]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/i386-tdep.c
Update copyright year range in all GDB files
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2/frame.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "target-float.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "gdbsupport/x86-xstate.h"
50 #include "x86-tdep.h"
51
52 #include "record.h"
53 #include "record-full.h"
54 #include "target-descriptions.h"
55 #include "arch/i386.h"
56
57 #include "ax.h"
58 #include "ax-gdb.h"
59
60 #include "stap-probe.h"
61 #include "user-regs.h"
62 #include "cli/cli-utils.h"
63 #include "expression.h"
64 #include "parser-defs.h"
65 #include <ctype.h>
66 #include <algorithm>
67 #include <unordered_set>
68 #include "producer.h"
69
70 /* Register names. */
71
72 static const char * const i386_register_names[] =
73 {
74 "eax", "ecx", "edx", "ebx",
75 "esp", "ebp", "esi", "edi",
76 "eip", "eflags", "cs", "ss",
77 "ds", "es", "fs", "gs",
78 "st0", "st1", "st2", "st3",
79 "st4", "st5", "st6", "st7",
80 "fctrl", "fstat", "ftag", "fiseg",
81 "fioff", "foseg", "fooff", "fop",
82 "xmm0", "xmm1", "xmm2", "xmm3",
83 "xmm4", "xmm5", "xmm6", "xmm7",
84 "mxcsr"
85 };
86
87 static const char * const i386_zmm_names[] =
88 {
89 "zmm0", "zmm1", "zmm2", "zmm3",
90 "zmm4", "zmm5", "zmm6", "zmm7"
91 };
92
93 static const char * const i386_zmmh_names[] =
94 {
95 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
96 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
97 };
98
99 static const char * const i386_k_names[] =
100 {
101 "k0", "k1", "k2", "k3",
102 "k4", "k5", "k6", "k7"
103 };
104
105 static const char * const i386_ymm_names[] =
106 {
107 "ymm0", "ymm1", "ymm2", "ymm3",
108 "ymm4", "ymm5", "ymm6", "ymm7",
109 };
110
111 static const char * const i386_ymmh_names[] =
112 {
113 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
114 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
115 };
116
117 static const char * const i386_mpx_names[] =
118 {
119 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
120 };
121
122 static const char * const i386_pkeys_names[] =
123 {
124 "pkru"
125 };
126
127 /* Register names for MPX pseudo-registers. */
128
129 static const char * const i386_bnd_names[] =
130 {
131 "bnd0", "bnd1", "bnd2", "bnd3"
132 };
133
134 /* Register names for MMX pseudo-registers. */
135
136 static const char * const i386_mmx_names[] =
137 {
138 "mm0", "mm1", "mm2", "mm3",
139 "mm4", "mm5", "mm6", "mm7"
140 };
141
142 /* Register names for byte pseudo-registers. */
143
144 static const char * const i386_byte_names[] =
145 {
146 "al", "cl", "dl", "bl",
147 "ah", "ch", "dh", "bh"
148 };
149
150 /* Register names for word pseudo-registers. */
151
152 static const char * const i386_word_names[] =
153 {
154 "ax", "cx", "dx", "bx",
155 "", "bp", "si", "di"
156 };
157
158 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
159 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
160 we have 16 upper ZMM regs that have to be handled differently. */
161
162 const int num_lower_zmm_regs = 16;
163
164 /* MMX register? */
165
166 static int
167 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
168 {
169 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
170 int mm0_regnum = tdep->mm0_regnum;
171
172 if (mm0_regnum < 0)
173 return 0;
174
175 regnum -= mm0_regnum;
176 return regnum >= 0 && regnum < tdep->num_mmx_regs;
177 }
178
179 /* Byte register? */
180
181 int
182 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
183 {
184 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
185
186 regnum -= tdep->al_regnum;
187 return regnum >= 0 && regnum < tdep->num_byte_regs;
188 }
189
190 /* Word register? */
191
192 int
193 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
194 {
195 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
196
197 regnum -= tdep->ax_regnum;
198 return regnum >= 0 && regnum < tdep->num_word_regs;
199 }
200
201 /* Dword register? */
202
203 int
204 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
205 {
206 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
207 int eax_regnum = tdep->eax_regnum;
208
209 if (eax_regnum < 0)
210 return 0;
211
212 regnum -= eax_regnum;
213 return regnum >= 0 && regnum < tdep->num_dword_regs;
214 }
215
216 /* AVX512 register? */
217
218 int
219 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
220 {
221 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
222 int zmm0h_regnum = tdep->zmm0h_regnum;
223
224 if (zmm0h_regnum < 0)
225 return 0;
226
227 regnum -= zmm0h_regnum;
228 return regnum >= 0 && regnum < tdep->num_zmm_regs;
229 }
230
231 int
232 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
233 {
234 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
235 int zmm0_regnum = tdep->zmm0_regnum;
236
237 if (zmm0_regnum < 0)
238 return 0;
239
240 regnum -= zmm0_regnum;
241 return regnum >= 0 && regnum < tdep->num_zmm_regs;
242 }
243
244 int
245 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
246 {
247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
248 int k0_regnum = tdep->k0_regnum;
249
250 if (k0_regnum < 0)
251 return 0;
252
253 regnum -= k0_regnum;
254 return regnum >= 0 && regnum < I387_NUM_K_REGS;
255 }
256
257 static int
258 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
259 {
260 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
261 int ymm0h_regnum = tdep->ymm0h_regnum;
262
263 if (ymm0h_regnum < 0)
264 return 0;
265
266 regnum -= ymm0h_regnum;
267 return regnum >= 0 && regnum < tdep->num_ymm_regs;
268 }
269
270 /* AVX register? */
271
272 int
273 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
274 {
275 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
276 int ymm0_regnum = tdep->ymm0_regnum;
277
278 if (ymm0_regnum < 0)
279 return 0;
280
281 regnum -= ymm0_regnum;
282 return regnum >= 0 && regnum < tdep->num_ymm_regs;
283 }
284
285 static int
286 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
287 {
288 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
289 int ymm16h_regnum = tdep->ymm16h_regnum;
290
291 if (ymm16h_regnum < 0)
292 return 0;
293
294 regnum -= ymm16h_regnum;
295 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
296 }
297
298 int
299 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
300 {
301 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
302 int ymm16_regnum = tdep->ymm16_regnum;
303
304 if (ymm16_regnum < 0)
305 return 0;
306
307 regnum -= ymm16_regnum;
308 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
309 }
310
311 /* BND register? */
312
313 int
314 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
315 {
316 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
317 int bnd0_regnum = tdep->bnd0_regnum;
318
319 if (bnd0_regnum < 0)
320 return 0;
321
322 regnum -= bnd0_regnum;
323 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
324 }
325
326 /* SSE register? */
327
328 int
329 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
330 {
331 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
332 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
333
334 if (num_xmm_regs == 0)
335 return 0;
336
337 regnum -= I387_XMM0_REGNUM (tdep);
338 return regnum >= 0 && regnum < num_xmm_regs;
339 }
340
341 /* XMM_512 register? */
342
343 int
344 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
345 {
346 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
347 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
348
349 if (num_xmm_avx512_regs == 0)
350 return 0;
351
352 regnum -= I387_XMM16_REGNUM (tdep);
353 return regnum >= 0 && regnum < num_xmm_avx512_regs;
354 }
355
356 static int
357 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
358 {
359 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
360
361 if (I387_NUM_XMM_REGS (tdep) == 0)
362 return 0;
363
364 return (regnum == I387_MXCSR_REGNUM (tdep));
365 }
366
367 /* FP register? */
368
369 int
370 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
371 {
372 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
373
374 if (I387_ST0_REGNUM (tdep) < 0)
375 return 0;
376
377 return (I387_ST0_REGNUM (tdep) <= regnum
378 && regnum < I387_FCTRL_REGNUM (tdep));
379 }
380
381 int
382 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
383 {
384 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
385
386 if (I387_ST0_REGNUM (tdep) < 0)
387 return 0;
388
389 return (I387_FCTRL_REGNUM (tdep) <= regnum
390 && regnum < I387_XMM0_REGNUM (tdep));
391 }
392
393 /* BNDr (raw) register? */
394
395 static int
396 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
397 {
398 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
399
400 if (I387_BND0R_REGNUM (tdep) < 0)
401 return 0;
402
403 regnum -= tdep->bnd0r_regnum;
404 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
405 }
406
407 /* BND control register? */
408
409 static int
410 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
411 {
412 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
413
414 if (I387_BNDCFGU_REGNUM (tdep) < 0)
415 return 0;
416
417 regnum -= I387_BNDCFGU_REGNUM (tdep);
418 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
419 }
420
421 /* PKRU register? */
422
423 bool
424 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
425 {
426 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
427 int pkru_regnum = tdep->pkru_regnum;
428
429 if (pkru_regnum < 0)
430 return false;
431
432 regnum -= pkru_regnum;
433 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
434 }
435
436 /* Return the name of register REGNUM, or the empty string if it is
437 an anonymous register. */
438
439 static const char *
440 i386_register_name (struct gdbarch *gdbarch, int regnum)
441 {
442 /* Hide the upper YMM registers. */
443 if (i386_ymmh_regnum_p (gdbarch, regnum))
444 return "";
445
446 /* Hide the upper YMM16-31 registers. */
447 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
448 return "";
449
450 /* Hide the upper ZMM registers. */
451 if (i386_zmmh_regnum_p (gdbarch, regnum))
452 return "";
453
454 return tdesc_register_name (gdbarch, regnum);
455 }
456
457 /* Return the name of register REGNUM. */
458
459 const char *
460 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
461 {
462 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
463 if (i386_bnd_regnum_p (gdbarch, regnum))
464 return i386_bnd_names[regnum - tdep->bnd0_regnum];
465 if (i386_mmx_regnum_p (gdbarch, regnum))
466 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
467 else if (i386_ymm_regnum_p (gdbarch, regnum))
468 return i386_ymm_names[regnum - tdep->ymm0_regnum];
469 else if (i386_zmm_regnum_p (gdbarch, regnum))
470 return i386_zmm_names[regnum - tdep->zmm0_regnum];
471 else if (i386_byte_regnum_p (gdbarch, regnum))
472 return i386_byte_names[regnum - tdep->al_regnum];
473 else if (i386_word_regnum_p (gdbarch, regnum))
474 return i386_word_names[regnum - tdep->ax_regnum];
475
476 internal_error (__FILE__, __LINE__, _("invalid regnum"));
477 }
478
479 /* Convert a dbx register number REG to the appropriate register
480 number used by GDB. */
481
482 static int
483 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
484 {
485 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
486
487 /* This implements what GCC calls the "default" register map
488 (dbx_register_map[]). */
489
490 if (reg >= 0 && reg <= 7)
491 {
492 /* General-purpose registers. The debug info calls %ebp
493 register 4, and %esp register 5. */
494 if (reg == 4)
495 return 5;
496 else if (reg == 5)
497 return 4;
498 else return reg;
499 }
500 else if (reg >= 12 && reg <= 19)
501 {
502 /* Floating-point registers. */
503 return reg - 12 + I387_ST0_REGNUM (tdep);
504 }
505 else if (reg >= 21 && reg <= 28)
506 {
507 /* SSE registers. */
508 int ymm0_regnum = tdep->ymm0_regnum;
509
510 if (ymm0_regnum >= 0
511 && i386_xmm_regnum_p (gdbarch, reg))
512 return reg - 21 + ymm0_regnum;
513 else
514 return reg - 21 + I387_XMM0_REGNUM (tdep);
515 }
516 else if (reg >= 29 && reg <= 36)
517 {
518 /* MMX registers. */
519 return reg - 29 + I387_MM0_REGNUM (tdep);
520 }
521
522 /* This will hopefully provoke a warning. */
523 return gdbarch_num_cooked_regs (gdbarch);
524 }
525
526 /* Convert SVR4 DWARF register number REG to the appropriate register number
527 used by GDB. */
528
529 static int
530 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
531 {
532 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
533
534 /* This implements the GCC register map that tries to be compatible
535 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
536
537 /* The SVR4 register numbering includes %eip and %eflags, and
538 numbers the floating point registers differently. */
539 if (reg >= 0 && reg <= 9)
540 {
541 /* General-purpose registers. */
542 return reg;
543 }
544 else if (reg >= 11 && reg <= 18)
545 {
546 /* Floating-point registers. */
547 return reg - 11 + I387_ST0_REGNUM (tdep);
548 }
549 else if (reg >= 21 && reg <= 36)
550 {
551 /* The SSE and MMX registers have the same numbers as with dbx. */
552 return i386_dbx_reg_to_regnum (gdbarch, reg);
553 }
554
555 switch (reg)
556 {
557 case 37: return I387_FCTRL_REGNUM (tdep);
558 case 38: return I387_FSTAT_REGNUM (tdep);
559 case 39: return I387_MXCSR_REGNUM (tdep);
560 case 40: return I386_ES_REGNUM;
561 case 41: return I386_CS_REGNUM;
562 case 42: return I386_SS_REGNUM;
563 case 43: return I386_DS_REGNUM;
564 case 44: return I386_FS_REGNUM;
565 case 45: return I386_GS_REGNUM;
566 }
567
568 return -1;
569 }
570
571 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
572 num_regs + num_pseudo_regs for other debug formats. */
573
574 int
575 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
576 {
577 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
578
579 if (regnum == -1)
580 return gdbarch_num_cooked_regs (gdbarch);
581 return regnum;
582 }
583
584 \f
585
586 /* This is the variable that is set with "set disassembly-flavor", and
587 its legitimate values. */
588 static const char att_flavor[] = "att";
589 static const char intel_flavor[] = "intel";
590 static const char *const valid_flavors[] =
591 {
592 att_flavor,
593 intel_flavor,
594 NULL
595 };
596 static const char *disassembly_flavor = att_flavor;
597 \f
598
599 /* Use the program counter to determine the contents and size of a
600 breakpoint instruction. Return a pointer to a string of bytes that
601 encode a breakpoint instruction, store the length of the string in
602 *LEN and optionally adjust *PC to point to the correct memory
603 location for inserting the breakpoint.
604
605 On the i386 we have a single breakpoint that fits in a single byte
606 and can be inserted anywhere.
607
608 This function is 64-bit safe. */
609
610 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
611
612 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
613
614 \f
615 /* Displaced instruction handling. */
616
617 /* Skip the legacy instruction prefixes in INSN.
618 Not all prefixes are valid for any particular insn
619 but we needn't care, the insn will fault if it's invalid.
620 The result is a pointer to the first opcode byte,
621 or NULL if we run off the end of the buffer. */
622
623 static gdb_byte *
624 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
625 {
626 gdb_byte *end = insn + max_len;
627
628 while (insn < end)
629 {
630 switch (*insn)
631 {
632 case DATA_PREFIX_OPCODE:
633 case ADDR_PREFIX_OPCODE:
634 case CS_PREFIX_OPCODE:
635 case DS_PREFIX_OPCODE:
636 case ES_PREFIX_OPCODE:
637 case FS_PREFIX_OPCODE:
638 case GS_PREFIX_OPCODE:
639 case SS_PREFIX_OPCODE:
640 case LOCK_PREFIX_OPCODE:
641 case REPE_PREFIX_OPCODE:
642 case REPNE_PREFIX_OPCODE:
643 ++insn;
644 continue;
645 default:
646 return insn;
647 }
648 }
649
650 return NULL;
651 }
652
653 static int
654 i386_absolute_jmp_p (const gdb_byte *insn)
655 {
656 /* jmp far (absolute address in operand). */
657 if (insn[0] == 0xea)
658 return 1;
659
660 if (insn[0] == 0xff)
661 {
662 /* jump near, absolute indirect (/4). */
663 if ((insn[1] & 0x38) == 0x20)
664 return 1;
665
666 /* jump far, absolute indirect (/5). */
667 if ((insn[1] & 0x38) == 0x28)
668 return 1;
669 }
670
671 return 0;
672 }
673
674 /* Return non-zero if INSN is a jump, zero otherwise. */
675
676 static int
677 i386_jmp_p (const gdb_byte *insn)
678 {
679 /* jump short, relative. */
680 if (insn[0] == 0xeb)
681 return 1;
682
683 /* jump near, relative. */
684 if (insn[0] == 0xe9)
685 return 1;
686
687 return i386_absolute_jmp_p (insn);
688 }
689
690 static int
691 i386_absolute_call_p (const gdb_byte *insn)
692 {
693 /* call far, absolute. */
694 if (insn[0] == 0x9a)
695 return 1;
696
697 if (insn[0] == 0xff)
698 {
699 /* Call near, absolute indirect (/2). */
700 if ((insn[1] & 0x38) == 0x10)
701 return 1;
702
703 /* Call far, absolute indirect (/3). */
704 if ((insn[1] & 0x38) == 0x18)
705 return 1;
706 }
707
708 return 0;
709 }
710
711 static int
712 i386_ret_p (const gdb_byte *insn)
713 {
714 switch (insn[0])
715 {
716 case 0xc2: /* ret near, pop N bytes. */
717 case 0xc3: /* ret near */
718 case 0xca: /* ret far, pop N bytes. */
719 case 0xcb: /* ret far */
720 case 0xcf: /* iret */
721 return 1;
722
723 default:
724 return 0;
725 }
726 }
727
728 static int
729 i386_call_p (const gdb_byte *insn)
730 {
731 if (i386_absolute_call_p (insn))
732 return 1;
733
734 /* call near, relative. */
735 if (insn[0] == 0xe8)
736 return 1;
737
738 return 0;
739 }
740
741 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
742 length in bytes. Otherwise, return zero. */
743
744 static int
745 i386_syscall_p (const gdb_byte *insn, int *lengthp)
746 {
747 /* Is it 'int $0x80'? */
748 if ((insn[0] == 0xcd && insn[1] == 0x80)
749 /* Or is it 'sysenter'? */
750 || (insn[0] == 0x0f && insn[1] == 0x34)
751 /* Or is it 'syscall'? */
752 || (insn[0] == 0x0f && insn[1] == 0x05))
753 {
754 *lengthp = 2;
755 return 1;
756 }
757
758 return 0;
759 }
760
761 /* The gdbarch insn_is_call method. */
762
763 static int
764 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
765 {
766 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
767
768 read_code (addr, buf, I386_MAX_INSN_LEN);
769 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
770
771 return i386_call_p (insn);
772 }
773
774 /* The gdbarch insn_is_ret method. */
775
776 static int
777 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
778 {
779 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
780
781 read_code (addr, buf, I386_MAX_INSN_LEN);
782 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
783
784 return i386_ret_p (insn);
785 }
786
787 /* The gdbarch insn_is_jump method. */
788
789 static int
790 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
791 {
792 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
793
794 read_code (addr, buf, I386_MAX_INSN_LEN);
795 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
796
797 return i386_jmp_p (insn);
798 }
799
800 /* Some kernels may run one past a syscall insn, so we have to cope. */
801
802 displaced_step_copy_insn_closure_up
803 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
804 CORE_ADDR from, CORE_ADDR to,
805 struct regcache *regs)
806 {
807 size_t len = gdbarch_max_insn_length (gdbarch);
808 std::unique_ptr<i386_displaced_step_copy_insn_closure> closure
809 (new i386_displaced_step_copy_insn_closure (len));
810 gdb_byte *buf = closure->buf.data ();
811
812 read_memory (from, buf, len);
813
814 /* GDB may get control back after the insn after the syscall.
815 Presumably this is a kernel bug.
816 If this is a syscall, make sure there's a nop afterwards. */
817 {
818 int syscall_length;
819 gdb_byte *insn;
820
821 insn = i386_skip_prefixes (buf, len);
822 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
823 insn[syscall_length] = NOP_OPCODE;
824 }
825
826 write_memory (to, buf, len);
827
828 displaced_debug_printf ("%s->%s: %s",
829 paddress (gdbarch, from), paddress (gdbarch, to),
830 displaced_step_dump_bytes (buf, len).c_str ());
831
832 /* This is a work around for a problem with g++ 4.8. */
833 return displaced_step_copy_insn_closure_up (closure.release ());
834 }
835
836 /* Fix up the state of registers and memory after having single-stepped
837 a displaced instruction. */
838
839 void
840 i386_displaced_step_fixup (struct gdbarch *gdbarch,
841 struct displaced_step_copy_insn_closure *closure_,
842 CORE_ADDR from, CORE_ADDR to,
843 struct regcache *regs)
844 {
845 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
846
847 /* The offset we applied to the instruction's address.
