]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/hppa-tdep.c
This commit was generated by cvs2svn to track changes on a CVS vendor
[thirdparty/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <signal.h>
38
39 #ifdef COFF_ENCAPSULATE
40 #include "a.out.encap.h"
41 #else
42 #endif
43
44 /*#include <sys/user.h> After a.out.h */
45 #include <sys/file.h>
46 #include "gdb_stat.h"
47 #include "wait.h"
48
49 #include "gdbcore.h"
50 #include "gdbcmd.h"
51 #include "target.h"
52 #include "symfile.h"
53 #include "objfiles.h"
54
55 static int extract_5_load PARAMS ((unsigned int));
56
57 static unsigned extract_5R_store PARAMS ((unsigned int));
58
59 static unsigned extract_5r_store PARAMS ((unsigned int));
60
61 static void find_dummy_frame_regs PARAMS ((struct frame_info *,
62 struct frame_saved_regs *));
63
64 static int find_proc_framesize PARAMS ((CORE_ADDR));
65
66 static int find_return_regnum PARAMS ((CORE_ADDR));
67
68 struct unwind_table_entry *find_unwind_entry PARAMS ((CORE_ADDR));
69
70 static int extract_17 PARAMS ((unsigned int));
71
72 static unsigned deposit_21 PARAMS ((unsigned int, unsigned int));
73
74 static int extract_21 PARAMS ((unsigned));
75
76 static unsigned deposit_14 PARAMS ((int, unsigned int));
77
78 static int extract_14 PARAMS ((unsigned));
79
80 static void unwind_command PARAMS ((char *, int));
81
82 static int low_sign_extend PARAMS ((unsigned int, unsigned int));
83
84 static int sign_extend PARAMS ((unsigned int, unsigned int));
85
86 static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
87
88 static int hppa_alignof PARAMS ((struct type *));
89
90 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
91
92 static int is_branch PARAMS ((unsigned long));
93
94 static int inst_saves_gr PARAMS ((unsigned long));
95
96 static int inst_saves_fr PARAMS ((unsigned long));
97
98 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
99
100 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
101
102 static int compare_unwind_entries PARAMS ((const void *, const void *));
103
104 static void read_unwind_info PARAMS ((struct objfile *));
105
106 static void internalize_unwinds PARAMS ((struct objfile *,
107 struct unwind_table_entry *,
108 asection *, unsigned int,
109 unsigned int, CORE_ADDR));
110 static void pa_print_registers PARAMS ((char *, int, int));
111 static void pa_print_fp_reg PARAMS ((int));
112
113 \f
114 /* Routines to extract various sized constants out of hppa
115 instructions. */
116
117 /* This assumes that no garbage lies outside of the lower bits of
118 value. */
119
120 static int
121 sign_extend (val, bits)
122 unsigned val, bits;
123 {
124 return (int)(val >> (bits - 1) ? (-1 << bits) | val : val);
125 }
126
127 /* For many immediate values the sign bit is the low bit! */
128
129 static int
130 low_sign_extend (val, bits)
131 unsigned val, bits;
132 {
133 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
134 }
135
136 /* extract the immediate field from a ld{bhw}s instruction */
137
138 #if 0
139
140 unsigned
141 get_field (val, from, to)
142 unsigned val, from, to;
143 {
144 val = val >> 31 - to;
145 return val & ((1 << 32 - from) - 1);
146 }
147
148 unsigned
149 set_field (val, from, to, new_val)
150 unsigned *val, from, to;
151 {
152 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
153 return *val = *val & mask | (new_val << (31 - from));
154 }
155
156 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
157
158 int
159 extract_3 (word)
160 unsigned word;
161 {
162 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
163 }
164
165 #endif
166
167 static int
168 extract_5_load (word)
169 unsigned word;
170 {
171 return low_sign_extend (word >> 16 & MASK_5, 5);
172 }
173
174 #if 0
175
176 /* extract the immediate field from a st{bhw}s instruction */
177
178 int
179 extract_5_store (word)
180 unsigned word;
181 {
182 return low_sign_extend (word & MASK_5, 5);
183 }
184
185 #endif /* 0 */
186
187 /* extract the immediate field from a break instruction */
188
189 static unsigned
190 extract_5r_store (word)
191 unsigned word;
192 {
193 return (word & MASK_5);
194 }
195
196 /* extract the immediate field from a {sr}sm instruction */
197
198 static unsigned
199 extract_5R_store (word)
200 unsigned word;
201 {
202 return (word >> 16 & MASK_5);
203 }
204
205 /* extract an 11 bit immediate field */
206
207 #if 0
208
209 int
210 extract_11 (word)
211 unsigned word;
212 {
213 return low_sign_extend (word & MASK_11, 11);
214 }
215
216 #endif
217
218 /* extract a 14 bit immediate field */
219
220 static int
221 extract_14 (word)
222 unsigned word;
223 {
224 return low_sign_extend (word & MASK_14, 14);
225 }
226
227 /* deposit a 14 bit constant in a word */
228
229 static unsigned
230 deposit_14 (opnd, word)
231 int opnd;
232 unsigned word;
233 {
234 unsigned sign = (opnd < 0 ? 1 : 0);
235
236 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
237 }
238
239 /* extract a 21 bit constant */
240
241 static int
242 extract_21 (word)
243 unsigned word;
244 {
245 int val;
246
247 word &= MASK_21;
248 word <<= 11;
249 val = GET_FIELD (word, 20, 20);
250 val <<= 11;
251 val |= GET_FIELD (word, 9, 19);
252 val <<= 2;
253 val |= GET_FIELD (word, 5, 6);
254 val <<= 5;
255 val |= GET_FIELD (word, 0, 4);
256 val <<= 2;
257 val |= GET_FIELD (word, 7, 8);
258 return sign_extend (val, 21) << 11;
259 }
260
261 /* deposit a 21 bit constant in a word. Although 21 bit constants are
262 usually the top 21 bits of a 32 bit constant, we assume that only
263 the low 21 bits of opnd are relevant */
264
265 static unsigned
266 deposit_21 (opnd, word)
267 unsigned opnd, word;
268 {
269 unsigned val = 0;
270
271 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
272 val <<= 2;
273 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
274 val <<= 2;
275 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
276 val <<= 11;
277 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
278 val <<= 1;
279 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
280 return word | val;
281 }
282
283 /* extract a 12 bit constant from branch instructions */
284
285 #if 0
286
287 int
288 extract_12 (word)
289 unsigned word;
290 {
291 return sign_extend (GET_FIELD (word, 19, 28) |
292 GET_FIELD (word, 29, 29) << 10 |
293 (word & 0x1) << 11, 12) << 2;
294 }
295
296 /* Deposit a 17 bit constant in an instruction (like bl). */
297
298 unsigned int
299 deposit_17 (opnd, word)
300 unsigned opnd, word;
301 {
302 word |= GET_FIELD (opnd, 15 + 0, 15 + 0); /* w */
303 word |= GET_FIELD (opnd, 15 + 1, 15 + 5) << 16; /* w1 */
304 word |= GET_FIELD (opnd, 15 + 6, 15 + 6) << 2; /* w2[10] */
305 word |= GET_FIELD (opnd, 15 + 7, 15 + 16) << 3; /* w2[0..9] */
306
307 return word;
308 }
309
310 #endif
311
312 /* extract a 17 bit constant from branch instructions, returning the
313 19 bit signed value. */
314
315 static int
316 extract_17 (word)
317 unsigned word;
318 {
319 return sign_extend (GET_FIELD (word, 19, 28) |
320 GET_FIELD (word, 29, 29) << 10 |
321 GET_FIELD (word, 11, 15) << 11 |
322 (word & 0x1) << 16, 17) << 2;
323 }
324 \f
325
326 /* Compare the start address for two unwind entries returning 1 if
327 the first address is larger than the second, -1 if the second is
328 larger than the first, and zero if they are equal. */
329
330 static int
331 compare_unwind_entries (arg1, arg2)
332 const void *arg1;
333 const void *arg2;
334 {
335 const struct unwind_table_entry *a = arg1;
336 const struct unwind_table_entry *b = arg2;
337
338 if (a->region_start > b->region_start)
339 return 1;
340 else if (a->region_start < b->region_start)
341 return -1;
342 else
343 return 0;
344 }
345
346 static void
347 internalize_unwinds (objfile, table, section, entries, size, text_offset)
348 struct objfile *objfile;
349 struct unwind_table_entry *table;
350 asection *section;
351 unsigned int entries, size;
352 CORE_ADDR text_offset;
353 {
354 /* We will read the unwind entries into temporary memory, then
355 fill in the actual unwind table. */
356 if (size > 0)
357 {
358 unsigned long tmp;
359 unsigned i;
360 char *buf = alloca (size);
361
362 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
363
364 /* Now internalize the information being careful to handle host/target
365 endian issues. */
366 for (i = 0; i < entries; i++)
367 {
368 table[i].region_start = bfd_get_32 (objfile->obfd,
369 (bfd_byte *)buf);
370 table[i].region_start += text_offset;
371 buf += 4;
372 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
373 table[i].region_end += text_offset;
374 buf += 4;
375 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
376 buf += 4;
377 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
378 table[i].Millicode = (tmp >> 30) & 0x1;
379 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
380 table[i].Region_description = (tmp >> 27) & 0x3;
381 table[i].reserved1 = (tmp >> 26) & 0x1;
382 table[i].Entry_SR = (tmp >> 25) & 0x1;
383 table[i].Entry_FR = (tmp >> 21) & 0xf;
384 table[i].Entry_GR = (tmp >> 16) & 0x1f;
385 table[i].Args_stored = (tmp >> 15) & 0x1;
386 table[i].Variable_Frame = (tmp >> 14) & 0x1;
387 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
388 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
389 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
390 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
391 table[i].Ada_Region = (tmp >> 9) & 0x1;
392 table[i].reserved2 = (tmp >> 5) & 0xf;
393 table[i].Save_SP = (tmp >> 4) & 0x1;
394 table[i].Save_RP = (tmp >> 3) & 0x1;
395 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
396 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
397 table[i].Cleanup_defined = tmp & 0x1;
398 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
399 buf += 4;
400 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
401 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
402 table[i].Large_frame = (tmp >> 29) & 0x1;
403 table[i].reserved4 = (tmp >> 27) & 0x3;
404 table[i].Total_frame_size = tmp & 0x7ffffff;
405 }
406 }
407 }
408
409 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
410 the object file. This info is used mainly by find_unwind_entry() to find
411 out the stack frame size and frame pointer used by procedures. We put
412 everything on the psymbol obstack in the objfile so that it automatically
413 gets freed when the objfile is destroyed. */
414
415 static void
416 read_unwind_info (objfile)
417 struct objfile *objfile;
418 {
419 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
420 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
421 unsigned index, unwind_entries, elf_unwind_entries;
422 unsigned stub_entries, total_entries;
423 CORE_ADDR text_offset;
424 struct obj_unwind_info *ui;
425
426 text_offset = ANOFFSET (objfile->section_offsets, 0);
427 ui = (struct obj_unwind_info *)obstack_alloc (&objfile->psymbol_obstack,
428 sizeof (struct obj_unwind_info));
429
430 ui->table = NULL;
431 ui->cache = NULL;
432 ui->last = -1;
433
434 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
435 section in ELF at the moment. */
436 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
437 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
438 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
439
440 /* Get sizes and unwind counts for all sections. */
441 if (unwind_sec)
442 {
443 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
444 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
445 }
446 else
447 {
448 unwind_size = 0;
449 unwind_entries = 0;
450 }
451
452 if (elf_unwind_sec)
453 {
454 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
455 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
456 }
457 else
458 {
459 elf_unwind_size = 0;
460 elf_unwind_entries = 0;
461 }
462
463 if (stub_unwind_sec)
464 {
465 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
466 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
467 }
468 else
469 {
470 stub_unwind_size = 0;
471 stub_entries = 0;
472 }
473
474 /* Compute total number of unwind entries and their total size. */
475 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
476 total_size = total_entries * sizeof (struct unwind_table_entry);
477
478 /* Allocate memory for the unwind table. */
479 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
480 ui->last = total_entries - 1;
481
482 /* Internalize the standard unwind entries. */
483 index = 0;
484 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
485 unwind_entries, unwind_size, text_offset);
486 index += unwind_entries;
487 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
488 elf_unwind_entries, elf_unwind_size, text_offset);
489 index += elf_unwind_entries;
490
491 /* Now internalize the stub unwind entries. */
492 if (stub_unwind_size > 0)
493 {
494 unsigned int i;
495 char *buf = alloca (stub_unwind_size);
496
497 /* Read in the stub unwind entries. */
498 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
499 0, stub_unwind_size);
500
501 /* Now convert them into regular unwind entries. */
502 for (i = 0; i < stub_entries; i++, index++)
503 {
504 /* Clear out the next unwind entry. */
505 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
506
507 /* Convert offset & size into region_start and region_end.
