]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/hppa-tdep.c
* hppa-tdep.c (frame_saved_pc): Don't try to dig a return pointer
[thirdparty/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <signal.h>
38
39 #ifdef COFF_ENCAPSULATE
40 #include "a.out.encap.h"
41 #else
42 #endif
43 #ifndef N_SET_MAGIC
44 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
45 #endif
46
47 /*#include <sys/user.h> After a.out.h */
48 #include <sys/file.h>
49 #include "gdb_stat.h"
50 #include "wait.h"
51
52 #include "gdbcore.h"
53 #include "gdbcmd.h"
54 #include "target.h"
55 #include "symfile.h"
56 #include "objfiles.h"
57
58 static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
59
60 static int hppa_alignof PARAMS ((struct type *));
61
62 CORE_ADDR frame_saved_pc PARAMS ((struct frame_info *));
63
64 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
65
66 static int is_branch PARAMS ((unsigned long));
67
68 static int inst_saves_gr PARAMS ((unsigned long));
69
70 static int inst_saves_fr PARAMS ((unsigned long));
71
72 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
73
74 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
75
76 static int compare_unwind_entries PARAMS ((const struct unwind_table_entry *,
77 const struct unwind_table_entry *));
78
79 static void read_unwind_info PARAMS ((struct objfile *));
80
81 static void internalize_unwinds PARAMS ((struct objfile *,
82 struct unwind_table_entry *,
83 asection *, unsigned int,
84 unsigned int, CORE_ADDR));
85 static void pa_print_registers PARAMS ((char *, int, int));
86 static void pa_print_fp_reg PARAMS ((int));
87
88 \f
89 /* Routines to extract various sized constants out of hppa
90 instructions. */
91
92 /* This assumes that no garbage lies outside of the lower bits of
93 value. */
94
95 int
96 sign_extend (val, bits)
97 unsigned val, bits;
98 {
99 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
100 }
101
102 /* For many immediate values the sign bit is the low bit! */
103
104 int
105 low_sign_extend (val, bits)
106 unsigned val, bits;
107 {
108 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
109 }
110 /* extract the immediate field from a ld{bhw}s instruction */
111
112 unsigned
113 get_field (val, from, to)
114 unsigned val, from, to;
115 {
116 val = val >> 31 - to;
117 return val & ((1 << 32 - from) - 1);
118 }
119
120 unsigned
121 set_field (val, from, to, new_val)
122 unsigned *val, from, to;
123 {
124 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
125 return *val = *val & mask | (new_val << (31 - from));
126 }
127
128 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
129
130 extract_3 (word)
131 unsigned word;
132 {
133 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
134 }
135
136 extract_5_load (word)
137 unsigned word;
138 {
139 return low_sign_extend (word >> 16 & MASK_5, 5);
140 }
141
142 /* extract the immediate field from a st{bhw}s instruction */
143
144 int
145 extract_5_store (word)
146 unsigned word;
147 {
148 return low_sign_extend (word & MASK_5, 5);
149 }
150
151 /* extract the immediate field from a break instruction */
152
153 unsigned
154 extract_5r_store (word)
155 unsigned word;
156 {
157 return (word & MASK_5);
158 }
159
160 /* extract the immediate field from a {sr}sm instruction */
161
162 unsigned
163 extract_5R_store (word)
164 unsigned word;
165 {
166 return (word >> 16 & MASK_5);
167 }
168
169 /* extract an 11 bit immediate field */
170
171 int
172 extract_11 (word)
173 unsigned word;
174 {
175 return low_sign_extend (word & MASK_11, 11);
176 }
177
178 /* extract a 14 bit immediate field */
179
180 int
181 extract_14 (word)
182 unsigned word;
183 {
184 return low_sign_extend (word & MASK_14, 14);
185 }
186
187 /* deposit a 14 bit constant in a word */
188
189 unsigned
190 deposit_14 (opnd, word)
191 int opnd;
192 unsigned word;
193 {
194 unsigned sign = (opnd < 0 ? 1 : 0);
195
196 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
197 }
198
199 /* extract a 21 bit constant */
200
201 int
202 extract_21 (word)
203 unsigned word;
204 {
205 int val;
206
207 word &= MASK_21;
208 word <<= 11;
209 val = GET_FIELD (word, 20, 20);
210 val <<= 11;
211 val |= GET_FIELD (word, 9, 19);
212 val <<= 2;
213 val |= GET_FIELD (word, 5, 6);
214 val <<= 5;
215 val |= GET_FIELD (word, 0, 4);
216 val <<= 2;
217 val |= GET_FIELD (word, 7, 8);
218 return sign_extend (val, 21) << 11;
219 }
220
221 /* deposit a 21 bit constant in a word. Although 21 bit constants are
222 usually the top 21 bits of a 32 bit constant, we assume that only
223 the low 21 bits of opnd are relevant */
224
225 unsigned
226 deposit_21 (opnd, word)
227 unsigned opnd, word;
228 {
229 unsigned val = 0;
230
231 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
232 val <<= 2;
233 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
234 val <<= 2;
235 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
236 val <<= 11;
237 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
238 val <<= 1;
239 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
240 return word | val;
241 }
242
243 /* extract a 12 bit constant from branch instructions */
244
245 int
246 extract_12 (word)
247 unsigned word;
248 {
249 return sign_extend (GET_FIELD (word, 19, 28) |
250 GET_FIELD (word, 29, 29) << 10 |
251 (word & 0x1) << 11, 12) << 2;
252 }
253
254 /* Deposit a 17 bit constant in an instruction (like bl). */
255
256 unsigned int
257 deposit_17 (opnd, word)
258 unsigned opnd, word;
259 {
260 word |= GET_FIELD (opnd, 15 + 0, 15 + 0); /* w */
261 word |= GET_FIELD (opnd, 15 + 1, 15 + 5) << 16; /* w1 */
262 word |= GET_FIELD (opnd, 15 + 6, 15 + 6) << 2; /* w2[10] */
263 word |= GET_FIELD (opnd, 15 + 7, 15 + 16) << 3; /* w2[0..9] */
264
265 return word;
266 }
267
268 /* extract a 17 bit constant from branch instructions, returning the
269 19 bit signed value. */
270
271 int
272 extract_17 (word)
273 unsigned word;
274 {
275 return sign_extend (GET_FIELD (word, 19, 28) |
276 GET_FIELD (word, 29, 29) << 10 |
277 GET_FIELD (word, 11, 15) << 11 |
278 (word & 0x1) << 16, 17) << 2;
279 }
280 \f
281
282 /* Compare the start address for two unwind entries returning 1 if
283 the first address is larger than the second, -1 if the second is
284 larger than the first, and zero if they are equal. */
285
286 static int
287 compare_unwind_entries (a, b)
288 const struct unwind_table_entry *a;
289 const struct unwind_table_entry *b;
290 {
291 if (a->region_start > b->region_start)
292 return 1;
293 else if (a->region_start < b->region_start)
294 return -1;
295 else
296 return 0;
297 }
298
299 static void
300 internalize_unwinds (objfile, table, section, entries, size, text_offset)
301 struct objfile *objfile;
302 struct unwind_table_entry *table;
303 asection *section;
304 unsigned int entries, size;
305 CORE_ADDR text_offset;
306 {
307 /* We will read the unwind entries into temporary memory, then
308 fill in the actual unwind table. */
309 if (size > 0)
310 {
311 unsigned long tmp;
312 unsigned i;
313 char *buf = alloca (size);
314
315 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
316
317 /* Now internalize the information being careful to handle host/target
318 endian issues. */
319 for (i = 0; i < entries; i++)
320 {
321 table[i].region_start = bfd_get_32 (objfile->obfd,
322 (bfd_byte *)buf);
323 table[i].region_start += text_offset;
324 buf += 4;
325 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
326 table[i].region_end += text_offset;
327 buf += 4;
328 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
329 buf += 4;
330 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
331 table[i].Millicode = (tmp >> 30) & 0x1;
332 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
333 table[i].Region_description = (tmp >> 27) & 0x3;
334 table[i].reserved1 = (tmp >> 26) & 0x1;
335 table[i].Entry_SR = (tmp >> 25) & 0x1;
336 table[i].Entry_FR = (tmp >> 21) & 0xf;
337 table[i].Entry_GR = (tmp >> 16) & 0x1f;
338 table[i].Args_stored = (tmp >> 15) & 0x1;
339 table[i].Variable_Frame = (tmp >> 14) & 0x1;
340 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
341 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
342 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
343 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
344 table[i].Ada_Region = (tmp >> 9) & 0x1;
345 table[i].reserved2 = (tmp >> 5) & 0xf;
346 table[i].Save_SP = (tmp >> 4) & 0x1;
347 table[i].Save_RP = (tmp >> 3) & 0x1;
348 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
349 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
350 table[i].Cleanup_defined = tmp & 0x1;
351 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
352 buf += 4;
353 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
354 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
355 table[i].Large_frame = (tmp >> 29) & 0x1;
356 table[i].reserved4 = (tmp >> 27) & 0x3;
357 table[i].Total_frame_size = tmp & 0x7ffffff;
358 }
359 }
360 }
361
362 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
363 the object file. This info is used mainly by find_unwind_entry() to find
364 out the stack frame size and frame pointer used by procedures. We put
365 everything on the psymbol obstack in the objfile so that it automatically
366 gets freed when the objfile is destroyed. */
367
368 static void
369 read_unwind_info (objfile)
370 struct objfile *objfile;
371 {
372 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
373 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
374 unsigned index, unwind_entries, elf_unwind_entries;
375 unsigned stub_entries, total_entries;
376 CORE_ADDR text_offset;
377 struct obj_unwind_info *ui;
378
379 text_offset = ANOFFSET (objfile->section_offsets, 0);
380 ui = (struct obj_unwind_info *)obstack_alloc (&objfile->psymbol_obstack,
381 sizeof (struct obj_unwind_info));
382
383 ui->table = NULL;
384 ui->cache = NULL;
385 ui->last = -1;
386
387 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
388 section in ELF at the moment. */
389 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
390 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
391 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
392
393 /* Get sizes and unwind counts for all sections. */
394 if (unwind_sec)
395 {
396 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
397 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
398 }
399 else
400 {
401 unwind_size = 0;
402 unwind_entries = 0;
403 }
404
405 if (elf_unwind_sec)
406 {
407 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
408 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
409 }
410 else
411 {
412 elf_unwind_size = 0;
413 elf_unwind_entries = 0;
414 }
415
416 if (stub_unwind_sec)
417 {
418 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
419 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
420 }
421 else
422 {
423 stub_unwind_size = 0;
424 stub_entries = 0;
425 }
426
427 /* Compute total number of unwind entries and their total size. */
428 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
429 total_size = total_entries * sizeof (struct unwind_table_entry);
430
431 /* Allocate memory for the unwind table. */
432 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
433 ui->last = total_entries - 1;
434
435 /* Internalize the standard unwind entries. */
436 index = 0;
437 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
438 unwind_entries, unwind_size, text_offset);
439 index += unwind_entries;
440 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
441 elf_unwind_entries, elf_unwind_size, text_offset);
442 index += elf_unwind_entries;
443
444 /* Now internalize the stub unwind entries. */
445 if (stub_unwind_size > 0)
446 {
447 unsigned int i;
448 char *buf = alloca (stub_unwind_size);
449
450 /* Read in the stub unwind entries. */
451 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
452 0, stub_unwind_size);
453
454 /* Now convert them into regular unwind entries. */
455 for (i = 0; i < stub_entries; i++, index++)
456 {
457 /* Clear out the next unwind entry. */
458 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
459
460 /* Convert offset & size into region_start and region_end.
