]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/hppa-tdep.c
* ch-exp.c (parse_named_record_element): Avoid aggregrate
[thirdparty/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <signal.h>
38
39 #ifdef COFF_ENCAPSULATE
40 #include "a.out.encap.h"
41 #else
42 #endif
43 #ifndef N_SET_MAGIC
44 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
45 #endif
46
47 /*#include <sys/user.h> After a.out.h */
48 #include <sys/file.h>
49 #include "gdb_stat.h"
50 #include "wait.h"
51
52 #include "gdbcore.h"
53 #include "gdbcmd.h"
54 #include "target.h"
55 #include "symfile.h"
56 #include "objfiles.h"
57
58 static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
59
60 static int hppa_alignof PARAMS ((struct type *));
61
62 CORE_ADDR frame_saved_pc PARAMS ((struct frame_info *));
63
64 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
65
66 static int is_branch PARAMS ((unsigned long));
67
68 static int inst_saves_gr PARAMS ((unsigned long));
69
70 static int inst_saves_fr PARAMS ((unsigned long));
71
72 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
73
74 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
75
76 static int compare_unwind_entries PARAMS ((const struct unwind_table_entry *,
77 const struct unwind_table_entry *));
78
79 static void read_unwind_info PARAMS ((struct objfile *));
80
81 static void internalize_unwinds PARAMS ((struct objfile *,
82 struct unwind_table_entry *,
83 asection *, unsigned int,
84 unsigned int, CORE_ADDR));
85 static void pa_print_registers PARAMS ((char *, int, int));
86 static void pa_print_fp_reg PARAMS ((int));
87
88 \f
89 /* Routines to extract various sized constants out of hppa
90 instructions. */
91
92 /* This assumes that no garbage lies outside of the lower bits of
93 value. */
94
95 int
96 sign_extend (val, bits)
97 unsigned val, bits;
98 {
99 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
100 }
101
102 /* For many immediate values the sign bit is the low bit! */
103
104 int
105 low_sign_extend (val, bits)
106 unsigned val, bits;
107 {
108 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
109 }
110 /* extract the immediate field from a ld{bhw}s instruction */
111
112 unsigned
113 get_field (val, from, to)
114 unsigned val, from, to;
115 {
116 val = val >> 31 - to;
117 return val & ((1 << 32 - from) - 1);
118 }
119
120 unsigned
121 set_field (val, from, to, new_val)
122 unsigned *val, from, to;
123 {
124 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
125 return *val = *val & mask | (new_val << (31 - from));
126 }
127
128 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
129
130 extract_3 (word)
131 unsigned word;
132 {
133 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
134 }
135
136 extract_5_load (word)
137 unsigned word;
138 {
139 return low_sign_extend (word >> 16 & MASK_5, 5);
140 }
141
142 /* extract the immediate field from a st{bhw}s instruction */
143
144 int
145 extract_5_store (word)
146 unsigned word;
147 {
148 return low_sign_extend (word & MASK_5, 5);
149 }
150
151 /* extract the immediate field from a break instruction */
152
153 unsigned
154 extract_5r_store (word)
155 unsigned word;
156 {
157 return (word & MASK_5);
158 }
159
160 /* extract the immediate field from a {sr}sm instruction */
161
162 unsigned
163 extract_5R_store (word)
164 unsigned word;
165 {
166 return (word >> 16 & MASK_5);
167 }
168
169 /* extract an 11 bit immediate field */
170
171 int
172 extract_11 (word)
173 unsigned word;
174 {
175 return low_sign_extend (word & MASK_11, 11);
176 }
177
178 /* extract a 14 bit immediate field */
179
180 int
181 extract_14 (word)
182 unsigned word;
183 {
184 return low_sign_extend (word & MASK_14, 14);
185 }
186
187 /* deposit a 14 bit constant in a word */
188
189 unsigned
190 deposit_14 (opnd, word)
191 int opnd;
192 unsigned word;
193 {
194 unsigned sign = (opnd < 0 ? 1 : 0);
195
196 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
197 }
198
199 /* extract a 21 bit constant */
200
201 int
202 extract_21 (word)
203 unsigned word;
204 {
205 int val;
206
207 word &= MASK_21;
208 word <<= 11;
209 val = GET_FIELD (word, 20, 20);
210 val <<= 11;
211 val |= GET_FIELD (word, 9, 19);
212 val <<= 2;
213 val |= GET_FIELD (word, 5, 6);
214 val <<= 5;
215 val |= GET_FIELD (word, 0, 4);
216 val <<= 2;
217 val |= GET_FIELD (word, 7, 8);
218 return sign_extend (val, 21) << 11;
219 }
220
221 /* deposit a 21 bit constant in a word. Although 21 bit constants are
222 usually the top 21 bits of a 32 bit constant, we assume that only
223 the low 21 bits of opnd are relevant */
224
225 unsigned
226 deposit_21 (opnd, word)
227 unsigned opnd, word;
228 {
229 unsigned val = 0;
230
231 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
232 val <<= 2;
233 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
234 val <<= 2;
235 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
236 val <<= 11;
237 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
238 val <<= 1;
239 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
240 return word | val;
241 }
242
243 /* extract a 12 bit constant from branch instructions */
244
245 int
246 extract_12 (word)
247 unsigned word;
248 {
249 return sign_extend (GET_FIELD (word, 19, 28) |
250 GET_FIELD (word, 29, 29) << 10 |
251 (word & 0x1) << 11, 12) << 2;
252 }
253
254 /* Deposit a 17 bit constant in an instruction (like bl). */
255
256 unsigned int
257 deposit_17 (opnd, word)
258 unsigned opnd, word;
259 {
260 word |= GET_FIELD (opnd, 15 + 0, 15 + 0); /* w */
261 word |= GET_FIELD (opnd, 15 + 1, 15 + 5) << 16; /* w1 */
262 word |= GET_FIELD (opnd, 15 + 6, 15 + 6) << 2; /* w2[10] */
263 word |= GET_FIELD (opnd, 15 + 7, 15 + 16) << 3; /* w2[0..9] */
264
265 return word;
266 }
267
268 /* extract a 17 bit constant from branch instructions, returning the
269 19 bit signed value. */
270
271 int
272 extract_17 (word)
273 unsigned word;
274 {
275 return sign_extend (GET_FIELD (word, 19, 28) |
276 GET_FIELD (word, 29, 29) << 10 |
277 GET_FIELD (word, 11, 15) << 11 |
278 (word & 0x1) << 16, 17) << 2;
279 }
280 \f
281
282 /* Compare the start address for two unwind entries returning 1 if
283 the first address is larger than the second, -1 if the second is
284 larger than the first, and zero if they are equal. */
285
286 static int
287 compare_unwind_entries (a, b)
288 const struct unwind_table_entry *a;
289 const struct unwind_table_entry *b;
290 {
291 if (a->region_start > b->region_start)
292 return 1;
293 else if (a->region_start < b->region_start)
294 return -1;
295 else
296 return 0;
297 }
298
299 static void
300 internalize_unwinds (objfile, table, section, entries, size, text_offset)
301 struct objfile *objfile;
302 struct unwind_table_entry *table;
303 asection *section;
304 unsigned int entries, size;
305 CORE_ADDR text_offset;
306 {
307 /* We will read the unwind entries into temporary memory, then
308 fill in the actual unwind table. */
309 if (size > 0)
310 {
311 unsigned long tmp;
312 unsigned i;
313 char *buf = alloca (size);
314
315 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
316
317 /* Now internalize the information being careful to handle host/target
318 endian issues. */
319 for (i = 0; i < entries; i++)
320 {
321 table[i].region_start = bfd_get_32 (objfile->obfd,
322 (bfd_byte *)buf);
323 table[i].region_start += text_offset;
324 buf += 4;
325 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
326 table[i].region_end += text_offset;
327 buf += 4;
328 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
329 buf += 4;
330 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
331 table[i].Millicode = (tmp >> 30) & 0x1;
332 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
333 table[i].Region_description = (tmp >> 27) & 0x3;
334 table[i].reserved1 = (tmp >> 26) & 0x1;
335 table[i].Entry_SR = (tmp >> 25) & 0x1;
336 table[i].Entry_FR = (tmp >> 21) & 0xf;
337 table[i].Entry_GR = (tmp >> 16) & 0x1f;
338 table[i].Args_stored = (tmp >> 15) & 0x1;
339 table[i].Variable_Frame = (tmp >> 14) & 0x1;
340 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
341 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
342 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
343 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
344 table[i].Ada_Region = (tmp >> 9) & 0x1;
345 table[i].reserved2 = (tmp >> 5) & 0xf;
346 table[i].Save_SP = (tmp >> 4) & 0x1;
347 table[i].Save_RP = (tmp >> 3) & 0x1;
348 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
349 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
350 table[i].Cleanup_defined = tmp & 0x1;
351 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
352 buf += 4;
353 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
354 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
355 table[i].Large_frame = (tmp >> 29) & 0x1;
356 table[i].reserved4 = (tmp >> 27) & 0x3;
357 table[i].Total_frame_size = tmp & 0x7ffffff;
358 }
359 }
360 }
361
362 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
363 the object file. This info is used mainly by find_unwind_entry() to find
364 out the stack frame size and frame pointer used by procedures. We put
365 everything on the psymbol obstack in the objfile so that it automatically
366 gets freed when the objfile is destroyed. */
367
368 static void
369 read_unwind_info (objfile)
370 struct objfile *objfile;
371 {
372 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
373 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
374 unsigned index, unwind_entries, elf_unwind_entries;
375 unsigned stub_entries, total_entries;
376 CORE_ADDR text_offset;
377 struct obj_unwind_info *ui;
378
379 text_offset = ANOFFSET (objfile->section_offsets, 0);
380 ui = (struct obj_unwind_info *)obstack_alloc (&objfile->psymbol_obstack,
381 sizeof (struct obj_unwind_info));
382
383 ui->table = NULL;
384 ui->cache = NULL;
385 ui->last = -1;
386
387 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
388 section in ELF at the moment. */
389 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
390 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
391 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
392
393 /* Get sizes and unwind counts for all sections. */
394 if (unwind_sec)
395 {
396 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
397 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
398 }
399 else
400 {
401 unwind_size = 0;
402 unwind_entries = 0;
403 }
404
405 if (elf_unwind_sec)
406 {
407 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
408 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
409 }
410 else
411 {
412 elf_unwind_size = 0;
413 elf_unwind_entries = 0;
414 }
415
416 if (stub_unwind_sec)
417 {
418 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
419 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
420 }
421 else
422 {
423 stub_unwind_size = 0;
424 stub_entries = 0;
425 }
426
427 /* Compute total number of unwind entries and their total size. */
428 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
429 total_size = total_entries * sizeof (struct unwind_table_entry);
430
431 /* Allocate memory for the unwind table. */
432 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
433 ui->last = total_entries - 1;
434
435 /* Internalize the standard unwind entries. */
436 index = 0;
437 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
438 unwind_entries, unwind_size, text_offset);
439 index += unwind_entries;
440 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
441 elf_unwind_entries, elf_unwind_size, text_offset);
442 index += elf_unwind_entries;
443
444 /* Now internalize the stub unwind entries. */
445 if (stub_unwind_size > 0)
446 {
447 unsigned int i;
448 char *buf = alloca (stub_unwind_size);
449
450 /* Read in the stub unwind entries. */
451 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
452 0, stub_unwind_size);
453
454 /* Now convert them into regular unwind entries. */
455 for (i = 0; i < stub_entries; i++, index++)
456 {
457 /* Clear out the next unwind entry. */
458 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
459
460 /* Convert offset & size into region_start and region_end.
