]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/hppa-tdep.c
2007-05-31 Markus Deuling <deuling@de.ibm.com>
[thirdparty/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA-RISC architecture.
2
3 Copyright (C) 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 51 Franklin Street, Fifth Floor,
25 Boston, MA 02110-1301, USA. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "inferior.h"
30 #include "regcache.h"
31 #include "completer.h"
32 #include "osabi.h"
33 #include "gdb_assert.h"
34 #include "gdb_stdint.h"
35 #include "arch-utils.h"
36 /* For argument passing to the inferior */
37 #include "symtab.h"
38 #include "dis-asm.h"
39 #include "trad-frame.h"
40 #include "frame-unwind.h"
41 #include "frame-base.h"
42
43 #include "gdbcore.h"
44 #include "gdbcmd.h"
45 #include "gdbtypes.h"
46 #include "objfiles.h"
47 #include "hppa-tdep.h"
48
49 static int hppa_debug = 0;
50
51 /* Some local constants. */
52 static const int hppa32_num_regs = 128;
53 static const int hppa64_num_regs = 96;
54
55 /* hppa-specific object data -- unwind and solib info.
56 TODO/maybe: think about splitting this into two parts; the unwind data is
57 common to all hppa targets, but is only used in this file; we can register
58 that separately and make this static. The solib data is probably hpux-
59 specific, so we can create a separate extern objfile_data that is registered
60 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
61 const struct objfile_data *hppa_objfile_priv_data = NULL;
62
63 /* Get at various relevent fields of an instruction word. */
64 #define MASK_5 0x1f
65 #define MASK_11 0x7ff
66 #define MASK_14 0x3fff
67 #define MASK_21 0x1fffff
68
69 /* Sizes (in bytes) of the native unwind entries. */
70 #define UNWIND_ENTRY_SIZE 16
71 #define STUB_UNWIND_ENTRY_SIZE 8
72
73 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
74 following functions static, once we hppa is partially multiarched. */
75 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
76
77 /* Routines to extract various sized constants out of hppa
78 instructions. */
79
80 /* This assumes that no garbage lies outside of the lower bits of
81 value. */
82
83 int
84 hppa_sign_extend (unsigned val, unsigned bits)
85 {
86 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
87 }
88
89 /* For many immediate values the sign bit is the low bit! */
90
91 int
92 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
93 {
94 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
95 }
96
97 /* Extract the bits at positions between FROM and TO, using HP's numbering
98 (MSB = 0). */
99
100 int
101 hppa_get_field (unsigned word, int from, int to)
102 {
103 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
104 }
105
106 /* extract the immediate field from a ld{bhw}s instruction */
107
108 int
109 hppa_extract_5_load (unsigned word)
110 {
111 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
112 }
113
114 /* extract the immediate field from a break instruction */
115
116 unsigned
117 hppa_extract_5r_store (unsigned word)
118 {
119 return (word & MASK_5);
120 }
121
122 /* extract the immediate field from a {sr}sm instruction */
123
124 unsigned
125 hppa_extract_5R_store (unsigned word)
126 {
127 return (word >> 16 & MASK_5);
128 }
129
130 /* extract a 14 bit immediate field */
131
132 int
133 hppa_extract_14 (unsigned word)
134 {
135 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
136 }
137
138 /* extract a 21 bit constant */
139
140 int
141 hppa_extract_21 (unsigned word)
142 {
143 int val;
144
145 word &= MASK_21;
146 word <<= 11;
147 val = hppa_get_field (word, 20, 20);
148 val <<= 11;
149 val |= hppa_get_field (word, 9, 19);
150 val <<= 2;
151 val |= hppa_get_field (word, 5, 6);
152 val <<= 5;
153 val |= hppa_get_field (word, 0, 4);
154 val <<= 2;
155 val |= hppa_get_field (word, 7, 8);
156 return hppa_sign_extend (val, 21) << 11;
157 }
158
159 /* extract a 17 bit constant from branch instructions, returning the
160 19 bit signed value. */
161
162 int
163 hppa_extract_17 (unsigned word)
164 {
165 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
166 hppa_get_field (word, 29, 29) << 10 |
167 hppa_get_field (word, 11, 15) << 11 |
168 (word & 0x1) << 16, 17) << 2;
169 }
170
171 CORE_ADDR
172 hppa_symbol_address(const char *sym)
173 {
174 struct minimal_symbol *minsym;
175
176 minsym = lookup_minimal_symbol (sym, NULL, NULL);
177 if (minsym)
178 return SYMBOL_VALUE_ADDRESS (minsym);
179 else
180 return (CORE_ADDR)-1;
181 }
182
183 struct hppa_objfile_private *
184 hppa_init_objfile_priv_data (struct objfile *objfile)
185 {
186 struct hppa_objfile_private *priv;
187
188 priv = (struct hppa_objfile_private *)
189 obstack_alloc (&objfile->objfile_obstack,
190 sizeof (struct hppa_objfile_private));
191 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
192 memset (priv, 0, sizeof (*priv));
193
194 return priv;
195 }
196 \f
197
198 /* Compare the start address for two unwind entries returning 1 if
199 the first address is larger than the second, -1 if the second is
200 larger than the first, and zero if they are equal. */
201
202 static int
203 compare_unwind_entries (const void *arg1, const void *arg2)
204 {
205 const struct unwind_table_entry *a = arg1;
206 const struct unwind_table_entry *b = arg2;
207
208 if (a->region_start > b->region_start)
209 return 1;
210 else if (a->region_start < b->region_start)
211 return -1;
212 else
213 return 0;
214 }
215
216 static void
217 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
218 {
219 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
220 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
221 {
222 bfd_vma value = section->vma - section->filepos;
223 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
224
225 if (value < *low_text_segment_address)
226 *low_text_segment_address = value;
227 }
228 }
229
230 static void
231 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
232 asection *section, unsigned int entries, unsigned int size,
233 CORE_ADDR text_offset)
234 {
235 /* We will read the unwind entries into temporary memory, then
236 fill in the actual unwind table. */
237
238 if (size > 0)
239 {
240 unsigned long tmp;
241 unsigned i;
242 char *buf = alloca (size);
243 CORE_ADDR low_text_segment_address;
244
245 /* For ELF targets, then unwinds are supposed to
246 be segment relative offsets instead of absolute addresses.
247
248 Note that when loading a shared library (text_offset != 0) the
249 unwinds are already relative to the text_offset that will be
250 passed in. */
251 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
252 {
253 low_text_segment_address = -1;
254
255 bfd_map_over_sections (objfile->obfd,
256 record_text_segment_lowaddr,
257 &low_text_segment_address);
258
259 text_offset = low_text_segment_address;
260 }
261 else if (gdbarch_tdep (current_gdbarch)->solib_get_text_base)
262 {
263 text_offset = gdbarch_tdep (current_gdbarch)->solib_get_text_base (objfile);
264 }
265
266 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
267
268 /* Now internalize the information being careful to handle host/target
269 endian issues. */
270 for (i = 0; i < entries; i++)
271 {
272 table[i].region_start = bfd_get_32 (objfile->obfd,
273 (bfd_byte *) buf);
274 table[i].region_start += text_offset;
275 buf += 4;
276 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
277 table[i].region_end += text_offset;
278 buf += 4;
279 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
280 buf += 4;
281 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
282 table[i].Millicode = (tmp >> 30) & 0x1;
283 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
284 table[i].Region_description = (tmp >> 27) & 0x3;
285 table[i].reserved = (tmp >> 26) & 0x1;
286 table[i].Entry_SR = (tmp >> 25) & 0x1;
287 table[i].Entry_FR = (tmp >> 21) & 0xf;
288 table[i].Entry_GR = (tmp >> 16) & 0x1f;
289 table[i].Args_stored = (tmp >> 15) & 0x1;
290 table[i].Variable_Frame = (tmp >> 14) & 0x1;
291 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
292 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
293 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
294 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
295 table[i].sr4export = (tmp >> 9) & 0x1;
296 table[i].cxx_info = (tmp >> 8) & 0x1;
297 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
298 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
299 table[i].reserved1 = (tmp >> 5) & 0x1;
300 table[i].Save_SP = (tmp >> 4) & 0x1;
301 table[i].Save_RP = (tmp >> 3) & 0x1;
302 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
303 table[i].save_r19 = (tmp >> 1) & 0x1;
304 table[i].Cleanup_defined = tmp & 0x1;
305 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
306 buf += 4;
307 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
308 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
309 table[i].Large_frame = (tmp >> 29) & 0x1;
310 table[i].alloca_frame = (tmp >> 28) & 0x1;
311 table[i].reserved2 = (tmp >> 27) & 0x1;
312 table[i].Total_frame_size = tmp & 0x7ffffff;
313
314 /* Stub unwinds are handled elsewhere. */
315 table[i].stub_unwind.stub_type = 0;
316 table[i].stub_unwind.padding = 0;
317 }
318 }
319 }
320
321 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
322 the object file. This info is used mainly by find_unwind_entry() to find
323 out the stack frame size and frame pointer used by procedures. We put
324 everything on the psymbol obstack in the objfile so that it automatically
325 gets freed when the objfile is destroyed. */
326
327 static void
328 read_unwind_info (struct objfile *objfile)
329 {
330 asection *unwind_sec, *stub_unwind_sec;
331 unsigned unwind_size, stub_unwind_size, total_size;
332 unsigned index, unwind_entries;
333 unsigned stub_entries, total_entries;
334 CORE_ADDR text_offset;
335 struct hppa_unwind_info *ui;
336 struct hppa_objfile_private *obj_private;
337
338 text_offset = ANOFFSET (objfile->section_offsets, 0);
339 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
340 sizeof (struct hppa_unwind_info));
341
342 ui->table = NULL;
343 ui->cache = NULL;
344 ui->last = -1;
345
346 /* For reasons unknown the HP PA64 tools generate multiple unwinder
347 sections in a single executable. So we just iterate over every
348 section in the BFD looking for unwinder sections intead of trying
349 to do a lookup with bfd_get_section_by_name.
350
351 First determine the total size of the unwind tables so that we
352 can allocate memory in a nice big hunk. */
353 total_entries = 0;
354 for (unwind_sec = objfile->obfd->sections;
355 unwind_sec;
356 unwind_sec = unwind_sec->next)
357 {
358 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
359 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
360 {
361 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
362 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
363
364 total_entries += unwind_entries;
365 }
366 }
367
368 /* Now compute the size of the stub unwinds. Note the ELF tools do not
369 use stub unwinds at the current time. */
370 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
371
372 if (stub_unwind_sec)
373 {
374 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
375 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
376 }
377 else
378 {
379 stub_unwind_size = 0;
380 stub_entries = 0;
381 }
382
383 /* Compute total number of unwind entries and their total size. */
384 total_entries += stub_entries;
385 total_size = total_entries * sizeof (struct unwind_table_entry);
386
387 /* Allocate memory for the unwind table. */
388 ui->table = (struct unwind_table_entry *)
389 obstack_alloc (&objfile->objfile_obstack, total_size);
390 ui->last = total_entries - 1;
391
392 /* Now read in each unwind section and internalize the standard unwind
393 entries. */
394 index = 0;
395 for (unwind_sec = objfile->obfd->sections;
396 unwind_sec;
397 unwind_sec = unwind_sec->next)
398 {
399 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
400 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
401 {
402 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
403 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
404
405 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
406 unwind_entries, unwind_size, text_offset);
407 index += unwind_entries;
408 }
409 }
410
411 /* Now read in and internalize the stub unwind entries. */
412 if (stub_unwind_size > 0)
413 {
414 unsigned int i;
415 char *buf = alloca (stub_unwind_size);
416
417 /* Read in the stub unwind entries. */
418 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
419 0, stub_unwind_size);
420
421 /* Now convert them into regular unwind entries. */
422 for (i = 0; i < stub_entries; i++, index++)
423 {
424 /* Clear out the next unwind entry. */
425 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
426
427 /* Convert offset & size into region_start and region_end.
