]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/hppa-tdep.c
2007-11-02 Markus Deuling <deuling@de.ibm.com>
[thirdparty/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA-RISC architecture.
2
3 Copyright (C) 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24
25 #include "defs.h"
26 #include "bfd.h"
27 #include "inferior.h"
28 #include "regcache.h"
29 #include "completer.h"
30 #include "osabi.h"
31 #include "gdb_assert.h"
32 #include "gdb_stdint.h"
33 #include "arch-utils.h"
34 /* For argument passing to the inferior */
35 #include "symtab.h"
36 #include "dis-asm.h"
37 #include "trad-frame.h"
38 #include "frame-unwind.h"
39 #include "frame-base.h"
40
41 #include "gdbcore.h"
42 #include "gdbcmd.h"
43 #include "gdbtypes.h"
44 #include "objfiles.h"
45 #include "hppa-tdep.h"
46
47 static int hppa_debug = 0;
48
49 /* Some local constants. */
50 static const int hppa32_num_regs = 128;
51 static const int hppa64_num_regs = 96;
52
53 /* hppa-specific object data -- unwind and solib info.
54 TODO/maybe: think about splitting this into two parts; the unwind data is
55 common to all hppa targets, but is only used in this file; we can register
56 that separately and make this static. The solib data is probably hpux-
57 specific, so we can create a separate extern objfile_data that is registered
58 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
59 const struct objfile_data *hppa_objfile_priv_data = NULL;
60
61 /* Get at various relevent fields of an instruction word. */
62 #define MASK_5 0x1f
63 #define MASK_11 0x7ff
64 #define MASK_14 0x3fff
65 #define MASK_21 0x1fffff
66
67 /* Sizes (in bytes) of the native unwind entries. */
68 #define UNWIND_ENTRY_SIZE 16
69 #define STUB_UNWIND_ENTRY_SIZE 8
70
71 /* Routines to extract various sized constants out of hppa
72 instructions. */
73
74 /* This assumes that no garbage lies outside of the lower bits of
75 value. */
76
77 int
78 hppa_sign_extend (unsigned val, unsigned bits)
79 {
80 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
81 }
82
83 /* For many immediate values the sign bit is the low bit! */
84
85 int
86 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
87 {
88 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
89 }
90
91 /* Extract the bits at positions between FROM and TO, using HP's numbering
92 (MSB = 0). */
93
94 int
95 hppa_get_field (unsigned word, int from, int to)
96 {
97 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
98 }
99
100 /* extract the immediate field from a ld{bhw}s instruction */
101
102 int
103 hppa_extract_5_load (unsigned word)
104 {
105 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
106 }
107
108 /* extract the immediate field from a break instruction */
109
110 unsigned
111 hppa_extract_5r_store (unsigned word)
112 {
113 return (word & MASK_5);
114 }
115
116 /* extract the immediate field from a {sr}sm instruction */
117
118 unsigned
119 hppa_extract_5R_store (unsigned word)
120 {
121 return (word >> 16 & MASK_5);
122 }
123
124 /* extract a 14 bit immediate field */
125
126 int
127 hppa_extract_14 (unsigned word)
128 {
129 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
130 }
131
132 /* extract a 21 bit constant */
133
134 int
135 hppa_extract_21 (unsigned word)
136 {
137 int val;
138
139 word &= MASK_21;
140 word <<= 11;
141 val = hppa_get_field (word, 20, 20);
142 val <<= 11;
143 val |= hppa_get_field (word, 9, 19);
144 val <<= 2;
145 val |= hppa_get_field (word, 5, 6);
146 val <<= 5;
147 val |= hppa_get_field (word, 0, 4);
148 val <<= 2;
149 val |= hppa_get_field (word, 7, 8);
150 return hppa_sign_extend (val, 21) << 11;
151 }
152
153 /* extract a 17 bit constant from branch instructions, returning the
154 19 bit signed value. */
155
156 int
157 hppa_extract_17 (unsigned word)
158 {
159 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
160 hppa_get_field (word, 29, 29) << 10 |
161 hppa_get_field (word, 11, 15) << 11 |
162 (word & 0x1) << 16, 17) << 2;
163 }
164
165 CORE_ADDR
166 hppa_symbol_address(const char *sym)
167 {
168 struct minimal_symbol *minsym;
169
170 minsym = lookup_minimal_symbol (sym, NULL, NULL);
171 if (minsym)
172 return SYMBOL_VALUE_ADDRESS (minsym);
173 else
174 return (CORE_ADDR)-1;
175 }
176
177 struct hppa_objfile_private *
178 hppa_init_objfile_priv_data (struct objfile *objfile)
179 {
180 struct hppa_objfile_private *priv;
181
182 priv = (struct hppa_objfile_private *)
183 obstack_alloc (&objfile->objfile_obstack,
184 sizeof (struct hppa_objfile_private));
185 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
186 memset (priv, 0, sizeof (*priv));
187
188 return priv;
189 }
190 \f
191
192 /* Compare the start address for two unwind entries returning 1 if
193 the first address is larger than the second, -1 if the second is
194 larger than the first, and zero if they are equal. */
195
196 static int
197 compare_unwind_entries (const void *arg1, const void *arg2)
198 {
199 const struct unwind_table_entry *a = arg1;
200 const struct unwind_table_entry *b = arg2;
201
202 if (a->region_start > b->region_start)
203 return 1;
204 else if (a->region_start < b->region_start)
205 return -1;
206 else
207 return 0;
208 }
209
210 static void
211 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
212 {
213 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
214 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
215 {
216 bfd_vma value = section->vma - section->filepos;
217 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
218
219 if (value < *low_text_segment_address)
220 *low_text_segment_address = value;
221 }
222 }
223
224 static void
225 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
226 asection *section, unsigned int entries, unsigned int size,
227 CORE_ADDR text_offset)
228 {
229 /* We will read the unwind entries into temporary memory, then
230 fill in the actual unwind table. */
231
232 if (size > 0)
233 {
234 unsigned long tmp;
235 unsigned i;
236 char *buf = alloca (size);
237 CORE_ADDR low_text_segment_address;
238
239 /* For ELF targets, then unwinds are supposed to
240 be segment relative offsets instead of absolute addresses.
241
242 Note that when loading a shared library (text_offset != 0) the
243 unwinds are already relative to the text_offset that will be
244 passed in. */
245 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
246 {
247 low_text_segment_address = -1;
248
249 bfd_map_over_sections (objfile->obfd,
250 record_text_segment_lowaddr,
251 &low_text_segment_address);
252
253 text_offset = low_text_segment_address;
254 }
255 else if (gdbarch_tdep (current_gdbarch)->solib_get_text_base)
256 {
257 text_offset = gdbarch_tdep (current_gdbarch)->solib_get_text_base (objfile);
258 }
259
260 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
261
262 /* Now internalize the information being careful to handle host/target
263 endian issues. */
264 for (i = 0; i < entries; i++)
265 {
266 table[i].region_start = bfd_get_32 (objfile->obfd,
267 (bfd_byte *) buf);
268 table[i].region_start += text_offset;
269 buf += 4;
270 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
271 table[i].region_end += text_offset;
272 buf += 4;
273 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
274 buf += 4;
275 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
276 table[i].Millicode = (tmp >> 30) & 0x1;
277 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
278 table[i].Region_description = (tmp >> 27) & 0x3;
279 table[i].reserved = (tmp >> 26) & 0x1;
280 table[i].Entry_SR = (tmp >> 25) & 0x1;
281 table[i].Entry_FR = (tmp >> 21) & 0xf;
282 table[i].Entry_GR = (tmp >> 16) & 0x1f;
283 table[i].Args_stored = (tmp >> 15) & 0x1;
284 table[i].Variable_Frame = (tmp >> 14) & 0x1;
285 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
286 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
287 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
288 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
289 table[i].sr4export = (tmp >> 9) & 0x1;
290 table[i].cxx_info = (tmp >> 8) & 0x1;
291 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
292 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
293 table[i].reserved1 = (tmp >> 5) & 0x1;
294 table[i].Save_SP = (tmp >> 4) & 0x1;
295 table[i].Save_RP = (tmp >> 3) & 0x1;
296 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
297 table[i].save_r19 = (tmp >> 1) & 0x1;
298 table[i].Cleanup_defined = tmp & 0x1;
299 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
300 buf += 4;
301 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
302 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
303 table[i].Large_frame = (tmp >> 29) & 0x1;
304 table[i].alloca_frame = (tmp >> 28) & 0x1;
305 table[i].reserved2 = (tmp >> 27) & 0x1;
306 table[i].Total_frame_size = tmp & 0x7ffffff;
307
308 /* Stub unwinds are handled elsewhere. */
309 table[i].stub_unwind.stub_type = 0;
310 table[i].stub_unwind.padding = 0;
311 }
312 }
313 }
314
315 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
316 the object file. This info is used mainly by find_unwind_entry() to find
317 out the stack frame size and frame pointer used by procedures. We put
318 everything on the psymbol obstack in the objfile so that it automatically
319 gets freed when the objfile is destroyed. */
320
321 static void
322 read_unwind_info (struct objfile *objfile)
323 {
324 asection *unwind_sec, *stub_unwind_sec;
325 unsigned unwind_size, stub_unwind_size, total_size;
326 unsigned index, unwind_entries;
327 unsigned stub_entries, total_entries;
328 CORE_ADDR text_offset;
329 struct hppa_unwind_info *ui;
330 struct hppa_objfile_private *obj_private;
331
332 text_offset = ANOFFSET (objfile->section_offsets, 0);
333 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
334 sizeof (struct hppa_unwind_info));
335
336 ui->table = NULL;
337 ui->cache = NULL;
338 ui->last = -1;
339
340 /* For reasons unknown the HP PA64 tools generate multiple unwinder
341 sections in a single executable. So we just iterate over every
342 section in the BFD looking for unwinder sections intead of trying
343 to do a lookup with bfd_get_section_by_name.
344
345 First determine the total size of the unwind tables so that we
346 can allocate memory in a nice big hunk. */
347 total_entries = 0;
348 for (unwind_sec = objfile->obfd->sections;
349 unwind_sec;
350 unwind_sec = unwind_sec->next)
351 {
352 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
353 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
354 {
355 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
356 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
357
358 total_entries += unwind_entries;
359 }
360 }
361
362 /* Now compute the size of the stub unwinds. Note the ELF tools do not
363 use stub unwinds at the current time. */
364 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
365
366 if (stub_unwind_sec)
367 {
368 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
369 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
370 }
371 else
372 {
373 stub_unwind_size = 0;
374 stub_entries = 0;
375 }
376
377 /* Compute total number of unwind entries and their total size. */
378 total_entries += stub_entries;
379 total_size = total_entries * sizeof (struct unwind_table_entry);
380
381 /* Allocate memory for the unwind table. */
382 ui->table = (struct unwind_table_entry *)
383 obstack_alloc (&objfile->objfile_obstack, total_size);
384 ui->last = total_entries - 1;
385
386 /* Now read in each unwind section and internalize the standard unwind
387 entries. */
388 index = 0;
389 for (unwind_sec = objfile->obfd->sections;
390 unwind_sec;
391 unwind_sec = unwind_sec->next)
392 {
393 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
394 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
395 {
396 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
397 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
398
399 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
400 unwind_entries, unwind_size, text_offset);
401 index += unwind_entries;
402 }
403 }
404
405 /* Now read in and internalize the stub unwind entries. */
406 if (stub_unwind_size > 0)
407 {
408 unsigned int i;
409 char *buf = alloca (stub_unwind_size);
410
411 /* Read in the stub unwind entries. */
412 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
413 0, stub_unwind_size);
414
415 /* Now convert them into regular unwind entries. */
416 for (i = 0; i < stub_entries; i++, index++)
417 {
418 /* Clear out the next unwind entry. */
419 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
420
421 /* Convert offset & size into region_start and region_end.