848 This could well be negative (when viewed as a signed 32-bit
849 value), but ULONGEST won't reflect that, so take care when
850 applying it. */
851 ULONGEST insn_offset = to - from;
852
853 i386_displaced_step_copy_insn_closure *closure
854 = (i386_displaced_step_copy_insn_closure *) closure_;
855 gdb_byte *insn = closure->buf.data ();
856 /* The start of the insn, needed in case we see some prefixes. */
857 gdb_byte *insn_start = insn;
858
859 displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...",
860 paddress (gdbarch, from), paddress (gdbarch, to),
861 insn[0], insn[1]);
862
863 /* The list of issues to contend with here is taken from
864 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
865 Yay for Free Software! */
866
867 /* Relocate the %eip, if necessary. */
868
869 /* The instruction recognizers we use assume any leading prefixes
870 have been skipped. */
871 {
872 /* This is the size of the buffer in closure. */
873 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
874 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
875 /* If there are too many prefixes, just ignore the insn.
876 It will fault when run. */
877 if (opcode != NULL)
878 insn = opcode;
879 }
880
881 /* Except in the case of absolute or indirect jump or call
882 instructions, or a return instruction, the new eip is relative to
883 the displaced instruction; make it relative. Well, signal
884 handler returns don't need relocation either, but we use the
885 value of %eip to recognize those; see below. */
886 if (! i386_absolute_jmp_p (insn)
887 && ! i386_absolute_call_p (insn)
888 && ! i386_ret_p (insn))
889 {
890 ULONGEST orig_eip;
891 int insn_len;
892
893 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
894
895 /* A signal trampoline system call changes the %eip, resuming
896 execution of the main program after the signal handler has
897 returned. That makes them like 'return' instructions; we
898 shouldn't relocate %eip.
899
900 But most system calls don't, and we do need to relocate %eip.
901
902 Our heuristic for distinguishing these cases: if stepping
903 over the system call instruction left control directly after
904 the instruction, the we relocate --- control almost certainly
905 doesn't belong in the displaced copy. Otherwise, we assume
906 the instruction has put control where it belongs, and leave
907 it unrelocated. Goodness help us if there are PC-relative
908 system calls. */
909 if (i386_syscall_p (insn, &insn_len)
910 && orig_eip != to + (insn - insn_start) + insn_len
911 /* GDB can get control back after the insn after the syscall.
912 Presumably this is a kernel bug.
913 i386_displaced_step_copy_insn ensures its a nop,
914 we add one to the length for it. */
915 && orig_eip != to + (insn - insn_start) + insn_len + 1)
916 displaced_debug_printf ("syscall changed %%eip; not relocating");
917 else
918 {
919 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
920
921 /* If we just stepped over a breakpoint insn, we don't backup
922 the pc on purpose; this is to match behaviour without
923 stepping. */
924
925 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
926
927 displaced_debug_printf ("relocated %%eip from %s to %s",
928 paddress (gdbarch, orig_eip),
929 paddress (gdbarch, eip));
930 }
931 }
932
933 /* If the instruction was PUSHFL, then the TF bit will be set in the
934 pushed value, and should be cleared. We'll leave this for later,
935 since GDB already messes up the TF flag when stepping over a
936 pushfl. */
937
938 /* If the instruction was a call, the return address now atop the
939 stack is the address following the copied instruction. We need
940 to make it the address following the original instruction. */
941 if (i386_call_p (insn))
942 {
943 ULONGEST esp;
944 ULONGEST retaddr;
945 const ULONGEST retaddr_len = 4;
946
947 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
948 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
949 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
950 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
951
952 displaced_debug_printf ("relocated return addr at %s to %s",
953 paddress (gdbarch, esp),
954 paddress (gdbarch, retaddr));
955 }
956 }
957
958 static void
959 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
960 {
961 target_write_memory (*to, buf, len);
962 *to += len;
963 }
964
965 static void
966 i386_relocate_instruction (struct gdbarch *gdbarch,
967 CORE_ADDR *to, CORE_ADDR oldloc)
968 {
969 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
970 gdb_byte buf[I386_MAX_INSN_LEN];
971 int offset = 0, rel32, newrel;
972 int insn_length;
973 gdb_byte *insn = buf;
974
975 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
976
977 insn_length = gdb_buffered_insn_length (gdbarch, insn,
978 I386_MAX_INSN_LEN, oldloc);
979
980 /* Get past the prefixes. */
981 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
982
983 /* Adjust calls with 32-bit relative addresses as push/jump, with
984 the address pushed being the location where the original call in
985 the user program would return to. */
986 if (insn[0] == 0xe8)
987 {
988 gdb_byte push_buf[16];
989 unsigned int ret_addr;
990
991 /* Where "ret" in the original code will return to. */
992 ret_addr = oldloc + insn_length;
993 push_buf[0] = 0x68; /* pushq $... */
994 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
995 /* Push the push. */
996 append_insns (to, 5, push_buf);
997
998 /* Convert the relative call to a relative jump. */
999 insn[0] = 0xe9;
1000
1001 /* Adjust the destination offset. */
1002 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1003 newrel = (oldloc - *to) + rel32;
1004 store_signed_integer (insn + 1, 4, byte_order, newrel);
1005
1006 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1007 hex_string (rel32), paddress (gdbarch, oldloc),
1008 hex_string (newrel), paddress (gdbarch, *to));
1009
1010 /* Write the adjusted jump into its displaced location. */
1011 append_insns (to, 5, insn);
1012 return;
1013 }
1014
1015 /* Adjust jumps with 32-bit relative addresses. Calls are already
1016 handled above. */
1017 if (insn[0] == 0xe9)
1018 offset = 1;
1019 /* Adjust conditional jumps. */
1020 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1021 offset = 2;
1022
1023 if (offset)
1024 {
1025 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1026 newrel = (oldloc - *to) + rel32;
1027 store_signed_integer (insn + offset, 4, byte_order, newrel);
1028 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1029 hex_string (rel32), paddress (gdbarch, oldloc),
1030 hex_string (newrel), paddress (gdbarch, *to));
1031 }
1032
1033 /* Write the adjusted instructions into their displaced
1034 location. */
1035 append_insns (to, insn_length, buf);
1036 }
1037
1038 \f
1039 #ifdef I386_REGNO_TO_SYMMETRY
1040 #error "The Sequent Symmetry is no longer supported."
1041 #endif
1042
1043 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1044 and %esp "belong" to the calling function. Therefore these
1045 registers should be saved if they're going to be modified. */
1046
1047 /* The maximum number of saved registers. This should include all
1048 registers mentioned above, and %eip. */
1049 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1050
1051 struct i386_frame_cache
1052 {
1053 /* Base address. */
1054 CORE_ADDR base;
1055 int base_p;
1056 LONGEST sp_offset;
1057 CORE_ADDR pc;
1058
1059 /* Saved registers. */
1060 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1061 CORE_ADDR saved_sp;
1062 int saved_sp_reg;
1063 int pc_in_eax;
1064
1065 /* Stack space reserved for local variables. */
1066 long locals;
1067 };
1068
1069 /* Allocate and initialize a frame cache. */
1070
1071 static struct i386_frame_cache *
1072 i386_alloc_frame_cache (void)
1073 {
1074 struct i386_frame_cache *cache;
1075 int i;
1076
1077 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1078
1079 /* Base address. */
1080 cache->base_p = 0;
1081 cache->base = 0;
1082 cache->sp_offset = -4;
1083 cache->pc = 0;
1084
1085 /* Saved registers. We initialize these to -1 since zero is a valid
1086 offset (that's where %ebp is supposed to be stored). */
1087 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1088 cache->saved_regs[i] = -1;
1089 cache->saved_sp = 0;
1090 cache->saved_sp_reg = -1;
1091 cache->pc_in_eax = 0;
1092
1093 /* Frameless until proven otherwise. */
1094 cache->locals = -1;
1095
1096 return cache;
1097 }
1098
1099 /* If the instruction at PC is a jump, return the address of its
1100 target. Otherwise, return PC. */
1101
1102 static CORE_ADDR
1103 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1104 {
1105 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1106 gdb_byte op;
1107 long delta = 0;
1108 int data16 = 0;
1109
1110 if (target_read_code (pc, &op, 1))
1111 return pc;
1112
1113 if (op == 0x66)
1114 {
1115 data16 = 1;
1116
1117 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1118 }
1119
1120 switch (op)
1121 {
1122 case 0xe9:
1123 /* Relative jump: if data16 == 0, disp32, else disp16. */
1124 if (data16)
1125 {
1126 delta = read_memory_integer (pc + 2, 2, byte_order);
1127
1128 /* Include the size of the jmp instruction (including the
1129 0x66 prefix). */
1130 delta += 4;
1131 }
1132 else
1133 {
1134 delta = read_memory_integer (pc + 1, 4, byte_order);
1135
1136 /* Include the size of the jmp instruction. */
1137 delta += 5;
1138 }
1139 break;
1140 case 0xeb:
1141 /* Relative jump, disp8 (ignore data16). */
1142 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1143
1144 delta += data16 + 2;
1145 break;
1146 }
1147
1148 return pc + delta;
1149 }
1150
1151 /* Check whether PC points at a prologue for a function returning a
1152 structure or union. If so, it updates CACHE and returns the
1153 address of the first instruction after the code sequence that
1154 removes the "hidden" argument from the stack or CURRENT_PC,
1155 whichever is smaller. Otherwise, return PC. */
1156
1157 static CORE_ADDR
1158 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1159 struct i386_frame_cache *cache)
1160 {
1161 /* Functions that return a structure or union start with:
1162
1163 popl %eax 0x58
1164 xchgl %eax, (%esp) 0x87 0x04 0x24
1165 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1166
1167 (the System V compiler puts out the second `xchg' instruction,
1168 and the assembler doesn't try to optimize it, so the 'sib' form
1169 gets generated). This sequence is used to get the address of the
1170 return buffer for a function that returns a structure. */
1171 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1172 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1173 gdb_byte buf[4];
1174 gdb_byte op;
1175
1176 if (current_pc <= pc)
1177 return pc;
1178
1179 if (target_read_code (pc, &op, 1))
1180 return pc;
1181
1182 if (op != 0x58) /* popl %eax */
1183 return pc;
1184
1185 if (target_read_code (pc + 1, buf, 4))
1186 return pc;
1187
1188 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1189 return pc;
1190
1191 if (current_pc == pc)
1192 {
1193 cache->sp_offset += 4;
1194 return current_pc;
1195 }
1196
1197 if (current_pc == pc + 1)
1198 {
1199 cache->pc_in_eax = 1;
1200 return current_pc;
1201 }
1202
1203 if (buf[1] == proto1[1])
1204 return pc + 4;
1205 else
1206 return pc + 5;
1207 }
1208
1209 static CORE_ADDR
1210 i386_skip_probe (CORE_ADDR pc)
1211 {
1212 /* A function may start with
1213
1214 pushl constant
1215 call _probe
1216 addl $4, %esp
1217
1218 followed by
1219
1220 pushl %ebp
1221
1222 etc. */
1223 gdb_byte buf[8];
1224 gdb_byte op;
1225
1226 if (target_read_code (pc, &op, 1))
1227 return pc;
1228
1229 if (op == 0x68 || op == 0x6a)
1230 {
1231 int delta;
1232
1233 /* Skip past the `pushl' instruction; it has either a one-byte or a
1234 four-byte operand, depending on the opcode. */
1235 if (op == 0x68)
1236 delta = 5;
1237 else
1238 delta = 2;
1239
1240 /* Read the following 8 bytes, which should be `call _probe' (6
1241 bytes) followed by `addl $4,%esp' (2 bytes). */
1242 read_memory (pc + delta, buf, sizeof (buf));
1243 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1244 pc += delta + sizeof (buf);
1245 }
1246
1247 return pc;
1248 }
1249
1250 /* GCC 4.1 and later, can put code in the prologue to realign the
1251 stack pointer. Check whether PC points to such code, and update
1252 CACHE accordingly. Return the first instruction after the code
1253 sequence or CURRENT_PC, whichever is smaller. If we don't
1254 recognize the code, return PC. */
1255
1256 static CORE_ADDR
1257 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1258 struct i386_frame_cache *cache)
1259 {
1260 /* There are 2 code sequences to re-align stack before the frame
1261 gets set up:
1262
1263 1. Use a caller-saved saved register:
1264
1265 leal 4(%esp), %reg
1266 andl $-XXX, %esp
1267 pushl -4(%reg)
1268
1269 2. Use a callee-saved saved register:
1270
1271 pushl %reg
1272 leal 8(%esp), %reg
1273 andl $-XXX, %esp
1274 pushl -4(%reg)
1275
1276 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1277
1278 0x83 0xe4 0xf0 andl $-16, %esp
1279 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1280 */
1281
1282 gdb_byte buf[14];
1283 int reg;
1284 int offset, offset_and;
1285 static int regnums[8] = {
1286 I386_EAX_REGNUM, /* %eax */
1287 I386_ECX_REGNUM, /* %ecx */
1288 I386_EDX_REGNUM, /* %edx */
1289 I386_EBX_REGNUM, /* %ebx */
1290 I386_ESP_REGNUM, /* %esp */
1291 I386_EBP_REGNUM, /* %ebp */
1292 I386_ESI_REGNUM, /* %esi */
1293 I386_EDI_REGNUM /* %edi */
1294 };
1295
1296 if (target_read_code (pc, buf, sizeof buf))
1297 return pc;
1298
1299 /* Check caller-saved saved register. The first instruction has
1300 to be "leal 4(%esp), %reg". */
1301 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1302 {
1303 /* MOD must be binary 10 and R/M must be binary 100. */
1304 if ((buf[1] & 0xc7) != 0x44)
1305 return pc;
1306
1307 /* REG has register number. */
1308 reg = (buf[1] >> 3) & 7;
1309 offset = 4;
1310 }
1311 else
1312 {
1313 /* Check callee-saved saved register. The first instruction
1314 has to be "pushl %reg". */
1315 if ((buf[0] & 0xf8) != 0x50)
1316 return pc;
1317
1318 /* Get register. */
1319 reg = buf[0] & 0x7;
1320
1321 /* The next instruction has to be "leal 8(%esp), %reg". */
1322 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1323 return pc;
1324
1325 /* MOD must be binary 10 and R/M must be binary 100. */
1326 if ((buf[2] & 0xc7) != 0x44)
1327 return pc;
1328
1329 /* REG has register number. Registers in pushl and leal have to
1330 be the same. */
1331 if (reg != ((buf[2] >> 3) & 7))
1332 return pc;
1333
1334 offset = 5;
1335 }
1336
1337 /* Rigister can't be %esp nor %ebp. */
1338 if (reg == 4 || reg == 5)
1339 return pc;
1340
1341 /* The next instruction has to be "andl $-XXX, %esp". */
1342 if (buf[offset + 1] != 0xe4
1343 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1344 return pc;
1345
1346 offset_and = offset;
1347 offset += buf[offset] == 0x81 ? 6 : 3;
1348
1349 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1350 0xfc. REG must be binary 110 and MOD must be binary 01. */
1351 if (buf[offset] != 0xff
1352 || buf[offset + 2] != 0xfc
1353 || (buf[offset + 1] & 0xf8) != 0x70)
1354 return pc;
1355
1356 /* R/M has register. Registers in leal and pushl have to be the
1357 same. */
1358 if (reg != (buf[offset + 1] & 7))
1359 return pc;
1360
1361 if (current_pc > pc + offset_and)
1362 cache->saved_sp_reg = regnums[reg];
1363
1364 return std::min (pc + offset + 3, current_pc);
1365 }
1366
1367 /* Maximum instruction length we need to handle. */
1368 #define I386_MAX_MATCHED_INSN_LEN 6
1369
1370 /* Instruction description. */
1371 struct i386_insn
1372 {
1373 size_t len;
1374 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1375 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1376 };
1377
1378 /* Return whether instruction at PC matches PATTERN. */
1379
1380 static int
1381 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1382 {
1383 gdb_byte op;
1384
1385 if (target_read_code (pc, &op, 1))
1386 return 0;
1387
1388 if ((op & pattern.mask[0]) == pattern.insn[0])
1389 {
1390 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1391 int insn_matched = 1;
1392 size_t i;
1393
1394 gdb_assert (pattern.len > 1);
1395 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1396
1397 if (target_read_code (pc + 1, buf, pattern.len - 1))
1398 return 0;
1399
1400 for (i = 1; i < pattern.len; i++)
1401 {
1402 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1403 insn_matched = 0;
1404 }
1405 return insn_matched;
1406 }
1407 return 0;
1408 }
1409
1410 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1411 the first instruction description that matches. Otherwise, return
1412 NULL. */
1413
1414 static struct i386_insn *
1415 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1416 {
1417 struct i386_insn *pattern;
1418
1419 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1420 {
1421 if (i386_match_pattern (pc, *pattern))
1422 return pattern;
1423 }
1424
1425 return NULL;
1426 }
1427
1428 /* Return whether PC points inside a sequence of instructions that
1429 matches INSN_PATTERNS. */
1430
1431 static int
1432 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1433 {
1434 CORE_ADDR current_pc;
1435 int ix, i;
1436 struct i386_insn *insn;
1437
1438 insn = i386_match_insn (pc, insn_patterns);
1439 if (insn == NULL)
1440 return 0;
1441
1442 current_pc = pc;
1443 ix = insn - insn_patterns;
1444 for (i = ix - 1; i >= 0; i--)
1445 {
1446 current_pc -= insn_patterns[i].len;
1447
1448 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1449 return 0;
1450 }
1451
1452 current_pc = pc + insn->len;
1453 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1454 {
1455 if (!i386_match_pattern (current_pc, *insn))
1456 return 0;
1457
1458 current_pc += insn->len;
1459 }
1460
1461 return 1;
1462 }
1463
1464 /* Some special instructions that might be migrated by GCC into the
1465 part of the prologue that sets up the new stack frame. Because the
1466 stack frame hasn't been setup yet, no registers have been saved
1467 yet, and only the scratch registers %eax, %ecx and %edx can be
1468 touched. */
1469
1470 struct i386_insn i386_frame_setup_skip_insns[] =
1471 {
1472 /* Check for `movb imm8, r' and `movl imm32, r'.
1473
1474 ??? Should we handle 16-bit operand-sizes here? */
1475
1476 /* `movb imm8, %al' and `movb imm8, %ah' */
1477 /* `movb imm8, %cl' and `movb imm8, %ch' */
1478 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1479 /* `movb imm8, %dl' and `movb imm8, %dh' */
1480 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1481 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1482 { 5, { 0xb8 }, { 0xfe } },
1483 /* `movl imm32, %edx' */
1484 { 5, { 0xba }, { 0xff } },
1485
1486 /* Check for `mov imm32, r32'. Note that there is an alternative
1487 encoding for `mov m32, %eax'.
1488
1489 ??? Should we handle SIB addressing here?
1490 ??? Should we handle 16-bit operand-sizes here? */
1491
1492 /* `movl m32, %eax' */
1493 { 5, { 0xa1 }, { 0xff } },
1494 /* `movl m32, %eax' and `mov; m32, %ecx' */
1495 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1496 /* `movl m32, %edx' */
1497 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1498
1499 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1500 Because of the symmetry, there are actually two ways to encode
1501 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1502 opcode bytes 0x31 and 0x33 for `xorl'. */
1503
1504 /* `subl %eax, %eax' */
1505 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1506 /* `subl %ecx, %ecx' */
1507 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1508 /* `subl %edx, %edx' */
1509 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1510 /* `xorl %eax, %eax' */
1511 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1512 /* `xorl %ecx, %ecx' */
1513 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1514 /* `xorl %edx, %edx' */
1515 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1516 { 0 }
1517 };
1518
1519 /* Check whether PC points to an endbr32 instruction. */
1520 static CORE_ADDR
1521 i386_skip_endbr (CORE_ADDR pc)
1522 {
1523 static const gdb_byte endbr32[] = { 0xf3, 0x0f, 0x1e, 0xfb };
1524
1525 gdb_byte buf[sizeof (endbr32)];
1526
1527 /* Stop there if we can't read the code */
1528 if (target_read_code (pc, buf, sizeof (endbr32)))
1529 return pc;
1530
1531 /* If the instruction isn't an endbr32, stop */
1532 if (memcmp (buf, endbr32, sizeof (endbr32)) != 0)
1533 return pc;
1534
1535 return pc + sizeof (endbr32);
1536 }
1537
1538 /* Check whether PC points to a no-op instruction. */
1539 static CORE_ADDR
1540 i386_skip_noop (CORE_ADDR pc)
1541 {
1542 gdb_byte op;
1543 int check = 1;
1544
1545 if (target_read_code (pc, &op, 1))
1546 return pc;
1547
1548 while (check)
1549 {
1550 check = 0;
1551 /* Ignore `nop' instruction. */
1552 if (op == 0x90)
1553 {
1554 pc += 1;
1555 if (target_read_code (pc, &op, 1))
1556 return pc;
1557 check = 1;
1558 }
1559 /* Ignore no-op instruction `mov %edi, %edi'.