428 Stuff away the stub type into "reserved" fields. */
429 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
430 (bfd_byte *) buf);
431 ui->table[index].region_start += text_offset;
432 buf += 4;
433 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
434 (bfd_byte *) buf);
435 buf += 2;
436 ui->table[index].region_end
437 = ui->table[index].region_start + 4 *
438 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
439 buf += 2;
440 }
441
442 }
443
444 /* Unwind table needs to be kept sorted. */
445 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
446 compare_unwind_entries);
447
448 /* Keep a pointer to the unwind information. */
449 obj_private = (struct hppa_objfile_private *)
450 objfile_data (objfile, hppa_objfile_priv_data);
451 if (obj_private == NULL)
452 obj_private = hppa_init_objfile_priv_data (objfile);
453
454 obj_private->unwind_info = ui;
455 }
456
457 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
458 of the objfiles seeking the unwind table entry for this PC. Each objfile
459 contains a sorted list of struct unwind_table_entry. Since we do a binary
460 search of the unwind tables, we depend upon them to be sorted. */
461
462 struct unwind_table_entry *
463 find_unwind_entry (CORE_ADDR pc)
464 {
465 int first, middle, last;
466 struct objfile *objfile;
467 struct hppa_objfile_private *priv;
468
469 if (hppa_debug)
470 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
471 paddr_nz (pc));
472
473 /* A function at address 0? Not in HP-UX! */
474 if (pc == (CORE_ADDR) 0)
475 {
476 if (hppa_debug)
477 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
478 return NULL;
479 }
480
481 ALL_OBJFILES (objfile)
482 {
483 struct hppa_unwind_info *ui;
484 ui = NULL;
485 priv = objfile_data (objfile, hppa_objfile_priv_data);
486 if (priv)
487 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
488
489 if (!ui)
490 {
491 read_unwind_info (objfile);
492 priv = objfile_data (objfile, hppa_objfile_priv_data);
493 if (priv == NULL)
494 error (_("Internal error reading unwind information."));
495 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
496 }
497
498 /* First, check the cache */
499
500 if (ui->cache
501 && pc >= ui->cache->region_start
502 && pc <= ui->cache->region_end)
503 {
504 if (hppa_debug)
505 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
506 paddr_nz ((uintptr_t) ui->cache));
507 return ui->cache;
508 }
509
510 /* Not in the cache, do a binary search */
511
512 first = 0;
513 last = ui->last;
514
515 while (first <= last)
516 {
517 middle = (first + last) / 2;
518 if (pc >= ui->table[middle].region_start
519 && pc <= ui->table[middle].region_end)
520 {
521 ui->cache = &ui->table[middle];
522 if (hppa_debug)
523 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
524 paddr_nz ((uintptr_t) ui->cache));
525 return &ui->table[middle];
526 }
527
528 if (pc < ui->table[middle].region_start)
529 last = middle - 1;
530 else
531 first = middle + 1;
532 }
533 } /* ALL_OBJFILES() */
534
535 if (hppa_debug)
536 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
537
538 return NULL;
539 }
540
541 /* The epilogue is defined here as the area either on the `bv' instruction
542 itself or an instruction which destroys the function's stack frame.
543
544 We do not assume that the epilogue is at the end of a function as we can
545 also have return sequences in the middle of a function. */
546 static int
547 hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
548 {
549 unsigned long status;
550 unsigned int inst;
551 char buf[4];
552 int off;
553
554 status = read_memory_nobpt (pc, buf, 4);
555 if (status != 0)
556 return 0;
557
558 inst = extract_unsigned_integer (buf, 4);
559
560 /* The most common way to perform a stack adjustment ldo X(sp),sp
561 We are destroying a stack frame if the offset is negative. */
562 if ((inst & 0xffffc000) == 0x37de0000
563 && hppa_extract_14 (inst) < 0)
564 return 1;
565
566 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
567 if (((inst & 0x0fc010e0) == 0x0fc010e0
568 || (inst & 0x0fc010e0) == 0x0fc010e0)
569 && hppa_extract_14 (inst) < 0)
570 return 1;
571
572 /* bv %r0(%rp) or bv,n %r0(%rp) */
573 if (inst == 0xe840c000 || inst == 0xe840c002)
574 return 1;
575
576 return 0;
577 }
578
579 static const unsigned char *
580 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
581 {
582 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
583 (*len) = sizeof (breakpoint);
584 return breakpoint;
585 }
586
587 /* Return the name of a register. */
588
589 static const char *
590 hppa32_register_name (int i)
591 {
592 static char *names[] = {
593 "flags", "r1", "rp", "r3",
594 "r4", "r5", "r6", "r7",
595 "r8", "r9", "r10", "r11",
596 "r12", "r13", "r14", "r15",
597 "r16", "r17", "r18", "r19",
598 "r20", "r21", "r22", "r23",
599 "r24", "r25", "r26", "dp",
600 "ret0", "ret1", "sp", "r31",
601 "sar", "pcoqh", "pcsqh", "pcoqt",
602 "pcsqt", "eiem", "iir", "isr",
603 "ior", "ipsw", "goto", "sr4",
604 "sr0", "sr1", "sr2", "sr3",
605 "sr5", "sr6", "sr7", "cr0",
606 "cr8", "cr9", "ccr", "cr12",
607 "cr13", "cr24", "cr25", "cr26",
608 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
609 "fpsr", "fpe1", "fpe2", "fpe3",
610 "fpe4", "fpe5", "fpe6", "fpe7",
611 "fr4", "fr4R", "fr5", "fr5R",
612 "fr6", "fr6R", "fr7", "fr7R",
613 "fr8", "fr8R", "fr9", "fr9R",
614 "fr10", "fr10R", "fr11", "fr11R",
615 "fr12", "fr12R", "fr13", "fr13R",
616 "fr14", "fr14R", "fr15", "fr15R",
617 "fr16", "fr16R", "fr17", "fr17R",
618 "fr18", "fr18R", "fr19", "fr19R",
619 "fr20", "fr20R", "fr21", "fr21R",
620 "fr22", "fr22R", "fr23", "fr23R",
621 "fr24", "fr24R", "fr25", "fr25R",
622 "fr26", "fr26R", "fr27", "fr27R",
623 "fr28", "fr28R", "fr29", "fr29R",
624 "fr30", "fr30R", "fr31", "fr31R"
625 };
626 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
627 return NULL;
628 else
629 return names[i];
630 }
631
632 static const char *
633 hppa64_register_name (int i)
634 {
635 static char *names[] = {
636 "flags", "r1", "rp", "r3",
637 "r4", "r5", "r6", "r7",
638 "r8", "r9", "r10", "r11",
639 "r12", "r13", "r14", "r15",
640 "r16", "r17", "r18", "r19",
641 "r20", "r21", "r22", "r23",
642 "r24", "r25", "r26", "dp",
643 "ret0", "ret1", "sp", "r31",
644 "sar", "pcoqh", "pcsqh", "pcoqt",
645 "pcsqt", "eiem", "iir", "isr",
646 "ior", "ipsw", "goto", "sr4",
647 "sr0", "sr1", "sr2", "sr3",
648 "sr5", "sr6", "sr7", "cr0",
649 "cr8", "cr9", "ccr", "cr12",
650 "cr13", "cr24", "cr25", "cr26",
651 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
652 "fpsr", "fpe1", "fpe2", "fpe3",
653 "fr4", "fr5", "fr6", "fr7",
654 "fr8", "fr9", "fr10", "fr11",
655 "fr12", "fr13", "fr14", "fr15",
656 "fr16", "fr17", "fr18", "fr19",
657 "fr20", "fr21", "fr22", "fr23",
658 "fr24", "fr25", "fr26", "fr27",
659 "fr28", "fr29", "fr30", "fr31"
660 };
661 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
662 return NULL;
663 else
664 return names[i];
665 }
666
667 static int
668 hppa64_dwarf_reg_to_regnum (int reg)
669 {
670 /* r0-r31 and sar map one-to-one. */
671 if (reg <= 32)
672 return reg;
673
674 /* fr4-fr31 are mapped from 72 in steps of 2. */
675 if (reg >= 72 || reg < 72 + 28 * 2)
676 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
677
678 error ("Invalid DWARF register num %d.", reg);
679 return -1;
680 }
681
682 /* This function pushes a stack frame with arguments as part of the
683 inferior function calling mechanism.
684
685 This is the version of the function for the 32-bit PA machines, in
686 which later arguments appear at lower addresses. (The stack always
687 grows towards higher addresses.)
688
689 We simply allocate the appropriate amount of stack space and put
690 arguments into their proper slots. */
691
692 static CORE_ADDR
693 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
694 struct regcache *regcache, CORE_ADDR bp_addr,
695 int nargs, struct value **args, CORE_ADDR sp,
696 int struct_return, CORE_ADDR struct_addr)
697 {
698 /* Stack base address at which any pass-by-reference parameters are
699 stored. */
700 CORE_ADDR struct_end = 0;
701 /* Stack base address at which the first parameter is stored. */
702 CORE_ADDR param_end = 0;
703
704 /* The inner most end of the stack after all the parameters have
705 been pushed. */
706 CORE_ADDR new_sp = 0;
707
708 /* Two passes. First pass computes the location of everything,
709 second pass writes the bytes out. */
710 int write_pass;
711
712 /* Global pointer (r19) of the function we are trying to call. */
713 CORE_ADDR gp;
714
715 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
716
717 for (write_pass = 0; write_pass < 2; write_pass++)
718 {
719 CORE_ADDR struct_ptr = 0;
720 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
721 struct_ptr is adjusted for each argument below, so the first
722 argument will end up at sp-36. */
723 CORE_ADDR param_ptr = 32;
724 int i;
725 int small_struct = 0;
726
727 for (i = 0; i < nargs; i++)
728 {
729 struct value *arg = args[i];
730 struct type *type = check_typedef (value_type (arg));
731 /* The corresponding parameter that is pushed onto the
732 stack, and [possibly] passed in a register. */
733 char param_val[8];
734 int param_len;
735 memset (param_val, 0, sizeof param_val);
736 if (TYPE_LENGTH (type) > 8)
737 {
738 /* Large parameter, pass by reference. Store the value
739 in "struct" area and then pass its address. */
740 param_len = 4;
741 struct_ptr += align_up (TYPE_LENGTH (type), 8);
742 if (write_pass)
743 write_memory (struct_end - struct_ptr, value_contents (arg),
744 TYPE_LENGTH (type));
745 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
746 }
747 else if (TYPE_CODE (type) == TYPE_CODE_INT
748 || TYPE_CODE (type) == TYPE_CODE_ENUM)
749 {
750 /* Integer value store, right aligned. "unpack_long"
751 takes care of any sign-extension problems. */
752 param_len = align_up (TYPE_LENGTH (type), 4);
753 store_unsigned_integer (param_val, param_len,
754 unpack_long (type,
755 value_contents (arg)));
756 }
757 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
758 {
759 /* Floating point value store, right aligned. */
760 param_len = align_up (TYPE_LENGTH (type), 4);
761 memcpy (param_val, value_contents (arg), param_len);
762 }
763 else
764 {
765 param_len = align_up (TYPE_LENGTH (type), 4);
766
767 /* Small struct value are stored right-aligned. */
768 memcpy (param_val + param_len - TYPE_LENGTH (type),
769 value_contents (arg), TYPE_LENGTH (type));
770
771 /* Structures of size 5, 6 and 7 bytes are special in that
772 the higher-ordered word is stored in the lower-ordered
773 argument, and even though it is a 8-byte quantity the
774 registers need not be 8-byte aligned. */
775 if (param_len > 4 && param_len < 8)
776 small_struct = 1;
777 }
778
779 param_ptr += param_len;
780 if (param_len == 8 && !small_struct)
781 param_ptr = align_up (param_ptr, 8);
782
783 /* First 4 non-FP arguments are passed in gr26-gr23.