422 Stuff away the stub type into "reserved" fields. */
423 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
424 (bfd_byte *) buf);
425 ui->table[index].region_start += text_offset;
426 buf += 4;
427 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
428 (bfd_byte *) buf);
429 buf += 2;
430 ui->table[index].region_end
431 = ui->table[index].region_start + 4 *
432 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
433 buf += 2;
434 }
435
436 }
437
438 /* Unwind table needs to be kept sorted. */
439 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
440 compare_unwind_entries);
441
442 /* Keep a pointer to the unwind information. */
443 obj_private = (struct hppa_objfile_private *)
444 objfile_data (objfile, hppa_objfile_priv_data);
445 if (obj_private == NULL)
446 obj_private = hppa_init_objfile_priv_data (objfile);
447
448 obj_private->unwind_info = ui;
449 }
450
451 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
452 of the objfiles seeking the unwind table entry for this PC. Each objfile
453 contains a sorted list of struct unwind_table_entry. Since we do a binary
454 search of the unwind tables, we depend upon them to be sorted. */
455
456 struct unwind_table_entry *
457 find_unwind_entry (CORE_ADDR pc)
458 {
459 int first, middle, last;
460 struct objfile *objfile;
461 struct hppa_objfile_private *priv;
462
463 if (hppa_debug)
464 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
465 paddr_nz (pc));
466
467 /* A function at address 0? Not in HP-UX! */
468 if (pc == (CORE_ADDR) 0)
469 {
470 if (hppa_debug)
471 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
472 return NULL;
473 }
474
475 ALL_OBJFILES (objfile)
476 {
477 struct hppa_unwind_info *ui;
478 ui = NULL;
479 priv = objfile_data (objfile, hppa_objfile_priv_data);
480 if (priv)
481 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
482
483 if (!ui)
484 {
485 read_unwind_info (objfile);
486 priv = objfile_data (objfile, hppa_objfile_priv_data);
487 if (priv == NULL)
488 error (_("Internal error reading unwind information."));
489 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
490 }
491
492 /* First, check the cache */
493
494 if (ui->cache
495 && pc >= ui->cache->region_start
496 && pc <= ui->cache->region_end)
497 {
498 if (hppa_debug)
499 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
500 paddr_nz ((uintptr_t) ui->cache));
501 return ui->cache;
502 }
503
504 /* Not in the cache, do a binary search */
505
506 first = 0;
507 last = ui->last;
508
509 while (first <= last)
510 {
511 middle = (first + last) / 2;
512 if (pc >= ui->table[middle].region_start
513 && pc <= ui->table[middle].region_end)
514 {
515 ui->cache = &ui->table[middle];
516 if (hppa_debug)
517 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
518 paddr_nz ((uintptr_t) ui->cache));
519 return &ui->table[middle];
520 }
521
522 if (pc < ui->table[middle].region_start)
523 last = middle - 1;
524 else
525 first = middle + 1;
526 }
527 } /* ALL_OBJFILES() */
528
529 if (hppa_debug)
530 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
531
532 return NULL;
533 }
534
535 /* The epilogue is defined here as the area either on the `bv' instruction
536 itself or an instruction which destroys the function's stack frame.
537
538 We do not assume that the epilogue is at the end of a function as we can
539 also have return sequences in the middle of a function. */
540 static int
541 hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
542 {
543 unsigned long status;
544 unsigned int inst;
545 char buf[4];
546 int off;
547
548 status = read_memory_nobpt (pc, buf, 4);
549 if (status != 0)
550 return 0;
551
552 inst = extract_unsigned_integer (buf, 4);
553
554 /* The most common way to perform a stack adjustment ldo X(sp),sp
555 We are destroying a stack frame if the offset is negative. */
556 if ((inst & 0xffffc000) == 0x37de0000
557 && hppa_extract_14 (inst) < 0)
558 return 1;
559
560 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
561 if (((inst & 0x0fc010e0) == 0x0fc010e0
562 || (inst & 0x0fc010e0) == 0x0fc010e0)
563 && hppa_extract_14 (inst) < 0)
564 return 1;
565
566 /* bv %r0(%rp) or bv,n %r0(%rp) */
567 if (inst == 0xe840c000 || inst == 0xe840c002)
568 return 1;
569
570 return 0;
571 }
572
573 static const unsigned char *
574 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
575 {
576 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
577 (*len) = sizeof (breakpoint);
578 return breakpoint;
579 }
580
581 /* Return the name of a register. */
582
583 static const char *
584 hppa32_register_name (struct gdbarch *gdbarch, int i)
585 {
586 static char *names[] = {
587 "flags", "r1", "rp", "r3",
588 "r4", "r5", "r6", "r7",
589 "r8", "r9", "r10", "r11",
590 "r12", "r13", "r14", "r15",
591 "r16", "r17", "r18", "r19",
592 "r20", "r21", "r22", "r23",
593 "r24", "r25", "r26", "dp",
594 "ret0", "ret1", "sp", "r31",
595 "sar", "pcoqh", "pcsqh", "pcoqt",
596 "pcsqt", "eiem", "iir", "isr",
597 "ior", "ipsw", "goto", "sr4",
598 "sr0", "sr1", "sr2", "sr3",
599 "sr5", "sr6", "sr7", "cr0",
600 "cr8", "cr9", "ccr", "cr12",
601 "cr13", "cr24", "cr25", "cr26",
602 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
603 "fpsr", "fpe1", "fpe2", "fpe3",
604 "fpe4", "fpe5", "fpe6", "fpe7",
605 "fr4", "fr4R", "fr5", "fr5R",
606 "fr6", "fr6R", "fr7", "fr7R",
607 "fr8", "fr8R", "fr9", "fr9R",
608 "fr10", "fr10R", "fr11", "fr11R",
609 "fr12", "fr12R", "fr13", "fr13R",
610 "fr14", "fr14R", "fr15", "fr15R",
611 "fr16", "fr16R", "fr17", "fr17R",
612 "fr18", "fr18R", "fr19", "fr19R",
613 "fr20", "fr20R", "fr21", "fr21R",
614 "fr22", "fr22R", "fr23", "fr23R",
615 "fr24", "fr24R", "fr25", "fr25R",
616 "fr26", "fr26R", "fr27", "fr27R",
617 "fr28", "fr28R", "fr29", "fr29R",
618 "fr30", "fr30R", "fr31", "fr31R"
619 };
620 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
621 return NULL;
622 else
623 return names[i];
624 }
625
626 static const char *
627 hppa64_register_name (struct gdbarch *gdbarch, int i)
628 {
629 static char *names[] = {
630 "flags", "r1", "rp", "r3",
631 "r4", "r5", "r6", "r7",
632 "r8", "r9", "r10", "r11",
633 "r12", "r13", "r14", "r15",
634 "r16", "r17", "r18", "r19",
635 "r20", "r21", "r22", "r23",
636 "r24", "r25", "r26", "dp",
637 "ret0", "ret1", "sp", "r31",
638 "sar", "pcoqh", "pcsqh", "pcoqt",
639 "pcsqt", "eiem", "iir", "isr",
640 "ior", "ipsw", "goto", "sr4",
641 "sr0", "sr1", "sr2", "sr3",
642 "sr5", "sr6", "sr7", "cr0",
643 "cr8", "cr9", "ccr", "cr12",
644 "cr13", "cr24", "cr25", "cr26",
645 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
646 "fpsr", "fpe1", "fpe2", "fpe3",
647 "fr4", "fr5", "fr6", "fr7",
648 "fr8", "fr9", "fr10", "fr11",
649 "fr12", "fr13", "fr14", "fr15",
650 "fr16", "fr17", "fr18", "fr19",
651 "fr20", "fr21", "fr22", "fr23",
652 "fr24", "fr25", "fr26", "fr27",
653 "fr28", "fr29", "fr30", "fr31"
654 };
655 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
656 return NULL;
657 else
658 return names[i];
659 }
660
661 static int
662 hppa64_dwarf_reg_to_regnum (int reg)
663 {
664 /* r0-r31 and sar map one-to-one. */
665 if (reg <= 32)
666 return reg;
667
668 /* fr4-fr31 are mapped from 72 in steps of 2. */
669 if (reg >= 72 || reg < 72 + 28 * 2)
670 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
671
672 error ("Invalid DWARF register num %d.", reg);
673 return -1;
674 }
675
676 /* This function pushes a stack frame with arguments as part of the
677 inferior function calling mechanism.
678
679 This is the version of the function for the 32-bit PA machines, in
680 which later arguments appear at lower addresses. (The stack always
681 grows towards higher addresses.)
682
683 We simply allocate the appropriate amount of stack space and put
684 arguments into their proper slots. */
685
686 static CORE_ADDR
687 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
688 struct regcache *regcache, CORE_ADDR bp_addr,
689 int nargs, struct value **args, CORE_ADDR sp,
690 int struct_return, CORE_ADDR struct_addr)
691 {
692 /* Stack base address at which any pass-by-reference parameters are
693 stored. */
694 CORE_ADDR struct_end = 0;
695 /* Stack base address at which the first parameter is stored. */
696 CORE_ADDR param_end = 0;
697
698 /* The inner most end of the stack after all the parameters have
699 been pushed. */
700 CORE_ADDR new_sp = 0;
701
702 /* Two passes. First pass computes the location of everything,
703 second pass writes the bytes out. */
704 int write_pass;
705
706 /* Global pointer (r19) of the function we are trying to call. */
707 CORE_ADDR gp;
708
709 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
710
711 for (write_pass = 0; write_pass < 2; write_pass++)
712 {
713 CORE_ADDR struct_ptr = 0;
714 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
715 struct_ptr is adjusted for each argument below, so the first
716 argument will end up at sp-36. */
717 CORE_ADDR param_ptr = 32;
718 int i;
719 int small_struct = 0;
720
721 for (i = 0; i < nargs; i++)
722 {
723 struct value *arg = args[i];
724 struct type *type = check_typedef (value_type (arg));
725 /* The corresponding parameter that is pushed onto the
726 stack, and [possibly] passed in a register. */
727 char param_val[8];
728 int param_len;
729 memset (param_val, 0, sizeof param_val);
730 if (TYPE_LENGTH (type) > 8)
731 {
732 /* Large parameter, pass by reference. Store the value
733 in "struct" area and then pass its address. */
734 param_len = 4;
735 struct_ptr += align_up (TYPE_LENGTH (type), 8);
736 if (write_pass)
737 write_memory (struct_end - struct_ptr, value_contents (arg),
738 TYPE_LENGTH (type));
739 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
740 }
741 else if (TYPE_CODE (type) == TYPE_CODE_INT
742 || TYPE_CODE (type) == TYPE_CODE_ENUM)
743 {
744 /* Integer value store, right aligned. "unpack_long"
745 takes care of any sign-extension problems. */
746 param_len = align_up (TYPE_LENGTH (type), 4);
747 store_unsigned_integer (param_val, param_len,
748 unpack_long (type,
749 value_contents (arg)));
750 }
751 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
752 {
753 /* Floating point value store, right aligned. */
754 param_len = align_up (TYPE_LENGTH (type), 4);
755 memcpy (param_val, value_contents (arg), param_len);
756 }
757 else
758 {
759 param_len = align_up (TYPE_LENGTH (type), 4);
760
761 /* Small struct value are stored right-aligned. */
762 memcpy (param_val + param_len - TYPE_LENGTH (type),
763 value_contents (arg), TYPE_LENGTH (type));
764
765 /* Structures of size 5, 6 and 7 bytes are special in that
766 the higher-ordered word is stored in the lower-ordered
767 argument, and even though it is a 8-byte quantity the
768 registers need not be 8-byte aligned. */
769 if (param_len > 4 && param_len < 8)
770 small_struct = 1;
771 }
772
773 param_ptr += param_len;
774 if (param_len == 8 && !small_struct)
775 param_ptr = align_up (param_ptr, 8);
776
777 /* First 4 non-FP arguments are passed in gr26-gr23.