461 Stuff away the stub type into "reserved" fields. */
462 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
463 (bfd_byte *) buf);
464 ui->table[index].region_start += text_offset;
465 buf += 4;
466 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
467 (bfd_byte *) buf);
468 buf += 2;
469 ui->table[index].region_end
470 = ui->table[index].region_start + 4 *
471 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
472 buf += 2;
473 }
474
475 }
476
477 /* Unwind table needs to be kept sorted. */
478 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
479 compare_unwind_entries);
480
481 /* Keep a pointer to the unwind information. */
482 objfile->obj_private = (PTR) ui;
483 }
484
485 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
486 of the objfiles seeking the unwind table entry for this PC. Each objfile
487 contains a sorted list of struct unwind_table_entry. Since we do a binary
488 search of the unwind tables, we depend upon them to be sorted. */
489
490 static struct unwind_table_entry *
491 find_unwind_entry(pc)
492 CORE_ADDR pc;
493 {
494 int first, middle, last;
495 struct objfile *objfile;
496
497 ALL_OBJFILES (objfile)
498 {
499 struct obj_unwind_info *ui;
500
501 ui = OBJ_UNWIND_INFO (objfile);
502
503 if (!ui)
504 {
505 read_unwind_info (objfile);
506 ui = OBJ_UNWIND_INFO (objfile);
507 }
508
509 /* First, check the cache */
510
511 if (ui->cache
512 && pc >= ui->cache->region_start
513 && pc <= ui->cache->region_end)
514 return ui->cache;
515
516 /* Not in the cache, do a binary search */
517
518 first = 0;
519 last = ui->last;
520
521 while (first <= last)
522 {
523 middle = (first + last) / 2;
524 if (pc >= ui->table[middle].region_start
525 && pc <= ui->table[middle].region_end)
526 {
527 ui->cache = &ui->table[middle];
528 return &ui->table[middle];
529 }
530
531 if (pc < ui->table[middle].region_start)
532 last = middle - 1;
533 else
534 first = middle + 1;
535 }
536 } /* ALL_OBJFILES() */
537 return NULL;
538 }
539
540 /* Return the adjustment necessary to make for addresses on the stack
541 as presented by hpread.c.
542
543 This is necessary because of the stack direction on the PA and the
544 bizarre way in which someone (?) decided they wanted to handle
545 frame pointerless code in GDB. */
546 int
547 hpread_adjust_stack_address (func_addr)
548 CORE_ADDR func_addr;
549 {
550 struct unwind_table_entry *u;
551
552 u = find_unwind_entry (func_addr);
553 if (!u)
554 return 0;
555 else
556 return u->Total_frame_size << 3;
557 }
558
559 /* Called to determine if PC is in an interrupt handler of some
560 kind. */
561
562 static int
563 pc_in_interrupt_handler (pc)
564 CORE_ADDR pc;
565 {
566 struct unwind_table_entry *u;
567 struct minimal_symbol *msym_us;
568
569 u = find_unwind_entry (pc);
570 if (!u)
571 return 0;
572
573 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
574 its frame isn't a pure interrupt frame. Deal with this. */
575 msym_us = lookup_minimal_symbol_by_pc (pc);
576
577 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
578 }
579
580 /* Called when no unwind descriptor was found for PC. Returns 1 if it
581 appears that PC is in a linker stub. */
582
583 static int
584 pc_in_linker_stub (pc)
585 CORE_ADDR pc;
586 {
587 int found_magic_instruction = 0;
588 int i;
589 char buf[4];
590
591 /* If unable to read memory, assume pc is not in a linker stub. */
592 if (target_read_memory (pc, buf, 4) != 0)
593 return 0;
594
595 /* We are looking for something like
596
597 ; $$dyncall jams RP into this special spot in the frame (RP')
598 ; before calling the "call stub"
599 ldw -18(sp),rp
600
601 ldsid (rp),r1 ; Get space associated with RP into r1
602 mtsp r1,sp ; Move it into space register 0
603 be,n 0(sr0),rp) ; back to your regularly scheduled program
604 */
605
606 /* Maximum known linker stub size is 4 instructions. Search forward
607 from the given PC, then backward. */
608 for (i = 0; i < 4; i++)
609 {
610 /* If we hit something with an unwind, stop searching this direction. */
611
612 if (find_unwind_entry (pc + i * 4) != 0)
613 break;
614
615 /* Check for ldsid (rp),r1 which is the magic instruction for a
616 return from a cross-space function call. */
617 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
618 {
619 found_magic_instruction = 1;
620 break;
621 }
622 /* Add code to handle long call/branch and argument relocation stubs
623 here. */
624 }
625
626 if (found_magic_instruction != 0)
627 return 1;
628
629 /* Now look backward. */
630 for (i = 0; i < 4; i++)
631 {
632 /* If we hit something with an unwind, stop searching this direction. */
633
634 if (find_unwind_entry (pc - i * 4) != 0)
635 break;
636
637 /* Check for ldsid (rp),r1 which is the magic instruction for a
638 return from a cross-space function call. */
639 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
640 {
641 found_magic_instruction = 1;
642 break;
643 }
644 /* Add code to handle long call/branch and argument relocation stubs
645 here. */
646 }
647 return found_magic_instruction;
648 }
649
650 static int
651 find_return_regnum(pc)
652 CORE_ADDR pc;
653 {
654 struct unwind_table_entry *u;
655
656 u = find_unwind_entry (pc);
657
658 if (!u)
659 return RP_REGNUM;
660
661 if (u->Millicode)
662 return 31;
663
664 return RP_REGNUM;
665 }
666
667 /* Return size of frame, or -1 if we should use a frame pointer. */
668 int
669 find_proc_framesize (pc)
670 CORE_ADDR pc;
671 {
672 struct unwind_table_entry *u;
673 struct minimal_symbol *msym_us;
674
675 u = find_unwind_entry (pc);
676
677 if (!u)
678 {
679 if (pc_in_linker_stub (pc))
680 /* Linker stubs have a zero size frame. */
681 return 0;
682 else
683 return -1;
684 }
685
686 msym_us = lookup_minimal_symbol_by_pc (pc);
687
688 /* If Save_SP is set, and we're not in an interrupt or signal caller,
689 then we have a frame pointer. Use it. */
690 if (u->Save_SP && !pc_in_interrupt_handler (pc)
691 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
692 return -1;
693
694 return u->Total_frame_size << 3;
695 }
696
697 /* Return offset from sp at which rp is saved, or 0 if not saved. */
698 static int rp_saved PARAMS ((CORE_ADDR));
699
700 static int
701 rp_saved (pc)
702 CORE_ADDR pc;
703 {
704 struct unwind_table_entry *u;
705
706 u = find_unwind_entry (pc);
707
708 if (!u)
709 {
710 if (pc_in_linker_stub (pc))
711 /* This is the so-called RP'. */
712 return -24;
713 else
714 return 0;
715 }
716
717 if (u->Save_RP)
718 return -20;
719 else if (u->stub_type != 0)
720 {
721 switch (u->stub_type)
722 {
723 case EXPORT:
724 case IMPORT:
725 return -24;
726 case PARAMETER_RELOCATION:
727 return -8;
728 default:
729 return 0;
730 }
731 }
732 else
733 return 0;
734 }
735 \f
736 int
737 frameless_function_invocation (frame)
738 struct frame_info *frame;
739 {
740 struct unwind_table_entry *u;
741
742 u = find_unwind_entry (frame->pc);
743
744 if (u == 0)
745 return 0;
746
747 return (u->Total_frame_size == 0 && u->stub_type == 0);
748 }
749
750 CORE_ADDR
751 saved_pc_after_call (frame)
752 struct frame_info *frame;
753 {
754 int ret_regnum;
755 CORE_ADDR pc;
756 struct unwind_table_entry *u;
757
758 ret_regnum = find_return_regnum (get_frame_pc (frame));
759 pc = read_register (ret_regnum) & ~0x3;
760
761 /* If PC is in a linker stub, then we need to dig the address
762 the stub will return to out of the stack. */
763 u = find_unwind_entry (pc);
764 if (u && u->stub_type != 0)
765 return frame_saved_pc (frame);
766 else
767 return pc;
768 }
769 \f
770 CORE_ADDR
771 frame_saved_pc (frame)
772 struct frame_info *frame;
773 {
774 CORE_ADDR pc = get_frame_pc (frame);
775 struct unwind_table_entry *u;
776
777 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
778 at the base of the frame in an interrupt handler. Registers within
779 are saved in the exact same order as GDB numbers registers. How
780 convienent. */
781 if (pc_in_interrupt_handler (pc))
782 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
783
784 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
785 /* Deal with signal handler caller frames too. */
786 if (frame->signal_handler_caller)
787 {
788 CORE_ADDR rp;
789 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
790 return rp & ~0x3;
791 }
792 #endif
793
794 if (frameless_function_invocation (frame))
795 {
796 int ret_regnum;
797
798 ret_regnum = find_return_regnum (pc);
799
800 /* If the next frame is an interrupt frame or a signal
801 handler caller, then we need to look in the saved
802 register area to get the return pointer (the values
803 in the registers may not correspond to anything useful). */
804 if (frame->next
805 && (frame->next->signal_handler_caller
806 || pc_in_interrupt_handler (frame->next->pc)))
807 {
808 struct frame_saved_regs saved_regs;
809
810 get_frame_saved_regs (frame->next, &saved_regs);
811 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
812 {
813 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
814
815 /* Syscalls are really two frames. The syscall stub itself
816 with a return pointer in %rp and the kernel call with
817 a return pointer in %r31. We return the %rp variant
818 if %r31 is the same as frame->pc. */
819 if (pc == frame->pc)
820 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
821 }
822 else
823 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
824 }
825 else
826 pc = read_register (ret_regnum) & ~0x3;
827 }
828 else
829 {
830 int rp_offset;
831
832 restart:
833 rp_offset = rp_saved (pc);
834 /* Similar to code in frameless function case. If the next
835 frame is a signal or interrupt handler, then dig the right
836 information out of the saved register info. */
837 if (rp_offset == 0
838 && frame->next
839 && (frame->next->signal_handler_caller
840 || pc_in_interrupt_handler (frame->next->pc)))
841 {
842 struct frame_saved_regs saved_regs;
843
844 get_frame_saved_regs (frame->next, &saved_regs);
845 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
846 {
847 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
848
849 /* Syscalls are really two frames. The syscall stub itself
850 with a return pointer in %rp and the kernel call with
851 a return pointer in %r31. We return the %rp variant
852 if %r31 is the same as frame->pc. */
853 if (pc == frame->pc)
854 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
855 }
856 else
857 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
858 }
859 else if (rp_offset == 0)
860 pc = read_register (RP_REGNUM) & ~0x3;
861 else
862 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
863 }
864
865 /* If PC is inside a linker stub, then dig out the address the stub
866 will return to.