784 First 4 32-bit FP arguments are passed in fr4L-fr7L.
785 First 2 64-bit FP arguments are passed in fr5 and fr7.
786
787 The rest go on the stack, starting at sp-36, towards lower
788 addresses. 8-byte arguments must be aligned to a 8-byte
789 stack boundary. */
790 if (write_pass)
791 {
792 write_memory (param_end - param_ptr, param_val, param_len);
793
794 /* There are some cases when we don't know the type
795 expected by the callee (e.g. for variadic functions), so
796 pass the parameters in both general and fp regs. */
797 if (param_ptr <= 48)
798 {
799 int grreg = 26 - (param_ptr - 36) / 4;
800 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
801 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
802
803 regcache_cooked_write (regcache, grreg, param_val);
804 regcache_cooked_write (regcache, fpLreg, param_val);
805
806 if (param_len > 4)
807 {
808 regcache_cooked_write (regcache, grreg + 1,
809 param_val + 4);
810
811 regcache_cooked_write (regcache, fpreg, param_val);
812 regcache_cooked_write (regcache, fpreg + 1,
813 param_val + 4);
814 }
815 }
816 }
817 }
818
819 /* Update the various stack pointers. */
820 if (!write_pass)
821 {
822 struct_end = sp + align_up (struct_ptr, 64);
823 /* PARAM_PTR already accounts for all the arguments passed
824 by the user. However, the ABI mandates minimum stack
825 space allocations for outgoing arguments. The ABI also
826 mandates minimum stack alignments which we must
827 preserve. */
828 param_end = struct_end + align_up (param_ptr, 64);
829 }
830 }
831
832 /* If a structure has to be returned, set up register 28 to hold its
833 address */
834 if (struct_return)
835 write_register (28, struct_addr);
836
837 gp = tdep->find_global_pointer (function);
838
839 if (gp != 0)
840 write_register (19, gp);
841
842 /* Set the return address. */
843 if (!gdbarch_push_dummy_code_p (gdbarch))
844 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
845
846 /* Update the Stack Pointer. */
847 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
848
849 return param_end;
850 }
851
852 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
853 Runtime Architecture for PA-RISC 2.0", which is distributed as part
854 as of the HP-UX Software Transition Kit (STK). This implementation
855 is based on version 3.3, dated October 6, 1997. */
856
857 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
858
859 static int
860 hppa64_integral_or_pointer_p (const struct type *type)
861 {
862 switch (TYPE_CODE (type))
863 {
864 case TYPE_CODE_INT:
865 case TYPE_CODE_BOOL:
866 case TYPE_CODE_CHAR:
867 case TYPE_CODE_ENUM:
868 case TYPE_CODE_RANGE:
869 {
870 int len = TYPE_LENGTH (type);
871 return (len == 1 || len == 2 || len == 4 || len == 8);
872 }
873 case TYPE_CODE_PTR:
874 case TYPE_CODE_REF:
875 return (TYPE_LENGTH (type) == 8);
876 default:
877 break;
878 }
879
880 return 0;
881 }
882
883 /* Check whether TYPE is a "Floating Scalar Type". */
884
885 static int
886 hppa64_floating_p (const struct type *type)
887 {
888 switch (TYPE_CODE (type))
889 {
890 case TYPE_CODE_FLT:
891 {
892 int len = TYPE_LENGTH (type);
893 return (len == 4 || len == 8 || len == 16);
894 }
895 default:
896 break;
897 }
898
899 return 0;
900 }
901
902 /* If CODE points to a function entry address, try to look up the corresponding
903 function descriptor and return its address instead. If CODE is not a
904 function entry address, then just return it unchanged. */
905 static CORE_ADDR
906 hppa64_convert_code_addr_to_fptr (CORE_ADDR code)
907 {
908 struct obj_section *sec, *opd;
909
910 sec = find_pc_section (code);
911
912 if (!sec)
913 return code;
914
915 /* If CODE is in a data section, assume it's already a fptr. */
916 if (!(sec->the_bfd_section->flags & SEC_CODE))
917 return code;
918
919 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
920 {
921 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
922 break;
923 }
924
925 if (opd < sec->objfile->sections_end)
926 {
927 CORE_ADDR addr;
928
929 for (addr = opd->addr; addr < opd->endaddr; addr += 2 * 8)
930 {
931 ULONGEST opdaddr;
932 char tmp[8];
933
934 if (target_read_memory (addr, tmp, sizeof (tmp)))
935 break;
936 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp));
937
938 if (opdaddr == code)
939 return addr - 16;
940 }
941 }
942
943 return code;
944 }
945
946 static CORE_ADDR
947 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
948 struct regcache *regcache, CORE_ADDR bp_addr,
949 int nargs, struct value **args, CORE_ADDR sp,
950 int struct_return, CORE_ADDR struct_addr)
951 {
952 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
953 int i, offset = 0;
954 CORE_ADDR gp;
955
956 /* "The outgoing parameter area [...] must be aligned at a 16-byte
957 boundary." */
958 sp = align_up (sp, 16);
959
960 for (i = 0; i < nargs; i++)
961 {
962 struct value *arg = args[i];
963 struct type *type = value_type (arg);
964 int len = TYPE_LENGTH (type);
965 const bfd_byte *valbuf;
966 bfd_byte fptrbuf[8];
967 int regnum;
968
969 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
970 offset = align_up (offset, 8);
971
972 if (hppa64_integral_or_pointer_p (type))
973 {
974 /* "Integral scalar parameters smaller than 64 bits are
975 padded on the left (i.e., the value is in the
976 least-significant bits of the 64-bit storage unit, and
977 the high-order bits are undefined)." Therefore we can
978 safely sign-extend them. */
979 if (len < 8)
980 {
981 arg = value_cast (builtin_type_int64, arg);
982 len = 8;
983 }
984 }
985 else if (hppa64_floating_p (type))
986 {
987 if (len > 8)
988 {
989 /* "Quad-precision (128-bit) floating-point scalar
990 parameters are aligned on a 16-byte boundary." */
991 offset = align_up (offset, 16);
992
993 /* "Double-extended- and quad-precision floating-point
994 parameters within the first 64 bytes of the parameter
995 list are always passed in general registers." */
996 }
997 else
998 {
999 if (len == 4)
1000 {
1001 /* "Single-precision (32-bit) floating-point scalar
1002 parameters are padded on the left with 32 bits of
1003 garbage (i.e., the floating-point value is in the
1004 least-significant 32 bits of a 64-bit storage
1005 unit)." */
1006 offset += 4;
1007 }
1008
1009 /* "Single- and double-precision floating-point
1010 parameters in this area are passed according to the
1011 available formal parameter information in a function
1012 prototype. [...] If no prototype is in scope,
1013 floating-point parameters must be passed both in the
1014 corresponding general registers and in the
1015 corresponding floating-point registers." */
1016 regnum = HPPA64_FP4_REGNUM + offset / 8;
1017
1018 if (regnum < HPPA64_FP4_REGNUM + 8)
1019 {
1020 /* "Single-precision floating-point parameters, when
1021 passed in floating-point registers, are passed in
1022 the right halves of the floating point registers;
1023 the left halves are unused." */
1024 regcache_cooked_write_part (regcache, regnum, offset % 8,
1025 len, value_contents (arg));
1026 }
1027 }
1028 }
1029 else
1030 {
1031 if (len > 8)
1032 {
1033 /* "Aggregates larger than 8 bytes are aligned on a
1034 16-byte boundary, possibly leaving an unused argument
1035 slot, which is filled with garbage. If necessary,
1036 they are padded on the right (with garbage), to a
1037 multiple of 8 bytes." */
1038 offset = align_up (offset, 16);
1039 }
1040 }
1041
1042 /* If we are passing a function pointer, make sure we pass a function
1043 descriptor instead of the function entry address. */
1044 if (TYPE_CODE (type) == TYPE_CODE_PTR
1045 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1046 {
1047 ULONGEST codeptr, fptr;
1048
1049 codeptr = unpack_long (type, value_contents (arg));
1050 fptr = hppa64_convert_code_addr_to_fptr (codeptr);
1051 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), fptr);
1052 valbuf = fptrbuf;
1053 }
1054 else
1055 {
1056 valbuf = value_contents (arg);
1057 }
1058
1059 /* Always store the argument in memory. */
1060 write_memory (sp + offset, valbuf, len);
1061
1062 regnum = HPPA_ARG0_REGNUM - offset / 8;
1063 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1064 {
1065 regcache_cooked_write_part (regcache, regnum,
1066 offset % 8, min (len, 8), valbuf);
1067 offset += min (len, 8);
1068 valbuf += min (len, 8);
1069 len -= min (len, 8);
1070 regnum--;
1071 }
1072
1073 offset += len;
1074 }
1075
1076 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1077 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1078
1079 /* Allocate the outgoing parameter area. Make sure the outgoing
1080 parameter area is multiple of 16 bytes in length. */
1081 sp += max (align_up (offset, 16), 64);
1082
1083 /* Allocate 32-bytes of scratch space. The documentation doesn't
1084 mention this, but it seems to be needed. */
1085 sp += 32;
1086
1087 /* Allocate the frame marker area. */
1088 sp += 16;
1089
1090 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1091 its address. */
1092 if (struct_return)
1093 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1094
1095 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1096 gp = tdep->find_global_pointer (function);
1097 if (gp != 0)
1098 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1099
1100 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1101 if (!gdbarch_push_dummy_code_p (gdbarch))
1102 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1103
1104 /* Set up GR30 to hold the stack pointer (sp). */
1105 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1106
1107 return sp;
1108 }
1109 \f
1110
1111 /* Handle 32/64-bit struct return conventions. */
1112
1113 static enum return_value_convention
1114 hppa32_return_value (struct gdbarch *gdbarch,
1115 struct type *type, struct regcache *regcache,
1116 gdb_byte *readbuf, const gdb_byte *writebuf)
1117 {
1118 if (TYPE_LENGTH (type) <= 2 * 4)
1119 {
1120 /* The value always lives in the right hand end of the register
1121 (or register pair)? */
1122 int b;
1123 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1124 int part = TYPE_LENGTH (type) % 4;
1125 /* The left hand register contains only part of the value,
1126 transfer that first so that the rest can be xfered as entire
1127 4-byte registers. */
1128 if (part > 0)
1129 {
1130 if (readbuf != NULL)
1131 regcache_cooked_read_part (regcache, reg, 4 - part,
1132 part, readbuf);
1133 if (writebuf != NULL)
1134 regcache_cooked_write_part (regcache, reg, 4 - part,
1135 part, writebuf);
1136 reg++;
1137 }
1138 /* Now transfer the remaining register values. */
1139 for (b = part; b < TYPE_LENGTH (type); b += 4)
1140 {
1141 if (readbuf != NULL)
1142 regcache_cooked_read (regcache, reg, readbuf + b);
1143 if (writebuf != NULL)
1144 regcache_cooked_write (regcache, reg, writebuf + b);
1145 reg++;
1146 }
1147 return RETURN_VALUE_REGISTER_CONVENTION;
1148 }
1149 else
1150 return RETURN_VALUE_STRUCT_CONVENTION;
1151 }
1152
1153 static enum return_value_convention
1154 hppa64_return_value (struct gdbarch *gdbarch,
1155 struct type *type, struct regcache *regcache,
1156 gdb_byte *readbuf, const gdb_byte *writebuf)
1157 {
1158 int len = TYPE_LENGTH (type);
1159 int regnum, offset;
1160
1161 if (len > 16)
1162 {
1163 /* All return values larget than 128 bits must be aggregate
1164 return values. */
1165 gdb_assert (!hppa64_integral_or_pointer_p (type));
1166 gdb_assert (!hppa64_floating_p (type));
1167
1168 /* "Aggregate return values larger than 128 bits are returned in
1169 a buffer allocated by the caller. The address of the buffer
1170 must be passed in GR 28." */
1171 return RETURN_VALUE_STRUCT_CONVENTION;
1172 }
1173
1174 if (hppa64_integral_or_pointer_p (type))
1175 {
1176 /* "Integral return values are returned in GR 28. Values
1177 smaller than 64 bits are padded on the left (with garbage)." */
1178 regnum = HPPA_RET0_REGNUM;
1179 offset = 8 - len;
1180 }
1181 else if (hppa64_floating_p (type))
1182 {
1183 if (len > 8)
1184 {
1185 /* "Double-extended- and quad-precision floating-point
1186 values are returned in GRs 28 and 29. The sign,
1187 exponent, and most-significant bits of the mantissa are
1188 returned in GR 28; the least-significant bits of the
1189 mantissa are passed in GR 29. For double-extended
1190 precision values, GR 29 is padded on the right with 48
1191 bits of garbage." */
1192 regnum = HPPA_RET0_REGNUM;
1193 offset = 0;
1194 }
1195 else
1196 {
1197 /* "Single-precision and double-precision floating-point
1198 return values are returned in FR 4R (single precision) or
1199 FR 4 (double-precision)." */
1200 regnum = HPPA64_FP4_REGNUM;
1201 offset = 8 - len;
1202 }
1203 }
1204 else
1205 {
1206 /* "Aggregate return values up to 64 bits in size are returned
1207 in GR 28. Aggregates smaller than 64 bits are left aligned
1208 in the register; the pad bits on the right are undefined."
