf;
403 table[i].Save_SP = (tmp >> 4) & 0x1;
404 table[i].Save_RP = (tmp >> 3) & 0x1;
405 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
406 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
407 table[i].Cleanup_defined = tmp & 0x1;
408 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
409 buf += 4;
410 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
411 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
412 table[i].Large_frame = (tmp >> 29) & 0x1;
413 table[i].reserved4 = (tmp >> 27) & 0x3;
414 table[i].Total_frame_size = tmp & 0x7ffffff;
415 }
416 }
417 }
418
419 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
420 the object file. This info is used mainly by find_unwind_entry() to find
421 out the stack frame size and frame pointer used by procedures. We put
422 everything on the psymbol obstack in the objfile so that it automatically
423 gets freed when the objfile is destroyed. */
424
425 static void
426 read_unwind_info (objfile)
427 struct objfile *objfile;
428 {
429 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
430 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
431 unsigned index, unwind_entries, elf_unwind_entries;
432 unsigned stub_entries, total_entries;
433 CORE_ADDR text_offset;
434 struct obj_unwind_info *ui;
435
436 text_offset = ANOFFSET (objfile->section_offsets, 0);
437 ui = (struct obj_unwind_info *)obstack_alloc (&objfile->psymbol_obstack,
438 sizeof (struct obj_unwind_info));
439
440 ui->table = NULL;
441 ui->cache = NULL;
442 ui->last = -1;
443
444 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
445 section in ELF at the moment. */
446 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
447 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
448 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
449
450 /* Get sizes and unwind counts for all sections. */
451 if (unwind_sec)
452 {
453 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
454 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
455 }
456 else
457 {
458 unwind_size = 0;
459 unwind_entries = 0;
460 }
461
462 if (elf_unwind_sec)
463 {
464 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
465 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
466 }
467 else
468 {
469 elf_unwind_size = 0;
470 elf_unwind_entries = 0;
471 }
472
473 if (stub_unwind_sec)
474 {
475 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
476 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
477 }
478 else
479 {
480 stub_unwind_size = 0;
481 stub_entries = 0;
482 }
483
484 /* Compute total number of unwind entries and their total size. */
485 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
486 total_size = total_entries * sizeof (struct unwind_table_entry);
487
488 /* Allocate memory for the unwind table. */
489 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
490 ui->last = total_entries - 1;
491
492 /* Internalize the standard unwind entries. */
493 index = 0;
494 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
495 unwind_entries, unwind_size, text_offset);
496 index += unwind_entries;
497 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
498 elf_unwind_entries, elf_unwind_size, text_offset);
499 index += elf_unwind_entries;
500
501 /* Now internalize the stub unwind entries. */
502 if (stub_unwind_size > 0)
503 {
504 unsigned int i;
505 char *buf = alloca (stub_unwind_size);
506
507 /* Read in the stub unwind entries. */
508 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
509 0, stub_unwind_size);
510
511 /* Now convert them into regular unwind entries. */
512 for (i = 0; i < stub_entries; i++, index++)
513 {
514 /* Clear out the next unwind entry. */
515 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
516
517 /* Convert offset & size into region_start and region_end.
518 Stuff away the stub type into "reserved" fields. */
519 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
520 (bfd_byte *) buf);
521 ui->table[index].region_start += text_offset;
522 buf += 4;
523 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
524 (bfd_byte *) buf);
525 buf += 2;
526 ui->table[index].region_end
527 = ui->table[index].region_start + 4 *
528 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
529 buf += 2;
530 }
531
532 }
533
534 /* Unwind table needs to be kept sorted. */
535 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
536 compare_unwind_entries);
537
538 /* Keep a pointer to the unwind information. */
539 objfile->obj_private = (PTR) ui;
540 }
541
542 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
543 of the objfiles seeking the unwind table entry for this PC. Each objfile
544 contains a sorted list of struct unwind_table_entry. Since we do a binary
545 search of the unwind tables, we depend upon them to be sorted. */
546
547 struct unwind_table_entry *
548 find_unwind_entry(pc)
549 CORE_ADDR pc;
550 {
551 int first, middle, last;
552 struct objfile *objfile;
553
554 ALL_OBJFILES (objfile)
555 {
556 struct obj_unwind_info *ui;
557
558 ui = OBJ_UNWIND_INFO (objfile);
559
560 if (!ui)
561 {
562 read_unwind_info (objfile);
563 ui = OBJ_UNWIND_INFO (objfile);
564 }
565
566 /* First, check the cache */
567
568 if (ui->cache
569 && pc >= ui->cache->region_start
570 && pc <= ui->cache->region_end)
571 return ui->cache;
572
573 /* Not in the cache, do a binary search */
574
575 first = 0;
576 last = ui->last;
577
578 while (first <= last)
579 {
580 middle = (first + last) / 2;
581 if (pc >= ui->table[middle].region_start
582 && pc <= ui->table[middle].region_end)
583 {
584 ui->cache = &ui->table[middle];
585 return &ui->table[middle];
586 }
587
588 if (pc < ui->table[middle].region_start)
589 last = middle - 1;
590 else
591 first = middle + 1;
592 }
593 } /* ALL_OBJFILES() */
594 return NULL;
595 }
596
597 /* Return the adjustment necessary to make for addresses on the stack
598 as presented by hpread.c.
599
600 This is necessary because of the stack direction on the PA and the
601 bizarre way in which someone (?) decided they wanted to handle
602 frame pointerless code in GDB. */
603 int
604 hpread_adjust_stack_address (func_addr)
605 CORE_ADDR func_addr;
606 {
607 struct unwind_table_entry *u;
608
609 u = find_unwind_entry (func_addr);
610 if (!u)
611 return 0;
612 else
613 return u->Total_frame_size << 3;
614 }
615
616 /* Called to determine if PC is in an interrupt handler of some
617 kind. */
618
619 static int
620 pc_in_interrupt_handler (pc)
621 CORE_ADDR pc;
622 {
623 struct unwind_table_entry *u;
624 struct minimal_symbol *msym_us;
625
626 u = find_unwind_entry (pc);
627 if (!u)
628 return 0;
629
630 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
631 its frame isn't a pure interrupt frame. Deal with this. */
632 msym_us = lookup_minimal_symbol_by_pc (pc);
633
634 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
635 }
636
637 /* Called when no unwind descriptor was found for PC. Returns 1 if it
638 appears that PC is in a linker stub. */
639
640 static int
641 pc_in_linker_stub (pc)
642 CORE_ADDR pc;
643 {
644 int found_magic_instruction = 0;
645 int i;
646 char buf[4];
647
648 /* If unable to read memory, assume pc is not in a linker stub. */
649 if (target_read_memory (pc, buf, 4) != 0)
650 return 0;
651
652 /* We are looking for something like
653
654 ; $$dyncall jams RP into this special spot in the frame (RP')
655 ; before calling the "call stub"
656 ldw -18(sp),rp
657
658 ldsid (rp),r1 ; Get space associated with RP into r1
659 mtsp r1,sp ; Move it into space register 0
660 be,n 0(sr0),rp) ; back to your regularly scheduled program
661 */
662
663 /* Maximum known linker stub size is 4 instructions. Search forward
664 from the given PC, then backward. */
665 for (i = 0; i < 4; i++)
666 {
667 /* If we hit something with an unwind, stop searching this direction. */
668
669 if (find_unwind_entry (pc + i * 4) != 0)
670 break;
671
672 /* Check for ldsid (rp),r1 which is the magic instruction for a
673 return from a cross-space function call. */
674 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
675 {
676 found_magic_instruction = 1;
677 break;
678 }
679 /* Add code to handle long call/branch and argument relocation stubs
680 here. */
681 }
682
683 if (found_magic_instruction != 0)
684 return 1;
685
686 /* Now look backward. */
687 for (i = 0; i < 4; i++)
688 {
689 /* If we hit something with an unwind, stop searching this direction. */
690
691 if (find_unwind_entry (pc - i * 4) != 0)
692 break;
693
694 /* Check for ldsid (rp),r1 which is the magic instruction for a
695 return from a cross-space function call. */
696 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
697 {
698 found_magic_instruction = 1;
699 break;
700 }
701 /* Add code to handle long call/branch and argument relocation stubs
702 here. */
703 }
704 return found_magic_instruction;
705 }
706
707 static int
708 find_return_regnum(pc)
709 CORE_ADDR pc;
710 {
711 struct unwind_table_entry *u;
712
713 u = find_unwind_entry (pc);
714
715 if (!u)
716 return RP_REGNUM;
717
718 if (u->Millicode)
719 return 31;
720
721 return RP_REGNUM;
722 }
723
724 /* Return size of frame, or -1 if we should use a frame pointer. */
725 static int
726 find_proc_framesize (pc)
727 CORE_ADDR pc;
728 {
729 struct unwind_table_entry *u;
730 struct minimal_symbol *msym_us;
731
732 u = find_unwind_entry (pc);
733
734 if (!u)
735 {
736 if (pc_in_linker_stub (pc))
737 /* Linker stubs have a zero size frame. */
738 return 0;
739 else
740 return -1;
741 }
742
743 msym_us = lookup_minimal_symbol_by_pc (pc);
744
745 /* If Save_SP is set, and we're not in an interrupt or signal caller,
746 then we have a frame pointer. Use it. */
747 if (u->Save_SP && !pc_in_interrupt_handler (pc)
748 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
749 return -1;
750
751 return u->Total_frame_size << 3;
752 }
753
754 /* Return offset from sp at which rp is saved, or 0 if not saved. */