867
868 Don't do this for long branch stubs. Why? For some unknown reason
869 _start is marked as a long branch stub in hpux10. */
870 u = find_unwind_entry (pc);
871 if (u && u->stub_type != 0
872 && u->stub_type != LONG_BRANCH)
873 {
874 unsigned int insn;
875
876 /* If this is a dynamic executable, and we're in a signal handler,
877 then the call chain will eventually point us into the stub for
878 _sigreturn. Unlike most cases, we'll be pointed to the branch
879 to the real sigreturn rather than the code after the real branch!.
880
881 Else, try to dig the address the stub will return to in the normal
882 fashion. */
883 insn = read_memory_integer (pc, 4);
884 if ((insn & 0xfc00e000) == 0xe8000000)
885 return (pc + extract_17 (insn) + 8) & ~0x3;
886 else
887 goto restart;
888 }
889
890 return pc;
891 }
892 \f
893 /* We need to correct the PC and the FP for the outermost frame when we are
894 in a system call. */
895
896 void
897 init_extra_frame_info (fromleaf, frame)
898 int fromleaf;
899 struct frame_info *frame;
900 {
901 int flags;
902 int framesize;
903
904 if (frame->next && !fromleaf)
905 return;
906
907 /* If the next frame represents a frameless function invocation
908 then we have to do some adjustments that are normally done by
909 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
910 if (fromleaf)
911 {
912 /* Find the framesize of *this* frame without peeking at the PC
913 in the current frame structure (it isn't set yet). */
914 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
915
916 /* Now adjust our base frame accordingly. If we have a frame pointer
917 use it, else subtract the size of this frame from the current
918 frame. (we always want frame->frame to point at the lowest address
919 in the frame). */
920 if (framesize == -1)
921 frame->frame = read_register (FP_REGNUM);
922 else
923 frame->frame -= framesize;
924 return;
925 }
926
927 flags = read_register (FLAGS_REGNUM);
928 if (flags & 2) /* In system call? */
929 frame->pc = read_register (31) & ~0x3;
930
931 /* The outermost frame is always derived from PC-framesize
932
933 One might think frameless innermost frames should have
934 a frame->frame that is the same as the parent's frame->frame.
935 That is wrong; frame->frame in that case should be the *high*
936 address of the parent's frame. It's complicated as hell to
937 explain, but the parent *always* creates some stack space for
938 the child. So the child actually does have a frame of some
939 sorts, and its base is the high address in its parent's frame. */
940 framesize = find_proc_framesize(frame->pc);
941 if (framesize == -1)
942 frame->frame = read_register (FP_REGNUM);
943 else
944 frame->frame = read_register (SP_REGNUM) - framesize;
945 }
946 \f
947 /* Given a GDB frame, determine the address of the calling function's frame.
948 This will be used to create a new GDB frame struct, and then
949 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
950
951 This may involve searching through prologues for several functions
952 at boundaries where GCC calls HP C code, or where code which has
953 a frame pointer calls code without a frame pointer. */
954
955 CORE_ADDR
956 frame_chain (frame)
957 struct frame_info *frame;
958 {
959 int my_framesize, caller_framesize;
960 struct unwind_table_entry *u;
961 CORE_ADDR frame_base;
962 struct frame_info *tmp_frame;
963
964 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
965 are easy; at *sp we have a full save state strucutre which we can
966 pull the old stack pointer from. Also see frame_saved_pc for
967 code to dig a saved PC out of the save state structure. */
968 if (pc_in_interrupt_handler (frame->pc))
969 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
970 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
971 else if (frame->signal_handler_caller)
972 {
973 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
974 }
975 #endif
976 else
977 frame_base = frame->frame;
978
979 /* Get frame sizes for the current frame and the frame of the
980 caller. */
981 my_framesize = find_proc_framesize (frame->pc);
982 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
983
984 /* If caller does not have a frame pointer, then its frame
985 can be found at current_frame - caller_framesize. */
986 if (caller_framesize != -1)
987 return frame_base - caller_framesize;
988
989 /* Both caller and callee have frame pointers and are GCC compiled
990 (SAVE_SP bit in unwind descriptor is on for both functions.
991 The previous frame pointer is found at the top of the current frame. */
992 if (caller_framesize == -1 && my_framesize == -1)
993 return read_memory_integer (frame_base, 4);
994
995 /* Caller has a frame pointer, but callee does not. This is a little
996 more difficult as GCC and HP C lay out locals and callee register save
997 areas very differently.
998
999 The previous frame pointer could be in a register, or in one of
1000 several areas on the stack.
1001
1002 Walk from the current frame to the innermost frame examining
1003 unwind descriptors to determine if %r3 ever gets saved into the
1004 stack. If so return whatever value got saved into the stack.
1005 If it was never saved in the stack, then the value in %r3 is still
1006 valid, so use it.
1007
1008 We use information from unwind descriptors to determine if %r3
1009 is saved into the stack (Entry_GR field has this information). */
1010
1011 tmp_frame = frame;
1012 while (tmp_frame)
1013 {
1014 u = find_unwind_entry (tmp_frame->pc);
1015
1016 if (!u)
1017 {
1018 /* We could find this information by examining prologues. I don't
1019 think anyone has actually written any tools (not even "strip")
1020 which leave them out of an executable, so maybe this is a moot
1021 point. */
1022 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1023 return 0;
1024 }
1025
1026 /* Entry_GR specifies the number of callee-saved general registers
1027 saved in the stack. It starts at %r3, so %r3 would be 1. */
1028 if (u->Entry_GR >= 1 || u->Save_SP
1029 || tmp_frame->signal_handler_caller
1030 || pc_in_interrupt_handler (tmp_frame->pc))
1031 break;
1032 else
1033 tmp_frame = tmp_frame->next;
1034 }
1035
1036 if (tmp_frame)
1037 {
1038 /* We may have walked down the chain into a function with a frame
1039 pointer. */
1040 if (u->Save_SP
1041 && !tmp_frame->signal_handler_caller
1042 && !pc_in_interrupt_handler (tmp_frame->pc))
1043 return read_memory_integer (tmp_frame->frame, 4);
1044 /* %r3 was saved somewhere in the stack. Dig it out. */
1045 else
1046 {
1047 struct frame_saved_regs saved_regs;
1048
1049 /* Sick.
1050
1051 For optimization purposes many kernels don't have the
1052 callee saved registers into the save_state structure upon
1053 entry into the kernel for a syscall; the optimization
1054 is usually turned off if the process is being traced so
1055 that the debugger can get full register state for the
1056 process.
1057
1058 This scheme works well except for two cases:
1059
1060 * Attaching to a process when the process is in the
1061 kernel performing a system call (debugger can't get
1062 full register state for the inferior process since
1063 the process wasn't being traced when it entered the
1064 system call).
1065
1066 * Register state is not complete if the system call
1067 causes the process to core dump.
1068
1069
1070 The following heinous code is an attempt to deal with
1071 the lack of register state in a core dump. It will
1072 fail miserably if the function which performs the
1073 system call has a variable sized stack frame. */
1074
1075 get_frame_saved_regs (tmp_frame, &saved_regs);
1076
1077 /* Abominable hack. */
1078 if (current_target.to_has_execution == 0
1079 && saved_regs.regs[FLAGS_REGNUM]
1080 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2))
1081 {
1082 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1083 if (!u)
1084 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1085 else
1086 return frame_base - (u->Total_frame_size << 3);
1087 }
1088
1089 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1090 }
1091 }
1092 else
1093 {
1094 /* The value in %r3 was never saved into the stack (thus %r3 still
1095 holds the value of the previous frame pointer). */
1096 return read_register (FP_REGNUM);
1097 }
1098 }
1099
1100 \f
1101 /* To see if a frame chain is valid, see if the caller looks like it
1102 was compiled with gcc. */
1103
1104 int
1105 frame_chain_valid (chain, thisframe)
1106 CORE_ADDR chain;
1107 struct frame_info *thisframe;
1108 {
1109 struct minimal_symbol *msym_us;
1110 struct minimal_symbol *msym_start;
1111 struct unwind_table_entry *u, *next_u = NULL;
1112 struct frame_info *next;
1113
1114 if (!chain)
1115 return 0;
1116
1117 u = find_unwind_entry (thisframe->pc);
1118
1119 if (u == NULL)
1120 return 1;
1121
1122 /* We can't just check that the same of msym_us is "_start", because
1123 someone idiotically decided that they were going to make a Ltext_end
1124 symbol with the same address. This Ltext_end symbol is totally
1125 indistinguishable (as nearly as I can tell) from the symbol for a function
1126 which is (legitimately, since it is in the user's namespace)
1127 named Ltext_end, so we can't just ignore it. */
1128 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1129 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1130 if (msym_us
1131 && msym_start
1132 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1133 return 0;
1134
1135 next = get_next_frame (thisframe);
1136 if (next)
1137 next_u = find_unwind_entry (next->pc);
1138
1139 /* If this frame does not save SP, has no stack, isn't a stub,
1140 and doesn't "call" an interrupt routine or signal handler caller,
1141 then its not valid. */
1142 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1143 || (thisframe->next && thisframe->next->signal_handler_caller)
1144 || (next_u && next_u->HP_UX_interrupt_marker))
1145 return 1;
1146
1147 if (pc_in_linker_stub (thisframe->pc))
1148 return 1;
1149
1150 return 0;
1151 }
1152
1153 /*
1154 * These functions deal with saving and restoring register state
1155 * around a function call in the inferior. They keep the stack
1156 * double-word aligned; eventually, on an hp700, the stack will have
1157 * to be aligned to a 64-byte boundary.