1209
1210 "Aggregate return values between 65 and 128 bits are returned
1211 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1212 the remaining bits are placed, left aligned, in GR 29. The
1213 pad bits on the right of GR 29 (if any) are undefined." */
1214 regnum = HPPA_RET0_REGNUM;
1215 offset = 0;
1216 }
1217
1218 if (readbuf)
1219 {
1220 while (len > 0)
1221 {
1222 regcache_cooked_read_part (regcache, regnum, offset,
1223 min (len, 8), readbuf);
1224 readbuf += min (len, 8);
1225 len -= min (len, 8);
1226 regnum++;
1227 }
1228 }
1229
1230 if (writebuf)
1231 {
1232 while (len > 0)
1233 {
1234 regcache_cooked_write_part (regcache, regnum, offset,
1235 min (len, 8), writebuf);
1236 writebuf += min (len, 8);
1237 len -= min (len, 8);
1238 regnum++;
1239 }
1240 }
1241
1242 return RETURN_VALUE_REGISTER_CONVENTION;
1243 }
1244 \f
1245
1246 static CORE_ADDR
1247 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1248 struct target_ops *targ)
1249 {
1250 if (addr & 2)
1251 {
1252 CORE_ADDR plabel = addr & ~3;
1253 return read_memory_typed_address (plabel, builtin_type_void_func_ptr);
1254 }
1255
1256 return addr;
1257 }
1258
1259 static CORE_ADDR
1260 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1261 {
1262 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1263 and not _bit_)! */
1264 return align_up (addr, 64);
1265 }
1266
1267 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1268
1269 static CORE_ADDR
1270 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1271 {
1272 /* Just always 16-byte align. */
1273 return align_up (addr, 16);
1274 }
1275
1276 CORE_ADDR
1277 hppa_read_pc (ptid_t ptid)
1278 {
1279 ULONGEST ipsw;
1280 CORE_ADDR pc;
1281
1282 ipsw = read_register_pid (HPPA_IPSW_REGNUM, ptid);
1283 pc = read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid);
1284
1285 /* If the current instruction is nullified, then we are effectively
1286 still executing the previous instruction. Pretend we are still
1287 there. This is needed when single stepping; if the nullified
1288 instruction is on a different line, we don't want GDB to think
1289 we've stepped onto that line. */
1290 if (ipsw & 0x00200000)
1291 pc -= 4;
1292
1293 return pc & ~0x3;
1294 }
1295
1296 void
1297 hppa_write_pc (CORE_ADDR pc, ptid_t ptid)
1298 {
1299 write_register_pid (HPPA_PCOQ_HEAD_REGNUM, pc, ptid);
1300 write_register_pid (HPPA_PCOQ_TAIL_REGNUM, pc + 4, ptid);
1301 }
1302
1303 /* return the alignment of a type in bytes. Structures have the maximum
1304 alignment required by their fields. */
1305
1306 static int
1307 hppa_alignof (struct type *type)
1308 {
1309 int max_align, align, i;
1310 CHECK_TYPEDEF (type);
1311 switch (TYPE_CODE (type))
1312 {
1313 case TYPE_CODE_PTR:
1314 case TYPE_CODE_INT:
1315 case TYPE_CODE_FLT:
1316 return TYPE_LENGTH (type);
1317 case TYPE_CODE_ARRAY:
1318 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1319 case TYPE_CODE_STRUCT:
1320 case TYPE_CODE_UNION:
1321 max_align = 1;
1322 for (i = 0; i < TYPE_NFIELDS (type); i++)
1323 {
1324 /* Bit fields have no real alignment. */
1325 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1326 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
1327 {
1328 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1329 max_align = max (max_align, align);
1330 }
1331 }
1332 return max_align;
1333 default:
1334 return 4;
1335 }
1336 }
1337
1338 /* For the given instruction (INST), return any adjustment it makes
1339 to the stack pointer or zero for no adjustment.
1340
1341 This only handles instructions commonly found in prologues. */
1342
1343 static int
1344 prologue_inst_adjust_sp (unsigned long inst)
1345 {
1346 /* This must persist across calls. */
1347 static int save_high21;
1348
1349 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1350 if ((inst & 0xffffc000) == 0x37de0000)
1351 return hppa_extract_14 (inst);
1352
1353 /* stwm X,D(sp) */
1354 if ((inst & 0xffe00000) == 0x6fc00000)
1355 return hppa_extract_14 (inst);
1356
1357 /* std,ma X,D(sp) */
1358 if ((inst & 0xffe00008) == 0x73c00008)
1359 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1360
1361 /* addil high21,%r30; ldo low11,(%r1),%r30)
1362 save high bits in save_high21 for later use. */
1363 if ((inst & 0xffe00000) == 0x2bc00000)
1364 {
1365 save_high21 = hppa_extract_21 (inst);
1366 return 0;
1367 }
1368
1369 if ((inst & 0xffff0000) == 0x343e0000)
1370 return save_high21 + hppa_extract_14 (inst);
1371
1372 /* fstws as used by the HP compilers. */
1373 if ((inst & 0xffffffe0) == 0x2fd01220)
1374 return hppa_extract_5_load (inst);
1375
1376 /* No adjustment. */
1377 return 0;
1378 }
1379
1380 /* Return nonzero if INST is a branch of some kind, else return zero. */
1381
1382 static int
1383 is_branch (unsigned long inst)
1384 {
1385 switch (inst >> 26)
1386 {
1387 case 0x20:
1388 case 0x21:
1389 case 0x22:
1390 case 0x23:
1391 case 0x27:
1392 case 0x28:
1393 case 0x29:
1394 case 0x2a:
1395 case 0x2b:
1396 case 0x2f:
1397 case 0x30:
1398 case 0x31:
1399 case 0x32:
1400 case 0x33:
1401 case 0x38:
1402 case 0x39:
1403 case 0x3a:
1404 case 0x3b:
1405 return 1;
1406
1407 default:
1408 return 0;
1409 }
1410 }
1411
1412 /* Return the register number for a GR which is saved by INST or
1413 zero it INST does not save a GR. */
1414
1415 static int
1416 inst_saves_gr (unsigned long inst)
1417 {
1418 /* Does it look like a stw? */
1419 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1420 || (inst >> 26) == 0x1f
1421 || ((inst >> 26) == 0x1f
1422 && ((inst >> 6) == 0xa)))
1423 return hppa_extract_5R_store (inst);
1424
1425 /* Does it look like a std? */
1426 if ((inst >> 26) == 0x1c
1427 || ((inst >> 26) == 0x03
1428 && ((inst >> 6) & 0xf) == 0xb))
1429 return hppa_extract_5R_store (inst);
1430
1431 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1432 if ((inst >> 26) == 0x1b)
1433 return hppa_extract_5R_store (inst);
1434
1435 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1436 too. */
1437 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1438 || ((inst >> 26) == 0x3
1439 && (((inst >> 6) & 0xf) == 0x8
1440 || (inst >> 6) & 0xf) == 0x9))
1441 return hppa_extract_5R_store (inst);
1442
1443 return 0;
1444 }
1445
1446 /* Return the register number for a FR which is saved by INST or
1447 zero it INST does not save a FR.
1448
1449 Note we only care about full 64bit register stores (that's the only
1450 kind of stores the prologue will use).
1451
1452 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1453
1454 static int
1455 inst_saves_fr (unsigned long inst)
1456 {
1457 /* is this an FSTD ? */
1458 if ((inst & 0xfc00dfc0) == 0x2c001200)
1459 return hppa_extract_5r_store (inst);
1460 if ((inst & 0xfc000002) == 0x70000002)
1461 return hppa_extract_5R_store (inst);
1462 /* is this an FSTW ? */
1463 if ((inst & 0xfc00df80) == 0x24001200)
1464 return hppa_extract_5r_store (inst);
1465 if ((inst & 0xfc000002) == 0x7c000000)
1466 return hppa_extract_5R_store (inst);
1467 return 0;
1468 }
1469
1470 /* Advance PC across any function entry prologue instructions
1471 to reach some "real" code.
1472
1473 Use information in the unwind table to determine what exactly should
1474 be in the prologue. */
1475
1476
1477 static CORE_ADDR
1478 skip_prologue_hard_way (CORE_ADDR pc, int stop_before_branch)
1479 {
1480 char buf[4];
1481 CORE_ADDR orig_pc = pc;
1482 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1483 unsigned long args_stored, status, i, restart_gr, restart_fr;
1484 struct unwind_table_entry *u;
1485 int final_iteration;
1486
1487 restart_gr = 0;
1488 restart_fr = 0;
1489
1490 restart:
1491 u = find_unwind_entry (pc);
1492 if (!u)
1493 return pc;
1494
1495 /* If we are not at the beginning of a function, then return now. */
1496 if ((pc & ~0x3) != u->region_start)
1497 return pc;
1498
1499 /* This is how much of a frame adjustment we need to account for. */
1500 stack_remaining = u->Total_frame_size << 3;
1501
1502 /* Magic register saves we want to know about. */
1503 save_rp = u->Save_RP;
1504 save_sp = u->Save_SP;
1505
1506 /* An indication that args may be stored into the stack. Unfortunately
1507 the HPUX compilers tend to set this in cases where no args were
1508 stored too!. */
1509 args_stored = 1;
1510
1511 /* Turn the Entry_GR field into a bitmask. */
1512 save_gr = 0;
1513 for (i = 3; i < u->Entry_GR + 3; i++)
1514 {
1515 /* Frame pointer gets saved into a special location. */
1516 if (u->Save_SP && i == HPPA_FP_REGNUM)
1517 continue;
1518
1519 save_gr |= (1 << i);
1520 }
1521 save_gr &= ~restart_gr;
1522
1523 /* Turn the Entry_FR field into a bitmask too. */
1524 save_fr = 0;
1525 for (i = 12; i < u->Entry_FR + 12; i++)
1526 save_fr |= (1 << i);
1527 save_fr &= ~restart_fr;
1528
1529 final_iteration = 0;
1530
1531 /* Loop until we find everything of interest or hit a branch.
1532
1533 For unoptimized GCC code and for any HP CC code this will never ever
1534 examine any user instructions.
1535
1536 For optimzied GCC code we're faced with problems. GCC will schedule
1537 its prologue and make prologue instructions available for delay slot
1538 filling. The end result is user code gets mixed in with the prologue
1539 and a prologue instruction may be in the delay slot of the first branch
1540 or call.
1541
1542 Some unexpected things are expected with debugging optimized code, so
1543 we allow this routine to walk past user instructions in optimized
1544 GCC code. */
1545 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1546 || args_stored)
1547 {
1548 unsigned int reg_num;
1549 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1550 unsigned long old_save_rp, old_save_sp, next_inst;
1551
1552 /* Save copies of all the triggers so we can compare them later
1553 (only for HPC). */
1554 old_save_gr = save_gr;
1555 old_save_fr = save_fr;
1556 old_save_rp = save_rp;
1557 old_save_sp = save_sp;
1558 old_stack_remaining = stack_remaining;
1559
1560 status = read_memory_nobpt (pc, buf, 4);
1561 inst = extract_unsigned_integer (buf, 4);
1562
1563 /* Yow! */
1564 if (status != 0)
1565 return pc;
1566
1567 /* Note the interesting effects of this instruction. */
1568 stack_remaining -= prologue_inst_adjust_sp (inst);
1569
1570 /* There are limited ways to store the return pointer into the
1571 stack. */
1572 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1573 save_rp = 0;
1574
1575 /* These are the only ways we save SP into the stack. At this time
1576 the HP compilers never bother to save SP into the stack. */
1577 if ((inst & 0xffffc000) == 0x6fc10000
1578 || (inst & 0xffffc00c) == 0x73c10008)
1579 save_sp = 0;
1580
1581 /* Are we loading some register with an offset from the argument
1582 pointer? */
1583 if ((inst & 0xffe00000) == 0x37a00000
1584 || (inst & 0xffffffe0) == 0x081d0240)
1585 {
1586 pc += 4;
1587 continue;
1588 }
1589
1590 /* Account for general and floating-point register saves. */
1591 reg_num = inst_saves_gr (inst);
1592 save_gr &= ~(1 << reg_num);
1593
1594 /* Ugh. Also account for argument stores into the stack.
1595 Unfortunately args_stored only tells us that some arguments
1596 where stored into the stack. Not how many or what kind!
1597
1598 This is a kludge as on the HP compiler sets this bit and it
1599 never does prologue scheduling. So once we see one, skip past
1600 all of them. We have similar code for the fp arg stores below.