778 First 4 32-bit FP arguments are passed in fr4L-fr7L.
779 First 2 64-bit FP arguments are passed in fr5 and fr7.
780
781 The rest go on the stack, starting at sp-36, towards lower
782 addresses. 8-byte arguments must be aligned to a 8-byte
783 stack boundary. */
784 if (write_pass)
785 {
786 write_memory (param_end - param_ptr, param_val, param_len);
787
788 /* There are some cases when we don't know the type
789 expected by the callee (e.g. for variadic functions), so
790 pass the parameters in both general and fp regs. */
791 if (param_ptr <= 48)
792 {
793 int grreg = 26 - (param_ptr - 36) / 4;
794 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
795 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
796
797 regcache_cooked_write (regcache, grreg, param_val);
798 regcache_cooked_write (regcache, fpLreg, param_val);
799
800 if (param_len > 4)
801 {
802 regcache_cooked_write (regcache, grreg + 1,
803 param_val + 4);
804
805 regcache_cooked_write (regcache, fpreg, param_val);
806 regcache_cooked_write (regcache, fpreg + 1,
807 param_val + 4);
808 }
809 }
810 }
811 }
812
813 /* Update the various stack pointers. */
814 if (!write_pass)
815 {
816 struct_end = sp + align_up (struct_ptr, 64);
817 /* PARAM_PTR already accounts for all the arguments passed
818 by the user. However, the ABI mandates minimum stack
819 space allocations for outgoing arguments. The ABI also
820 mandates minimum stack alignments which we must
821 preserve. */
822 param_end = struct_end + align_up (param_ptr, 64);
823 }
824 }
825
826 /* If a structure has to be returned, set up register 28 to hold its
827 address */
828 if (struct_return)
829 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
830
831 gp = tdep->find_global_pointer (function);
832
833 if (gp != 0)
834 regcache_cooked_write_unsigned (regcache, 19, gp);
835
836 /* Set the return address. */
837 if (!gdbarch_push_dummy_code_p (gdbarch))
838 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
839
840 /* Update the Stack Pointer. */
841 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
842
843 return param_end;
844 }
845
846 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
847 Runtime Architecture for PA-RISC 2.0", which is distributed as part
848 as of the HP-UX Software Transition Kit (STK). This implementation
849 is based on version 3.3, dated October 6, 1997. */
850
851 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
852
853 static int
854 hppa64_integral_or_pointer_p (const struct type *type)
855 {
856 switch (TYPE_CODE (type))
857 {
858 case TYPE_CODE_INT:
859 case TYPE_CODE_BOOL:
860 case TYPE_CODE_CHAR:
861 case TYPE_CODE_ENUM:
862 case TYPE_CODE_RANGE:
863 {
864 int len = TYPE_LENGTH (type);
865 return (len == 1 || len == 2 || len == 4 || len == 8);
866 }
867 case TYPE_CODE_PTR:
868 case TYPE_CODE_REF:
869 return (TYPE_LENGTH (type) == 8);
870 default:
871 break;
872 }
873
874 return 0;
875 }
876
877 /* Check whether TYPE is a "Floating Scalar Type". */
878
879 static int
880 hppa64_floating_p (const struct type *type)
881 {
882 switch (TYPE_CODE (type))
883 {
884 case TYPE_CODE_FLT:
885 {
886 int len = TYPE_LENGTH (type);
887 return (len == 4 || len == 8 || len == 16);
888 }
889 default:
890 break;
891 }
892
893 return 0;
894 }
895
896 /* If CODE points to a function entry address, try to look up the corresponding
897 function descriptor and return its address instead. If CODE is not a
898 function entry address, then just return it unchanged. */
899 static CORE_ADDR
900 hppa64_convert_code_addr_to_fptr (CORE_ADDR code)
901 {
902 struct obj_section *sec, *opd;
903
904 sec = find_pc_section (code);
905
906 if (!sec)
907 return code;
908
909 /* If CODE is in a data section, assume it's already a fptr. */
910 if (!(sec->the_bfd_section->flags & SEC_CODE))
911 return code;
912
913 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
914 {
915 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
916 break;
917 }
918
919 if (opd < sec->objfile->sections_end)
920 {
921 CORE_ADDR addr;
922
923 for (addr = opd->addr; addr < opd->endaddr; addr += 2 * 8)
924 {
925 ULONGEST opdaddr;
926 char tmp[8];
927
928 if (target_read_memory (addr, tmp, sizeof (tmp)))
929 break;
930 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp));
931
932 if (opdaddr == code)
933 return addr - 16;
934 }
935 }
936
937 return code;
938 }
939
940 static CORE_ADDR
941 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
942 struct regcache *regcache, CORE_ADDR bp_addr,
943 int nargs, struct value **args, CORE_ADDR sp,
944 int struct_return, CORE_ADDR struct_addr)
945 {
946 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
947 int i, offset = 0;
948 CORE_ADDR gp;
949
950 /* "The outgoing parameter area [...] must be aligned at a 16-byte
951 boundary." */
952 sp = align_up (sp, 16);
953
954 for (i = 0; i < nargs; i++)
955 {
956 struct value *arg = args[i];
957 struct type *type = value_type (arg);
958 int len = TYPE_LENGTH (type);
959 const bfd_byte *valbuf;
960 bfd_byte fptrbuf[8];
961 int regnum;
962
963 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
964 offset = align_up (offset, 8);
965
966 if (hppa64_integral_or_pointer_p (type))
967 {
968 /* "Integral scalar parameters smaller than 64 bits are
969 padded on the left (i.e., the value is in the
970 least-significant bits of the 64-bit storage unit, and
971 the high-order bits are undefined)." Therefore we can
972 safely sign-extend them. */
973 if (len < 8)
974 {
975 arg = value_cast (builtin_type_int64, arg);
976 len = 8;
977 }
978 }
979 else if (hppa64_floating_p (type))
980 {
981 if (len > 8)
982 {
983 /* "Quad-precision (128-bit) floating-point scalar
984 parameters are aligned on a 16-byte boundary." */
985 offset = align_up (offset, 16);
986
987 /* "Double-extended- and quad-precision floating-point
988 parameters within the first 64 bytes of the parameter
989 list are always passed in general registers." */
990 }
991 else
992 {
993 if (len == 4)
994 {
995 /* "Single-precision (32-bit) floating-point scalar
996 parameters are padded on the left with 32 bits of
997 garbage (i.e., the floating-point value is in the
998 least-significant 32 bits of a 64-bit storage
999 unit)." */
1000 offset += 4;
1001 }
1002
1003 /* "Single- and double-precision floating-point
1004 parameters in this area are passed according to the
1005 available formal parameter information in a function
1006 prototype. [...] If no prototype is in scope,
1007 floating-point parameters must be passed both in the
1008 corresponding general registers and in the
1009 corresponding floating-point registers." */
1010 regnum = HPPA64_FP4_REGNUM + offset / 8;
1011
1012 if (regnum < HPPA64_FP4_REGNUM + 8)
1013 {
1014 /* "Single-precision floating-point parameters, when
1015 passed in floating-point registers, are passed in
1016 the right halves of the floating point registers;
1017 the left halves are unused." */
1018 regcache_cooked_write_part (regcache, regnum, offset % 8,
1019 len, value_contents (arg));
1020 }
1021 }
1022 }
1023 else
1024 {
1025 if (len > 8)
1026 {
1027 /* "Aggregates larger than 8 bytes are aligned on a
1028 16-byte boundary, possibly leaving an unused argument
1029 slot, which is filled with garbage. If necessary,
1030 they are padded on the right (with garbage), to a
1031 multiple of 8 bytes." */
1032 offset = align_up (offset, 16);
1033 }
1034 }
1035
1036 /* If we are passing a function pointer, make sure we pass a function
1037 descriptor instead of the function entry address. */
1038 if (TYPE_CODE (type) == TYPE_CODE_PTR
1039 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1040 {
1041 ULONGEST codeptr, fptr;
1042
1043 codeptr = unpack_long (type, value_contents (arg));
1044 fptr = hppa64_convert_code_addr_to_fptr (codeptr);
1045 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), fptr);
1046 valbuf = fptrbuf;
1047 }
1048 else
1049 {
1050 valbuf = value_contents (arg);
1051 }
1052
1053 /* Always store the argument in memory. */
1054 write_memory (sp + offset, valbuf, len);
1055
1056 regnum = HPPA_ARG0_REGNUM - offset / 8;
1057 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1058 {
1059 regcache_cooked_write_part (regcache, regnum,
1060 offset % 8, min (len, 8), valbuf);
1061 offset += min (len, 8);
1062 valbuf += min (len, 8);
1063 len -= min (len, 8);
1064 regnum--;
1065 }
1066
1067 offset += len;
1068 }
1069
1070 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1071 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1072
1073 /* Allocate the outgoing parameter area. Make sure the outgoing
1074 parameter area is multiple of 16 bytes in length. */
1075 sp += max (align_up (offset, 16), 64);
1076
1077 /* Allocate 32-bytes of scratch space. The documentation doesn't
1078 mention this, but it seems to be needed. */
1079 sp += 32;
1080
1081 /* Allocate the frame marker area. */
1082 sp += 16;
1083
1084 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1085 its address. */
1086 if (struct_return)
1087 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1088
1089 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1090 gp = tdep->find_global_pointer (function);
1091 if (gp != 0)
1092 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1093
1094 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1095 if (!gdbarch_push_dummy_code_p (gdbarch))
1096 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1097
1098 /* Set up GR30 to hold the stack pointer (sp). */
1099 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1100
1101 return sp;
1102 }
1103 \f
1104
1105 /* Handle 32/64-bit struct return conventions. */
1106
1107 static enum return_value_convention
1108 hppa32_return_value (struct gdbarch *gdbarch,
1109 struct type *type, struct regcache *regcache,
1110 gdb_byte *readbuf, const gdb_byte *writebuf)
1111 {
1112 if (TYPE_LENGTH (type) <= 2 * 4)
1113 {
1114 /* The value always lives in the right hand end of the register
1115 (or register pair)? */
1116 int b;
1117 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1118 int part = TYPE_LENGTH (type) % 4;
1119 /* The left hand register contains only part of the value,
1120 transfer that first so that the rest can be xfered as entire
1121 4-byte registers. */
1122 if (part > 0)
1123 {
1124 if (readbuf != NULL)
1125 regcache_cooked_read_part (regcache, reg, 4 - part,
1126 part, readbuf);
1127 if (writebuf != NULL)
1128 regcache_cooked_write_part (regcache, reg, 4 - part,
1129 part, writebuf);
1130 reg++;
1131 }
1132 /* Now transfer the remaining register values. */
1133 for (b = part; b < TYPE_LENGTH (type); b += 4)
1134 {
1135 if (readbuf != NULL)
1136 regcache_cooked_read (regcache, reg, readbuf + b);
1137 if (writebuf != NULL)
1138 regcache_cooked_write (regcache, reg, writebuf + b);
1139 reg++;
1140 }
1141 return RETURN_VALUE_REGISTER_CONVENTION;
1142 }
1143 else
1144 return RETURN_VALUE_STRUCT_CONVENTION;
1145 }
1146
1147 static enum return_value_convention
1148 hppa64_return_value (struct gdbarch *gdbarch,
1149 struct type *type, struct regcache *regcache,
1150 gdb_byte *readbuf, const gdb_byte *writebuf)
1151 {
1152 int len = TYPE_LENGTH (type);
1153 int regnum, offset;
1154
1155 if (len > 16)
1156 {
1157 /* All return values larget than 128 bits must be aggregate
1158 return values. */
1159 gdb_assert (!hppa64_integral_or_pointer_p (type));
1160 gdb_assert (!hppa64_floating_p (type));
1161
1162 /* "Aggregate return values larger than 128 bits are returned in
1163 a buffer allocated by the caller. The address of the buffer
1164 must be passed in GR 28." */
1165 return RETURN_VALUE_STRUCT_CONVENTION;
1166 }
1167
1168 if (hppa64_integral_or_pointer_p (type))
1169 {
1170 /* "Integral return values are returned in GR 28. Values
1171 smaller than 64 bits are padded on the left (with garbage)." */
1172 regnum = HPPA_RET0_REGNUM;
1173 offset = 8 - len;
1174 }
1175 else if (hppa64_floating_p (type))
1176 {
1177 if (len > 8)
1178 {
1179 /* "Double-extended- and quad-precision floating-point
1180 values are returned in GRs 28 and 29. The sign,
1181 exponent, and most-significant bits of the mantissa are
1182 returned in GR 28; the least-significant bits of the
1183 mantissa are passed in GR 29. For double-extended
1184 precision values, GR 29 is padded on the right with 48
1185 bits of garbage." */
1186 regnum = HPPA_RET0_REGNUM;
1187 offset = 0;
1188 }
1189 else
1190 {
1191 /* "Single-precision and double-precision floating-point
1192 return values are returned in FR 4R (single precision) or
1193 FR 4 (double-precision)." */
1194 regnum = HPPA64_FP4_REGNUM;
1195 offset = 8 - len;
1196 }
1197 }
1198 else
1199 {
1200 /* "Aggregate return values up to 64 bits in size are returned
1201 in GR 28. Aggregates smaller than 64 bits are left aligned
1202 in the register; the pad bits on the right are undefined."
