]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/i386-linux-tdep.c
b46a51e3006371f7ddd63ecbc8fe5a6e65b8d9c8
[thirdparty/binutils-gdb.git] / gdb / i386-linux-tdep.c
1 /* Target-dependent code for GNU/Linux i386.
2
3 Copyright (C) 2000-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcore.h"
22 #include "frame.h"
23 #include "value.h"
24 #include "regcache.h"
25 #include "regset.h"
26 #include "inferior.h"
27 #include "osabi.h"
28 #include "reggroups.h"
29 #include "dwarf2-frame.h"
30 #include <string.h>
31
32 #include "i386-tdep.h"
33 #include "i386-linux-tdep.h"
34 #include "linux-tdep.h"
35 #include "glibc-tdep.h"
36 #include "solib-svr4.h"
37 #include "symtab.h"
38 #include "arch-utils.h"
39 #include "xml-syscall.h"
40
41 #include "i387-tdep.h"
42 #include "i386-xstate.h"
43
44 /* The syscall's XML filename for i386. */
45 #define XML_SYSCALL_FILENAME_I386 "syscalls/i386-linux.xml"
46
47 #include "record-full.h"
48 #include "linux-record.h"
49 #include <stdint.h>
50
51 #include "features/i386/i386-linux.c"
52 #include "features/i386/i386-mmx-linux.c"
53 #include "features/i386/i386-mpx-linux.c"
54 #include "features/i386/i386-avx-linux.c"
55
56 /* Supported register note sections. */
57 static struct core_regset_section i386_linux_regset_sections[] =
58 {
59 { ".reg", 68, "general-purpose" },
60 { ".reg2", 108, "floating-point" },
61 { NULL, 0 }
62 };
63
64 static struct core_regset_section i386_linux_sse_regset_sections[] =
65 {
66 { ".reg", 68, "general-purpose" },
67 { ".reg-xfp", 512, "extended floating-point" },
68 { NULL, 0 }
69 };
70
71 static struct core_regset_section i386_linux_avx_regset_sections[] =
72 {
73 { ".reg", 68, "general-purpose" },
74 { ".reg-xstate", I386_XSTATE_MAX_SIZE, "XSAVE extended state" },
75 { NULL, 0 }
76 };
77
78 /* Return non-zero, when the register is in the corresponding register
79 group. Put the LINUX_ORIG_EAX register in the system group. */
80 static int
81 i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
82 struct reggroup *group)
83 {
84 if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
85 return (group == system_reggroup
86 || group == save_reggroup
87 || group == restore_reggroup);
88 return i386_register_reggroup_p (gdbarch, regnum, group);
89 }
90
91 \f
92 /* Recognizing signal handler frames. */
93
94 /* GNU/Linux has two flavors of signals. Normal signal handlers, and
95 "realtime" (RT) signals. The RT signals can provide additional
96 information to the signal handler if the SA_SIGINFO flag is set
97 when establishing a signal handler using `sigaction'. It is not
98 unlikely that future versions of GNU/Linux will support SA_SIGINFO
99 for normal signals too. */
100
101 /* When the i386 Linux kernel calls a signal handler and the
102 SA_RESTORER flag isn't set, the return address points to a bit of
103 code on the stack. This function returns whether the PC appears to
104 be within this bit of code.
105
106 The instruction sequence for normal signals is
107 pop %eax
108 mov $0x77, %eax
109 int $0x80
110 or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
111
112 Checking for the code sequence should be somewhat reliable, because
113 the effect is to call the system call sigreturn. This is unlikely
114 to occur anywhere other than in a signal trampoline.
115
116 It kind of sucks that we have to read memory from the process in
117 order to identify a signal trampoline, but there doesn't seem to be
118 any other way. Therefore we only do the memory reads if no
119 function name could be identified, which should be the case since
120 the code is on the stack.
121
122 Detection of signal trampolines for handlers that set the
123 SA_RESTORER flag is in general not possible. Unfortunately this is
124 what the GNU C Library has been doing for quite some time now.