1601
1602 FIXME. Can still die if we have a mix of GR and FR argument
1603 stores! */
1604 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1605 {
1606 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1607 {
1608 pc += 4;
1609 status = read_memory_nobpt (pc, buf, 4);
1610 inst = extract_unsigned_integer (buf, 4);
1611 if (status != 0)
1612 return pc;
1613 reg_num = inst_saves_gr (inst);
1614 }
1615 args_stored = 0;
1616 continue;
1617 }
1618
1619 reg_num = inst_saves_fr (inst);
1620 save_fr &= ~(1 << reg_num);
1621
1622 status = read_memory_nobpt (pc + 4, buf, 4);
1623 next_inst = extract_unsigned_integer (buf, 4);
1624
1625 /* Yow! */
1626 if (status != 0)
1627 return pc;
1628
1629 /* We've got to be read to handle the ldo before the fp register
1630 save. */
1631 if ((inst & 0xfc000000) == 0x34000000
1632 && inst_saves_fr (next_inst) >= 4
1633 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1634 {
1635 /* So we drop into the code below in a reasonable state. */
1636 reg_num = inst_saves_fr (next_inst);
1637 pc -= 4;
1638 }
1639
1640 /* Ugh. Also account for argument stores into the stack.
1641 This is a kludge as on the HP compiler sets this bit and it
1642 never does prologue scheduling. So once we see one, skip past
1643 all of them. */
1644 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1645 {
1646 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1647 {
1648 pc += 8;
1649 status = read_memory_nobpt (pc, buf, 4);
1650 inst = extract_unsigned_integer (buf, 4);
1651 if (status != 0)
1652 return pc;
1653 if ((inst & 0xfc000000) != 0x34000000)
1654 break;
1655 status = read_memory_nobpt (pc + 4, buf, 4);
1656 next_inst = extract_unsigned_integer (buf, 4);
1657 if (status != 0)
1658 return pc;
1659 reg_num = inst_saves_fr (next_inst);
1660 }
1661 args_stored = 0;
1662 continue;
1663 }
1664
1665 /* Quit if we hit any kind of branch. This can happen if a prologue
1666 instruction is in the delay slot of the first call/branch. */
1667 if (is_branch (inst) && stop_before_branch)
1668 break;
1669
1670 /* What a crock. The HP compilers set args_stored even if no
1671 arguments were stored into the stack (boo hiss). This could
1672 cause this code to then skip a bunch of user insns (up to the
1673 first branch).
1674
1675 To combat this we try to identify when args_stored was bogusly
1676 set and clear it. We only do this when args_stored is nonzero,
1677 all other resources are accounted for, and nothing changed on
1678 this pass. */
1679 if (args_stored
1680 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1681 && old_save_gr == save_gr && old_save_fr == save_fr
1682 && old_save_rp == save_rp && old_save_sp == save_sp
1683 && old_stack_remaining == stack_remaining)
1684 break;
1685
1686 /* Bump the PC. */
1687 pc += 4;
1688
1689 /* !stop_before_branch, so also look at the insn in the delay slot
1690 of the branch. */
1691 if (final_iteration)
1692 break;
1693 if (is_branch (inst))
1694 final_iteration = 1;
1695 }
1696
1697 /* We've got a tenative location for the end of the prologue. However
1698 because of limitations in the unwind descriptor mechanism we may
1699 have went too far into user code looking for the save of a register
1700 that does not exist. So, if there registers we expected to be saved
1701 but never were, mask them out and restart.
1702
1703 This should only happen in optimized code, and should be very rare. */
1704 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1705 {
1706 pc = orig_pc;
1707 restart_gr = save_gr;
1708 restart_fr = save_fr;
1709 goto restart;
1710 }
1711
1712 return pc;
1713 }
1714
1715
1716 /* Return the address of the PC after the last prologue instruction if
1717 we can determine it from the debug symbols. Else return zero. */
1718
1719 static CORE_ADDR
1720 after_prologue (CORE_ADDR pc)
1721 {
1722 struct symtab_and_line sal;
1723 CORE_ADDR func_addr, func_end;
1724 struct symbol *f;
1725
1726 /* If we can not find the symbol in the partial symbol table, then
1727 there is no hope we can determine the function's start address
1728 with this code. */
1729 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1730 return 0;
1731
1732 /* Get the line associated with FUNC_ADDR. */
1733 sal = find_pc_line (func_addr, 0);
1734
1735 /* There are only two cases to consider. First, the end of the source line
1736 is within the function bounds. In that case we return the end of the
1737 source line. Second is the end of the source line extends beyond the
1738 bounds of the current function. We need to use the slow code to
1739 examine instructions in that case.
1740
1741 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1742 the wrong thing to do. In fact, it should be entirely possible for this
1743 function to always return zero since the slow instruction scanning code
1744 is supposed to *always* work. If it does not, then it is a bug. */
1745 if (sal.end < func_end)
1746 return sal.end;
1747 else
1748 return 0;
1749 }
1750
1751 /* To skip prologues, I use this predicate. Returns either PC itself
1752 if the code at PC does not look like a function prologue; otherwise
1753 returns an address that (if we're lucky) follows the prologue.
1754
1755 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1756 It doesn't necessarily skips all the insns in the prologue. In fact
1757 we might not want to skip all the insns because a prologue insn may
1758 appear in the delay slot of the first branch, and we don't want to
1759 skip over the branch in that case. */
1760
1761 static CORE_ADDR
1762 hppa_skip_prologue (CORE_ADDR pc)
1763 {
1764 unsigned long inst;
1765 int offset;
1766 CORE_ADDR post_prologue_pc;
1767 char buf[4];
1768
1769 /* See if we can determine the end of the prologue via the symbol table.
1770 If so, then return either PC, or the PC after the prologue, whichever
1771 is greater. */
1772
1773 post_prologue_pc = after_prologue (pc);
1774
1775 /* If after_prologue returned a useful address, then use it. Else
1776 fall back on the instruction skipping code.
1777
1778 Some folks have claimed this causes problems because the breakpoint
1779 may be the first instruction of the prologue. If that happens, then
1780 the instruction skipping code has a bug that needs to be fixed. */
1781 if (post_prologue_pc != 0)
1782 return max (pc, post_prologue_pc);
1783 else
1784 return (skip_prologue_hard_way (pc, 1));
1785 }
1786
1787 /* Return an unwind entry that falls within the frame's code block. */
1788 static struct unwind_table_entry *
1789 hppa_find_unwind_entry_in_block (struct frame_info *f)
1790 {
1791 CORE_ADDR pc = frame_unwind_address_in_block (f, NORMAL_FRAME);
1792
1793 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1794 result of frame_unwind_address_in_block implies a problem.
1795 The bits should have been removed earlier, before the return
1796 value of frame_pc_unwind. That might be happening already;
1797 if it isn't, it should be fixed. Then this call can be
1798 removed. */
1799 pc = gdbarch_addr_bits_remove (get_frame_arch (f), pc);
1800 return find_unwind_entry (pc);
1801 }
1802
1803 struct hppa_frame_cache
1804 {
1805 CORE_ADDR base;
1806 struct trad_frame_saved_reg *saved_regs;
1807 };
1808
1809 static struct hppa_frame_cache *
1810 hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1811 {
1812 struct hppa_frame_cache *cache;
1813 long saved_gr_mask;
1814 long saved_fr_mask;
1815 CORE_ADDR this_sp;
1816 long frame_size;
1817 struct unwind_table_entry *u;
1818 CORE_ADDR prologue_end;
1819 int fp_in_r1 = 0;
1820 int i;
1821
1822 if (hppa_debug)
1823 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1824 frame_relative_level(next_frame));
1825
1826 if ((*this_cache) != NULL)
1827 {
1828 if (hppa_debug)
1829 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1830 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1831 return (*this_cache);
1832 }
1833 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1834 (*this_cache) = cache;
1835 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1836
1837 /* Yow! */
1838 u = hppa_find_unwind_entry_in_block (next_frame);
1839 if (!u)
1840 {
1841 if (hppa_debug)
1842 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1843 return (*this_cache);
1844 }
1845
1846 /* Turn the Entry_GR field into a bitmask. */
1847 saved_gr_mask = 0;
1848 for (i = 3; i < u->Entry_GR + 3; i++)
1849 {
1850 /* Frame pointer gets saved into a special location. */
1851 if (u->Save_SP && i == HPPA_FP_REGNUM)
1852 continue;
1853
1854 saved_gr_mask |= (1 << i);
1855 }
1856
1857 /* Turn the Entry_FR field into a bitmask too. */
1858 saved_fr_mask = 0;
1859 for (i = 12; i < u->Entry_FR + 12; i++)
1860 saved_fr_mask |= (1 << i);
1861
1862 /* Loop until we find everything of interest or hit a branch.
1863
1864 For unoptimized GCC code and for any HP CC code this will never ever
1865 examine any user instructions.
1866
1867 For optimized GCC code we're faced with problems. GCC will schedule
1868 its prologue and make prologue instructions available for delay slot
1869 filling. The end result is user code gets mixed in with the prologue
1870 and a prologue instruction may be in the delay slot of the first branch
1871 or call.
1872
1873 Some unexpected things are expected with debugging optimized code, so
1874 we allow this routine to walk past user instructions in optimized
1875 GCC code. */
1876 {
1877 int final_iteration = 0;
1878 CORE_ADDR pc, start_pc, end_pc;
1879 int looking_for_sp = u->Save_SP;
1880 int looking_for_rp = u->Save_RP;
1881 int fp_loc = -1;
1882
1883 /* We have to use skip_prologue_hard_way instead of just
1884 skip_prologue_using_sal, in case we stepped into a function without
1885 symbol information. hppa_skip_prologue also bounds the returned
1886 pc by the passed in pc, so it will not return a pc in the next
1887 function.
1888
1889 We used to call hppa_skip_prologue to find the end of the prologue,
1890 but if some non-prologue instructions get scheduled into the prologue,
1891 and the program is compiled with debug information, the "easy" way
1892 in hppa_skip_prologue will return a prologue end that is too early
1893 for us to notice any potential frame adjustments. */
1894
1895 /* We used to use frame_func_unwind () to locate the beginning of the
1896 function to pass to skip_prologue (). However, when objects are
1897 compiled without debug symbols, frame_func_unwind can return the wrong
1898 function (or 0). We can do better than that by using unwind records.
1899 This only works if the Region_description of the unwind record
1900 indicates that it includes the entry point of the function.
1901 HP compilers sometimes generate unwind records for regions that
1902 do not include the entry or exit point of a function. GNU tools
1903 do not do this. */
1904
1905 if ((u->Region_description & 0x2) == 0)
1906 start_pc = u->region_start;
1907 else
1908 start_pc = frame_func_unwind (next_frame, NORMAL_FRAME);
1909
1910 prologue_end = skip_prologue_hard_way (start_pc, 0);
1911 end_pc = frame_pc_unwind (next_frame);
1912
1913 if (prologue_end != 0 && end_pc > prologue_end)
1914 end_pc = prologue_end;
1915
1916 frame_size = 0;
1917
1918 for (pc = start_pc;
1919 ((saved_gr_mask || saved_fr_mask
1920 || looking_for_sp || looking_for_rp
1921 || frame_size < (u->Total_frame_size << 3))
1922 && pc < end_pc);
1923 pc += 4)
1924 {
1925 int reg;
1926 char buf4[4];
1927 long inst;
1928
1929 if (!safe_frame_unwind_memory (next_frame, pc, buf4,
1930 sizeof buf4))
1931 {
1932 error (_("Cannot read instruction at 0x%s."), paddr_nz (pc));
1933 return (*this_cache);
1934 }
1935
1936 inst = extract_unsigned_integer (buf4, sizeof buf4);
1937
1938 /* Note the interesting effects of this instruction. */
1939 frame_size += prologue_inst_adjust_sp (inst);
1940
1941 /* There are limited ways to store the return pointer into the
1942 stack. */
1943 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1944 {
1945 looking_for_rp = 0;
1946 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1947 }
1948 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1949 {
1950 looking_for_rp = 0;
1951 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1952 }
1953 else if (inst == 0x0fc212c1
1954 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
1955 {
1956 looking_for_rp = 0;
1957 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1958 }
1959
1960 /* Check to see if we saved SP into the stack. This also
1961 happens to indicate the location of the saved frame
1962 pointer. */
1963 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1964 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1965 {
1966 looking_for_sp = 0;
1967 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1968 }
1969 else if (inst == 0x08030241) /* copy %r3, %r1 */
1970 {
1971 fp_in_r1 = 1;
1972 }
1973
1974 /* Account for general and floating-point register saves. */
1975 reg = inst_saves_gr (inst);
1976 if (reg >= 3 && reg <= 18
1977 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1978 {
1979 saved_gr_mask &= ~(1 << reg);
1980 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1981 /* stwm with a positive displacement is a _post_
1982 _modify_. */
1983 cache->saved_regs[reg].addr = 0;
1984 else if ((inst & 0xfc00000c) == 0x70000008)
1985 /* A std has explicit post_modify forms. */
1986 cache->saved_regs[reg].addr = 0;
1987 else
1988 {
1989 CORE_ADDR offset;
1990
1991 if ((inst >> 26) == 0x1c)
1992 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1993 else if ((inst >> 26) == 0x03)
1994 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
1995 else
1996 offset = hppa_extract_14 (inst);
1997
1998 /* Handle code with and without frame pointers. */
1999 if (u->Save_SP)
2000 cache->saved_regs[reg].addr = offset;
2001 else
2002 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
2003 }
2004 }
2005
2006 /* GCC handles callee saved FP regs a little differently.