1203
1204 "Aggregate return values between 65 and 128 bits are returned
1205 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1206 the remaining bits are placed, left aligned, in GR 29. The
1207 pad bits on the right of GR 29 (if any) are undefined." */
1208 regnum = HPPA_RET0_REGNUM;
1209 offset = 0;
1210 }
1211
1212 if (readbuf)
1213 {
1214 while (len > 0)
1215 {
1216 regcache_cooked_read_part (regcache, regnum, offset,
1217 min (len, 8), readbuf);
1218 readbuf += min (len, 8);
1219 len -= min (len, 8);
1220 regnum++;
1221 }
1222 }
1223
1224 if (writebuf)
1225 {
1226 while (len > 0)
1227 {
1228 regcache_cooked_write_part (regcache, regnum, offset,
1229 min (len, 8), writebuf);
1230 writebuf += min (len, 8);
1231 len -= min (len, 8);
1232 regnum++;
1233 }
1234 }
1235
1236 return RETURN_VALUE_REGISTER_CONVENTION;
1237 }
1238 \f
1239
1240 static CORE_ADDR
1241 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1242 struct target_ops *targ)
1243 {
1244 if (addr & 2)
1245 {
1246 CORE_ADDR plabel = addr & ~3;
1247 return read_memory_typed_address (plabel, builtin_type_void_func_ptr);
1248 }
1249
1250 return addr;
1251 }
1252
1253 static CORE_ADDR
1254 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1255 {
1256 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1257 and not _bit_)! */
1258 return align_up (addr, 64);
1259 }
1260
1261 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1262
1263 static CORE_ADDR
1264 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1265 {
1266 /* Just always 16-byte align. */
1267 return align_up (addr, 16);
1268 }
1269
1270 CORE_ADDR
1271 hppa_read_pc (struct regcache *regcache)
1272 {
1273 ULONGEST ipsw;
1274 ULONGEST pc;
1275
1276 regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
1277 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
1278
1279 /* If the current instruction is nullified, then we are effectively
1280 still executing the previous instruction. Pretend we are still
1281 there. This is needed when single stepping; if the nullified
1282 instruction is on a different line, we don't want GDB to think
1283 we've stepped onto that line. */
1284 if (ipsw & 0x00200000)
1285 pc -= 4;
1286
1287 return pc & ~0x3;
1288 }
1289
1290 void
1291 hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
1292 {
1293 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1294 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
1295 }
1296
1297 /* return the alignment of a type in bytes. Structures have the maximum
1298 alignment required by their fields. */
1299
1300 static int
1301 hppa_alignof (struct type *type)
1302 {
1303 int max_align, align, i;
1304 CHECK_TYPEDEF (type);
1305 switch (TYPE_CODE (type))
1306 {
1307 case TYPE_CODE_PTR:
1308 case TYPE_CODE_INT:
1309 case TYPE_CODE_FLT:
1310 return TYPE_LENGTH (type);
1311 case TYPE_CODE_ARRAY:
1312 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1313 case TYPE_CODE_STRUCT:
1314 case TYPE_CODE_UNION:
1315 max_align = 1;
1316 for (i = 0; i < TYPE_NFIELDS (type); i++)
1317 {
1318 /* Bit fields have no real alignment. */
1319 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1320 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
1321 {
1322 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1323 max_align = max (max_align, align);
1324 }
1325 }
1326 return max_align;
1327 default:
1328 return 4;
1329 }
1330 }
1331
1332 /* For the given instruction (INST), return any adjustment it makes
1333 to the stack pointer or zero for no adjustment.
1334
1335 This only handles instructions commonly found in prologues. */
1336
1337 static int
1338 prologue_inst_adjust_sp (unsigned long inst)
1339 {
1340 /* This must persist across calls. */
1341 static int save_high21;
1342
1343 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1344 if ((inst & 0xffffc000) == 0x37de0000)
1345 return hppa_extract_14 (inst);
1346
1347 /* stwm X,D(sp) */
1348 if ((inst & 0xffe00000) == 0x6fc00000)
1349 return hppa_extract_14 (inst);
1350
1351 /* std,ma X,D(sp) */
1352 if ((inst & 0xffe00008) == 0x73c00008)
1353 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1354
1355 /* addil high21,%r30; ldo low11,(%r1),%r30)
1356 save high bits in save_high21 for later use. */
1357 if ((inst & 0xffe00000) == 0x2bc00000)
1358 {
1359 save_high21 = hppa_extract_21 (inst);
1360 return 0;
1361 }
1362
1363 if ((inst & 0xffff0000) == 0x343e0000)
1364 return save_high21 + hppa_extract_14 (inst);
1365
1366 /* fstws as used by the HP compilers. */
1367 if ((inst & 0xffffffe0) == 0x2fd01220)
1368 return hppa_extract_5_load (inst);
1369
1370 /* No adjustment. */
1371 return 0;
1372 }
1373
1374 /* Return nonzero if INST is a branch of some kind, else return zero. */
1375
1376 static int
1377 is_branch (unsigned long inst)
1378 {
1379 switch (inst >> 26)
1380 {
1381 case 0x20:
1382 case 0x21:
1383 case 0x22:
1384 case 0x23:
1385 case 0x27:
1386 case 0x28:
1387 case 0x29:
1388 case 0x2a:
1389 case 0x2b:
1390 case 0x2f:
1391 case 0x30:
1392 case 0x31:
1393 case 0x32:
1394 case 0x33:
1395 case 0x38:
1396 case 0x39:
1397 case 0x3a:
1398 case 0x3b:
1399 return 1;
1400
1401 default:
1402 return 0;
1403 }
1404 }
1405
1406 /* Return the register number for a GR which is saved by INST or
1407 zero it INST does not save a GR. */
1408
1409 static int
1410 inst_saves_gr (unsigned long inst)
1411 {
1412 /* Does it look like a stw? */
1413 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1414 || (inst >> 26) == 0x1f
1415 || ((inst >> 26) == 0x1f
1416 && ((inst >> 6) == 0xa)))
1417 return hppa_extract_5R_store (inst);
1418
1419 /* Does it look like a std? */
1420 if ((inst >> 26) == 0x1c
1421 || ((inst >> 26) == 0x03
1422 && ((inst >> 6) & 0xf) == 0xb))
1423 return hppa_extract_5R_store (inst);
1424
1425 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1426 if ((inst >> 26) == 0x1b)
1427 return hppa_extract_5R_store (inst);
1428
1429 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1430 too. */
1431 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1432 || ((inst >> 26) == 0x3
1433 && (((inst >> 6) & 0xf) == 0x8
1434 || (inst >> 6) & 0xf) == 0x9))
1435 return hppa_extract_5R_store (inst);
1436
1437 return 0;
1438 }
1439
1440 /* Return the register number for a FR which is saved by INST or
1441 zero it INST does not save a FR.
1442
1443 Note we only care about full 64bit register stores (that's the only
1444 kind of stores the prologue will use).
1445
1446 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1447
1448 static int
1449 inst_saves_fr (unsigned long inst)
1450 {
1451 /* is this an FSTD ? */
1452 if ((inst & 0xfc00dfc0) == 0x2c001200)
1453 return hppa_extract_5r_store (inst);
1454 if ((inst & 0xfc000002) == 0x70000002)
1455 return hppa_extract_5R_store (inst);
1456 /* is this an FSTW ? */
1457 if ((inst & 0xfc00df80) == 0x24001200)
1458 return hppa_extract_5r_store (inst);
1459 if ((inst & 0xfc000002) == 0x7c000000)
1460 return hppa_extract_5R_store (inst);
1461 return 0;
1462 }
1463
1464 /* Advance PC across any function entry prologue instructions
1465 to reach some "real" code.
1466
1467 Use information in the unwind table to determine what exactly should
1468 be in the prologue. */
1469
1470
1471 static CORE_ADDR
1472 skip_prologue_hard_way (CORE_ADDR pc, int stop_before_branch)
1473 {
1474 char buf[4];
1475 CORE_ADDR orig_pc = pc;
1476 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1477 unsigned long args_stored, status, i, restart_gr, restart_fr;
1478 struct unwind_table_entry *u;
1479 int final_iteration;
1480
1481 restart_gr = 0;
1482 restart_fr = 0;
1483
1484 restart:
1485 u = find_unwind_entry (pc);
1486 if (!u)
1487 return pc;
1488
1489 /* If we are not at the beginning of a function, then return now. */
1490 if ((pc & ~0x3) != u->region_start)
1491 return pc;
1492
1493 /* This is how much of a frame adjustment we need to account for. */
1494 stack_remaining = u->Total_frame_size << 3;
1495
1496 /* Magic register saves we want to know about. */
1497 save_rp = u->Save_RP;
1498 save_sp = u->Save_SP;
1499
1500 /* An indication that args may be stored into the stack. Unfortunately
1501 the HPUX compilers tend to set this in cases where no args were
1502 stored too!. */
1503 args_stored = 1;
1504
1505 /* Turn the Entry_GR field into a bitmask. */
1506 save_gr = 0;
1507 for (i = 3; i < u->Entry_GR + 3; i++)
1508 {
1509 /* Frame pointer gets saved into a special location. */
1510 if (u->Save_SP && i == HPPA_FP_REGNUM)
1511 continue;
1512
1513 save_gr |= (1 << i);
1514 }
1515 save_gr &= ~restart_gr;
1516
1517 /* Turn the Entry_FR field into a bitmask too. */
1518 save_fr = 0;
1519 for (i = 12; i < u->Entry_FR + 12; i++)
1520 save_fr |= (1 << i);
1521 save_fr &= ~restart_fr;
1522
1523 final_iteration = 0;
1524
1525 /* Loop until we find everything of interest or hit a branch.
1526
1527 For unoptimized GCC code and for any HP CC code this will never ever
1528 examine any user instructions.
1529
1530 For optimzied GCC code we're faced with problems. GCC will schedule
1531 its prologue and make prologue instructions available for delay slot
1532 filling. The end result is user code gets mixed in with the prologue
1533 and a prologue instruction may be in the delay slot of the first branch
1534 or call.
1535
1536 Some unexpected things are expected with debugging optimized code, so
1537 we allow this routine to walk past user instructions in optimized
1538 GCC code. */
1539 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1540 || args_stored)
1541 {
1542 unsigned int reg_num;
1543 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1544 unsigned long old_save_rp, old_save_sp, next_inst;
1545
1546 /* Save copies of all the triggers so we can compare them later
1547 (only for HPC). */
1548 old_save_gr = save_gr;
1549 old_save_fr = save_fr;
1550 old_save_rp = save_rp;
1551 old_save_sp = save_sp;
1552 old_stack_remaining = stack_remaining;
1553
1554 status = read_memory_nobpt (pc, buf, 4);
1555 inst = extract_unsigned_integer (buf, 4);
1556
1557 /* Yow! */
1558 if (status != 0)
1559 return pc;
1560
1561 /* Note the interesting effects of this instruction. */
1562 stack_remaining -= prologue_inst_adjust_sp (inst);
1563
1564 /* There are limited ways to store the return pointer into the
1565 stack. */
1566 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1567 save_rp = 0;
1568
1569 /* These are the only ways we save SP into the stack. At this time
1570 the HP compilers never bother to save SP into the stack. */
1571 if ((inst & 0xffffc000) == 0x6fc10000
1572 || (inst & 0xffffc00c) == 0x73c10008)
1573 save_sp = 0;
1574
1575 /* Are we loading some register with an offset from the argument
1576 pointer? */
1577 if ((inst & 0xffe00000) == 0x37a00000
1578 || (inst & 0xffffffe0) == 0x081d0240)
1579 {
1580 pc += 4;
1581 continue;
1582 }
1583
1584 /* Account for general and floating-point register saves. */
1585 reg_num = inst_saves_gr (inst);
1586 save_gr &= ~(1 << reg_num);
1587
1588 /* Ugh. Also account for argument stores into the stack.
1589 Unfortunately args_stored only tells us that some arguments
1590 where stored into the stack. Not how many or what kind!
1591
1592 This is a kludge as on the HP compiler sets this bit and it
1593 never does prologue scheduling. So once we see one, skip past
1594 all of them. We have similar code for the fp arg stores below.