1158 */
1159
1160 void
1161 push_dummy_frame (inf_status)
1162 struct inferior_status *inf_status;
1163 {
1164 CORE_ADDR sp, pc, pcspace;
1165 register int regnum;
1166 int int_buffer;
1167 double freg_buffer;
1168
1169 /* Oh, what a hack. If we're trying to perform an inferior call
1170 while the inferior is asleep, we have to make sure to clear
1171 the "in system call" bit in the flag register (the call will
1172 start after the syscall returns, so we're no longer in the system
1173 call!) This state is kept in "inf_status", change it there.
1174
1175 We also need a number of horrid hacks to deal with lossage in the
1176 PC queue registers (apparently they're not valid when the in syscall
1177 bit is set). */
1178 pc = target_read_pc (inferior_pid);
1179 int_buffer = read_register (FLAGS_REGNUM);
1180 if (int_buffer & 0x2)
1181 {
1182 unsigned int sid;
1183 int_buffer &= ~0x2;
1184 memcpy (inf_status->registers, &int_buffer, 4);
1185 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4);
1186 pc += 4;
1187 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4);
1188 pc -= 4;
1189 sid = (pc >> 30) & 0x3;
1190 if (sid == 0)
1191 pcspace = read_register (SR4_REGNUM);
1192 else
1193 pcspace = read_register (SR4_REGNUM + 4 + sid);
1194 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM),
1195 &pcspace, 4);
1196 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM),
1197 &pcspace, 4);
1198 }
1199 else
1200 pcspace = read_register (PCSQ_HEAD_REGNUM);
1201
1202 /* Space for "arguments"; the RP goes in here. */
1203 sp = read_register (SP_REGNUM) + 48;
1204 int_buffer = read_register (RP_REGNUM) | 0x3;
1205 write_memory (sp - 20, (char *)&int_buffer, 4);
1206
1207 int_buffer = read_register (FP_REGNUM);
1208 write_memory (sp, (char *)&int_buffer, 4);
1209
1210 write_register (FP_REGNUM, sp);
1211
1212 sp += 8;
1213
1214 for (regnum = 1; regnum < 32; regnum++)
1215 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1216 sp = push_word (sp, read_register (regnum));
1217
1218 sp += 4;
1219
1220 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1221 {
1222 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1223 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1224 }
1225 sp = push_word (sp, read_register (IPSW_REGNUM));
1226 sp = push_word (sp, read_register (SAR_REGNUM));
1227 sp = push_word (sp, pc);
1228 sp = push_word (sp, pcspace);
1229 sp = push_word (sp, pc + 4);
1230 sp = push_word (sp, pcspace);
1231 write_register (SP_REGNUM, sp);
1232 }
1233
1234 void
1235 find_dummy_frame_regs (frame, frame_saved_regs)
1236 struct frame_info *frame;
1237 struct frame_saved_regs *frame_saved_regs;
1238 {
1239 CORE_ADDR fp = frame->frame;
1240 int i;
1241
1242 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
1243 frame_saved_regs->regs[FP_REGNUM] = fp;
1244 frame_saved_regs->regs[1] = fp + 8;
1245
1246 for (fp += 12, i = 3; i < 32; i++)
1247 {
1248 if (i != FP_REGNUM)
1249 {
1250 frame_saved_regs->regs[i] = fp;
1251 fp += 4;
1252 }
1253 }
1254
1255 fp += 4;
1256 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1257 frame_saved_regs->regs[i] = fp;
1258
1259 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1260 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1261 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1262 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1263 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1264 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1265 }
1266
1267 void
1268 hppa_pop_frame ()
1269 {
1270 register struct frame_info *frame = get_current_frame ();
1271 register CORE_ADDR fp, npc, target_pc;
1272 register int regnum;
1273 struct frame_saved_regs fsr;
1274 double freg_buffer;
1275
1276 fp = FRAME_FP (frame);
1277 get_frame_saved_regs (frame, &fsr);
1278
1279 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1280 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1281 restore_pc_queue (&fsr);
1282 #endif
1283
1284 for (regnum = 31; regnum > 0; regnum--)
1285 if (fsr.regs[regnum])
1286 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1287
1288 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1289 if (fsr.regs[regnum])
1290 {
1291 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1292 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1293 }
1294
1295 if (fsr.regs[IPSW_REGNUM])
1296 write_register (IPSW_REGNUM,
1297 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1298
1299 if (fsr.regs[SAR_REGNUM])
1300 write_register (SAR_REGNUM,
1301 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1302
1303 /* If the PC was explicitly saved, then just restore it. */
1304 if (fsr.regs[PCOQ_TAIL_REGNUM])
1305 {
1306 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4);
1307 write_register (PCOQ_TAIL_REGNUM, npc);
1308 }
1309 /* Else use the value in %rp to set the new PC. */
1310 else
1311 {
1312 npc = read_register (RP_REGNUM);
1313 target_write_pc (npc, 0);
1314 }
1315
1316 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1317
1318 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1319 write_register (SP_REGNUM, fp - 48);
1320 else
1321 write_register (SP_REGNUM, fp);
1322
1323 /* The PC we just restored may be inside a return trampoline. If so
1324 we want to restart the inferior and run it through the trampoline.
1325
1326 Do this by setting a momentary breakpoint at the location the
1327 trampoline returns to.
1328
1329 Don't skip through the trampoline if we're popping a dummy frame. */
1330 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1331 if (target_pc && !fsr.regs[IPSW_REGNUM])
1332 {
1333 struct symtab_and_line sal;
1334 struct breakpoint *breakpoint;
1335 struct cleanup *old_chain;
1336
1337 /* Set up our breakpoint. Set it to be silent as the MI code
1338 for "return_command" will print the frame we returned to. */
1339 sal = find_pc_line (target_pc, 0);
1340 sal.pc = target_pc;
1341 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1342 breakpoint->silent = 1;
1343
1344 /* So we can clean things up. */
1345 old_chain = make_cleanup (delete_breakpoint, breakpoint);
1346
1347 /* Start up the inferior. */
1348 proceed_to_finish = 1;
1349 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1350
1351 /* Perform our cleanups. */
1352 do_cleanups (old_chain);
1353 }
1354 flush_cached_frames ();
1355 }
1356
1357 /*
1358 * After returning to a dummy on the stack, restore the instruction
1359 * queue space registers. */
1360
1361 static int
1362 restore_pc_queue (fsr)
1363 struct frame_saved_regs *fsr;
1364 {
1365 CORE_ADDR pc = read_pc ();
1366 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1367 struct target_waitstatus w;
1368 int insn_count;
1369
1370 /* Advance past break instruction in the call dummy. */
1371 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1372 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1373
1374 /*
1375 * HPUX doesn't let us set the space registers or the space
1376 * registers of the PC queue through ptrace. Boo, hiss.
1377 * Conveniently, the call dummy has this sequence of instructions
1378 * after the break:
1379 * mtsp r21, sr0
1380 * ble,n 0(sr0, r22)
1381 *
1382 * So, load up the registers and single step until we are in the
1383 * right place.
1384 */
1385
1386 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1387 write_register (22, new_pc);
1388
1389 for (insn_count = 0; insn_count < 3; insn_count++)
1390 {
1391 /* FIXME: What if the inferior gets a signal right now? Want to
1392 merge this into wait_for_inferior (as a special kind of
1393 watchpoint? By setting a breakpoint at the end? Is there
1394 any other choice? Is there *any* way to do this stuff with
1395 ptrace() or some equivalent?). */
1396 resume (1, 0);
1397 target_wait (inferior_pid, &w);
1398
1399 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1400 {
1401 stop_signal = w.value.sig;
1402 terminal_ours_for_output ();
1403 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1404 target_signal_to_name (stop_signal),
1405 target_signal_to_string (stop_signal));
1406 gdb_flush (gdb_stdout);
1407 return 0;
1408 }
1409 }
1410 target_terminal_ours ();
1411 target_fetch_registers (-1);
1412 return 1;
1413 }
1414
1415 CORE_ADDR
1416 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1417 int nargs;
1418 value_ptr *args;
1419 CORE_ADDR sp;
1420 int struct_return;
1421 CORE_ADDR struct_addr;
1422 {
1423 /* array of arguments' offsets */
1424 int *offset = (int *)alloca(nargs * sizeof (int));
1425 int cum = 0;
1426 int i, alignment;
1427
1428 for (i = 0; i < nargs; i++)
1429 {
1430 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1431
1432 /* value must go at proper alignment. Assume alignment is a
1433 power of two.*/
1434 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1435 if (cum % alignment)
1436 cum = (cum + alignment) & -alignment;
1437 offset[i] = -cum;
1438 }
1439 sp += max ((cum + 7) & -8, 16);
1440
1441 for (i = 0; i < nargs; i++)
1442 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1443 TYPE_LENGTH (VALUE_TYPE (args[i])));
1444
1445 if (struct_return)
1446 write_register (28, struct_addr);
1447 return sp + 32;
1448 }
1449
1450 /*
1451 * Insert the specified number of args and function address
1452 * into a call sequence of the above form stored at DUMMYNAME.
1453 *
1454 * On the hppa we need to call the stack dummy through $$dyncall.
1455 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1456 * real_pc, which is the location where gdb should start up the
1457 * inferior to do the function call.