755 static int rp_saved PARAMS ((CORE_ADDR));
756
757 static int
758 rp_saved (pc)
759 CORE_ADDR pc;
760 {
761 struct unwind_table_entry *u;
762
763 u = find_unwind_entry (pc);
764
765 if (!u)
766 {
767 if (pc_in_linker_stub (pc))
768 /* This is the so-called RP'. */
769 return -24;
770 else
771 return 0;
772 }
773
774 if (u->Save_RP)
775 return -20;
776 else if (u->stub_type != 0)
777 {
778 switch (u->stub_type)
779 {
780 case EXPORT:
781 case IMPORT:
782 return -24;
783 case PARAMETER_RELOCATION:
784 return -8;
785 default:
786 return 0;
787 }
788 }
789 else
790 return 0;
791 }
792 \f
793 int
794 frameless_function_invocation (frame)
795 struct frame_info *frame;
796 {
797 struct unwind_table_entry *u;
798
799 u = find_unwind_entry (frame->pc);
800
801 if (u == 0)
802 return 0;
803
804 return (u->Total_frame_size == 0 && u->stub_type == 0);
805 }
806
807 CORE_ADDR
808 saved_pc_after_call (frame)
809 struct frame_info *frame;
810 {
811 int ret_regnum;
812 CORE_ADDR pc;
813 struct unwind_table_entry *u;
814
815 ret_regnum = find_return_regnum (get_frame_pc (frame));
816 pc = read_register (ret_regnum) & ~0x3;
817
818 /* If PC is in a linker stub, then we need to dig the address
819 the stub will return to out of the stack. */
820 u = find_unwind_entry (pc);
821 if (u && u->stub_type != 0)
822 return FRAME_SAVED_PC (frame);
823 else
824 return pc;
825 }
826 \f
827 CORE_ADDR
828 hppa_frame_saved_pc (frame)
829 struct frame_info *frame;
830 {
831 CORE_ADDR pc = get_frame_pc (frame);
832 struct unwind_table_entry *u;
833
834 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
835 at the base of the frame in an interrupt handler. Registers within
836 are saved in the exact same order as GDB numbers registers. How
837 convienent. */
838 if (pc_in_interrupt_handler (pc))
839 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
840
841 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
842 /* Deal with signal handler caller frames too. */
843 if (frame->signal_handler_caller)
844 {
845 CORE_ADDR rp;
846 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
847 return rp & ~0x3;
848 }
849 #endif
850
851 if (frameless_function_invocation (frame))
852 {
853 int ret_regnum;
854
855 ret_regnum = find_return_regnum (pc);
856
857 /* If the next frame is an interrupt frame or a signal
858 handler caller, then we need to look in the saved
859 register area to get the return pointer (the values
860 in the registers may not correspond to anything useful). */
861 if (frame->next
862 && (frame->next->signal_handler_caller
863 || pc_in_interrupt_handler (frame->next->pc)))
864 {
865 struct frame_saved_regs saved_regs;
866
867 get_frame_saved_regs (frame->next, &saved_regs);
868 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
869 {
870 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
871
872 /* Syscalls are really two frames. The syscall stub itself
873 with a return pointer in %rp and the kernel call with
874 a return pointer in %r31. We return the %rp variant
875 if %r31 is the same as frame->pc. */
876 if (pc == frame->pc)
877 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
878 }
879 else
880 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
881 }
882 else
883 pc = read_register (ret_regnum) & ~0x3;
884 }
885 else
886 {
887 int rp_offset;
888
889 restart:
890 rp_offset = rp_saved (pc);
891 /* Similar to code in frameless function case. If the next
892 frame is a signal or interrupt handler, then dig the right
893 information out of the saved register info. */
894 if (rp_offset == 0
895 && frame->next
896 && (frame->next->signal_handler_caller
897 || pc_in_interrupt_handler (frame->next->pc)))
898 {
899 struct frame_saved_regs saved_regs;
900
901 get_frame_saved_regs (frame->next, &saved_regs);
902 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
903 {
904 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
905
906 /* Syscalls are really two frames. The syscall stub itself
907 with a return pointer in %rp and the kernel call with
908 a return pointer in %r31. We return the %rp variant
909 if %r31 is the same as frame->pc. */
910 if (pc == frame->pc)
911 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
912 }
913 else
914 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
915 }
916 else if (rp_offset == 0)
917 pc = read_register (RP_REGNUM) & ~0x3;
918 else
919 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
920 }
921
922 /* If PC is inside a linker stub, then dig out the address the stub
923 will return to.
924
925 Don't do this for long branch stubs. Why? For some unknown reason
926 _start is marked as a long branch stub in hpux10. */
927 u = find_unwind_entry (pc);
928 if (u && u->stub_type != 0
929 && u->stub_type != LONG_BRANCH)
930 {
931 unsigned int insn;
932
933 /* If this is a dynamic executable, and we're in a signal handler,
934 then the call chain will eventually point us into the stub for
935 _sigreturn. Unlike most cases, we'll be pointed to the branch
936 to the real sigreturn rather than the code after the real branch!.
937
938 Else, try to dig the address the stub will return to in the normal
939 fashion. */
940 insn = read_memory_integer (pc, 4);
941 if ((insn & 0xfc00e000) == 0xe8000000)
942 return (pc + extract_17 (insn) + 8) & ~0x3;
943 else
944 goto restart;
945 }
946
947 return pc;
948 }
949 \f
950 /* We need to correct the PC and the FP for the outermost frame when we are
951 in a system call. */
952
953 void
954 init_extra_frame_info (fromleaf, frame)
955 int fromleaf;
956 struct frame_info *frame;
957 {
958 int flags;
959 int framesize;
960
961 if (frame->next && !fromleaf)
962 return;
963
964 /* If the next frame represents a frameless function invocation
965 then we have to do some adjustments that are normally done by
966 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
967 if (fromleaf)
968 {
969 /* Find the framesize of *this* frame without peeking at the PC
970 in the current frame structure (it isn't set yet). */
971 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
972
973 /* Now adjust our base frame accordingly. If we have a frame pointer
974 use it, else subtract the size of this frame from the current
975 frame. (we always want frame->frame to point at the lowest address
976 in the frame). */
977 if (framesize == -1)
978 frame->frame = read_register (FP_REGNUM);
979 else
980 frame->frame -= framesize;
981 return;
982 }
983
984 flags = read_register (FLAGS_REGNUM);
985 if (flags & 2) /* In system call? */
986 frame->pc = read_register (31) & ~0x3;
987
988 /* The outermost frame is always derived from PC-framesize
989
990 One might think frameless innermost frames should have
991 a frame->frame that is the same as the parent's frame->frame.
992 That is wrong; frame->frame in that case should be the *high*
993 address of the parent's frame. It's complicated as hell to
994 explain, but the parent *always* creates some stack space for
995 the child. So the child actually does have a frame of some
996 sorts, and its base is the high address in its parent's frame. */
997 framesize = find_proc_framesize(frame->pc);
998 if (framesize == -1)
999 frame->frame = read_register (FP_REGNUM);
1000 else
1001 frame->frame = read_register (SP_REGNUM) - framesize;
1002 }
1003 \f
1004 /* Given a GDB frame, determine the address of the calling function's frame.
1005 This will be used to create a new GDB frame struct, and then
1006 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1007
1008 This may involve searching through prologues for several functions
1009 at boundaries where GCC calls HP C code, or where code which has
1010 a frame pointer calls code without a frame pointer. */
1011
1012 CORE_ADDR
1013 frame_chain (frame)
1014 struct frame_info *frame;
1015 {
1016 int my_framesize, caller_framesize;
1017 struct unwind_table_entry *u;
1018 CORE_ADDR frame_base;
1019 struct frame_info *tmp_frame;
1020
1021 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1022 are easy; at *sp we have a full save state strucutre which we can
1023 pull the old stack pointer from. Also see frame_saved_pc for
1024 code to dig a saved PC out of the save state structure. */
1025 if (pc_in_interrupt_handler (frame->pc))
1026 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
1027 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1028 else if (frame->signal_handler_caller)
1029 {
1030 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1031 }
1032 #endif
1033 else
1034 frame_base = frame->frame;
1035
1036 /* Get frame sizes for the current frame and the frame of the
1037 caller. */
1038 my_framesize = find_proc_framesize (frame->pc);
1039 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
1040
1041 /* If caller does not have a frame pointer, then its frame
1042 can be found at current_frame - caller_framesize. */
1043 if (caller_framesize != -1)
1044 return frame_base - caller_framesize;
1045
1046 /* Both caller and callee have frame pointers and are GCC compiled
1047 (SAVE_SP bit in unwind descriptor is on for both functions.
1048 The previous frame pointer is found at the top of the current frame. */
1049 if (caller_framesize == -1 && my_framesize == -1)
1050 return read_memory_integer (frame_base, 4);
1051
1052 /* Caller has a frame pointer, but callee does not. This is a little
1053 more difficult as GCC and HP C lay out locals and callee register save
1054 areas very differently.
1055
1056 The previous frame pointer could be in a register, or in one of
1057 several areas on the stack.
1058
1059 Walk from the current frame to the innermost frame examining
1060 unwind descriptors to determine if %r3 ever gets saved into the
1061 stack. If so return whatever value got saved into the stack.
1062 If it was never saved in the stack, then the value in %r3 is still
1063 valid, so use it.