1595
1596 FIXME. Can still die if we have a mix of GR and FR argument
1597 stores! */
1598 if (reg_num >= (gdbarch_ptr_bit (current_gdbarch) == 64 ? 19 : 23)
1599 && reg_num <= 26)
1600 {
1601 while (reg_num >= (gdbarch_ptr_bit (current_gdbarch) == 64 ? 19 : 23)
1602 && reg_num <= 26)
1603 {
1604 pc += 4;
1605 status = read_memory_nobpt (pc, buf, 4);
1606 inst = extract_unsigned_integer (buf, 4);
1607 if (status != 0)
1608 return pc;
1609 reg_num = inst_saves_gr (inst);
1610 }
1611 args_stored = 0;
1612 continue;
1613 }
1614
1615 reg_num = inst_saves_fr (inst);
1616 save_fr &= ~(1 << reg_num);
1617
1618 status = read_memory_nobpt (pc + 4, buf, 4);
1619 next_inst = extract_unsigned_integer (buf, 4);
1620
1621 /* Yow! */
1622 if (status != 0)
1623 return pc;
1624
1625 /* We've got to be read to handle the ldo before the fp register
1626 save. */
1627 if ((inst & 0xfc000000) == 0x34000000
1628 && inst_saves_fr (next_inst) >= 4
1629 && inst_saves_fr (next_inst)
1630 <= (gdbarch_ptr_bit (current_gdbarch) == 64 ? 11 : 7))
1631 {
1632 /* So we drop into the code below in a reasonable state. */
1633 reg_num = inst_saves_fr (next_inst);
1634 pc -= 4;
1635 }
1636
1637 /* Ugh. Also account for argument stores into the stack.
1638 This is a kludge as on the HP compiler sets this bit and it
1639 never does prologue scheduling. So once we see one, skip past
1640 all of them. */
1641 if (reg_num >= 4
1642 && reg_num <= (gdbarch_ptr_bit (current_gdbarch) == 64 ? 11 : 7))
1643 {
1644 while (reg_num >= 4
1645 && reg_num
1646 <= (gdbarch_ptr_bit (current_gdbarch) == 64 ? 11 : 7))
1647 {
1648 pc += 8;
1649 status = read_memory_nobpt (pc, buf, 4);
1650 inst = extract_unsigned_integer (buf, 4);
1651 if (status != 0)
1652 return pc;
1653 if ((inst & 0xfc000000) != 0x34000000)
1654 break;
1655 status = read_memory_nobpt (pc + 4, buf, 4);
1656 next_inst = extract_unsigned_integer (buf, 4);
1657 if (status != 0)
1658 return pc;
1659 reg_num = inst_saves_fr (next_inst);
1660 }
1661 args_stored = 0;
1662 continue;
1663 }
1664
1665 /* Quit if we hit any kind of branch. This can happen if a prologue
1666 instruction is in the delay slot of the first call/branch. */
1667 if (is_branch (inst) && stop_before_branch)
1668 break;
1669
1670 /* What a crock. The HP compilers set args_stored even if no
1671 arguments were stored into the stack (boo hiss). This could
1672 cause this code to then skip a bunch of user insns (up to the
1673 first branch).
1674
1675 To combat this we try to identify when args_stored was bogusly
1676 set and clear it. We only do this when args_stored is nonzero,
1677 all other resources are accounted for, and nothing changed on
1678 this pass. */
1679 if (args_stored
1680 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1681 && old_save_gr == save_gr && old_save_fr == save_fr
1682 && old_save_rp == save_rp && old_save_sp == save_sp
1683 && old_stack_remaining == stack_remaining)
1684 break;
1685
1686 /* Bump the PC. */
1687 pc += 4;
1688
1689 /* !stop_before_branch, so also look at the insn in the delay slot
1690 of the branch. */
1691 if (final_iteration)
1692 break;
1693 if (is_branch (inst))
1694 final_iteration = 1;
1695 }
1696
1697 /* We've got a tenative location for the end of the prologue. However
1698 because of limitations in the unwind descriptor mechanism we may
1699 have went too far into user code looking for the save of a register
1700 that does not exist. So, if there registers we expected to be saved
1701 but never were, mask them out and restart.
1702
1703 This should only happen in optimized code, and should be very rare. */
1704 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1705 {
1706 pc = orig_pc;
1707 restart_gr = save_gr;
1708 restart_fr = save_fr;
1709 goto restart;
1710 }
1711
1712 return pc;
1713 }
1714
1715
1716 /* Return the address of the PC after the last prologue instruction if
1717 we can determine it from the debug symbols. Else return zero. */
1718
1719 static CORE_ADDR
1720 after_prologue (CORE_ADDR pc)
1721 {
1722 struct symtab_and_line sal;
1723 CORE_ADDR func_addr, func_end;
1724 struct symbol *f;
1725
1726 /* If we can not find the symbol in the partial symbol table, then
1727 there is no hope we can determine the function's start address
1728 with this code. */
1729 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1730 return 0;
1731
1732 /* Get the line associated with FUNC_ADDR. */
1733 sal = find_pc_line (func_addr, 0);
1734
1735 /* There are only two cases to consider. First, the end of the source line
1736 is within the function bounds. In that case we return the end of the
1737 source line. Second is the end of the source line extends beyond the
1738 bounds of the current function. We need to use the slow code to
1739 examine instructions in that case.
1740
1741 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1742 the wrong thing to do. In fact, it should be entirely possible for this
1743 function to always return zero since the slow instruction scanning code
1744 is supposed to *always* work. If it does not, then it is a bug. */
1745 if (sal.end < func_end)
1746 return sal.end;
1747 else
1748 return 0;
1749 }
1750
1751 /* To skip prologues, I use this predicate. Returns either PC itself
1752 if the code at PC does not look like a function prologue; otherwise
1753 returns an address that (if we're lucky) follows the prologue.
1754
1755 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1756 It doesn't necessarily skips all the insns in the prologue. In fact
1757 we might not want to skip all the insns because a prologue insn may
1758 appear in the delay slot of the first branch, and we don't want to
1759 skip over the branch in that case. */
1760
1761 static CORE_ADDR
1762 hppa_skip_prologue (CORE_ADDR pc)
1763 {
1764 unsigned long inst;
1765 int offset;
1766 CORE_ADDR post_prologue_pc;
1767 char buf[4];
1768
1769 /* See if we can determine the end of the prologue via the symbol table.
1770 If so, then return either PC, or the PC after the prologue, whichever
1771 is greater. */
1772
1773 post_prologue_pc = after_prologue (pc);
1774
1775 /* If after_prologue returned a useful address, then use it. Else
1776 fall back on the instruction skipping code.
1777
1778 Some folks have claimed this causes problems because the breakpoint
1779 may be the first instruction of the prologue. If that happens, then
1780 the instruction skipping code has a bug that needs to be fixed. */
1781 if (post_prologue_pc != 0)
1782 return max (pc, post_prologue_pc);
1783 else
1784 return (skip_prologue_hard_way (pc, 1));
1785 }
1786
1787 /* Return an unwind entry that falls within the frame's code block. */
1788 static struct unwind_table_entry *
1789 hppa_find_unwind_entry_in_block (struct frame_info *f)
1790 {
1791 CORE_ADDR pc = frame_unwind_address_in_block (f, NORMAL_FRAME);
1792
1793 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1794 result of frame_unwind_address_in_block implies a problem.
1795 The bits should have been removed earlier, before the return
1796 value of frame_pc_unwind. That might be happening already;
1797 if it isn't, it should be fixed. Then this call can be
1798 removed. */
1799 pc = gdbarch_addr_bits_remove (get_frame_arch (f), pc);
1800 return find_unwind_entry (pc);
1801 }
1802
1803 struct hppa_frame_cache
1804 {
1805 CORE_ADDR base;
1806 struct trad_frame_saved_reg *saved_regs;
1807 };
1808
1809 static struct hppa_frame_cache *
1810 hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1811 {
1812 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1813 struct hppa_frame_cache *cache;
1814 long saved_gr_mask;
1815 long saved_fr_mask;
1816 CORE_ADDR this_sp;
1817 long frame_size;
1818 struct unwind_table_entry *u;
1819 CORE_ADDR prologue_end;
1820 int fp_in_r1 = 0;
1821 int i;
1822
1823 if (hppa_debug)
1824 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1825 frame_relative_level(next_frame));
1826
1827 if ((*this_cache) != NULL)
1828 {
1829 if (hppa_debug)
1830 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1831 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1832 return (*this_cache);
1833 }
1834 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1835 (*this_cache) = cache;
1836 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1837
1838 /* Yow! */
1839 u = hppa_find_unwind_entry_in_block (next_frame);
1840 if (!u)
1841 {
1842 if (hppa_debug)
1843 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1844 return (*this_cache);
1845 }
1846
1847 /* Turn the Entry_GR field into a bitmask. */
1848 saved_gr_mask = 0;
1849 for (i = 3; i < u->Entry_GR + 3; i++)
1850 {
1851 /* Frame pointer gets saved into a special location. */
1852 if (u->Save_SP && i == HPPA_FP_REGNUM)
1853 continue;
1854
1855 saved_gr_mask |= (1 << i);
1856 }
1857
1858 /* Turn the Entry_FR field into a bitmask too. */
1859 saved_fr_mask = 0;
1860 for (i = 12; i < u->Entry_FR + 12; i++)
1861 saved_fr_mask |= (1 << i);
1862
1863 /* Loop until we find everything of interest or hit a branch.
1864
1865 For unoptimized GCC code and for any HP CC code this will never ever
1866 examine any user instructions.
1867
1868 For optimized GCC code we're faced with problems. GCC will schedule
1869 its prologue and make prologue instructions available for delay slot
1870 filling. The end result is user code gets mixed in with the prologue
1871 and a prologue instruction may be in the delay slot of the first branch
1872 or call.
1873
1874 Some unexpected things are expected with debugging optimized code, so
1875 we allow this routine to walk past user instructions in optimized
1876 GCC code. */
1877 {
1878 int final_iteration = 0;
1879 CORE_ADDR pc, start_pc, end_pc;
1880 int looking_for_sp = u->Save_SP;
1881 int looking_for_rp = u->Save_RP;
1882 int fp_loc = -1;
1883
1884 /* We have to use skip_prologue_hard_way instead of just
1885 skip_prologue_using_sal, in case we stepped into a function without
1886 symbol information. hppa_skip_prologue also bounds the returned
1887 pc by the passed in pc, so it will not return a pc in the next
1888 function.
1889
1890 We used to call hppa_skip_prologue to find the end of the prologue,
1891 but if some non-prologue instructions get scheduled into the prologue,
1892 and the program is compiled with debug information, the "easy" way
1893 in hppa_skip_prologue will return a prologue end that is too early
1894 for us to notice any potential frame adjustments. */
1895
1896 /* We used to use frame_func_unwind () to locate the beginning of the
1897 function to pass to skip_prologue (). However, when objects are
1898 compiled without debug symbols, frame_func_unwind can return the wrong
1899 function (or 0). We can do better than that by using unwind records.
1900 This only works if the Region_description of the unwind record
1901 indicates that it includes the entry point of the function.
1902 HP compilers sometimes generate unwind records for regions that
1903 do not include the entry or exit point of a function. GNU tools
1904 do not do this. */
1905
1906 if ((u->Region_description & 0x2) == 0)
1907 start_pc = u->region_start;
1908 else
1909 start_pc = frame_func_unwind (next_frame, NORMAL_FRAME);
1910
1911 prologue_end = skip_prologue_hard_way (start_pc, 0);
1912 end_pc = frame_pc_unwind (next_frame);
1913
1914 if (prologue_end != 0 && end_pc > prologue_end)
1915 end_pc = prologue_end;
1916
1917 frame_size = 0;
1918
1919 for (pc = start_pc;
1920 ((saved_gr_mask || saved_fr_mask
1921 || looking_for_sp || looking_for_rp
1922 || frame_size < (u->Total_frame_size << 3))
1923 && pc < end_pc);
1924 pc += 4)
1925 {
1926 int reg;
1927 char buf4[4];
1928 long inst;
1929
1930 if (!safe_frame_unwind_memory (next_frame, pc, buf4,
1931 sizeof buf4))
1932 {
1933 error (_("Cannot read instruction at 0x%s."), paddr_nz (pc));
1934 return (*this_cache);
1935 }
1936
1937 inst = extract_unsigned_integer (buf4, sizeof buf4);
1938
1939 /* Note the interesting effects of this instruction. */
1940 frame_size += prologue_inst_adjust_sp (inst);
1941
1942 /* There are limited ways to store the return pointer into the
1943 stack. */
1944 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1945 {
1946 looking_for_rp = 0;
1947 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1948 }
1949 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1950 {
1951 looking_for_rp = 0;
1952 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1953 }
1954 else if (inst == 0x0fc212c1
1955 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
1956 {
1957 looking_for_rp = 0;
1958 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1959 }
1960
1961 /* Check to see if we saved SP into the stack. This also
1962 happens to indicate the location of the saved frame
1963 pointer. */
1964 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1965 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1966 {
1967 looking_for_sp = 0;
1968 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1969 }
1970 else if (inst == 0x08030241) /* copy %r3, %r1 */
1971 {
1972 fp_in_r1 = 1;
1973 }
1974
1975 /* Account for general and floating-point register saves. */
1976 reg = inst_saves_gr (inst);
1977 if (reg >= 3 && reg <= 18
1978 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1979 {
1980 saved_gr_mask &= ~(1 << reg);
1981 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1982 /* stwm with a positive displacement is a _post_
1983 _modify_. */
1984 cache->saved_regs[reg].addr = 0;
1985 else if ((inst & 0xfc00000c) == 0x70000008)
1986 /* A std has explicit post_modify forms. */
1987 cache->saved_regs[reg].addr = 0;
1988 else
1989 {
1990 CORE_ADDR offset;
1991
1992 if ((inst >> 26) == 0x1c)
1993 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1994 else if ((inst >> 26) == 0x03)
1995 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
1996 else
1997 offset = hppa_extract_14 (inst);
1998
1999 /* Handle code with and without frame pointers. */
2000 if (u->Save_SP)
2001 cache->saved_regs[reg].addr = offset;
2002 else
2003 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
2004 }
2005 }
2006
2007 /* GCC handles callee saved FP regs a little differently.