508 Stuff away the stub type into "reserved" fields. */
509 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
510 (bfd_byte *) buf);
511 ui->table[index].region_start += text_offset;
512 buf += 4;
513 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
514 (bfd_byte *) buf);
515 buf += 2;
516 ui->table[index].region_end
517 = ui->table[index].region_start + 4 *
518 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
519 buf += 2;
520 }
521
522 }
523
524 /* Unwind table needs to be kept sorted. */
525 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
526 compare_unwind_entries);
527
528 /* Keep a pointer to the unwind information. */
529 objfile->obj_private = (PTR) ui;
530 }
531
532 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
533 of the objfiles seeking the unwind table entry for this PC. Each objfile
534 contains a sorted list of struct unwind_table_entry. Since we do a binary
535 search of the unwind tables, we depend upon them to be sorted. */
536
537 struct unwind_table_entry *
538 find_unwind_entry(pc)
539 CORE_ADDR pc;
540 {
541 int first, middle, last;
542 struct objfile *objfile;
543
544 ALL_OBJFILES (objfile)
545 {
546 struct obj_unwind_info *ui;
547
548 ui = OBJ_UNWIND_INFO (objfile);
549
550 if (!ui)
551 {
552 read_unwind_info (objfile);
553 ui = OBJ_UNWIND_INFO (objfile);
554 }
555
556 /* First, check the cache */
557
558 if (ui->cache
559 && pc >= ui->cache->region_start
560 && pc <= ui->cache->region_end)
561 return ui->cache;
562
563 /* Not in the cache, do a binary search */
564
565 first = 0;
566 last = ui->last;
567
568 while (first <= last)
569 {
570 middle = (first + last) / 2;
571 if (pc >= ui->table[middle].region_start
572 && pc <= ui->table[middle].region_end)
573 {
574 ui->cache = &ui->table[middle];
575 return &ui->table[middle];
576 }
577
578 if (pc < ui->table[middle].region_start)
579 last = middle - 1;
580 else
581 first = middle + 1;
582 }
583 } /* ALL_OBJFILES() */
584 return NULL;
585 }
586
587 /* Return the adjustment necessary to make for addresses on the stack
588 as presented by hpread.c.
589
590 This is necessary because of the stack direction on the PA and the
591 bizarre way in which someone (?) decided they wanted to handle
592 frame pointerless code in GDB. */
593 int
594 hpread_adjust_stack_address (func_addr)
595 CORE_ADDR func_addr;
596 {
597 struct unwind_table_entry *u;
598
599 u = find_unwind_entry (func_addr);
600 if (!u)
601 return 0;
602 else
603 return u->Total_frame_size << 3;
604 }
605
606 /* Called to determine if PC is in an interrupt handler of some
607 kind. */
608
609 static int
610 pc_in_interrupt_handler (pc)
611 CORE_ADDR pc;
612 {
613 struct unwind_table_entry *u;
614 struct minimal_symbol *msym_us;
615
616 u = find_unwind_entry (pc);
617 if (!u)
618 return 0;
619
620 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
621 its frame isn't a pure interrupt frame. Deal with this. */
622 msym_us = lookup_minimal_symbol_by_pc (pc);
623
624 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
625 }
626
627 /* Called when no unwind descriptor was found for PC. Returns 1 if it
628 appears that PC is in a linker stub. */
629
630 static int
631 pc_in_linker_stub (pc)
632 CORE_ADDR pc;
633 {
634 int found_magic_instruction = 0;
635 int i;
636 char buf[4];
637
638 /* If unable to read memory, assume pc is not in a linker stub. */
639 if (target_read_memory (pc, buf, 4) != 0)
640 return 0;
641
642 /* We are looking for something like
643
644 ; $$dyncall jams RP into this special spot in the frame (RP')
645 ; before calling the "call stub"
646 ldw -18(sp),rp
647
648 ldsid (rp),r1 ; Get space associated with RP into r1
649 mtsp r1,sp ; Move it into space register 0
650 be,n 0(sr0),rp) ; back to your regularly scheduled program
651 */
652
653 /* Maximum known linker stub size is 4 instructions. Search forward
654 from the given PC, then backward. */
655 for (i = 0; i < 4; i++)
656 {
657 /* If we hit something with an unwind, stop searching this direction. */
658
659 if (find_unwind_entry (pc + i * 4) != 0)
660 break;
661
662 /* Check for ldsid (rp),r1 which is the magic instruction for a
663 return from a cross-space function call. */
664 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
665 {
666 found_magic_instruction = 1;
667 break;
668 }
669 /* Add code to handle long call/branch and argument relocation stubs
670 here. */
671 }
672
673 if (found_magic_instruction != 0)
674 return 1;
675
676 /* Now look backward. */
677 for (i = 0; i < 4; i++)
678 {
679 /* If we hit something with an unwind, stop searching this direction. */
680
681 if (find_unwind_entry (pc - i * 4) != 0)
682 break;
683
684 /* Check for ldsid (rp),r1 which is the magic instruction for a
685 return from a cross-space function call. */
686 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
687 {
688 found_magic_instruction = 1;
689 break;
690 }
691 /* Add code to handle long call/branch and argument relocation stubs
692 here. */
693 }
694 return found_magic_instruction;
695 }
696
697 static int
698 find_return_regnum(pc)
699 CORE_ADDR pc;
700 {
701 struct unwind_table_entry *u;
702
703 u = find_unwind_entry (pc);
704
705 if (!u)
706 return RP_REGNUM;
707
708 if (u->Millicode)
709 return 31;
710
711 return RP_REGNUM;
712 }
713
714 /* Return size of frame, or -1 if we should use a frame pointer. */
715 static int
716 find_proc_framesize (pc)
717 CORE_ADDR pc;
718 {
719 struct unwind_table_entry *u;
720 struct minimal_symbol *msym_us;
721
722 u = find_unwind_entry (pc);
723
724 if (!u)
725 {
726 if (pc_in_linker_stub (pc))
727 /* Linker stubs have a zero size frame. */
728 return 0;
729 else
730 return -1;
731 }
732
733 msym_us = lookup_minimal_symbol_by_pc (pc);
734
735 /* If Save_SP is set, and we're not in an interrupt or signal caller,
736 then we have a frame pointer. Use it. */
737 if (u->Save_SP && !pc_in_interrupt_handler (pc)
738 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
739 return -1;
740
741 return u->Total_frame_size << 3;
742 }
743
744 /* Return offset from sp at which rp is saved, or 0 if not saved. */
745 static int rp_saved PARAMS ((CORE_ADDR));
746
747 static int
748 rp_saved (pc)
749 CORE_ADDR pc;
750 {
751 struct unwind_table_entry *u;
752
753 u = find_unwind_entry (pc);
754
755 if (!u)
756 {
757 if (pc_in_linker_stub (pc))
758 /* This is the so-called RP'. */
759 return -24;
760 else
761 return 0;
762 }
763
764 if (u->Save_RP)
765 return -20;
766 else if (u->stub_type != 0)
767 {
768 switch (u->stub_type)
769 {
770 case EXPORT:
771 case IMPORT:
772 return -24;
773 case PARAMETER_RELOCATION:
774 return -8;
775 default:
776 return 0;
777 }
778 }
779 else
780 return 0;
781 }
782 \f
783 int
784 frameless_function_invocation (frame)
785 struct frame_info *frame;
786 {
787 struct unwind_table_entry *u;
788
789 u = find_unwind_entry (frame->pc);
790
791 if (u == 0)
792 return 0;
793
794 return (u->Total_frame_size == 0 && u->stub_type == 0);
795 }
796
797 CORE_ADDR
798 saved_pc_after_call (frame)
799 struct frame_info *frame;
800 {
801 int ret_regnum;
802 CORE_ADDR pc;
803 struct unwind_table_entry *u;
804
805 ret_regnum = find_return_regnum (get_frame_pc (frame));
806 pc = read_register (ret_regnum) & ~0x3;
807
808 /* If PC is in a linker stub, then we need to dig the address
809 the stub will return to out of the stack. */
810 u = find_unwind_entry (pc);
811 if (u && u->stub_type != 0)
812 return FRAME_SAVED_PC (frame);
813 else
814 return pc;
815 }
816 \f
817 CORE_ADDR
818 hppa_frame_saved_pc (frame)
819 struct frame_info *frame;
820 {
821 CORE_ADDR pc = get_frame_pc (frame);
822 struct unwind_table_entry *u;
823
824 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
825 at the base of the frame in an interrupt handler. Registers within
826 are saved in the exact same order as GDB numbers registers. How
827 convienent. */
828 if (pc_in_interrupt_handler (pc))
829 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
830
831 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
832 /* Deal with signal handler caller frames too. */
833 if (frame->signal_handler_caller)
834 {
835 CORE_ADDR rp;
836 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
837 return rp & ~0x3;
838 }
839 #endif
840
841 if (frameless_function_invocation (frame))
842 {
843 int ret_regnum;
844
845 ret_regnum = find_return_regnum (pc);
846
847 /* If the next frame is an interrupt frame or a signal
848 handler caller, then we need to look in the saved
849 register area to get the return pointer (the values
850 in the registers may not correspond to anything useful). */
851 if (frame->next
852 && (frame->next->signal_handler_caller
853 || pc_in_interrupt_handler (frame->next->pc)))
854 {
855 struct frame_saved_regs saved_regs;
856
857 get_frame_saved_regs (frame->next, &saved_regs);
858 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
859 {
860 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
861
862 /* Syscalls are really two frames. The syscall stub itself
863 with a return pointer in %rp and the kernel call with
864 a return pointer in %r31. We return the %rp variant
865 if %r31 is the same as frame->pc. */
866 if (pc == frame->pc)
867 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
868 }
869 else
870 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
871 }
872 else
873 pc = read_register (ret_regnum) & ~0x3;
874 }
875 else
876 {
877 int rp_offset;
878
879 restart:
880 rp_offset = rp_saved (pc);
881 /* Similar to code in frameless function case. If the next
882 frame is a signal or interrupt handler, then dig the right
883 information out of the saved register info. */
884 if (rp_offset == 0
885 && frame->next
886 && (frame->next->signal_handler_caller
887 || pc_in_interrupt_handler (frame->next->pc)))
888 {
889 struct frame_saved_regs saved_regs;
890
891 get_frame_saved_regs (frame->next, &saved_regs);
892 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
893 {
894 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
895
896 /* Syscalls are really two frames. The syscall stub itself
897 with a return pointer in %rp and the kernel call with
898 a return pointer in %r31. We return the %rp variant
899 if %r31 is the same as frame->pc. */
900 if (pc == frame->pc)
901 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
902 }
903 else
904 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
905 }
906 else if (rp_offset == 0)
907 pc = read_register (RP_REGNUM) & ~0x3;
908 else
909 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
910 }
911
912 /* If PC is inside a linker stub, then dig out the address the stub
913 will return to.