1064
1065 We use information from unwind descriptors to determine if %r3
1066 is saved into the stack (Entry_GR field has this information). */
1067
1068 tmp_frame = frame;
1069 while (tmp_frame)
1070 {
1071 u = find_unwind_entry (tmp_frame->pc);
1072
1073 if (!u)
1074 {
1075 /* We could find this information by examining prologues. I don't
1076 think anyone has actually written any tools (not even "strip")
1077 which leave them out of an executable, so maybe this is a moot
1078 point. */
1079 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1080 return 0;
1081 }
1082
1083 /* Entry_GR specifies the number of callee-saved general registers
1084 saved in the stack. It starts at %r3, so %r3 would be 1. */
1085 if (u->Entry_GR >= 1 || u->Save_SP
1086 || tmp_frame->signal_handler_caller
1087 || pc_in_interrupt_handler (tmp_frame->pc))
1088 break;
1089 else
1090 tmp_frame = tmp_frame->next;
1091 }
1092
1093 if (tmp_frame)
1094 {
1095 /* We may have walked down the chain into a function with a frame
1096 pointer. */
1097 if (u->Save_SP
1098 && !tmp_frame->signal_handler_caller
1099 && !pc_in_interrupt_handler (tmp_frame->pc))
1100 return read_memory_integer (tmp_frame->frame, 4);
1101 /* %r3 was saved somewhere in the stack. Dig it out. */
1102 else
1103 {
1104 struct frame_saved_regs saved_regs;
1105
1106 /* Sick.
1107
1108 For optimization purposes many kernels don't have the
1109 callee saved registers into the save_state structure upon
1110 entry into the kernel for a syscall; the optimization
1111 is usually turned off if the process is being traced so
1112 that the debugger can get full register state for the
1113 process.
1114
1115 This scheme works well except for two cases:
1116
1117 * Attaching to a process when the process is in the
1118 kernel performing a system call (debugger can't get
1119 full register state for the inferior process since
1120 the process wasn't being traced when it entered the
1121 system call).
1122
1123 * Register state is not complete if the system call
1124 causes the process to core dump.
1125
1126
1127 The following heinous code is an attempt to deal with
1128 the lack of register state in a core dump. It will
1129 fail miserably if the function which performs the
1130 system call has a variable sized stack frame. */
1131
1132 get_frame_saved_regs (tmp_frame, &saved_regs);
1133
1134 /* Abominable hack. */
1135 if (current_target.to_has_execution == 0
1136 && ((saved_regs.regs[FLAGS_REGNUM]
1137 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
1138 & 0x2))
1139 || (saved_regs.regs[FLAGS_REGNUM] == 0
1140 && read_register (FLAGS_REGNUM) & 0x2)))
1141 {
1142 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1143 if (!u)
1144 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1145 else
1146 return frame_base - (u->Total_frame_size << 3);
1147 }
1148
1149 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1150 }
1151 }
1152 else
1153 {
1154 struct frame_saved_regs saved_regs;
1155
1156 /* Get the innermost frame. */
1157 tmp_frame = frame;
1158 while (tmp_frame->next != NULL)
1159 tmp_frame = tmp_frame->next;
1160
1161 get_frame_saved_regs (tmp_frame, &saved_regs);
1162 /* Abominable hack. See above. */
1163 if (current_target.to_has_execution == 0
1164 && ((saved_regs.regs[FLAGS_REGNUM]
1165 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
1166 & 0x2))
1167 || (saved_regs.regs[FLAGS_REGNUM] == 0
1168 && read_register (FLAGS_REGNUM) & 0x2)))
1169 {
1170 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1171 if (!u)
1172 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1173 else
1174 return frame_base - (u->Total_frame_size << 3);
1175 }
1176
1177 /* The value in %r3 was never saved into the stack (thus %r3 still
1178 holds the value of the previous frame pointer). */
1179 return read_register (FP_REGNUM);
1180 }
1181 }
1182
1183 \f
1184 /* To see if a frame chain is valid, see if the caller looks like it
1185 was compiled with gcc. */
1186
1187 int
1188 frame_chain_valid (chain, thisframe)
1189 CORE_ADDR chain;
1190 struct frame_info *thisframe;
1191 {
1192 struct minimal_symbol *msym_us;
1193 struct minimal_symbol *msym_start;
1194 struct unwind_table_entry *u, *next_u = NULL;
1195 struct frame_info *next;
1196
1197 if (!chain)
1198 return 0;
1199
1200 u = find_unwind_entry (thisframe->pc);
1201
1202 if (u == NULL)
1203 return 1;
1204
1205 /* We can't just check that the same of msym_us is "_start", because
1206 someone idiotically decided that they were going to make a Ltext_end
1207 symbol with the same address. This Ltext_end symbol is totally
1208 indistinguishable (as nearly as I can tell) from the symbol for a function
1209 which is (legitimately, since it is in the user's namespace)
1210 named Ltext_end, so we can't just ignore it. */
1211 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1212 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1213 if (msym_us
1214 && msym_start
1215 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1216 return 0;
1217
1218 /* Grrrr. Some new idiot decided that they don't want _start for the
1219 PRO configurations; $START$ calls main directly.... Deal with it. */
1220 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1221 if (msym_us
1222 && msym_start
1223 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1224 return 0;
1225
1226 next = get_next_frame (thisframe);
1227 if (next)
1228 next_u = find_unwind_entry (next->pc);
1229
1230 /* If this frame does not save SP, has no stack, isn't a stub,
1231 and doesn't "call" an interrupt routine or signal handler caller,
1232 then its not valid. */
1233 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1234 || (thisframe->next && thisframe->next->signal_handler_caller)
1235 || (next_u && next_u->HP_UX_interrupt_marker))
1236 return 1;
1237
1238 if (pc_in_linker_stub (thisframe->pc))
1239 return 1;
1240
1241 return 0;
1242 }
1243
1244 /*
1245 * These functions deal with saving and restoring register state
1246 * around a function call in the inferior. They keep the stack
1247 * double-word aligned; eventually, on an hp700, the stack will have
1248 * to be aligned to a 64-byte boundary.
1249 */
1250
1251 void
1252 push_dummy_frame (inf_status)
1253 struct inferior_status *inf_status;
1254 {
1255 CORE_ADDR sp, pc, pcspace;
1256 register int regnum;
1257 int int_buffer;
1258 double freg_buffer;
1259
1260 /* Oh, what a hack. If we're trying to perform an inferior call
1261 while the inferior is asleep, we have to make sure to clear
1262 the "in system call" bit in the flag register (the call will
1263 start after the syscall returns, so we're no longer in the system
1264 call!) This state is kept in "inf_status", change it there.
1265
1266 We also need a number of horrid hacks to deal with lossage in the
1267 PC queue registers (apparently they're not valid when the in syscall
1268 bit is set). */
1269 pc = target_read_pc (inferior_pid);
1270 int_buffer = read_register (FLAGS_REGNUM);
1271 if (int_buffer & 0x2)
1272 {
1273 unsigned int sid;
1274 int_buffer &= ~0x2;
1275 memcpy (inf_status->registers, &int_buffer, 4);
1276 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4);
1277 pc += 4;
1278 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4);
1279 pc -= 4;
1280 sid = (pc >> 30) & 0x3;
1281 if (sid == 0)
1282 pcspace = read_register (SR4_REGNUM);
1283 else
1284 pcspace = read_register (SR4_REGNUM + 4 + sid);
1285 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM),
1286 &pcspace, 4);
1287 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM),
1288 &pcspace, 4);
1289 }
1290 else
1291 pcspace = read_register (PCSQ_HEAD_REGNUM);
1292
1293 /* Space for "arguments"; the RP goes in here. */
1294 sp = read_register (SP_REGNUM) + 48;
1295 int_buffer = read_register (RP_REGNUM) | 0x3;
1296 write_memory (sp - 20, (char *)&int_buffer, 4);
1297
1298 int_buffer = read_register (FP_REGNUM);
1299 write_memory (sp, (char *)&int_buffer, 4);
1300
1301 write_register (FP_REGNUM, sp);
1302
1303 sp += 8;
1304
1305 for (regnum = 1; regnum < 32; regnum++)
1306 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1307 sp = push_word (sp, read_register (regnum));
1308
1309 sp += 4;
1310
1311 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1312 {
1313 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1314 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1315 }
1316 sp = push_word (sp, read_register (IPSW_REGNUM));
1317 sp = push_word (sp, read_register (SAR_REGNUM));
1318 sp = push_word (sp, pc);
1319 sp = push_word (sp, pcspace);
1320 sp = push_word (sp, pc + 4);
1321 sp = push_word (sp, pcspace);
1322 write_register (SP_REGNUM, sp);
1323 }
1324
1325 static void
1326 find_dummy_frame_regs (frame, frame_saved_regs)
1327 struct frame_info *frame;
1328 struct frame_saved_regs *frame_saved_regs;
1329 {
1330 CORE_ADDR fp = frame->frame;
1331 int i;
1332
1333 frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
1334 frame_saved_regs->regs[FP_REGNUM] = fp;
1335 frame_saved_regs->regs[1] = fp + 8;
1336
1337 for (fp += 12, i = 3; i < 32; i++)
1338 {
1339 if (i != FP_REGNUM)
1340 {
1341 frame_saved_regs->regs[i] = fp;
1342 fp += 4;
1343 }
1344 }
1345
1346 fp += 4;
1347 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1348 frame_saved_regs->regs[i] = fp;
1349
1350 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1351 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1352 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1353 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1354 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1355 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1356 }
1357
1358 void
1359 hppa_pop_frame ()
1360 {
1361 register struct frame_info *frame = get_current_frame ();
1362 register CORE_ADDR fp, npc, target_pc;
1363 register int regnum;
1364 struct frame_saved_regs fsr;
1365 double freg_buffer;
1366
1367 fp = FRAME_FP (frame);
1368 get_frame_saved_regs (frame, &fsr);
1369
1370 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1371 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1372 restore_pc_queue (&fsr);
1373 #endif
1374
1375 for (regnum = 31; regnum > 0; regnum--)
1376 if (fsr.regs[regnum])
1377 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1378
1379 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1380 if (fsr.regs[regnum])
1381 {
1382 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1383 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1384 }
1385
1386 if (fsr.regs[IPSW_REGNUM])
1387 write_register (IPSW_REGNUM,
1388 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1389
1390 if (fsr.regs[SAR_REGNUM])
1391 write_register (SAR_REGNUM,
1392 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1393
1394 /* If the PC was explicitly saved, then just restore it. */
1395 if (fsr.regs[PCOQ_TAIL_REGNUM])
1396 {
1397 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4);
1398 write_register (PCOQ_TAIL_REGNUM, npc);
1399 }
1400 /* Else use the value in %rp to set the new PC. */
1401 else
1402 {
1403 npc = read_register (RP_REGNUM);
1404 write_pc (npc);
1405 }
1406
1407 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1408
1409 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1410 write_register (SP_REGNUM, fp - 48);
1411 else
1412 write_register (SP_REGNUM, fp);
1413
1414 /* The PC we just restored may be inside a return trampoline. If so
1415 we want to restart the inferior and run it through the trampoline.