461 Stuff away the stub type into "reserved" fields. */
462 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
463 (bfd_byte *) buf);
464 ui->table[index].region_start += text_offset;
465 buf += 4;
466 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
467 (bfd_byte *) buf);
468 buf += 2;
469 ui->table[index].region_end
470 = ui->table[index].region_start + 4 *
471 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
472 buf += 2;
473 }
474
475 }
476
477 /* Unwind table needs to be kept sorted. */
478 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
479 compare_unwind_entries);
480
481 /* Keep a pointer to the unwind information. */
482 objfile->obj_private = (PTR) ui;
483 }
484
485 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
486 of the objfiles seeking the unwind table entry for this PC. Each objfile
487 contains a sorted list of struct unwind_table_entry. Since we do a binary
488 search of the unwind tables, we depend upon them to be sorted. */
489
490 static struct unwind_table_entry *
491 find_unwind_entry(pc)
492 CORE_ADDR pc;
493 {
494 int first, middle, last;
495 struct objfile *objfile;
496
497 ALL_OBJFILES (objfile)
498 {
499 struct obj_unwind_info *ui;
500
501 ui = OBJ_UNWIND_INFO (objfile);
502
503 if (!ui)
504 {
505 read_unwind_info (objfile);
506 ui = OBJ_UNWIND_INFO (objfile);
507 }
508
509 /* First, check the cache */
510
511 if (ui->cache
512 && pc >= ui->cache->region_start
513 && pc <= ui->cache->region_end)
514 return ui->cache;
515
516 /* Not in the cache, do a binary search */
517
518 first = 0;
519 last = ui->last;
520
521 while (first <= last)
522 {
523 middle = (first + last) / 2;
524 if (pc >= ui->table[middle].region_start
525 && pc <= ui->table[middle].region_end)
526 {
527 ui->cache = &ui->table[middle];
528 return &ui->table[middle];
529 }
530
531 if (pc < ui->table[middle].region_start)
532 last = middle - 1;
533 else
534 first = middle + 1;
535 }
536 } /* ALL_OBJFILES() */
537 return NULL;
538 }
539
540 /* Return the adjustment necessary to make for addresses on the stack
541 as presented by hpread.c.
542
543 This is necessary because of the stack direction on the PA and the
544 bizarre way in which someone (?) decided they wanted to handle
545 frame pointerless code in GDB. */
546 int
547 hpread_adjust_stack_address (func_addr)
548 CORE_ADDR func_addr;
549 {
550 struct unwind_table_entry *u;
551
552 u = find_unwind_entry (func_addr);
553 if (!u)
554 return 0;
555 else
556 return u->Total_frame_size << 3;
557 }
558
559 /* Called to determine if PC is in an interrupt handler of some
560 kind. */
561
562 static int
563 pc_in_interrupt_handler (pc)
564 CORE_ADDR pc;
565 {
566 struct unwind_table_entry *u;
567 struct minimal_symbol *msym_us;
568
569 u = find_unwind_entry (pc);
570 if (!u)
571 return 0;
572
573 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
574 its frame isn't a pure interrupt frame. Deal with this. */
575 msym_us = lookup_minimal_symbol_by_pc (pc);
576
577 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
578 }
579
580 /* Called when no unwind descriptor was found for PC. Returns 1 if it
581 appears that PC is in a linker stub. */
582
583 static int
584 pc_in_linker_stub (pc)
585 CORE_ADDR pc;
586 {
587 int found_magic_instruction = 0;
588 int i;
589 char buf[4];
590
591 /* If unable to read memory, assume pc is not in a linker stub. */
592 if (target_read_memory (pc, buf, 4) != 0)
593 return 0;
594
595 /* We are looking for something like
596
597 ; $$dyncall jams RP into this special spot in the frame (RP')
598 ; before calling the "call stub"
599 ldw -18(sp),rp
600
601 ldsid (rp),r1 ; Get space associated with RP into r1
602 mtsp r1,sp ; Move it into space register 0
603 be,n 0(sr0),rp) ; back to your regularly scheduled program
604 */
605
606 /* Maximum known linker stub size is 4 instructions. Search forward
607 from the given PC, then backward. */
608 for (i = 0; i < 4; i++)
609 {
610 /* If we hit something with an unwind, stop searching this direction. */
611
612 if (find_unwind_entry (pc + i * 4) != 0)
613 break;
614
615 /* Check for ldsid (rp),r1 which is the magic instruction for a
616 return from a cross-space function call. */
617 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
618 {
619 found_magic_instruction = 1;
620 break;
621 }
622 /* Add code to handle long call/branch and argument relocation stubs
623 here. */
624 }
625
626 if (found_magic_instruction != 0)
627 return 1;
628
629 /* Now look backward. */
630 for (i = 0; i < 4; i++)
631 {
632 /* If we hit something with an unwind, stop searching this direction. */
633
634 if (find_unwind_entry (pc - i * 4) != 0)
635 break;
636
637 /* Check for ldsid (rp),r1 which is the magic instruction for a
638 return from a cross-space function call. */
639 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
640 {
641 found_magic_instruction = 1;
642 break;
643 }
644 /* Add code to handle long call/branch and argument relocation stubs
645 here. */
646 }
647 return found_magic_instruction;
648 }
649
650 static int
651 find_return_regnum(pc)
652 CORE_ADDR pc;
653 {
654 struct unwind_table_entry *u;
655
656 u = find_unwind_entry (pc);
657
658 if (!u)
659 return RP_REGNUM;
660
661 if (u->Millicode)
662 return 31;
663
664 return RP_REGNUM;
665 }
666
667 /* Return size of frame, or -1 if we should use a frame pointer. */
668 int
669 find_proc_framesize (pc)
670 CORE_ADDR pc;
671 {
672 struct unwind_table_entry *u;
673 struct minimal_symbol *msym_us;
674
675 u = find_unwind_entry (pc);
676
677 if (!u)
678 {
679 if (pc_in_linker_stub (pc))
680 /* Linker stubs have a zero size frame. */
681 return 0;
682 else
683 return -1;
684 }
685
686 msym_us = lookup_minimal_symbol_by_pc (pc);
687
688 /* If Save_SP is set, and we're not in an interrupt or signal caller,
689 then we have a frame pointer. Use it. */
690 if (u->Save_SP && !pc_in_interrupt_handler (pc)
691 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
692 return -1;
693
694 return u->Total_frame_size << 3;
695 }
696
697 /* Return offset from sp at which rp is saved, or 0 if not saved. */
698 static int rp_saved PARAMS ((CORE_ADDR));
699
700 static int
701 rp_saved (pc)
702 CORE_ADDR pc;
703 {
704 struct unwind_table_entry *u;
705
706 u = find_unwind_entry (pc);
707
708 if (!u)
709 {
710 if (pc_in_linker_stub (pc))
711 /* This is the so-called RP'. */
712 return -24;
713 else
714 return 0;
715 }
716
717 if (u->Save_RP)
718 return -20;
719 else if (u->stub_type != 0)
720 {
721 switch (u->stub_type)
722 {
723 case EXPORT:
724 case IMPORT:
725 return -24;
726 case PARAMETER_RELOCATION:
727 return -8;
728 default:
729 return 0;
730 }
731 }
732 else
733 return 0;
734 }
735 \f
736 int
737 frameless_function_invocation (frame)
738 struct frame_info *frame;
739 {
740 struct unwind_table_entry *u;
741
742 u = find_unwind_entry (frame->pc);
743
744 if (u == 0)
745 return 0;
746
747 return (u->Total_frame_size == 0 && u->stub_type == 0);
748 }
749
750 CORE_ADDR
751 saved_pc_after_call (frame)
752 struct frame_info *frame;
753 {
754 int ret_regnum;
755 CORE_ADDR pc;
756 struct unwind_table_entry *u;
757
758 ret_regnum = find_return_regnum (get_frame_pc (frame));
759 pc = read_register (ret_regnum) & ~0x3;
760
761 /* If PC is in a linker stub, then we need to dig the address
762 the stub will return to out of the stack. */
763 u = find_unwind_entry (pc);
764 if (u && u->stub_type != 0)
765 return frame_saved_pc (frame);
766 else
767 return pc;
768 }
769 \f
770 CORE_ADDR
771 frame_saved_pc (frame)
772 struct frame_info *frame;
773 {
774 CORE_ADDR pc = get_frame_pc (frame);
775 struct unwind_table_entry *u;
776
777 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
778 at the base of the frame in an interrupt handler. Registers within
779 are saved in the exact same order as GDB numbers registers. How
780 convienent. */
781 if (pc_in_interrupt_handler (pc))
782 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
783
784 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
785 /* Deal with signal handler caller frames too. */
786 if (frame->signal_handler_caller)
787 {
788 CORE_ADDR rp;
789 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
790 return rp & ~0x3;
791 }
792 #endif
793
794 if (frameless_function_invocation (frame))
795 {
796 int ret_regnum;
797
798 ret_regnum = find_return_regnum (pc);
799
800 /* If the next frame is an interrupt frame or a signal
801 handler caller, then we need to look in the saved
802 register area to get the return pointer (the values
803 in the registers may not correspond to anything useful). */
804 if (frame->next
805 && (frame->next->signal_handler_caller
806 || pc_in_interrupt_handler (frame->next->pc)))
807 {
808 struct frame_saved_regs saved_regs;
809
810 get_frame_saved_regs (frame->next, &saved_regs);
811 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
812 {
813 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
814
815 /* Syscalls are really two frames. The syscall stub itself
816 with a return pointer in %rp and the kernel call with
817 a return pointer in %r31. We return the %rp variant
818 if %r31 is the same as frame->pc. */
819 if (pc == frame->pc)
820 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
821 }
822 else
823 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
824 }
825 else
826 pc = read_register (ret_regnum) & ~0x3;
827 }
828 else
829 {
830 int rp_offset;
831
832 restart:
833 rp_offset = rp_saved (pc);
834 /* Similar to code in frameless function case. If the next
835 frame is a signal or interrupt handler, then dig the right
836 information out of the saved register info. */
837 if (rp_offset == 0
838 && frame->next
839 && (frame->next->signal_handler_caller
840 || pc_in_interrupt_handler (frame->next->pc)))
841 {
842 struct frame_saved_regs saved_regs;
843
844 get_frame_saved_regs (frame->next, &saved_regs);
845 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
846 {
847 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
848
849 /* Syscalls are really two frames. The syscall stub itself
850 with a return pointer in %rp and the kernel call with
851 a return pointer in %r31. We return the %rp variant
852 if %r31 is the same as frame->pc. */
853 if (pc == frame->pc)
854 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
855 }
856 else
857 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
858 }
859 else if (rp_offset == 0)
860 pc = read_register (RP_REGNUM) & ~0x3;
861 else
862 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
863 }
864
865 /* If PC is inside a linker stub, then dig out the address the stub
866 will return to.