2007
2008 It emits an instruction to put the value of the start of
2009 the FP store area into %r1. It then uses fstds,ma with a
2010 basereg of %r1 for the stores.
2011
2012 HP CC emits them at the current stack pointer modifying the
2013 stack pointer as it stores each register. */
2014
2015 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2016 if ((inst & 0xffffc000) == 0x34610000
2017 || (inst & 0xffffc000) == 0x37c10000)
2018 fp_loc = hppa_extract_14 (inst);
2019
2020 reg = inst_saves_fr (inst);
2021 if (reg >= 12 && reg <= 21)
2022 {
2023 /* Note +4 braindamage below is necessary because the FP
2024 status registers are internally 8 registers rather than
2025 the expected 4 registers. */
2026 saved_fr_mask &= ~(1 << reg);
2027 if (fp_loc == -1)
2028 {
2029 /* 1st HP CC FP register store. After this
2030 instruction we've set enough state that the GCC and
2031 HPCC code are both handled in the same manner. */
2032 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
2033 fp_loc = 8;
2034 }
2035 else
2036 {
2037 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2038 fp_loc += 8;
2039 }
2040 }
2041
2042 /* Quit if we hit any kind of branch the previous iteration. */
2043 if (final_iteration)
2044 break;
2045 /* We want to look precisely one instruction beyond the branch
2046 if we have not found everything yet. */
2047 if (is_branch (inst))
2048 final_iteration = 1;
2049 }
2050 }
2051
2052 {
2053 /* The frame base always represents the value of %sp at entry to
2054 the current function (and is thus equivalent to the "saved"
2055 stack pointer. */
2056 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2057 CORE_ADDR fp;
2058
2059 if (hppa_debug)
2060 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
2061 "prologue_end=0x%s) ",
2062 paddr_nz (this_sp),
2063 paddr_nz (frame_pc_unwind (next_frame)),
2064 paddr_nz (prologue_end));
2065
2066 /* Check to see if a frame pointer is available, and use it for
2067 frame unwinding if it is.
2068
2069 There are some situations where we need to rely on the frame
2070 pointer to do stack unwinding. For example, if a function calls
2071 alloca (), the stack pointer can get adjusted inside the body of
2072 the function. In this case, the ABI requires that the compiler
2073 maintain a frame pointer for the function.
2074
2075 The unwind record has a flag (alloca_frame) that indicates that
2076 a function has a variable frame; unfortunately, gcc/binutils
2077 does not set this flag. Instead, whenever a frame pointer is used
2078 and saved on the stack, the Save_SP flag is set. We use this to
2079 decide whether to use the frame pointer for unwinding.
2080
2081 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2082 instead of Save_SP. */
2083
2084 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
2085
2086 if (u->alloca_frame)
2087 fp -= u->Total_frame_size << 3;
2088
2089 if (frame_pc_unwind (next_frame) >= prologue_end
2090 && (u->Save_SP || u->alloca_frame) && fp != 0)
2091 {
2092 cache->base = fp;
2093
2094 if (hppa_debug)
2095 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer]",
2096 paddr_nz (cache->base));
2097 }
2098 else if (u->Save_SP
2099 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2100 {
2101 /* Both we're expecting the SP to be saved and the SP has been
2102 saved. The entry SP value is saved at this frame's SP
2103 address. */
2104 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
2105
2106 if (hppa_debug)
2107 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved]",
2108 paddr_nz (cache->base));
2109 }
2110 else
2111 {
2112 /* The prologue has been slowly allocating stack space. Adjust
2113 the SP back. */
2114 cache->base = this_sp - frame_size;
2115 if (hppa_debug)
2116 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust]",
2117 paddr_nz (cache->base));
2118
2119 }
2120 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2121 }
2122
2123 /* The PC is found in the "return register", "Millicode" uses "r31"
2124 as the return register while normal code uses "rp". */
2125 if (u->Millicode)
2126 {
2127 if (trad_frame_addr_p (cache->saved_regs, 31))
2128 {
2129 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2130 if (hppa_debug)
2131 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2132 }
2133 else
2134 {
2135 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
2136 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2137 if (hppa_debug)
2138 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2139 }
2140 }
2141 else
2142 {
2143 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2144 {
2145 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2146 cache->saved_regs[HPPA_RP_REGNUM];
2147 if (hppa_debug)
2148 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2149 }
2150 else
2151 {
2152 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2153 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2154 if (hppa_debug)
2155 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2156 }
2157 }
2158
2159 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2160 frame. However, there is a one-insn window where we haven't saved it
2161 yet, but we've already clobbered it. Detect this case and fix it up.
2162
2163 The prologue sequence for frame-pointer functions is:
2164 0: stw %rp, -20(%sp)
2165 4: copy %r3, %r1
2166 8: copy %sp, %r3
2167 c: stw,ma %r1, XX(%sp)
2168
2169 So if we are at offset c, the r3 value that we want is not yet saved
2170 on the stack, but it's been overwritten. The prologue analyzer will
2171 set fp_in_r1 when it sees the copy insn so we know to get the value
2172 from r1 instead. */
2173 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2174 && fp_in_r1)
2175 {
2176 ULONGEST r1 = frame_unwind_register_unsigned (next_frame, 1);
2177 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2178 }
2179
2180 {
2181 /* Convert all the offsets into addresses. */
2182 int reg;
2183 for (reg = 0; reg < gdbarch_num_regs (current_gdbarch); reg++)
2184 {
2185 if (trad_frame_addr_p (cache->saved_regs, reg))
2186 cache->saved_regs[reg].addr += cache->base;
2187 }
2188 }
2189
2190 {
2191 struct gdbarch *gdbarch;
2192 struct gdbarch_tdep *tdep;
2193
2194 gdbarch = get_frame_arch (next_frame);
2195 tdep = gdbarch_tdep (gdbarch);
2196
2197 if (tdep->unwind_adjust_stub)
2198 {
2199 tdep->unwind_adjust_stub (next_frame, cache->base, cache->saved_regs);
2200 }
2201 }
2202
2203 if (hppa_debug)
2204 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
2205 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
2206 return (*this_cache);
2207 }
2208
2209 static void
2210 hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
2211 struct frame_id *this_id)
2212 {
2213 struct hppa_frame_cache *info;
2214 CORE_ADDR pc = frame_pc_unwind (next_frame);
2215 struct unwind_table_entry *u;
2216
2217 info = hppa_frame_cache (next_frame, this_cache);
2218 u = hppa_find_unwind_entry_in_block (next_frame);
2219
2220 (*this_id) = frame_id_build (info->base, u->region_start);
2221 }
2222
2223 static void
2224 hppa_frame_prev_register (struct frame_info *next_frame,
2225 void **this_cache,
2226 int regnum, int *optimizedp,
2227 enum lval_type *lvalp, CORE_ADDR *addrp,
2228 int *realnump, gdb_byte *valuep)
2229 {
2230 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
2231 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2232 optimizedp, lvalp, addrp, realnump, valuep);
2233 }
2234
2235 static const struct frame_unwind hppa_frame_unwind =
2236 {
2237 NORMAL_FRAME,
2238 hppa_frame_this_id,
2239 hppa_frame_prev_register
2240 };
2241
2242 static const struct frame_unwind *
2243 hppa_frame_unwind_sniffer (struct frame_info *next_frame)
2244 {
2245 if (hppa_find_unwind_entry_in_block (next_frame))
2246 return &hppa_frame_unwind;
2247
2248 return NULL;
2249 }
2250
2251 /* This is a generic fallback frame unwinder that kicks in if we fail all
2252 the other ones. Normally we would expect the stub and regular unwinder
2253 to work, but in some cases we might hit a function that just doesn't
2254 have any unwind information available. In this case we try to do
2255 unwinding solely based on code reading. This is obviously going to be
2256 slow, so only use this as a last resort. Currently this will only
2257 identify the stack and pc for the frame. */
2258
2259 static struct hppa_frame_cache *
2260 hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
2261 {
2262 struct hppa_frame_cache *cache;
2263 unsigned int frame_size = 0;
2264 int found_rp = 0;
2265 CORE_ADDR start_pc;
2266
2267 if (hppa_debug)
2268 fprintf_unfiltered (gdb_stdlog,
2269 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2270 frame_relative_level (next_frame));
2271
2272 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2273 (*this_cache) = cache;
2274 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2275
2276 start_pc = frame_func_unwind (next_frame, NORMAL_FRAME);
2277 if (start_pc)
2278 {
2279 CORE_ADDR cur_pc = frame_pc_unwind (next_frame);
2280 CORE_ADDR pc;
2281
2282 for (pc = start_pc; pc < cur_pc; pc += 4)
2283 {
2284 unsigned int insn;
2285
2286 insn = read_memory_unsigned_integer (pc, 4);
2287 frame_size += prologue_inst_adjust_sp (insn);
2288
2289 /* There are limited ways to store the return pointer into the
2290 stack. */
2291 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2292 {
2293 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2294 found_rp = 1;
2295 }
2296 else if (insn == 0x0fc212c1
2297 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2298 {
2299 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2300 found_rp = 1;
2301 }
2302 }
2303 }
2304
2305 if (hppa_debug)
2306 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2307 frame_size, found_rp);
2308
2309 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2310 cache->base -= frame_size;
2311 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2312
2313 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2314 {
2315 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2316 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2317 cache->saved_regs[HPPA_RP_REGNUM];
2318 }
2319 else
2320 {
2321 ULONGEST rp;
2322 rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2323 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2324 }
2325
2326 return cache;
2327 }
2328
2329 static void
2330 hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
2331 struct frame_id *this_id)
2332 {
2333 struct hppa_frame_cache *info =
2334 hppa_fallback_frame_cache (next_frame, this_cache);
2335 (*this_id) = frame_id_build (info->base,
2336 frame_func_unwind (next_frame, NORMAL_FRAME));
2337 }
2338
2339 static void
2340 hppa_fallback_frame_prev_register (struct frame_info *next_frame,
2341 void **this_cache,
2342 int regnum, int *optimizedp,
2343 enum lval_type *lvalp, CORE_ADDR *addrp,
2344 int *realnump, gdb_byte *valuep)
2345 {
2346 struct hppa_frame_cache *info =
2347 hppa_fallback_frame_cache (next_frame, this_cache);
2348 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2349 optimizedp, lvalp, addrp, realnump, valuep);
2350 }
2351
2352 static const struct frame_unwind hppa_fallback_frame_unwind =
2353 {
2354 NORMAL_FRAME,
2355 hppa_fallback_frame_this_id,
2356 hppa_fallback_frame_prev_register
2357 };
2358
2359 static const struct frame_unwind *
2360 hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
2361 {
2362 return &hppa_fallback_frame_unwind;
2363 }
2364
2365 /* Stub frames, used for all kinds of call stubs. */
2366 struct hppa_stub_unwind_cache
2367 {
2368 CORE_ADDR base;
2369 struct trad_frame_saved_reg *saved_regs;
2370 };
2371
2372 static struct hppa_stub_unwind_cache *
2373 hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2374 void **this_cache)
2375 {
2376 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2377 struct hppa_stub_unwind_cache *info;
2378 struct unwind_table_entry *u;
2379
2380 if (*this_cache)
2381 return *this_cache;
2382
2383 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2384 *this_cache = info;
2385 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2386
2387 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2388
2389 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2390 {
2391 /* HPUX uses export stubs in function calls; the export stub clobbers
2392 the return value of the caller, and, later restores it from the
2393 stack. */
2394 u = find_unwind_entry (frame_pc_unwind (next_frame));
2395
2396 if (u && u->stub_unwind.stub_type == EXPORT)
2397 {
2398 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2399
2400 return info;
2401 }
2402 }
2403
2404 /* By default we assume that stubs do not change the rp. */
2405 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2406
2407 return info;
2408 }
2409
2410 static void
2411 hppa_stub_frame_this_id (struct frame_info *next_frame,
2412 void **this_prologue_cache,
2413 struct frame_id *this_id)
2414 {
2415 struct hppa_stub_unwind_cache *info
2416 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2417
2418 if (info)