1416
1417 Do this by setting a momentary breakpoint at the location the
1418 trampoline returns to.
1419
1420 Don't skip through the trampoline if we're popping a dummy frame. */
1421 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1422 if (target_pc && !fsr.regs[IPSW_REGNUM])
1423 {
1424 struct symtab_and_line sal;
1425 struct breakpoint *breakpoint;
1426 struct cleanup *old_chain;
1427
1428 /* Set up our breakpoint. Set it to be silent as the MI code
1429 for "return_command" will print the frame we returned to. */
1430 sal = find_pc_line (target_pc, 0);
1431 sal.pc = target_pc;
1432 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1433 breakpoint->silent = 1;
1434
1435 /* So we can clean things up. */
1436 old_chain = make_cleanup ((make_cleanup_func) delete_breakpoint, breakpoint);
1437
1438 /* Start up the inferior. */
1439 clear_proceed_status ();
1440 proceed_to_finish = 1;
1441 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1442
1443 /* Perform our cleanups. */
1444 do_cleanups (old_chain);
1445 }
1446 flush_cached_frames ();
1447 }
1448
1449 /*
1450 * After returning to a dummy on the stack, restore the instruction
1451 * queue space registers. */
1452
1453 static int
1454 restore_pc_queue (fsr)
1455 struct frame_saved_regs *fsr;
1456 {
1457 CORE_ADDR pc = read_pc ();
1458 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1459 struct target_waitstatus w;
1460 int insn_count;
1461
1462 /* Advance past break instruction in the call dummy. */
1463 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1464 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1465
1466 /*
1467 * HPUX doesn't let us set the space registers or the space
1468 * registers of the PC queue through ptrace. Boo, hiss.
1469 * Conveniently, the call dummy has this sequence of instructions
1470 * after the break:
1471 * mtsp r21, sr0
1472 * ble,n 0(sr0, r22)
1473 *
1474 * So, load up the registers and single step until we are in the
1475 * right place.
1476 */
1477
1478 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1479 write_register (22, new_pc);
1480
1481 for (insn_count = 0; insn_count < 3; insn_count++)
1482 {
1483 /* FIXME: What if the inferior gets a signal right now? Want to
1484 merge this into wait_for_inferior (as a special kind of
1485 watchpoint? By setting a breakpoint at the end? Is there
1486 any other choice? Is there *any* way to do this stuff with
1487 ptrace() or some equivalent?). */
1488 resume (1, 0);
1489 target_wait (inferior_pid, &w);
1490
1491 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1492 {
1493 stop_signal = w.value.sig;
1494 terminal_ours_for_output ();
1495 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1496 target_signal_to_name (stop_signal),
1497 target_signal_to_string (stop_signal));
1498 gdb_flush (gdb_stdout);
1499 return 0;
1500 }
1501 }
1502 target_terminal_ours ();
1503 target_fetch_registers (-1);
1504 return 1;
1505 }
1506
1507 CORE_ADDR
1508 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1509 int nargs;
1510 value_ptr *args;
1511 CORE_ADDR sp;
1512 int struct_return;
1513 CORE_ADDR struct_addr;
1514 {
1515 /* array of arguments' offsets */
1516 int *offset = (int *)alloca(nargs * sizeof (int));
1517 int cum = 0;
1518 int i, alignment;
1519
1520 for (i = 0; i < nargs; i++)
1521 {
1522 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1523
1524 /* value must go at proper alignment. Assume alignment is a
1525 power of two.*/
1526 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1527 if (cum % alignment)
1528 cum = (cum + alignment) & -alignment;
1529 offset[i] = -cum;
1530 }
1531 sp += max ((cum + 7) & -8, 16);
1532
1533 for (i = 0; i < nargs; i++)
1534 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1535 TYPE_LENGTH (VALUE_TYPE (args[i])));
1536
1537 if (struct_return)
1538 write_register (28, struct_addr);
1539 return sp + 32;
1540 }
1541
1542 /*
1543 * Insert the specified number of args and function address
1544 * into a call sequence of the above form stored at DUMMYNAME.
1545 *
1546 * On the hppa we need to call the stack dummy through $$dyncall.
1547 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1548 * real_pc, which is the location where gdb should start up the
1549 * inferior to do the function call.
1550 */
1551
1552 CORE_ADDR
1553 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1554 char *dummy;
1555 CORE_ADDR pc;
1556 CORE_ADDR fun;
1557 int nargs;
1558 value_ptr *args;
1559 struct type *type;
1560 int gcc_p;
1561 {
1562 CORE_ADDR dyncall_addr;
1563 struct minimal_symbol *msymbol;
1564 struct minimal_symbol *trampoline;
1565 int flags = read_register (FLAGS_REGNUM);
1566 struct unwind_table_entry *u;
1567
1568 trampoline = NULL;
1569 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1570 if (msymbol == NULL)
1571 error ("Can't find an address for $$dyncall trampoline");
1572
1573 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1574
1575 /* FUN could be a procedure label, in which case we have to get
1576 its real address and the value of its GOT/DP. */
1577 if (fun & 0x2)
1578 {
1579 /* Get the GOT/DP value for the target function. It's
1580 at *(fun+4). Note the call dummy is *NOT* allowed to
1581 trash %r19 before calling the target function. */
1582 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1583
1584 /* Now get the real address for the function we are calling, it's
1585 at *fun. */
1586 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1587 }
1588 else
1589 {
1590
1591 #ifndef GDB_TARGET_IS_PA_ELF
1592 /* FUN could be either an export stub, or the real address of a
1593 function in a shared library. We must call an import stub
1594 rather than the export stub or real function for lazy binding
1595 to work correctly. */
1596 if (som_solib_get_got_by_pc (fun))
1597 {
1598 struct objfile *objfile;
1599 struct minimal_symbol *funsymbol, *stub_symbol;
1600 CORE_ADDR newfun = 0;
1601
1602 funsymbol = lookup_minimal_symbol_by_pc (fun);
1603 if (!funsymbol)
1604 error ("Unable to find minimal symbol for target fucntion.\n");
1605
1606 /* Search all the object files for an import symbol with the
1607 right name. */
1608 ALL_OBJFILES (objfile)
1609 {
1610 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
1611 NULL, objfile);
1612 /* Found a symbol with the right name. */
1613 if (stub_symbol)
1614 {
1615 struct unwind_table_entry *u;
1616 /* It must be a shared library trampoline. */
1617 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
1618 continue;
1619
1620 /* It must also be an import stub. */
1621 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
1622 if (!u || u->stub_type != IMPORT)
1623 continue;
1624
1625 /* OK. Looks like the correct import stub. */
1626 newfun = SYMBOL_VALUE (stub_symbol);
1627 fun = newfun;
1628 }
1629 }
1630 if (newfun == 0)
1631 write_register (19, som_solib_get_got_by_pc (fun));
1632 }
1633 #endif
1634 }
1635
1636 /* If we are calling an import stub (eg calling into a dynamic library)
1637 then have sr4export call the magic __d_plt_call routine which is linked
1638 in from end.o. (You can't use _sr4export to call the import stub as
1639 the value in sp-24 will get fried and you end up returning to the
1640 wrong location. You can't call the import stub directly as the code
1641 to bind the PLT entry to a function can't return to a stack address.) */
1642 u = find_unwind_entry (fun);
1643 if (u && u->stub_type == IMPORT)
1644 {
1645 CORE_ADDR new_fun;
1646
1647 /* Prefer __gcc_plt_call over the HP supplied routine because
1648 __gcc_plt_call works for any number of arguments. */
1649 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
1650 if (trampoline == NULL)
1651 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
1652
1653 if (trampoline == NULL)
1654 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline");
1655
1656 /* This is where sr4export will jump to. */
1657 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
1658
1659 if (strcmp (SYMBOL_NAME (trampoline), "__d_plt_call") == 0)
1660 {
1661 /* We have to store the address of the stub in __shlib_funcptr. */
1662 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
1663 (struct objfile *)NULL);
1664 if (msymbol == NULL)
1665 error ("Can't find an address for __shlib_funcptr");
1666
1667 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1668
1669 /* We want sr4export to call __d_plt_call, so we claim it is
1670 the final target. Clear trampoline. */
1671 fun = new_fun;
1672 trampoline = NULL;
1673 }
1674 }
1675
1676 /* Store upper 21 bits of function address into ldil. fun will either be
1677 the final target (most cases) or __d_plt_call when calling into a shared
1678 library and __gcc_plt_call is not available. */
1679 store_unsigned_integer
1680 (&dummy[FUNC_LDIL_OFFSET],
1681 INSTRUCTION_SIZE,
1682 deposit_21 (fun >> 11,
1683 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
1684 INSTRUCTION_SIZE)));
1685
1686 /* Store lower 11 bits of function address into ldo */
1687 store_unsigned_integer
1688 (&dummy[FUNC_LDO_OFFSET],
1689 INSTRUCTION_SIZE,
1690 deposit_14 (fun & MASK_11,
1691 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
1692 INSTRUCTION_SIZE)));
1693 #ifdef SR4EXPORT_LDIL_OFFSET
1694
1695 {
1696 CORE_ADDR trampoline_addr;
1697
1698 /* We may still need sr4export's address too. */
1699
1700 if (trampoline == NULL)
1701 {
1702 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1703 if (msymbol == NULL)
1704 error ("Can't find an address for _sr4export trampoline");
1705
1706 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1707 }
1708 else
1709 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
1710
1711
1712 /* Store upper 21 bits of trampoline's address into ldil */
1713 store_unsigned_integer
1714 (&dummy[SR4EXPORT_LDIL_OFFSET],
1715 INSTRUCTION_SIZE,
1716 deposit_21 (trampoline_addr >> 11,
1717 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
1718 INSTRUCTION_SIZE)));
1719
1720 /* Store lower 11 bits of trampoline's address into ldo */
1721 store_unsigned_integer
1722 (&dummy[SR4EXPORT_LDO_OFFSET],
1723 INSTRUCTION_SIZE,
1724 deposit_14 (trampoline_addr & MASK_11,
1725 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
1726 INSTRUCTION_SIZE)));
1727 }
1728 #endif
1729
1730 write_register (22, pc);
1731
1732 /* If we are in a syscall, then we should call the stack dummy
1733 directly. $$dyncall is not needed as the kernel sets up the
1734 space id registers properly based on the value in %r31. In
1735 fact calling $$dyncall will not work because the value in %r22
1736 will be clobbered on the syscall exit path.