867
868 Don't do this for long branch stubs. Why? For some unknown reason
869 _start is marked as a long branch stub in hpux10. */
870 u = find_unwind_entry (pc);
871 if (u && u->stub_type != 0
872 && u->stub_type != LONG_BRANCH)
873 {
874 unsigned int insn;
875
876 /* If this is a dynamic executable, and we're in a signal handler,
877 then the call chain will eventually point us into the stub for
878 _sigreturn. Unlike most cases, we'll be pointed to the branch
879 to the real sigreturn rather than the code after the real branch!.
880
881 Else, try to dig the address the stub will return to in the normal
882 fashion. */
883 insn = read_memory_integer (pc, 4);
884 if ((insn & 0xfc00e000) == 0xe8000000)
885 return (pc + extract_17 (insn) + 8) & ~0x3;
886 else
887 goto restart;
888 }
889
890 return pc;
891 }
892 \f
893 /* We need to correct the PC and the FP for the outermost frame when we are
894 in a system call. */
895
896 void
897 init_extra_frame_info (fromleaf, frame)
898 int fromleaf;
899 struct frame_info *frame;
900 {
901 int flags;
902 int framesize;
903
904 if (frame->next && !fromleaf)
905 return;
906
907 /* If the next frame represents a frameless function invocation
908 then we have to do some adjustments that are normally done by
909 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
910 if (fromleaf)
911 {
912 /* Find the framesize of *this* frame without peeking at the PC
913 in the current frame structure (it isn't set yet). */
914 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
915
916 /* Now adjust our base frame accordingly. If we have a frame pointer
917 use it, else subtract the size of this frame from the current
918 frame. (we always want frame->frame to point at the lowest address
919 in the frame). */
920 if (framesize == -1)
921 frame->frame = read_register (FP_REGNUM);
922 else
923 frame->frame -= framesize;
924 return;
925 }
926
927 flags = read_register (FLAGS_REGNUM);
928 if (flags & 2) /* In system call? */
929 frame->pc = read_register (31) & ~0x3;
930
931 /* The outermost frame is always derived from PC-framesize
932
933 One might think frameless innermost frames should have
934 a frame->frame that is the same as the parent's frame->frame.
935 That is wrong; frame->frame in that case should be the *high*
936 address of the parent's frame. It's complicated as hell to
937 explain, but the parent *always* creates some stack space for
938 the child. So the child actually does have a frame of some
939 sorts, and its base is the high address in its parent's frame. */
940 framesize = find_proc_framesize(frame->pc);
941 if (framesize == -1)
942 frame->frame = read_register (FP_REGNUM);
943 else
944 frame->frame = read_register (SP_REGNUM) - framesize;
945 }
946 \f
947 /* Given a GDB frame, determine the address of the calling function's frame.
948 This will be used to create a new GDB frame struct, and then
949 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
950
951 This may involve searching through prologues for several functions
952 at boundaries where GCC calls HP C code, or where code which has
953 a frame pointer calls code without a frame pointer. */
954
955 CORE_ADDR
956 frame_chain (frame)
957 struct frame_info *frame;
958 {
959 int my_framesize, caller_framesize;
960 struct unwind_table_entry *u;
961 CORE_ADDR frame_base;
962 struct frame_info *tmp_frame;
963
964 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
965 are easy; at *sp we have a full save state strucutre which we can
966 pull the old stack pointer from. Also see frame_saved_pc for
967 code to dig a saved PC out of the save state structure. */
968 if (pc_in_interrupt_handler (frame->pc))
969 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
970 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
971 else if (frame->signal_handler_caller)
972 {
973 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
974 }
975 #endif
976 else
977 frame_base = frame->frame;
978
979 /* Get frame sizes for the current frame and the frame of the
980 caller. */
981 my_framesize = find_proc_framesize (frame->pc);
982 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
983
984 /* If caller does not have a frame pointer, then its frame
985 can be found at current_frame - caller_framesize. */
986 if (caller_framesize != -1)
987 return frame_base - caller_framesize;
988
989 /* Both caller and callee have frame pointers and are GCC compiled
990 (SAVE_SP bit in unwind descriptor is on for both functions.
991 The previous frame pointer is found at the top of the current frame. */
992 if (caller_framesize == -1 && my_framesize == -1)
993 return read_memory_integer (frame_base, 4);
994
995 /* Caller has a frame pointer, but callee does not. This is a little
996 more difficult as GCC and HP C lay out locals and callee register save
997 areas very differently.
998
999 The previous frame pointer could be in a register, or in one of
1000 several areas on the stack.
1001
1002 Walk from the current frame to the innermost frame examining
1003 unwind descriptors to determine if %r3 ever gets saved into the
1004 stack. If so return whatever value got saved into the stack.
1005 If it was never saved in the stack, then the value in %r3 is still
1006 valid, so use it.
1007
1008 We use information from unwind descriptors to determine if %r3
1009 is saved into the stack (Entry_GR field has this information). */
1010
1011 tmp_frame = frame;
1012 while (tmp_frame)
1013 {
1014 u = find_unwind_entry (tmp_frame->pc);
1015
1016 if (!u)
1017 {
1018 /* We could find this information by examining prologues. I don't
1019 think anyone has actually written any tools (not even "strip")
1020 which leave them out of an executable, so maybe this is a moot
1021 point. */
1022 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1023 return 0;
1024 }
1025
1026 /* Entry_GR specifies the number of callee-saved general registers
1027 saved in the stack. It starts at %r3, so %r3 would be 1. */
1028 if (u->Entry_GR >= 1 || u->Save_SP
1029 || tmp_frame->signal_handler_caller
1030 || pc_in_interrupt_handler (tmp_frame->pc))
1031 break;
1032 else
1033 tmp_frame = tmp_frame->next;
1034 }
1035
1036 if (tmp_frame)
1037 {
1038 /* We may have walked down the chain into a function with a frame
1039 pointer. */
1040 if (u->Save_SP
1041 && !tmp_frame->signal_handler_caller
1042 && !pc_in_interrupt_handler (tmp_frame->pc))
1043 return read_memory_integer (tmp_frame->frame, 4);
1044 /* %r3 was saved somewhere in the stack. Dig it out. */
1045 else
1046 {
1047 struct frame_saved_regs saved_regs;
1048
1049 /* Sick.
1050
1051 For optimization purposes many kernels don't have the
1052 callee saved registers into the save_state structure upon
1053 entry into the kernel for a syscall; the optimization
1054 is usually turned off if the process is being traced so
1055 that the debugger can get full register state for the
1056 process.
1057
1058 This scheme works well except for two cases:
1059
1060 * Attaching to a process when the process is in the
1061 kernel performing a system call (debugger can't get
1062 full register state for the inferior process since
1063 the process wasn't being traced when it entered the
1064 system call).
1065
1066 * Register state is not complete if the system call
1067 causes the process to core dump.
1068
1069
1070 The following heinous code is an attempt to deal with
1071 the lack of register state in a core dump. It will
1072 fail miserably if the function which performs the
1073 system call has a variable sized stack frame. */
1074
1075 get_frame_saved_regs (tmp_frame, &saved_regs);
1076
1077 /* Abominable hack. */
1078 if (current_target.to_has_execution == 0
1079 && ((saved_regs.regs[FLAGS_REGNUM]
1080 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
1081 & 0x2))
1082 || (saved_regs.regs[FLAGS_REGNUM] == 0
1083 && read_register (FLAGS_REGNUM) & 0x2)))
1084 {
1085 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1086 if (!u)
1087 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1088 else
1089 return frame_base - (u->Total_frame_size << 3);
1090 }
1091
1092 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1093 }
1094 }
1095 else
1096 {
1097 struct frame_saved_regs saved_regs;
1098
1099 /* Get the innermost frame. */
1100 tmp_frame = frame;
1101 while (tmp_frame->next != NULL)
1102 tmp_frame = tmp_frame->next;
1103
1104 get_frame_saved_regs (tmp_frame, &saved_regs);
1105 /* Abominable hack. See above. */
1106 if (current_target.to_has_execution == 0
1107 && ((saved_regs.regs[FLAGS_REGNUM]
1108 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
1109 & 0x2))
1110 || (saved_regs.regs[FLAGS_REGNUM] == 0
1111 && read_register (FLAGS_REGNUM) & 0x2)))
1112 {
1113 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1114 if (!u)
1115 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1116 else
1117 return frame_base - (u->Total_frame_size << 3);
1118 }
1119
1120 /* The value in %r3 was never saved into the stack (thus %r3 still
1121 holds the value of the previous frame pointer). */
1122 return read_register (FP_REGNUM);
1123 }
1124 }
1125
1126 \f
1127 /* To see if a frame chain is valid, see if the caller looks like it
1128 was compiled with gcc. */
1129
1130 int
1131 frame_chain_valid (chain, thisframe)
1132 CORE_ADDR chain;
1133 struct frame_info *thisframe;
1134 {
1135 struct minimal_symbol *msym_us;
1136 struct minimal_symbol *msym_start;
1137 struct unwind_table_entry *u, *next_u = NULL;
1138 struct frame_info *next;
1139
1140 if (!chain)
1141 return 0;
1142
1143 u = find_unwind_entry (thisframe->pc);
1144
1145 if (u == NULL)
1146 return 1;
1147
1148 /* We can't just check that the same of msym_us is "_start", because
1149 someone idiotically decided that they were going to make a Ltext_end
1150 symbol with the same address. This Ltext_end symbol is totally
1151 indistinguishable (as nearly as I can tell) from the symbol for a function
1152 which is (legitimately, since it is in the user's namespace)
1153 named Ltext_end, so we can't just ignore it. */
1154 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1155 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1156 if (msym_us
1157 && msym_start
1158 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1159 return 0;
1160
1161 /* Grrrr. Some new idiot decided that they don't want _start for the
1162 PRO configurations; $START$ calls main directly.... Deal with it. */
1163 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1164 if (msym_us
1165 && msym_start
1166 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1167 return 0;
1168
1169 next = get_next_frame (thisframe);
1170 if (next)
1171 next_u = find_unwind_entry (next->pc);
1172
1173 /* If this frame does not save SP, has no stack, isn't a stub,
1174 and doesn't "call" an interrupt routine or signal handler caller,
1175 then its not valid. */
1176 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1177 || (thisframe->next && thisframe->next->signal_handler_caller)
1178 || (next_u && next_u->HP_UX_interrupt_marker))
1179 return 1;
1180
1181 if (pc_in_linker_stub (thisframe->pc))
1182 return 1;
1183
1184 return 0;
1185 }
1186
1187 /*
1188 * These functions deal with saving and restoring register state
1189 * around a function call in the inferior. They keep the stack
1190 * double-word aligned; eventually, on an hp700, the stack will have
1191 * to be aligned to a 64-byte boundary.