2419 *this_id = frame_id_build (info->base,
2420 frame_func_unwind (next_frame, NORMAL_FRAME));
2421 else
2422 *this_id = null_frame_id;
2423 }
2424
2425 static void
2426 hppa_stub_frame_prev_register (struct frame_info *next_frame,
2427 void **this_prologue_cache,
2428 int regnum, int *optimizedp,
2429 enum lval_type *lvalp, CORE_ADDR *addrp,
2430 int *realnump, gdb_byte *valuep)
2431 {
2432 struct hppa_stub_unwind_cache *info
2433 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2434
2435 if (info)
2436 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2437 optimizedp, lvalp, addrp, realnump,
2438 valuep);
2439 else
2440 error (_("Requesting registers from null frame."));
2441 }
2442
2443 static const struct frame_unwind hppa_stub_frame_unwind = {
2444 NORMAL_FRAME,
2445 hppa_stub_frame_this_id,
2446 hppa_stub_frame_prev_register
2447 };
2448
2449 static const struct frame_unwind *
2450 hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2451 {
2452 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
2453 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2454 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2455
2456 if (pc == 0
2457 || (tdep->in_solib_call_trampoline != NULL
2458 && tdep->in_solib_call_trampoline (pc, NULL))
2459 || IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL))
2460 return &hppa_stub_frame_unwind;
2461 return NULL;
2462 }
2463
2464 static struct frame_id
2465 hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2466 {
2467 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2468 HPPA_SP_REGNUM),
2469 frame_pc_unwind (next_frame));
2470 }
2471
2472 CORE_ADDR
2473 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2474 {
2475 ULONGEST ipsw;
2476 CORE_ADDR pc;
2477
2478 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2479 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2480
2481 /* If the current instruction is nullified, then we are effectively
2482 still executing the previous instruction. Pretend we are still
2483 there. This is needed when single stepping; if the nullified
2484 instruction is on a different line, we don't want GDB to think
2485 we've stepped onto that line. */
2486 if (ipsw & 0x00200000)
2487 pc -= 4;
2488
2489 return pc & ~0x3;
2490 }
2491
2492 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2493 Return NULL if no such symbol was found. */
2494
2495 struct minimal_symbol *
2496 hppa_lookup_stub_minimal_symbol (const char *name,
2497 enum unwind_stub_types stub_type)
2498 {
2499 struct objfile *objfile;
2500 struct minimal_symbol *msym;
2501
2502 ALL_MSYMBOLS (objfile, msym)
2503 {
2504 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
2505 {
2506 struct unwind_table_entry *u;
2507
2508 u = find_unwind_entry (SYMBOL_VALUE (msym));
2509 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2510 return msym;
2511 }
2512 }
2513
2514 return NULL;
2515 }
2516
2517 static void
2518 unwind_command (char *exp, int from_tty)
2519 {
2520 CORE_ADDR address;
2521 struct unwind_table_entry *u;
2522
2523 /* If we have an expression, evaluate it and use it as the address. */
2524
2525 if (exp != 0 && *exp != 0)
2526 address = parse_and_eval_address (exp);
2527 else
2528 return;
2529
2530 u = find_unwind_entry (address);
2531
2532 if (!u)
2533 {
2534 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2535 return;
2536 }
2537
2538 printf_unfiltered ("unwind_table_entry (0x%lx):\n", (unsigned long)u);
2539
2540 printf_unfiltered ("\tregion_start = ");
2541 print_address (u->region_start, gdb_stdout);
2542 gdb_flush (gdb_stdout);
2543
2544 printf_unfiltered ("\n\tregion_end = ");
2545 print_address (u->region_end, gdb_stdout);
2546 gdb_flush (gdb_stdout);
2547
2548 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2549
2550 printf_unfiltered ("\n\tflags =");
2551 pif (Cannot_unwind);
2552 pif (Millicode);
2553 pif (Millicode_save_sr0);
2554 pif (Entry_SR);
2555 pif (Args_stored);
2556 pif (Variable_Frame);
2557 pif (Separate_Package_Body);
2558 pif (Frame_Extension_Millicode);
2559 pif (Stack_Overflow_Check);
2560 pif (Two_Instruction_SP_Increment);
2561 pif (sr4export);
2562 pif (cxx_info);
2563 pif (cxx_try_catch);
2564 pif (sched_entry_seq);
2565 pif (Save_SP);
2566 pif (Save_RP);
2567 pif (Save_MRP_in_frame);
2568 pif (save_r19);
2569 pif (Cleanup_defined);
2570 pif (MPE_XL_interrupt_marker);
2571 pif (HP_UX_interrupt_marker);
2572 pif (Large_frame);
2573 pif (alloca_frame);
2574
2575 putchar_unfiltered ('\n');
2576
2577 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2578
2579 pin (Region_description);
2580 pin (Entry_FR);
2581 pin (Entry_GR);
2582 pin (Total_frame_size);
2583
2584 if (u->stub_unwind.stub_type)
2585 {
2586 printf_unfiltered ("\tstub type = ");
2587 switch (u->stub_unwind.stub_type)
2588 {
2589 case LONG_BRANCH:
2590 printf_unfiltered ("long branch\n");
2591 break;
2592 case PARAMETER_RELOCATION:
2593 printf_unfiltered ("parameter relocation\n");
2594 break;
2595 case EXPORT:
2596 printf_unfiltered ("export\n");
2597 break;
2598 case IMPORT:
2599 printf_unfiltered ("import\n");
2600 break;
2601 case IMPORT_SHLIB:
2602 printf_unfiltered ("import shlib\n");
2603 break;
2604 default:
2605 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2606 }
2607 }
2608 }
2609
2610 int
2611 hppa_pc_requires_run_before_use (CORE_ADDR pc)
2612 {
2613 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2614
2615 An example of this occurs when an a.out is linked against a foo.sl.
2616 The foo.sl defines a global bar(), and the a.out declares a signature
2617 for bar(). However, the a.out doesn't directly call bar(), but passes
2618 its address in another call.
2619
2620 If you have this scenario and attempt to "break bar" before running,
2621 gdb will find a minimal symbol for bar() in the a.out. But that
2622 symbol's address will be negative. What this appears to denote is
2623 an index backwards from the base of the procedure linkage table (PLT)
2624 into the data linkage table (DLT), the end of which is contiguous
2625 with the start of the PLT. This is clearly not a valid address for
2626 us to set a breakpoint on.
2627
2628 Note that one must be careful in how one checks for a negative address.
2629 0xc0000000 is a legitimate address of something in a shared text
2630 segment, for example. Since I don't know what the possible range
2631 is of these "really, truly negative" addresses that come from the
2632 minimal symbols, I'm resorting to the gross hack of checking the
2633 top byte of the address for all 1's. Sigh. */
2634
2635 return (!target_has_stack && (pc & 0xFF000000) == 0xFF000000);
2636 }
2637
2638 /* Return the GDB type object for the "standard" data type of data in
2639 register REGNUM. */
2640
2641 static struct type *
2642 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2643 {
2644 if (regnum < HPPA_FP4_REGNUM)
2645 return builtin_type_uint32;
2646 else
2647 return builtin_type_ieee_single;
2648 }
2649
2650 static struct type *
2651 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2652 {
2653 if (regnum < HPPA64_FP4_REGNUM)
2654 return builtin_type_uint64;
2655 else
2656 return builtin_type_ieee_double;
2657 }
2658
2659 /* Return non-zero if REGNUM is not a register available to the user
2660 through ptrace/ttrace. */
2661
2662 static int
2663 hppa32_cannot_store_register (int regnum)
2664 {
2665 return (regnum == 0
2666 || regnum == HPPA_PCSQ_HEAD_REGNUM
2667 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2668 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2669 }
2670
2671 static int
2672 hppa64_cannot_store_register (int regnum)
2673 {
2674 return (regnum == 0
2675 || regnum == HPPA_PCSQ_HEAD_REGNUM
2676 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2677 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2678 }
2679
2680 static CORE_ADDR
2681 hppa_smash_text_address (CORE_ADDR addr)
2682 {
2683 /* The low two bits of the PC on the PA contain the privilege level.
2684 Some genius implementing a (non-GCC) compiler apparently decided
2685 this means that "addresses" in a text section therefore include a
2686 privilege level, and thus symbol tables should contain these bits.
2687 This seems like a bonehead thing to do--anyway, it seems to work
2688 for our purposes to just ignore those bits. */
2689
2690 return (addr &= ~0x3);
2691 }
2692
2693 /* Get the ARGIth function argument for the current function. */
2694
2695 static CORE_ADDR
2696 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2697 struct type *type)
2698 {
2699 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2700 }
2701
2702 static void
2703 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2704 int regnum, gdb_byte *buf)
2705 {
2706 ULONGEST tmp;
2707
2708 regcache_raw_read_unsigned (regcache, regnum, &tmp);
2709 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2710 tmp &= ~0x3;
2711 store_unsigned_integer (buf, sizeof tmp, tmp);
2712 }
2713
2714 static CORE_ADDR
2715 hppa_find_global_pointer (struct value *function)
2716 {
2717 return 0;
2718 }
2719
2720 void
2721 hppa_frame_prev_register_helper (struct frame_info *next_frame,
2722 struct trad_frame_saved_reg saved_regs[],
2723 int regnum, int *optimizedp,
2724 enum lval_type *lvalp, CORE_ADDR *addrp,
2725 int *realnump, gdb_byte *valuep)
2726 {
2727 struct gdbarch *arch = get_frame_arch (next_frame);
2728
2729 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2730 {
2731 if (valuep)
2732 {
2733 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2734 CORE_ADDR pc;
2735
2736 trad_frame_get_prev_register (next_frame, saved_regs,
2737 HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2738 lvalp, addrp, realnump, valuep);
2739
2740 pc = extract_unsigned_integer (valuep, size);
2741 store_unsigned_integer (valuep, size, pc + 4);
2742 }
2743
2744 /* It's a computed value. */
2745 *optimizedp = 0;
2746 *lvalp = not_lval;
2747 *addrp = 0;
2748 *realnump = -1;
2749 return;
2750 }
2751
2752 /* Make sure the "flags" register is zero in all unwound frames.
2753 The "flags" registers is a HP-UX specific wart, and only the code
2754 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2755 with it here. This shouldn't affect other systems since those
2756 should provide zero for the "flags" register anyway. */
2757 if (regnum == HPPA_FLAGS_REGNUM)
2758 {
2759 if (valuep)
2760 store_unsigned_integer (valuep, register_size (arch, regnum), 0);
2761
2762 /* It's a computed value. */
2763 *optimizedp = 0;
2764 *lvalp = not_lval;
2765 *addrp = 0;
2766 *realnump = -1;
2767 return;
2768 }
2769
2770 trad_frame_get_prev_register (next_frame, saved_regs, regnum,
2771 optimizedp, lvalp, addrp, realnump, valuep);
2772 }
2773 \f
2774
2775 /* An instruction to match. */
2776 struct insn_pattern
2777 {
2778 unsigned int data; /* See if it matches this.... */
2779 unsigned int mask; /* ... with this mask. */
2780 };
2781
2782 /* See bfd/elf32-hppa.c */
2783 static struct insn_pattern hppa_long_branch_stub[] = {
2784 /* ldil LR'xxx,%r1 */
2785 { 0x20200000, 0xffe00000 },
2786 /* be,n RR'xxx(%sr4,%r1) */
2787 { 0xe0202002, 0xffe02002 },
2788 { 0, 0 }
2789 };
2790
2791 static struct insn_pattern hppa_long_branch_pic_stub[] = {
2792 /* b,l .+8, %r1 */
2793 { 0xe8200000, 0xffe00000 },
2794 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2795 { 0x28200000, 0xffe00000 },
2796 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2797 { 0xe0202002, 0xffe02002 },
2798 { 0, 0 }
2799 };
2800
2801 static struct insn_pattern hppa_import_stub[] = {
2802 /* addil LR'xxx, %dp */
2803 { 0x2b600000, 0xffe00000 },
2804 /* ldw RR'xxx(%r1), %r21 */
2805 { 0x48350000, 0xffffb000 },
2806 /* bv %r0(%r21) */
2807 { 0xeaa0c000, 0xffffffff },
2808 /* ldw RR'xxx+4(%r1), %r19 */
2809 { 0x48330000, 0xffffb000 },
2810 { 0, 0 }
2811 };
2812
2813 static struct insn_pattern hppa_import_pic_stub[] = {
2814 /* addil LR'xxx,%r19 */
2815 { 0x2a600000, 0xffe00000 },
2816 /* ldw RR'xxx(%r1),%r21 */
2817 { 0x48350000, 0xffffb000 },
2818 /* bv %r0(%r21) */
2819 { 0xeaa0c000, 0xffffffff },
2820 /* ldw RR'xxx+4(%r1),%r19 */
2821 { 0x48330000, 0xffffb000 },
2822 { 0, 0 },
2823 };
2824
2825 static struct insn_pattern hppa_plt_stub[] = {
2826 /* b,l 1b, %r20 - 1b is 3 insns before here */
2827 { 0xea9f1fdd, 0xffffffff },
2828 /* depi 0,31,2,%r20 */
2829 { 0xd6801c1e, 0xffffffff },
2830 { 0, 0 }
2831 };
2832
2833 static struct insn_pattern hppa_sigtramp[] = {
2834 /* ldi 0, %r25 or ldi 1, %r25 */
2835 { 0x34190000, 0xfffffffd },
2836 /* ldi __NR_rt_sigreturn, %r20 */
2837 { 0x3414015a, 0xffffffff },
2838 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
2839 { 0xe4008200, 0xffffffff },
2840 /* nop */
2841 { 0x08000240, 0xffffffff },
2842 { 0, 0 }
2843 };
2844
2845 /* Maximum number of instructions on the patterns above. */
2846 #define HPPA_MAX_INSN_PATTERN_LEN 4
2847
2848 /* Return non-zero if the instructions at PC match the series
2849 described in PATTERN, or zero otherwise. PATTERN is an array of
2850 'struct insn_pattern' objects, terminated by an entry whose mask is
2851 zero.