125 However, as of version 2.1.2, the GNU C Library uses signal
126 trampolines (named __restore and __restore_rt) that are identical
127 to the ones used by the kernel. Therefore, these trampolines are
128 supported too. */
129
130 #define LINUX_SIGTRAMP_INSN0 0x58 /* pop %eax */
131 #define LINUX_SIGTRAMP_OFFSET0 0
132 #define LINUX_SIGTRAMP_INSN1 0xb8 /* mov $NNNN, %eax */
133 #define LINUX_SIGTRAMP_OFFSET1 1
134 #define LINUX_SIGTRAMP_INSN2 0xcd /* int */
135 #define LINUX_SIGTRAMP_OFFSET2 6
136
137 static const gdb_byte linux_sigtramp_code[] =
138 {
139 LINUX_SIGTRAMP_INSN0, /* pop %eax */
140 LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77, %eax */
141 LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
142 };
143
144 #define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
145
146 /* If THIS_FRAME is a sigtramp routine, return the address of the
147 start of the routine. Otherwise, return 0. */
148
149 static CORE_ADDR
150 i386_linux_sigtramp_start (struct frame_info *this_frame)
151 {
152 CORE_ADDR pc = get_frame_pc (this_frame);
153 gdb_byte buf[LINUX_SIGTRAMP_LEN];
154
155 /* We only recognize a signal trampoline if PC is at the start of
156 one of the three instructions. We optimize for finding the PC at
157 the start, as will be the case when the trampoline is not the
158 first frame on the stack. We assume that in the case where the
159 PC is not at the start of the instruction sequence, there will be
160 a few trailing readable bytes on the stack. */
161
162 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
163 return 0;
164
165 if (buf[0] != LINUX_SIGTRAMP_INSN0)
166 {
167 int adjust;
168
169 switch (buf[0])
170 {
171 case LINUX_SIGTRAMP_INSN1:
172 adjust = LINUX_SIGTRAMP_OFFSET1;
173 break;
174 case LINUX_SIGTRAMP_INSN2:
175 adjust = LINUX_SIGTRAMP_OFFSET2;
176 break;
177 default:
178 return 0;
179 }
180
181 pc -= adjust;
182
183 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
184 return 0;
185 }
186
187 if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
188 return 0;
189
190 return pc;
191 }
192
193 /* This function does the same for RT signals. Here the instruction
194 sequence is
195 mov $0xad, %eax
196 int $0x80
197 or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
198
199 The effect is to call the system call rt_sigreturn. */
200
201 #define LINUX_RT_SIGTRAMP_INSN0 0xb8 /* mov $NNNN, %eax */
202 #define LINUX_RT_SIGTRAMP_OFFSET0 0
203 #define LINUX_RT_SIGTRAMP_INSN1 0xcd /* int */
204 #define LINUX_RT_SIGTRAMP_OFFSET1 5
205
206 static const gdb_byte linux_rt_sigtramp_code[] =
207 {
208 LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad, %eax */
209 LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
210 };
211
212 #define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
213
214 /* If THIS_FRAME is an RT sigtramp routine, return the address of the
215 start of the routine. Otherwise, return 0. */
216
217 static CORE_ADDR
218 i386_linux_rt_sigtramp_start (struct frame_info *this_frame)
219 {
220 CORE_ADDR pc = get_frame_pc (this_frame);
221 gdb_byte buf[LINUX_RT_SIGTRAMP_LEN];
222
223 /* We only recognize a signal trampoline if PC is at the start of
224 one of the two instructions. We optimize for finding the PC at
225 the start, as will be the case when the trampoline is not the
226 first frame on the stack. We assume that in the case where the
227 PC is not at the start of the instruction sequence, there will be
228 a few trailing readable bytes on the stack. */
229
230 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_RT_SIGTRAMP_LEN))
231 return 0;
232
233 if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
234 {
235 if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
236 return 0;
237
238 pc -= LINUX_RT_SIGTRAMP_OFFSET1;
239
240 if (!safe_frame_unwind_memory (this_frame, pc, buf,
241 LINUX_RT_SIGTRAMP_LEN))
242 return 0;
243 }
244
245 if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
246 return 0;
247
248 return pc;
249 }
250
251 /* Return whether THIS_FRAME corresponds to a GNU/Linux sigtramp
252 routine. */
253
254 static int
255 i386_linux_sigtramp_p (struct frame_info *this_frame)
256 {
257 CORE_ADDR pc = get_frame_pc (this_frame);
258 const char *name;
259
260 find_pc_partial_function (pc, &name, NULL, NULL);
261
262 /* If we have NAME, we can optimize the search. The trampolines are
263 named __restore and __restore_rt. However, they aren't dynamically
264 exported from the shared C library, so the trampoline may appear to
265 be part of the preceding function. This should always be sigaction,
266 __sigaction, or __libc_sigaction (all aliases to the same function). */
267 if (name == NULL || strstr (name, "sigaction") != NULL)
268 return (i386_linux_sigtramp_start (this_frame) != 0
269 || i386_linux_rt_sigtramp_start (this_frame) != 0);
270