1192 */
1193
1194 void
1195 push_dummy_frame (inf_status)
1196 struct inferior_status *inf_status;
1197 {
1198 CORE_ADDR sp, pc, pcspace;
1199 register int regnum;
1200 int int_buffer;
1201 double freg_buffer;
1202
1203 /* Oh, what a hack. If we're trying to perform an inferior call
1204 while the inferior is asleep, we have to make sure to clear
1205 the "in system call" bit in the flag register (the call will
1206 start after the syscall returns, so we're no longer in the system
1207 call!) This state is kept in "inf_status", change it there.
1208
1209 We also need a number of horrid hacks to deal with lossage in the
1210 PC queue registers (apparently they're not valid when the in syscall
1211 bit is set). */
1212 pc = target_read_pc (inferior_pid);
1213 int_buffer = read_register (FLAGS_REGNUM);
1214 if (int_buffer & 0x2)
1215 {
1216 unsigned int sid;
1217 int_buffer &= ~0x2;
1218 memcpy (inf_status->registers, &int_buffer, 4);
1219 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4);
1220 pc += 4;
1221 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4);
1222 pc -= 4;
1223 sid = (pc >> 30) & 0x3;
1224 if (sid == 0)
1225 pcspace = read_register (SR4_REGNUM);
1226 else
1227 pcspace = read_register (SR4_REGNUM + 4 + sid);
1228 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM),
1229 &pcspace, 4);
1230 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM),
1231 &pcspace, 4);
1232 }
1233 else
1234 pcspace = read_register (PCSQ_HEAD_REGNUM);
1235
1236 /* Space for "arguments"; the RP goes in here. */
1237 sp = read_register (SP_REGNUM) + 48;
1238 int_buffer = read_register (RP_REGNUM) | 0x3;
1239 write_memory (sp - 20, (char *)&int_buffer, 4);
1240
1241 int_buffer = read_register (FP_REGNUM);
1242 write_memory (sp, (char *)&int_buffer, 4);
1243
1244 write_register (FP_REGNUM, sp);
1245
1246 sp += 8;
1247
1248 for (regnum = 1; regnum < 32; regnum++)
1249 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1250 sp = push_word (sp, read_register (regnum));
1251
1252 sp += 4;
1253
1254 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1255 {
1256 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1257 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1258 }
1259 sp = push_word (sp, read_register (IPSW_REGNUM));
1260 sp = push_word (sp, read_register (SAR_REGNUM));
1261 sp = push_word (sp, pc);
1262 sp = push_word (sp, pcspace);
1263 sp = push_word (sp, pc + 4);
1264 sp = push_word (sp, pcspace);
1265 write_register (SP_REGNUM, sp);
1266 }
1267
1268 void
1269 find_dummy_frame_regs (frame, frame_saved_regs)
1270 struct frame_info *frame;
1271 struct frame_saved_regs *frame_saved_regs;
1272 {
1273 CORE_ADDR fp = frame->frame;
1274 int i;
1275
1276 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
1277 frame_saved_regs->regs[FP_REGNUM] = fp;
1278 frame_saved_regs->regs[1] = fp + 8;
1279
1280 for (fp += 12, i = 3; i < 32; i++)
1281 {
1282 if (i != FP_REGNUM)
1283 {
1284 frame_saved_regs->regs[i] = fp;
1285 fp += 4;
1286 }
1287 }
1288
1289 fp += 4;
1290 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1291 frame_saved_regs->regs[i] = fp;
1292
1293 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1294 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1295 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1296 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1297 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1298 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1299 }
1300
1301 void
1302 hppa_pop_frame ()
1303 {
1304 register struct frame_info *frame = get_current_frame ();
1305 register CORE_ADDR fp, npc, target_pc;
1306 register int regnum;
1307 struct frame_saved_regs fsr;
1308 double freg_buffer;
1309
1310 fp = FRAME_FP (frame);
1311 get_frame_saved_regs (frame, &fsr);
1312
1313 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1314 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1315 restore_pc_queue (&fsr);
1316 #endif
1317
1318 for (regnum = 31; regnum > 0; regnum--)
1319 if (fsr.regs[regnum])
1320 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1321
1322 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1323 if (fsr.regs[regnum])
1324 {
1325 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1326 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1327 }
1328
1329 if (fsr.regs[IPSW_REGNUM])
1330 write_register (IPSW_REGNUM,
1331 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1332
1333 if (fsr.regs[SAR_REGNUM])
1334 write_register (SAR_REGNUM,
1335 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1336
1337 /* If the PC was explicitly saved, then just restore it. */
1338 if (fsr.regs[PCOQ_TAIL_REGNUM])
1339 {
1340 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4);
1341 write_register (PCOQ_TAIL_REGNUM, npc);
1342 }
1343 /* Else use the value in %rp to set the new PC. */
1344 else
1345 {
1346 npc = read_register (RP_REGNUM);
1347 target_write_pc (npc, 0);
1348 }
1349
1350 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1351
1352 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1353 write_register (SP_REGNUM, fp - 48);
1354 else
1355 write_register (SP_REGNUM, fp);
1356
1357 /* The PC we just restored may be inside a return trampoline. If so
1358 we want to restart the inferior and run it through the trampoline.
1359
1360 Do this by setting a momentary breakpoint at the location the
1361 trampoline returns to.
1362
1363 Don't skip through the trampoline if we're popping a dummy frame. */
1364 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1365 if (target_pc && !fsr.regs[IPSW_REGNUM])
1366 {
1367 struct symtab_and_line sal;
1368 struct breakpoint *breakpoint;
1369 struct cleanup *old_chain;
1370
1371 /* Set up our breakpoint. Set it to be silent as the MI code
1372 for "return_command" will print the frame we returned to. */
1373 sal = find_pc_line (target_pc, 0);
1374 sal.pc = target_pc;
1375 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1376 breakpoint->silent = 1;
1377
1378 /* So we can clean things up. */
1379 old_chain = make_cleanup (delete_breakpoint, breakpoint);
1380
1381 /* Start up the inferior. */
1382 proceed_to_finish = 1;
1383 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1384
1385 /* Perform our cleanups. */
1386 do_cleanups (old_chain);
1387 }
1388 flush_cached_frames ();
1389 }
1390
1391 /*
1392 * After returning to a dummy on the stack, restore the instruction
1393 * queue space registers. */
1394
1395 static int
1396 restore_pc_queue (fsr)
1397 struct frame_saved_regs *fsr;
1398 {
1399 CORE_ADDR pc = read_pc ();
1400 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1401 struct target_waitstatus w;
1402 int insn_count;
1403
1404 /* Advance past break instruction in the call dummy. */
1405 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1406 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1407
1408 /*
1409 * HPUX doesn't let us set the space registers or the space
1410 * registers of the PC queue through ptrace. Boo, hiss.
1411 * Conveniently, the call dummy has this sequence of instructions
1412 * after the break:
1413 * mtsp r21, sr0
1414 * ble,n 0(sr0, r22)
1415 *
1416 * So, load up the registers and single step until we are in the
1417 * right place.
1418 */
1419
1420 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1421 write_register (22, new_pc);
1422
1423 for (insn_count = 0; insn_count < 3; insn_count++)
1424 {
1425 /* FIXME: What if the inferior gets a signal right now? Want to
1426 merge this into wait_for_inferior (as a special kind of
1427 watchpoint? By setting a breakpoint at the end? Is there
1428 any other choice? Is there *any* way to do this stuff with
1429 ptrace() or some equivalent?). */
1430 resume (1, 0);
1431 target_wait (inferior_pid, &w);
1432
1433 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1434 {
1435 stop_signal = w.value.sig;
1436 terminal_ours_for_output ();
1437 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1438 target_signal_to_name (stop_signal),
1439 target_signal_to_string (stop_signal));
1440 gdb_flush (gdb_stdout);
1441 return 0;
1442 }
1443 }
1444 target_terminal_ours ();
1445 target_fetch_registers (-1);
1446 return 1;
1447 }
1448
1449 CORE_ADDR
1450 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1451 int nargs;
1452 value_ptr *args;
1453 CORE_ADDR sp;
1454 int struct_return;
1455 CORE_ADDR struct_addr;
1456 {
1457 /* array of arguments' offsets */
1458 int *offset = (int *)alloca(nargs * sizeof (int));
1459 int cum = 0;
1460 int i, alignment;
1461
1462 for (i = 0; i < nargs; i++)
1463 {
1464 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1465
1466 /* value must go at proper alignment. Assume alignment is a
1467 power of two.*/
1468 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1469 if (cum % alignment)
1470 cum = (cum + alignment) & -alignment;
1471 offset[i] = -cum;
1472 }
1473 sp += max ((cum + 7) & -8, 16);
1474
1475 for (i = 0; i < nargs; i++)
1476 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1477 TYPE_LENGTH (VALUE_TYPE (args[i])));
1478
1479 if (struct_return)
1480 write_register (28, struct_addr);
1481 return sp + 32;
1482 }
1483
1484 /*
1485 * Insert the specified number of args and function address
1486 * into a call sequence of the above form stored at DUMMYNAME.
1487 *
1488 * On the hppa we need to call the stack dummy through $$dyncall.
1489 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1490 * real_pc, which is the location where gdb should start up the
1491 * inferior to do the function call.