1560 Microsoft system dlls often start with
1561 a `mov %edi,%edi' instruction.
1562 The 5 bytes before the function start are
1563 filled with `nop' instructions.
1564 This pattern can be used for hot-patching:
1565 The `mov %edi, %edi' instruction can be replaced by a
1566 near jump to the location of the 5 `nop' instructions
1567 which can be replaced by a 32-bit jump to anywhere
1568 in the 32-bit address space. */
1569
1570 else if (op == 0x8b)
1571 {
1572 if (target_read_code (pc + 1, &op, 1))
1573 return pc;
1574
1575 if (op == 0xff)
1576 {
1577 pc += 2;
1578 if (target_read_code (pc, &op, 1))
1579 return pc;
1580
1581 check = 1;
1582 }
1583 }
1584 }
1585 return pc;
1586 }
1587
1588 /* Check whether PC points at a code that sets up a new stack frame.
1589 If so, it updates CACHE and returns the address of the first
1590 instruction after the sequence that sets up the frame or LIMIT,
1591 whichever is smaller. If we don't recognize the code, return PC. */
1592
1593 static CORE_ADDR
1594 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1595 CORE_ADDR pc, CORE_ADDR limit,
1596 struct i386_frame_cache *cache)
1597 {
1598 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1599 struct i386_insn *insn;
1600 gdb_byte op;
1601 int skip = 0;
1602
1603 if (limit <= pc)
1604 return limit;
1605
1606 if (target_read_code (pc, &op, 1))
1607 return pc;
1608
1609 if (op == 0x55) /* pushl %ebp */
1610 {
1611 /* Take into account that we've executed the `pushl %ebp' that
1612 starts this instruction sequence. */
1613 cache->saved_regs[I386_EBP_REGNUM] = 0;
1614 cache->sp_offset += 4;
1615 pc++;
1616
1617 /* If that's all, return now. */
1618 if (limit <= pc)
1619 return limit;
1620
1621 /* Check for some special instructions that might be migrated by
1622 GCC into the prologue and skip them. At this point in the
1623 prologue, code should only touch the scratch registers %eax,
1624 %ecx and %edx, so while the number of possibilities is sheer,
1625 it is limited.
1626
1627 Make sure we only skip these instructions if we later see the
1628 `movl %esp, %ebp' that actually sets up the frame. */
1629 while (pc + skip < limit)
1630 {
1631 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1632 if (insn == NULL)
1633 break;
1634
1635 skip += insn->len;
1636 }
1637
1638 /* If that's all, return now. */
1639 if (limit <= pc + skip)
1640 return limit;
1641
1642 if (target_read_code (pc + skip, &op, 1))
1643 return pc + skip;
1644
1645 /* The i386 prologue looks like
1646
1647 push %ebp
1648 mov %esp,%ebp
1649 sub $0x10,%esp
1650
1651 and a different prologue can be generated for atom.
1652
1653 push %ebp
1654 lea (%esp),%ebp
1655 lea -0x10(%esp),%esp
1656
1657 We handle both of them here. */
1658
1659 switch (op)
1660 {
1661 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1662 case 0x8b:
1663 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1664 != 0xec)
1665 return pc;
1666 pc += (skip + 2);
1667 break;
1668 case 0x89:
1669 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1670 != 0xe5)
1671 return pc;
1672 pc += (skip + 2);
1673 break;
1674 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1675 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1676 != 0x242c)
1677 return pc;
1678 pc += (skip + 3);
1679 break;
1680 default:
1681 return pc;
1682 }
1683
1684 /* OK, we actually have a frame. We just don't know how large
1685 it is yet. Set its size to zero. We'll adjust it if
1686 necessary. We also now commit to skipping the special
1687 instructions mentioned before. */
1688 cache->locals = 0;
1689
1690 /* If that's all, return now. */
1691 if (limit <= pc)
1692 return limit;
1693
1694 /* Check for stack adjustment
1695
1696 subl $XXX, %esp
1697 or
1698 lea -XXX(%esp),%esp
1699
1700 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1701 reg, so we don't have to worry about a data16 prefix. */
1702 if (target_read_code (pc, &op, 1))
1703 return pc;
1704 if (op == 0x83)
1705 {
1706 /* `subl' with 8-bit immediate. */
1707 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1708 /* Some instruction starting with 0x83 other than `subl'. */
1709 return pc;
1710
1711 /* `subl' with signed 8-bit immediate (though it wouldn't
1712 make sense to be negative). */
1713 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1714 return pc + 3;
1715 }
1716 else if (op == 0x81)
1717 {
1718 /* Maybe it is `subl' with a 32-bit immediate. */
1719 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1720 /* Some instruction starting with 0x81 other than `subl'. */
1721 return pc;
1722
1723 /* It is `subl' with a 32-bit immediate. */
1724 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1725 return pc + 6;
1726 }
1727 else if (op == 0x8d)
1728 {
1729 /* The ModR/M byte is 0x64. */
1730 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1731 return pc;
1732 /* 'lea' with 8-bit displacement. */
1733 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1734 return pc + 4;
1735 }
1736 else
1737 {
1738 /* Some instruction other than `subl' nor 'lea'. */
1739 return pc;
1740 }
1741 }
1742 else if (op == 0xc8) /* enter */
1743 {
1744 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1745 return pc + 4;
1746 }
1747
1748 return pc;
1749 }
1750
1751 /* Check whether PC points at code that saves registers on the stack.
1752 If so, it updates CACHE and returns the address of the first
1753 instruction after the register saves or CURRENT_PC, whichever is
1754 smaller. Otherwise, return PC. */
1755
1756 static CORE_ADDR
1757 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1758 struct i386_frame_cache *cache)
1759 {
1760 CORE_ADDR offset = 0;
1761 gdb_byte op;
1762 int i;
1763
1764 if (cache->locals > 0)
1765 offset -= cache->locals;
1766 for (i = 0; i < 8 && pc < current_pc; i++)
1767 {
1768 if (target_read_code (pc, &op, 1))
1769 return pc;
1770 if (op < 0x50 || op > 0x57)
1771 break;
1772
1773 offset -= 4;
1774 cache->saved_regs[op - 0x50] = offset;
1775 cache->sp_offset += 4;
1776 pc++;
1777 }
1778
1779 return pc;
1780 }
1781
1782 /* Do a full analysis of the prologue at PC and update CACHE
1783 accordingly. Bail out early if CURRENT_PC is reached. Return the
1784 address where the analysis stopped.
1785
1786 We handle these cases:
1787
1788 The startup sequence can be at the start of the function, or the
1789 function can start with a branch to startup code at the end.
1790
1791 %ebp can be set up with either the 'enter' instruction, or "pushl
1792 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1793 once used in the System V compiler).
1794
1795 Local space is allocated just below the saved %ebp by either the
1796 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1797 16-bit unsigned argument for space to allocate, and the 'addl'
1798 instruction could have either a signed byte, or 32-bit immediate.
1799
1800 Next, the registers used by this function are pushed. With the
1801 System V compiler they will always be in the order: %edi, %esi,
1802 %ebx (and sometimes a harmless bug causes it to also save but not
1803 restore %eax); however, the code below is willing to see the pushes
1804 in any order, and will handle up to 8 of them.
1805
1806 If the setup sequence is at the end of the function, then the next
1807 instruction will be a branch back to the start. */
1808
1809 static CORE_ADDR
1810 i386_analyze_prologue (struct gdbarch *gdbarch,
1811 CORE_ADDR pc, CORE_ADDR current_pc,
1812 struct i386_frame_cache *cache)
1813 {
1814 pc = i386_skip_endbr (pc);
1815 pc = i386_skip_noop (pc);
1816 pc = i386_follow_jump (gdbarch, pc);
1817 pc = i386_analyze_struct_return (pc, current_pc, cache);
1818 pc = i386_skip_probe (pc);
1819 pc = i386_analyze_stack_align (pc, current_pc, cache);
1820 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1821 return i386_analyze_register_saves (pc, current_pc, cache);
1822 }
1823
1824 /* Return PC of first real instruction. */
1825
1826 static CORE_ADDR
1827 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1828 {
1829 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1830
1831 static gdb_byte pic_pat[6] =
1832 {
1833 0xe8, 0, 0, 0, 0, /* call 0x0 */
1834 0x5b, /* popl %ebx */
1835 };
1836 struct i386_frame_cache cache;
1837 CORE_ADDR pc;
1838 gdb_byte op;
1839 int i;
1840 CORE_ADDR func_addr;
1841
1842 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1843 {
1844 CORE_ADDR post_prologue_pc
1845 = skip_prologue_using_sal (gdbarch, func_addr);
1846 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1847
1848 /* LLVM backend (Clang/Flang) always emits a line note before the
1849 prologue and another one after. We trust clang to emit usable
1850 line notes. */
1851 if (post_prologue_pc
1852 && (cust != NULL
1853 && COMPUNIT_PRODUCER (cust) != NULL
1854 && producer_is_llvm (COMPUNIT_PRODUCER (cust))))
1855 return std::max (start_pc, post_prologue_pc);
1856 }
1857
1858 cache.locals = -1;
1859 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1860 if (cache.locals < 0)
1861 return start_pc;
1862
1863 /* Found valid frame setup. */
1864
1865 /* The native cc on SVR4 in -K PIC mode inserts the following code
1866 to get the address of the global offset table (GOT) into register
1867 %ebx:
1868
1869 call 0x0
1870 popl %ebx
1871 movl %ebx,x(%ebp) (optional)
1872 addl y,%ebx
1873
1874 This code is with the rest of the prologue (at the end of the
1875 function), so we have to skip it to get to the first real
1876 instruction at the start of the function. */
1877
1878 for (i = 0; i < 6; i++)
1879 {
1880 if (target_read_code (pc + i, &op, 1))
1881 return pc;
1882
1883 if (pic_pat[i] != op)
1884 break;
1885 }
1886 if (i == 6)
1887 {
1888 int delta = 6;
1889
1890 if (target_read_code (pc + delta, &op, 1))
1891 return pc;
1892
1893 if (op == 0x89) /* movl %ebx, x(%ebp) */
1894 {
1895 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1896
1897 if (op == 0x5d) /* One byte offset from %ebp. */
1898 delta += 3;
1899 else if (op == 0x9d) /* Four byte offset from %ebp. */
1900 delta += 6;
1901 else /* Unexpected instruction. */
1902 delta = 0;
1903
1904 if (target_read_code (pc + delta, &op, 1))
1905 return pc;
1906 }
1907
1908 /* addl y,%ebx */
1909 if (delta > 0 && op == 0x81
1910 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1911 == 0xc3)
1912 {
1913 pc += delta + 6;
1914 }
1915 }
1916
1917 /* If the function starts with a branch (to startup code at the end)
1918 the last instruction should bring us back to the first
1919 instruction of the real code. */
1920 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1921 pc = i386_follow_jump (gdbarch, pc);
1922
1923 return pc;
1924 }
1925
1926 /* Check that the code pointed to by PC corresponds to a call to
1927 __main, skip it if so. Return PC otherwise. */
1928
1929 CORE_ADDR
1930 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1931 {
1932 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1933 gdb_byte op;
1934
1935 if (target_read_code (pc, &op, 1))
1936 return pc;
1937 if (op == 0xe8)
1938 {
1939 gdb_byte buf[4];
1940
1941 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1942 {
1943 /* Make sure address is computed correctly as a 32bit
1944 integer even if CORE_ADDR is 64 bit wide. */
1945 struct bound_minimal_symbol s;
1946 CORE_ADDR call_dest;
1947
1948 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1949 call_dest = call_dest & 0xffffffffU;
1950 s = lookup_minimal_symbol_by_pc (call_dest);
1951 if (s.minsym != NULL
1952 && s.minsym->linkage_name () != NULL
1953 && strcmp (s.minsym->linkage_name (), "__main") == 0)
1954 pc += 5;
1955 }
1956 }
1957
1958 return pc;
1959 }
1960
1961 /* This function is 64-bit safe. */
1962
1963 static CORE_ADDR
1964 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1965 {
1966 gdb_byte buf[8];
1967
1968 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1969 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1970 }
1971 \f
1972
1973 /* Normal frames. */
1974
1975 static void
1976 i386_frame_cache_1 (struct frame_info *this_frame,
1977 struct i386_frame_cache *cache)
1978 {
1979 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1980 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1981 gdb_byte buf[4];
1982 int i;
1983
1984 cache->pc = get_frame_func (this_frame);
1985
1986 /* In principle, for normal frames, %ebp holds the frame pointer,
1987 which holds the base address for the current stack frame.
1988 However, for functions that don't need it, the frame pointer is
1989 optional. For these "frameless" functions the frame pointer is
1990 actually the frame pointer of the calling frame. Signal
1991 trampolines are just a special case of a "frameless" function.
1992 They (usually) share their frame pointer with the frame that was
1993 in progress when the signal occurred. */
1994
1995 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1996 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1997 if (cache->base == 0)
1998 {
1999 cache->base_p = 1;
2000 return;
2001 }
2002
2003 /* For normal frames, %eip is stored at 4(%ebp). */
2004 cache->saved_regs[I386_EIP_REGNUM] = 4;
2005
2006 if (cache->pc != 0)
2007 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2008 cache);
2009
2010 if (cache->locals < 0)
2011 {
2012 /* We didn't find a valid frame, which means that CACHE->base
2013 currently holds the frame pointer for our calling frame. If
2014 we're at the start of a function, or somewhere half-way its
2015 prologue, the function's frame probably hasn't been fully
2016 setup yet. Try to reconstruct the base address for the stack
2017 frame by looking at the stack pointer. For truly "frameless"
2018 functions this might work too. */
2019
2020 if (cache->saved_sp_reg != -1)
2021 {
2022 /* Saved stack pointer has been saved. */
2023 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2024 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2025
2026 /* We're halfway aligning the stack. */
2027 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2028 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2029
2030 /* This will be added back below. */
2031 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2032 }
2033 else if (cache->pc != 0
2034 || target_read_code (get_frame_pc (this_frame), buf, 1))
2035 {
2036 /* We're in a known function, but did not find a frame
2037 setup. Assume that the function does not use %ebp.
2038 Alternatively, we may have jumped to an invalid
2039 address; in that case there is definitely no new
2040 frame in %ebp. */
2041 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2042 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2043 + cache->sp_offset;
2044 }
2045 else
2046 /* We're in an unknown function. We could not find the start
2047 of the function to analyze the prologue; our best option is
2048 to assume a typical frame layout with the caller's %ebp
2049 saved. */
2050 cache->saved_regs[I386_EBP_REGNUM] = 0;
2051 }
2052
2053 if (cache->saved_sp_reg != -1)
2054 {
2055 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2056 register may be unavailable). */
2057 if (cache->saved_sp == 0
2058 && deprecated_frame_register_read (this_frame,
2059 cache->saved_sp_reg, buf))
2060 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2061 }
2062 /* Now that we have the base address for the stack frame we can
2063 calculate the value of %esp in the calling frame. */
2064 else if (cache->saved_sp == 0)
2065 cache->saved_sp = cache->base + 8;
2066
2067 /* Adjust all the saved registers such that they contain addresses
2068 instead of offsets. */
2069 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2070 if (cache->saved_regs[i] != -1)
2071 cache->saved_regs[i] += cache->base;
2072
2073 cache->base_p = 1;
2074 }
2075
2076 static struct i386_frame_cache *
2077 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2078 {
2079 struct i386_frame_cache *cache;
2080
2081 if (*this_cache)
2082 return (struct i386_frame_cache *) *this_cache;
2083
2084 cache = i386_alloc_frame_cache ();
2085 *this_cache = cache;
2086
2087 try
2088 {
2089 i386_frame_cache_1 (this_frame, cache);
2090 }
2091 catch (const gdb_exception_error &ex)
2092 {
2093 if (ex.error != NOT_AVAILABLE_ERROR)
2094 throw;
2095 }
2096
2097 return cache;
2098 }
2099
2100 static void
2101 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2102 struct frame_id *this_id)
2103 {
2104 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2105
2106 if (!cache->base_p)
2107 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2108 else if (cache->base == 0)
2109 {
2110 /* This marks the outermost frame. */
2111 }
2112 else
2113 {
2114 /* See the end of i386_push_dummy_call. */
2115 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2116 }
2117 }
2118
2119 static enum unwind_stop_reason
2120 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2121 void **this_cache)
2122 {
2123 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2124
2125 if (!cache->base_p)
2126 return UNWIND_UNAVAILABLE;
2127
2128 /* This marks the outermost frame. */
2129 if (cache->base == 0)
2130 return UNWIND_OUTERMOST;
2131
2132 return UNWIND_NO_REASON;
2133 }
2134
2135 static struct value *
2136 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2137 int regnum)
2138 {
2139 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2140
2141 gdb_assert (regnum >= 0);
2142
2143 /* The System V ABI says that:
2144
2145 "The flags register contains the system flags, such as the
2146 direction flag and the carry flag. The direction flag must be
2147 set to the forward (that is, zero) direction before entry and
2148 upon exit from a function. Other user flags have no specified
2149 role in the standard calling sequence and are not preserved."
2150
2151 To guarantee the "upon exit" part of that statement we fake a
2152 saved flags register that has its direction flag cleared.
2153
2154 Note that GCC doesn't seem to rely on the fact that the direction
2155 flag is cleared after a function return; it always explicitly
2156 clears the flag before operations where it matters.
2157
2158 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2159 right thing to do. The way we fake the flags register here makes
2160 it impossible to change it. */
2161
2162 if (regnum == I386_EFLAGS_REGNUM)
2163 {
2164 ULONGEST val;
2165
2166 val = get_frame_register_unsigned (this_frame, regnum);
2167 val &= ~(1 << 10);
2168 return frame_unwind_got_constant (this_frame, regnum, val);
2169 }
2170
2171 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2172 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2173
2174 if (regnum == I386_ESP_REGNUM
2175 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2176 {
2177 /* If the SP has been saved, but we don't know where, then this
2178 means that SAVED_SP_REG register was found unavailable back
2179 when we built the cache. */
2180 if (cache->saved_sp == 0)
2181 return frame_unwind_got_register (this_frame, regnum,
2182 cache->saved_sp_reg);
2183 else
2184 return frame_unwind_got_constant (this_frame, regnum,
2185 cache->saved_sp);
2186 }
2187
2188 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2189 return frame_unwind_got_memory (this_frame, regnum,
2190 cache->saved_regs[regnum]);
2191
2192 return frame_unwind_got_register (this_frame, regnum, regnum);
2193 }
2194
2195 static const struct frame_unwind i386_frame_unwind =
2196 {
2197 NORMAL_FRAME,
2198 i386_frame_unwind_stop_reason,
2199 i386_frame_this_id,
2200 i386_frame_prev_register,
2201 NULL,
2202 default_frame_sniffer
2203 };
2204
2205 /* Normal frames, but in a function epilogue. */
2206
2207 /* Implement the stack_frame_destroyed_p gdbarch method.