1458 */
1459
1460 CORE_ADDR
1461 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1462 char *dummy;
1463 CORE_ADDR pc;
1464 CORE_ADDR fun;
1465 int nargs;
1466 value_ptr *args;
1467 struct type *type;
1468 int gcc_p;
1469 {
1470 CORE_ADDR dyncall_addr;
1471 struct minimal_symbol *msymbol;
1472 struct minimal_symbol *trampoline;
1473 int flags = read_register (FLAGS_REGNUM);
1474 struct unwind_table_entry *u;
1475
1476 trampoline = NULL;
1477 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1478 if (msymbol == NULL)
1479 error ("Can't find an address for $$dyncall trampoline");
1480
1481 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1482
1483 /* FUN could be a procedure label, in which case we have to get
1484 its real address and the value of its GOT/DP. */
1485 if (fun & 0x2)
1486 {
1487 /* Get the GOT/DP value for the target function. It's
1488 at *(fun+4). Note the call dummy is *NOT* allowed to
1489 trash %r19 before calling the target function. */
1490 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1491
1492 /* Now get the real address for the function we are calling, it's
1493 at *fun. */
1494 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1495 }
1496 else
1497 {
1498
1499 #ifndef GDB_TARGET_IS_PA_ELF
1500 /* FUN could be either an export stub, or the real address of a
1501 function in a shared library. We must call an import stub
1502 rather than the export stub or real function for lazy binding
1503 to work correctly. */
1504 if (som_solib_get_got_by_pc (fun))
1505 {
1506 struct objfile *objfile;
1507 struct minimal_symbol *funsymbol, *stub_symbol;
1508 CORE_ADDR newfun = 0;
1509
1510 funsymbol = lookup_minimal_symbol_by_pc (fun);
1511 if (!funsymbol)
1512 error ("Unable to find minimal symbol for target fucntion.\n");
1513
1514 /* Search all the object files for an import symbol with the
1515 right name. */
1516 ALL_OBJFILES (objfile)
1517 {
1518 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
1519 NULL, objfile);
1520 /* Found a symbol with the right name. */
1521 if (stub_symbol)
1522 {
1523 struct unwind_table_entry *u;
1524 /* It must be a shared library trampoline. */
1525 if (SYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
1526 continue;
1527
1528 /* It must also be an import stub. */
1529 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
1530 if (!u || u->stub_type != IMPORT)
1531 continue;
1532
1533 /* OK. Looks like the correct import stub. */
1534 newfun = SYMBOL_VALUE (stub_symbol);
1535 fun = newfun;
1536 }
1537 }
1538 if (newfun == 0)
1539 write_register (19, som_solib_get_got_by_pc (fun));
1540 }
1541 #endif
1542 }
1543
1544 /* If we are calling an import stub (eg calling into a dynamic library)
1545 then have sr4export call the magic __d_plt_call routine which is linked
1546 in from end.o. (You can't use _sr4export to call the import stub as
1547 the value in sp-24 will get fried and you end up returning to the
1548 wrong location. You can't call the import stub directly as the code
1549 to bind the PLT entry to a function can't return to a stack address.) */
1550 u = find_unwind_entry (fun);
1551 if (u && u->stub_type == IMPORT)
1552 {
1553 CORE_ADDR new_fun;
1554
1555 /* Prefer __gcc_plt_call over the HP supplied routine because
1556 __gcc_plt_call works for any number of arguments. */
1557 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
1558 if (trampoline == NULL)
1559 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
1560
1561 if (trampoline == NULL)
1562 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline");
1563
1564 /* This is where sr4export will jump to. */
1565 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
1566
1567 if (strcmp (SYMBOL_NAME (trampoline), "__d_plt_call") == 0)
1568 {
1569 /* We have to store the address of the stub in __shlib_funcptr. */
1570 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
1571 (struct objfile *)NULL);
1572 if (msymbol == NULL)
1573 error ("Can't find an address for __shlib_funcptr");
1574
1575 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1576
1577 /* We want sr4export to call __d_plt_call, so we claim it is
1578 the final target. Clear trampoline. */
1579 fun = new_fun;
1580 trampoline = NULL;
1581 }
1582 }
1583
1584 /* Store upper 21 bits of function address into ldil. fun will either be
1585 the final target (most cases) or __d_plt_call when calling into a shared
1586 library and __gcc_plt_call is not available. */
1587 store_unsigned_integer
1588 (&dummy[FUNC_LDIL_OFFSET],
1589 INSTRUCTION_SIZE,
1590 deposit_21 (fun >> 11,
1591 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
1592 INSTRUCTION_SIZE)));
1593
1594 /* Store lower 11 bits of function address into ldo */
1595 store_unsigned_integer
1596 (&dummy[FUNC_LDO_OFFSET],
1597 INSTRUCTION_SIZE,
1598 deposit_14 (fun & MASK_11,
1599 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
1600 INSTRUCTION_SIZE)));
1601 #ifdef SR4EXPORT_LDIL_OFFSET
1602
1603 {
1604 CORE_ADDR trampoline_addr;
1605
1606 /* We may still need sr4export's address too. */
1607
1608 if (trampoline == NULL)
1609 {
1610 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1611 if (msymbol == NULL)
1612 error ("Can't find an address for _sr4export trampoline");
1613
1614 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1615 }
1616 else
1617 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
1618
1619
1620 /* Store upper 21 bits of trampoline's address into ldil */
1621 store_unsigned_integer
1622 (&dummy[SR4EXPORT_LDIL_OFFSET],
1623 INSTRUCTION_SIZE,
1624 deposit_21 (trampoline_addr >> 11,
1625 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
1626 INSTRUCTION_SIZE)));
1627
1628 /* Store lower 11 bits of trampoline's address into ldo */
1629 store_unsigned_integer
1630 (&dummy[SR4EXPORT_LDO_OFFSET],
1631 INSTRUCTION_SIZE,
1632 deposit_14 (trampoline_addr & MASK_11,
1633 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
1634 INSTRUCTION_SIZE)));
1635 }
1636 #endif
1637
1638 write_register (22, pc);
1639
1640 /* If we are in a syscall, then we should call the stack dummy
1641 directly. $$dyncall is not needed as the kernel sets up the
1642 space id registers properly based on the value in %r31. In
1643 fact calling $$dyncall will not work because the value in %r22
1644 will be clobbered on the syscall exit path.
1645
1646 Similarly if the current PC is in a shared library. Note however,
1647 this scheme won't work if the shared library isn't mapped into
1648 the same space as the stack. */
1649 if (flags & 2)
1650 return pc;
1651 #ifndef GDB_TARGET_IS_PA_ELF
1652 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
1653 return pc;
1654 #endif
1655 else
1656 return dyncall_addr;
1657
1658 }
1659
1660 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1661 bits. */
1662
1663 CORE_ADDR
1664 target_read_pc (pid)
1665 int pid;
1666 {
1667 int flags = read_register (FLAGS_REGNUM);
1668
1669 if (flags & 2) {
1670 return read_register (31) & ~0x3;
1671 }
1672 return read_register (PC_REGNUM) & ~0x3;
1673 }
1674
1675 /* Write out the PC. If currently in a syscall, then also write the new
1676 PC value into %r31. */
1677
1678 void
1679 target_write_pc (v, pid)
1680 CORE_ADDR v;
1681 int pid;
1682 {
1683 int flags = read_register (FLAGS_REGNUM);
1684
1685 /* If in a syscall, then set %r31. Also make sure to get the
1686 privilege bits set correctly. */
1687 if (flags & 2)
1688 write_register (31, (long) (v | 0x3));
1689
1690 write_register (PC_REGNUM, (long) v);
1691 write_register (NPC_REGNUM, (long) v + 4);
1692 }
1693
1694 /* return the alignment of a type in bytes. Structures have the maximum
1695 alignment required by their fields. */
1696
1697 static int
1698 hppa_alignof (arg)
1699 struct type *arg;
1700 {
1701 int max_align, align, i;
1702 switch (TYPE_CODE (arg))
1703 {
1704 case TYPE_CODE_PTR:
1705 case TYPE_CODE_INT:
1706 case TYPE_CODE_FLT:
1707 return TYPE_LENGTH (arg);
1708 case TYPE_CODE_ARRAY:
1709 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1710 case TYPE_CODE_STRUCT:
1711 case TYPE_CODE_UNION:
1712 max_align = 2;
1713 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1714 {
1715 /* Bit fields have no real alignment. */
1716 if (!TYPE_FIELD_BITPOS (arg, i))
1717 {
1718 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1719 max_align = max (max_align, align);
1720 }
1721 }
1722 return max_align;
1723 default:
1724 return 4;
1725 }
1726 }
1727
1728 /* Print the register regnum, or all registers if regnum is -1 */
1729
1730 void
1731 pa_do_registers_info (regnum, fpregs)
1732 int regnum;
1733 int fpregs;
1734 {
1735 char raw_regs [REGISTER_BYTES];
1736 int i;
1737
1738 for (i = 0; i < NUM_REGS; i++)
1739 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1740 if (regnum == -1)
1741 pa_print_registers (raw_regs, regnum, fpregs);
1742 else if (regnum < FP0_REGNUM)
1743 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1744 REGISTER_BYTE (regnum)));
1745 else
1746 pa_print_fp_reg (regnum);
1747 }
1748
1749 static void
1750 pa_print_registers (raw_regs, regnum, fpregs)
1751 char *raw_regs;
1752 int regnum;
1753 int fpregs;
1754 {
1755 int i,j;
1756 long val;
1757
1758 for (i = 0; i < 18; i++)
1759 {
1760 for (j = 0; j < 4; j++)
1761 {
1762 val =
1763 extract_signed_integer (raw_regs + REGISTER_BYTE (i+(j*18)), 4);
1764 printf_unfiltered ("%8.8s: %8x ", reg_names[i+(j*18)], val);
1765 }
1766 printf_unfiltered ("\n");
1767 }
1768
1769 if (fpregs)
1770 for (i = 72; i < NUM_REGS; i++)
1771 pa_print_fp_reg (i);
1772 }
1773
1774 static void
1775 pa_print_fp_reg (i)
1776 int i;
1777 {
1778 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1779 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1780
1781 /* Get 32bits of data. */
1782 read_relative_register_raw_bytes (i, raw_buffer);
1783
1784 /* Put it in the buffer. No conversions are ever necessary. */
1785 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1786
1787 fputs_filtered (reg_names[i], gdb_stdout);
1788 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1789 fputs_filtered ("(single precision) ", gdb_stdout);
1790
1791 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1792 1, 0, Val_pretty_default);
1793 printf_filtered ("\n");
1794
1795 /* If "i" is even, then this register can also be a double-precision
1796 FP register. Dump it out as such. */
1797 if ((i % 2) == 0)
1798 {
1799 /* Get the data in raw format for the 2nd half. */
1800 read_relative_register_raw_bytes (i + 1, raw_buffer);
1801
1802 /* Copy it into the appropriate part of the virtual buffer. */
1803 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1804 REGISTER_RAW_SIZE (i));
1805
1806 /* Dump it as a double. */
1807 fputs_filtered (reg_names[i], gdb_stdout);
1808 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1809 fputs_filtered ("(double precision) ", gdb_stdout);
1810
1811 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1812 1, 0, Val_pretty_default);
1813 printf_filtered ("\n");
1814 }
1815 }
1816
1817 /* Return one if PC is in the call path of a trampoline, else return zero.