1492 */
1493
1494 CORE_ADDR
1495 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1496 char *dummy;
1497 CORE_ADDR pc;
1498 CORE_ADDR fun;
1499 int nargs;
1500 value_ptr *args;
1501 struct type *type;
1502 int gcc_p;
1503 {
1504 CORE_ADDR dyncall_addr;
1505 struct minimal_symbol *msymbol;
1506 struct minimal_symbol *trampoline;
1507 int flags = read_register (FLAGS_REGNUM);
1508 struct unwind_table_entry *u;
1509
1510 trampoline = NULL;
1511 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1512 if (msymbol == NULL)
1513 error ("Can't find an address for $$dyncall trampoline");
1514
1515 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1516
1517 /* FUN could be a procedure label, in which case we have to get
1518 its real address and the value of its GOT/DP. */
1519 if (fun & 0x2)
1520 {
1521 /* Get the GOT/DP value for the target function. It's
1522 at *(fun+4). Note the call dummy is *NOT* allowed to
1523 trash %r19 before calling the target function. */
1524 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1525
1526 /* Now get the real address for the function we are calling, it's
1527 at *fun. */
1528 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1529 }
1530 else
1531 {
1532
1533 #ifndef GDB_TARGET_IS_PA_ELF
1534 /* FUN could be either an export stub, or the real address of a
1535 function in a shared library. We must call an import stub
1536 rather than the export stub or real function for lazy binding
1537 to work correctly. */
1538 if (som_solib_get_got_by_pc (fun))
1539 {
1540 struct objfile *objfile;
1541 struct minimal_symbol *funsymbol, *stub_symbol;
1542 CORE_ADDR newfun = 0;
1543
1544 funsymbol = lookup_minimal_symbol_by_pc (fun);
1545 if (!funsymbol)
1546 error ("Unable to find minimal symbol for target fucntion.\n");
1547
1548 /* Search all the object files for an import symbol with the
1549 right name. */
1550 ALL_OBJFILES (objfile)
1551 {
1552 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
1553 NULL, objfile);
1554 /* Found a symbol with the right name. */
1555 if (stub_symbol)
1556 {
1557 struct unwind_table_entry *u;
1558 /* It must be a shared library trampoline. */
1559 if (SYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
1560 continue;
1561
1562 /* It must also be an import stub. */
1563 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
1564 if (!u || u->stub_type != IMPORT)
1565 continue;
1566
1567 /* OK. Looks like the correct import stub. */
1568 newfun = SYMBOL_VALUE (stub_symbol);
1569 fun = newfun;
1570 }
1571 }
1572 if (newfun == 0)
1573 write_register (19, som_solib_get_got_by_pc (fun));
1574 }
1575 #endif
1576 }
1577
1578 /* If we are calling an import stub (eg calling into a dynamic library)
1579 then have sr4export call the magic __d_plt_call routine which is linked
1580 in from end.o. (You can't use _sr4export to call the import stub as
1581 the value in sp-24 will get fried and you end up returning to the
1582 wrong location. You can't call the import stub directly as the code
1583 to bind the PLT entry to a function can't return to a stack address.) */
1584 u = find_unwind_entry (fun);
1585 if (u && u->stub_type == IMPORT)
1586 {
1587 CORE_ADDR new_fun;
1588
1589 /* Prefer __gcc_plt_call over the HP supplied routine because
1590 __gcc_plt_call works for any number of arguments. */
1591 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
1592 if (trampoline == NULL)
1593 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
1594
1595 if (trampoline == NULL)
1596 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline");
1597
1598 /* This is where sr4export will jump to. */
1599 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
1600
1601 if (strcmp (SYMBOL_NAME (trampoline), "__d_plt_call") == 0)
1602 {
1603 /* We have to store the address of the stub in __shlib_funcptr. */
1604 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
1605 (struct objfile *)NULL);
1606 if (msymbol == NULL)
1607 error ("Can't find an address for __shlib_funcptr");
1608
1609 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1610
1611 /* We want sr4export to call __d_plt_call, so we claim it is
1612 the final target. Clear trampoline. */
1613 fun = new_fun;
1614 trampoline = NULL;
1615 }
1616 }
1617
1618 /* Store upper 21 bits of function address into ldil. fun will either be
1619 the final target (most cases) or __d_plt_call when calling into a shared
1620 library and __gcc_plt_call is not available. */
1621 store_unsigned_integer
1622 (&dummy[FUNC_LDIL_OFFSET],
1623 INSTRUCTION_SIZE,
1624 deposit_21 (fun >> 11,
1625 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
1626 INSTRUCTION_SIZE)));
1627
1628 /* Store lower 11 bits of function address into ldo */
1629 store_unsigned_integer
1630 (&dummy[FUNC_LDO_OFFSET],
1631 INSTRUCTION_SIZE,
1632 deposit_14 (fun & MASK_11,
1633 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
1634 INSTRUCTION_SIZE)));
1635 #ifdef SR4EXPORT_LDIL_OFFSET
1636
1637 {
1638 CORE_ADDR trampoline_addr;
1639
1640 /* We may still need sr4export's address too. */
1641
1642 if (trampoline == NULL)
1643 {
1644 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1645 if (msymbol == NULL)
1646 error ("Can't find an address for _sr4export trampoline");
1647
1648 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1649 }
1650 else
1651 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
1652
1653
1654 /* Store upper 21 bits of trampoline's address into ldil */
1655 store_unsigned_integer
1656 (&dummy[SR4EXPORT_LDIL_OFFSET],
1657 INSTRUCTION_SIZE,
1658 deposit_21 (trampoline_addr >> 11,
1659 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
1660 INSTRUCTION_SIZE)));
1661
1662 /* Store lower 11 bits of trampoline's address into ldo */
1663 store_unsigned_integer
1664 (&dummy[SR4EXPORT_LDO_OFFSET],
1665 INSTRUCTION_SIZE,
1666 deposit_14 (trampoline_addr & MASK_11,
1667 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
1668 INSTRUCTION_SIZE)));
1669 }
1670 #endif
1671
1672 write_register (22, pc);
1673
1674 /* If we are in a syscall, then we should call the stack dummy
1675 directly. $$dyncall is not needed as the kernel sets up the
1676 space id registers properly based on the value in %r31. In
1677 fact calling $$dyncall will not work because the value in %r22
1678 will be clobbered on the syscall exit path.
1679
1680 Similarly if the current PC is in a shared library. Note however,
1681 this scheme won't work if the shared library isn't mapped into
1682 the same space as the stack. */
1683 if (flags & 2)
1684 return pc;
1685 #ifndef GDB_TARGET_IS_PA_ELF
1686 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
1687 return pc;
1688 #endif
1689 else
1690 return dyncall_addr;
1691
1692 }
1693
1694 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1695 bits. */
1696
1697 CORE_ADDR
1698 target_read_pc (pid)
1699 int pid;
1700 {
1701 int flags = read_register (FLAGS_REGNUM);
1702
1703 if (flags & 2) {
1704 return read_register (31) & ~0x3;
1705 }
1706 return read_register (PC_REGNUM) & ~0x3;
1707 }
1708
1709 /* Write out the PC. If currently in a syscall, then also write the new
1710 PC value into %r31. */
1711
1712 void
1713 target_write_pc (v, pid)
1714 CORE_ADDR v;
1715 int pid;
1716 {
1717 int flags = read_register (FLAGS_REGNUM);
1718
1719 /* If in a syscall, then set %r31. Also make sure to get the
1720 privilege bits set correctly. */
1721 if (flags & 2)
1722 write_register (31, (long) (v | 0x3));
1723
1724 write_register (PC_REGNUM, (long) v);
1725 write_register (NPC_REGNUM, (long) v + 4);
1726 }
1727
1728 /* return the alignment of a type in bytes. Structures have the maximum
1729 alignment required by their fields. */
1730
1731 static int
1732 hppa_alignof (type)
1733 struct type *type;
1734 {
1735 int max_align, align, i;
1736 CHECK_TYPEDEF (type);
1737 switch (TYPE_CODE (type))
1738 {
1739 case TYPE_CODE_PTR:
1740 case TYPE_CODE_INT:
1741 case TYPE_CODE_FLT:
1742 return TYPE_LENGTH (type);
1743 case TYPE_CODE_ARRAY:
1744 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1745 case TYPE_CODE_STRUCT:
1746 case TYPE_CODE_UNION:
1747 max_align = 2;
1748 for (i = 0; i < TYPE_NFIELDS (type); i++)
1749 {
1750 /* Bit fields have no real alignment. */
1751 if (!TYPE_FIELD_BITPOS (type, i))
1752 {
1753 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1754 max_align = max (max_align, align);
1755 }
1756 }
1757 return max_align;
1758 default:
1759 return 4;
1760 }
1761 }
1762
1763 /* Print the register regnum, or all registers if regnum is -1 */
1764
1765 void
1766 pa_do_registers_info (regnum, fpregs)
1767 int regnum;
1768 int fpregs;
1769 {
1770 char raw_regs [REGISTER_BYTES];
1771 int i;
1772
1773 for (i = 0; i < NUM_REGS; i++)
1774 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1775 if (regnum == -1)
1776 pa_print_registers (raw_regs, regnum, fpregs);
1777 else if (regnum < FP0_REGNUM)
1778 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1779 REGISTER_BYTE (regnum)));
1780 else
1781 pa_print_fp_reg (regnum);
1782 }
1783
1784 static void
1785 pa_print_registers (raw_regs, regnum, fpregs)
1786 char *raw_regs;
1787 int regnum;
1788 int fpregs;
1789 {
1790 int i,j;
1791 long val;
1792
1793 for (i = 0; i < 18; i++)
1794 {
1795 for (j = 0; j < 4; j++)
1796 {
1797 val =
1798 extract_signed_integer (raw_regs + REGISTER_BYTE (i+(j*18)), 4);
1799 printf_unfiltered ("%8.8s: %8x ", reg_names[i+(j*18)], val);
1800 }
1801 printf_unfiltered ("\n");
1802 }
1803
1804 if (fpregs)
1805 for (i = 72; i < NUM_REGS; i++)
1806 pa_print_fp_reg (i);
1807 }
1808
1809 static void
1810 pa_print_fp_reg (i)
1811 int i;
1812 {
1813 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1814 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1815
1816 /* Get 32bits of data. */
1817 read_relative_register_raw_bytes (i, raw_buffer);
1818
1819 /* Put it in the buffer. No conversions are ever necessary. */
1820 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1821
1822 fputs_filtered (reg_names[i], gdb_stdout);
1823 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1824 fputs_filtered ("(single precision) ", gdb_stdout);
1825
1826 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1827 1, 0, Val_pretty_default);
1828 printf_filtered ("\n");
1829
1830 /* If "i" is even, then this register can also be a double-precision
1831 FP register. Dump it out as such. */
1832 if ((i % 2) == 0)
1833 {
1834 /* Get the data in raw format for the 2nd half. */
1835 read_relative_register_raw_bytes (i + 1, raw_buffer);
1836
1837 /* Copy it into the appropriate part of the virtual buffer. */
1838 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1839 REGISTER_RAW_SIZE (i));
1840
1841 /* Dump it as a double. */
1842 fputs_filtered (reg_names[i], gdb_stdout);
1843 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1844 fputs_filtered ("(double precision) ", gdb_stdout);
1845
1846 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1847 1, 0, Val_pretty_default);
1848 printf_filtered ("\n");
1849 }
1850 }
1851
1852 /* Return one if PC is in the call path of a trampoline, else return zero.