2008
2009 It emits an instruction to put the value of the start of
2010 the FP store area into %r1. It then uses fstds,ma with a
2011 basereg of %r1 for the stores.
2012
2013 HP CC emits them at the current stack pointer modifying the
2014 stack pointer as it stores each register. */
2015
2016 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2017 if ((inst & 0xffffc000) == 0x34610000
2018 || (inst & 0xffffc000) == 0x37c10000)
2019 fp_loc = hppa_extract_14 (inst);
2020
2021 reg = inst_saves_fr (inst);
2022 if (reg >= 12 && reg <= 21)
2023 {
2024 /* Note +4 braindamage below is necessary because the FP
2025 status registers are internally 8 registers rather than
2026 the expected 4 registers. */
2027 saved_fr_mask &= ~(1 << reg);
2028 if (fp_loc == -1)
2029 {
2030 /* 1st HP CC FP register store. After this
2031 instruction we've set enough state that the GCC and
2032 HPCC code are both handled in the same manner. */
2033 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
2034 fp_loc = 8;
2035 }
2036 else
2037 {
2038 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2039 fp_loc += 8;
2040 }
2041 }
2042
2043 /* Quit if we hit any kind of branch the previous iteration. */
2044 if (final_iteration)
2045 break;
2046 /* We want to look precisely one instruction beyond the branch
2047 if we have not found everything yet. */
2048 if (is_branch (inst))
2049 final_iteration = 1;
2050 }
2051 }
2052
2053 {
2054 /* The frame base always represents the value of %sp at entry to
2055 the current function (and is thus equivalent to the "saved"
2056 stack pointer. */
2057 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2058 CORE_ADDR fp;
2059
2060 if (hppa_debug)
2061 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
2062 "prologue_end=0x%s) ",
2063 paddr_nz (this_sp),
2064 paddr_nz (frame_pc_unwind (next_frame)),
2065 paddr_nz (prologue_end));
2066
2067 /* Check to see if a frame pointer is available, and use it for
2068 frame unwinding if it is.
2069
2070 There are some situations where we need to rely on the frame
2071 pointer to do stack unwinding. For example, if a function calls
2072 alloca (), the stack pointer can get adjusted inside the body of
2073 the function. In this case, the ABI requires that the compiler
2074 maintain a frame pointer for the function.
2075
2076 The unwind record has a flag (alloca_frame) that indicates that
2077 a function has a variable frame; unfortunately, gcc/binutils
2078 does not set this flag. Instead, whenever a frame pointer is used
2079 and saved on the stack, the Save_SP flag is set. We use this to
2080 decide whether to use the frame pointer for unwinding.
2081
2082 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2083 instead of Save_SP. */
2084
2085 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
2086
2087 if (u->alloca_frame)
2088 fp -= u->Total_frame_size << 3;
2089
2090 if (frame_pc_unwind (next_frame) >= prologue_end
2091 && (u->Save_SP || u->alloca_frame) && fp != 0)
2092 {
2093 cache->base = fp;
2094
2095 if (hppa_debug)
2096 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer]",
2097 paddr_nz (cache->base));
2098 }
2099 else if (u->Save_SP
2100 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2101 {
2102 /* Both we're expecting the SP to be saved and the SP has been
2103 saved. The entry SP value is saved at this frame's SP
2104 address. */
2105 cache->base = read_memory_integer
2106 (this_sp, gdbarch_ptr_bit (gdbarch) / 8);
2107
2108 if (hppa_debug)
2109 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved]",
2110 paddr_nz (cache->base));
2111 }
2112 else
2113 {
2114 /* The prologue has been slowly allocating stack space. Adjust
2115 the SP back. */
2116 cache->base = this_sp - frame_size;
2117 if (hppa_debug)
2118 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust]",
2119 paddr_nz (cache->base));
2120
2121 }
2122 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2123 }
2124
2125 /* The PC is found in the "return register", "Millicode" uses "r31"
2126 as the return register while normal code uses "rp". */
2127 if (u->Millicode)
2128 {
2129 if (trad_frame_addr_p (cache->saved_regs, 31))
2130 {
2131 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2132 if (hppa_debug)
2133 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2134 }
2135 else
2136 {
2137 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
2138 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2139 if (hppa_debug)
2140 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2141 }
2142 }
2143 else
2144 {
2145 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2146 {
2147 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2148 cache->saved_regs[HPPA_RP_REGNUM];
2149 if (hppa_debug)
2150 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2151 }
2152 else
2153 {
2154 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2155 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2156 if (hppa_debug)
2157 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2158 }
2159 }
2160
2161 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2162 frame. However, there is a one-insn window where we haven't saved it
2163 yet, but we've already clobbered it. Detect this case and fix it up.
2164
2165 The prologue sequence for frame-pointer functions is:
2166 0: stw %rp, -20(%sp)
2167 4: copy %r3, %r1
2168 8: copy %sp, %r3
2169 c: stw,ma %r1, XX(%sp)
2170
2171 So if we are at offset c, the r3 value that we want is not yet saved
2172 on the stack, but it's been overwritten. The prologue analyzer will
2173 set fp_in_r1 when it sees the copy insn so we know to get the value
2174 from r1 instead. */
2175 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2176 && fp_in_r1)
2177 {
2178 ULONGEST r1 = frame_unwind_register_unsigned (next_frame, 1);
2179 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2180 }
2181
2182 {
2183 /* Convert all the offsets into addresses. */
2184 int reg;
2185 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
2186 {
2187 if (trad_frame_addr_p (cache->saved_regs, reg))
2188 cache->saved_regs[reg].addr += cache->base;
2189 }
2190 }
2191
2192 {
2193 struct gdbarch_tdep *tdep;
2194
2195 tdep = gdbarch_tdep (gdbarch);
2196
2197 if (tdep->unwind_adjust_stub)
2198 {
2199 tdep->unwind_adjust_stub (next_frame, cache->base, cache->saved_regs);
2200 }
2201 }
2202
2203 if (hppa_debug)
2204 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
2205 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
2206 return (*this_cache);
2207 }
2208
2209 static void
2210 hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
2211 struct frame_id *this_id)
2212 {
2213 struct hppa_frame_cache *info;
2214 CORE_ADDR pc = frame_pc_unwind (next_frame);
2215 struct unwind_table_entry *u;
2216
2217 info = hppa_frame_cache (next_frame, this_cache);
2218 u = hppa_find_unwind_entry_in_block (next_frame);
2219
2220 (*this_id) = frame_id_build (info->base, u->region_start);
2221 }
2222
2223 static void
2224 hppa_frame_prev_register (struct frame_info *next_frame,
2225 void **this_cache,
2226 int regnum, int *optimizedp,
2227 enum lval_type *lvalp, CORE_ADDR *addrp,
2228 int *realnump, gdb_byte *valuep)
2229 {
2230 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
2231 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2232 optimizedp, lvalp, addrp, realnump, valuep);
2233 }
2234
2235 static const struct frame_unwind hppa_frame_unwind =
2236 {
2237 NORMAL_FRAME,
2238 hppa_frame_this_id,
2239 hppa_frame_prev_register
2240 };
2241
2242 static const struct frame_unwind *
2243 hppa_frame_unwind_sniffer (struct frame_info *next_frame)
2244 {
2245 if (hppa_find_unwind_entry_in_block (next_frame))
2246 return &hppa_frame_unwind;
2247
2248 return NULL;
2249 }
2250
2251 /* This is a generic fallback frame unwinder that kicks in if we fail all
2252 the other ones. Normally we would expect the stub and regular unwinder
2253 to work, but in some cases we might hit a function that just doesn't
2254 have any unwind information available. In this case we try to do
2255 unwinding solely based on code reading. This is obviously going to be
2256 slow, so only use this as a last resort. Currently this will only
2257 identify the stack and pc for the frame. */
2258
2259 static struct hppa_frame_cache *
2260 hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
2261 {
2262 struct hppa_frame_cache *cache;
2263 unsigned int frame_size = 0;
2264 int found_rp = 0;
2265 CORE_ADDR start_pc;
2266
2267 if (hppa_debug)
2268 fprintf_unfiltered (gdb_stdlog,
2269 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2270 frame_relative_level (next_frame));
2271
2272 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2273 (*this_cache) = cache;
2274 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2275
2276 start_pc = frame_func_unwind (next_frame, NORMAL_FRAME);
2277 if (start_pc)
2278 {
2279 CORE_ADDR cur_pc = frame_pc_unwind (next_frame);
2280 CORE_ADDR pc;
2281
2282 for (pc = start_pc; pc < cur_pc; pc += 4)
2283 {
2284 unsigned int insn;
2285
2286 insn = read_memory_unsigned_integer (pc, 4);
2287 frame_size += prologue_inst_adjust_sp (insn);
2288
2289 /* There are limited ways to store the return pointer into the
2290 stack. */
2291 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2292 {
2293 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2294 found_rp = 1;
2295 }
2296 else if (insn == 0x0fc212c1
2297 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2298 {
2299 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2300 found_rp = 1;
2301 }
2302 }
2303 }
2304
2305 if (hppa_debug)
2306 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2307 frame_size, found_rp);
2308
2309 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2310 cache->base -= frame_size;
2311 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2312
2313 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2314 {
2315 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2316 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2317 cache->saved_regs[HPPA_RP_REGNUM];
2318 }
2319 else
2320 {
2321 ULONGEST rp;
2322 rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2323 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2324 }
2325
2326 return cache;
2327 }
2328
2329 static void
2330 hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
2331 struct frame_id *this_id)
2332 {
2333 struct hppa_frame_cache *info =
2334 hppa_fallback_frame_cache (next_frame, this_cache);
2335 (*this_id) = frame_id_build (info->base,
2336 frame_func_unwind (next_frame, NORMAL_FRAME));
2337 }
2338
2339 static void
2340 hppa_fallback_frame_prev_register (struct frame_info *next_frame,
2341 void **this_cache,
2342 int regnum, int *optimizedp,
2343 enum lval_type *lvalp, CORE_ADDR *addrp,
2344 int *realnump, gdb_byte *valuep)
2345 {
2346 struct hppa_frame_cache *info =
2347 hppa_fallback_frame_cache (next_frame, this_cache);
2348 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2349 optimizedp, lvalp, addrp, realnump, valuep);
2350 }
2351
2352 static const struct frame_unwind hppa_fallback_frame_unwind =