1818
1819 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1820 just shared library trampolines (import, export). */
1821
1822 int
1823 in_solib_call_trampoline (pc, name)
1824 CORE_ADDR pc;
1825 char *name;
1826 {
1827 struct minimal_symbol *minsym;
1828 struct unwind_table_entry *u;
1829 static CORE_ADDR dyncall = 0;
1830 static CORE_ADDR sr4export = 0;
1831
1832 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1833 new exec file */
1834
1835 /* First see if PC is in one of the two C-library trampolines. */
1836 if (!dyncall)
1837 {
1838 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1839 if (minsym)
1840 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
1841 else
1842 dyncall = -1;
1843 }
1844
1845 if (!sr4export)
1846 {
1847 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1848 if (minsym)
1849 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
1850 else
1851 sr4export = -1;
1852 }
1853
1854 if (pc == dyncall || pc == sr4export)
1855 return 1;
1856
1857 /* Get the unwind descriptor corresponding to PC, return zero
1858 if no unwind was found. */
1859 u = find_unwind_entry (pc);
1860 if (!u)
1861 return 0;
1862
1863 /* If this isn't a linker stub, then return now. */
1864 if (u->stub_type == 0)
1865 return 0;
1866
1867 /* By definition a long-branch stub is a call stub. */
1868 if (u->stub_type == LONG_BRANCH)
1869 return 1;
1870
1871 /* The call and return path execute the same instructions within
1872 an IMPORT stub! So an IMPORT stub is both a call and return
1873 trampoline. */
1874 if (u->stub_type == IMPORT)
1875 return 1;
1876
1877 /* Parameter relocation stubs always have a call path and may have a
1878 return path. */
1879 if (u->stub_type == PARAMETER_RELOCATION
1880 || u->stub_type == EXPORT)
1881 {
1882 CORE_ADDR addr;
1883
1884 /* Search forward from the current PC until we hit a branch
1885 or the end of the stub. */
1886 for (addr = pc; addr <= u->region_end; addr += 4)
1887 {
1888 unsigned long insn;
1889
1890 insn = read_memory_integer (addr, 4);
1891
1892 /* Does it look like a bl? If so then it's the call path, if
1893 we find a bv or be first, then we're on the return path. */
1894 if ((insn & 0xfc00e000) == 0xe8000000)
1895 return 1;
1896 else if ((insn & 0xfc00e001) == 0xe800c000
1897 || (insn & 0xfc000000) == 0xe0000000)
1898 return 0;
1899 }
1900
1901 /* Should never happen. */
1902 warning ("Unable to find branch in parameter relocation stub.\n");
1903 return 0;
1904 }
1905
1906 /* Unknown stub type. For now, just return zero. */
1907 return 0;
1908 }
1909
1910 /* Return one if PC is in the return path of a trampoline, else return zero.
1911
1912 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1913 just shared library trampolines (import, export). */
1914
1915 int
1916 in_solib_return_trampoline (pc, name)
1917 CORE_ADDR pc;
1918 char *name;
1919 {
1920 struct unwind_table_entry *u;
1921
1922 /* Get the unwind descriptor corresponding to PC, return zero
1923 if no unwind was found. */
1924 u = find_unwind_entry (pc);
1925 if (!u)
1926 return 0;
1927
1928 /* If this isn't a linker stub or it's just a long branch stub, then
1929 return zero. */
1930 if (u->stub_type == 0 || u->stub_type == LONG_BRANCH)
1931 return 0;
1932
1933 /* The call and return path execute the same instructions within
1934 an IMPORT stub! So an IMPORT stub is both a call and return
1935 trampoline. */
1936 if (u->stub_type == IMPORT)
1937 return 1;
1938
1939 /* Parameter relocation stubs always have a call path and may have a
1940 return path. */
1941 if (u->stub_type == PARAMETER_RELOCATION
1942 || u->stub_type == EXPORT)
1943 {
1944 CORE_ADDR addr;
1945
1946 /* Search forward from the current PC until we hit a branch
1947 or the end of the stub. */
1948 for (addr = pc; addr <= u->region_end; addr += 4)
1949 {
1950 unsigned long insn;
1951
1952 insn = read_memory_integer (addr, 4);
1953
1954 /* Does it look like a bl? If so then it's the call path, if
1955 we find a bv or be first, then we're on the return path. */
1956 if ((insn & 0xfc00e000) == 0xe8000000)
1957 return 0;
1958 else if ((insn & 0xfc00e001) == 0xe800c000
1959 || (insn & 0xfc000000) == 0xe0000000)
1960 return 1;
1961 }
1962
1963 /* Should never happen. */
1964 warning ("Unable to find branch in parameter relocation stub.\n");
1965 return 0;
1966 }
1967
1968 /* Unknown stub type. For now, just return zero. */
1969 return 0;
1970
1971 }
1972
1973 /* Figure out if PC is in a trampoline, and if so find out where
1974 the trampoline will jump to. If not in a trampoline, return zero.
1975
1976 Simple code examination probably is not a good idea since the code
1977 sequences in trampolines can also appear in user code.
1978
1979 We use unwinds and information from the minimal symbol table to
1980 determine when we're in a trampoline. This won't work for ELF
1981 (yet) since it doesn't create stub unwind entries. Whether or
1982 not ELF will create stub unwinds or normal unwinds for linker
1983 stubs is still being debated.
1984
1985 This should handle simple calls through dyncall or sr4export,
1986 long calls, argument relocation stubs, and dyncall/sr4export
1987 calling an argument relocation stub. It even handles some stubs
1988 used in dynamic executables. */
1989
1990 CORE_ADDR
1991 skip_trampoline_code (pc, name)
1992 CORE_ADDR pc;
1993 char *name;
1994 {
1995 long orig_pc = pc;
1996 long prev_inst, curr_inst, loc;
1997 static CORE_ADDR dyncall = 0;
1998 static CORE_ADDR sr4export = 0;
1999 struct minimal_symbol *msym;
2000 struct unwind_table_entry *u;
2001
2002 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2003 new exec file */
2004
2005 if (!dyncall)
2006 {
2007 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2008 if (msym)
2009 dyncall = SYMBOL_VALUE_ADDRESS (msym);
2010 else
2011 dyncall = -1;
2012 }
2013
2014 if (!sr4export)
2015 {
2016 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2017 if (msym)
2018 sr4export = SYMBOL_VALUE_ADDRESS (msym);
2019 else
2020 sr4export = -1;
2021 }
2022
2023 /* Addresses passed to dyncall may *NOT* be the actual address
2024 of the function. So we may have to do something special. */
2025 if (pc == dyncall)
2026 {
2027 pc = (CORE_ADDR) read_register (22);
2028
2029 /* If bit 30 (counting from the left) is on, then pc is the address of
2030 the PLT entry for this function, not the address of the function
2031 itself. Bit 31 has meaning too, but only for MPE. */
2032 if (pc & 0x2)
2033 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
2034 }
2035 else if (pc == sr4export)
2036 pc = (CORE_ADDR) (read_register (22));
2037
2038 /* Get the unwind descriptor corresponding to PC, return zero
2039 if no unwind was found. */
2040 u = find_unwind_entry (pc);
2041 if (!u)
2042 return 0;
2043
2044 /* If this isn't a linker stub, then return now. */
2045 if (u->stub_type == 0)
2046 return orig_pc == pc ? 0 : pc & ~0x3;
2047
2048 /* It's a stub. Search for a branch and figure out where it goes.
2049 Note we have to handle multi insn branch sequences like ldil;ble.
2050 Most (all?) other branches can be determined by examining the contents
2051 of certain registers and the stack. */
2052 loc = pc;
2053 curr_inst = 0;
2054 prev_inst = 0;
2055 while (1)
2056 {
2057 /* Make sure we haven't walked outside the range of this stub. */
2058 if (u != find_unwind_entry (loc))
2059 {
2060 warning ("Unable to find branch in linker stub");
2061 return orig_pc == pc ? 0 : pc & ~0x3;
2062 }
2063
2064 prev_inst = curr_inst;
2065 curr_inst = read_memory_integer (loc, 4);
2066
2067 /* Does it look like a branch external using %r1? Then it's the
2068 branch from the stub to the actual function. */
2069 if ((curr_inst & 0xffe0e000) == 0xe0202000)
2070 {
2071 /* Yup. See if the previous instruction loaded
2072 a value into %r1. If so compute and return the jump address. */
2073 if ((prev_inst & 0xffe00000) == 0x20200000)
2074 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
2075 else
2076 {
2077 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
2078 return orig_pc == pc ? 0 : pc & ~0x3;
2079 }
2080 }
2081
2082 /* Does it look like a be 0(sr0,%r21)? That's the branch from an
2083 import stub to an export stub.
2084
2085 It is impossible to determine the target of the branch via
2086 simple examination of instructions and/or data (consider
2087 that the address in the plabel may be the address of the
2088 bind-on-reference routine in the dynamic loader).
2089
2090 So we have try an alternative approach.
2091
2092 Get the name of the symbol at our current location; it should
2093 be a stub symbol with the same name as the symbol in the
2094 shared library.
2095
2096 Then lookup a minimal symbol with the same name; we should
2097 get the minimal symbol for the target routine in the shared
2098 library as those take precedence of import/export stubs. */
2099 if (curr_inst == 0xe2a00000)
2100 {
2101 struct minimal_symbol *stubsym, *libsym;
2102
2103 stubsym = lookup_minimal_symbol_by_pc (loc);
2104 if (stubsym == NULL)
2105 {
2106 warning ("Unable to find symbol for 0x%x", loc);
2107 return orig_pc == pc ? 0 : pc & ~0x3;
2108 }
2109
2110 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
2111 if (libsym == NULL)
2112 {
2113 warning ("Unable to find library symbol for %s\n",
2114 SYMBOL_NAME (stubsym));
2115 return orig_pc == pc ? 0 : pc & ~0x3;
2116 }
2117
2118 return SYMBOL_VALUE (libsym);
2119 }
2120
2121 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
2122 branch from the stub to the actual function. */
2123 else if ((curr_inst & 0xffe0e000) == 0xe8400000
2124 || (curr_inst & 0xffe0e000) == 0xe8000000)
2125 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
2126
2127 /* Does it look like bv (rp)? Note this depends on the
2128 current stack pointer being the same as the stack
2129 pointer in the stub itself! This is a branch on from the
2130 stub back to the original caller. */
2131 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
2132 {
2133 /* Yup. See if the previous instruction loaded
2134 rp from sp - 8. */
2135 if (prev_inst == 0x4bc23ff1)
2136 return (read_memory_integer
2137 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
2138 else
2139 {
2140 warning ("Unable to find restore of %%rp before bv (%%rp).");
2141 return orig_pc == pc ? 0 : pc & ~0x3;
2142 }
2143 }
2144
2145 /* What about be,n 0(sr0,%rp)? It's just another way we return to
2146 the original caller from the stub. Used in dynamic executables. */
2147 else if (curr_inst == 0xe0400002)
2148 {
2149 /* The value we jump to is sitting in sp - 24. But that's
2150 loaded several instructions before the be instruction.