2852
2853 When the match is successful, fill INSN[i] with what PATTERN[i]
2854 matched. */
2855
2856 static int
2857 hppa_match_insns (CORE_ADDR pc, struct insn_pattern *pattern,
2858 unsigned int *insn)
2859 {
2860 CORE_ADDR npc = pc;
2861 int i;
2862
2863 for (i = 0; pattern[i].mask; i++)
2864 {
2865 gdb_byte buf[HPPA_INSN_SIZE];
2866
2867 read_memory_nobpt (npc, buf, HPPA_INSN_SIZE);
2868 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE);
2869 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2870 npc += 4;
2871 else
2872 return 0;
2873 }
2874
2875 return 1;
2876 }
2877
2878 /* This relaxed version of the insstruction matcher allows us to match
2879 from somewhere inside the pattern, by looking backwards in the
2880 instruction scheme. */
2881
2882 static int
2883 hppa_match_insns_relaxed (CORE_ADDR pc, struct insn_pattern *pattern,
2884 unsigned int *insn)
2885 {
2886 int offset, len = 0;
2887
2888 while (pattern[len].mask)
2889 len++;
2890
2891 for (offset = 0; offset < len; offset++)
2892 if (hppa_match_insns (pc - offset * HPPA_INSN_SIZE, pattern, insn))
2893 return 1;
2894
2895 return 0;
2896 }
2897
2898 static int
2899 hppa_in_dyncall (CORE_ADDR pc)
2900 {
2901 struct unwind_table_entry *u;
2902
2903 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2904 if (!u)
2905 return 0;
2906
2907 return (pc >= u->region_start && pc <= u->region_end);
2908 }
2909
2910 int
2911 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
2912 {
2913 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2914 struct unwind_table_entry *u;
2915
2916 if (in_plt_section (pc, name) || hppa_in_dyncall (pc))
2917 return 1;
2918
2919 /* The GNU toolchain produces linker stubs without unwind
2920 information. Since the pattern matching for linker stubs can be
2921 quite slow, so bail out if we do have an unwind entry. */
2922
2923 u = find_unwind_entry (pc);
2924 if (u != NULL)
2925 return 0;
2926
2927 return (hppa_match_insns_relaxed (pc, hppa_import_stub, insn)
2928 || hppa_match_insns_relaxed (pc, hppa_import_pic_stub, insn)
2929 || hppa_match_insns_relaxed (pc, hppa_long_branch_stub, insn)
2930 || hppa_match_insns_relaxed (pc, hppa_long_branch_pic_stub, insn));
2931 }
2932
2933 /* This code skips several kind of "trampolines" used on PA-RISC
2934 systems: $$dyncall, import stubs and PLT stubs. */
2935
2936 CORE_ADDR
2937 hppa_skip_trampoline_code (CORE_ADDR pc)
2938 {
2939 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2940 int dp_rel;
2941
2942 /* $$dyncall handles both PLABELs and direct addresses. */
2943 if (hppa_in_dyncall (pc))
2944 {
2945 pc = read_register (HPPA_R0_REGNUM + 22);
2946
2947 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2948 if (pc & 0x2)
2949 pc = read_memory_typed_address (pc & ~0x3, builtin_type_void_func_ptr);
2950
2951 return pc;
2952 }
2953
2954 dp_rel = hppa_match_insns (pc, hppa_import_stub, insn);
2955 if (dp_rel || hppa_match_insns (pc, hppa_import_pic_stub, insn))
2956 {
2957 /* Extract the target address from the addil/ldw sequence. */
2958 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2959
2960 if (dp_rel)
2961 pc += read_register (HPPA_DP_REGNUM);
2962 else
2963 pc += read_register (HPPA_R0_REGNUM + 19);
2964
2965 /* fallthrough */
2966 }
2967
2968 if (in_plt_section (pc, NULL))
2969 {
2970 pc = read_memory_typed_address (pc, builtin_type_void_func_ptr);
2971
2972 /* If the PLT slot has not yet been resolved, the target will be
2973 the PLT stub. */
2974 if (in_plt_section (pc, NULL))
2975 {
2976 /* Sanity check: are we pointing to the PLT stub? */
2977 if (!hppa_match_insns (pc, hppa_plt_stub, insn))
2978 {
2979 warning (_("Cannot resolve PLT stub at 0x%s."), paddr_nz (pc));
2980 return 0;
2981 }
2982
2983 /* This should point to the fixup routine. */
2984 pc = read_memory_typed_address (pc + 8, builtin_type_void_func_ptr);
2985 }
2986 }
2987
2988 return pc;
2989 }
2990 \f
2991
2992 /* Here is a table of C type sizes on hppa with various compiles
2993 and options. I measured this on PA 9000/800 with HP-UX 11.11
2994 and these compilers:
2995
2996 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2997 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2998 /opt/aCC/bin/aCC B3910B A.03.45
2999 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
3000
3001 cc : 1 2 4 4 8 : 4 8 -- : 4 4
3002 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3003 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3004 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3005 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3006 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3007 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3008 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
3009
3010 Each line is:
3011
3012 compiler and options
3013 char, short, int, long, long long
3014 float, double, long double
3015 char *, void (*)()
3016
3017 So all these compilers use either ILP32 or LP64 model.
3018 TODO: gcc has more options so it needs more investigation.
3019
3020 For floating point types, see:
3021
3022 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3023 HP-UX floating-point guide, hpux 11.00
3024
3025 -- chastain 2003-12-18 */
3026
3027 static struct gdbarch *
3028 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3029 {
3030 struct gdbarch_tdep *tdep;
3031 struct gdbarch *gdbarch;
3032
3033 /* Try to determine the ABI of the object we are loading. */
3034 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
3035 {
3036 /* If it's a SOM file, assume it's HP/UX SOM. */
3037 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
3038 info.osabi = GDB_OSABI_HPUX_SOM;
3039 }
3040
3041 /* find a candidate among the list of pre-declared architectures. */
3042 arches = gdbarch_list_lookup_by_info (arches, &info);
3043 if (arches != NULL)
3044 return (arches->gdbarch);
3045
3046 /* If none found, then allocate and initialize one. */
3047 tdep = XZALLOC (struct gdbarch_tdep);
3048 gdbarch = gdbarch_alloc (&info, tdep);
3049
3050 /* Determine from the bfd_arch_info structure if we are dealing with
3051 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3052 then default to a 32bit machine. */
3053 if (info.bfd_arch_info != NULL)
3054 tdep->bytes_per_address =
3055 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3056 else
3057 tdep->bytes_per_address = 4;
3058
3059 tdep->find_global_pointer = hppa_find_global_pointer;
3060
3061 /* Some parts of the gdbarch vector depend on whether we are running
3062 on a 32 bits or 64 bits target. */
3063 switch (tdep->bytes_per_address)
3064 {
3065 case 4:
3066 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3067 set_gdbarch_register_name (gdbarch, hppa32_register_name);
3068 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3069 set_gdbarch_cannot_store_register (gdbarch,
3070 hppa32_cannot_store_register);
3071 set_gdbarch_cannot_fetch_register (gdbarch,
3072 hppa32_cannot_store_register);
3073 break;
3074 case 8:
3075 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3076 set_gdbarch_register_name (gdbarch, hppa64_register_name);
3077 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3078 set_gdbarch_dwarf_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3079 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3080 set_gdbarch_cannot_store_register (gdbarch,
3081 hppa64_cannot_store_register);
3082 set_gdbarch_cannot_fetch_register (gdbarch,
3083 hppa64_cannot_store_register);
3084 break;
3085 default:
3086 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3087 tdep->bytes_per_address);
3088 }
3089
3090 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3091 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3092
3093 /* The following gdbarch vector elements are the same in both ILP32
3094 and LP64, but might show differences some day. */
3095 set_gdbarch_long_long_bit (gdbarch, 64);
3096 set_gdbarch_long_double_bit (gdbarch, 128);
3097 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3098
3099 /* The following gdbarch vector elements do not depend on the address
3100 size, or in any other gdbarch element previously set. */
3101 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3102 set_gdbarch_in_function_epilogue_p (gdbarch,
3103 hppa_in_function_epilogue_p);
3104 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3105 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3106 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3107 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
3108 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
3109 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3110 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3111 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3112
3113 /* Helper for function argument information. */
3114 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3115
3116 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3117
3118 /* When a hardware watchpoint triggers, we'll move the inferior past
3119 it by removing all eventpoints; stepping past the instruction
3120 that caused the trigger; reinserting eventpoints; and checking
3121 whether any watched location changed. */
3122 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3123
3124 /* Inferior function call methods. */
3125 switch (tdep->bytes_per_address)
3126 {
3127 case 4:
3128 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3129 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3130 set_gdbarch_convert_from_func_ptr_addr
3131 (gdbarch, hppa32_convert_from_func_ptr_addr);
3132 break;
3133 case 8:
3134 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3135 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3136 break;
3137 default:
3138 internal_error (__FILE__, __LINE__, _("bad switch"));
3139 }
3140
3141 /* Struct return methods. */
3142 switch (tdep->bytes_per_address)
3143 {
3144 case 4:
3145 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3146 break;
3147 case 8:
3148 set_gdbarch_return_value (gdbarch, hppa64_return_value);
3149 break;
3150 default:
3151 internal_error (__FILE__, __LINE__, _("bad switch"));
3152 }
3153
3154 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
3155 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3156
3157 /* Frame unwind methods. */
3158 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
3159 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3160
3161 /* Hook in ABI-specific overrides, if they have been registered. */
3162 gdbarch_init_osabi (info, gdbarch);
3163
3164 /* Hook in the default unwinders. */
3165 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
3166 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
3167 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
3168
3169 return gdbarch;
3170 }
3171
3172 static void
3173 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3174 {
3175 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3176
3177 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3178 tdep->bytes_per_address);
3179 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3180 }
3181
3182 void
3183 _initialize_hppa_tdep (void)
3184 {
3185 struct cmd_list_element *c;
3186
3187 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3188
3189 hppa_objfile_priv_data = register_objfile_data ();
3190
3191 add_cmd ("unwind", class_maintenance, unwind_command,
3192 _("Print unwind table entry at given address."),
3193 &maintenanceprintlist);
3194
3195 /* Debug this files internals. */
3196 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3197 Set whether hppa target specific debugging information should be displayed."),
3198 _("\
3199 Show whether hppa target specific debugging information is displayed."), _("\
3200 This flag controls whether hppa target specific debugging information is\n\
3201 displayed. This information is particularly useful for debugging frame\n\
3202 unwinding problems."),
3203 NULL,
3204 NULL, /* FIXME: i18n: hppa debug flag is %s. */
3205 &setdebuglist, &showdebuglist);
3206 }