1737
1738 Similarly if the current PC is in a shared library. Note however,
1739 this scheme won't work if the shared library isn't mapped into
1740 the same space as the stack. */
1741 if (flags & 2)
1742 return pc;
1743 #ifndef GDB_TARGET_IS_PA_ELF
1744 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
1745 return pc;
1746 #endif
1747 else
1748 return dyncall_addr;
1749
1750 }
1751
1752 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1753 bits. */
1754
1755 CORE_ADDR
1756 target_read_pc (pid)
1757 int pid;
1758 {
1759 int flags = read_register_pid (FLAGS_REGNUM, pid);
1760
1761 /* The following test does not belong here. It is OS-specific, and belongs
1762 in native code. */
1763 /* Test SS_INSYSCALL */
1764 if (flags & 2)
1765 return read_register_pid (31, pid) & ~0x3;
1766
1767 return read_register_pid (PC_REGNUM, pid) & ~0x3;
1768 }
1769
1770 /* Write out the PC. If currently in a syscall, then also write the new
1771 PC value into %r31. */
1772
1773 void
1774 target_write_pc (v, pid)
1775 CORE_ADDR v;
1776 int pid;
1777 {
1778 int flags = read_register_pid (FLAGS_REGNUM, pid);
1779
1780 /* The following test does not belong here. It is OS-specific, and belongs
1781 in native code. */
1782 /* If in a syscall, then set %r31. Also make sure to get the
1783 privilege bits set correctly. */
1784 /* Test SS_INSYSCALL */
1785 if (flags & 2)
1786 write_register_pid (31, v | 0x3, pid);
1787
1788 write_register_pid (PC_REGNUM, v, pid);
1789 write_register_pid (NPC_REGNUM, v + 4, pid);
1790 }
1791
1792 /* return the alignment of a type in bytes. Structures have the maximum
1793 alignment required by their fields. */
1794
1795 static int
1796 hppa_alignof (type)
1797 struct type *type;
1798 {
1799 int max_align, align, i;
1800 CHECK_TYPEDEF (type);
1801 switch (TYPE_CODE (type))
1802 {
1803 case TYPE_CODE_PTR:
1804 case TYPE_CODE_INT:
1805 case TYPE_CODE_FLT:
1806 return TYPE_LENGTH (type);
1807 case TYPE_CODE_ARRAY:
1808 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1809 case TYPE_CODE_STRUCT:
1810 case TYPE_CODE_UNION:
1811 max_align = 1;
1812 for (i = 0; i < TYPE_NFIELDS (type); i++)
1813 {
1814 /* Bit fields have no real alignment. */
1815 if (!TYPE_FIELD_BITPOS (type, i))
1816 {
1817 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1818 max_align = max (max_align, align);
1819 }
1820 }
1821 return max_align;
1822 default:
1823 return 4;
1824 }
1825 }
1826
1827 /* Print the register regnum, or all registers if regnum is -1 */
1828
1829 void
1830 pa_do_registers_info (regnum, fpregs)
1831 int regnum;
1832 int fpregs;
1833 {
1834 char raw_regs [REGISTER_BYTES];
1835 int i;
1836
1837 for (i = 0; i < NUM_REGS; i++)
1838 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1839 if (regnum == -1)
1840 pa_print_registers (raw_regs, regnum, fpregs);
1841 else if (regnum < FP0_REGNUM)
1842 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1843 REGISTER_BYTE (regnum)));
1844 else
1845 pa_print_fp_reg (regnum);
1846 }
1847
1848 static void
1849 pa_print_registers (raw_regs, regnum, fpregs)
1850 char *raw_regs;
1851 int regnum;
1852 int fpregs;
1853 {
1854 int i,j;
1855 long val;
1856
1857 for (i = 0; i < 18; i++)
1858 {
1859 for (j = 0; j < 4; j++)
1860 {
1861 val =
1862 extract_signed_integer (raw_regs + REGISTER_BYTE (i+(j*18)), 4);
1863 printf_unfiltered ("%8.8s: %8x ", reg_names[i+(j*18)], val);
1864 }
1865 printf_unfiltered ("\n");
1866 }
1867
1868 if (fpregs)
1869 for (i = 72; i < NUM_REGS; i++)
1870 pa_print_fp_reg (i);
1871 }
1872
1873 static void
1874 pa_print_fp_reg (i)
1875 int i;
1876 {
1877 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1878 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1879
1880 /* Get 32bits of data. */
1881 read_relative_register_raw_bytes (i, raw_buffer);
1882
1883 /* Put it in the buffer. No conversions are ever necessary. */
1884 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1885
1886 fputs_filtered (reg_names[i], gdb_stdout);
1887 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1888 fputs_filtered ("(single precision) ", gdb_stdout);
1889
1890 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1891 1, 0, Val_pretty_default);
1892 printf_filtered ("\n");
1893
1894 /* If "i" is even, then this register can also be a double-precision
1895 FP register. Dump it out as such. */
1896 if ((i % 2) == 0)
1897 {
1898 /* Get the data in raw format for the 2nd half. */
1899 read_relative_register_raw_bytes (i + 1, raw_buffer);
1900
1901 /* Copy it into the appropriate part of the virtual buffer. */
1902 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1903 REGISTER_RAW_SIZE (i));
1904
1905 /* Dump it as a double. */
1906 fputs_filtered (reg_names[i], gdb_stdout);
1907 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1908 fputs_filtered ("(double precision) ", gdb_stdout);
1909
1910 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1911 1, 0, Val_pretty_default);
1912 printf_filtered ("\n");
1913 }
1914 }
1915
1916 /* Return one if PC is in the call path of a trampoline, else return zero.
1917
1918 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1919 just shared library trampolines (import, export). */
1920
1921 int
1922 in_solib_call_trampoline (pc, name)
1923 CORE_ADDR pc;
1924 char *name;
1925 {
1926 struct minimal_symbol *minsym;
1927 struct unwind_table_entry *u;
1928 static CORE_ADDR dyncall = 0;
1929 static CORE_ADDR sr4export = 0;
1930
1931 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1932 new exec file */
1933
1934 /* First see if PC is in one of the two C-library trampolines. */
1935 if (!dyncall)
1936 {
1937 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1938 if (minsym)
1939 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
1940 else
1941 dyncall = -1;
1942 }
1943
1944 if (!sr4export)
1945 {
1946 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1947 if (minsym)
1948 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
1949 else
1950 sr4export = -1;
1951 }
1952
1953 if (pc == dyncall || pc == sr4export)
1954 return 1;
1955
1956 /* Get the unwind descriptor corresponding to PC, return zero
1957 if no unwind was found. */
1958 u = find_unwind_entry (pc);
1959 if (!u)
1960 return 0;
1961
1962 /* If this isn't a linker stub, then return now. */
1963 if (u->stub_type == 0)
1964 return 0;
1965
1966 /* By definition a long-branch stub is a call stub. */
1967 if (u->stub_type == LONG_BRANCH)
1968 return 1;
1969
1970 /* The call and return path execute the same instructions within
1971 an IMPORT stub! So an IMPORT stub is both a call and return
1972 trampoline. */
1973 if (u->stub_type == IMPORT)
1974 return 1;
1975
1976 /* Parameter relocation stubs always have a call path and may have a
1977 return path. */
1978 if (u->stub_type == PARAMETER_RELOCATION
1979 || u->stub_type == EXPORT)
1980 {
1981 CORE_ADDR addr;
1982
1983 /* Search forward from the current PC until we hit a branch
1984 or the end of the stub. */
1985 for (addr = pc; addr <= u->region_end; addr += 4)
1986 {
1987 unsigned long insn;
1988
1989 insn = read_memory_integer (addr, 4);
1990
1991 /* Does it look like a bl? If so then it's the call path, if
1992 we find a bv or be first, then we're on the return path. */
1993 if ((insn & 0xfc00e000) == 0xe8000000)
1994 return 1;
1995 else if ((insn & 0xfc00e001) == 0xe800c000
1996 || (insn & 0xfc000000) == 0xe0000000)
1997 return 0;
1998 }
1999
2000 /* Should never happen. */
2001 warning ("Unable to find branch in parameter relocation stub.\n");
2002 return 0;
2003 }
2004
2005 /* Unknown stub type. For now, just return zero. */
2006 return 0;
2007 }
2008
2009 /* Return one if PC is in the return path of a trampoline, else return zero.