914
915 Don't do this for long branch stubs. Why? For some unknown reason
916 _start is marked as a long branch stub in hpux10. */
917 u = find_unwind_entry (pc);
918 if (u && u->stub_type != 0
919 && u->stub_type != LONG_BRANCH)
920 {
921 unsigned int insn;
922
923 /* If this is a dynamic executable, and we're in a signal handler,
924 then the call chain will eventually point us into the stub for
925 _sigreturn. Unlike most cases, we'll be pointed to the branch
926 to the real sigreturn rather than the code after the real branch!.
927
928 Else, try to dig the address the stub will return to in the normal
929 fashion. */
930 insn = read_memory_integer (pc, 4);
931 if ((insn & 0xfc00e000) == 0xe8000000)
932 return (pc + extract_17 (insn) + 8) & ~0x3;
933 else
934 goto restart;
935 }
936
937 return pc;
938 }
939 \f
940 /* We need to correct the PC and the FP for the outermost frame when we are
941 in a system call. */
942
943 void
944 init_extra_frame_info (fromleaf, frame)
945 int fromleaf;
946 struct frame_info *frame;
947 {
948 int flags;
949 int framesize;
950
951 if (frame->next && !fromleaf)
952 return;
953
954 /* If the next frame represents a frameless function invocation
955 then we have to do some adjustments that are normally done by
956 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
957 if (fromleaf)
958 {
959 /* Find the framesize of *this* frame without peeking at the PC
960 in the current frame structure (it isn't set yet). */
961 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
962
963 /* Now adjust our base frame accordingly. If we have a frame pointer
964 use it, else subtract the size of this frame from the current
965 frame. (we always want frame->frame to point at the lowest address
966 in the frame). */
967 if (framesize == -1)
968 frame->frame = read_register (FP_REGNUM);
969 else
970 frame->frame -= framesize;
971 return;
972 }
973
974 flags = read_register (FLAGS_REGNUM);
975 if (flags & 2) /* In system call? */
976 frame->pc = read_register (31) & ~0x3;
977
978 /* The outermost frame is always derived from PC-framesize
979
980 One might think frameless innermost frames should have
981 a frame->frame that is the same as the parent's frame->frame.
982 That is wrong; frame->frame in that case should be the *high*
983 address of the parent's frame. It's complicated as hell to
984 explain, but the parent *always* creates some stack space for
985 the child. So the child actually does have a frame of some
986 sorts, and its base is the high address in its parent's frame. */
987 framesize = find_proc_framesize(frame->pc);
988 if (framesize == -1)
989 frame->frame = read_register (FP_REGNUM);
990 else
991 frame->frame = read_register (SP_REGNUM) - framesize;
992 }
993 \f
994 /* Given a GDB frame, determine the address of the calling function's frame.
995 This will be used to create a new GDB frame struct, and then
996 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
997
998 This may involve searching through prologues for several functions
999 at boundaries where GCC calls HP C code, or where code which has
1000 a frame pointer calls code without a frame pointer. */
1001
1002 CORE_ADDR
1003 frame_chain (frame)
1004 struct frame_info *frame;
1005 {
1006 int my_framesize, caller_framesize;
1007 struct unwind_table_entry *u;
1008 CORE_ADDR frame_base;
1009 struct frame_info *tmp_frame;
1010
1011 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1012 are easy; at *sp we have a full save state strucutre which we can
1013 pull the old stack pointer from. Also see frame_saved_pc for
1014 code to dig a saved PC out of the save state structure. */
1015 if (pc_in_interrupt_handler (frame->pc))
1016 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
1017 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1018 else if (frame->signal_handler_caller)
1019 {
1020 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1021 }
1022 #endif
1023 else
1024 frame_base = frame->frame;
1025
1026 /* Get frame sizes for the current frame and the frame of the
1027 caller. */
1028 my_framesize = find_proc_framesize (frame->pc);
1029 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
1030
1031 /* If caller does not have a frame pointer, then its frame
1032 can be found at current_frame - caller_framesize. */
1033 if (caller_framesize != -1)
1034 return frame_base - caller_framesize;
1035
1036 /* Both caller and callee have frame pointers and are GCC compiled
1037 (SAVE_SP bit in unwind descriptor is on for both functions.
1038 The previous frame pointer is found at the top of the current frame. */
1039 if (caller_framesize == -1 && my_framesize == -1)
1040 return read_memory_integer (frame_base, 4);
1041
1042 /* Caller has a frame pointer, but callee does not. This is a little
1043 more difficult as GCC and HP C lay out locals and callee register save
1044 areas very differently.
1045
1046 The previous frame pointer could be in a register, or in one of
1047 several areas on the stack.
1048
1049 Walk from the current frame to the innermost frame examining
1050 unwind descriptors to determine if %r3 ever gets saved into the
1051 stack. If so return whatever value got saved into the stack.
1052 If it was never saved in the stack, then the value in %r3 is still
1053 valid, so use it.
1054
1055 We use information from unwind descriptors to determine if %r3
1056 is saved into the stack (Entry_GR field has this information). */
1057
1058 tmp_frame = frame;
1059 while (tmp_frame)
1060 {
1061 u = find_unwind_entry (tmp_frame->pc);
1062
1063 if (!u)
1064 {
1065 /* We could find this information by examining prologues. I don't
1066 think anyone has actually written any tools (not even "strip")
1067 which leave them out of an executable, so maybe this is a moot
1068 point. */
1069 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1070 return 0;
1071 }
1072
1073 /* Entry_GR specifies the number of callee-saved general registers
1074 saved in the stack. It starts at %r3, so %r3 would be 1. */
1075 if (u->Entry_GR >= 1 || u->Save_SP
1076 || tmp_frame->signal_handler_caller
1077 || pc_in_interrupt_handler (tmp_frame->pc))
1078 break;
1079 else
1080 tmp_frame = tmp_frame->next;
1081 }
1082
1083 if (tmp_frame)
1084 {
1085 /* We may have walked down the chain into a function with a frame
1086 pointer. */
1087 if (u->Save_SP
1088 && !tmp_frame->signal_handler_caller
1089 && !pc_in_interrupt_handler (tmp_frame->pc))
1090 return read_memory_integer (tmp_frame->frame, 4);
1091 /* %r3 was saved somewhere in the stack. Dig it out. */
1092 else
1093 {
1094 struct frame_saved_regs saved_regs;
1095
1096 /* Sick.
1097
1098 For optimization purposes many kernels don't have the
1099 callee saved registers into the save_state structure upon
1100 entry into the kernel for a syscall; the optimization
1101 is usually turned off if the process is being traced so
1102 that the debugger can get full register state for the
1103 process.
1104
1105 This scheme works well except for two cases:
1106
1107 * Attaching to a process when the process is in the
1108 kernel performing a system call (debugger can't get
1109 full register state for the inferior process since
1110 the process wasn't being traced when it entered the
1111 system call).
1112
1113 * Register state is not complete if the system call
1114 causes the process to core dump.
1115
1116
1117 The following heinous code is an attempt to deal with
1118 the lack of register state in a core dump. It will
1119 fail miserably if the function which performs the
1120 system call has a variable sized stack frame. */
1121
1122 get_frame_saved_regs (tmp_frame, &saved_regs);
1123
1124 /* Abominable hack. */
1125 if (current_target.to_has_execution == 0
1126 && ((saved_regs.regs[FLAGS_REGNUM]
1127 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
1128 & 0x2))
1129 || (saved_regs.regs[FLAGS_REGNUM] == 0
1130 && read_register (FLAGS_REGNUM) & 0x2)))
1131 {
1132 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1133 if (!u)
1134 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1135 else
1136 return frame_base - (u->Total_frame_size << 3);
1137 }
1138
1139 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1140 }
1141 }
1142 else
1143 {
1144 struct frame_saved_regs saved_regs;
1145
1146 /* Get the innermost frame. */
1147 tmp_frame = frame;
1148 while (tmp_frame->next != NULL)
1149 tmp_frame = tmp_frame->next;
1150
1151 get_frame_saved_regs (tmp_frame, &saved_regs);
1152 /* Abominable hack. See above. */
1153 if (current_target.to_has_execution == 0
1154 && ((saved_regs.regs[FLAGS_REGNUM]
1155 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
1156 & 0x2))
1157 || (saved_regs.regs[FLAGS_REGNUM] == 0
1158 && read_register (FLAGS_REGNUM) & 0x2)))
1159 {
1160 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1161 if (!u)
1162 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1163 else
1164 return frame_base - (u->Total_frame_size << 3);
1165 }
1166
1167 /* The value in %r3 was never saved into the stack (thus %r3 still
1168 holds the value of the previous frame pointer). */
1169 return read_register (FP_REGNUM);
1170 }
1171 }
1172
1173 \f
1174 /* To see if a frame chain is valid, see if the caller looks like it
1175 was compiled with gcc. */
1176
1177 int
1178 frame_chain_valid (chain, thisframe)
1179 CORE_ADDR chain;
1180 struct frame_info *thisframe;
1181 {
1182 struct minimal_symbol *msym_us;
1183 struct minimal_symbol *msym_start;
1184 struct unwind_table_entry *u, *next_u = NULL;
1185 struct frame_info *next;
1186
1187 if (!chain)
1188 return 0;
1189
1190 u = find_unwind_entry (thisframe->pc);
1191
1192 if (u == NULL)
1193 return 1;
1194
1195 /* We can't just check that the same of msym_us is "_start", because
1196 someone idiotically decided that they were going to make a Ltext_end
1197 symbol with the same address. This Ltext_end symbol is totally
1198 indistinguishable (as nearly as I can tell) from the symbol for a function
1199 which is (legitimately, since it is in the user's namespace)
1200 named Ltext_end, so we can't just ignore it. */
1201 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1202 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1203 if (msym_us
1204 && msym_start
1205 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1206 return 0;
1207
1208 /* Grrrr. Some new idiot decided that they don't want _start for the
1209 PRO configurations; $START$ calls main directly.... Deal with it. */
1210 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1211 if (msym_us
1212 && msym_start
1213 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1214 return 0;
1215
1216 next = get_next_frame (thisframe);
1217 if (next)
1218 next_u = find_unwind_entry (next->pc);
1219
1220 /* If this frame does not save SP, has no stack, isn't a stub,
1221 and doesn't "call" an interrupt routine or signal handler caller,
1222 then its not valid. */
1223 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1224 || (thisframe->next && thisframe->next->signal_handler_caller)
1225 || (next_u && next_u->HP_UX_interrupt_marker))
1226 return 1;
1227
1228 if (pc_in_linker_stub (thisframe->pc))
1229 return 1;
1230
1231 return 0;
1232 }
1233
1234 /*
1235 * These functions deal with saving and restoring register state
1236 * around a function call in the inferior. They keep the stack
1237 * double-word aligned; eventually, on an hp700, the stack will have
1238 * to be aligned to a 64-byte boundary.