1853
1854 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1855 just shared library trampolines (import, export). */
1856
1857 int
1858 in_solib_call_trampoline (pc, name)
1859 CORE_ADDR pc;
1860 char *name;
1861 {
1862 struct minimal_symbol *minsym;
1863 struct unwind_table_entry *u;
1864 static CORE_ADDR dyncall = 0;
1865 static CORE_ADDR sr4export = 0;
1866
1867 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1868 new exec file */
1869
1870 /* First see if PC is in one of the two C-library trampolines. */
1871 if (!dyncall)
1872 {
1873 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1874 if (minsym)
1875 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
1876 else
1877 dyncall = -1;
1878 }
1879
1880 if (!sr4export)
1881 {
1882 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1883 if (minsym)
1884 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
1885 else
1886 sr4export = -1;
1887 }
1888
1889 if (pc == dyncall || pc == sr4export)
1890 return 1;
1891
1892 /* Get the unwind descriptor corresponding to PC, return zero
1893 if no unwind was found. */
1894 u = find_unwind_entry (pc);
1895 if (!u)
1896 return 0;
1897
1898 /* If this isn't a linker stub, then return now. */
1899 if (u->stub_type == 0)
1900 return 0;
1901
1902 /* By definition a long-branch stub is a call stub. */
1903 if (u->stub_type == LONG_BRANCH)
1904 return 1;
1905
1906 /* The call and return path execute the same instructions within
1907 an IMPORT stub! So an IMPORT stub is both a call and return
1908 trampoline. */
1909 if (u->stub_type == IMPORT)
1910 return 1;
1911
1912 /* Parameter relocation stubs always have a call path and may have a
1913 return path. */
1914 if (u->stub_type == PARAMETER_RELOCATION
1915 || u->stub_type == EXPORT)
1916 {
1917 CORE_ADDR addr;
1918
1919 /* Search forward from the current PC until we hit a branch
1920 or the end of the stub. */
1921 for (addr = pc; addr <= u->region_end; addr += 4)
1922 {
1923 unsigned long insn;
1924
1925 insn = read_memory_integer (addr, 4);
1926
1927 /* Does it look like a bl? If so then it's the call path, if
1928 we find a bv or be first, then we're on the return path. */
1929 if ((insn & 0xfc00e000) == 0xe8000000)
1930 return 1;
1931 else if ((insn & 0xfc00e001) == 0xe800c000
1932 || (insn & 0xfc000000) == 0xe0000000)
1933 return 0;
1934 }
1935
1936 /* Should never happen. */
1937 warning ("Unable to find branch in parameter relocation stub.\n");
1938 return 0;
1939 }
1940
1941 /* Unknown stub type. For now, just return zero. */
1942 return 0;
1943 }
1944
1945 /* Return one if PC is in the return path of a trampoline, else return zero.
1946
1947 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1948 just shared library trampolines (import, export). */
1949
1950 int
1951 in_solib_return_trampoline (pc, name)
1952 CORE_ADDR pc;
1953 char *name;
1954 {
1955 struct unwind_table_entry *u;
1956
1957 /* Get the unwind descriptor corresponding to PC, return zero
1958 if no unwind was found. */
1959 u = find_unwind_entry (pc);
1960 if (!u)
1961 return 0;
1962
1963 /* If this isn't a linker stub or it's just a long branch stub, then
1964 return zero. */
1965 if (u->stub_type == 0 || u->stub_type == LONG_BRANCH)
1966 return 0;
1967
1968 /* The call and return path execute the same instructions within
1969 an IMPORT stub! So an IMPORT stub is both a call and return
1970 trampoline. */
1971 if (u->stub_type == IMPORT)
1972 return 1;
1973
1974 /* Parameter relocation stubs always have a call path and may have a
1975 return path. */
1976 if (u->stub_type == PARAMETER_RELOCATION
1977 || u->stub_type == EXPORT)
1978 {
1979 CORE_ADDR addr;
1980
1981 /* Search forward from the current PC until we hit a branch
1982 or the end of the stub. */
1983 for (addr = pc; addr <= u->region_end; addr += 4)
1984 {
1985 unsigned long insn;
1986
1987 insn = read_memory_integer (addr, 4);
1988
1989 /* Does it look like a bl? If so then it's the call path, if
1990 we find a bv or be first, then we're on the return path. */
1991 if ((insn & 0xfc00e000) == 0xe8000000)
1992 return 0;
1993 else if ((insn & 0xfc00e001) == 0xe800c000
1994 || (insn & 0xfc000000) == 0xe0000000)
1995 return 1;
1996 }
1997
1998 /* Should never happen. */
1999 warning ("Unable to find branch in parameter relocation stub.\n");
2000 return 0;
2001 }
2002
2003 /* Unknown stub type. For now, just return zero. */
2004 return 0;
2005
2006 }
2007
2008 /* Figure out if PC is in a trampoline, and if so find out where
2009 the trampoline will jump to. If not in a trampoline, return zero.
2010
2011 Simple code examination probably is not a good idea since the code
2012 sequences in trampolines can also appear in user code.
2013
2014 We use unwinds and information from the minimal symbol table to
2015 determine when we're in a trampoline. This won't work for ELF
2016 (yet) since it doesn't create stub unwind entries. Whether or
2017 not ELF will create stub unwinds or normal unwinds for linker
2018 stubs is still being debated.
2019
2020 This should handle simple calls through dyncall or sr4export,
2021 long calls, argument relocation stubs, and dyncall/sr4export
2022 calling an argument relocation stub. It even handles some stubs
2023 used in dynamic executables. */
2024
2025 CORE_ADDR
2026 skip_trampoline_code (pc, name)
2027 CORE_ADDR pc;
2028 char *name;
2029 {
2030 long orig_pc = pc;
2031 long prev_inst, curr_inst, loc;
2032 static CORE_ADDR dyncall = 0;
2033 static CORE_ADDR sr4export = 0;
2034 struct minimal_symbol *msym;
2035 struct unwind_table_entry *u;
2036
2037 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2038 new exec file */
2039
2040 if (!dyncall)
2041 {
2042 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2043 if (msym)
2044 dyncall = SYMBOL_VALUE_ADDRESS (msym);
2045 else
2046 dyncall = -1;
2047 }
2048
2049 if (!sr4export)
2050 {
2051 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2052 if (msym)
2053 sr4export = SYMBOL_VALUE_ADDRESS (msym);
2054 else
2055 sr4export = -1;
2056 }
2057
2058 /* Addresses passed to dyncall may *NOT* be the actual address
2059 of the function. So we may have to do something special. */
2060 if (pc == dyncall)
2061 {
2062 pc = (CORE_ADDR) read_register (22);
2063
2064 /* If bit 30 (counting from the left) is on, then pc is the address of
2065 the PLT entry for this function, not the address of the function
2066 itself. Bit 31 has meaning too, but only for MPE. */
2067 if (pc & 0x2)
2068 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
2069 }
2070 else if (pc == sr4export)
2071 pc = (CORE_ADDR) (read_register (22));
2072
2073 /* Get the unwind descriptor corresponding to PC, return zero
2074 if no unwind was found. */
2075 u = find_unwind_entry (pc);
2076 if (!u)
2077 return 0;
2078
2079 /* If this isn't a linker stub, then return now. */
2080 if (u->stub_type == 0)
2081 return orig_pc == pc ? 0 : pc & ~0x3;
2082
2083 /* It's a stub. Search for a branch and figure out where it goes.
2084 Note we have to handle multi insn branch sequences like ldil;ble.
2085 Most (all?) other branches can be determined by examining the contents
2086 of certain registers and the stack. */
2087 loc = pc;
2088 curr_inst = 0;
2089 prev_inst = 0;
2090 while (1)
2091 {
2092 /* Make sure we haven't walked outside the range of this stub. */
2093 if (u != find_unwind_entry (loc))
2094 {
2095 warning ("Unable to find branch in linker stub");
2096 return orig_pc == pc ? 0 : pc & ~0x3;
2097 }
2098
2099 prev_inst = curr_inst;
2100 curr_inst = read_memory_integer (loc, 4);
2101
2102 /* Does it look like a branch external using %r1? Then it's the
2103 branch from the stub to the actual function. */
2104 if ((curr_inst & 0xffe0e000) == 0xe0202000)
2105 {
2106 /* Yup. See if the previous instruction loaded
2107 a value into %r1. If so compute and return the jump address. */
2108 if ((prev_inst & 0xffe00000) == 0x20200000)
2109 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
2110 else
2111 {
2112 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
2113 return orig_pc == pc ? 0 : pc & ~0x3;
2114 }
2115 }
2116
2117 /* Does it look like a be 0(sr0,%r21)? That's the branch from an
2118 import stub to an export stub.
2119
2120 It is impossible to determine the target of the branch via
2121 simple examination of instructions and/or data (consider
2122 that the address in the plabel may be the address of the
2123 bind-on-reference routine in the dynamic loader).
2124
2125 So we have try an alternative approach.
2126
2127 Get the name of the symbol at our current location; it should
2128 be a stub symbol with the same name as the symbol in the
2129 shared library.
2130
2131 Then lookup a minimal symbol with the same name; we should
2132 get the minimal symbol for the target routine in the shared
2133 library as those take precedence of import/export stubs. */
2134 if (curr_inst == 0xe2a00000)
2135 {
2136 struct minimal_symbol *stubsym, *libsym;
2137
2138 stubsym = lookup_minimal_symbol_by_pc (loc);
2139 if (stubsym == NULL)
2140 {
2141 warning ("Unable to find symbol for 0x%x", loc);
2142 return orig_pc == pc ? 0 : pc & ~0x3;
2143 }
2144
2145 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
2146 if (libsym == NULL)
2147 {
2148 warning ("Unable to find library symbol for %s\n",
2149 SYMBOL_NAME (stubsym));
2150 return orig_pc == pc ? 0 : pc & ~0x3;
2151 }
2152
2153 return SYMBOL_VALUE (libsym);
2154 }
2155
2156 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
2157 branch from the stub to the actual function. */
2158 else if ((curr_inst & 0xffe0e000) == 0xe8400000
2159 || (curr_inst & 0xffe0e000) == 0xe8000000)
2160 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
2161
2162 /* Does it look like bv (rp)? Note this depends on the
2163 current stack pointer being the same as the stack
2164 pointer in the stub itself! This is a branch on from the
2165 stub back to the original caller. */
2166 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
2167 {
2168 /* Yup. See if the previous instruction loaded
2169 rp from sp - 8. */
2170 if (prev_inst == 0x4bc23ff1)
2171 return (read_memory_integer
2172 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
2173 else
2174 {
2175 warning ("Unable to find restore of %%rp before bv (%%rp).");
2176 return orig_pc == pc ? 0 : pc & ~0x3;
2177 }
2178 }
2179
2180 /* What about be,n 0(sr0,%rp)? It's just another way we return to
2181 the original caller from the stub. Used in dynamic executables. */
2182 else if (curr_inst == 0xe0400002)
2183 {
2184 /* The value we jump to is sitting in sp - 24. But that's
2185 loaded several instructions before the be instruction.