2151 I guess we could check for the previous instruction being
2152 mtsp %r1,%sr0 if we want to do sanity checking. */
2153 return (read_memory_integer
2154 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
2155 }
2156
2157 /* Haven't found the branch yet, but we're still in the stub.
2158 Keep looking. */
2159 loc += 4;
2160 }
2161 }
2162
2163 /* For the given instruction (INST), return any adjustment it makes
2164 to the stack pointer or zero for no adjustment.
2165
2166 This only handles instructions commonly found in prologues. */
2167
2168 static int
2169 prologue_inst_adjust_sp (inst)
2170 unsigned long inst;
2171 {
2172 /* This must persist across calls. */
2173 static int save_high21;
2174
2175 /* The most common way to perform a stack adjustment ldo X(sp),sp */
2176 if ((inst & 0xffffc000) == 0x37de0000)
2177 return extract_14 (inst);
2178
2179 /* stwm X,D(sp) */
2180 if ((inst & 0xffe00000) == 0x6fc00000)
2181 return extract_14 (inst);
2182
2183 /* addil high21,%r1; ldo low11,(%r1),%r30)
2184 save high bits in save_high21 for later use. */
2185 if ((inst & 0xffe00000) == 0x28200000)
2186 {
2187 save_high21 = extract_21 (inst);
2188 return 0;
2189 }
2190
2191 if ((inst & 0xffff0000) == 0x343e0000)
2192 return save_high21 + extract_14 (inst);
2193
2194 /* fstws as used by the HP compilers. */
2195 if ((inst & 0xffffffe0) == 0x2fd01220)
2196 return extract_5_load (inst);
2197
2198 /* No adjustment. */
2199 return 0;
2200 }
2201
2202 /* Return nonzero if INST is a branch of some kind, else return zero. */
2203
2204 static int
2205 is_branch (inst)
2206 unsigned long inst;
2207 {
2208 switch (inst >> 26)
2209 {
2210 case 0x20:
2211 case 0x21:
2212 case 0x22:
2213 case 0x23:
2214 case 0x28:
2215 case 0x29:
2216 case 0x2a:
2217 case 0x2b:
2218 case 0x30:
2219 case 0x31:
2220 case 0x32:
2221 case 0x33:
2222 case 0x38:
2223 case 0x39:
2224 case 0x3a:
2225 return 1;
2226
2227 default:
2228 return 0;
2229 }
2230 }
2231
2232 /* Return the register number for a GR which is saved by INST or
2233 zero it INST does not save a GR. */
2234
2235 static int
2236 inst_saves_gr (inst)
2237 unsigned long inst;
2238 {
2239 /* Does it look like a stw? */
2240 if ((inst >> 26) == 0x1a)
2241 return extract_5R_store (inst);
2242
2243 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
2244 if ((inst >> 26) == 0x1b)
2245 return extract_5R_store (inst);
2246
2247 /* Does it look like sth or stb? HPC versions 9.0 and later use these
2248 too. */
2249 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
2250 return extract_5R_store (inst);
2251
2252 return 0;
2253 }
2254
2255 /* Return the register number for a FR which is saved by INST or
2256 zero it INST does not save a FR.
2257
2258 Note we only care about full 64bit register stores (that's the only
2259 kind of stores the prologue will use).
2260
2261 FIXME: What about argument stores with the HP compiler in ANSI mode? */
2262
2263 static int
2264 inst_saves_fr (inst)
2265 unsigned long inst;
2266 {
2267 if ((inst & 0xfc00dfc0) == 0x2c001200)
2268 return extract_5r_store (inst);
2269 return 0;
2270 }
2271
2272 /* Advance PC across any function entry prologue instructions
2273 to reach some "real" code.
2274
2275 Use information in the unwind table to determine what exactly should
2276 be in the prologue. */
2277
2278 CORE_ADDR
2279 skip_prologue (pc)
2280 CORE_ADDR pc;
2281 {
2282 char buf[4];
2283 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2284 unsigned long args_stored, status, i;
2285 struct unwind_table_entry *u;
2286
2287 u = find_unwind_entry (pc);
2288 if (!u)
2289 return pc;
2290
2291 /* If we are not at the beginning of a function, then return now. */
2292 if ((pc & ~0x3) != u->region_start)
2293 return pc;
2294
2295 /* This is how much of a frame adjustment we need to account for. */
2296 stack_remaining = u->Total_frame_size << 3;
2297
2298 /* Magic register saves we want to know about. */
2299 save_rp = u->Save_RP;
2300 save_sp = u->Save_SP;
2301
2302 /* An indication that args may be stored into the stack. Unfortunately
2303 the HPUX compilers tend to set this in cases where no args were
2304 stored too!. */
2305 args_stored = u->Args_stored;
2306
2307 /* Turn the Entry_GR field into a bitmask. */
2308 save_gr = 0;
2309 for (i = 3; i < u->Entry_GR + 3; i++)
2310 {
2311 /* Frame pointer gets saved into a special location. */
2312 if (u->Save_SP && i == FP_REGNUM)
2313 continue;
2314
2315 save_gr |= (1 << i);
2316 }
2317
2318 /* Turn the Entry_FR field into a bitmask too. */
2319 save_fr = 0;
2320 for (i = 12; i < u->Entry_FR + 12; i++)
2321 save_fr |= (1 << i);
2322
2323 /* Loop until we find everything of interest or hit a branch.
2324
2325 For unoptimized GCC code and for any HP CC code this will never ever
2326 examine any user instructions.
2327
2328 For optimzied GCC code we're faced with problems. GCC will schedule
2329 its prologue and make prologue instructions available for delay slot
2330 filling. The end result is user code gets mixed in with the prologue
2331 and a prologue instruction may be in the delay slot of the first branch
2332 or call.
2333
2334 Some unexpected things are expected with debugging optimized code, so
2335 we allow this routine to walk past user instructions in optimized
2336 GCC code. */
2337 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
2338 || args_stored)
2339 {
2340 unsigned int reg_num;
2341 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
2342 unsigned long old_save_rp, old_save_sp, next_inst;
2343
2344 /* Save copies of all the triggers so we can compare them later
2345 (only for HPC). */
2346 old_save_gr = save_gr;
2347 old_save_fr = save_fr;
2348 old_save_rp = save_rp;
2349 old_save_sp = save_sp;
2350 old_stack_remaining = stack_remaining;
2351
2352 status = target_read_memory (pc, buf, 4);
2353 inst = extract_unsigned_integer (buf, 4);
2354
2355 /* Yow! */
2356 if (status != 0)
2357 return pc;
2358
2359 /* Note the interesting effects of this instruction. */
2360 stack_remaining -= prologue_inst_adjust_sp (inst);
2361
2362 /* There is only one instruction used for saving RP into the stack. */
2363 if (inst == 0x6bc23fd9)
2364 save_rp = 0;
2365
2366 /* This is the only way we save SP into the stack. At this time
2367 the HP compilers never bother to save SP into the stack. */
2368 if ((inst & 0xffffc000) == 0x6fc10000)
2369 save_sp = 0;
2370
2371 /* Account for general and floating-point register saves. */
2372 reg_num = inst_saves_gr (inst);
2373 save_gr &= ~(1 << reg_num);
2374
2375 /* Ugh. Also account for argument stores into the stack.
2376 Unfortunately args_stored only tells us that some arguments
2377 where stored into the stack. Not how many or what kind!
2378
2379 This is a kludge as on the HP compiler sets this bit and it
2380 never does prologue scheduling. So once we see one, skip past
2381 all of them. We have similar code for the fp arg stores below.
2382
2383 FIXME. Can still die if we have a mix of GR and FR argument
2384 stores! */
2385 if (reg_num >= 23 && reg_num <= 26)
2386 {
2387 while (reg_num >= 23 && reg_num <= 26)
2388 {
2389 pc += 4;
2390 status = target_read_memory (pc, buf, 4);
2391 inst = extract_unsigned_integer (buf, 4);
2392 if (status != 0)
2393 return pc;
2394 reg_num = inst_saves_gr (inst);
2395 }
2396 args_stored = 0;
2397 continue;
2398 }
2399
2400 reg_num = inst_saves_fr (inst);
2401 save_fr &= ~(1 << reg_num);
2402
2403 status = target_read_memory (pc + 4, buf, 4);
2404 next_inst = extract_unsigned_integer (buf, 4);
2405
2406 /* Yow! */
2407 if (status != 0)
2408 return pc;
2409
2410 /* We've got to be read to handle the ldo before the fp register
2411 save. */
2412 if ((inst & 0xfc000000) == 0x34000000
2413 && inst_saves_fr (next_inst) >= 4
2414 && inst_saves_fr (next_inst) <= 7)
2415 {
2416 /* So we drop into the code below in a reasonable state. */
2417 reg_num = inst_saves_fr (next_inst);
2418 pc -= 4;
2419 }
2420
2421 /* Ugh. Also account for argument stores into the stack.
2422 This is a kludge as on the HP compiler sets this bit and it
2423 never does prologue scheduling. So once we see one, skip past
2424 all of them. */
2425 if (reg_num >= 4 && reg_num <= 7)
2426 {
2427 while (reg_num >= 4 && reg_num <= 7)
2428 {
2429 pc += 8;
2430 status = target_read_memory (pc, buf, 4);
2431 inst = extract_unsigned_integer (buf, 4);
2432 if (status != 0)
2433 return pc;
2434 if ((inst & 0xfc000000) != 0x34000000)
2435 break;
2436 status = target_read_memory (pc + 4, buf, 4);
2437 next_inst = extract_unsigned_integer (buf, 4);
2438 if (status != 0)
2439 return pc;
2440 reg_num = inst_saves_fr (next_inst);
2441 }
2442 args_stored = 0;
2443 continue;
2444 }
2445
2446 /* Quit if we hit any kind of branch. This can happen if a prologue
2447 instruction is in the delay slot of the first call/branch. */
2448 if (is_branch (inst))
2449 break;
2450
2451 /* What a crock. The HP compilers set args_stored even if no
2452 arguments were stored into the stack (boo hiss). This could
2453 cause this code to then skip a bunch of user insns (up to the
2454 first branch).