271 return (strcmp ("__restore", name) == 0
272 || strcmp ("__restore_rt", name) == 0);
273 }
274
275 /* Return one if the PC of THIS_FRAME is in a signal trampoline which
276 may have DWARF-2 CFI. */
277
278 static int
279 i386_linux_dwarf_signal_frame_p (struct gdbarch *gdbarch,
280 struct frame_info *this_frame)
281 {
282 CORE_ADDR pc = get_frame_pc (this_frame);
283 const char *name;
284
285 find_pc_partial_function (pc, &name, NULL, NULL);
286
287 /* If a vsyscall DSO is in use, the signal trampolines may have these
288 names. */
289 if (name && (strcmp (name, "__kernel_sigreturn") == 0
290 || strcmp (name, "__kernel_rt_sigreturn") == 0))
291 return 1;
292
293 return 0;
294 }
295
296 /* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>. */
297 #define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
298
299 /* Assuming THIS_FRAME is a GNU/Linux sigtramp routine, return the
300 address of the associated sigcontext structure. */
301
302 static CORE_ADDR
303 i386_linux_sigcontext_addr (struct frame_info *this_frame)
304 {
305 struct gdbarch *gdbarch = get_frame_arch (this_frame);
306 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
307 CORE_ADDR pc;
308 CORE_ADDR sp;
309 gdb_byte buf[4];
310
311 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
312 sp = extract_unsigned_integer (buf, 4, byte_order);
313
314 pc = i386_linux_sigtramp_start (this_frame);
315 if (pc)
316 {
317 /* The sigcontext structure lives on the stack, right after
318 the signum argument. We determine the address of the
319 sigcontext structure by looking at the frame's stack
320 pointer. Keep in mind that the first instruction of the
321 sigtramp code is "pop %eax". If the PC is after this
322 instruction, adjust the returned value accordingly. */
323 if (pc == get_frame_pc (this_frame))
324 return sp + 4;
325 return sp;
326 }
327
328 pc = i386_linux_rt_sigtramp_start (this_frame);
329 if (pc)
330 {
331 CORE_ADDR ucontext_addr;
332
333 /* The sigcontext structure is part of the user context. A
334 pointer to the user context is passed as the third argument
335 to the signal handler. */
336 read_memory (sp + 8, buf, 4);
337 ucontext_addr = extract_unsigned_integer (buf, 4, byte_order);
338 return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
339 }
340
341 error (_("Couldn't recognize signal trampoline."));
342 return 0;
343 }
344
345 /* Set the program counter for process PTID to PC. */
346
347 static void
348 i386_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
349 {
350 regcache_cooked_write_unsigned (regcache, I386_EIP_REGNUM, pc);
351
352 /* We must be careful with modifying the program counter. If we
353 just interrupted a system call, the kernel might try to restart
354 it when we resume the inferior. On restarting the system call,
355 the kernel will try backing up the program counter even though it
356 no longer points at the system call. This typically results in a
357 SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
358 "orig_eax" pseudo-register.
359
360 Note that "orig_eax" is saved when setting up a dummy call frame.
361 This means that it is properly restored when that frame is
362 popped, and that the interrupted system call will be restarted
363 when we resume the inferior on return from a function call from
364 within GDB. In all other cases the system call will not be
365 restarted. */
366 regcache_cooked_write_unsigned (regcache, I386_LINUX_ORIG_EAX_REGNUM, -1);
367 }
368
369 /* Record all registers but IP register for process-record. */
370
371 static int
372 i386_all_but_ip_registers_record (struct regcache *regcache)
373 {
374 if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
375 return -1;
376 if (record_full_arch_list_add_reg (regcache, I386_ECX_REGNUM))
377 return -1;
378 if (record_full_arch_list_add_reg (regcache, I386_EDX_REGNUM))
379 return -1;
380 if (record_full_arch_list_add_reg (regcache, I386_EBX_REGNUM))
381 return -1;
382 if (record_full_arch_list_add_reg (regcache, I386_ESP_REGNUM))
383 return -1;
384 if (record_full_arch_list_add_reg (regcache, I386_EBP_REGNUM))
385 return -1;
386 if (record_full_arch_list_add_reg (regcache, I386_ESI_REGNUM))
387 return -1;
388 if (record_full_arch_list_add_reg (regcache, I386_EDI_REGNUM))
389 return -1;
390 if (record_full_arch_list_add_reg (regcache, I386_EFLAGS_REGNUM))
391 return -1;
392
393 return 0;
394 }
395
396 /* i386_canonicalize_syscall maps from the native i386 Linux set
397 of syscall ids into a canonical set of syscall ids used by
398 process record (a mostly trivial mapping, since the canonical
399 set was originally taken from the i386 set). */
400
401 static enum gdb_syscall
402 i386_canonicalize_syscall (int syscall)
403 {
404 enum { i386_syscall_max = 499 };
405
406 if (syscall <= i386_syscall_max)
407 return syscall;
408 else
409 return -1;