1239 */
1240
1241 void
1242 push_dummy_frame (inf_status)
1243 struct inferior_status *inf_status;
1244 {
1245 CORE_ADDR sp, pc, pcspace;
1246 register int regnum;
1247 int int_buffer;
1248 double freg_buffer;
1249
1250 /* Oh, what a hack. If we're trying to perform an inferior call
1251 while the inferior is asleep, we have to make sure to clear
1252 the "in system call" bit in the flag register (the call will
1253 start after the syscall returns, so we're no longer in the system
1254 call!) This state is kept in "inf_status", change it there.
1255
1256 We also need a number of horrid hacks to deal with lossage in the
1257 PC queue registers (apparently they're not valid when the in syscall
1258 bit is set). */
1259 pc = target_read_pc (inferior_pid);
1260 int_buffer = read_register (FLAGS_REGNUM);
1261 if (int_buffer & 0x2)
1262 {
1263 unsigned int sid;
1264 int_buffer &= ~0x2;
1265 memcpy (inf_status->registers, &int_buffer, 4);
1266 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4);
1267 pc += 4;
1268 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4);
1269 pc -= 4;
1270 sid = (pc >> 30) & 0x3;
1271 if (sid == 0)
1272 pcspace = read_register (SR4_REGNUM);
1273 else
1274 pcspace = read_register (SR4_REGNUM + 4 + sid);
1275 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM),
1276 &pcspace, 4);
1277 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM),
1278 &pcspace, 4);
1279 }
1280 else
1281 pcspace = read_register (PCSQ_HEAD_REGNUM);
1282
1283 /* Space for "arguments"; the RP goes in here. */
1284 sp = read_register (SP_REGNUM) + 48;
1285 int_buffer = read_register (RP_REGNUM) | 0x3;
1286 write_memory (sp - 20, (char *)&int_buffer, 4);
1287
1288 int_buffer = read_register (FP_REGNUM);
1289 write_memory (sp, (char *)&int_buffer, 4);
1290
1291 write_register (FP_REGNUM, sp);
1292
1293 sp += 8;
1294
1295 for (regnum = 1; regnum < 32; regnum++)
1296 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1297 sp = push_word (sp, read_register (regnum));
1298
1299 sp += 4;
1300
1301 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1302 {
1303 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1304 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1305 }
1306 sp = push_word (sp, read_register (IPSW_REGNUM));
1307 sp = push_word (sp, read_register (SAR_REGNUM));
1308 sp = push_word (sp, pc);
1309 sp = push_word (sp, pcspace);
1310 sp = push_word (sp, pc + 4);
1311 sp = push_word (sp, pcspace);
1312 write_register (SP_REGNUM, sp);
1313 }
1314
1315 static void
1316 find_dummy_frame_regs (frame, frame_saved_regs)
1317 struct frame_info *frame;
1318 struct frame_saved_regs *frame_saved_regs;
1319 {
1320 CORE_ADDR fp = frame->frame;
1321 int i;
1322
1323 frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
1324 frame_saved_regs->regs[FP_REGNUM] = fp;
1325 frame_saved_regs->regs[1] = fp + 8;
1326
1327 for (fp += 12, i = 3; i < 32; i++)
1328 {
1329 if (i != FP_REGNUM)
1330 {
1331 frame_saved_regs->regs[i] = fp;
1332 fp += 4;
1333 }
1334 }
1335
1336 fp += 4;
1337 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1338 frame_saved_regs->regs[i] = fp;
1339
1340 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1341 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1342 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1343 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1344 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1345 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1346 }
1347
1348 void
1349 hppa_pop_frame ()
1350 {
1351 register struct frame_info *frame = get_current_frame ();
1352 register CORE_ADDR fp, npc, target_pc;
1353 register int regnum;
1354 struct frame_saved_regs fsr;
1355 double freg_buffer;
1356
1357 fp = FRAME_FP (frame);
1358 get_frame_saved_regs (frame, &fsr);
1359
1360 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1361 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1362 restore_pc_queue (&fsr);
1363 #endif
1364
1365 for (regnum = 31; regnum > 0; regnum--)
1366 if (fsr.regs[regnum])
1367 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1368
1369 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1370 if (fsr.regs[regnum])
1371 {
1372 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1373 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1374 }
1375
1376 if (fsr.regs[IPSW_REGNUM])
1377 write_register (IPSW_REGNUM,
1378 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1379
1380 if (fsr.regs[SAR_REGNUM])
1381 write_register (SAR_REGNUM,
1382 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1383
1384 /* If the PC was explicitly saved, then just restore it. */
1385 if (fsr.regs[PCOQ_TAIL_REGNUM])
1386 {
1387 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4);
1388 write_register (PCOQ_TAIL_REGNUM, npc);
1389 }
1390 /* Else use the value in %rp to set the new PC. */
1391 else
1392 {
1393 npc = read_register (RP_REGNUM);
1394 write_pc (npc);
1395 }
1396
1397 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1398
1399 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1400 write_register (SP_REGNUM, fp - 48);
1401 else
1402 write_register (SP_REGNUM, fp);
1403
1404 /* The PC we just restored may be inside a return trampoline. If so
1405 we want to restart the inferior and run it through the trampoline.
1406
1407 Do this by setting a momentary breakpoint at the location the
1408 trampoline returns to.
1409
1410 Don't skip through the trampoline if we're popping a dummy frame. */
1411 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1412 if (target_pc && !fsr.regs[IPSW_REGNUM])
1413 {
1414 struct symtab_and_line sal;
1415 struct breakpoint *breakpoint;
1416 struct cleanup *old_chain;
1417
1418 /* Set up our breakpoint. Set it to be silent as the MI code
1419 for "return_command" will print the frame we returned to. */
1420 sal = find_pc_line (target_pc, 0);
1421 sal.pc = target_pc;
1422 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1423 breakpoint->silent = 1;
1424
1425 /* So we can clean things up. */
1426 old_chain = make_cleanup (delete_breakpoint, breakpoint);
1427
1428 /* Start up the inferior. */
1429 clear_proceed_status ();
1430 proceed_to_finish = 1;
1431 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1432
1433 /* Perform our cleanups. */
1434 do_cleanups (old_chain);
1435 }
1436 flush_cached_frames ();
1437 }
1438
1439 /*
1440 * After returning to a dummy on the stack, restore the instruction
1441 * queue space registers. */
1442
1443 static int
1444 restore_pc_queue (fsr)
1445 struct frame_saved_regs *fsr;
1446 {
1447 CORE_ADDR pc = read_pc ();
1448 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1449 struct target_waitstatus w;
1450 int insn_count;
1451
1452 /* Advance past break instruction in the call dummy. */
1453 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1454 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1455
1456 /*
1457 * HPUX doesn't let us set the space registers or the space
1458 * registers of the PC queue through ptrace. Boo, hiss.
1459 * Conveniently, the call dummy has this sequence of instructions
1460 * after the break:
1461 * mtsp r21, sr0
1462 * ble,n 0(sr0, r22)
1463 *
1464 * So, load up the registers and single step until we are in the
1465 * right place.
1466 */
1467
1468 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1469 write_register (22, new_pc);
1470
1471 for (insn_count = 0; insn_count < 3; insn_count++)
1472 {
1473 /* FIXME: What if the inferior gets a signal right now? Want to
1474 merge this into wait_for_inferior (as a special kind of
1475 watchpoint? By setting a breakpoint at the end? Is there
1476 any other choice? Is there *any* way to do this stuff with
1477 ptrace() or some equivalent?). */
1478 resume (1, 0);
1479 target_wait (inferior_pid, &w);
1480
1481 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1482 {
1483 stop_signal = w.value.sig;
1484 terminal_ours_for_output ();
1485 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1486 target_signal_to_name (stop_signal),
1487 target_signal_to_string (stop_signal));
1488 gdb_flush (gdb_stdout);
1489 return 0;
1490 }
1491 }
1492 target_terminal_ours ();
1493 target_fetch_registers (-1);
1494 return 1;
1495 }
1496
1497 CORE_ADDR
1498 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1499 int nargs;
1500 value_ptr *args;
1501 CORE_ADDR sp;
1502 int struct_return;
1503 CORE_ADDR struct_addr;
1504 {
1505 /* array of arguments' offsets */
1506 int *offset = (int *)alloca(nargs * sizeof (int));
1507 int cum = 0;
1508 int i, alignment;
1509
1510 for (i = 0; i < nargs; i++)
1511 {
1512 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1513
1514 /* value must go at proper alignment. Assume alignment is a
1515 power of two.*/
1516 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1517 if (cum % alignment)
1518 cum = (cum + alignment) & -alignment;
1519 offset[i] = -cum;
1520 }
1521 sp += max ((cum + 7) & -8, 16);
1522
1523 for (i = 0; i < nargs; i++)
1524 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1525 TYPE_LENGTH (VALUE_TYPE (args[i])));
1526
1527 if (struct_return)
1528 write_register (28, struct_addr);
1529 return sp + 32;
1530 }
1531
1532 /*
1533 * Insert the specified number of args and function address
1534 * into a call sequence of the above form stored at DUMMYNAME.
1535 *
1536 * On the hppa we need to call the stack dummy through $$dyncall.