2353 {
2354 NORMAL_FRAME,
2355 hppa_fallback_frame_this_id,
2356 hppa_fallback_frame_prev_register
2357 };
2358
2359 static const struct frame_unwind *
2360 hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
2361 {
2362 return &hppa_fallback_frame_unwind;
2363 }
2364
2365 /* Stub frames, used for all kinds of call stubs. */
2366 struct hppa_stub_unwind_cache
2367 {
2368 CORE_ADDR base;
2369 struct trad_frame_saved_reg *saved_regs;
2370 };
2371
2372 static struct hppa_stub_unwind_cache *
2373 hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2374 void **this_cache)
2375 {
2376 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2377 struct hppa_stub_unwind_cache *info;
2378 struct unwind_table_entry *u;
2379
2380 if (*this_cache)
2381 return *this_cache;
2382
2383 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2384 *this_cache = info;
2385 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2386
2387 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2388
2389 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2390 {
2391 /* HPUX uses export stubs in function calls; the export stub clobbers
2392 the return value of the caller, and, later restores it from the
2393 stack. */
2394 u = find_unwind_entry (frame_pc_unwind (next_frame));
2395
2396 if (u && u->stub_unwind.stub_type == EXPORT)
2397 {
2398 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2399
2400 return info;
2401 }
2402 }
2403
2404 /* By default we assume that stubs do not change the rp. */
2405 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2406
2407 return info;
2408 }
2409
2410 static void
2411 hppa_stub_frame_this_id (struct frame_info *next_frame,
2412 void **this_prologue_cache,
2413 struct frame_id *this_id)
2414 {
2415 struct hppa_stub_unwind_cache *info
2416 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2417
2418 if (info)
2419 *this_id = frame_id_build (info->base,
2420 frame_func_unwind (next_frame, NORMAL_FRAME));
2421 else
2422 *this_id = null_frame_id;
2423 }
2424
2425 static void
2426 hppa_stub_frame_prev_register (struct frame_info *next_frame,
2427 void **this_prologue_cache,
2428 int regnum, int *optimizedp,
2429 enum lval_type *lvalp, CORE_ADDR *addrp,
2430 int *realnump, gdb_byte *valuep)
2431 {
2432 struct hppa_stub_unwind_cache *info
2433 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2434
2435 if (info)
2436 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2437 optimizedp, lvalp, addrp, realnump,
2438 valuep);
2439 else
2440 error (_("Requesting registers from null frame."));
2441 }
2442
2443 static const struct frame_unwind hppa_stub_frame_unwind = {
2444 NORMAL_FRAME,
2445 hppa_stub_frame_this_id,
2446 hppa_stub_frame_prev_register
2447 };
2448
2449 static const struct frame_unwind *
2450 hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2451 {
2452 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
2453 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2454 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2455
2456 if (pc == 0
2457 || (tdep->in_solib_call_trampoline != NULL
2458 && tdep->in_solib_call_trampoline (pc, NULL))
2459 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
2460 return &hppa_stub_frame_unwind;
2461 return NULL;
2462 }
2463
2464 static struct frame_id
2465 hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2466 {
2467 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2468 HPPA_SP_REGNUM),
2469 frame_pc_unwind (next_frame));
2470 }
2471
2472 CORE_ADDR
2473 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2474 {
2475 ULONGEST ipsw;
2476 CORE_ADDR pc;
2477
2478 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2479 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2480
2481 /* If the current instruction is nullified, then we are effectively
2482 still executing the previous instruction. Pretend we are still
2483 there. This is needed when single stepping; if the nullified
2484 instruction is on a different line, we don't want GDB to think
2485 we've stepped onto that line. */
2486 if (ipsw & 0x00200000)
2487 pc -= 4;
2488
2489 return pc & ~0x3;
2490 }
2491
2492 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2493 Return NULL if no such symbol was found. */
2494
2495 struct minimal_symbol *
2496 hppa_lookup_stub_minimal_symbol (const char *name,
2497 enum unwind_stub_types stub_type)
2498 {
2499 struct objfile *objfile;
2500 struct minimal_symbol *msym;
2501
2502 ALL_MSYMBOLS (objfile, msym)
2503 {
2504 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
2505 {
2506 struct unwind_table_entry *u;
2507
2508 u = find_unwind_entry (SYMBOL_VALUE (msym));
2509 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2510 return msym;
2511 }
2512 }
2513
2514 return NULL;
2515 }
2516
2517 static void
2518 unwind_command (char *exp, int from_tty)
2519 {
2520 CORE_ADDR address;
2521 struct unwind_table_entry *u;
2522
2523 /* If we have an expression, evaluate it and use it as the address. */
2524
2525 if (exp != 0 && *exp != 0)
2526 address = parse_and_eval_address (exp);
2527 else
2528 return;
2529
2530 u = find_unwind_entry (address);
2531
2532 if (!u)
2533 {
2534 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2535 return;
2536 }
2537
2538 printf_unfiltered ("unwind_table_entry (0x%lx):\n", (unsigned long)u);
2539
2540 printf_unfiltered ("\tregion_start = ");
2541 print_address (u->region_start, gdb_stdout);
2542 gdb_flush (gdb_stdout);
2543
2544 printf_unfiltered ("\n\tregion_end = ");
2545 print_address (u->region_end, gdb_stdout);
2546 gdb_flush (gdb_stdout);
2547
2548 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2549
2550 printf_unfiltered ("\n\tflags =");
2551 pif (Cannot_unwind);
2552 pif (Millicode);
2553 pif (Millicode_save_sr0);
2554 pif (Entry_SR);
2555 pif (Args_stored);
2556 pif (Variable_Frame);
2557 pif (Separate_Package_Body);
2558 pif (Frame_Extension_Millicode);
2559 pif (Stack_Overflow_Check);
2560 pif (Two_Instruction_SP_Increment);
2561 pif (sr4export);
2562 pif (cxx_info);
2563 pif (cxx_try_catch);
2564 pif (sched_entry_seq);
2565 pif (Save_SP);
2566 pif (Save_RP);
2567 pif (Save_MRP_in_frame);
2568 pif (save_r19);
2569 pif (Cleanup_defined);
2570 pif (MPE_XL_interrupt_marker);
2571 pif (HP_UX_interrupt_marker);
2572 pif (Large_frame);
2573 pif (alloca_frame);
2574
2575 putchar_unfiltered ('\n');
2576
2577 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2578
2579 pin (Region_description);
2580 pin (Entry_FR);
2581 pin (Entry_GR);
2582 pin (Total_frame_size);
2583
2584 if (u->stub_unwind.stub_type)
2585 {
2586 printf_unfiltered ("\tstub type = ");
2587 switch (u->stub_unwind.stub_type)
2588 {
2589 case LONG_BRANCH:
2590 printf_unfiltered ("long branch\n");
2591 break;
2592 case PARAMETER_RELOCATION:
2593 printf_unfiltered ("parameter relocation\n");
2594 break;
2595 case EXPORT:
2596 printf_unfiltered ("export\n");
2597 break;
2598 case IMPORT:
2599 printf_unfiltered ("import\n");
2600 break;
2601 case IMPORT_SHLIB:
2602 printf_unfiltered ("import shlib\n");
2603 break;
2604 default:
2605 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2606 }
2607 }
2608 }
2609
2610 /* Return the GDB type object for the "standard" data type of data in
2611 register REGNUM. */
2612
2613 static struct type *
2614 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2615 {
2616 if (regnum < HPPA_FP4_REGNUM)
2617 return builtin_type_uint32;
2618 else
2619 return builtin_type_ieee_single;
2620 }
2621
2622 static struct type *
2623 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2624 {
2625 if (regnum < HPPA64_FP4_REGNUM)
2626 return builtin_type_uint64;
2627 else
2628 return builtin_type_ieee_double;
2629 }
2630
2631 /* Return non-zero if REGNUM is not a register available to the user
2632 through ptrace/ttrace. */
2633
2634 static int
2635 hppa32_cannot_store_register (int regnum)
2636 {
2637 return (regnum == 0
2638 || regnum == HPPA_PCSQ_HEAD_REGNUM
2639 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2640 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2641 }
2642
2643 static int
2644 hppa32_cannot_fetch_register (int regnum)
2645 {
2646 /* cr26 and cr27 are readable (but not writable) from userspace. */
2647 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2648 return 0;
2649 else
2650 return hppa32_cannot_store_register (regnum);
2651 }
2652
2653 static int
2654 hppa64_cannot_store_register (int regnum)
2655 {
2656 return (regnum == 0
2657 || regnum == HPPA_PCSQ_HEAD_REGNUM
2658 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2659 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2660 }
2661
2662 static int
2663 hppa64_cannot_fetch_register (int regnum)
2664 {
2665 /* cr26 and cr27 are readable (but not writable) from userspace. */
2666 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2667 return 0;
2668 else
2669 return hppa64_cannot_store_register (regnum);
2670 }
2671
2672 static CORE_ADDR
2673 hppa_smash_text_address (CORE_ADDR addr)
2674 {
2675 /* The low two bits of the PC on the PA contain the privilege level.
2676 Some genius implementing a (non-GCC) compiler apparently decided
2677 this means that "addresses" in a text section therefore include a
2678 privilege level, and thus symbol tables should contain these bits.
2679 This seems like a bonehead thing to do--anyway, it seems to work
2680 for our purposes to just ignore those bits. */
2681
2682 return (addr &= ~0x3);
2683 }
2684
2685 /* Get the ARGIth function argument for the current function. */
2686
2687 static CORE_ADDR
2688 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2689 struct type *type)
2690 {
2691 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2692 }
2693
2694 static void
2695 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2696 int regnum, gdb_byte *buf)
2697 {
2698 ULONGEST tmp;
2699
2700 regcache_raw_read_unsigned (regcache, regnum, &tmp);
2701 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2702 tmp &= ~0x3;
2703 store_unsigned_integer (buf, sizeof tmp, tmp);
2704 }
2705
2706 static CORE_ADDR
2707 hppa_find_global_pointer (struct value *function)
2708 {
2709 return 0;
2710 }
2711
2712 void
2713 hppa_frame_prev_register_helper (struct frame_info *next_frame,
2714 struct trad_frame_saved_reg saved_regs[],
2715 int regnum, int *optimizedp,
2716 enum lval_type *lvalp, CORE_ADDR *addrp,
2717 int *realnump, gdb_byte *valuep)
2718 {
2719 struct gdbarch *arch = get_frame_arch (next_frame);
2720
2721 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2722 {
2723 if (valuep)
2724 {
2725 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2726 CORE_ADDR pc;
2727
2728 trad_frame_get_prev_register (next_frame, saved_regs,
2729 HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2730 lvalp, addrp, realnump, valuep);
2731
2732 pc = extract_unsigned_integer (valuep, size);
2733 store_unsigned_integer (valuep, size, pc + 4);
2734 }
2735
2736 /* It's a computed value. */
2737 *optimizedp = 0;
2738 *lvalp = not_lval;
2739 *addrp = 0;
2740 *realnump = -1;
2741 return;
2742 }
2743
2744 /* Make sure the "flags" register is zero in all unwound frames.