2455
2456 To combat this we try to identify when args_stored was bogusly
2457 set and clear it. We only do this when args_stored is nonzero,
2458 all other resources are accounted for, and nothing changed on
2459 this pass. */
2460 if (args_stored
2461 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2462 && old_save_gr == save_gr && old_save_fr == save_fr
2463 && old_save_rp == save_rp && old_save_sp == save_sp
2464 && old_stack_remaining == stack_remaining)
2465 break;
2466
2467 /* Bump the PC. */
2468 pc += 4;
2469 }
2470
2471 return pc;
2472 }
2473
2474 /* Put here the code to store, into a struct frame_saved_regs,
2475 the addresses of the saved registers of frame described by FRAME_INFO.
2476 This includes special registers such as pc and fp saved in special
2477 ways in the stack frame. sp is even more special:
2478 the address we return for it IS the sp for the next frame. */
2479
2480 void
2481 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
2482 struct frame_info *frame_info;
2483 struct frame_saved_regs *frame_saved_regs;
2484 {
2485 CORE_ADDR pc;
2486 struct unwind_table_entry *u;
2487 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2488 int status, i, reg;
2489 char buf[4];
2490 int fp_loc = -1;
2491
2492 /* Zero out everything. */
2493 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2494
2495 /* Call dummy frames always look the same, so there's no need to
2496 examine the dummy code to determine locations of saved registers;
2497 instead, let find_dummy_frame_regs fill in the correct offsets
2498 for the saved registers. */
2499 if ((frame_info->pc >= frame_info->frame
2500 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2501 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2502 + 6 * 4)))
2503 find_dummy_frame_regs (frame_info, frame_saved_regs);
2504
2505 /* Interrupt handlers are special too. They lay out the register
2506 state in the exact same order as the register numbers in GDB. */
2507 if (pc_in_interrupt_handler (frame_info->pc))
2508 {
2509 for (i = 0; i < NUM_REGS; i++)
2510 {
2511 /* SP is a little special. */
2512 if (i == SP_REGNUM)
2513 frame_saved_regs->regs[SP_REGNUM]
2514 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
2515 else
2516 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
2517 }
2518 return;
2519 }
2520
2521 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
2522 /* Handle signal handler callers. */
2523 if (frame_info->signal_handler_caller)
2524 {
2525 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
2526 return;
2527 }
2528 #endif
2529
2530 /* Get the starting address of the function referred to by the PC
2531 saved in frame. */
2532 pc = get_pc_function_start (frame_info->pc);
2533
2534 /* Yow! */
2535 u = find_unwind_entry (pc);
2536 if (!u)
2537 return;
2538
2539 /* This is how much of a frame adjustment we need to account for. */
2540 stack_remaining = u->Total_frame_size << 3;
2541
2542 /* Magic register saves we want to know about. */
2543 save_rp = u->Save_RP;
2544 save_sp = u->Save_SP;
2545
2546 /* Turn the Entry_GR field into a bitmask. */
2547 save_gr = 0;
2548 for (i = 3; i < u->Entry_GR + 3; i++)
2549 {
2550 /* Frame pointer gets saved into a special location. */
2551 if (u->Save_SP && i == FP_REGNUM)
2552 continue;
2553
2554 save_gr |= (1 << i);
2555 }
2556
2557 /* Turn the Entry_FR field into a bitmask too. */
2558 save_fr = 0;
2559 for (i = 12; i < u->Entry_FR + 12; i++)
2560 save_fr |= (1 << i);
2561
2562 /* The frame always represents the value of %sp at entry to the
2563 current function (and is thus equivalent to the "saved" stack
2564 pointer. */
2565 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
2566
2567 /* Loop until we find everything of interest or hit a branch.
2568
2569 For unoptimized GCC code and for any HP CC code this will never ever
2570 examine any user instructions.
2571
2572 For optimzied GCC code we're faced with problems. GCC will schedule
2573 its prologue and make prologue instructions available for delay slot
2574 filling. The end result is user code gets mixed in with the prologue
2575 and a prologue instruction may be in the delay slot of the first branch
2576 or call.
2577
2578 Some unexpected things are expected with debugging optimized code, so
2579 we allow this routine to walk past user instructions in optimized
2580 GCC code. */
2581 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2582 {
2583 status = target_read_memory (pc, buf, 4);
2584 inst = extract_unsigned_integer (buf, 4);
2585
2586 /* Yow! */
2587 if (status != 0)
2588 return;
2589
2590 /* Note the interesting effects of this instruction. */
2591 stack_remaining -= prologue_inst_adjust_sp (inst);
2592
2593 /* There is only one instruction used for saving RP into the stack. */
2594 if (inst == 0x6bc23fd9)
2595 {
2596 save_rp = 0;
2597 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
2598 }
2599
2600 /* Just note that we found the save of SP into the stack. The
2601 value for frame_saved_regs was computed above. */
2602 if ((inst & 0xffffc000) == 0x6fc10000)
2603 save_sp = 0;
2604
2605 /* Account for general and floating-point register saves. */
2606 reg = inst_saves_gr (inst);
2607 if (reg >= 3 && reg <= 18
2608 && (!u->Save_SP || reg != FP_REGNUM))
2609 {
2610 save_gr &= ~(1 << reg);
2611
2612 /* stwm with a positive displacement is a *post modify*. */
2613 if ((inst >> 26) == 0x1b
2614 && extract_14 (inst) >= 0)
2615 frame_saved_regs->regs[reg] = frame_info->frame;
2616 else
2617 {
2618 /* Handle code with and without frame pointers. */
2619 if (u->Save_SP)
2620 frame_saved_regs->regs[reg]
2621 = frame_info->frame + extract_14 (inst);
2622 else
2623 frame_saved_regs->regs[reg]
2624 = frame_info->frame + (u->Total_frame_size << 3)
2625 + extract_14 (inst);
2626 }
2627 }
2628
2629
2630 /* GCC handles callee saved FP regs a little differently.
2631
2632 It emits an instruction to put the value of the start of
2633 the FP store area into %r1. It then uses fstds,ma with
2634 a basereg of %r1 for the stores.
2635
2636 HP CC emits them at the current stack pointer modifying
2637 the stack pointer as it stores each register. */
2638
2639 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2640 if ((inst & 0xffffc000) == 0x34610000
2641 || (inst & 0xffffc000) == 0x37c10000)
2642 fp_loc = extract_14 (inst);
2643
2644 reg = inst_saves_fr (inst);
2645 if (reg >= 12 && reg <= 21)
2646 {
2647 /* Note +4 braindamage below is necessary because the FP status
2648 registers are internally 8 registers rather than the expected
2649 4 registers. */
2650 save_fr &= ~(1 << reg);
2651 if (fp_loc == -1)
2652 {
2653 /* 1st HP CC FP register store. After this instruction
2654 we've set enough state that the GCC and HPCC code are
2655 both handled in the same manner. */
2656 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
2657 fp_loc = 8;
2658 }
2659 else
2660 {
2661 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
2662 = frame_info->frame + fp_loc;
2663 fp_loc += 8;
2664 }
2665 }
2666
2667 /* Quit if we hit any kind of branch. This can happen if a prologue
2668 instruction is in the delay slot of the first call/branch. */
2669 if (is_branch (inst))
2670 break;
2671
2672 /* Bump the PC. */
2673 pc += 4;
2674 }
2675 }
2676
2677 #ifdef MAINTENANCE_CMDS
2678
2679 static void
2680 unwind_command (exp, from_tty)
2681 char *exp;
2682 int from_tty;
2683 {
2684 CORE_ADDR address;
2685 struct unwind_table_entry *u;
2686
2687 /* If we have an expression, evaluate it and use it as the address. */
2688
2689 if (exp != 0 && *exp != 0)
2690 address = parse_and_eval_address (exp);
2691 else
2692 return;
2693
2694 u = find_unwind_entry (address);
2695
2696 if (!u)
2697 {
2698 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2699 return;
2700 }
2701
2702 printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
2703
2704 printf_unfiltered ("\tregion_start = ");
2705 print_address (u->region_start, gdb_stdout);
2706
2707 printf_unfiltered ("\n\tregion_end = ");
2708 print_address (u->region_end, gdb_stdout);
2709
2710 #ifdef __STDC__
2711 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2712 #else
2713 #define pif(FLD) if (u->FLD) printf_unfiltered (" FLD");
2714 #endif
2715
2716 printf_unfiltered ("\n\tflags =");
2717 pif (Cannot_unwind);
2718 pif (Millicode);
2719 pif (Millicode_save_sr0);
2720 pif (Entry_SR);
2721 pif (Args_stored);
2722 pif (Variable_Frame);
2723 pif (Separate_Package_Body);
2724 pif (Frame_Extension_Millicode);
2725 pif (Stack_Overflow_Check);
2726 pif (Two_Instruction_SP_Increment);
2727 pif (Ada_Region);
2728 pif (Save_SP);
2729 pif (Save_RP);
2730 pif (Save_MRP_in_frame);
2731 pif (extn_ptr_defined);
2732 pif (Cleanup_defined);
2733 pif (MPE_XL_interrupt_marker);
2734 pif (HP_UX_interrupt_marker);
2735 pif (Large_frame);
2736
2737 putchar_unfiltered ('\n');
2738
2739 #ifdef __STDC__
2740 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2741 #else
2742 #define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD);
2743 #endif
2744
2745 pin (Region_description);
2746 pin (Entry_FR);
2747 pin (Entry_GR);
2748 pin (Total_frame_size);
2749 }
2750 #endif /* MAINTENANCE_CMDS */
2751
2752 void
2753 _initialize_hppa_tdep ()
2754 {
2755 tm_print_insn = print_insn_hppa;
2756
2757 #ifdef MAINTENANCE_CMDS
2758 add_cmd ("unwind", class_maintenance, unwind_command,
2759 "Print unwind table entry at given address.",
2760 &maintenanceprintlist);
2761 #endif /* MAINTENANCE_CMDS */
2762 }