1537 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1538 * real_pc, which is the location where gdb should start up the
1539 * inferior to do the function call.
1540 */
1541
1542 CORE_ADDR
1543 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1544 char *dummy;
1545 CORE_ADDR pc;
1546 CORE_ADDR fun;
1547 int nargs;
1548 value_ptr *args;
1549 struct type *type;
1550 int gcc_p;
1551 {
1552 CORE_ADDR dyncall_addr;
1553 struct minimal_symbol *msymbol;
1554 struct minimal_symbol *trampoline;
1555 int flags = read_register (FLAGS_REGNUM);
1556 struct unwind_table_entry *u;
1557
1558 trampoline = NULL;
1559 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1560 if (msymbol == NULL)
1561 error ("Can't find an address for $$dyncall trampoline");
1562
1563 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1564
1565 /* FUN could be a procedure label, in which case we have to get
1566 its real address and the value of its GOT/DP. */
1567 if (fun & 0x2)
1568 {
1569 /* Get the GOT/DP value for the target function. It's
1570 at *(fun+4). Note the call dummy is *NOT* allowed to
1571 trash %r19 before calling the target function. */
1572 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1573
1574 /* Now get the real address for the function we are calling, it's
1575 at *fun. */
1576 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1577 }
1578 else
1579 {
1580
1581 #ifndef GDB_TARGET_IS_PA_ELF
1582 /* FUN could be either an export stub, or the real address of a
1583 function in a shared library. We must call an import stub
1584 rather than the export stub or real function for lazy binding
1585 to work correctly. */
1586 if (som_solib_get_got_by_pc (fun))
1587 {
1588 struct objfile *objfile;
1589 struct minimal_symbol *funsymbol, *stub_symbol;
1590 CORE_ADDR newfun = 0;
1591
1592 funsymbol = lookup_minimal_symbol_by_pc (fun);
1593 if (!funsymbol)
1594 error ("Unable to find minimal symbol for target fucntion.\n");
1595
1596 /* Search all the object files for an import symbol with the
1597 right name. */
1598 ALL_OBJFILES (objfile)
1599 {
1600 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
1601 NULL, objfile);
1602 /* Found a symbol with the right name. */
1603 if (stub_symbol)
1604 {
1605 struct unwind_table_entry *u;
1606 /* It must be a shared library trampoline. */
1607 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
1608 continue;
1609
1610 /* It must also be an import stub. */
1611 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
1612 if (!u || u->stub_type != IMPORT)
1613 continue;
1614
1615 /* OK. Looks like the correct import stub. */
1616 newfun = SYMBOL_VALUE (stub_symbol);
1617 fun = newfun;
1618 }
1619 }
1620 if (newfun == 0)
1621 write_register (19, som_solib_get_got_by_pc (fun));
1622 }
1623 #endif
1624 }
1625
1626 /* If we are calling an import stub (eg calling into a dynamic library)
1627 then have sr4export call the magic __d_plt_call routine which is linked
1628 in from end.o. (You can't use _sr4export to call the import stub as
1629 the value in sp-24 will get fried and you end up returning to the
1630 wrong location. You can't call the import stub directly as the code
1631 to bind the PLT entry to a function can't return to a stack address.) */
1632 u = find_unwind_entry (fun);
1633 if (u && u->stub_type == IMPORT)
1634 {
1635 CORE_ADDR new_fun;
1636
1637 /* Prefer __gcc_plt_call over the HP supplied routine because
1638 __gcc_plt_call works for any number of arguments. */
1639 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
1640 if (trampoline == NULL)
1641 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
1642
1643 if (trampoline == NULL)
1644 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline");
1645
1646 /* This is where sr4export will jump to. */
1647 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
1648
1649 if (strcmp (SYMBOL_NAME (trampoline), "__d_plt_call") == 0)
1650 {
1651 /* We have to store the address of the stub in __shlib_funcptr. */
1652 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
1653 (struct objfile *)NULL);
1654 if (msymbol == NULL)
1655 error ("Can't find an address for __shlib_funcptr");
1656
1657 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1658
1659 /* We want sr4export to call __d_plt_call, so we claim it is
1660 the final target. Clear trampoline. */
1661 fun = new_fun;
1662 trampoline = NULL;
1663 }
1664 }
1665
1666 /* Store upper 21 bits of function address into ldil. fun will either be
1667 the final target (most cases) or __d_plt_call when calling into a shared
1668 library and __gcc_plt_call is not available. */
1669 store_unsigned_integer
1670 (&dummy[FUNC_LDIL_OFFSET],
1671 INSTRUCTION_SIZE,
1672 deposit_21 (fun >> 11,
1673 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
1674 INSTRUCTION_SIZE)));
1675
1676 /* Store lower 11 bits of function address into ldo */
1677 store_unsigned_integer
1678 (&dummy[FUNC_LDO_OFFSET],
1679 INSTRUCTION_SIZE,
1680 deposit_14 (fun & MASK_11,
1681 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
1682 INSTRUCTION_SIZE)));
1683 #ifdef SR4EXPORT_LDIL_OFFSET
1684
1685 {
1686 CORE_ADDR trampoline_addr;
1687
1688 /* We may still need sr4export's address too. */
1689
1690 if (trampoline == NULL)
1691 {
1692 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1693 if (msymbol == NULL)
1694 error ("Can't find an address for _sr4export trampoline");
1695
1696 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1697 }
1698 else
1699 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
1700
1701
1702 /* Store upper 21 bits of trampoline's address into ldil */
1703 store_unsigned_integer
1704 (&dummy[SR4EXPORT_LDIL_OFFSET],
1705 INSTRUCTION_SIZE,
1706 deposit_21 (trampoline_addr >> 11,
1707 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
1708 INSTRUCTION_SIZE)));
1709
1710 /* Store lower 11 bits of trampoline's address into ldo */
1711 store_unsigned_integer
1712 (&dummy[SR4EXPORT_LDO_OFFSET],
1713 INSTRUCTION_SIZE,
1714 deposit_14 (trampoline_addr & MASK_11,
1715 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
1716 INSTRUCTION_SIZE)));
1717 }
1718 #endif
1719
1720 write_register (22, pc);
1721
1722 /* If we are in a syscall, then we should call the stack dummy
1723 directly. $$dyncall is not needed as the kernel sets up the
1724 space id registers properly based on the value in %r31. In
1725 fact calling $$dyncall will not work because the value in %r22
1726 will be clobbered on the syscall exit path.
1727
1728 Similarly if the current PC is in a shared library. Note however,
1729 this scheme won't work if the shared library isn't mapped into
1730 the same space as the stack. */
1731 if (flags & 2)
1732 return pc;
1733 #ifndef GDB_TARGET_IS_PA_ELF
1734 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
1735 return pc;
1736 #endif
1737 else
1738 return dyncall_addr;
1739
1740 }
1741
1742 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1743 bits. */
1744
1745 CORE_ADDR
1746 target_read_pc (pid)
1747 int pid;
1748 {
1749 int flags = read_register_pid (FLAGS_REGNUM, pid);
1750
1751 /* The following test does not belong here. It is OS-specific, and belongs
1752 in native code. */
1753 /* Test SS_INSYSCALL */
1754 if (flags & 2)
1755 return read_register_pid (31, pid) & ~0x3;
1756
1757 return read_register_pid (PC_REGNUM, pid) & ~0x3;
1758 }
1759
1760 /* Write out the PC. If currently in a syscall, then also write the new
1761 PC value into %r31. */
1762
1763 void
1764 target_write_pc (v, pid)
1765 CORE_ADDR v;
1766 int pid;
1767 {
1768 int flags = read_register_pid (FLAGS_REGNUM, pid);
1769
1770 /* The following test does not belong here. It is OS-specific, and belongs
1771 in native code. */
1772 /* If in a syscall, then set %r31. Also make sure to get the
1773 privilege bits set correctly. */
1774 /* Test SS_INSYSCALL */
1775 if (flags & 2)
1776 write_register_pid (31, v | 0x3, pid);
1777
1778 write_register_pid (PC_REGNUM, v, pid);
1779 write_register_pid (NPC_REGNUM, v + 4, pid);
1780 }
1781
1782 /* return the alignment of a type in bytes. Structures have the maximum
1783 alignment required by their fields. */
1784
1785 static int
1786 hppa_alignof (type)
1787 struct type *type;
1788 {
1789 int max_align, align, i;
1790 CHECK_TYPEDEF (type);
1791 switch (TYPE_CODE (type))
1792 {
1793 case TYPE_CODE_PTR:
1794 case TYPE_CODE_INT:
1795 case TYPE_CODE_FLT:
1796 return TYPE_LENGTH (type);
1797 case TYPE_CODE_ARRAY:
1798 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1799 case TYPE_CODE_STRUCT:
1800 case TYPE_CODE_UNION:
1801 max_align = 1;
1802 for (i = 0; i < TYPE_NFIELDS (type); i++)
1803 {
1804 /* Bit fields have no real alignment. */
1805 if (!TYPE_FIELD_BITPOS (type, i))
1806 {
1807 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1808 max_align = max (max_align, align);
1809 }
1810 }
1811 return max_align;
1812 default:
1813 return 4;
1814 }
1815 }
1816
1817 /* Print the register regnum, or all registers if regnum is -1 */
1818
1819 void
1820 pa_do_registers_info (regnum, fpregs)
1821 int regnum;
1822 int fpregs;
1823 {
1824 char raw_regs [REGISTER_BYTES];
1825 int i;
1826
1827 for (i = 0; i < NUM_REGS; i++)
1828 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1829 if (regnum == -1)
1830 pa_print_registers (raw_regs, regnum, fpregs);
1831 else if (regnum < FP0_REGNUM)
1832 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1833 REGISTER_BYTE (regnum)));
1834 else
1835 pa_print_fp_reg (regnum);
1836 }
1837
1838 static void
1839 pa_print_registers (raw_regs, regnum, fpregs)
1840 char *raw_regs;
1841 int regnum;
1842 int fpregs;
1843 {
1844 int i,j;
1845 long val;
1846
1847 for (i = 0; i < 18; i++)
1848 {
1849 for (j = 0; j < 4; j++)
1850 {
1851 val =
1852 extract_signed_integer (raw_regs + REGISTER_BYTE (i+(j*18)), 4);
1853 printf_unfiltered ("%8.8s: %8x ", reg_names[i+(j*18)], val);
1854 }
1855 printf_unfiltered ("\n");
1856 }
1857
1858 if (fpregs)
1859 for (i = 72; i < NUM_REGS; i++)
1860 pa_print_fp_reg (i);
1861 }
1862
1863 static void
1864 pa_print_fp_reg (i)
1865 int i;
1866 {
1867 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1868 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1869
1870 /* Get 32bits of data. */
1871 read_relative_register_raw_bytes (i, raw_buffer);
1872
1873 /* Put it in the buffer. No conversions are ever necessary. */
1874 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1875
1876 fputs_filtered (reg_names[i], gdb_stdout);
1877 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1878 fputs_filtered ("(single precision) ", gdb_stdout);
1879
1880 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1881 1, 0, Val_pretty_default);
1882 printf_filtered ("\n");
1883
1884 /* If "i" is even, then this register can also be a double-precision
1885 FP register. Dump it out as such. */
1886 if ((i % 2) == 0)
1887 {
1888 /* Get the data in raw format for the 2nd half. */
1889 read_relative_register_raw_bytes (i + 1, raw_buffer);
1890
1891 /* Copy it into the appropriate part of the virtual buffer. */
1892 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1893 REGISTER_RAW_SIZE (i));
1894
1895 /* Dump it as a double. */
1896 fputs_filtered (reg_names[i], gdb_stdout);
1897 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1898 fputs_filtered ("(double precision) ", gdb_stdout);
1899
1900 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1901 1, 0, Val_pretty_default);
1902 printf_filtered ("\n");
1903 }
1904 }
1905
1906 /* Return one if PC is in the call path of a trampoline, else return zero.