2010
2011 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2012 just shared library trampolines (import, export). */
2013
2014 int
2015 in_solib_return_trampoline (pc, name)
2016 CORE_ADDR pc;
2017 char *name;
2018 {
2019 struct unwind_table_entry *u;
2020
2021 /* Get the unwind descriptor corresponding to PC, return zero
2022 if no unwind was found. */
2023 u = find_unwind_entry (pc);
2024 if (!u)
2025 return 0;
2026
2027 /* If this isn't a linker stub or it's just a long branch stub, then
2028 return zero. */
2029 if (u->stub_type == 0 || u->stub_type == LONG_BRANCH)
2030 return 0;
2031
2032 /* The call and return path execute the same instructions within
2033 an IMPORT stub! So an IMPORT stub is both a call and return
2034 trampoline. */
2035 if (u->stub_type == IMPORT)
2036 return 1;
2037
2038 /* Parameter relocation stubs always have a call path and may have a
2039 return path. */
2040 if (u->stub_type == PARAMETER_RELOCATION
2041 || u->stub_type == EXPORT)
2042 {
2043 CORE_ADDR addr;
2044
2045 /* Search forward from the current PC until we hit a branch
2046 or the end of the stub. */
2047 for (addr = pc; addr <= u->region_end; addr += 4)
2048 {
2049 unsigned long insn;
2050
2051 insn = read_memory_integer (addr, 4);
2052
2053 /* Does it look like a bl? If so then it's the call path, if
2054 we find a bv or be first, then we're on the return path. */
2055 if ((insn & 0xfc00e000) == 0xe8000000)
2056 return 0;
2057 else if ((insn & 0xfc00e001) == 0xe800c000
2058 || (insn & 0xfc000000) == 0xe0000000)
2059 return 1;
2060 }
2061
2062 /* Should never happen. */
2063 warning ("Unable to find branch in parameter relocation stub.\n");
2064 return 0;
2065 }
2066
2067 /* Unknown stub type. For now, just return zero. */
2068 return 0;
2069
2070 }
2071
2072 /* Figure out if PC is in a trampoline, and if so find out where
2073 the trampoline will jump to. If not in a trampoline, return zero.
2074
2075 Simple code examination probably is not a good idea since the code
2076 sequences in trampolines can also appear in user code.
2077
2078 We use unwinds and information from the minimal symbol table to
2079 determine when we're in a trampoline. This won't work for ELF
2080 (yet) since it doesn't create stub unwind entries. Whether or
2081 not ELF will create stub unwinds or normal unwinds for linker
2082 stubs is still being debated.
2083
2084 This should handle simple calls through dyncall or sr4export,
2085 long calls, argument relocation stubs, and dyncall/sr4export
2086 calling an argument relocation stub. It even handles some stubs
2087 used in dynamic executables. */
2088
2089 CORE_ADDR
2090 skip_trampoline_code (pc, name)
2091 CORE_ADDR pc;
2092 char *name;
2093 {
2094 long orig_pc = pc;
2095 long prev_inst, curr_inst, loc;
2096 static CORE_ADDR dyncall = 0;
2097 static CORE_ADDR sr4export = 0;
2098 struct minimal_symbol *msym;
2099 struct unwind_table_entry *u;
2100
2101 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2102 new exec file */
2103
2104 if (!dyncall)
2105 {
2106 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2107 if (msym)
2108 dyncall = SYMBOL_VALUE_ADDRESS (msym);
2109 else
2110 dyncall = -1;
2111 }
2112
2113 if (!sr4export)
2114 {
2115 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2116 if (msym)
2117 sr4export = SYMBOL_VALUE_ADDRESS (msym);
2118 else
2119 sr4export = -1;
2120 }
2121
2122 /* Addresses passed to dyncall may *NOT* be the actual address
2123 of the function. So we may have to do something special. */
2124 if (pc == dyncall)
2125 {
2126 pc = (CORE_ADDR) read_register (22);
2127
2128 /* If bit 30 (counting from the left) is on, then pc is the address of
2129 the PLT entry for this function, not the address of the function
2130 itself. Bit 31 has meaning too, but only for MPE. */
2131 if (pc & 0x2)
2132 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
2133 }
2134 else if (pc == sr4export)
2135 pc = (CORE_ADDR) (read_register (22));
2136
2137 /* Get the unwind descriptor corresponding to PC, return zero
2138 if no unwind was found. */
2139 u = find_unwind_entry (pc);
2140 if (!u)
2141 return 0;
2142
2143 /* If this isn't a linker stub, then return now. */
2144 if (u->stub_type == 0)
2145 return orig_pc == pc ? 0 : pc & ~0x3;
2146
2147 /* It's a stub. Search for a branch and figure out where it goes.
2148 Note we have to handle multi insn branch sequences like ldil;ble.
2149 Most (all?) other branches can be determined by examining the contents
2150 of certain registers and the stack. */
2151 loc = pc;
2152 curr_inst = 0;
2153 prev_inst = 0;
2154 while (1)
2155 {
2156 /* Make sure we haven't walked outside the range of this stub. */
2157 if (u != find_unwind_entry (loc))
2158 {
2159 warning ("Unable to find branch in linker stub");
2160 return orig_pc == pc ? 0 : pc & ~0x3;
2161 }
2162
2163 prev_inst = curr_inst;
2164 curr_inst = read_memory_integer (loc, 4);
2165
2166 /* Does it look like a branch external using %r1? Then it's the
2167 branch from the stub to the actual function. */
2168 if ((curr_inst & 0xffe0e000) == 0xe0202000)
2169 {
2170 /* Yup. See if the previous instruction loaded
2171 a value into %r1. If so compute and return the jump address. */
2172 if ((prev_inst & 0xffe00000) == 0x20200000)
2173 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
2174 else
2175 {
2176 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
2177 return orig_pc == pc ? 0 : pc & ~0x3;
2178 }
2179 }
2180
2181 /* Does it look like a be 0(sr0,%r21)? That's the branch from an
2182 import stub to an export stub.
2183
2184 It is impossible to determine the target of the branch via
2185 simple examination of instructions and/or data (consider
2186 that the address in the plabel may be the address of the
2187 bind-on-reference routine in the dynamic loader).
2188
2189 So we have try an alternative approach.
2190
2191 Get the name of the symbol at our current location; it should
2192 be a stub symbol with the same name as the symbol in the
2193 shared library.
2194
2195 Then lookup a minimal symbol with the same name; we should
2196 get the minimal symbol for the target routine in the shared
2197 library as those take precedence of import/export stubs. */
2198 if (curr_inst == 0xe2a00000)
2199 {
2200 struct minimal_symbol *stubsym, *libsym;
2201
2202 stubsym = lookup_minimal_symbol_by_pc (loc);
2203 if (stubsym == NULL)
2204 {
2205 warning ("Unable to find symbol for 0x%x", loc);
2206 return orig_pc == pc ? 0 : pc & ~0x3;
2207 }
2208
2209 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
2210 if (libsym == NULL)
2211 {
2212 warning ("Unable to find library symbol for %s\n",
2213 SYMBOL_NAME (stubsym));
2214 return orig_pc == pc ? 0 : pc & ~0x3;
2215 }
2216
2217 return SYMBOL_VALUE (libsym);
2218 }
2219
2220 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
2221 branch from the stub to the actual function. */
2222 else if ((curr_inst & 0xffe0e000) == 0xe8400000
2223 || (curr_inst & 0xffe0e000) == 0xe8000000)
2224 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
2225
2226 /* Does it look like bv (rp)? Note this depends on the
2227 current stack pointer being the same as the stack
2228 pointer in the stub itself! This is a branch on from the
2229 stub back to the original caller. */
2230 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
2231 {
2232 /* Yup. See if the previous instruction loaded
2233 rp from sp - 8. */
2234 if (prev_inst == 0x4bc23ff1)
2235 return (read_memory_integer
2236 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
2237 else
2238 {
2239 warning ("Unable to find restore of %%rp before bv (%%rp).");
2240 return orig_pc == pc ? 0 : pc & ~0x3;
2241 }
2242 }
2243
2244 /* What about be,n 0(sr0,%rp)? It's just another way we return to
2245 the original caller from the stub. Used in dynamic executables. */
2246 else if (curr_inst == 0xe0400002)
2247 {
2248 /* The value we jump to is sitting in sp - 24. But that's
2249 loaded several instructions before the be instruction.
2250 I guess we could check for the previous instruction being
2251 mtsp %r1,%sr0 if we want to do sanity checking. */
2252 return (read_memory_integer
2253 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
2254 }
2255
2256 /* Haven't found the branch yet, but we're still in the stub.
2257 Keep looking. */
2258 loc += 4;
2259 }
2260 }
2261
2262 /* For the given instruction (INST), return any adjustment it makes
2263 to the stack pointer or zero for no adjustment.