2186 I guess we could check for the previous instruction being
2187 mtsp %r1,%sr0 if we want to do sanity checking. */
2188 return (read_memory_integer
2189 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
2190 }
2191
2192 /* Haven't found the branch yet, but we're still in the stub.
2193 Keep looking. */
2194 loc += 4;
2195 }
2196 }
2197
2198 /* For the given instruction (INST), return any adjustment it makes
2199 to the stack pointer or zero for no adjustment.
2200
2201 This only handles instructions commonly found in prologues. */
2202
2203 static int
2204 prologue_inst_adjust_sp (inst)
2205 unsigned long inst;
2206 {
2207 /* This must persist across calls. */
2208 static int save_high21;
2209
2210 /* The most common way to perform a stack adjustment ldo X(sp),sp */
2211 if ((inst & 0xffffc000) == 0x37de0000)
2212 return extract_14 (inst);
2213
2214 /* stwm X,D(sp) */
2215 if ((inst & 0xffe00000) == 0x6fc00000)
2216 return extract_14 (inst);
2217
2218 /* addil high21,%r1; ldo low11,(%r1),%r30)
2219 save high bits in save_high21 for later use. */
2220 if ((inst & 0xffe00000) == 0x28200000)
2221 {
2222 save_high21 = extract_21 (inst);
2223 return 0;
2224 }
2225
2226 if ((inst & 0xffff0000) == 0x343e0000)
2227 return save_high21 + extract_14 (inst);
2228
2229 /* fstws as used by the HP compilers. */
2230 if ((inst & 0xffffffe0) == 0x2fd01220)
2231 return extract_5_load (inst);
2232
2233 /* No adjustment. */
2234 return 0;
2235 }
2236
2237 /* Return nonzero if INST is a branch of some kind, else return zero. */
2238
2239 static int
2240 is_branch (inst)
2241 unsigned long inst;
2242 {
2243 switch (inst >> 26)
2244 {
2245 case 0x20:
2246 case 0x21:
2247 case 0x22:
2248 case 0x23:
2249 case 0x28:
2250 case 0x29:
2251 case 0x2a:
2252 case 0x2b:
2253 case 0x30:
2254 case 0x31:
2255 case 0x32:
2256 case 0x33:
2257 case 0x38:
2258 case 0x39:
2259 case 0x3a:
2260 return 1;
2261
2262 default:
2263 return 0;
2264 }
2265 }
2266
2267 /* Return the register number for a GR which is saved by INST or
2268 zero it INST does not save a GR. */
2269
2270 static int
2271 inst_saves_gr (inst)
2272 unsigned long inst;
2273 {
2274 /* Does it look like a stw? */
2275 if ((inst >> 26) == 0x1a)
2276 return extract_5R_store (inst);
2277
2278 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
2279 if ((inst >> 26) == 0x1b)
2280 return extract_5R_store (inst);
2281
2282 /* Does it look like sth or stb? HPC versions 9.0 and later use these
2283 too. */
2284 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
2285 return extract_5R_store (inst);
2286
2287 return 0;
2288 }
2289
2290 /* Return the register number for a FR which is saved by INST or
2291 zero it INST does not save a FR.
2292
2293 Note we only care about full 64bit register stores (that's the only
2294 kind of stores the prologue will use).
2295
2296 FIXME: What about argument stores with the HP compiler in ANSI mode? */
2297
2298 static int
2299 inst_saves_fr (inst)
2300 unsigned long inst;
2301 {
2302 if ((inst & 0xfc00dfc0) == 0x2c001200)
2303 return extract_5r_store (inst);
2304 return 0;
2305 }
2306
2307 /* Advance PC across any function entry prologue instructions
2308 to reach some "real" code.
2309
2310 Use information in the unwind table to determine what exactly should
2311 be in the prologue. */
2312
2313 CORE_ADDR
2314 skip_prologue (pc)
2315 CORE_ADDR pc;
2316 {
2317 char buf[4];
2318 CORE_ADDR orig_pc = pc;
2319 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2320 unsigned long args_stored, status, i, restart_gr, restart_fr;
2321 struct unwind_table_entry *u;
2322
2323 restart_gr = 0;
2324 restart_fr = 0;
2325
2326 restart:
2327 u = find_unwind_entry (pc);
2328 if (!u)
2329 return pc;
2330
2331 /* If we are not at the beginning of a function, then return now. */
2332 if ((pc & ~0x3) != u->region_start)
2333 return pc;
2334
2335 /* This is how much of a frame adjustment we need to account for. */
2336 stack_remaining = u->Total_frame_size << 3;
2337
2338 /* Magic register saves we want to know about. */
2339 save_rp = u->Save_RP;
2340 save_sp = u->Save_SP;
2341
2342 /* An indication that args may be stored into the stack. Unfortunately
2343 the HPUX compilers tend to set this in cases where no args were
2344 stored too!. */
2345 args_stored = 1;
2346
2347 /* Turn the Entry_GR field into a bitmask. */
2348 save_gr = 0;
2349 for (i = 3; i < u->Entry_GR + 3; i++)
2350 {
2351 /* Frame pointer gets saved into a special location. */
2352 if (u->Save_SP && i == FP_REGNUM)
2353 continue;
2354
2355 save_gr |= (1 << i);
2356 }
2357 save_gr &= ~restart_gr;
2358
2359 /* Turn the Entry_FR field into a bitmask too. */
2360 save_fr = 0;
2361 for (i = 12; i < u->Entry_FR + 12; i++)
2362 save_fr |= (1 << i);
2363 save_fr &= ~restart_fr;
2364
2365 /* Loop until we find everything of interest or hit a branch.
2366
2367 For unoptimized GCC code and for any HP CC code this will never ever
2368 examine any user instructions.
2369
2370 For optimzied GCC code we're faced with problems. GCC will schedule
2371 its prologue and make prologue instructions available for delay slot
2372 filling. The end result is user code gets mixed in with the prologue
2373 and a prologue instruction may be in the delay slot of the first branch
2374 or call.
2375
2376 Some unexpected things are expected with debugging optimized code, so
2377 we allow this routine to walk past user instructions in optimized
2378 GCC code. */
2379 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
2380 || args_stored)
2381 {
2382 unsigned int reg_num;
2383 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
2384 unsigned long old_save_rp, old_save_sp, next_inst;
2385
2386 /* Save copies of all the triggers so we can compare them later
2387 (only for HPC). */
2388 old_save_gr = save_gr;
2389 old_save_fr = save_fr;
2390 old_save_rp = save_rp;
2391 old_save_sp = save_sp;
2392 old_stack_remaining = stack_remaining;
2393
2394 status = target_read_memory (pc, buf, 4);
2395 inst = extract_unsigned_integer (buf, 4);
2396
2397 /* Yow! */
2398 if (status != 0)
2399 return pc;
2400
2401 /* Note the interesting effects of this instruction. */
2402 stack_remaining -= prologue_inst_adjust_sp (inst);
2403
2404 /* There is only one instruction used for saving RP into the stack. */
2405 if (inst == 0x6bc23fd9)
2406 save_rp = 0;
2407
2408 /* This is the only way we save SP into the stack. At this time
2409 the HP compilers never bother to save SP into the stack. */
2410 if ((inst & 0xffffc000) == 0x6fc10000)
2411 save_sp = 0;
2412
2413 /* Account for general and floating-point register saves. */
2414 reg_num = inst_saves_gr (inst);
2415 save_gr &= ~(1 << reg_num);
2416
2417 /* Ugh. Also account for argument stores into the stack.
2418 Unfortunately args_stored only tells us that some arguments
2419 where stored into the stack. Not how many or what kind!
2420
2421 This is a kludge as on the HP compiler sets this bit and it
2422 never does prologue scheduling. So once we see one, skip past
2423 all of them. We have similar code for the fp arg stores below.
2424
2425 FIXME. Can still die if we have a mix of GR and FR argument
2426 stores! */
2427 if (reg_num >= 23 && reg_num <= 26)
2428 {
2429 while (reg_num >= 23 && reg_num <= 26)
2430 {
2431 pc += 4;
2432 status = target_read_memory (pc, buf, 4);
2433 inst = extract_unsigned_integer (buf, 4);
2434 if (status != 0)
2435 return pc;
2436 reg_num = inst_saves_gr (inst);
2437 }
2438 args_stored = 0;
2439 continue;
2440 }
2441
2442 reg_num = inst_saves_fr (inst);
2443 save_fr &= ~(1 << reg_num);
2444
2445 status = target_read_memory (pc + 4, buf, 4);
2446 next_inst = extract_unsigned_integer (buf, 4);
2447
2448 /* Yow! */
2449 if (status != 0)
2450 return pc;
2451
2452 /* We've got to be read to handle the ldo before the fp register
2453 save. */
2454 if ((inst & 0xfc000000) == 0x34000000
2455 && inst_saves_fr (next_inst) >= 4
2456 && inst_saves_fr (next_inst) <= 7)
2457 {
2458 /* So we drop into the code below in a reasonable state. */
2459 reg_num = inst_saves_fr (next_inst);
2460 pc -= 4;
2461 }
2462
2463 /* Ugh. Also account for argument stores into the stack.
2464 This is a kludge as on the HP compiler sets this bit and it
2465 never does prologue scheduling. So once we see one, skip past
2466 all of them. */
2467 if (reg_num >= 4 && reg_num <= 7)
2468 {
2469 while (reg_num >= 4 && reg_num <= 7)
2470 {
2471 pc += 8;
2472 status = target_read_memory (pc, buf, 4);
2473 inst = extract_unsigned_integer (buf, 4);
2474 if (status != 0)
2475 return pc;
2476 if ((inst & 0xfc000000) != 0x34000000)
2477 break;
2478 status = target_read_memory (pc + 4, buf, 4);
2479 next_inst = extract_unsigned_integer (buf, 4);
2480 if (status != 0)
2481 return pc;
2482 reg_num = inst_saves_fr (next_inst);
2483 }
2484 args_stored = 0;
2485 continue;
2486 }
2487
2488 /* Quit if we hit any kind of branch. This can happen if a prologue
2489 instruction is in the delay slot of the first call/branch. */
2490 if (is_branch (inst))
2491 break;
2492
2493 /* What a crock. The HP compilers set args_stored even if no
2494 arguments were stored into the stack (boo hiss). This could
2495 cause this code to then skip a bunch of user insns (up to the
2496 first branch).