1907
1908 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1909 just shared library trampolines (import, export). */
1910
1911 int
1912 in_solib_call_trampoline (pc, name)
1913 CORE_ADDR pc;
1914 char *name;
1915 {
1916 struct minimal_symbol *minsym;
1917 struct unwind_table_entry *u;
1918 static CORE_ADDR dyncall = 0;
1919 static CORE_ADDR sr4export = 0;
1920
1921 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1922 new exec file */
1923
1924 /* First see if PC is in one of the two C-library trampolines. */
1925 if (!dyncall)
1926 {
1927 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1928 if (minsym)
1929 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
1930 else
1931 dyncall = -1;
1932 }
1933
1934 if (!sr4export)
1935 {
1936 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1937 if (minsym)
1938 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
1939 else
1940 sr4export = -1;
1941 }
1942
1943 if (pc == dyncall || pc == sr4export)
1944 return 1;
1945
1946 /* Get the unwind descriptor corresponding to PC, return zero
1947 if no unwind was found. */
1948 u = find_unwind_entry (pc);
1949 if (!u)
1950 return 0;
1951
1952 /* If this isn't a linker stub, then return now. */
1953 if (u->stub_type == 0)
1954 return 0;
1955
1956 /* By definition a long-branch stub is a call stub. */
1957 if (u->stub_type == LONG_BRANCH)
1958 return 1;
1959
1960 /* The call and return path execute the same instructions within
1961 an IMPORT stub! So an IMPORT stub is both a call and return
1962 trampoline. */
1963 if (u->stub_type == IMPORT)
1964 return 1;
1965
1966 /* Parameter relocation stubs always have a call path and may have a
1967 return path. */
1968 if (u->stub_type == PARAMETER_RELOCATION
1969 || u->stub_type == EXPORT)
1970 {
1971 CORE_ADDR addr;
1972
1973 /* Search forward from the current PC until we hit a branch
1974 or the end of the stub. */
1975 for (addr = pc; addr <= u->region_end; addr += 4)
1976 {
1977 unsigned long insn;
1978
1979 insn = read_memory_integer (addr, 4);
1980
1981 /* Does it look like a bl? If so then it's the call path, if
1982 we find a bv or be first, then we're on the return path. */
1983 if ((insn & 0xfc00e000) == 0xe8000000)
1984 return 1;
1985 else if ((insn & 0xfc00e001) == 0xe800c000
1986 || (insn & 0xfc000000) == 0xe0000000)
1987 return 0;
1988 }
1989
1990 /* Should never happen. */
1991 warning ("Unable to find branch in parameter relocation stub.\n");
1992 return 0;
1993 }
1994
1995 /* Unknown stub type. For now, just return zero. */
1996 return 0;
1997 }
1998
1999 /* Return one if PC is in the return path of a trampoline, else return zero.
2000
2001 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2002 just shared library trampolines (import, export). */
2003
2004 int
2005 in_solib_return_trampoline (pc, name)
2006 CORE_ADDR pc;
2007 char *name;
2008 {
2009 struct unwind_table_entry *u;
2010
2011 /* Get the unwind descriptor corresponding to PC, return zero
2012 if no unwind was found. */
2013 u = find_unwind_entry (pc);
2014 if (!u)
2015 return 0;
2016
2017 /* If this isn't a linker stub or it's just a long branch stub, then
2018 return zero. */
2019 if (u->stub_type == 0 || u->stub_type == LONG_BRANCH)
2020 return 0;
2021
2022 /* The call and return path execute the same instructions within
2023 an IMPORT stub! So an IMPORT stub is both a call and return
2024 trampoline. */
2025 if (u->stub_type == IMPORT)
2026 return 1;
2027
2028 /* Parameter relocation stubs always have a call path and may have a
2029 return path. */
2030 if (u->stub_type == PARAMETER_RELOCATION
2031 || u->stub_type == EXPORT)
2032 {
2033 CORE_ADDR addr;
2034
2035 /* Search forward from the current PC until we hit a branch
2036 or the end of the stub. */
2037 for (addr = pc; addr <= u->region_end; addr += 4)
2038 {
2039 unsigned long insn;
2040
2041 insn = read_memory_integer (addr, 4);
2042
2043 /* Does it look like a bl? If so then it's the call path, if
2044 we find a bv or be first, then we're on the return path. */
2045 if ((insn & 0xfc00e000) == 0xe8000000)
2046 return 0;
2047 else if ((insn & 0xfc00e001) == 0xe800c000
2048 || (insn & 0xfc000000) == 0xe0000000)
2049 return 1;
2050 }
2051
2052 /* Should never happen. */
2053 warning ("Unable to find branch in parameter relocation stub.\n");
2054 return 0;
2055 }
2056
2057 /* Unknown stub type. For now, just return zero. */
2058 return 0;
2059
2060 }
2061
2062 /* Figure out if PC is in a trampoline, and if so find out where
2063 the trampoline will jump to. If not in a trampoline, return zero.
2064
2065 Simple code examination probably is not a good idea since the code
2066 sequences in trampolines can also appear in user code.
2067
2068 We use unwinds and information from the minimal symbol table to
2069 determine when we're in a trampoline. This won't work for ELF
2070 (yet) since it doesn't create stub unwind entries. Whether or
2071 not ELF will create stub unwinds or normal unwinds for linker
2072 stubs is still being debated.
2073
2074 This should handle simple calls through dyncall or sr4export,
2075 long calls, argument relocation stubs, and dyncall/sr4export
2076 calling an argument relocation stub. It even handles some stubs
2077 used in dynamic executables. */
2078
2079 CORE_ADDR
2080 skip_trampoline_code (pc, name)
2081 CORE_ADDR pc;
2082 char *name;
2083 {
2084 long orig_pc = pc;
2085 long prev_inst, curr_inst, loc;
2086 static CORE_ADDR dyncall = 0;
2087 static CORE_ADDR sr4export = 0;
2088 struct minimal_symbol *msym;
2089 struct unwind_table_entry *u;
2090
2091 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2092 new exec file */
2093
2094 if (!dyncall)
2095 {
2096 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2097 if (msym)
2098 dyncall = SYMBOL_VALUE_ADDRESS (msym);
2099 else
2100 dyncall = -1;
2101 }
2102
2103 if (!sr4export)
2104 {
2105 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2106 if (msym)
2107 sr4export = SYMBOL_VALUE_ADDRESS (msym);
2108 else
2109 sr4export = -1;
2110 }
2111
2112 /* Addresses passed to dyncall may *NOT* be the actual address
2113 of the function. So we may have to do something special. */
2114 if (pc == dyncall)
2115 {
2116 pc = (CORE_ADDR) read_register (22);
2117
2118 /* If bit 30 (counting from the left) is on, then pc is the address of
2119 the PLT entry for this function, not the address of the function
2120 itself. Bit 31 has meaning too, but only for MPE. */
2121 if (pc & 0x2)
2122 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
2123 }
2124 else if (pc == sr4export)
2125 pc = (CORE_ADDR) (read_register (22));
2126
2127 /* Get the unwind descriptor corresponding to PC, return zero
2128 if no unwind was found. */
2129 u = find_unwind_entry (pc);
2130 if (!u)
2131 return 0;
2132
2133 /* If this isn't a linker stub, then return now. */
2134 if (u->stub_type == 0)
2135 return orig_pc == pc ? 0 : pc & ~0x3;
2136
2137 /* It's a stub. Search for a branch and figure out where it goes.
2138 Note we have to handle multi insn branch sequences like ldil;ble.
2139 Most (all?) other branches can be determined by examining the contents
2140 of certain registers and the stack. */
2141 loc = pc;
2142 curr_inst = 0;
2143 prev_inst = 0;
2144 while (1)
2145 {
2146 /* Make sure we haven't walked outside the range of this stub. */
2147 if (u != find_unwind_entry (loc))
2148 {
2149 warning ("Unable to find branch in linker stub");
2150 return orig_pc == pc ? 0 : pc & ~0x3;
2151 }
2152
2153 prev_inst = curr_inst;
2154 curr_inst = read_memory_integer (loc, 4);
2155
2156 /* Does it look like a branch external using %r1? Then it's the
2157 branch from the stub to the actual function. */
2158 if ((curr_inst & 0xffe0e000) == 0xe0202000)
2159 {
2160 /* Yup. See if the previous instruction loaded
2161 a value into %r1. If so compute and return the jump address. */
2162 if ((prev_inst & 0xffe00000) == 0x20200000)
2163 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
2164 else
2165 {
2166 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
2167 return orig_pc == pc ? 0 : pc & ~0x3;
2168 }
2169 }
2170
2171 /* Does it look like a be 0(sr0,%r21)? That's the branch from an
2172 import stub to an export stub.
2173
2174 It is impossible to determine the target of the branch via
2175 simple examination of instructions and/or data (consider
2176 that the address in the plabel may be the address of the
2177 bind-on-reference routine in the dynamic loader).
2178
2179 So we have try an alternative approach.
2180
2181 Get the name of the symbol at our current location; it should
2182 be a stub symbol with the same name as the symbol in the
2183 shared library.