2208
2209 The epilogue is defined here as the 'ret' instruction, which will
2210 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2211 the function's stack frame. */
2212
2213 static int
2214 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2215 {
2216 gdb_byte insn;
2217 struct compunit_symtab *cust;
2218
2219 cust = find_pc_compunit_symtab (pc);
2220 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2221 return 0;
2222
2223 if (target_read_memory (pc, &insn, 1))
2224 return 0; /* Can't read memory at pc. */
2225
2226 if (insn != 0xc3) /* 'ret' instruction. */
2227 return 0;
2228
2229 return 1;
2230 }
2231
2232 static int
2233 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2234 struct frame_info *this_frame,
2235 void **this_prologue_cache)
2236 {
2237 if (frame_relative_level (this_frame) == 0)
2238 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2239 get_frame_pc (this_frame));
2240 else
2241 return 0;
2242 }
2243
2244 static struct i386_frame_cache *
2245 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2246 {
2247 struct i386_frame_cache *cache;
2248 CORE_ADDR sp;
2249
2250 if (*this_cache)
2251 return (struct i386_frame_cache *) *this_cache;
2252
2253 cache = i386_alloc_frame_cache ();
2254 *this_cache = cache;
2255
2256 try
2257 {
2258 cache->pc = get_frame_func (this_frame);
2259
2260 /* At this point the stack looks as if we just entered the
2261 function, with the return address at the top of the
2262 stack. */
2263 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2264 cache->base = sp + cache->sp_offset;
2265 cache->saved_sp = cache->base + 8;
2266 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2267
2268 cache->base_p = 1;
2269 }
2270 catch (const gdb_exception_error &ex)
2271 {
2272 if (ex.error != NOT_AVAILABLE_ERROR)
2273 throw;
2274 }
2275
2276 return cache;
2277 }
2278
2279 static enum unwind_stop_reason
2280 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2281 void **this_cache)
2282 {
2283 struct i386_frame_cache *cache =
2284 i386_epilogue_frame_cache (this_frame, this_cache);
2285
2286 if (!cache->base_p)
2287 return UNWIND_UNAVAILABLE;
2288
2289 return UNWIND_NO_REASON;
2290 }
2291
2292 static void
2293 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2294 void **this_cache,
2295 struct frame_id *this_id)
2296 {
2297 struct i386_frame_cache *cache =
2298 i386_epilogue_frame_cache (this_frame, this_cache);
2299
2300 if (!cache->base_p)
2301 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2302 else
2303 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2304 }
2305
2306 static struct value *
2307 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2308 void **this_cache, int regnum)
2309 {
2310 /* Make sure we've initialized the cache. */
2311 i386_epilogue_frame_cache (this_frame, this_cache);
2312
2313 return i386_frame_prev_register (this_frame, this_cache, regnum);
2314 }
2315
2316 static const struct frame_unwind i386_epilogue_frame_unwind =
2317 {
2318 NORMAL_FRAME,
2319 i386_epilogue_frame_unwind_stop_reason,
2320 i386_epilogue_frame_this_id,
2321 i386_epilogue_frame_prev_register,
2322 NULL,
2323 i386_epilogue_frame_sniffer
2324 };
2325 \f
2326
2327 /* Stack-based trampolines. */
2328
2329 /* These trampolines are used on cross x86 targets, when taking the
2330 address of a nested function. When executing these trampolines,
2331 no stack frame is set up, so we are in a similar situation as in
2332 epilogues and i386_epilogue_frame_this_id can be re-used. */
2333
2334 /* Static chain passed in register. */
2335
2336 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2337 {
2338 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2339 { 5, { 0xb8 }, { 0xfe } },
2340
2341 /* `jmp imm32' */
2342 { 5, { 0xe9 }, { 0xff } },
2343
2344 {0}
2345 };
2346
2347 /* Static chain passed on stack (when regparm=3). */
2348
2349 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2350 {
2351 /* `push imm32' */
2352 { 5, { 0x68 }, { 0xff } },
2353
2354 /* `jmp imm32' */
2355 { 5, { 0xe9 }, { 0xff } },
2356
2357 {0}
2358 };
2359
2360 /* Return whether PC points inside a stack trampoline. */
2361
2362 static int
2363 i386_in_stack_tramp_p (CORE_ADDR pc)
2364 {
2365 gdb_byte insn;
2366 const char *name;
2367
2368 /* A stack trampoline is detected if no name is associated
2369 to the current pc and if it points inside a trampoline
2370 sequence. */
2371
2372 find_pc_partial_function (pc, &name, NULL, NULL);
2373 if (name)
2374 return 0;
2375
2376 if (target_read_memory (pc, &insn, 1))
2377 return 0;
2378
2379 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2380 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2381 return 0;
2382
2383 return 1;
2384 }
2385
2386 static int
2387 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2388 struct frame_info *this_frame,
2389 void **this_cache)
2390 {
2391 if (frame_relative_level (this_frame) == 0)
2392 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2393 else
2394 return 0;
2395 }
2396
2397 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2398 {
2399 NORMAL_FRAME,
2400 i386_epilogue_frame_unwind_stop_reason,
2401 i386_epilogue_frame_this_id,
2402 i386_epilogue_frame_prev_register,
2403 NULL,
2404 i386_stack_tramp_frame_sniffer
2405 };
2406 \f
2407 /* Generate a bytecode expression to get the value of the saved PC. */
2408
2409 static void
2410 i386_gen_return_address (struct gdbarch *gdbarch,
2411 struct agent_expr *ax, struct axs_value *value,
2412 CORE_ADDR scope)
2413 {
2414 /* The following sequence assumes the traditional use of the base
2415 register. */
2416 ax_reg (ax, I386_EBP_REGNUM);
2417 ax_const_l (ax, 4);
2418 ax_simple (ax, aop_add);
2419 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2420 value->kind = axs_lvalue_memory;
2421 }
2422 \f
2423
2424 /* Signal trampolines. */
2425
2426 static struct i386_frame_cache *
2427 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2428 {
2429 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2430 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2431 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2432 struct i386_frame_cache *cache;
2433 CORE_ADDR addr;
2434 gdb_byte buf[4];
2435
2436 if (*this_cache)
2437 return (struct i386_frame_cache *) *this_cache;
2438
2439 cache = i386_alloc_frame_cache ();
2440
2441 try
2442 {
2443 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2444 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2445
2446 addr = tdep->sigcontext_addr (this_frame);
2447 if (tdep->sc_reg_offset)
2448 {
2449 int i;
2450
2451 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2452
2453 for (i = 0; i < tdep->sc_num_regs; i++)
2454 if (tdep->sc_reg_offset[i] != -1)
2455 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2456 }
2457 else
2458 {
2459 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2460 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2461 }
2462
2463 cache->base_p = 1;
2464 }
2465 catch (const gdb_exception_error &ex)
2466 {
2467 if (ex.error != NOT_AVAILABLE_ERROR)
2468 throw;
2469 }
2470
2471 *this_cache = cache;
2472 return cache;
2473 }
2474
2475 static enum unwind_stop_reason
2476 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2477 void **this_cache)
2478 {
2479 struct i386_frame_cache *cache =
2480 i386_sigtramp_frame_cache (this_frame, this_cache);
2481
2482 if (!cache->base_p)
2483 return UNWIND_UNAVAILABLE;
2484
2485 return UNWIND_NO_REASON;
2486 }
2487
2488 static void
2489 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2490 struct frame_id *this_id)
2491 {
2492 struct i386_frame_cache *cache =
2493 i386_sigtramp_frame_cache (this_frame, this_cache);
2494
2495 if (!cache->base_p)
2496 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2497 else
2498 {
2499 /* See the end of i386_push_dummy_call. */
2500 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2501 }
2502 }
2503
2504 static struct value *
2505 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2506 void **this_cache, int regnum)
2507 {
2508 /* Make sure we've initialized the cache. */
2509 i386_sigtramp_frame_cache (this_frame, this_cache);
2510
2511 return i386_frame_prev_register (this_frame, this_cache, regnum);
2512 }
2513
2514 static int
2515 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2516 struct frame_info *this_frame,
2517 void **this_prologue_cache)
2518 {
2519 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2520
2521 /* We shouldn't even bother if we don't have a sigcontext_addr
2522 handler. */
2523 if (tdep->sigcontext_addr == NULL)
2524 return 0;
2525
2526 if (tdep->sigtramp_p != NULL)
2527 {
2528 if (tdep->sigtramp_p (this_frame))
2529 return 1;
2530 }
2531
2532 if (tdep->sigtramp_start != 0)
2533 {
2534 CORE_ADDR pc = get_frame_pc (this_frame);
2535
2536 gdb_assert (tdep->sigtramp_end != 0);
2537 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2538 return 1;
2539 }
2540
2541 return 0;
2542 }
2543
2544 static const struct frame_unwind i386_sigtramp_frame_unwind =
2545 {
2546 SIGTRAMP_FRAME,
2547 i386_sigtramp_frame_unwind_stop_reason,
2548 i386_sigtramp_frame_this_id,
2549 i386_sigtramp_frame_prev_register,
2550 NULL,
2551 i386_sigtramp_frame_sniffer
2552 };
2553 \f
2554
2555 static CORE_ADDR
2556 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2557 {
2558 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2559
2560 return cache->base;
2561 }
2562
2563 static const struct frame_base i386_frame_base =
2564 {
2565 &i386_frame_unwind,
2566 i386_frame_base_address,
2567 i386_frame_base_address,
2568 i386_frame_base_address
2569 };
2570
2571 static struct frame_id
2572 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2573 {
2574 CORE_ADDR fp;
2575
2576 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2577
2578 /* See the end of i386_push_dummy_call. */
2579 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2580 }
2581
2582 /* _Decimal128 function return values need 16-byte alignment on the
2583 stack. */
2584
2585 static CORE_ADDR
2586 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2587 {
2588 return sp & -(CORE_ADDR)16;
2589 }
2590 \f
2591
2592 /* Figure out where the longjmp will land. Slurp the args out of the
2593 stack. We expect the first arg to be a pointer to the jmp_buf
2594 structure from which we extract the address that we will land at.
2595 This address is copied into PC. This routine returns non-zero on
2596 success. */
2597
2598 static int
2599 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2600 {
2601 gdb_byte buf[4];
2602 CORE_ADDR sp, jb_addr;
2603 struct gdbarch *gdbarch = get_frame_arch (frame);
2604 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2605 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2606
2607 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2608 longjmp will land. */
2609 if (jb_pc_offset == -1)
2610 return 0;
2611
2612 get_frame_register (frame, I386_ESP_REGNUM, buf);
2613 sp = extract_unsigned_integer (buf, 4, byte_order);
2614 if (target_read_memory (sp + 4, buf, 4))
2615 return 0;
2616
2617 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2618 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2619 return 0;
2620
2621 *pc = extract_unsigned_integer (buf, 4, byte_order);
2622 return 1;
2623 }
2624 \f
2625
2626 /* Check whether TYPE must be 16-byte-aligned when passed as a
2627 function argument. 16-byte vectors, _Decimal128 and structures or
2628 unions containing such types must be 16-byte-aligned; other
2629 arguments are 4-byte-aligned. */
2630
2631 static int
2632 i386_16_byte_align_p (struct type *type)
2633 {
2634 type = check_typedef (type);
2635 if ((type->code () == TYPE_CODE_DECFLOAT
2636 || (type->code () == TYPE_CODE_ARRAY && type->is_vector ()))
2637 && TYPE_LENGTH (type) == 16)
2638 return 1;
2639 if (type->code () == TYPE_CODE_ARRAY)
2640 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2641 if (type->code () == TYPE_CODE_STRUCT
2642 || type->code () == TYPE_CODE_UNION)
2643 {
2644 int i;
2645 for (i = 0; i < type->num_fields (); i++)
2646 {
2647 if (field_is_static (&type->field (i)))
2648 continue;
2649 if (i386_16_byte_align_p (type->field (i).type ()))
2650 return 1;
2651 }
2652 }
2653 return 0;
2654 }
2655
2656 /* Implementation for set_gdbarch_push_dummy_code. */
2657
2658 static CORE_ADDR
2659 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2660 struct value **args, int nargs, struct type *value_type,
2661 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2662 struct regcache *regcache)
2663 {
2664 /* Use 0xcc breakpoint - 1 byte. */
2665 *bp_addr = sp - 1;
2666 *real_pc = funaddr;
2667
2668 /* Keep the stack aligned. */
2669 return sp - 16;
2670 }
2671
2672 /* The "push_dummy_call" gdbarch method, optionally with the thiscall
2673 calling convention. */
2674
2675 CORE_ADDR
2676 i386_thiscall_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2677 struct regcache *regcache, CORE_ADDR bp_addr,
2678 int nargs, struct value **args, CORE_ADDR sp,
2679 function_call_return_method return_method,
2680 CORE_ADDR struct_addr, bool thiscall)
2681 {
2682 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2683 gdb_byte buf[4];
2684 int i;
2685 int write_pass;
2686 int args_space = 0;
2687
2688 /* BND registers can be in arbitrary values at the moment of the
2689 inferior call. This can cause boundary violations that are not
2690 due to a real bug or even desired by the user. The best to be done
2691 is set the BND registers to allow access to the whole memory, INIT
2692 state, before pushing the inferior call. */
2693 i387_reset_bnd_regs (gdbarch, regcache);
2694
2695 /* Determine the total space required for arguments and struct
2696 return address in a first pass (allowing for 16-byte-aligned
2697 arguments), then push arguments in a second pass. */
2698
2699 for (write_pass = 0; write_pass < 2; write_pass++)
2700 {
2701 int args_space_used = 0;
2702
2703 if (return_method == return_method_struct)
2704 {
2705 if (write_pass)
2706 {
2707 /* Push value address. */
2708 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2709 write_memory (sp, buf, 4);
2710 args_space_used += 4;
2711 }
2712 else
2713 args_space += 4;
2714 }
2715
2716 for (i = thiscall ? 1 : 0; i < nargs; i++)
2717 {
2718 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2719
2720 if (write_pass)
2721 {
2722 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2723 args_space_used = align_up (args_space_used, 16);
2724
2725 write_memory (sp + args_space_used,
2726 value_contents_all (args[i]), len);
2727 /* The System V ABI says that:
2728
2729 "An argument's size is increased, if necessary, to make it a
2730 multiple of [32-bit] words. This may require tail padding,
2731 depending on the size of the argument."
2732
2733 This makes sure the stack stays word-aligned. */
2734 args_space_used += align_up (len, 4);
2735 }
2736 else
2737 {
2738 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2739 args_space = align_up (args_space, 16);
2740 args_space += align_up (len, 4);
2741 }
2742 }
2743
2744 if (!write_pass)
2745 {
2746 sp -= args_space;
2747
2748 /* The original System V ABI only requires word alignment,
2749 but modern incarnations need 16-byte alignment in order
2750 to support SSE. Since wasting a few bytes here isn't
2751 harmful we unconditionally enforce 16-byte alignment. */
2752 sp &= ~0xf;
2753 }
2754 }
2755
2756 /* Store return address. */
2757 sp -= 4;
2758 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2759 write_memory (sp, buf, 4);
2760
2761 /* Finally, update the stack pointer... */
2762 store_unsigned_integer (buf, 4, byte_order, sp);
2763 regcache->cooked_write (I386_ESP_REGNUM, buf);
2764
2765 /* ...and fake a frame pointer. */
2766 regcache->cooked_write (I386_EBP_REGNUM, buf);
2767
2768 /* The 'this' pointer needs to be in ECX. */
2769 if (thiscall)
2770 regcache->cooked_write (I386_ECX_REGNUM, value_contents_all (args[0]));
2771
2772 /* MarkK wrote: This "+ 8" is all over the place:
2773 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2774 i386_dummy_id). It's there, since all frame unwinders for
2775 a given target have to agree (within a certain margin) on the
2776 definition of the stack address of a frame. Otherwise frame id
2777 comparison might not work correctly. Since DWARF2/GCC uses the
2778 stack address *before* the function call as a frame's CFA. On
2779 the i386, when %ebp is used as a frame pointer, the offset
2780 between the contents %ebp and the CFA as defined by GCC. */
2781 return sp + 8;
2782 }
2783
2784 /* Implement the "push_dummy_call" gdbarch method. */
2785
2786 static CORE_ADDR
2787 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2788 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2789 struct value **args, CORE_ADDR sp,
2790 function_call_return_method return_method,
2791 CORE_ADDR struct_addr)
2792 {
2793 return i386_thiscall_push_dummy_call (gdbarch, function, regcache, bp_addr,
2794 nargs, args, sp, return_method,
2795 struct_addr, false);
2796 }
2797
2798 /* These registers are used for returning integers (and on some
2799 targets also for returning `struct' and `union' values when their
2800 size and alignment match an integer type). */
2801 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2802 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2803
2804 /* Read, for architecture GDBARCH, a function return value of TYPE
2805 from REGCACHE, and copy that into VALBUF. */
2806
2807 static void
2808 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2809 struct regcache *regcache, gdb_byte *valbuf)
2810 {
2811 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2812 int len = TYPE_LENGTH (type);
2813 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2814
2815 if (type->code () == TYPE_CODE_FLT)
2816 {
2817 if (tdep->st0_regnum < 0)
2818 {
2819 warning (_("Cannot find floating-point return value."));
2820 memset (valbuf, 0, len);
2821 return;
2822 }
2823
2824 /* Floating-point return values can be found in %st(0). Convert
2825 its contents to the desired type. This is probably not
2826 exactly how it would happen on the target itself, but it is
2827 the best we can do. */
2828 regcache->raw_read (I386_ST0_REGNUM, buf);
2829 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2830 }
2831 else
2832 {
2833 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2834 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2835
2836 if (len <= low_size)
2837 {
2838 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2839 memcpy (valbuf, buf, len);
2840 }
2841 else if (len <= (low_size + high_size))
2842 {
2843 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2844 memcpy (valbuf, buf, low_size);
2845 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
2846 memcpy (valbuf + low_size, buf, len - low_size);
2847 }
2848 else
2849 internal_error (__FILE__, __LINE__,
2850 _("Cannot extract return value of %d bytes long."),
2851 len);
2852 }
2853 }
2854
2855 /* Write, for architecture GDBARCH, a function return value of TYPE
2856 from VALBUF into REGCACHE. */
2857
2858 static void
2859 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2860 struct regcache *regcache, const gdb_byte *valbuf)
2861 {
2862 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2863 int len = TYPE_LENGTH (type);
2864
2865 if (type->code () == TYPE_CODE_FLT)
2866 {
2867 ULONGEST fstat;
2868 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2869
2870 if (tdep->st0_regnum < 0)
2871 {
2872 warning (_("Cannot set floating-point return value."));
2873 return;
2874 }
2875
2876 /* Returning floating-point values is a bit tricky. Apart from
2877 storing the return value in %st(0), we have to simulate the
2878 state of the FPU at function return point. */
2879
2880 /* Convert the value found in VALBUF to the extended
2881 floating-point format used by the FPU. This is probably
2882 not exactly how it would happen on the target itself, but
2883 it is the best we can do. */
2884 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2885 regcache->raw_write (I386_ST0_REGNUM, buf);
2886
2887 /* Set the top of the floating-point register stack to 7. The
2888 actual value doesn't really matter, but 7 is what a normal
2889 function return would end up with if the program started out
2890 with a freshly initialized FPU. */
2891 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2892 fstat |= (7 << 11);
2893 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2894
2895 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2896 the floating-point register stack to 7, the appropriate value
2897 for the tag word is 0x3fff. */
2898 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2899 }
2900 else
2901 {
2902 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2903 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2904
2905 if (len <= low_size)
2906 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
2907 else if (len <= (low_size + high_size))
2908 {
2909 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
2910 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2911 valbuf + low_size);
2912 }
2913 else
2914 internal_error (__FILE__, __LINE__,
2915 _("Cannot store return value of %d bytes long."), len);
2916 }
2917 }
2918 \f
2919
2920 /* This is the variable that is set with "set struct-convention", and
2921 its legitimate values. */
2922 static const char default_struct_convention[] = "default";
2923 static const char pcc_struct_convention[] = "pcc";
2924 static const char reg_struct_convention[] = "reg";
2925 static const char *const valid_conventions[] =
2926 {
2927 default_struct_convention,
2928 pcc_struct_convention,
2929 reg_struct_convention,
2930 NULL
2931 };
2932 static const char *struct_convention = default_struct_convention;
2933
2934 /* Return non-zero if TYPE, which is assumed to be a structure,
2935 a union type, or an array type, should be returned in registers
2936 for architecture GDBARCH. */
2937
2938 static int
2939 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2940 {
2941 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2942 enum type_code code = type->code ();
2943 int len = TYPE_LENGTH (type);
2944
2945 gdb_assert (code == TYPE_CODE_STRUCT
2946 || code == TYPE_CODE_UNION
2947 || code == TYPE_CODE_ARRAY);
2948
2949 if (struct_convention == pcc_struct_convention
2950 || (struct_convention == default_struct_convention
2951 && tdep->struct_return == pcc_struct_return))
2952 return 0;
2953
2954 /* Structures consisting of a single `float', `double' or 'long
2955 double' member are returned in %st(0). */
2956 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
2957 {
2958 type = check_typedef (type->field (0).type ());
2959 if (type->code () == TYPE_CODE_FLT)
2960 return (len == 4 || len == 8 || len == 12);
2961 }
2962
2963 return (len == 1 || len == 2 || len == 4 || len == 8);
2964 }
2965
2966 /* Determine, for architecture GDBARCH, how a return value of TYPE
2967 should be returned. If it is supposed to be returned in registers,
2968 and READBUF is non-zero, read the appropriate value from REGCACHE,
2969 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2970 from WRITEBUF into REGCACHE. */
2971
2972 static enum return_value_convention
2973 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2974 struct type *type, struct regcache *regcache,
2975 gdb_byte *readbuf, const gdb_byte *writebuf)
2976 {
2977 enum type_code code = type->code ();
2978
2979 if (((code == TYPE_CODE_STRUCT
2980 || code == TYPE_CODE_UNION
2981 || code == TYPE_CODE_ARRAY)
2982 && !i386_reg_struct_return_p (gdbarch, type))
2983 /* Complex double and long double uses the struct return convention. */
2984 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2985 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2986 /* 128-bit decimal float uses the struct return convention. */
2987 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2988 {
2989 /* The System V ABI says that:
2990
2991 "A function that returns a structure or union also sets %eax
2992 to the value of the original address of the caller's area
2993 before it returns. Thus when the caller receives control
2994 again, the address of the returned object resides in register
2995 %eax and can be used to access the object."