2745 The "flags" registers is a HP-UX specific wart, and only the code
2746 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2747 with it here. This shouldn't affect other systems since those
2748 should provide zero for the "flags" register anyway. */
2749 if (regnum == HPPA_FLAGS_REGNUM)
2750 {
2751 if (valuep)
2752 store_unsigned_integer (valuep, register_size (arch, regnum), 0);
2753
2754 /* It's a computed value. */
2755 *optimizedp = 0;
2756 *lvalp = not_lval;
2757 *addrp = 0;
2758 *realnump = -1;
2759 return;
2760 }
2761
2762 trad_frame_get_prev_register (next_frame, saved_regs, regnum,
2763 optimizedp, lvalp, addrp, realnump, valuep);
2764 }
2765 \f
2766
2767 /* An instruction to match. */
2768 struct insn_pattern
2769 {
2770 unsigned int data; /* See if it matches this.... */
2771 unsigned int mask; /* ... with this mask. */
2772 };
2773
2774 /* See bfd/elf32-hppa.c */
2775 static struct insn_pattern hppa_long_branch_stub[] = {
2776 /* ldil LR'xxx,%r1 */
2777 { 0x20200000, 0xffe00000 },
2778 /* be,n RR'xxx(%sr4,%r1) */
2779 { 0xe0202002, 0xffe02002 },
2780 { 0, 0 }
2781 };
2782
2783 static struct insn_pattern hppa_long_branch_pic_stub[] = {
2784 /* b,l .+8, %r1 */
2785 { 0xe8200000, 0xffe00000 },
2786 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2787 { 0x28200000, 0xffe00000 },
2788 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2789 { 0xe0202002, 0xffe02002 },
2790 { 0, 0 }
2791 };
2792
2793 static struct insn_pattern hppa_import_stub[] = {
2794 /* addil LR'xxx, %dp */
2795 { 0x2b600000, 0xffe00000 },
2796 /* ldw RR'xxx(%r1), %r21 */
2797 { 0x48350000, 0xffffb000 },
2798 /* bv %r0(%r21) */
2799 { 0xeaa0c000, 0xffffffff },
2800 /* ldw RR'xxx+4(%r1), %r19 */
2801 { 0x48330000, 0xffffb000 },
2802 { 0, 0 }
2803 };
2804
2805 static struct insn_pattern hppa_import_pic_stub[] = {
2806 /* addil LR'xxx,%r19 */
2807 { 0x2a600000, 0xffe00000 },
2808 /* ldw RR'xxx(%r1),%r21 */
2809 { 0x48350000, 0xffffb000 },
2810 /* bv %r0(%r21) */
2811 { 0xeaa0c000, 0xffffffff },
2812 /* ldw RR'xxx+4(%r1),%r19 */
2813 { 0x48330000, 0xffffb000 },
2814 { 0, 0 },
2815 };
2816
2817 static struct insn_pattern hppa_plt_stub[] = {
2818 /* b,l 1b, %r20 - 1b is 3 insns before here */
2819 { 0xea9f1fdd, 0xffffffff },
2820 /* depi 0,31,2,%r20 */
2821 { 0xd6801c1e, 0xffffffff },
2822 { 0, 0 }
2823 };
2824
2825 static struct insn_pattern hppa_sigtramp[] = {
2826 /* ldi 0, %r25 or ldi 1, %r25 */
2827 { 0x34190000, 0xfffffffd },
2828 /* ldi __NR_rt_sigreturn, %r20 */
2829 { 0x3414015a, 0xffffffff },
2830 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
2831 { 0xe4008200, 0xffffffff },
2832 /* nop */
2833 { 0x08000240, 0xffffffff },
2834 { 0, 0 }
2835 };
2836
2837 /* Maximum number of instructions on the patterns above. */
2838 #define HPPA_MAX_INSN_PATTERN_LEN 4
2839
2840 /* Return non-zero if the instructions at PC match the series
2841 described in PATTERN, or zero otherwise. PATTERN is an array of
2842 'struct insn_pattern' objects, terminated by an entry whose mask is
2843 zero.
2844
2845 When the match is successful, fill INSN[i] with what PATTERN[i]
2846 matched. */
2847
2848 static int
2849 hppa_match_insns (CORE_ADDR pc, struct insn_pattern *pattern,
2850 unsigned int *insn)
2851 {
2852 CORE_ADDR npc = pc;
2853 int i;
2854
2855 for (i = 0; pattern[i].mask; i++)
2856 {
2857 gdb_byte buf[HPPA_INSN_SIZE];
2858
2859 read_memory_nobpt (npc, buf, HPPA_INSN_SIZE);
2860 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE);
2861 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2862 npc += 4;
2863 else
2864 return 0;
2865 }
2866
2867 return 1;
2868 }
2869
2870 /* This relaxed version of the insstruction matcher allows us to match
2871 from somewhere inside the pattern, by looking backwards in the
2872 instruction scheme. */
2873
2874 static int
2875 hppa_match_insns_relaxed (CORE_ADDR pc, struct insn_pattern *pattern,
2876 unsigned int *insn)
2877 {
2878 int offset, len = 0;
2879
2880 while (pattern[len].mask)
2881 len++;
2882
2883 for (offset = 0; offset < len; offset++)
2884 if (hppa_match_insns (pc - offset * HPPA_INSN_SIZE, pattern, insn))
2885 return 1;
2886
2887 return 0;
2888 }
2889
2890 static int
2891 hppa_in_dyncall (CORE_ADDR pc)
2892 {
2893 struct unwind_table_entry *u;
2894
2895 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2896 if (!u)
2897 return 0;
2898
2899 return (pc >= u->region_start && pc <= u->region_end);
2900 }
2901
2902 int
2903 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
2904 {
2905 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2906 struct unwind_table_entry *u;
2907
2908 if (in_plt_section (pc, name) || hppa_in_dyncall (pc))
2909 return 1;
2910
2911 /* The GNU toolchain produces linker stubs without unwind
2912 information. Since the pattern matching for linker stubs can be
2913 quite slow, so bail out if we do have an unwind entry. */
2914
2915 u = find_unwind_entry (pc);
2916 if (u != NULL)
2917 return 0;
2918
2919 return (hppa_match_insns_relaxed (pc, hppa_import_stub, insn)
2920 || hppa_match_insns_relaxed (pc, hppa_import_pic_stub, insn)
2921 || hppa_match_insns_relaxed (pc, hppa_long_branch_stub, insn)
2922 || hppa_match_insns_relaxed (pc, hppa_long_branch_pic_stub, insn));
2923 }
2924
2925 /* This code skips several kind of "trampolines" used on PA-RISC
2926 systems: $$dyncall, import stubs and PLT stubs. */
2927
2928 CORE_ADDR
2929 hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2930 {
2931 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2932 int dp_rel;
2933
2934 /* $$dyncall handles both PLABELs and direct addresses. */
2935 if (hppa_in_dyncall (pc))
2936 {
2937 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
2938
2939 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2940 if (pc & 0x2)
2941 pc = read_memory_typed_address (pc & ~0x3, builtin_type_void_func_ptr);
2942
2943 return pc;
2944 }
2945
2946 dp_rel = hppa_match_insns (pc, hppa_import_stub, insn);
2947 if (dp_rel || hppa_match_insns (pc, hppa_import_pic_stub, insn))
2948 {
2949 /* Extract the target address from the addil/ldw sequence. */
2950 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2951
2952 if (dp_rel)
2953 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
2954 else
2955 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
2956
2957 /* fallthrough */
2958 }
2959
2960 if (in_plt_section (pc, NULL))
2961 {
2962 pc = read_memory_typed_address (pc, builtin_type_void_func_ptr);
2963
2964 /* If the PLT slot has not yet been resolved, the target will be
2965 the PLT stub. */
2966 if (in_plt_section (pc, NULL))
2967 {
2968 /* Sanity check: are we pointing to the PLT stub? */
2969 if (!hppa_match_insns (pc, hppa_plt_stub, insn))
2970 {
2971 warning (_("Cannot resolve PLT stub at 0x%s."), paddr_nz (pc));
2972 return 0;
2973 }
2974
2975 /* This should point to the fixup routine. */
2976 pc = read_memory_typed_address (pc + 8, builtin_type_void_func_ptr);
2977 }
2978 }
2979
2980 return pc;
2981 }
2982 \f
2983
2984 /* Here is a table of C type sizes on hppa with various compiles
2985 and options. I measured this on PA 9000/800 with HP-UX 11.11
2986 and these compilers:
2987
2988 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2989 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2990 /opt/aCC/bin/aCC B3910B A.03.45
2991 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2992
2993 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2994 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2995 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2996 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2997 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2998 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2999 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3000 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
3001
3002 Each line is:
3003
3004 compiler and options
3005 char, short, int, long, long long
3006 float, double, long double
3007 char *, void (*)()
3008
3009 So all these compilers use either ILP32 or LP64 model.
3010 TODO: gcc has more options so it needs more investigation.
3011
3012 For floating point types, see:
3013
3014 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3015 HP-UX floating-point guide, hpux 11.00
3016
3017 -- chastain 2003-12-18 */
3018
3019 static struct gdbarch *
3020 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3021 {
3022 struct gdbarch_tdep *tdep;
3023 struct gdbarch *gdbarch;
3024
3025 /* Try to determine the ABI of the object we are loading. */
3026 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
3027 {
3028 /* If it's a SOM file, assume it's HP/UX SOM. */
3029 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
3030 info.osabi = GDB_OSABI_HPUX_SOM;
3031 }
3032
3033 /* find a candidate among the list of pre-declared architectures. */
3034 arches = gdbarch_list_lookup_by_info (arches, &info);
3035 if (arches != NULL)
3036 return (arches->gdbarch);
3037
3038 /* If none found, then allocate and initialize one. */
3039 tdep = XZALLOC (struct gdbarch_tdep);
3040 gdbarch = gdbarch_alloc (&info, tdep);
3041
3042 /* Determine from the bfd_arch_info structure if we are dealing with
3043 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3044 then default to a 32bit machine. */
3045 if (info.bfd_arch_info != NULL)
3046 tdep->bytes_per_address =
3047 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3048 else
3049 tdep->bytes_per_address = 4;
3050
3051 tdep->find_global_pointer = hppa_find_global_pointer;
3052
3053 /* Some parts of the gdbarch vector depend on whether we are running
3054 on a 32 bits or 64 bits target. */
3055 switch (tdep->bytes_per_address)
3056 {
3057 case 4:
3058 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3059 set_gdbarch_register_name (gdbarch, hppa32_register_name);
3060 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3061 set_gdbarch_cannot_store_register (gdbarch,
3062 hppa32_cannot_store_register);
3063 set_gdbarch_cannot_fetch_register (gdbarch,
3064 hppa32_cannot_fetch_register);
3065 break;
3066 case 8:
3067 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3068 set_gdbarch_register_name (gdbarch, hppa64_register_name);
3069 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3070 set_gdbarch_dwarf_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3071 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3072 set_gdbarch_cannot_store_register (gdbarch,
3073 hppa64_cannot_store_register);
3074 set_gdbarch_cannot_fetch_register (gdbarch,
3075 hppa64_cannot_fetch_register);
3076 break;
3077 default:
3078 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3079 tdep->bytes_per_address);
3080 }
3081
3082 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3083 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3084
3085 /* The following gdbarch vector elements are the same in both ILP32
3086 and LP64, but might show differences some day. */
3087 set_gdbarch_long_long_bit (gdbarch, 64);
3088 set_gdbarch_long_double_bit (gdbarch, 128);
3089 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3090
3091 /* The following gdbarch vector elements do not depend on the address
3092 size, or in any other gdbarch element previously set. */
3093 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3094 set_gdbarch_in_function_epilogue_p (gdbarch,
3095 hppa_in_function_epilogue_p);
3096 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3097 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3098 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3099 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
3100 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
3101 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3102 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3103 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3104
3105 /* Helper for function argument information. */
3106 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3107
3108 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3109
3110 /* When a hardware watchpoint triggers, we'll move the inferior past
3111 it by removing all eventpoints; stepping past the instruction
3112 that caused the trigger; reinserting eventpoints; and checking
3113 whether any watched location changed. */
3114 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3115
3116 /* Inferior function call methods. */
3117 switch (tdep->bytes_per_address)
3118 {
3119 case 4:
3120 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3121 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3122 set_gdbarch_convert_from_func_ptr_addr
3123 (gdbarch, hppa32_convert_from_func_ptr_addr);
3124 break;
3125 case 8:
3126 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3127 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3128 break;
3129 default:
3130 internal_error (__FILE__, __LINE__, _("bad switch"));
3131 }
3132
3133 /* Struct return methods. */
3134 switch (tdep->bytes_per_address)
3135 {
3136 case 4:
3137 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3138 break;
3139 case 8:
3140 set_gdbarch_return_value (gdbarch, hppa64_return_value);
3141 break;
3142 default:
3143 internal_error (__FILE__, __LINE__, _("bad switch"));
3144 }
3145
3146 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
3147 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3148
3149 /* Frame unwind methods. */
3150 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
3151 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3152
3153 /* Hook in ABI-specific overrides, if they have been registered. */
3154 gdbarch_init_osabi (info, gdbarch);
3155
3156 /* Hook in the default unwinders. */
3157 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
3158 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
3159 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
3160
3161 return gdbarch;
3162 }
3163
3164 static void
3165 hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3166 {
3167 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3168
3169 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3170 tdep->bytes_per_address);
3171 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3172 }
3173
3174 void
3175 _initialize_hppa_tdep (void)
3176 {
3177 struct cmd_list_element *c;
3178
3179 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3180
3181 hppa_objfile_priv_data = register_objfile_data ();
3182
3183 add_cmd ("unwind", class_maintenance, unwind_command,
3184 _("Print unwind table entry at given address."),
3185 &maintenanceprintlist);
3186
3187 /* Debug this files internals. */
3188 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3189 Set whether hppa target specific debugging information should be displayed."),
3190 _("\
3191 Show whether hppa target specific debugging information is displayed."), _("\
3192 This flag controls whether hppa target specific debugging information is\n\
3193 displayed. This information is particularly useful for debugging frame\n\
3194 unwinding problems."),
3195 NULL,
3196 NULL, /* FIXME: i18n: hppa debug flag is %s. */
3197 &setdebuglist, &showdebuglist);
3198 }