410 }
411
412 /* Parse the arguments of current system call instruction and record
413 the values of the registers and memory that will be changed into
414 "record_arch_list". This instruction is "int 0x80" (Linux
415 Kernel2.4) or "sysenter" (Linux Kernel 2.6).
416
417 Return -1 if something wrong. */
418
419 static struct linux_record_tdep i386_linux_record_tdep;
420
421 static int
422 i386_linux_intx80_sysenter_syscall_record (struct regcache *regcache)
423 {
424 int ret;
425 LONGEST syscall_native;
426 enum gdb_syscall syscall_gdb;
427
428 regcache_raw_read_signed (regcache, I386_EAX_REGNUM, &syscall_native);
429
430 syscall_gdb = i386_canonicalize_syscall (syscall_native);
431
432 if (syscall_gdb < 0)
433 {
434 printf_unfiltered (_("Process record and replay target doesn't "
435 "support syscall number %s\n"),
436 plongest (syscall_native));
437 return -1;
438 }
439
440 if (syscall_gdb == gdb_sys_sigreturn
441 || syscall_gdb == gdb_sys_rt_sigreturn)
442 {
443 if (i386_all_but_ip_registers_record (regcache))
444 return -1;
445 return 0;
446 }
447
448 ret = record_linux_system_call (syscall_gdb, regcache,
449 &i386_linux_record_tdep);
450 if (ret)
451 return ret;
452
453 /* Record the return value of the system call. */
454 if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
455 return -1;
456
457 return 0;
458 }
459
460 #define I386_LINUX_xstate 270
461 #define I386_LINUX_frame_size 732
462
463 static int
464 i386_linux_record_signal (struct gdbarch *gdbarch,
465 struct regcache *regcache,
466 enum gdb_signal signal)
467 {
468 ULONGEST esp;
469
470 if (i386_all_but_ip_registers_record (regcache))
471 return -1;
472
473 if (record_full_arch_list_add_reg (regcache, I386_EIP_REGNUM))
474 return -1;
475
476 /* Record the change in the stack. */
477 regcache_raw_read_unsigned (regcache, I386_ESP_REGNUM, &esp);
478 /* This is for xstate.
479 sp -= sizeof (struct _fpstate); */
480 esp -= I386_LINUX_xstate;
481 /* This is for frame_size.
482 sp -= sizeof (struct rt_sigframe); */
483 esp -= I386_LINUX_frame_size;
484 if (record_full_arch_list_add_mem (esp,
485 I386_LINUX_xstate + I386_LINUX_frame_size))
486 return -1;
487
488 if (record_full_arch_list_add_end ())
489 return -1;
490
491 return 0;
492 }
493 \f
494
495 /* Core of the implementation for gdbarch get_syscall_number. Get pending
496 syscall number from REGCACHE. If there is no pending syscall -1 will be
497 returned. Pending syscall means ptrace has stepped into the syscall but
498 another ptrace call will step out. PC is right after the int $0x80
499 / syscall / sysenter instruction in both cases, PC does not change during
500 the second ptrace step. */
501
502 static LONGEST
503 i386_linux_get_syscall_number_from_regcache (struct regcache *regcache)
504 {
505 struct gdbarch *gdbarch = get_regcache_arch (regcache);
506 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
507 /* The content of a register. */
508 gdb_byte buf[4];
509 /* The result. */
510 LONGEST ret;
511
512 /* Getting the system call number from the register.
513 When dealing with x86 architecture, this information
514 is stored at %eax register. */
515 regcache_cooked_read (regcache, I386_LINUX_ORIG_EAX_REGNUM, buf);
516
517 ret = extract_signed_integer (buf, 4, byte_order);
518
519 return ret;
520 }
521
522 /* Wrapper for i386_linux_get_syscall_number_from_regcache to make it
523 compatible with gdbarch get_syscall_number method prototype. */
524
525 static LONGEST
526 i386_linux_get_syscall_number (struct gdbarch *gdbarch,
527 ptid_t ptid)
528 {
529 struct regcache *regcache = get_thread_regcache (ptid);
530
531 return i386_linux_get_syscall_number_from_regcache (regcache);
532 }
533
534 /* The register sets used in GNU/Linux ELF core-dumps are identical to
535 the register sets in `struct user' that are used for a.out
536 core-dumps. These are also used by ptrace(2). The corresponding
537 types are `elf_gregset_t' for the general-purpose registers (with
538 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
539 for the floating-point registers.