2996
2997 So the ABI guarantees that we can always find the return
2998 value just after the function has returned. */
2999
3000 /* Note that the ABI doesn't mention functions returning arrays,
3001 which is something possible in certain languages such as Ada.
3002 In this case, the value is returned as if it was wrapped in
3003 a record, so the convention applied to records also applies
3004 to arrays. */
3005
3006 if (readbuf)
3007 {
3008 ULONGEST addr;
3009
3010 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
3011 read_memory (addr, readbuf, TYPE_LENGTH (type));
3012 }
3013
3014 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
3015 }
3016
3017 /* This special case is for structures consisting of a single
3018 `float', `double' or 'long double' member. These structures are
3019 returned in %st(0). For these structures, we call ourselves
3020 recursively, changing TYPE into the type of the first member of
3021 the structure. Since that should work for all structures that
3022 have only one member, we don't bother to check the member's type
3023 here. */
3024 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
3025 {
3026 type = check_typedef (type->field (0).type ());
3027 return i386_return_value (gdbarch, function, type, regcache,
3028 readbuf, writebuf);
3029 }
3030
3031 if (readbuf)
3032 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3033 if (writebuf)
3034 i386_store_return_value (gdbarch, type, regcache, writebuf);
3035
3036 return RETURN_VALUE_REGISTER_CONVENTION;
3037 }
3038 \f
3039
3040 struct type *
3041 i387_ext_type (struct gdbarch *gdbarch)
3042 {
3043 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3044
3045 if (!tdep->i387_ext_type)
3046 {
3047 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3048 gdb_assert (tdep->i387_ext_type != NULL);
3049 }
3050
3051 return tdep->i387_ext_type;
3052 }
3053
3054 /* Construct type for pseudo BND registers. We can't use
3055 tdesc_find_type since a complement of one value has to be used
3056 to describe the upper bound. */
3057
3058 static struct type *
3059 i386_bnd_type (struct gdbarch *gdbarch)
3060 {
3061 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3062
3063
3064 if (!tdep->i386_bnd_type)
3065 {
3066 struct type *t;
3067 const struct builtin_type *bt = builtin_type (gdbarch);
3068
3069 /* The type we're building is described bellow: */
3070 #if 0
3071 struct __bound128
3072 {
3073 void *lbound;
3074 void *ubound; /* One complement of raw ubound field. */
3075 };
3076 #endif
3077
3078 t = arch_composite_type (gdbarch,
3079 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3080
3081 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3082 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3083
3084 t->set_name ("builtin_type_bound128");
3085 tdep->i386_bnd_type = t;
3086 }
3087
3088 return tdep->i386_bnd_type;
3089 }
3090
3091 /* Construct vector type for pseudo ZMM registers. We can't use
3092 tdesc_find_type since ZMM isn't described in target description. */
3093
3094 static struct type *
3095 i386_zmm_type (struct gdbarch *gdbarch)
3096 {
3097 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3098
3099 if (!tdep->i386_zmm_type)
3100 {
3101 const struct builtin_type *bt = builtin_type (gdbarch);
3102
3103 /* The type we're building is this: */
3104 #if 0
3105 union __gdb_builtin_type_vec512i
3106 {
3107 int128_t v4_int128[4];
3108 int64_t v8_int64[8];
3109 int32_t v16_int32[16];
3110 int16_t v32_int16[32];
3111 int8_t v64_int8[64];
3112 double v8_double[8];
3113 float v16_float[16];
3114 bfloat16_t v32_bfloat16[32];
3115 };
3116 #endif
3117
3118 struct type *t;
3119
3120 t = arch_composite_type (gdbarch,
3121 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3122 append_composite_type_field (t, "v32_bfloat16",
3123 init_vector_type (bt->builtin_bfloat16, 32));
3124 append_composite_type_field (t, "v16_float",
3125 init_vector_type (bt->builtin_float, 16));
3126 append_composite_type_field (t, "v8_double",
3127 init_vector_type (bt->builtin_double, 8));
3128 append_composite_type_field (t, "v64_int8",
3129 init_vector_type (bt->builtin_int8, 64));
3130 append_composite_type_field (t, "v32_int16",
3131 init_vector_type (bt->builtin_int16, 32));
3132 append_composite_type_field (t, "v16_int32",
3133 init_vector_type (bt->builtin_int32, 16));
3134 append_composite_type_field (t, "v8_int64",
3135 init_vector_type (bt->builtin_int64, 8));
3136 append_composite_type_field (t, "v4_int128",
3137 init_vector_type (bt->builtin_int128, 4));
3138
3139 t->set_is_vector (true);
3140 t->set_name ("builtin_type_vec512i");
3141 tdep->i386_zmm_type = t;
3142 }
3143
3144 return tdep->i386_zmm_type;
3145 }
3146
3147 /* Construct vector type for pseudo YMM registers. We can't use
3148 tdesc_find_type since YMM isn't described in target description. */
3149
3150 static struct type *
3151 i386_ymm_type (struct gdbarch *gdbarch)
3152 {
3153 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3154
3155 if (!tdep->i386_ymm_type)
3156 {
3157 const struct builtin_type *bt = builtin_type (gdbarch);
3158
3159 /* The type we're building is this: */
3160 #if 0
3161 union __gdb_builtin_type_vec256i
3162 {
3163 int128_t v2_int128[2];
3164 int64_t v4_int64[4];
3165 int32_t v8_int32[8];
3166 int16_t v16_int16[16];
3167 int8_t v32_int8[32];
3168 double v4_double[4];
3169 float v8_float[8];
3170 bfloat16_t v16_bfloat16[16];
3171 };
3172 #endif
3173
3174 struct type *t;
3175
3176 t = arch_composite_type (gdbarch,
3177 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3178 append_composite_type_field (t, "v16_bfloat16",
3179 init_vector_type (bt->builtin_bfloat16, 16));
3180 append_composite_type_field (t, "v8_float",
3181 init_vector_type (bt->builtin_float, 8));
3182 append_composite_type_field (t, "v4_double",
3183 init_vector_type (bt->builtin_double, 4));
3184 append_composite_type_field (t, "v32_int8",
3185 init_vector_type (bt->builtin_int8, 32));
3186 append_composite_type_field (t, "v16_int16",
3187 init_vector_type (bt->builtin_int16, 16));
3188 append_composite_type_field (t, "v8_int32",
3189 init_vector_type (bt->builtin_int32, 8));
3190 append_composite_type_field (t, "v4_int64",
3191 init_vector_type (bt->builtin_int64, 4));
3192 append_composite_type_field (t, "v2_int128",
3193 init_vector_type (bt->builtin_int128, 2));
3194
3195 t->set_is_vector (true);
3196 t->set_name ("builtin_type_vec256i");
3197 tdep->i386_ymm_type = t;
3198 }
3199
3200 return tdep->i386_ymm_type;
3201 }
3202
3203 /* Construct vector type for MMX registers. */
3204 static struct type *
3205 i386_mmx_type (struct gdbarch *gdbarch)
3206 {
3207 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3208
3209 if (!tdep->i386_mmx_type)
3210 {
3211 const struct builtin_type *bt = builtin_type (gdbarch);
3212
3213 /* The type we're building is this: */
3214 #if 0
3215 union __gdb_builtin_type_vec64i
3216 {
3217 int64_t uint64;
3218 int32_t v2_int32[2];
3219 int16_t v4_int16[4];
3220 int8_t v8_int8[8];
3221 };
3222 #endif
3223
3224 struct type *t;
3225
3226 t = arch_composite_type (gdbarch,
3227 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3228
3229 append_composite_type_field (t, "uint64", bt->builtin_int64);
3230 append_composite_type_field (t, "v2_int32",
3231 init_vector_type (bt->builtin_int32, 2));
3232 append_composite_type_field (t, "v4_int16",
3233 init_vector_type (bt->builtin_int16, 4));
3234 append_composite_type_field (t, "v8_int8",
3235 init_vector_type (bt->builtin_int8, 8));
3236
3237 t->set_is_vector (true);
3238 t->set_name ("builtin_type_vec64i");
3239 tdep->i386_mmx_type = t;
3240 }
3241
3242 return tdep->i386_mmx_type;
3243 }
3244
3245 /* Return the GDB type object for the "standard" data type of data in
3246 register REGNUM. */
3247
3248 struct type *
3249 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3250 {
3251 if (i386_bnd_regnum_p (gdbarch, regnum))
3252 return i386_bnd_type (gdbarch);
3253 if (i386_mmx_regnum_p (gdbarch, regnum))
3254 return i386_mmx_type (gdbarch);
3255 else if (i386_ymm_regnum_p (gdbarch, regnum))
3256 return i386_ymm_type (gdbarch);
3257 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3258 return i386_ymm_type (gdbarch);
3259 else if (i386_zmm_regnum_p (gdbarch, regnum))
3260 return i386_zmm_type (gdbarch);
3261 else
3262 {
3263 const struct builtin_type *bt = builtin_type (gdbarch);
3264 if (i386_byte_regnum_p (gdbarch, regnum))
3265 return bt->builtin_int8;
3266 else if (i386_word_regnum_p (gdbarch, regnum))
3267 return bt->builtin_int16;
3268 else if (i386_dword_regnum_p (gdbarch, regnum))
3269 return bt->builtin_int32;
3270 else if (i386_k_regnum_p (gdbarch, regnum))
3271 return bt->builtin_int64;
3272 }
3273
3274 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3275 }
3276
3277 /* Map a cooked register onto a raw register or memory. For the i386,
3278 the MMX registers need to be mapped onto floating point registers. */
3279
3280 static int
3281 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3282 {
3283 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
3284 int mmxreg, fpreg;
3285 ULONGEST fstat;
3286 int tos;
3287
3288 mmxreg = regnum - tdep->mm0_regnum;
3289 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3290 tos = (fstat >> 11) & 0x7;
3291 fpreg = (mmxreg + tos) % 8;
3292
3293 return (I387_ST0_REGNUM (tdep) + fpreg);
3294 }
3295
3296 /* A helper function for us by i386_pseudo_register_read_value and
3297 amd64_pseudo_register_read_value. It does all the work but reads
3298 the data into an already-allocated value. */
3299
3300 void
3301 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3302 readable_regcache *regcache,
3303 int regnum,
3304 struct value *result_value)
3305 {
3306 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3307 enum register_status status;
3308 gdb_byte *buf = value_contents_raw (result_value);
3309
3310 if (i386_mmx_regnum_p (gdbarch, regnum))
3311 {
3312 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3313
3314 /* Extract (always little endian). */
3315 status = regcache->raw_read (fpnum, raw_buf);
3316 if (status != REG_VALID)
3317 mark_value_bytes_unavailable (result_value, 0,
3318 TYPE_LENGTH (value_type (result_value)));
3319 else
3320 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3321 }
3322 else
3323 {
3324 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3325 if (i386_bnd_regnum_p (gdbarch, regnum))
3326 {
3327 regnum -= tdep->bnd0_regnum;
3328
3329 /* Extract (always little endian). Read lower 128bits. */
3330 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3331 raw_buf);
3332 if (status != REG_VALID)
3333 mark_value_bytes_unavailable (result_value, 0, 16);
3334 else
3335 {
3336 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3337 LONGEST upper, lower;
3338 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3339
3340 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3341 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3342 upper = ~upper;
3343
3344 memcpy (buf, &lower, size);
3345 memcpy (buf + size, &upper, size);
3346 }
3347 }
3348 else if (i386_k_regnum_p (gdbarch, regnum))
3349 {
3350 regnum -= tdep->k0_regnum;
3351
3352 /* Extract (always little endian). */
3353 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3354 if (status != REG_VALID)
3355 mark_value_bytes_unavailable (result_value, 0, 8);
3356 else
3357 memcpy (buf, raw_buf, 8);
3358 }
3359 else if (i386_zmm_regnum_p (gdbarch, regnum))
3360 {
3361 regnum -= tdep->zmm0_regnum;
3362
3363 if (regnum < num_lower_zmm_regs)
3364 {
3365 /* Extract (always little endian). Read lower 128bits. */
3366 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3367 raw_buf);
3368 if (status != REG_VALID)
3369 mark_value_bytes_unavailable (result_value, 0, 16);
3370 else
3371 memcpy (buf, raw_buf, 16);
3372
3373 /* Extract (always little endian). Read upper 128bits. */
3374 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3375 raw_buf);
3376 if (status != REG_VALID)
3377 mark_value_bytes_unavailable (result_value, 16, 16);
3378 else
3379 memcpy (buf + 16, raw_buf, 16);
3380 }
3381 else
3382 {
3383 /* Extract (always little endian). Read lower 128bits. */
3384 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3385 - num_lower_zmm_regs,
3386 raw_buf);
3387 if (status != REG_VALID)
3388 mark_value_bytes_unavailable (result_value, 0, 16);
3389 else
3390 memcpy (buf, raw_buf, 16);
3391
3392 /* Extract (always little endian). Read upper 128bits. */
3393 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3394 - num_lower_zmm_regs,
3395 raw_buf);
3396 if (status != REG_VALID)
3397 mark_value_bytes_unavailable (result_value, 16, 16);
3398 else
3399 memcpy (buf + 16, raw_buf, 16);
3400 }
3401
3402 /* Read upper 256bits. */
3403 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3404 raw_buf);
3405 if (status != REG_VALID)
3406 mark_value_bytes_unavailable (result_value, 32, 32);
3407 else
3408 memcpy (buf + 32, raw_buf, 32);
3409 }
3410 else if (i386_ymm_regnum_p (gdbarch, regnum))
3411 {
3412 regnum -= tdep->ymm0_regnum;
3413
3414 /* Extract (always little endian). Read lower 128bits. */
3415 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3416 raw_buf);
3417 if (status != REG_VALID)
3418 mark_value_bytes_unavailable (result_value, 0, 16);
3419 else
3420 memcpy (buf, raw_buf, 16);
3421 /* Read upper 128bits. */
3422 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3423 raw_buf);
3424 if (status != REG_VALID)
3425 mark_value_bytes_unavailable (result_value, 16, 32);
3426 else
3427 memcpy (buf + 16, raw_buf, 16);
3428 }
3429 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3430 {
3431 regnum -= tdep->ymm16_regnum;
3432 /* Extract (always little endian). Read lower 128bits. */
3433 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3434 raw_buf);
3435 if (status != REG_VALID)
3436 mark_value_bytes_unavailable (result_value, 0, 16);
3437 else
3438 memcpy (buf, raw_buf, 16);
3439 /* Read upper 128bits. */
3440 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3441 raw_buf);
3442 if (status != REG_VALID)
3443 mark_value_bytes_unavailable (result_value, 16, 16);
3444 else
3445 memcpy (buf + 16, raw_buf, 16);
3446 }
3447 else if (i386_word_regnum_p (gdbarch, regnum))
3448 {
3449 int gpnum = regnum - tdep->ax_regnum;
3450
3451 /* Extract (always little endian). */
3452 status = regcache->raw_read (gpnum, raw_buf);
3453 if (status != REG_VALID)
3454 mark_value_bytes_unavailable (result_value, 0,
3455 TYPE_LENGTH (value_type (result_value)));
3456 else
3457 memcpy (buf, raw_buf, 2);
3458 }
3459 else if (i386_byte_regnum_p (gdbarch, regnum))
3460 {
3461 int gpnum = regnum - tdep->al_regnum;
3462
3463 /* Extract (always little endian). We read both lower and
3464 upper registers. */
3465 status = regcache->raw_read (gpnum % 4, raw_buf);
3466 if (status != REG_VALID)
3467 mark_value_bytes_unavailable (result_value, 0,
3468 TYPE_LENGTH (value_type (result_value)));
3469 else if (gpnum >= 4)
3470 memcpy (buf, raw_buf + 1, 1);
3471 else
3472 memcpy (buf, raw_buf, 1);
3473 }
3474 else
3475 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3476 }
3477 }
3478
3479 static struct value *
3480 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3481 readable_regcache *regcache,
3482 int regnum)
3483 {
3484 struct value *result;
3485
3486 result = allocate_value (register_type (gdbarch, regnum));
3487 VALUE_LVAL (result) = lval_register;
3488 VALUE_REGNUM (result) = regnum;
3489
3490 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3491
3492 return result;
3493 }
3494
3495 void
3496 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3497 int regnum, const gdb_byte *buf)
3498 {
3499 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3500
3501 if (i386_mmx_regnum_p (gdbarch, regnum))
3502 {
3503 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3504
3505 /* Read ... */
3506 regcache->raw_read (fpnum, raw_buf);
3507 /* ... Modify ... (always little endian). */
3508 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3509 /* ... Write. */
3510 regcache->raw_write (fpnum, raw_buf);
3511 }
3512 else
3513 {
3514 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3515
3516 if (i386_bnd_regnum_p (gdbarch, regnum))
3517 {
3518 ULONGEST upper, lower;
3519 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3520 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3521
3522 /* New values from input value. */
3523 regnum -= tdep->bnd0_regnum;
3524 lower = extract_unsigned_integer (buf, size, byte_order);
3525 upper = extract_unsigned_integer (buf + size, size, byte_order);
3526
3527 /* Fetching register buffer. */
3528 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3529 raw_buf);
3530
3531 upper = ~upper;
3532
3533 /* Set register bits. */
3534 memcpy (raw_buf, &lower, 8);
3535 memcpy (raw_buf + 8, &upper, 8);
3536
3537 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
3538 }
3539 else if (i386_k_regnum_p (gdbarch, regnum))
3540 {
3541 regnum -= tdep->k0_regnum;
3542
3543 regcache->raw_write (tdep->k0_regnum + regnum, buf);
3544 }
3545 else if (i386_zmm_regnum_p (gdbarch, regnum))
3546 {
3547 regnum -= tdep->zmm0_regnum;
3548
3549 if (regnum < num_lower_zmm_regs)
3550 {
3551 /* Write lower 128bits. */
3552 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3553 /* Write upper 128bits. */
3554 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
3555 }
3556 else
3557 {
3558 /* Write lower 128bits. */
3559 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3560 - num_lower_zmm_regs, buf);
3561 /* Write upper 128bits. */
3562 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3563 - num_lower_zmm_regs, buf + 16);
3564 }
3565 /* Write upper 256bits. */
3566 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
3567 }
3568 else if (i386_ymm_regnum_p (gdbarch, regnum))
3569 {
3570 regnum -= tdep->ymm0_regnum;
3571
3572 /* ... Write lower 128bits. */
3573 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3574 /* ... Write upper 128bits. */