2264
2265 This only handles instructions commonly found in prologues. */
2266
2267 static int
2268 prologue_inst_adjust_sp (inst)
2269 unsigned long inst;
2270 {
2271 /* This must persist across calls. */
2272 static int save_high21;
2273
2274 /* The most common way to perform a stack adjustment ldo X(sp),sp */
2275 if ((inst & 0xffffc000) == 0x37de0000)
2276 return extract_14 (inst);
2277
2278 /* stwm X,D(sp) */
2279 if ((inst & 0xffe00000) == 0x6fc00000)
2280 return extract_14 (inst);
2281
2282 /* addil high21,%r1; ldo low11,(%r1),%r30)
2283 save high bits in save_high21 for later use. */
2284 if ((inst & 0xffe00000) == 0x28200000)
2285 {
2286 save_high21 = extract_21 (inst);
2287 return 0;
2288 }
2289
2290 if ((inst & 0xffff0000) == 0x343e0000)
2291 return save_high21 + extract_14 (inst);
2292
2293 /* fstws as used by the HP compilers. */
2294 if ((inst & 0xffffffe0) == 0x2fd01220)
2295 return extract_5_load (inst);
2296
2297 /* No adjustment. */
2298 return 0;
2299 }
2300
2301 /* Return nonzero if INST is a branch of some kind, else return zero. */
2302
2303 static int
2304 is_branch (inst)
2305 unsigned long inst;
2306 {
2307 switch (inst >> 26)
2308 {
2309 case 0x20:
2310 case 0x21:
2311 case 0x22:
2312 case 0x23:
2313 case 0x28:
2314 case 0x29:
2315 case 0x2a:
2316 case 0x2b:
2317 case 0x30:
2318 case 0x31:
2319 case 0x32:
2320 case 0x33:
2321 case 0x38:
2322 case 0x39:
2323 case 0x3a:
2324 return 1;
2325
2326 default:
2327 return 0;
2328 }
2329 }
2330
2331 /* Return the register number for a GR which is saved by INST or
2332 zero it INST does not save a GR. */
2333
2334 static int
2335 inst_saves_gr (inst)
2336 unsigned long inst;
2337 {
2338 /* Does it look like a stw? */
2339 if ((inst >> 26) == 0x1a)
2340 return extract_5R_store (inst);
2341
2342 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
2343 if ((inst >> 26) == 0x1b)
2344 return extract_5R_store (inst);
2345
2346 /* Does it look like sth or stb? HPC versions 9.0 and later use these
2347 too. */
2348 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
2349 return extract_5R_store (inst);
2350
2351 return 0;
2352 }
2353
2354 /* Return the register number for a FR which is saved by INST or
2355 zero it INST does not save a FR.
2356
2357 Note we only care about full 64bit register stores (that's the only
2358 kind of stores the prologue will use).
2359
2360 FIXME: What about argument stores with the HP compiler in ANSI mode? */
2361
2362 static int
2363 inst_saves_fr (inst)
2364 unsigned long inst;
2365 {
2366 if ((inst & 0xfc00dfc0) == 0x2c001200)
2367 return extract_5r_store (inst);
2368 return 0;
2369 }
2370
2371 /* Advance PC across any function entry prologue instructions
2372 to reach some "real" code.
2373
2374 Use information in the unwind table to determine what exactly should
2375 be in the prologue. */
2376
2377 CORE_ADDR
2378 skip_prologue (pc)
2379 CORE_ADDR pc;
2380 {
2381 char buf[4];
2382 CORE_ADDR orig_pc = pc;
2383 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2384 unsigned long args_stored, status, i, restart_gr, restart_fr;
2385 struct unwind_table_entry *u;
2386
2387 restart_gr = 0;
2388 restart_fr = 0;
2389
2390 restart:
2391 u = find_unwind_entry (pc);
2392 if (!u)
2393 return pc;
2394
2395 /* If we are not at the beginning of a function, then return now. */
2396 if ((pc & ~0x3) != u->region_start)
2397 return pc;
2398
2399 /* This is how much of a frame adjustment we need to account for. */
2400 stack_remaining = u->Total_frame_size << 3;
2401
2402 /* Magic register saves we want to know about. */
2403 save_rp = u->Save_RP;
2404 save_sp = u->Save_SP;
2405
2406 /* An indication that args may be stored into the stack. Unfortunately
2407 the HPUX compilers tend to set this in cases where no args were
2408 stored too!. */
2409 args_stored = 1;
2410
2411 /* Turn the Entry_GR field into a bitmask. */
2412 save_gr = 0;
2413 for (i = 3; i < u->Entry_GR + 3; i++)
2414 {
2415 /* Frame pointer gets saved into a special location. */
2416 if (u->Save_SP && i == FP_REGNUM)
2417 continue;
2418
2419 save_gr |= (1 << i);
2420 }
2421 save_gr &= ~restart_gr;
2422
2423 /* Turn the Entry_FR field into a bitmask too. */
2424 save_fr = 0;
2425 for (i = 12; i < u->Entry_FR + 12; i++)
2426 save_fr |= (1 << i);
2427 save_fr &= ~restart_fr;
2428
2429 /* Loop until we find everything of interest or hit a branch.
2430
2431 For unoptimized GCC code and for any HP CC code this will never ever
2432 examine any user instructions.
2433
2434 For optimzied GCC code we're faced with problems. GCC will schedule
2435 its prologue and make prologue instructions available for delay slot
2436 filling. The end result is user code gets mixed in with the prologue
2437 and a prologue instruction may be in the delay slot of the first branch
2438 or call.
2439
2440 Some unexpected things are expected with debugging optimized code, so
2441 we allow this routine to walk past user instructions in optimized
2442 GCC code. */
2443 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
2444 || args_stored)
2445 {
2446 unsigned int reg_num;
2447 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
2448 unsigned long old_save_rp, old_save_sp, next_inst;
2449
2450 /* Save copies of all the triggers so we can compare them later
2451 (only for HPC). */
2452 old_save_gr = save_gr;
2453 old_save_fr = save_fr;
2454 old_save_rp = save_rp;
2455 old_save_sp = save_sp;
2456 old_stack_remaining = stack_remaining;
2457
2458 status = target_read_memory (pc, buf, 4);
2459 inst = extract_unsigned_integer (buf, 4);
2460
2461 /* Yow! */
2462 if (status != 0)
2463 return pc;
2464
2465 /* Note the interesting effects of this instruction. */
2466 stack_remaining -= prologue_inst_adjust_sp (inst);
2467
2468 /* There is only one instruction used for saving RP into the stack. */
2469 if (inst == 0x6bc23fd9)
2470 save_rp = 0;
2471
2472 /* This is the only way we save SP into the stack. At this time
2473 the HP compilers never bother to save SP into the stack. */
2474 if ((inst & 0xffffc000) == 0x6fc10000)
2475 save_sp = 0;
2476
2477 /* Account for general and floating-point register saves. */
2478 reg_num = inst_saves_gr (inst);
2479 save_gr &= ~(1 << reg_num);
2480
2481 /* Ugh. Also account for argument stores into the stack.
2482 Unfortunately args_stored only tells us that some arguments
2483 where stored into the stack. Not how many or what kind!
2484
2485 This is a kludge as on the HP compiler sets this bit and it
2486 never does prologue scheduling. So once we see one, skip past
2487 all of them. We have similar code for the fp arg stores below.
2488
2489 FIXME. Can still die if we have a mix of GR and FR argument
2490 stores! */
2491 if (reg_num >= 23 && reg_num <= 26)
2492 {
2493 while (reg_num >= 23 && reg_num <= 26)
2494 {
2495 pc += 4;
2496 status = target_read_memory (pc, buf, 4);
2497 inst = extract_unsigned_integer (buf, 4);
2498 if (status != 0)
2499 return pc;
2500 reg_num = inst_saves_gr (inst);
2501 }
2502 args_stored = 0;
2503 continue;
2504 }
2505
2506 reg_num = inst_saves_fr (inst);
2507 save_fr &= ~(1 << reg_num);
2508
2509 status = target_read_memory (pc + 4, buf, 4);
2510 next_inst = extract_unsigned_integer (buf, 4);
2511
2512 /* Yow! */
2513 if (status != 0)
2514 return pc;
2515
2516 /* We've got to be read to handle the ldo before the fp register
2517 save. */
2518 if ((inst & 0xfc000000) == 0x34000000
2519 && inst_saves_fr (next_inst) >= 4
2520 && inst_saves_fr (next_inst) <= 7)
2521 {
2522 /* So we drop into the code below in a reasonable state. */
2523 reg_num = inst_saves_fr (next_inst);
2524 pc -= 4;
2525 }
2526
2527 /* Ugh. Also account for argument stores into the stack.
2528 This is a kludge as on the HP compiler sets this bit and it
2529 never does prologue scheduling. So once we see one, skip past
2530 all of them. */
2531 if (reg_num >= 4 && reg_num <= 7)
2532 {
2533 while (reg_num >= 4 && reg_num <= 7)
2534 {
2535 pc += 8;
2536 status = target_read_memory (pc, buf, 4);
2537 inst = extract_unsigned_integer (buf, 4);
2538 if (status != 0)
2539 return pc;
2540 if ((inst & 0xfc000000) != 0x34000000)
2541 break;
2542 status = target_read_memory (pc + 4, buf, 4);
2543 next_inst = extract_unsigned_integer (buf, 4);
2544 if (status != 0)
2545 return pc;
2546 reg_num = inst_saves_fr (next_inst);
2547 }
2548 args_stored = 0;
2549 continue;
2550 }
2551
2552 /* Quit if we hit any kind of branch. This can happen if a prologue
2553 instruction is in the delay slot of the first call/branch. */
2554 if (is_branch (inst))
2555 break;
2556
2557 /* What a crock. The HP compilers set args_stored even if no
2558 arguments were stored into the stack (boo hiss). This could
2559 cause this code to then skip a bunch of user insns (up to the
2560 first branch).
2561
2562 To combat this we try to identify when args_stored was bogusly
2563 set and clear it. We only do this when args_stored is nonzero,
2564 all other resources are accounted for, and nothing changed on
2565 this pass. */
2566 if (args_stored
2567 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2568 && old_save_gr == save_gr && old_save_fr == save_fr
2569 && old_save_rp == save_rp && old_save_sp == save_sp
2570 && old_stack_remaining == stack_remaining)
2571 break;
2572
2573 /* Bump the PC. */
2574 pc += 4;
2575 }
2576
2577 /* We've got a tenative location for the end of the prologue. However
2578 because of limitations in the unwind descriptor mechanism we may
2579 have went too far into user code looking for the save of a register
2580 that does not exist. So, if there registers we expected to be saved
2581 but never were, mask them out and restart.