2497
2498 To combat this we try to identify when args_stored was bogusly
2499 set and clear it. We only do this when args_stored is nonzero,
2500 all other resources are accounted for, and nothing changed on
2501 this pass. */
2502 if (args_stored
2503 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2504 && old_save_gr == save_gr && old_save_fr == save_fr
2505 && old_save_rp == save_rp && old_save_sp == save_sp
2506 && old_stack_remaining == stack_remaining)
2507 break;
2508
2509 /* Bump the PC. */
2510 pc += 4;
2511 }
2512
2513 /* We've got a tenative location for the end of the prologue. However
2514 because of limitations in the unwind descriptor mechanism we may
2515 have went too far into user code looking for the save of a register
2516 that does not exist. So, if there registers we expected to be saved
2517 but never were, mask them out and restart.
2518
2519 This should only happen in optimized code, and should be very rare. */
2520 if (save_gr || save_fr
2521 && ! (restart_fr || restart_gr))
2522 {
2523 pc = orig_pc;
2524 restart_gr = save_gr;
2525 restart_fr = save_fr;
2526 goto restart;
2527 }
2528
2529 return pc;
2530 }
2531
2532 /* Put here the code to store, into a struct frame_saved_regs,
2533 the addresses of the saved registers of frame described by FRAME_INFO.
2534 This includes special registers such as pc and fp saved in special
2535 ways in the stack frame. sp is even more special:
2536 the address we return for it IS the sp for the next frame. */
2537
2538 void
2539 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
2540 struct frame_info *frame_info;
2541 struct frame_saved_regs *frame_saved_regs;
2542 {
2543 CORE_ADDR pc;
2544 struct unwind_table_entry *u;
2545 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2546 int status, i, reg;
2547 char buf[4];
2548 int fp_loc = -1;
2549
2550 /* Zero out everything. */
2551 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2552
2553 /* Call dummy frames always look the same, so there's no need to
2554 examine the dummy code to determine locations of saved registers;
2555 instead, let find_dummy_frame_regs fill in the correct offsets
2556 for the saved registers. */
2557 if ((frame_info->pc >= frame_info->frame
2558 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2559 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2560 + 6 * 4)))
2561 find_dummy_frame_regs (frame_info, frame_saved_regs);
2562
2563 /* Interrupt handlers are special too. They lay out the register
2564 state in the exact same order as the register numbers in GDB. */
2565 if (pc_in_interrupt_handler (frame_info->pc))
2566 {
2567 for (i = 0; i < NUM_REGS; i++)
2568 {
2569 /* SP is a little special. */
2570 if (i == SP_REGNUM)
2571 frame_saved_regs->regs[SP_REGNUM]
2572 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
2573 else
2574 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
2575 }
2576 return;
2577 }
2578
2579 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
2580 /* Handle signal handler callers. */
2581 if (frame_info->signal_handler_caller)
2582 {
2583 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
2584 return;
2585 }
2586 #endif
2587
2588 /* Get the starting address of the function referred to by the PC
2589 saved in frame. */
2590 pc = get_pc_function_start (frame_info->pc);
2591
2592 /* Yow! */
2593 u = find_unwind_entry (pc);
2594 if (!u)
2595 return;
2596
2597 /* This is how much of a frame adjustment we need to account for. */
2598 stack_remaining = u->Total_frame_size << 3;
2599
2600 /* Magic register saves we want to know about. */
2601 save_rp = u->Save_RP;
2602 save_sp = u->Save_SP;
2603
2604 /* Turn the Entry_GR field into a bitmask. */
2605 save_gr = 0;
2606 for (i = 3; i < u->Entry_GR + 3; i++)
2607 {
2608 /* Frame pointer gets saved into a special location. */
2609 if (u->Save_SP && i == FP_REGNUM)
2610 continue;
2611
2612 save_gr |= (1 << i);
2613 }
2614
2615 /* Turn the Entry_FR field into a bitmask too. */
2616 save_fr = 0;
2617 for (i = 12; i < u->Entry_FR + 12; i++)
2618 save_fr |= (1 << i);
2619
2620 /* The frame always represents the value of %sp at entry to the
2621 current function (and is thus equivalent to the "saved" stack
2622 pointer. */
2623 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
2624
2625 /* Loop until we find everything of interest or hit a branch.
2626
2627 For unoptimized GCC code and for any HP CC code this will never ever
2628 examine any user instructions.
2629
2630 For optimzied GCC code we're faced with problems. GCC will schedule
2631 its prologue and make prologue instructions available for delay slot
2632 filling. The end result is user code gets mixed in with the prologue
2633 and a prologue instruction may be in the delay slot of the first branch
2634 or call.
2635
2636 Some unexpected things are expected with debugging optimized code, so
2637 we allow this routine to walk past user instructions in optimized
2638 GCC code. */
2639 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2640 {
2641 status = target_read_memory (pc, buf, 4);
2642 inst = extract_unsigned_integer (buf, 4);
2643
2644 /* Yow! */
2645 if (status != 0)
2646 return;
2647
2648 /* Note the interesting effects of this instruction. */
2649 stack_remaining -= prologue_inst_adjust_sp (inst);
2650
2651 /* There is only one instruction used for saving RP into the stack. */
2652 if (inst == 0x6bc23fd9)
2653 {
2654 save_rp = 0;
2655 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
2656 }
2657
2658 /* Just note that we found the save of SP into the stack. The
2659 value for frame_saved_regs was computed above. */
2660 if ((inst & 0xffffc000) == 0x6fc10000)
2661 save_sp = 0;
2662
2663 /* Account for general and floating-point register saves. */
2664 reg = inst_saves_gr (inst);
2665 if (reg >= 3 && reg <= 18
2666 && (!u->Save_SP || reg != FP_REGNUM))
2667 {
2668 save_gr &= ~(1 << reg);
2669
2670 /* stwm with a positive displacement is a *post modify*. */
2671 if ((inst >> 26) == 0x1b
2672 && extract_14 (inst) >= 0)
2673 frame_saved_regs->regs[reg] = frame_info->frame;
2674 else
2675 {
2676 /* Handle code with and without frame pointers. */
2677 if (u->Save_SP)
2678 frame_saved_regs->regs[reg]
2679 = frame_info->frame + extract_14 (inst);
2680 else
2681 frame_saved_regs->regs[reg]
2682 = frame_info->frame + (u->Total_frame_size << 3)
2683 + extract_14 (inst);
2684 }
2685 }
2686
2687
2688 /* GCC handles callee saved FP regs a little differently.
2689
2690 It emits an instruction to put the value of the start of
2691 the FP store area into %r1. It then uses fstds,ma with
2692 a basereg of %r1 for the stores.
2693
2694 HP CC emits them at the current stack pointer modifying
2695 the stack pointer as it stores each register. */
2696
2697 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2698 if ((inst & 0xffffc000) == 0x34610000
2699 || (inst & 0xffffc000) == 0x37c10000)
2700 fp_loc = extract_14 (inst);
2701
2702 reg = inst_saves_fr (inst);
2703 if (reg >= 12 && reg <= 21)
2704 {
2705 /* Note +4 braindamage below is necessary because the FP status
2706 registers are internally 8 registers rather than the expected
2707 4 registers. */
2708 save_fr &= ~(1 << reg);
2709 if (fp_loc == -1)
2710 {
2711 /* 1st HP CC FP register store. After this instruction
2712 we've set enough state that the GCC and HPCC code are
2713 both handled in the same manner. */
2714 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
2715 fp_loc = 8;
2716 }
2717 else
2718 {
2719 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
2720 = frame_info->frame + fp_loc;
2721 fp_loc += 8;
2722 }
2723 }
2724
2725 /* Quit if we hit any kind of branch. This can happen if a prologue
2726 instruction is in the delay slot of the first call/branch. */
2727 if (is_branch (inst))
2728 break;
2729
2730 /* Bump the PC. */
2731 pc += 4;
2732 }
2733 }
2734
2735 #ifdef MAINTENANCE_CMDS
2736
2737 static void
2738 unwind_command (exp, from_tty)
2739 char *exp;
2740 int from_tty;
2741 {
2742 CORE_ADDR address;
2743 struct unwind_table_entry *u;
2744
2745 /* If we have an expression, evaluate it and use it as the address. */
2746
2747 if (exp != 0 && *exp != 0)
2748 address = parse_and_eval_address (exp);
2749 else
2750 return;
2751
2752 u = find_unwind_entry (address);
2753
2754 if (!u)
2755 {
2756 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2757 return;
2758 }
2759
2760 printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
2761
2762 printf_unfiltered ("\tregion_start = ");
2763 print_address (u->region_start, gdb_stdout);
2764
2765 printf_unfiltered ("\n\tregion_end = ");
2766 print_address (u->region_end, gdb_stdout);
2767
2768 #ifdef __STDC__
2769 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2770 #else
2771 #define pif(FLD) if (u->FLD) printf_unfiltered (" FLD");
2772 #endif
2773
2774 printf_unfiltered ("\n\tflags =");
2775 pif (Cannot_unwind);
2776 pif (Millicode);
2777 pif (Millicode_save_sr0);
2778 pif (Entry_SR);
2779 pif (Args_stored);
2780 pif (Variable_Frame);
2781 pif (Separate_Package_Body);
2782 pif (Frame_Extension_Millicode);
2783 pif (Stack_Overflow_Check);
2784 pif (Two_Instruction_SP_Increment);
2785 pif (Ada_Region);
2786 pif (Save_SP);
2787 pif (Save_RP);
2788 pif (Save_MRP_in_frame);
2789 pif (extn_ptr_defined);
2790 pif (Cleanup_defined);
2791 pif (MPE_XL_interrupt_marker);
2792 pif (HP_UX_interrupt_marker);
2793 pif (Large_frame);
2794
2795 putchar_unfiltered ('\n');
2796
2797 #ifdef __STDC__
2798 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2799 #else
2800 #define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD);
2801 #endif
2802
2803 pin (Region_description);
2804 pin (Entry_FR);
2805 pin (Entry_GR);
2806 pin (Total_frame_size);
2807 }
2808 #endif /* MAINTENANCE_CMDS */
2809
2810 void
2811 _initialize_hppa_tdep ()
2812 {
2813 tm_print_insn = print_insn_hppa;
2814
2815 #ifdef MAINTENANCE_CMDS
2816 add_cmd ("unwind", class_maintenance, unwind_command,
2817 "Print unwind table entry at given address.",
2818 &maintenanceprintlist);
2819 #endif /* MAINTENANCE_CMDS */
2820 }