3575 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
3576 }
3577 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3578 {
3579 regnum -= tdep->ymm16_regnum;
3580
3581 /* ... Write lower 128bits. */
3582 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
3583 /* ... Write upper 128bits. */
3584 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
3585 }
3586 else if (i386_word_regnum_p (gdbarch, regnum))
3587 {
3588 int gpnum = regnum - tdep->ax_regnum;
3589
3590 /* Read ... */
3591 regcache->raw_read (gpnum, raw_buf);
3592 /* ... Modify ... (always little endian). */
3593 memcpy (raw_buf, buf, 2);
3594 /* ... Write. */
3595 regcache->raw_write (gpnum, raw_buf);
3596 }
3597 else if (i386_byte_regnum_p (gdbarch, regnum))
3598 {
3599 int gpnum = regnum - tdep->al_regnum;
3600
3601 /* Read ... We read both lower and upper registers. */
3602 regcache->raw_read (gpnum % 4, raw_buf);
3603 /* ... Modify ... (always little endian). */
3604 if (gpnum >= 4)
3605 memcpy (raw_buf + 1, buf, 1);
3606 else
3607 memcpy (raw_buf, buf, 1);
3608 /* ... Write. */
3609 regcache->raw_write (gpnum % 4, raw_buf);
3610 }
3611 else
3612 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3613 }
3614 }
3615
3616 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3617
3618 int
3619 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3620 struct agent_expr *ax, int regnum)
3621 {
3622 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3623
3624 if (i386_mmx_regnum_p (gdbarch, regnum))
3625 {
3626 /* MMX to FPU register mapping depends on current TOS. Let's just
3627 not care and collect everything... */
3628 int i;
3629
3630 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3631 for (i = 0; i < 8; i++)
3632 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3633 return 0;
3634 }
3635 else if (i386_bnd_regnum_p (gdbarch, regnum))
3636 {
3637 regnum -= tdep->bnd0_regnum;
3638 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3639 return 0;
3640 }
3641 else if (i386_k_regnum_p (gdbarch, regnum))
3642 {
3643 regnum -= tdep->k0_regnum;
3644 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3645 return 0;
3646 }
3647 else if (i386_zmm_regnum_p (gdbarch, regnum))
3648 {
3649 regnum -= tdep->zmm0_regnum;
3650 if (regnum < num_lower_zmm_regs)
3651 {
3652 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3653 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3654 }
3655 else
3656 {
3657 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3658 - num_lower_zmm_regs);
3659 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3660 - num_lower_zmm_regs);
3661 }
3662 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3663 return 0;
3664 }
3665 else if (i386_ymm_regnum_p (gdbarch, regnum))
3666 {
3667 regnum -= tdep->ymm0_regnum;
3668 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3669 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3670 return 0;
3671 }
3672 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3673 {
3674 regnum -= tdep->ymm16_regnum;
3675 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3676 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3677 return 0;
3678 }
3679 else if (i386_word_regnum_p (gdbarch, regnum))
3680 {
3681 int gpnum = regnum - tdep->ax_regnum;
3682
3683 ax_reg_mask (ax, gpnum);
3684 return 0;
3685 }
3686 else if (i386_byte_regnum_p (gdbarch, regnum))
3687 {
3688 int gpnum = regnum - tdep->al_regnum;
3689
3690 ax_reg_mask (ax, gpnum % 4);
3691 return 0;
3692 }
3693 else
3694 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3695 return 1;
3696 }
3697 \f
3698
3699 /* Return the register number of the register allocated by GCC after
3700 REGNUM, or -1 if there is no such register. */
3701
3702 static int
3703 i386_next_regnum (int regnum)
3704 {
3705 /* GCC allocates the registers in the order:
3706
3707 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3708
3709 Since storing a variable in %esp doesn't make any sense we return
3710 -1 for %ebp and for %esp itself. */
3711 static int next_regnum[] =
3712 {
3713 I386_EDX_REGNUM, /* Slot for %eax. */
3714 I386_EBX_REGNUM, /* Slot for %ecx. */
3715 I386_ECX_REGNUM, /* Slot for %edx. */
3716 I386_ESI_REGNUM, /* Slot for %ebx. */
3717 -1, -1, /* Slots for %esp and %ebp. */
3718 I386_EDI_REGNUM, /* Slot for %esi. */
3719 I386_EBP_REGNUM /* Slot for %edi. */
3720 };
3721
3722 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3723 return next_regnum[regnum];
3724
3725 return -1;
3726 }
3727
3728 /* Return nonzero if a value of type TYPE stored in register REGNUM
3729 needs any special handling. */
3730
3731 static int
3732 i386_convert_register_p (struct gdbarch *gdbarch,
3733 int regnum, struct type *type)
3734 {
3735 int len = TYPE_LENGTH (type);
3736
3737 /* Values may be spread across multiple registers. Most debugging
3738 formats aren't expressive enough to specify the locations, so
3739 some heuristics is involved. Right now we only handle types that
3740 have a length that is a multiple of the word size, since GCC
3741 doesn't seem to put any other types into registers. */
3742 if (len > 4 && len % 4 == 0)
3743 {
3744 int last_regnum = regnum;
3745
3746 while (len > 4)
3747 {
3748 last_regnum = i386_next_regnum (last_regnum);
3749 len -= 4;
3750 }
3751
3752 if (last_regnum != -1)
3753 return 1;
3754 }
3755
3756 return i387_convert_register_p (gdbarch, regnum, type);
3757 }
3758
3759 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3760 return its contents in TO. */
3761
3762 static int
3763 i386_register_to_value (struct frame_info *frame, int regnum,
3764 struct type *type, gdb_byte *to,
3765 int *optimizedp, int *unavailablep)
3766 {
3767 struct gdbarch *gdbarch = get_frame_arch (frame);
3768 int len = TYPE_LENGTH (type);
3769
3770 if (i386_fp_regnum_p (gdbarch, regnum))
3771 return i387_register_to_value (frame, regnum, type, to,
3772 optimizedp, unavailablep);
3773
3774 /* Read a value spread across multiple registers. */
3775
3776 gdb_assert (len > 4 && len % 4 == 0);
3777
3778 while (len > 0)
3779 {
3780 gdb_assert (regnum != -1);
3781 gdb_assert (register_size (gdbarch, regnum) == 4);
3782
3783 if (!get_frame_register_bytes (frame, regnum, 0,
3784 register_size (gdbarch, regnum),
3785 to, optimizedp, unavailablep))
3786 return 0;
3787
3788 regnum = i386_next_regnum (regnum);
3789 len -= 4;
3790 to += 4;
3791 }
3792
3793 *optimizedp = *unavailablep = 0;
3794 return 1;
3795 }
3796
3797 /* Write the contents FROM of a value of type TYPE into register
3798 REGNUM in frame FRAME. */
3799
3800 static void
3801 i386_value_to_register (struct frame_info *frame, int regnum,
3802 struct type *type, const gdb_byte *from)
3803 {
3804 int len = TYPE_LENGTH (type);
3805
3806 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3807 {
3808 i387_value_to_register (frame, regnum, type, from);
3809 return;
3810 }
3811
3812 /* Write a value spread across multiple registers. */
3813
3814 gdb_assert (len > 4 && len % 4 == 0);
3815
3816 while (len > 0)
3817 {
3818 gdb_assert (regnum != -1);
3819 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3820
3821 put_frame_register (frame, regnum, from);
3822 regnum = i386_next_regnum (regnum);
3823 len -= 4;
3824 from += 4;
3825 }
3826 }
3827 \f
3828 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3829 in the general-purpose register set REGSET to register cache
3830 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3831
3832 void
3833 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3834 int regnum, const void *gregs, size_t len)
3835 {
3836 struct gdbarch *gdbarch = regcache->arch ();
3837 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3838 const gdb_byte *regs = (const gdb_byte *) gregs;
3839 int i;
3840
3841 gdb_assert (len >= tdep->sizeof_gregset);
3842
3843 for (i = 0; i < tdep->gregset_num_regs; i++)
3844 {
3845 if ((regnum == i || regnum == -1)
3846 && tdep->gregset_reg_offset[i] != -1)
3847 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
3848 }
3849 }
3850
3851 /* Collect register REGNUM from the register cache REGCACHE and store
3852 it in the buffer specified by GREGS and LEN as described by the
3853 general-purpose register set REGSET. If REGNUM is -1, do this for
3854 all registers in REGSET. */
3855
3856 static void
3857 i386_collect_gregset (const struct regset *regset,
3858 const struct regcache *regcache,
3859 int regnum, void *gregs, size_t len)
3860 {
3861 struct gdbarch *gdbarch = regcache->arch ();
3862 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3863 gdb_byte *regs = (gdb_byte *) gregs;
3864 int i;
3865
3866 gdb_assert (len >= tdep->sizeof_gregset);
3867
3868 for (i = 0; i < tdep->gregset_num_regs; i++)
3869 {
3870 if ((regnum == i || regnum == -1)
3871 && tdep->gregset_reg_offset[i] != -1)
3872 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
3873 }
3874 }
3875
3876 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3877 in the floating-point register set REGSET to register cache
3878 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3879
3880 static void
3881 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3882 int regnum, const void *fpregs, size_t len)
3883 {
3884 struct gdbarch *gdbarch = regcache->arch ();
3885 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3886
3887 if (len == I387_SIZEOF_FXSAVE)
3888 {
3889 i387_supply_fxsave (regcache, regnum, fpregs);
3890 return;
3891 }
3892
3893 gdb_assert (len >= tdep->sizeof_fpregset);
3894 i387_supply_fsave (regcache, regnum, fpregs);
3895 }
3896
3897 /* Collect register REGNUM from the register cache REGCACHE and store
3898 it in the buffer specified by FPREGS and LEN as described by the
3899 floating-point register set REGSET. If REGNUM is -1, do this for
3900 all registers in REGSET. */
3901
3902 static void
3903 i386_collect_fpregset (const struct regset *regset,
3904 const struct regcache *regcache,
3905 int regnum, void *fpregs, size_t len)
3906 {
3907 struct gdbarch *gdbarch = regcache->arch ();
3908 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3909
3910 if (len == I387_SIZEOF_FXSAVE)
3911 {
3912 i387_collect_fxsave (regcache, regnum, fpregs);
3913 return;
3914 }
3915
3916 gdb_assert (len >= tdep->sizeof_fpregset);
3917 i387_collect_fsave (regcache, regnum, fpregs);
3918 }
3919
3920 /* Register set definitions. */
3921
3922 const struct regset i386_gregset =
3923 {
3924 NULL, i386_supply_gregset, i386_collect_gregset
3925 };
3926
3927 const struct regset i386_fpregset =
3928 {
3929 NULL, i386_supply_fpregset, i386_collect_fpregset
3930 };
3931
3932 /* Default iterator over core file register note sections. */
3933
3934 void
3935 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3936 iterate_over_regset_sections_cb *cb,
3937 void *cb_data,
3938 const struct regcache *regcache)
3939 {
3940 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3941
3942 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
3943 cb_data);
3944 if (tdep->sizeof_fpregset)
3945 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
3946 NULL, cb_data);
3947 }
3948 \f
3949
3950 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3951
3952 CORE_ADDR
3953 i386_pe_skip_trampoline_code (struct frame_info *frame,
3954 CORE_ADDR pc, char *name)
3955 {
3956 struct gdbarch *gdbarch = get_frame_arch (frame);
3957 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3958
3959 /* jmp *(dest) */
3960 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3961 {
3962 unsigned long indirect =
3963 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3964 struct minimal_symbol *indsym =
3965 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3966 const char *symname = indsym ? indsym->linkage_name () : 0;
3967
3968 if (symname)
3969 {
3970 if (startswith (symname, "__imp_")
3971 || startswith (symname, "_imp_"))
3972 return name ? 1 :
3973 read_memory_unsigned_integer (indirect, 4, byte_order);
3974 }
3975 }
3976 return 0; /* Not a trampoline. */
3977 }
3978 \f
3979
3980 /* Return whether the THIS_FRAME corresponds to a sigtramp
3981 routine. */
3982
3983 int
3984 i386_sigtramp_p (struct frame_info *this_frame)
3985 {
3986 CORE_ADDR pc = get_frame_pc (this_frame);
3987 const char *name;
3988
3989 find_pc_partial_function (pc, &name, NULL, NULL);
3990 return (name && strcmp ("_sigtramp", name) == 0);
3991 }
3992 \f
3993
3994 /* We have two flavours of disassembly. The machinery on this page
3995 deals with switching between those. */
3996
3997 static int
3998 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3999 {
4000 gdb_assert (disassembly_flavor == att_flavor
4001 || disassembly_flavor == intel_flavor);
4002
4003 info->disassembler_options = disassembly_flavor;
4004
4005 return default_print_insn (pc, info);
4006 }
4007 \f
4008
4009 /* There are a few i386 architecture variants that differ only
4010 slightly from the generic i386 target. For now, we don't give them
4011 their own source file, but include them here. As a consequence,
4012 they'll always be included. */
4013
4014 /* System V Release 4 (SVR4). */
4015
4016 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4017 routine. */
4018
4019 static int
4020 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4021 {
4022 CORE_ADDR pc = get_frame_pc (this_frame);
4023 const char *name;
4024
4025 /* The origin of these symbols is currently unknown. */
4026 find_pc_partial_function (pc, &name, NULL, NULL);
4027 return (name && (strcmp ("_sigreturn", name) == 0
4028 || strcmp ("sigvechandler", name) == 0));
4029 }
4030
4031 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4032 address of the associated sigcontext (ucontext) structure. */
4033
4034 static CORE_ADDR
4035 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4036 {
4037 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4038 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4039 gdb_byte buf[4];
4040 CORE_ADDR sp;
4041
4042 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4043 sp = extract_unsigned_integer (buf, 4, byte_order);
4044
4045 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4046 }
4047
4048 \f
4049
4050 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4051 gdbarch.h. */
4052
4053 int
4054 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4055 {
4056 return (*s == '$' /* Literal number. */
4057 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4058 || (*s == '(' && s[1] == '%') /* Register indirection. */
4059 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4060 }
4061
4062 /* Helper function for i386_stap_parse_special_token.
4063
4064 This function parses operands of the form `-8+3+1(%rbp)', which
4065 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4066
4067 Return true if the operand was parsed successfully, false
4068 otherwise. */
4069
4070 static bool
4071 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4072 struct stap_parse_info *p)
4073 {
4074 const char *s = p->arg;
4075
4076 if (isdigit (*s) || *s == '-' || *s == '+')
4077 {
4078 bool got_minus[3];
4079 int i;
4080 long displacements[3];
4081 const char *start;
4082 char *regname;
4083 int len;
4084 struct stoken str;
4085 char *endp;
4086
4087 got_minus[0] = false;
4088 if (*s == '+')
4089 ++s;
4090 else if (*s == '-')
4091 {
4092 ++s;
4093 got_minus[0] = true;
4094 }
4095
4096 if (!isdigit ((unsigned char) *s))
4097 return false;
4098
4099 displacements[0] = strtol (s, &endp, 10);
4100 s = endp;
4101
4102 if (*s != '+' && *s != '-')
4103 {
4104 /* We are not dealing with a triplet. */
4105 return false;
4106 }
4107
4108 got_minus[1] = false;
4109 if (*s == '+')
4110 ++s;
4111 else
4112 {
4113 ++s;
4114 got_minus[1] = true;
4115 }
4116
4117 if (!isdigit ((unsigned char) *s))
4118 return false;
4119
4120 displacements[1] = strtol (s, &endp, 10);
4121 s = endp;
4122
4123 if (*s != '+' && *s != '-')
4124 {
4125 /* We are not dealing with a triplet. */
4126 return false;
4127 }
4128
4129 got_minus[2] = false;
4130 if (*s == '+')
4131 ++s;
4132 else
4133 {
4134 ++s;
4135 got_minus[2] = true;
4136 }
4137
4138 if (!isdigit ((unsigned char) *s))
4139 return false;
4140
4141 displacements[2] = strtol (s, &endp, 10);
4142 s = endp;
4143
4144 if (*s != '(' || s[1] != '%')
4145 return false;
4146
4147 s += 2;
4148 start = s;
4149
4150 while (isalnum (*s))
4151 ++s;
4152
4153 if (*s++ != ')')
4154 return false;
4155
4156 len = s - start - 1;
4157 regname = (char *) alloca (len + 1);
4158
4159 strncpy (regname, start, len);
4160 regname[len] = '\0';
4161
4162 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4163 error (_("Invalid register name `%s' on expression `%s'."),
4164 regname, p->saved_arg);
4165
4166 for (i = 0; i < 3; i++)
4167 {
4168 write_exp_elt_opcode (&p->pstate, OP_LONG);
4169 write_exp_elt_type
4170 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4171 write_exp_elt_longcst (&p->pstate, displacements[i]);
4172 write_exp_elt_opcode (&p->pstate, OP_LONG);
4173 if (got_minus[i])
4174 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4175 }
4176
4177 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4178 str.ptr = regname;
4179 str.length = len;
4180 write_exp_string (&p->pstate, str);
4181 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4182
4183 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4184 write_exp_elt_type (&p->pstate,
4185 builtin_type (gdbarch)->builtin_data_ptr);
4186 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4187
4188 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4189 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4190 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4191
4192 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4193 write_exp_elt_type (&p->pstate,
4194 lookup_pointer_type (p->arg_type));
4195 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4196
4197 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4198
4199 p->arg = s;
4200
4201 return true;
4202 }
4203
4204 return false;
4205 }
4206
4207 /* Helper function for i386_stap_parse_special_token.