540
541 Those types used to be available under the names `gregset_t' and
542 `fpregset_t' too, and GDB used those names in the past. But those
543 names are now used for the register sets used in the `mcontext_t'
544 type, which have a different size and layout. */
545
546 /* Mapping between the general-purpose registers in `struct user'
547 format and GDB's register cache layout. */
548
549 /* From <sys/reg.h>. */
550 int i386_linux_gregset_reg_offset[] =
551 {
552 6 * 4, /* %eax */
553 1 * 4, /* %ecx */
554 2 * 4, /* %edx */
555 0 * 4, /* %ebx */
556 15 * 4, /* %esp */
557 5 * 4, /* %ebp */
558 3 * 4, /* %esi */
559 4 * 4, /* %edi */
560 12 * 4, /* %eip */
561 14 * 4, /* %eflags */
562 13 * 4, /* %cs */
563 16 * 4, /* %ss */
564 7 * 4, /* %ds */
565 8 * 4, /* %es */
566 9 * 4, /* %fs */
567 10 * 4, /* %gs */
568 -1, -1, -1, -1, -1, -1, -1, -1,
569 -1, -1, -1, -1, -1, -1, -1, -1,
570 -1, -1, -1, -1, -1, -1, -1, -1,
571 -1,
572 -1, -1, -1, -1, -1, -1, -1, -1,
573 -1, -1, -1, -1, /* MPX registers BND0 ... BND3. */
574 -1, -1, /* MPX registers BNDCFGU, BNDSTATUS. */
575 11 * 4 /* "orig_eax" */
576 };
577
578 /* Mapping between the general-purpose registers in `struct
579 sigcontext' format and GDB's register cache layout. */
580
581 /* From <asm/sigcontext.h>. */
582 static int i386_linux_sc_reg_offset[] =
583 {
584 11 * 4, /* %eax */
585 10 * 4, /* %ecx */
586 9 * 4, /* %edx */
587 8 * 4, /* %ebx */
588 7 * 4, /* %esp */
589 6 * 4, /* %ebp */
590 5 * 4, /* %esi */
591 4 * 4, /* %edi */
592 14 * 4, /* %eip */
593 16 * 4, /* %eflags */
594 15 * 4, /* %cs */
595 18 * 4, /* %ss */
596 3 * 4, /* %ds */
597 2 * 4, /* %es */
598 1 * 4, /* %fs */
599 0 * 4 /* %gs */
600 };
601
602 /* Get XSAVE extended state xcr0 from core dump. */
603
604 uint64_t
605 i386_linux_core_read_xcr0 (bfd *abfd)
606 {
607 asection *xstate = bfd_get_section_by_name (abfd, ".reg-xstate");
608 uint64_t xcr0;
609
610 if (xstate)
611 {
612 size_t size = bfd_section_size (abfd, xstate);
613
614 /* Check extended state size. */
615 if (size < I386_XSTATE_AVX_SIZE)
616 xcr0 = I386_XSTATE_SSE_MASK;
617 else
618 {
619 char contents[8];
620
621 if (! bfd_get_section_contents (abfd, xstate, contents,
622 I386_LINUX_XSAVE_XCR0_OFFSET,
623 8))
624 {
625 warning (_("Couldn't read `xcr0' bytes from "
626 "`.reg-xstate' section in core file."));
627 return 0;
628 }
629
630 xcr0 = bfd_get_64 (abfd, contents);
631 }
632 }
633 else
634 xcr0 = 0;
635
636 return xcr0;
637 }
638
639 /* Get Linux/x86 target description from core dump. */
640
641 static const struct target_desc *
642 i386_linux_core_read_description (struct gdbarch *gdbarch,
643 struct target_ops *target,
644 bfd *abfd)
645 {
646 /* Linux/i386. */
647 uint64_t xcr0 = i386_linux_core_read_xcr0 (abfd);
648
649 switch ((xcr0 & I386_XSTATE_ALL_MASK))
650 {
651 case I386_XSTATE_MPX_MASK:
652 return tdesc_i386_mpx_linux;
653 case I386_XSTATE_AVX_MASK:
654 return tdesc_i386_avx_linux;
655 case I386_XSTATE_SSE_MASK:
656 return tdesc_i386_linux;
657 case I386_XSTATE_X87_MASK:
658 return tdesc_i386_mmx_linux;
659 default:
660 break;
661 }
662
663 if (bfd_get_section_by_name (abfd, ".reg-xfp") != NULL)
664 return tdesc_i386_linux;
665 else
666 return tdesc_i386_mmx_linux;
667 }
668
669 /* Linux kernel shows PC value after the 'int $0x80' instruction even if
670 inferior is still inside the syscall. On next PTRACE_SINGLESTEP it will
671 finish the syscall but PC will not change.
672
673 Some vDSOs contain 'int $0x80; ret' and during stepping out of the syscall
674 i386_displaced_step_fixup would keep PC at the displaced pad location.