2184
2185 Then lookup a minimal symbol with the same name; we should
2186 get the minimal symbol for the target routine in the shared
2187 library as those take precedence of import/export stubs. */
2188 if (curr_inst == 0xe2a00000)
2189 {
2190 struct minimal_symbol *stubsym, *libsym;
2191
2192 stubsym = lookup_minimal_symbol_by_pc (loc);
2193 if (stubsym == NULL)
2194 {
2195 warning ("Unable to find symbol for 0x%x", loc);
2196 return orig_pc == pc ? 0 : pc & ~0x3;
2197 }
2198
2199 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
2200 if (libsym == NULL)
2201 {
2202 warning ("Unable to find library symbol for %s\n",
2203 SYMBOL_NAME (stubsym));
2204 return orig_pc == pc ? 0 : pc & ~0x3;
2205 }
2206
2207 return SYMBOL_VALUE (libsym);
2208 }
2209
2210 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
2211 branch from the stub to the actual function. */
2212 else if ((curr_inst & 0xffe0e000) == 0xe8400000
2213 || (curr_inst & 0xffe0e000) == 0xe8000000)
2214 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
2215
2216 /* Does it look like bv (rp)? Note this depends on the
2217 current stack pointer being the same as the stack
2218 pointer in the stub itself! This is a branch on from the
2219 stub back to the original caller. */
2220 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
2221 {
2222 /* Yup. See if the previous instruction loaded
2223 rp from sp - 8. */
2224 if (prev_inst == 0x4bc23ff1)
2225 return (read_memory_integer
2226 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
2227 else
2228 {
2229 warning ("Unable to find restore of %%rp before bv (%%rp).");
2230 return orig_pc == pc ? 0 : pc & ~0x3;
2231 }
2232 }
2233
2234 /* What about be,n 0(sr0,%rp)? It's just another way we return to
2235 the original caller from the stub. Used in dynamic executables. */
2236 else if (curr_inst == 0xe0400002)
2237 {
2238 /* The value we jump to is sitting in sp - 24. But that's
2239 loaded several instructions before the be instruction.
2240 I guess we could check for the previous instruction being
2241 mtsp %r1,%sr0 if we want to do sanity checking. */
2242 return (read_memory_integer
2243 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
2244 }
2245
2246 /* Haven't found the branch yet, but we're still in the stub.
2247 Keep looking. */
2248 loc += 4;
2249 }
2250 }
2251
2252 /* For the given instruction (INST), return any adjustment it makes
2253 to the stack pointer or zero for no adjustment.
2254
2255 This only handles instructions commonly found in prologues. */
2256
2257 static int
2258 prologue_inst_adjust_sp (inst)
2259 unsigned long inst;
2260 {
2261 /* This must persist across calls. */
2262 static int save_high21;
2263
2264 /* The most common way to perform a stack adjustment ldo X(sp),sp */
2265 if ((inst & 0xffffc000) == 0x37de0000)
2266 return extract_14 (inst);
2267
2268 /* stwm X,D(sp) */
2269 if ((inst & 0xffe00000) == 0x6fc00000)
2270 return extract_14 (inst);
2271
2272 /* addil high21,%r1; ldo low11,(%r1),%r30)
2273 save high bits in save_high21 for later use. */
2274 if ((inst & 0xffe00000) == 0x28200000)
2275 {
2276 save_high21 = extract_21 (inst);
2277 return 0;
2278 }
2279
2280 if ((inst & 0xffff0000) == 0x343e0000)
2281 return save_high21 + extract_14 (inst);
2282
2283 /* fstws as used by the HP compilers. */
2284 if ((inst & 0xffffffe0) == 0x2fd01220)
2285 return extract_5_load (inst);
2286
2287 /* No adjustment. */
2288 return 0;
2289 }
2290
2291 /* Return nonzero if INST is a branch of some kind, else return zero. */
2292
2293 static int
2294 is_branch (inst)
2295 unsigned long inst;
2296 {
2297 switch (inst >> 26)
2298 {
2299 case 0x20:
2300 case 0x21:
2301 case 0x22:
2302 case 0x23:
2303 case 0x28:
2304 case 0x29:
2305 case 0x2a:
2306 case 0x2b:
2307 case 0x30:
2308 case 0x31:
2309 case 0x32:
2310 case 0x33:
2311 case 0x38:
2312 case 0x39:
2313 case 0x3a:
2314 return 1;
2315
2316 default:
2317 return 0;
2318 }
2319 }
2320
2321 /* Return the register number for a GR which is saved by INST or
2322 zero it INST does not save a GR. */
2323
2324 static int
2325 inst_saves_gr (inst)
2326 unsigned long inst;
2327 {
2328 /* Does it look like a stw? */
2329 if ((inst >> 26) == 0x1a)
2330 return extract_5R_store (inst);
2331
2332 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
2333 if ((inst >> 26) == 0x1b)
2334 return extract_5R_store (inst);
2335
2336 /* Does it look like sth or stb? HPC versions 9.0 and later use these
2337 too. */
2338 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
2339 return extract_5R_store (inst);
2340
2341 return 0;
2342 }
2343
2344 /* Return the register number for a FR which is saved by INST or
2345 zero it INST does not save a FR.
2346
2347 Note we only care about full 64bit register stores (that's the only
2348 kind of stores the prologue will use).
2349
2350 FIXME: What about argument stores with the HP compiler in ANSI mode? */
2351
2352 static int
2353 inst_saves_fr (inst)
2354 unsigned long inst;
2355 {
2356 if ((inst & 0xfc00dfc0) == 0x2c001200)
2357 return extract_5r_store (inst);
2358 return 0;
2359 }
2360
2361 /* Advance PC across any function entry prologue instructions
2362 to reach some "real" code.
2363
2364 Use information in the unwind table to determine what exactly should
2365 be in the prologue. */
2366
2367 CORE_ADDR
2368 skip_prologue (pc)
2369 CORE_ADDR pc;
2370 {
2371 char buf[4];
2372 CORE_ADDR orig_pc = pc;
2373 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2374 unsigned long args_stored, status, i, restart_gr, restart_fr;
2375 struct unwind_table_entry *u;
2376
2377 restart_gr = 0;
2378 restart_fr = 0;
2379
2380 restart:
2381 u = find_unwind_entry (pc);
2382 if (!u)
2383 return pc;
2384
2385 /* If we are not at the beginning of a function, then return now. */
2386 if ((pc & ~0x3) != u->region_start)
2387 return pc;
2388
2389 /* This is how much of a frame adjustment we need to account for. */
2390 stack_remaining = u->Total_frame_size << 3;
2391
2392 /* Magic register saves we want to know about. */
2393 save_rp = u->Save_RP;
2394 save_sp = u->Save_SP;
2395
2396 /* An indication that args may be stored into the stack. Unfortunately
2397 the HPUX compilers tend to set this in cases where no args were
2398 stored too!. */
2399 args_stored = 1;
2400
2401 /* Turn the Entry_GR field into a bitmask. */
2402 save_gr = 0;
2403 for (i = 3; i < u->Entry_GR + 3; i++)
2404 {
2405 /* Frame pointer gets saved into a special location. */
2406 if (u->Save_SP && i == FP_REGNUM)
2407 continue;
2408
2409 save_gr |= (1 << i);
2410 }
2411 save_gr &= ~restart_gr;
2412
2413 /* Turn the Entry_FR field into a bitmask too. */
2414 save_fr = 0;
2415 for (i = 12; i < u->Entry_FR + 12; i++)
2416 save_fr |= (1 << i);
2417 save_fr &= ~restart_fr;
2418
2419 /* Loop until we find everything of interest or hit a branch.
2420
2421 For unoptimized GCC code and for any HP CC code this will never ever
2422 examine any user instructions.
2423
2424 For optimzied GCC code we're faced with problems. GCC will schedule
2425 its prologue and make prologue instructions available for delay slot
2426 filling. The end result is user code gets mixed in with the prologue
2427 and a prologue instruction may be in the delay slot of the first branch
2428 or call.
2429
2430 Some unexpected things are expected with debugging optimized code, so
2431 we allow this routine to walk past user instructions in optimized
2432 GCC code. */
2433 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
2434 || args_stored)
2435 {
2436 unsigned int reg_num;
2437 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
2438 unsigned long old_save_rp, old_save_sp, next_inst;
2439
2440 /* Save copies of all the triggers so we can compare them later
2441 (only for HPC). */
2442 old_save_gr = save_gr;
2443 old_save_fr = save_fr;
2444 old_save_rp = save_rp;
2445 old_save_sp = save_sp;
2446 old_stack_remaining = stack_remaining;
2447
2448 status = target_read_memory (pc, buf, 4);
2449 inst = extract_unsigned_integer (buf, 4);
2450
2451 /* Yow! */
2452 if (status != 0)
2453 return pc;
2454
2455 /* Note the interesting effects of this instruction. */
2456 stack_remaining -= prologue_inst_adjust_sp (inst);
2457
2458 /* There is only one instruction used for saving RP into the stack. */
2459 if (inst == 0x6bc23fd9)
2460 save_rp = 0;
2461
2462 /* This is the only way we save SP into the stack. At this time
2463 the HP compilers never bother to save SP into the stack. */
2464 if ((inst & 0xffffc000) == 0x6fc10000)
2465 save_sp = 0;
2466
2467 /* Account for general and floating-point register saves. */
2468 reg_num = inst_saves_gr (inst);
2469 save_gr &= ~(1 << reg_num);
2470
2471 /* Ugh. Also account for argument stores into the stack.
2472 Unfortunately args_stored only tells us that some arguments
2473 where stored into the stack. Not how many or what kind!
2474
2475 This is a kludge as on the HP compiler sets this bit and it
2476 never does prologue scheduling. So once we see one, skip past
2477 all of them. We have similar code for the fp arg stores below.
2478
2479 FIXME. Can still die if we have a mix of GR and FR argument
2480 stores! */
2481 if (reg_num >= 23 && reg_num <= 26)
2482 {
2483 while (reg_num >= 23 && reg_num <= 26)
2484 {
2485 pc += 4;
2486 status = target_read_memory (pc, buf, 4);
2487 inst = extract_unsigned_integer (buf, 4);
2488 if (status != 0)
2489 return pc;
2490 reg_num = inst_saves_gr (inst);
2491 }
2492 args_stored = 0;
2493 continue;
2494 }
2495
2496 reg_num = inst_saves_fr (inst);
2497 save_fr &= ~(1 << reg_num);
2498
2499 status = target_read_memory (pc + 4, buf, 4);
2500 next_inst = extract_unsigned_integer (buf, 4);
2501
2502 /* Yow! */
2503 if (status != 0)
2504 return pc;
2505
2506 /* We've got to be read to handle the ldo before the fp register
2507 save. */
2508 if ((inst & 0xfc000000) == 0x34000000
2509 && inst_saves_fr (next_inst) >= 4
2510 && inst_saves_fr (next_inst) <= 7)
2511 {
2512 /* So we drop into the code below in a reasonable state. */
2513 reg_num = inst_saves_fr (next_inst);
2514 pc -= 4;
2515 }
2516
2517 /* Ugh. Also account for argument stores into the stack.
2518 This is a kludge as on the HP compiler sets this bit and it
2519 never does prologue scheduling. So once we see one, skip past
2520 all of them. */
2521 if (reg_num >= 4 && reg_num <= 7)
2522 {
2523 while (reg_num >= 4 && reg_num <= 7)
2524 {
2525 pc += 8;
2526 status = target_read_memory (pc, buf, 4);
2527 inst = extract_unsigned_integer (buf, 4);
2528 if (status != 0)
2529 return pc;
2530 if ((inst & 0xfc000000) != 0x34000000)
2531 break;
2532 status = target_read_memory (pc + 4, buf, 4);
2533 next_inst = extract_unsigned_integer (buf, 4);
2534 if (status != 0)
2535 return pc;
2536 reg_num = inst_saves_fr (next_inst);
2537 }
2538 args_stored = 0;
2539 continue;
2540 }
2541
2542 /* Quit if we hit any kind of branch. This can happen if a prologue
2543 instruction is in the delay slot of the first call/branch. */
2544 if (is_branch (inst))
2545 break;
2546
2547 /* What a crock. The HP compilers set args_stored even if no
2548 arguments were stored into the stack (boo hiss). This could
2549 cause this code to then skip a bunch of user insns (up to the
2550 first branch).