2582
2583 This should only happen in optimized code, and should be very rare. */
2584 if (save_gr || (save_fr && ! (restart_fr || restart_gr)))
2585 {
2586 pc = orig_pc;
2587 restart_gr = save_gr;
2588 restart_fr = save_fr;
2589 goto restart;
2590 }
2591
2592 return pc;
2593 }
2594
2595 /* Put here the code to store, into a struct frame_saved_regs,
2596 the addresses of the saved registers of frame described by FRAME_INFO.
2597 This includes special registers such as pc and fp saved in special
2598 ways in the stack frame. sp is even more special:
2599 the address we return for it IS the sp for the next frame. */
2600
2601 void
2602 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
2603 struct frame_info *frame_info;
2604 struct frame_saved_regs *frame_saved_regs;
2605 {
2606 CORE_ADDR pc;
2607 struct unwind_table_entry *u;
2608 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2609 int status, i, reg;
2610 char buf[4];
2611 int fp_loc = -1;
2612
2613 /* Zero out everything. */
2614 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2615
2616 /* Call dummy frames always look the same, so there's no need to
2617 examine the dummy code to determine locations of saved registers;
2618 instead, let find_dummy_frame_regs fill in the correct offsets
2619 for the saved registers. */
2620 if ((frame_info->pc >= frame_info->frame
2621 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2622 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2623 + 6 * 4)))
2624 find_dummy_frame_regs (frame_info, frame_saved_regs);
2625
2626 /* Interrupt handlers are special too. They lay out the register
2627 state in the exact same order as the register numbers in GDB. */
2628 if (pc_in_interrupt_handler (frame_info->pc))
2629 {
2630 for (i = 0; i < NUM_REGS; i++)
2631 {
2632 /* SP is a little special. */
2633 if (i == SP_REGNUM)
2634 frame_saved_regs->regs[SP_REGNUM]
2635 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
2636 else
2637 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
2638 }
2639 return;
2640 }
2641
2642 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
2643 /* Handle signal handler callers. */
2644 if (frame_info->signal_handler_caller)
2645 {
2646 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
2647 return;
2648 }
2649 #endif
2650
2651 /* Get the starting address of the function referred to by the PC
2652 saved in frame. */
2653 pc = get_pc_function_start (frame_info->pc);
2654
2655 /* Yow! */
2656 u = find_unwind_entry (pc);
2657 if (!u)
2658 return;
2659
2660 /* This is how much of a frame adjustment we need to account for. */
2661 stack_remaining = u->Total_frame_size << 3;
2662
2663 /* Magic register saves we want to know about. */
2664 save_rp = u->Save_RP;
2665 save_sp = u->Save_SP;
2666
2667 /* Turn the Entry_GR field into a bitmask. */
2668 save_gr = 0;
2669 for (i = 3; i < u->Entry_GR + 3; i++)
2670 {
2671 /* Frame pointer gets saved into a special location. */
2672 if (u->Save_SP && i == FP_REGNUM)
2673 continue;
2674
2675 save_gr |= (1 << i);
2676 }
2677
2678 /* Turn the Entry_FR field into a bitmask too. */
2679 save_fr = 0;
2680 for (i = 12; i < u->Entry_FR + 12; i++)
2681 save_fr |= (1 << i);
2682
2683 /* The frame always represents the value of %sp at entry to the
2684 current function (and is thus equivalent to the "saved" stack
2685 pointer. */
2686 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
2687
2688 /* Loop until we find everything of interest or hit a branch.
2689
2690 For unoptimized GCC code and for any HP CC code this will never ever
2691 examine any user instructions.
2692
2693 For optimzied GCC code we're faced with problems. GCC will schedule
2694 its prologue and make prologue instructions available for delay slot
2695 filling. The end result is user code gets mixed in with the prologue
2696 and a prologue instruction may be in the delay slot of the first branch
2697 or call.
2698
2699 Some unexpected things are expected with debugging optimized code, so
2700 we allow this routine to walk past user instructions in optimized
2701 GCC code. */
2702 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2703 {
2704 status = target_read_memory (pc, buf, 4);
2705 inst = extract_unsigned_integer (buf, 4);
2706
2707 /* Yow! */
2708 if (status != 0)
2709 return;
2710
2711 /* Note the interesting effects of this instruction. */
2712 stack_remaining -= prologue_inst_adjust_sp (inst);
2713
2714 /* There is only one instruction used for saving RP into the stack. */
2715 if (inst == 0x6bc23fd9)
2716 {
2717 save_rp = 0;
2718 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
2719 }
2720
2721 /* Just note that we found the save of SP into the stack. The
2722 value for frame_saved_regs was computed above. */
2723 if ((inst & 0xffffc000) == 0x6fc10000)
2724 save_sp = 0;
2725
2726 /* Account for general and floating-point register saves. */
2727 reg = inst_saves_gr (inst);
2728 if (reg >= 3 && reg <= 18
2729 && (!u->Save_SP || reg != FP_REGNUM))
2730 {
2731 save_gr &= ~(1 << reg);
2732
2733 /* stwm with a positive displacement is a *post modify*. */
2734 if ((inst >> 26) == 0x1b
2735 && extract_14 (inst) >= 0)
2736 frame_saved_regs->regs[reg] = frame_info->frame;
2737 else
2738 {
2739 /* Handle code with and without frame pointers. */
2740 if (u->Save_SP)
2741 frame_saved_regs->regs[reg]
2742 = frame_info->frame + extract_14 (inst);
2743 else
2744 frame_saved_regs->regs[reg]
2745 = frame_info->frame + (u->Total_frame_size << 3)
2746 + extract_14 (inst);
2747 }
2748 }
2749
2750
2751 /* GCC handles callee saved FP regs a little differently.
2752
2753 It emits an instruction to put the value of the start of
2754 the FP store area into %r1. It then uses fstds,ma with
2755 a basereg of %r1 for the stores.
2756
2757 HP CC emits them at the current stack pointer modifying
2758 the stack pointer as it stores each register. */
2759
2760 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2761 if ((inst & 0xffffc000) == 0x34610000
2762 || (inst & 0xffffc000) == 0x37c10000)
2763 fp_loc = extract_14 (inst);
2764
2765 reg = inst_saves_fr (inst);
2766 if (reg >= 12 && reg <= 21)
2767 {
2768 /* Note +4 braindamage below is necessary because the FP status
2769 registers are internally 8 registers rather than the expected
2770 4 registers. */
2771 save_fr &= ~(1 << reg);
2772 if (fp_loc == -1)
2773 {
2774 /* 1st HP CC FP register store. After this instruction
2775 we've set enough state that the GCC and HPCC code are
2776 both handled in the same manner. */
2777 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
2778 fp_loc = 8;
2779 }
2780 else
2781 {
2782 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
2783 = frame_info->frame + fp_loc;
2784 fp_loc += 8;
2785 }
2786 }
2787
2788 /* Quit if we hit any kind of branch. This can happen if a prologue
2789 instruction is in the delay slot of the first call/branch. */
2790 if (is_branch (inst))
2791 break;
2792
2793 /* Bump the PC. */
2794 pc += 4;
2795 }
2796 }
2797
2798 #ifdef MAINTENANCE_CMDS
2799
2800 static void
2801 unwind_command (exp, from_tty)
2802 char *exp;
2803 int from_tty;
2804 {
2805 CORE_ADDR address;
2806 struct unwind_table_entry *u;
2807
2808 /* If we have an expression, evaluate it and use it as the address. */
2809
2810 if (exp != 0 && *exp != 0)
2811 address = parse_and_eval_address (exp);
2812 else
2813 return;
2814
2815 u = find_unwind_entry (address);
2816
2817 if (!u)
2818 {
2819 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2820 return;
2821 }
2822
2823 printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
2824
2825 printf_unfiltered ("\tregion_start = ");
2826 print_address (u->region_start, gdb_stdout);
2827
2828 printf_unfiltered ("\n\tregion_end = ");
2829 print_address (u->region_end, gdb_stdout);
2830
2831 #ifdef __STDC__
2832 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2833 #else
2834 #define pif(FLD) if (u->FLD) printf_unfiltered (" FLD");
2835 #endif
2836
2837 printf_unfiltered ("\n\tflags =");
2838 pif (Cannot_unwind);
2839 pif (Millicode);
2840 pif (Millicode_save_sr0);
2841 pif (Entry_SR);
2842 pif (Args_stored);
2843 pif (Variable_Frame);
2844 pif (Separate_Package_Body);
2845 pif (Frame_Extension_Millicode);
2846 pif (Stack_Overflow_Check);
2847 pif (Two_Instruction_SP_Increment);
2848 pif (Ada_Region);
2849 pif (Save_SP);
2850 pif (Save_RP);
2851 pif (Save_MRP_in_frame);
2852 pif (extn_ptr_defined);
2853 pif (Cleanup_defined);
2854 pif (MPE_XL_interrupt_marker);
2855 pif (HP_UX_interrupt_marker);
2856 pif (Large_frame);
2857
2858 putchar_unfiltered ('\n');
2859
2860 #ifdef __STDC__
2861 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2862 #else
2863 #define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD);
2864 #endif
2865
2866 pin (Region_description);
2867 pin (Entry_FR);
2868 pin (Entry_GR);
2869 pin (Total_frame_size);
2870 }
2871 #endif /* MAINTENANCE_CMDS */
2872
2873 void
2874 _initialize_hppa_tdep ()
2875 {
2876 tm_print_insn = print_insn_hppa;
2877
2878 #ifdef MAINTENANCE_CMDS
2879 add_cmd ("unwind", class_maintenance, unwind_command,
2880 "Print unwind table entry at given address.",
2881 &maintenanceprintlist);
2882 #endif /* MAINTENANCE_CMDS */
2883 }