675 As PC is pointing to the 'ret' instruction before the step
676 i386_displaced_step_fixup would expect inferior has just executed that 'ret'
677 and PC should not be adjusted. In reality it finished syscall instead and
678 PC should get relocated back to its vDSO address. Hide the 'ret'
679 instruction by 'nop' so that i386_displaced_step_fixup is not confused.
680
681 It is not fully correct as the bytes in struct displaced_step_closure will
682 not match the inferior code. But we would need some new flag in
683 displaced_step_closure otherwise to keep the state that syscall is finishing
684 for the later i386_displaced_step_fixup execution as the syscall execution
685 is already no longer detectable there. The new flag field would mean
686 i386-linux-tdep.c needs to wrap all the displacement methods of i386-tdep.c
687 which does not seem worth it. The same effect is achieved by patching that
688 'nop' instruction there instead. */
689
690 static struct displaced_step_closure *
691 i386_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
692 CORE_ADDR from, CORE_ADDR to,
693 struct regcache *regs)
694 {
695 struct displaced_step_closure *closure;
696
697 closure = i386_displaced_step_copy_insn (gdbarch, from, to, regs);
698
699 if (i386_linux_get_syscall_number_from_regcache (regs) != -1)
700 {
701 /* Since we use simple_displaced_step_copy_insn, our closure is a
702 copy of the instruction. */
703 gdb_byte *insn = (gdb_byte *) closure;
704
705 /* Fake nop. */
706 insn[0] = 0x90;
707 }
708
709 return closure;
710 }
711
712 static void
713 i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
714 {
715 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
716 const struct target_desc *tdesc = info.target_desc;
717 struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info;
718 const struct tdesc_feature *feature;
719 int valid_p;
720
721 gdb_assert (tdesc_data);
722
723 linux_init_abi (info, gdbarch);
724
725 /* GNU/Linux uses ELF. */
726 i386_elf_init_abi (info, gdbarch);
727
728 /* Reserve a number for orig_eax. */
729 set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
730
731 if (! tdesc_has_registers (tdesc))
732 tdesc = tdesc_i386_linux;
733 tdep->tdesc = tdesc;
734
735 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.linux");
736 if (feature == NULL)
737 return;
738
739 valid_p = tdesc_numbered_register (feature, tdesc_data,
740 I386_LINUX_ORIG_EAX_REGNUM,
741 "orig_eax");
742 if (!valid_p)
743 return;
744
745 /* Add the %orig_eax register used for syscall restarting. */
746 set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
747
748 tdep->register_reggroup_p = i386_linux_register_reggroup_p;
749
750 tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
751 tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
752 tdep->sizeof_gregset = 17 * 4;
753
754 tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */
755
756 tdep->sigtramp_p = i386_linux_sigtramp_p;
757 tdep->sigcontext_addr = i386_linux_sigcontext_addr;
758 tdep->sc_reg_offset = i386_linux_sc_reg_offset;
759 tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
760
761 tdep->xsave_xcr0_offset = I386_LINUX_XSAVE_XCR0_OFFSET;
762
763 set_gdbarch_process_record (gdbarch, i386_process_record);
764 set_gdbarch_process_record_signal (gdbarch, i386_linux_record_signal);
765
766 /* Initialize the i386_linux_record_tdep. */
767 /* These values are the size of the type that will be used in a system
768 call. They are obtained from Linux Kernel source. */
769 i386_linux_record_tdep.size_pointer
770 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
771 i386_linux_record_tdep.size__old_kernel_stat = 32;
772 i386_linux_record_tdep.size_tms = 16;
773 i386_linux_record_tdep.size_loff_t = 8;
774 i386_linux_record_tdep.size_flock = 16;
775 i386_linux_record_tdep.size_oldold_utsname = 45;
776 i386_linux_record_tdep.size_ustat = 20;
777 i386_linux_record_tdep.size_old_sigaction = 140;
778 i386_linux_record_tdep.size_old_sigset_t = 128;
779 i386_linux_record_tdep.size_rlimit = 8;
780 i386_linux_record_tdep.size_rusage = 72;
781 i386_linux_record_tdep.size_timeval = 8;
782 i386_linux_record_tdep.size_timezone = 8;
783 i386_linux_record_tdep.size_old_gid_t = 2;
784 i386_linux_record_tdep.size_old_uid_t = 2;
785 i386_linux_record_tdep.size_fd_set = 128;
786 i386_linux_record_tdep.size_dirent = 268;
787 i386_linux_record_tdep.size_dirent64 = 276;
788 i386_linux_record_tdep.size_statfs = 64;
789 i386_linux_record_tdep.size_statfs64 = 84;
790 i386_linux_record_tdep.size_sockaddr = 16;
791 i386_linux_record_tdep.size_int
792 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
793 i386_linux_record_tdep.size_long
794 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
795 i386_linux_record_tdep.size_ulong