2551
2552 To combat this we try to identify when args_stored was bogusly
2553 set and clear it. We only do this when args_stored is nonzero,
2554 all other resources are accounted for, and nothing changed on
2555 this pass. */
2556 if (args_stored
2557 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2558 && old_save_gr == save_gr && old_save_fr == save_fr
2559 && old_save_rp == save_rp && old_save_sp == save_sp
2560 && old_stack_remaining == stack_remaining)
2561 break;
2562
2563 /* Bump the PC. */
2564 pc += 4;
2565 }
2566
2567 /* We've got a tenative location for the end of the prologue. However
2568 because of limitations in the unwind descriptor mechanism we may
2569 have went too far into user code looking for the save of a register
2570 that does not exist. So, if there registers we expected to be saved
2571 but never were, mask them out and restart.
2572
2573 This should only happen in optimized code, and should be very rare. */
2574 if (save_gr || (save_fr && ! (restart_fr || restart_gr)))
2575 {
2576 pc = orig_pc;
2577 restart_gr = save_gr;
2578 restart_fr = save_fr;
2579 goto restart;
2580 }
2581
2582 return pc;
2583 }
2584
2585 /* Put here the code to store, into a struct frame_saved_regs,
2586 the addresses of the saved registers of frame described by FRAME_INFO.
2587 This includes special registers such as pc and fp saved in special
2588 ways in the stack frame. sp is even more special:
2589 the address we return for it IS the sp for the next frame. */
2590
2591 void
2592 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
2593 struct frame_info *frame_info;
2594 struct frame_saved_regs *frame_saved_regs;
2595 {
2596 CORE_ADDR pc;
2597 struct unwind_table_entry *u;
2598 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2599 int status, i, reg;
2600 char buf[4];
2601 int fp_loc = -1;
2602
2603 /* Zero out everything. */
2604 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2605
2606 /* Call dummy frames always look the same, so there's no need to
2607 examine the dummy code to determine locations of saved registers;
2608 instead, let find_dummy_frame_regs fill in the correct offsets
2609 for the saved registers. */
2610 if ((frame_info->pc >= frame_info->frame
2611 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2612 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2613 + 6 * 4)))
2614 find_dummy_frame_regs (frame_info, frame_saved_regs);
2615
2616 /* Interrupt handlers are special too. They lay out the register
2617 state in the exact same order as the register numbers in GDB. */
2618 if (pc_in_interrupt_handler (frame_info->pc))
2619 {
2620 for (i = 0; i < NUM_REGS; i++)
2621 {
2622 /* SP is a little special. */
2623 if (i == SP_REGNUM)
2624 frame_saved_regs->regs[SP_REGNUM]
2625 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
2626 else
2627 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
2628 }
2629 return;
2630 }
2631
2632 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
2633 /* Handle signal handler callers. */
2634 if (frame_info->signal_handler_caller)
2635 {
2636 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
2637 return;
2638 }
2639 #endif
2640
2641 /* Get the starting address of the function referred to by the PC
2642 saved in frame. */
2643 pc = get_pc_function_start (frame_info->pc);
2644
2645 /* Yow! */
2646 u = find_unwind_entry (pc);
2647 if (!u)
2648 return;
2649
2650 /* This is how much of a frame adjustment we need to account for. */
2651 stack_remaining = u->Total_frame_size << 3;
2652
2653 /* Magic register saves we want to know about. */
2654 save_rp = u->Save_RP;
2655 save_sp = u->Save_SP;
2656
2657 /* Turn the Entry_GR field into a bitmask. */
2658 save_gr = 0;
2659 for (i = 3; i < u->Entry_GR + 3; i++)
2660 {
2661 /* Frame pointer gets saved into a special location. */
2662 if (u->Save_SP && i == FP_REGNUM)
2663 continue;
2664
2665 save_gr |= (1 << i);
2666 }
2667
2668 /* Turn the Entry_FR field into a bitmask too. */
2669 save_fr = 0;
2670 for (i = 12; i < u->Entry_FR + 12; i++)
2671 save_fr |= (1 << i);
2672
2673 /* The frame always represents the value of %sp at entry to the
2674 current function (and is thus equivalent to the "saved" stack
2675 pointer. */
2676 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
2677
2678 /* Loop until we find everything of interest or hit a branch.
2679
2680 For unoptimized GCC code and for any HP CC code this will never ever
2681 examine any user instructions.
2682
2683 For optimzied GCC code we're faced with problems. GCC will schedule
2684 its prologue and make prologue instructions available for delay slot
2685 filling. The end result is user code gets mixed in with the prologue
2686 and a prologue instruction may be in the delay slot of the first branch
2687 or call.
2688
2689 Some unexpected things are expected with debugging optimized code, so
2690 we allow this routine to walk past user instructions in optimized
2691 GCC code. */
2692 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2693 {
2694 status = target_read_memory (pc, buf, 4);
2695 inst = extract_unsigned_integer (buf, 4);
2696
2697 /* Yow! */
2698 if (status != 0)
2699 return;
2700
2701 /* Note the interesting effects of this instruction. */
2702 stack_remaining -= prologue_inst_adjust_sp (inst);
2703
2704 /* There is only one instruction used for saving RP into the stack. */
2705 if (inst == 0x6bc23fd9)
2706 {
2707 save_rp = 0;
2708 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
2709 }
2710
2711 /* Just note that we found the save of SP into the stack. The
2712 value for frame_saved_regs was computed above. */
2713 if ((inst & 0xffffc000) == 0x6fc10000)
2714 save_sp = 0;
2715
2716 /* Account for general and floating-point register saves. */
2717 reg = inst_saves_gr (inst);
2718 if (reg >= 3 && reg <= 18
2719 && (!u->Save_SP || reg != FP_REGNUM))
2720 {
2721 save_gr &= ~(1 << reg);
2722
2723 /* stwm with a positive displacement is a *post modify*. */
2724 if ((inst >> 26) == 0x1b
2725 && extract_14 (inst) >= 0)
2726 frame_saved_regs->regs[reg] = frame_info->frame;
2727 else
2728 {
2729 /* Handle code with and without frame pointers. */
2730 if (u->Save_SP)
2731 frame_saved_regs->regs[reg]
2732 = frame_info->frame + extract_14 (inst);
2733 else
2734 frame_saved_regs->regs[reg]
2735 = frame_info->frame + (u->Total_frame_size << 3)
2736 + extract_14 (inst);
2737 }
2738 }
2739
2740
2741 /* GCC handles callee saved FP regs a little differently.
2742
2743 It emits an instruction to put the value of the start of
2744 the FP store area into %r1. It then uses fstds,ma with
2745 a basereg of %r1 for the stores.
2746
2747 HP CC emits them at the current stack pointer modifying
2748 the stack pointer as it stores each register. */
2749
2750 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2751 if ((inst & 0xffffc000) == 0x34610000
2752 || (inst & 0xffffc000) == 0x37c10000)
2753 fp_loc = extract_14 (inst);
2754
2755 reg = inst_saves_fr (inst);
2756 if (reg >= 12 && reg <= 21)
2757 {
2758 /* Note +4 braindamage below is necessary because the FP status
2759 registers are internally 8 registers rather than the expected
2760 4 registers. */
2761 save_fr &= ~(1 << reg);
2762 if (fp_loc == -1)
2763 {
2764 /* 1st HP CC FP register store. After this instruction
2765 we've set enough state that the GCC and HPCC code are
2766 both handled in the same manner. */
2767 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
2768 fp_loc = 8;
2769 }
2770 else
2771 {
2772 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
2773 = frame_info->frame + fp_loc;
2774 fp_loc += 8;
2775 }
2776 }
2777
2778 /* Quit if we hit any kind of branch. This can happen if a prologue
2779 instruction is in the delay slot of the first call/branch. */
2780 if (is_branch (inst))
2781 break;
2782
2783 /* Bump the PC. */
2784 pc += 4;
2785 }
2786 }
2787
2788 #ifdef MAINTENANCE_CMDS
2789
2790 static void
2791 unwind_command (exp, from_tty)
2792 char *exp;
2793 int from_tty;
2794 {
2795 CORE_ADDR address;
2796 struct unwind_table_entry *u;
2797
2798 /* If we have an expression, evaluate it and use it as the address. */
2799
2800 if (exp != 0 && *exp != 0)
2801 address = parse_and_eval_address (exp);
2802 else
2803 return;
2804
2805 u = find_unwind_entry (address);
2806
2807 if (!u)
2808 {
2809 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2810 return;
2811 }
2812
2813 printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
2814
2815 printf_unfiltered ("\tregion_start = ");
2816 print_address (u->region_start, gdb_stdout);
2817
2818 printf_unfiltered ("\n\tregion_end = ");
2819 print_address (u->region_end, gdb_stdout);
2820
2821 #ifdef __STDC__
2822 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2823 #else
2824 #define pif(FLD) if (u->FLD) printf_unfiltered (" FLD");
2825 #endif
2826
2827 printf_unfiltered ("\n\tflags =");
2828 pif (Cannot_unwind);
2829 pif (Millicode);
2830 pif (Millicode_save_sr0);
2831 pif (Entry_SR);
2832 pif (Args_stored);
2833 pif (Variable_Frame);
2834 pif (Separate_Package_Body);
2835 pif (Frame_Extension_Millicode);
2836 pif (Stack_Overflow_Check);
2837 pif (Two_Instruction_SP_Increment);
2838 pif (Ada_Region);
2839 pif (Save_SP);
2840 pif (Save_RP);
2841 pif (Save_MRP_in_frame);
2842 pif (extn_ptr_defined);
2843 pif (Cleanup_defined);
2844 pif (MPE_XL_interrupt_marker);
2845 pif (HP_UX_interrupt_marker);
2846 pif (Large_frame);
2847
2848 putchar_unfiltered ('\n');
2849
2850 #ifdef __STDC__
2851 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2852 #else
2853 #define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD);
2854 #endif
2855
2856 pin (Region_description);
2857 pin (Entry_FR);
2858 pin (Entry_GR);
2859 pin (Total_frame_size);
2860 }
2861 #endif /* MAINTENANCE_CMDS */
2862
2863 void
2864 _initialize_hppa_tdep ()
2865 {
2866 tm_print_insn = print_insn_hppa;
2867
2868 #ifdef MAINTENANCE_CMDS
2869 add_cmd ("unwind", class_maintenance, unwind_command,
2870 "Print unwind table entry at given address.",
2871 &maintenanceprintlist);
2872 #endif /* MAINTENANCE_CMDS */
2873 }