4208
4209 This function parses operands of the form `register base +
4210 (register index * size) + offset', as represented in
4211 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4212
4213 Return true if the operand was parsed successfully, false
4214 otherwise. */
4215
4216 static bool
4217 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4218 struct stap_parse_info *p)
4219 {
4220 const char *s = p->arg;
4221
4222 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4223 {
4224 bool offset_minus = false;
4225 long offset = 0;
4226 bool size_minus = false;
4227 long size = 0;
4228 const char *start;
4229 char *base;
4230 int len_base;
4231 char *index;
4232 int len_index;
4233 struct stoken base_token, index_token;
4234
4235 if (*s == '+')
4236 ++s;
4237 else if (*s == '-')
4238 {
4239 ++s;
4240 offset_minus = true;
4241 }
4242
4243 if (offset_minus && !isdigit (*s))
4244 return false;
4245
4246 if (isdigit (*s))
4247 {
4248 char *endp;
4249
4250 offset = strtol (s, &endp, 10);
4251 s = endp;
4252 }
4253
4254 if (*s != '(' || s[1] != '%')
4255 return false;
4256
4257 s += 2;
4258 start = s;
4259
4260 while (isalnum (*s))
4261 ++s;
4262
4263 if (*s != ',' || s[1] != '%')
4264 return false;
4265
4266 len_base = s - start;
4267 base = (char *) alloca (len_base + 1);
4268 strncpy (base, start, len_base);
4269 base[len_base] = '\0';
4270
4271 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4272 error (_("Invalid register name `%s' on expression `%s'."),
4273 base, p->saved_arg);
4274
4275 s += 2;
4276 start = s;
4277
4278 while (isalnum (*s))
4279 ++s;
4280
4281 len_index = s - start;
4282 index = (char *) alloca (len_index + 1);
4283 strncpy (index, start, len_index);
4284 index[len_index] = '\0';
4285
4286 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4287 error (_("Invalid register name `%s' on expression `%s'."),
4288 index, p->saved_arg);
4289
4290 if (*s != ',' && *s != ')')
4291 return false;
4292
4293 if (*s == ',')
4294 {
4295 char *endp;
4296
4297 ++s;
4298 if (*s == '+')
4299 ++s;
4300 else if (*s == '-')
4301 {
4302 ++s;
4303 size_minus = true;
4304 }
4305
4306 size = strtol (s, &endp, 10);
4307 s = endp;
4308
4309 if (*s != ')')
4310 return false;
4311 }
4312
4313 ++s;
4314
4315 if (offset)
4316 {
4317 write_exp_elt_opcode (&p->pstate, OP_LONG);
4318 write_exp_elt_type (&p->pstate,
4319 builtin_type (gdbarch)->builtin_long);
4320 write_exp_elt_longcst (&p->pstate, offset);
4321 write_exp_elt_opcode (&p->pstate, OP_LONG);
4322 if (offset_minus)
4323 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4324 }
4325
4326 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4327 base_token.ptr = base;
4328 base_token.length = len_base;
4329 write_exp_string (&p->pstate, base_token);
4330 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4331
4332 if (offset)
4333 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4334
4335 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4336 index_token.ptr = index;
4337 index_token.length = len_index;
4338 write_exp_string (&p->pstate, index_token);
4339 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4340
4341 if (size)
4342 {
4343 write_exp_elt_opcode (&p->pstate, OP_LONG);
4344 write_exp_elt_type (&p->pstate,
4345 builtin_type (gdbarch)->builtin_long);
4346 write_exp_elt_longcst (&p->pstate, size);
4347 write_exp_elt_opcode (&p->pstate, OP_LONG);
4348 if (size_minus)
4349 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4350 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4351 }
4352
4353 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4354
4355 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4356 write_exp_elt_type (&p->pstate,
4357 lookup_pointer_type (p->arg_type));
4358 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4359
4360 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4361
4362 p->arg = s;
4363
4364 return true;
4365 }
4366
4367 return false;
4368 }
4369
4370 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4371 gdbarch.h. */
4372
4373 int
4374 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4375 struct stap_parse_info *p)
4376 {
4377 /* In order to parse special tokens, we use a state-machine that go
4378 through every known token and try to get a match. */
4379 enum
4380 {
4381 TRIPLET,
4382 THREE_ARG_DISPLACEMENT,
4383 DONE
4384 };
4385 int current_state;
4386
4387 current_state = TRIPLET;
4388
4389 /* The special tokens to be parsed here are:
4390
4391 - `register base + (register index * size) + offset', as represented
4392 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4393
4394 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4395 `*(-8 + 3 - 1 + (void *) $eax)'. */
4396
4397 while (current_state != DONE)
4398 {
4399 switch (current_state)
4400 {
4401 case TRIPLET:
4402 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4403 return 1;
4404 break;
4405
4406 case THREE_ARG_DISPLACEMENT:
4407 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4408 return 1;
4409 break;
4410 }
4411
4412 /* Advancing to the next state. */
4413 ++current_state;
4414 }
4415
4416 return 0;
4417 }
4418
4419 /* Implementation of 'gdbarch_stap_adjust_register', as defined in
4420 gdbarch.h. */
4421
4422 static std::string
4423 i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
4424 const std::string &regname, int regnum)
4425 {
4426 static const std::unordered_set<std::string> reg_assoc
4427 = { "ax", "bx", "cx", "dx",
4428 "si", "di", "bp", "sp" };
4429
4430 /* If we are dealing with a register whose size is less than the size
4431 specified by the "[-]N@" prefix, and it is one of the registers that
4432 we know has an extended variant available, then use the extended
4433 version of the register instead. */
4434 if (register_size (gdbarch, regnum) < TYPE_LENGTH (p->arg_type)
4435 && reg_assoc.find (regname) != reg_assoc.end ())
4436 return "e" + regname;
4437
4438 /* Otherwise, just use the requested register. */
4439 return regname;
4440 }
4441
4442 \f
4443
4444 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4445 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4446
4447 static const char *
4448 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4449 {
4450 return "(x86_64|i.86)";
4451 }
4452
4453 \f
4454
4455 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4456
4457 static bool
4458 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4459 {
4460 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4461 I386_EAX_REGNUM, I386_EIP_REGNUM);
4462 }
4463
4464 /* Generic ELF. */
4465
4466 void
4467 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4468 {
4469 static const char *const stap_integer_prefixes[] = { "$", NULL };
4470 static const char *const stap_register_prefixes[] = { "%", NULL };
4471 static const char *const stap_register_indirection_prefixes[] = { "(",
4472 NULL };
4473 static const char *const stap_register_indirection_suffixes[] = { ")",
4474 NULL };
4475
4476 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4477 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4478
4479 /* Registering SystemTap handlers. */
4480 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4481 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4482 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4483 stap_register_indirection_prefixes);
4484 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4485 stap_register_indirection_suffixes);
4486 set_gdbarch_stap_is_single_operand (gdbarch,
4487 i386_stap_is_single_operand);
4488 set_gdbarch_stap_parse_special_token (gdbarch,
4489 i386_stap_parse_special_token);
4490 set_gdbarch_stap_adjust_register (gdbarch,
4491 i386_stap_adjust_register);
4492
4493 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4494 i386_in_indirect_branch_thunk);
4495 }
4496
4497 /* System V Release 4 (SVR4). */
4498
4499 void
4500 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4501 {
4502 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4503
4504 /* System V Release 4 uses ELF. */
4505 i386_elf_init_abi (info, gdbarch);
4506
4507 /* System V Release 4 has shared libraries. */
4508 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4509
4510 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4511 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4512 tdep->sc_pc_offset = 36 + 14 * 4;
4513 tdep->sc_sp_offset = 36 + 17 * 4;
4514
4515 tdep->jb_pc_offset = 20;
4516 }
4517
4518 \f
4519
4520 /* i386 register groups. In addition to the normal groups, add "mmx"
4521 and "sse". */
4522
4523 static struct reggroup *i386_sse_reggroup;
4524 static struct reggroup *i386_mmx_reggroup;
4525
4526 static void
4527 i386_init_reggroups (void)
4528 {
4529 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4530 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4531 }
4532
4533 static void
4534 i386_add_reggroups (struct gdbarch *gdbarch)
4535 {
4536 reggroup_add (gdbarch, i386_sse_reggroup);
4537 reggroup_add (gdbarch, i386_mmx_reggroup);
4538 reggroup_add (gdbarch, general_reggroup);
4539 reggroup_add (gdbarch, float_reggroup);
4540 reggroup_add (gdbarch, all_reggroup);
4541 reggroup_add (gdbarch, save_reggroup);
4542 reggroup_add (gdbarch, restore_reggroup);
4543 reggroup_add (gdbarch, vector_reggroup);
4544 reggroup_add (gdbarch, system_reggroup);
4545 }
4546
4547 int
4548 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4549 struct reggroup *group)
4550 {
4551 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4552 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4553 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4554 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4555 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4556 avx512_p, avx_p, sse_p, pkru_regnum_p;
4557
4558 /* Don't include pseudo registers, except for MMX, in any register
4559 groups. */
4560 if (i386_byte_regnum_p (gdbarch, regnum))
4561 return 0;
4562
4563 if (i386_word_regnum_p (gdbarch, regnum))
4564 return 0;
4565
4566 if (i386_dword_regnum_p (gdbarch, regnum))
4567 return 0;
4568
4569 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4570 if (group == i386_mmx_reggroup)
4571 return mmx_regnum_p;
4572
4573 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4574 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4575 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4576 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4577 if (group == i386_sse_reggroup)
4578 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4579
4580 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4581 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4582 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4583
4584 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4585 == X86_XSTATE_AVX_AVX512_MASK);
4586 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4587 == X86_XSTATE_AVX_MASK) && !avx512_p;
4588 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4589 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4590
4591 if (group == vector_reggroup)
4592 return (mmx_regnum_p
4593 || (zmm_regnum_p && avx512_p)
4594 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4595 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4596 || mxcsr_regnum_p);
4597
4598 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4599 || i386_fpc_regnum_p (gdbarch, regnum));
4600 if (group == float_reggroup)
4601 return fp_regnum_p;
4602
4603 /* For "info reg all", don't include upper YMM registers nor XMM
4604 registers when AVX is supported. */
4605 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4606 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4607 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4608 if (group == all_reggroup
4609 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4610 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4611 || ymmh_regnum_p
4612 || ymmh_avx512_regnum_p
4613 || zmmh_regnum_p))
4614 return 0;
4615
4616 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4617 if (group == all_reggroup
4618 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4619 return bnd_regnum_p;
4620
4621 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4622 if (group == all_reggroup
4623 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4624 return 0;
4625
4626 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4627 if (group == all_reggroup
4628 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4629 return mpx_ctrl_regnum_p;
4630
4631 if (group == general_reggroup)
4632 return (!fp_regnum_p
4633 && !mmx_regnum_p
4634 && !mxcsr_regnum_p
4635 && !xmm_regnum_p
4636 && !xmm_avx512_regnum_p
4637 && !ymm_regnum_p
4638 && !ymmh_regnum_p
4639 && !ymm_avx512_regnum_p
4640 && !ymmh_avx512_regnum_p
4641 && !bndr_regnum_p
4642 && !bnd_regnum_p
4643 && !mpx_ctrl_regnum_p
4644 && !zmm_regnum_p
4645 && !zmmh_regnum_p
4646 && !pkru_regnum_p);
4647
4648 return default_register_reggroup_p (gdbarch, regnum, group);
4649 }
4650 \f
4651
4652 /* Get the ARGIth function argument for the current function. */
4653
4654 static CORE_ADDR
4655 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4656 struct type *type)
4657 {
4658 struct gdbarch *gdbarch = get_frame_arch (frame);
4659 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4660 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4661 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4662 }
4663
4664 #define PREFIX_REPZ 0x01
4665 #define PREFIX_REPNZ 0x02
4666 #define PREFIX_LOCK 0x04
4667 #define PREFIX_DATA 0x08
4668 #define PREFIX_ADDR 0x10
4669
4670 /* operand size */
4671 enum
4672 {
4673 OT_BYTE = 0,
4674 OT_WORD,
4675 OT_LONG,
4676 OT_QUAD,
4677 OT_DQUAD,
4678 };
4679
4680 /* i386 arith/logic operations */
4681 enum
4682 {
4683 OP_ADDL,
4684 OP_ORL,
4685 OP_ADCL,
4686 OP_SBBL,
4687 OP_ANDL,
4688 OP_SUBL,
4689 OP_XORL,
4690 OP_CMPL,
4691 };
4692
4693 struct i386_record_s
4694 {
4695 struct gdbarch *gdbarch;
4696 struct regcache *regcache;
4697 CORE_ADDR orig_addr;
4698 CORE_ADDR addr;
4699 int aflag;
4700 int dflag;
4701 int override;
4702 uint8_t modrm;
4703 uint8_t mod, reg, rm;
4704 int ot;
4705 uint8_t rex_x;
4706 uint8_t rex_b;
4707 int rip_offset;
4708 int popl_esp_hack;
4709 const int *regmap;
4710 };
4711
4712 /* Parse the "modrm" part of the memory address irp->addr points at.
4713 Returns -1 if something goes wrong, 0 otherwise. */
4714
4715 static int
4716 i386_record_modrm (struct i386_record_s *irp)
4717 {
4718 struct gdbarch *gdbarch = irp->gdbarch;
4719
4720 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4721 return -1;
4722
4723 irp->addr++;
4724 irp->mod = (irp->modrm >> 6) & 3;
4725 irp->reg = (irp->modrm >> 3) & 7;
4726 irp->rm = irp->modrm & 7;
4727
4728 return 0;
4729 }
4730
4731 /* Extract the memory address that the current instruction writes to,
4732 and return it in *ADDR. Return -1 if something goes wrong. */
4733
4734 static int
4735 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4736 {
4737 struct gdbarch *gdbarch = irp->gdbarch;
4738 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4739 gdb_byte buf[4];
4740 ULONGEST offset64;
4741
4742 *addr = 0;
4743 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4744 {
4745 /* 32/64 bits */
4746 int havesib = 0;
4747 uint8_t scale = 0;
4748 uint8_t byte;
4749 uint8_t index = 0;
4750 uint8_t base = irp->rm;
4751
4752 if (base == 4)
4753 {
4754 havesib = 1;
4755 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4756 return -1;
4757 irp->addr++;
4758 scale = (byte >> 6) & 3;
4759 index = ((byte >> 3) & 7) | irp->rex_x;
4760 base = (byte & 7);
4761 }
4762 base |= irp->rex_b;
4763
4764 switch (irp->mod)
4765 {
4766 case 0:
4767 if ((base & 7) == 5)
4768 {
4769 base = 0xff;
4770 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4771 return -1;
4772 irp->addr += 4;
4773 *addr = extract_signed_integer (buf, 4, byte_order);
4774 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4775 *addr += irp->addr + irp->rip_offset;
4776 }
4777 break;
4778 case 1:
4779 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4780 return -1;
4781 irp->addr++;
4782 *addr = (int8_t) buf[0];
4783 break;
4784 case 2:
4785 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4786 return -1;
4787 *addr = extract_signed_integer (buf, 4, byte_order);
4788 irp->addr += 4;
4789 break;
4790 }
4791
4792 offset64 = 0;
4793 if (base != 0xff)
4794 {
4795 if (base == 4 && irp->popl_esp_hack)
4796 *addr += irp->popl_esp_hack;
4797 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4798 &offset64);
4799 }
4800 if (irp->aflag == 2)
4801 {
4802 *addr += offset64;
4803 }
4804 else
4805 *addr = (uint32_t) (offset64 + *addr);
4806
4807 if (havesib && (index != 4 || scale != 0))
4808 {
4809 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4810 &offset64);
4811 if (irp->aflag == 2)
4812 *addr += offset64 << scale;
4813 else
4814 *addr = (uint32_t) (*addr + (offset64 << scale));
4815 }
4816
4817 if (!irp->aflag)
4818 {
4819 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4820 address from 32-bit to 64-bit. */
4821 *addr = (uint32_t) *addr;
4822 }
4823 }
4824 else
4825 {
4826 /* 16 bits */
4827 switch (irp->mod)
4828 {
4829 case 0:
4830 if (irp->rm == 6)
4831 {
4832 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4833 return -1;
4834 irp->addr += 2;
4835 *addr = extract_signed_integer (buf, 2, byte_order);
4836 irp->rm = 0;
4837 goto no_rm;
4838 }
4839 break;
4840 case 1:
4841 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4842 return -1;
4843 irp->addr++;
4844 *addr = (int8_t) buf[0];
4845 break;
4846 case 2:
4847 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4848 return -1;
4849 irp->addr += 2;
4850 *addr = extract_signed_integer (buf, 2, byte_order);
4851 break;
4852 }
4853
4854 switch (irp->rm)
4855 {
4856 case 0:
4857 regcache_raw_read_unsigned (irp->regcache,
4858 irp->regmap[X86_RECORD_REBX_REGNUM],
4859 &offset64);
4860 *addr = (uint32_t) (*addr + offset64);
4861 regcache_raw_read_unsigned (irp->regcache,
4862 irp->regmap[X86_RECORD_RESI_REGNUM],
4863 &offset64);
4864 *addr = (uint32_t) (*addr + offset64);
4865 break;
4866 case 1:
4867 regcache_raw_read_unsigned (irp->regcache,
4868 irp->regmap[X86_RECORD_REBX_REGNUM],
4869 &offset64);
4870 *addr = (uint32_t) (*addr + offset64);
4871 regcache_raw_read_unsigned (irp->regcache,
4872 irp->regmap[X86_RECORD_REDI_REGNUM],
4873 &offset64);
4874 *addr = (uint32_t) (*addr + offset64);
4875 break;
4876 case 2:
4877 regcache_raw_read_unsigned (irp->regcache,
4878 irp->regmap[X86_RECORD_REBP_REGNUM],
4879 &offset64);
4880 *addr = (uint32_t) (*addr + offset64);
4881 regcache_raw_read_unsigned (irp->regcache,
4882 irp->regmap[X86_RECORD_RESI_REGNUM],
4883 &offset64);
4884 *addr = (uint32_t) (*addr + offset64);
4885 break;
4886 case 3:
4887 regcache_raw_read_unsigned (irp->regcache,
4888 irp->regmap[X86_RECORD_REBP_REGNUM],
4889 &offset64);
4890 *addr = (uint32_t) (*addr + offset64);
4891 regcache_raw_read_unsigned (irp->regcache,
4892 irp->regmap[X86_RECORD_REDI_REGNUM],
4893 &offset64);
4894 *addr = (uint32_t) (*addr + offset64);
4895 break;
4896 case 4:
4897 regcache_raw_read_unsigned (irp->regcache,
4898 irp->regmap[X86_RECORD_RESI_REGNUM],
4899 &offset64);
4900 *addr = (uint32_t) (*addr + offset64);
4901 break;
4902 case 5:
4903 regcache_raw_read_unsigned (irp->regcache,
4904 irp->regmap[X86_RECORD_REDI_REGNUM],
4905 &offset64);
4906 *addr = (uint32_t) (*addr + offset64);
4907 break;
4908 case 6:
4909 regcache_raw_read_unsigned (irp->regcache,
4910 irp->regmap[X86_RECORD_REBP_REGNUM],
4911 &offset64);
4912 *addr = (uint32_t) (*addr + offset64);
4913 break;
4914 case 7:
4915 regcache_raw_read_unsigned (irp->regcache,
4916 irp->regmap[X86_RECORD_REBX_REGNUM],
4917 &offset64);
4918 *addr = (uint32_t) (*addr + offset64);
4919 break;
4920 }
4921 *addr &= 0xffff;
4922 }
4923
4924 no_rm:
4925 return 0;
4926 }
4927
4928 /* Record the address and contents of the memory that will be changed
4929 by the current instruction. Return -1 if something goes wrong, 0
4930 otherwise. */
4931
4932 static int
4933 i386_record_lea_modrm (struct i386_record_s *irp)
4934 {
4935 struct gdbarch *gdbarch = irp->gdbarch;
4936 uint64_t addr;
4937
4938 if (irp->override >= 0)
4939 {
4940 if (record_full_memory_query)
4941 {
4942 if (yquery (_("\
4943 Process record ignores the memory change of instruction at address %s\n\
4944 because it can't get the value of the segment register.\n\
4945 Do you want to stop the program?"),
4946 paddress (gdbarch, irp->orig_addr)))
4947 return -1;
4948 }
4949
4950 return 0;
4951 }
4952
4953 if (i386_record_lea_modrm_addr (irp, &addr))
4954 return -1;
4955
4956 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4957 return -1;
4958
4959 return 0;
4960 }
4961
4962 /* Record the effects of a push operation. Return -1 if something
4963 goes wrong, 0 otherwise. */
4964
4965 static int
4966 i386_record_push (struct i386_record_s *irp, int size)
4967 {
4968 ULONGEST addr;
4969
4970 if (record_full_arch_list_add_reg (irp->regcache,
4971 irp->regmap[X86_RECORD_RESP_REGNUM]))
4972 return -1;
4973 regcache_raw_read_unsigned (irp->regcache,
4974 irp->regmap[X86_RECORD_RESP_REGNUM],
4975 &addr);
4976 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4977 return -1;
4978
4979 return 0;
4980 }
4981
4982
4983 /* Defines contents to record. */
4984 #define I386_SAVE_FPU_REGS 0xfffd
4985 #define I386_SAVE_FPU_ENV 0xfffe
4986 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4987
4988 /* Record the values of the floating point registers which will be
4989 changed by the current instruction. Returns -1 if something is
4990 wrong, 0 otherwise. */
4991
4992 static int i386_record_floats (struct gdbarch *gdbarch,
4993 struct i386_record_s *ir,
4994 uint32_t iregnum)
4995 {
4996 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4997 int i;
4998
4999 /* Oza: Because of floating point insn push/pop of fpu stack is going to