796 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
797 i386_linux_record_tdep.size_msghdr = 28;
798 i386_linux_record_tdep.size_itimerval = 16;
799 i386_linux_record_tdep.size_stat = 88;
800 i386_linux_record_tdep.size_old_utsname = 325;
801 i386_linux_record_tdep.size_sysinfo = 64;
802 i386_linux_record_tdep.size_msqid_ds = 88;
803 i386_linux_record_tdep.size_shmid_ds = 84;
804 i386_linux_record_tdep.size_new_utsname = 390;
805 i386_linux_record_tdep.size_timex = 128;
806 i386_linux_record_tdep.size_mem_dqinfo = 24;
807 i386_linux_record_tdep.size_if_dqblk = 68;
808 i386_linux_record_tdep.size_fs_quota_stat = 68;
809 i386_linux_record_tdep.size_timespec = 8;
810 i386_linux_record_tdep.size_pollfd = 8;
811 i386_linux_record_tdep.size_NFS_FHSIZE = 32;
812 i386_linux_record_tdep.size_knfsd_fh = 132;
813 i386_linux_record_tdep.size_TASK_COMM_LEN = 16;
814 i386_linux_record_tdep.size_sigaction = 140;
815 i386_linux_record_tdep.size_sigset_t = 8;
816 i386_linux_record_tdep.size_siginfo_t = 128;
817 i386_linux_record_tdep.size_cap_user_data_t = 12;
818 i386_linux_record_tdep.size_stack_t = 12;
819 i386_linux_record_tdep.size_off_t = i386_linux_record_tdep.size_long;
820 i386_linux_record_tdep.size_stat64 = 96;
821 i386_linux_record_tdep.size_gid_t = 2;
822 i386_linux_record_tdep.size_uid_t = 2;
823 i386_linux_record_tdep.size_PAGE_SIZE = 4096;
824 i386_linux_record_tdep.size_flock64 = 24;
825 i386_linux_record_tdep.size_user_desc = 16;
826 i386_linux_record_tdep.size_io_event = 32;
827 i386_linux_record_tdep.size_iocb = 64;
828 i386_linux_record_tdep.size_epoll_event = 12;
829 i386_linux_record_tdep.size_itimerspec
830 = i386_linux_record_tdep.size_timespec * 2;
831 i386_linux_record_tdep.size_mq_attr = 32;
832 i386_linux_record_tdep.size_siginfo = 128;
833 i386_linux_record_tdep.size_termios = 36;
834 i386_linux_record_tdep.size_termios2 = 44;
835 i386_linux_record_tdep.size_pid_t = 4;
836 i386_linux_record_tdep.size_winsize = 8;
837 i386_linux_record_tdep.size_serial_struct = 60;
838 i386_linux_record_tdep.size_serial_icounter_struct = 80;
839 i386_linux_record_tdep.size_hayes_esp_config = 12;
840 i386_linux_record_tdep.size_size_t = 4;
841 i386_linux_record_tdep.size_iovec = 8;
842
843 /* These values are the second argument of system call "sys_ioctl".
844 They are obtained from Linux Kernel source. */
845 i386_linux_record_tdep.ioctl_TCGETS = 0x5401;
846 i386_linux_record_tdep.ioctl_TCSETS = 0x5402;
847 i386_linux_record_tdep.ioctl_TCSETSW = 0x5403;
848 i386_linux_record_tdep.ioctl_TCSETSF = 0x5404;
849 i386_linux_record_tdep.ioctl_TCGETA = 0x5405;
850 i386_linux_record_tdep.ioctl_TCSETA = 0x5406;
851 i386_linux_record_tdep.ioctl_TCSETAW = 0x5407;
852 i386_linux_record_tdep.ioctl_TCSETAF = 0x5408;
853 i386_linux_record_tdep.ioctl_TCSBRK = 0x5409;
854 i386_linux_record_tdep.ioctl_TCXONC = 0x540A;
855 i386_linux_record_tdep.ioctl_TCFLSH = 0x540B;
856 i386_linux_record_tdep.ioctl_TIOCEXCL = 0x540C;
857 i386_linux_record_tdep.ioctl_TIOCNXCL = 0x540D;
858 i386_linux_record_tdep.ioctl_TIOCSCTTY = 0x540E;
859 i386_linux_record_tdep.ioctl_TIOCGPGRP = 0x540F;
860 i386_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
861 i386_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
862 i386_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
863 i386_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
864 i386_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
865 i386_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
866 i386_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
867 i386_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
868 i386_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
869 i386_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
870 i386_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541A;
871 i386_linux_record_tdep.ioctl_FIONREAD = 0x541B;
872 i386_linux_record_tdep.ioctl_TIOCINQ = i386_linux_record_tdep.ioctl_FIONREAD;
873 i386_linux_record_tdep.ioctl_TIOCLINUX = 0x541C;
874 i386_linux_record_tdep.ioctl_TIOCCONS = 0x541D;
875 i386_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541E;
876 i386_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541F;
877 i386_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
878 i386_linux_record_tdep.ioctl_FIONBIO = 0x5421;
879 i386_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
880 i386_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
881 i386_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
882 i386_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
883 i386_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
884 i386_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
885 i386_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
886 i386_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
887 i386_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
888 i386_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
889 i386_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
890 i386_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
891 i386_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
892 i386_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
893 i386_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
894 i386_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
895 i386_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
896 i386_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
897 i386_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
898 i386_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
899 i386_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
900 i386_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
901 i386_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
902 i386_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
903 i386_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545A;
904 i386_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545B;
905 i386_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545C;
906 i386_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545D;
907 i386_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545E;
908 i386_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545F;
909 i386_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
910
911 /* These values are the second argument of system call "sys_fcntl"
912 and "sys_fcntl64". They are obtained from Linux Kernel source. */
913 i386_linux_record_tdep.fcntl_F_GETLK = 5;
914 i386_linux_record_tdep.fcntl_F_GETLK64 = 12;
915 i386_linux_record_tdep.fcntl_F_SETLK64 = 13;
916 i386_linux_record_tdep.fcntl_F_SETLKW64 = 14;
917
918 i386_linux_record_tdep.arg1 = I386_EBX_REGNUM;
919 i386_linux_record_tdep.arg2 = I386_ECX_REGNUM;
920 i386_linux_record_tdep.arg3 = I386_EDX_REGNUM;
921 i386_linux_record_tdep.arg4 = I386_ESI_REGNUM;
922 i386_linux_record_tdep.arg5 = I386_EDI_REGNUM;
923 i386_linux_record_tdep.arg6 = I386_EBP_REGNUM;
924
925 tdep->i386_intx80_record = i386_linux_intx80_sysenter_syscall_record;
926 tdep->i386_sysenter_record = i386_linux_intx80_sysenter_syscall_record;
927 tdep->i386_syscall_record = i386_linux_intx80_sysenter_syscall_record;
928
929 /* N_FUN symbols in shared libaries have 0 for their values and need
930 to be relocated. */
931 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
932
933 /* GNU/Linux uses SVR4-style shared libraries. */
934 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
935 set_solib_svr4_fetch_link_map_offsets
936 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
937
938 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */
939 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
940
941 dwarf2_frame_set_signal_frame_p (gdbarch, i386_linux_dwarf_signal_frame_p);
942
943 /* Enable TLS support. */
944 set_gdbarch_fetch_tls_load_module_address (gdbarch,
945 svr4_fetch_objfile_link_map);
946
947 /* Install supported register note sections. */
948 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx"))
949 set_gdbarch_core_regset_sections (gdbarch, i386_linux_avx_regset_sections);
950 else if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse"))
951 set_gdbarch_core_regset_sections (gdbarch, i386_linux_sse_regset_sections);
952 else
953 set_gdbarch_core_regset_sections (gdbarch, i386_linux_regset_sections);
954
955 set_gdbarch_core_read_description (gdbarch,
956 i386_linux_core_read_description);
957
958 /* Displaced stepping. */
959 set_gdbarch_displaced_step_copy_insn (gdbarch,
960 i386_linux_displaced_step_copy_insn);
961 set_gdbarch_displaced_step_fixup (gdbarch, i386_displaced_step_fixup);
962 set_gdbarch_displaced_step_free_closure (gdbarch,
963 simple_displaced_step_free_closure);
964 set_gdbarch_displaced_step_location (gdbarch,
965 displaced_step_at_entry_point);
966
967 /* Functions for 'catch syscall'. */
968 set_xml_syscall_file_name (XML_SYSCALL_FILENAME_I386);
969 set_gdbarch_get_syscall_number (gdbarch,
970 i386_linux_get_syscall_number);
971
972 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
973 }
974
975 /* Provide a prototype to silence -Wmissing-prototypes. */
976 extern void _initialize_i386_linux_tdep (void);
977
978 void
979 _initialize_i386_linux_tdep (void)
980 {
981 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
982 i386_linux_init_abi);
983
984 /* Initialize the Linux target description. */
985 initialize_tdesc_i386_linux ();
986 initialize_tdesc_i386_mmx_linux ();
987 initialize_tdesc_i386_avx_linux ();
988 initialize_tdesc_i386_mpx_linux ();
989 }