5000 happen. Currently we store st0-st7 registers, but we need not store all
5001 registers all the time, in future we use ftag register and record only
5002 those who are not marked as an empty. */
5003
5004 if (I386_SAVE_FPU_REGS == iregnum)
5005 {
5006 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
5007 {
5008 if (record_full_arch_list_add_reg (ir->regcache, i))
5009 return -1;
5010 }
5011 }
5012 else if (I386_SAVE_FPU_ENV == iregnum)
5013 {
5014 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5015 {
5016 if (record_full_arch_list_add_reg (ir->regcache, i))
5017 return -1;
5018 }
5019 }
5020 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
5021 {
5022 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5023 {
5024 if (record_full_arch_list_add_reg (ir->regcache, i))
5025 return -1;
5026 }
5027 }
5028 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5029 (iregnum <= I387_FOP_REGNUM (tdep)))
5030 {
5031 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5032 return -1;
5033 }
5034 else
5035 {
5036 /* Parameter error. */
5037 return -1;
5038 }
5039 if(I386_SAVE_FPU_ENV != iregnum)
5040 {
5041 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5042 {
5043 if (record_full_arch_list_add_reg (ir->regcache, i))
5044 return -1;
5045 }
5046 }
5047 return 0;
5048 }
5049
5050 /* Parse the current instruction, and record the values of the
5051 registers and memory that will be changed by the current
5052 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5053
5054 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5055 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5056
5057 int
5058 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5059 CORE_ADDR input_addr)
5060 {
5061 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5062 int prefixes = 0;
5063 int regnum = 0;
5064 uint32_t opcode;
5065 uint8_t opcode8;
5066 ULONGEST addr;
5067 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5068 struct i386_record_s ir;
5069 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5070 uint8_t rex_w = -1;
5071 uint8_t rex_r = 0;
5072
5073 memset (&ir, 0, sizeof (struct i386_record_s));
5074 ir.regcache = regcache;
5075 ir.addr = input_addr;
5076 ir.orig_addr = input_addr;
5077 ir.aflag = 1;
5078 ir.dflag = 1;
5079 ir.override = -1;
5080 ir.popl_esp_hack = 0;
5081 ir.regmap = tdep->record_regmap;
5082 ir.gdbarch = gdbarch;
5083
5084 if (record_debug > 1)
5085 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5086 "addr = %s\n",
5087 paddress (gdbarch, ir.addr));
5088
5089 /* prefixes */
5090 while (1)
5091 {
5092 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5093 return -1;
5094 ir.addr++;
5095 switch (opcode8) /* Instruction prefixes */
5096 {
5097 case REPE_PREFIX_OPCODE:
5098 prefixes |= PREFIX_REPZ;
5099 break;
5100 case REPNE_PREFIX_OPCODE:
5101 prefixes |= PREFIX_REPNZ;
5102 break;
5103 case LOCK_PREFIX_OPCODE:
5104 prefixes |= PREFIX_LOCK;
5105 break;
5106 case CS_PREFIX_OPCODE:
5107 ir.override = X86_RECORD_CS_REGNUM;
5108 break;
5109 case SS_PREFIX_OPCODE:
5110 ir.override = X86_RECORD_SS_REGNUM;
5111 break;
5112 case DS_PREFIX_OPCODE:
5113 ir.override = X86_RECORD_DS_REGNUM;
5114 break;
5115 case ES_PREFIX_OPCODE:
5116 ir.override = X86_RECORD_ES_REGNUM;
5117 break;
5118 case FS_PREFIX_OPCODE:
5119 ir.override = X86_RECORD_FS_REGNUM;
5120 break;
5121 case GS_PREFIX_OPCODE:
5122 ir.override = X86_RECORD_GS_REGNUM;
5123 break;
5124 case DATA_PREFIX_OPCODE:
5125 prefixes |= PREFIX_DATA;
5126 break;
5127 case ADDR_PREFIX_OPCODE:
5128 prefixes |= PREFIX_ADDR;
5129 break;
5130 case 0x40: /* i386 inc %eax */
5131 case 0x41: /* i386 inc %ecx */
5132 case 0x42: /* i386 inc %edx */
5133 case 0x43: /* i386 inc %ebx */
5134 case 0x44: /* i386 inc %esp */
5135 case 0x45: /* i386 inc %ebp */
5136 case 0x46: /* i386 inc %esi */
5137 case 0x47: /* i386 inc %edi */
5138 case 0x48: /* i386 dec %eax */
5139 case 0x49: /* i386 dec %ecx */
5140 case 0x4a: /* i386 dec %edx */
5141 case 0x4b: /* i386 dec %ebx */
5142 case 0x4c: /* i386 dec %esp */
5143 case 0x4d: /* i386 dec %ebp */
5144 case 0x4e: /* i386 dec %esi */
5145 case 0x4f: /* i386 dec %edi */
5146 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5147 {
5148 /* REX */
5149 rex_w = (opcode8 >> 3) & 1;
5150 rex_r = (opcode8 & 0x4) << 1;
5151 ir.rex_x = (opcode8 & 0x2) << 2;
5152 ir.rex_b = (opcode8 & 0x1) << 3;
5153 }
5154 else /* 32 bit target */
5155 goto out_prefixes;
5156 break;
5157 default:
5158 goto out_prefixes;
5159 break;
5160 }
5161 }
5162 out_prefixes:
5163 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5164 {
5165 ir.dflag = 2;
5166 }
5167 else
5168 {
5169 if (prefixes & PREFIX_DATA)
5170 ir.dflag ^= 1;
5171 }
5172 if (prefixes & PREFIX_ADDR)
5173 ir.aflag ^= 1;
5174 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5175 ir.aflag = 2;
5176
5177 /* Now check op code. */
5178 opcode = (uint32_t) opcode8;
5179 reswitch:
5180 switch (opcode)
5181 {
5182 case 0x0f:
5183 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5184 return -1;
5185 ir.addr++;
5186 opcode = (uint32_t) opcode8 | 0x0f00;
5187 goto reswitch;
5188 break;
5189
5190 case 0x00: /* arith & logic */
5191 case 0x01:
5192 case 0x02:
5193 case 0x03:
5194 case 0x04:
5195 case 0x05:
5196 case 0x08:
5197 case 0x09:
5198 case 0x0a:
5199 case 0x0b:
5200 case 0x0c:
5201 case 0x0d:
5202 case 0x10:
5203 case 0x11:
5204 case 0x12:
5205 case 0x13:
5206 case 0x14:
5207 case 0x15:
5208 case 0x18:
5209 case 0x19:
5210 case 0x1a:
5211 case 0x1b:
5212 case 0x1c:
5213 case 0x1d:
5214 case 0x20:
5215 case 0x21:
5216 case 0x22:
5217 case 0x23:
5218 case 0x24:
5219 case 0x25:
5220 case 0x28:
5221 case 0x29:
5222 case 0x2a:
5223 case 0x2b:
5224 case 0x2c:
5225 case 0x2d:
5226 case 0x30:
5227 case 0x31:
5228 case 0x32:
5229 case 0x33:
5230 case 0x34:
5231 case 0x35:
5232 case 0x38:
5233 case 0x39:
5234 case 0x3a:
5235 case 0x3b:
5236 case 0x3c:
5237 case 0x3d:
5238 if (((opcode >> 3) & 7) != OP_CMPL)
5239 {
5240 if ((opcode & 1) == 0)
5241 ir.ot = OT_BYTE;
5242 else
5243 ir.ot = ir.dflag + OT_WORD;
5244
5245 switch ((opcode >> 1) & 3)
5246 {
5247 case 0: /* OP Ev, Gv */
5248 if (i386_record_modrm (&ir))
5249 return -1;
5250 if (ir.mod != 3)
5251 {
5252 if (i386_record_lea_modrm (&ir))
5253 return -1;
5254 }
5255 else
5256 {
5257 ir.rm |= ir.rex_b;
5258 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5259 ir.rm &= 0x3;
5260 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5261 }
5262 break;
5263 case 1: /* OP Gv, Ev */
5264 if (i386_record_modrm (&ir))
5265 return -1;
5266 ir.reg |= rex_r;
5267 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5268 ir.reg &= 0x3;
5269 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5270 break;
5271 case 2: /* OP A, Iv */
5272 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5273 break;
5274 }
5275 }
5276 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5277 break;
5278
5279 case 0x80: /* GRP1 */
5280 case 0x81:
5281 case 0x82:
5282 case 0x83:
5283 if (i386_record_modrm (&ir))
5284 return -1;
5285
5286 if (ir.reg != OP_CMPL)
5287 {
5288 if ((opcode & 1) == 0)
5289 ir.ot = OT_BYTE;
5290 else
5291 ir.ot = ir.dflag + OT_WORD;
5292
5293 if (ir.mod != 3)
5294 {
5295 if (opcode == 0x83)
5296 ir.rip_offset = 1;
5297 else
5298 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5299 if (i386_record_lea_modrm (&ir))
5300 return -1;
5301 }
5302 else
5303 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5304 }
5305 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5306 break;
5307
5308 case 0x40: /* inc */
5309 case 0x41:
5310 case 0x42:
5311 case 0x43:
5312 case 0x44:
5313 case 0x45:
5314 case 0x46:
5315 case 0x47:
5316
5317 case 0x48: /* dec */
5318 case 0x49:
5319 case 0x4a:
5320 case 0x4b:
5321 case 0x4c:
5322 case 0x4d:
5323 case 0x4e:
5324 case 0x4f:
5325
5326 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5327 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5328 break;
5329
5330 case 0xf6: /* GRP3 */
5331 case 0xf7:
5332 if ((opcode & 1) == 0)
5333 ir.ot = OT_BYTE;
5334 else
5335 ir.ot = ir.dflag + OT_WORD;
5336 if (i386_record_modrm (&ir))
5337 return -1;
5338
5339 if (ir.mod != 3 && ir.reg == 0)
5340 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5341
5342 switch (ir.reg)
5343 {
5344 case 0: /* test */
5345 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5346 break;
5347 case 2: /* not */
5348 case 3: /* neg */
5349 if (ir.mod != 3)
5350 {
5351 if (i386_record_lea_modrm (&ir))
5352 return -1;
5353 }
5354 else
5355 {
5356 ir.rm |= ir.rex_b;
5357 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5358 ir.rm &= 0x3;
5359 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5360 }
5361 if (ir.reg == 3) /* neg */
5362 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5363 break;
5364 case 4: /* mul */
5365 case 5: /* imul */
5366 case 6: /* div */
5367 case 7: /* idiv */
5368 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5369 if (ir.ot != OT_BYTE)
5370 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5371 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5372 break;
5373 default:
5374 ir.addr -= 2;
5375 opcode = opcode << 8 | ir.modrm;
5376 goto no_support;
5377 break;
5378 }
5379 break;
5380
5381 case 0xfe: /* GRP4 */
5382 case 0xff: /* GRP5 */
5383 if (i386_record_modrm (&ir))
5384 return -1;
5385 if (ir.reg >= 2 && opcode == 0xfe)
5386 {
5387 ir.addr -= 2;
5388 opcode = opcode << 8 | ir.modrm;
5389 goto no_support;
5390 }
5391 switch (ir.reg)
5392 {
5393 case 0: /* inc */
5394 case 1: /* dec */
5395 if ((opcode & 1) == 0)
5396 ir.ot = OT_BYTE;
5397 else
5398 ir.ot = ir.dflag + OT_WORD;
5399 if (ir.mod != 3)
5400 {
5401 if (i386_record_lea_modrm (&ir))
5402 return -1;
5403 }
5404 else
5405 {
5406 ir.rm |= ir.rex_b;
5407 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5408 ir.rm &= 0x3;
5409 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5410 }
5411 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5412 break;
5413 case 2: /* call */
5414 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5415 ir.dflag = 2;
5416 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5417 return -1;
5418 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5419 break;
5420 case 3: /* lcall */
5421 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5422 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5423 return -1;
5424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5425 break;
5426 case 4: /* jmp */
5427 case 5: /* ljmp */
5428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5429 break;
5430 case 6: /* push */
5431 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5432 ir.dflag = 2;
5433 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5434 return -1;
5435 break;
5436 default:
5437 ir.addr -= 2;
5438 opcode = opcode << 8 | ir.modrm;
5439 goto no_support;
5440 break;
5441 }
5442 break;
5443
5444 case 0x84: /* test */
5445 case 0x85:
5446 case 0xa8:
5447 case 0xa9:
5448 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5449 break;
5450
5451 case 0x98: /* CWDE/CBW */
5452 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5453 break;
5454
5455 case 0x99: /* CDQ/CWD */
5456 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5457 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5458 break;
5459
5460 case 0x0faf: /* imul */
5461 case 0x69:
5462 case 0x6b:
5463 ir.ot = ir.dflag + OT_WORD;
5464 if (i386_record_modrm (&ir))
5465 return -1;
5466 if (opcode == 0x69)
5467 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5468 else if (opcode == 0x6b)
5469 ir.rip_offset = 1;
5470 ir.reg |= rex_r;
5471 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5472 ir.reg &= 0x3;
5473 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5474 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5475 break;
5476
5477 case 0x0fc0: /* xadd */
5478 case 0x0fc1:
5479 if ((opcode & 1) == 0)
5480 ir.ot = OT_BYTE;
5481 else
5482 ir.ot = ir.dflag + OT_WORD;
5483 if (i386_record_modrm (&ir))
5484 return -1;
5485 ir.reg |= rex_r;
5486 if (ir.mod == 3)
5487 {
5488 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5489 ir.reg &= 0x3;
5490 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5491 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5492 ir.rm &= 0x3;
5493 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5494 }
5495 else
5496 {
5497 if (i386_record_lea_modrm (&ir))
5498 return -1;
5499 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5500 ir.reg &= 0x3;
5501 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5502 }
5503 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5504 break;
5505
5506 case 0x0fb0: /* cmpxchg */
5507 case 0x0fb1:
5508 if ((opcode & 1) == 0)
5509 ir.ot = OT_BYTE;
5510 else
5511 ir.ot = ir.dflag + OT_WORD;
5512 if (i386_record_modrm (&ir))
5513 return -1;
5514 if (ir.mod == 3)
5515 {
5516 ir.reg |= rex_r;
5517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5518 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5519 ir.reg &= 0x3;
5520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5521 }
5522 else
5523 {
5524 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5525 if (i386_record_lea_modrm (&ir))
5526 return -1;
5527 }
5528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5529 break;
5530
5531 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5532 if (i386_record_modrm (&ir))
5533 return -1;
5534 if (ir.mod == 3)
5535 {
5536 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5537 an extended opcode. rdrand has bits 110 (/6) and rdseed
5538 has bits 111 (/7). */
5539 if (ir.reg == 6 || ir.reg == 7)
5540 {
5541 /* The storage register is described by the 3 R/M bits, but the
5542 REX.B prefix may be used to give access to registers
5543 R8~R15. In this case ir.rex_b + R/M will give us the register
5544 in the range R8~R15.
5545
5546 REX.W may also be used to access 64-bit registers, but we
5547 already record entire registers and not just partial bits
5548 of them. */
5549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5550 /* These instructions also set conditional bits. */
5551 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5552 break;
5553 }
5554 else
5555 {
5556 /* We don't handle this particular instruction yet. */
5557 ir.addr -= 2;
5558 opcode = opcode << 8 | ir.modrm;
5559 goto no_support;
5560 }
5561 }
5562 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5564 if (i386_record_lea_modrm (&ir))
5565 return -1;
5566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5567 break;
5568
5569 case 0x50: /* push */
5570 case 0x51:
5571 case 0x52:
5572 case 0x53:
5573 case 0x54:
5574 case 0x55:
5575 case 0x56:
5576 case 0x57:
5577 case 0x68:
5578 case 0x6a:
5579 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5580 ir.dflag = 2;
5581 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5582 return -1;
5583 break;
5584
5585 case 0x06: /* push es */
5586 case 0x0e: /* push cs */
5587 case 0x16: /* push ss */
5588 case 0x1e: /* push ds */
5589 if (ir.regmap[X86_RECORD_R8_REGNUM])
5590 {
5591 ir.addr -= 1;
5592 goto no_support;
5593 }
5594 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5595 return -1;
5596 break;
5597
5598 case 0x0fa0: /* push fs */
5599 case 0x0fa8: /* push gs */
5600 if (ir.regmap[X86_RECORD_R8_REGNUM])
5601 {
5602 ir.addr -= 2;
5603 goto no_support;
5604 }
5605 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5606 return -1;
5607 break;
5608
5609 case 0x60: /* pusha */
5610 if (ir.regmap[X86_RECORD_R8_REGNUM])
5611 {
5612 ir.addr -= 1;
5613 goto no_support;
5614 }
5615 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5616 return -1;
5617 break;
5618
5619 case 0x58: /* pop */
5620 case 0x59:
5621 case 0x5a:
5622 case 0x5b:
5623 case 0x5c:
5624 case 0x5d:
5625 case 0x5e:
5626 case 0x5f:
5627 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5628 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5629 break;
5630
5631 case 0x61: /* popa */
5632 if (ir.regmap[X86_RECORD_R8_REGNUM])
5633 {
5634 ir.addr -= 1;
5635 goto no_support;
5636 }
5637 for (regnum = X86_RECORD_REAX_REGNUM;
5638 regnum <= X86_RECORD_REDI_REGNUM;
5639 regnum++)
5640 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5641 break;
5642
5643 case 0x8f: /* pop */
5644 if (ir.regmap[X86_RECORD_R8_REGNUM])
5645 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5646 else
5647 ir.ot = ir.dflag + OT_WORD;
5648 if (i386_record_modrm (&ir))
5649 return -1;
5650 if (ir.mod == 3)
5651 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5652 else
5653 {
5654 ir.popl_esp_hack = 1 << ir.ot;
5655 if (i386_record_lea_modrm (&ir))
5656 return -1;
5657 }
5658 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5659 break;
5660
5661 case 0xc8: /* enter */
5662 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5663 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5664 ir.dflag = 2;
5665 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5666 return -1;
5667 break;
5668
5669 case 0xc9: /* leave */
5670 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5671 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5672 break;
5673
5674 case 0x07: /* pop es */
5675 if (ir.regmap[X86_RECORD_R8_REGNUM])
5676 {
5677 ir.addr -= 1;
5678 goto no_support;
5679 }
5680 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5681 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5683 break;
5684
5685 case 0x17: /* pop ss */
5686 if (ir.regmap[X86_RECORD_R8_REGNUM])
5687 {
5688 ir.addr -= 1;
5689 goto no_support;
5690 }
5691 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5692 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5693 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5694 break;
5695
5696 case 0x1f: /* pop ds */
5697 if (ir.regmap[X86_RECORD_R8_REGNUM])
5698 {
5699 ir.addr -= 1;
5700 goto no_support;
5701 }
5702 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5703 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5704 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5705 break;
5706
5707 case 0x0fa1: /* pop fs */
5708 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5709 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5710 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5711 break;
5712
5713 case 0x0fa9: /* pop gs */
5714 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5715 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5716 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5717 break;
5718
5719 case 0x88: /* mov */
5720 case 0x89:
5721 case 0xc6:
5722 case 0xc7:
5723 if ((opcode & 1) == 0)
5724 ir.ot = OT_BYTE;
5725 else
5726 ir.ot = ir.dflag + OT_WORD;
5727
5728 if (i386_record_modrm (&ir))
5729 return -1;
5730
5731 if (ir.mod != 3)
5732 {
5733 if (opcode == 0xc6 || opcode == 0xc7)
5734 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5735 if (i386_record_lea_modrm (&ir))
5736 return -1;
5737 }
5738 else
5739 {
5740 if (opcode == 0xc6 || opcode == 0xc7)
5741 ir.rm |= ir.rex_b;
5742 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5743 ir.rm &= 0x3;
5744 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5745 }
5746 break;
5747
5748 case 0x8a: /* mov */
5749 case 0x8b:
5750 if ((opcode & 1) == 0)
5751 ir.ot = OT_BYTE;
5752 else
5753 ir.ot = ir.dflag + OT_WORD;
5754 if (i386_record_modrm (&ir))
5755 return -1;
5756 ir.reg |= rex_r;
5757 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5758 ir.reg &= 0x3;
5759 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5760 break;
5761
5762 case 0x8c: /* mov seg */
5763 if (i386_record_modrm (&ir))
5764 return -1;
5765 if (ir.reg > 5)
5766 {
5767 ir.addr -= 2;
5768 opcode = opcode << 8 | ir.modrm;
5769 goto no_support;
5770 }
5771
5772 if (ir.mod == 3)
5773 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5774 else
5775 {
5776 ir.ot = OT_WORD;
5777 if (i386_record_lea_modrm (&ir))
5778 return -1;
5779 }
5780 break;
5781
5782 case 0x8e: /* mov seg */
5783 if (i386_record_modrm (&ir))
5784 return -1;
5785 switch (ir.reg)
5786 {
5787 case 0:
5788 regnum = X86_RECORD_ES_REGNUM;
5789 break;
5790 case 2:
5791 regnum = X86_RECORD_SS_REGNUM;
5792 break;
5793 case 3:
5794 regnum = X86_RECORD_DS_REGNUM;
5795 break;
5796 case 4:
5797 regnum = X86_RECORD_FS_REGNUM;
5798 break;
5799 case 5:
5800 regnum = X86_RECORD_GS_REGNUM;
5801 break;
5802 default:
5803 ir.addr -= 2;
5804 opcode = opcode << 8 | ir.modrm;
5805 goto no_support;
5806 break;
5807 }
5808 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5809 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5810 break;
5811
5812 case 0x0fb6: /* movzbS */
5813 case 0x0fb7: /* movzwS */
5814 case 0x0fbe: /* movsbS */
5815 case 0x0fbf: /* movswS */
5816 if (i386_record_modrm (&ir))
5817 return -1;
5818 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5819 break;
5820
5821 case 0x8d: /* lea */
5822 if (i386_record_modrm (&ir))
5823 return -1;
5824 if (ir.mod == 3)
5825 {
5826 ir.addr -= 2;
5827 opcode = opcode << 8 | ir.modrm;
5828 goto no_support;
5829 }
5830 ir.ot = ir.dflag;
5831 ir.reg |= rex_r;
5832 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5833 ir.reg &= 0x3;
5834 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5835 break;
5836
5837 case 0xa0: /* mov EAX */
5838 case 0xa1:
5839
5840 case 0xd7: /* xlat */
5841 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5842 break;
5843
5844 case 0xa2: /* mov EAX */
5845 case 0xa3:
5846 if (ir.override >= 0)
5847 {
5848 if (record_full_memory_query)
5849 {
5850 if (yquery (_("\
5851 Process record ignores the memory change of instruction at address %s\n\
5852 because it can't get the value of the segment register.\n\
5853 Do you want to stop the program?"),
5854 paddress (gdbarch, ir.orig_addr)))
5855 return -1;
5856 }
5857 }
5858 else
5859 {
5860 if ((opcode & 1) == 0)
5861 ir.ot = OT_BYTE;
5862 else
5863 ir.ot = ir.dflag + OT_WORD;
5864 if (ir.aflag == 2)
5865 {
5866 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5867 return -1;
5868 ir.addr += 8;
5869 addr = extract_unsigned_integer (buf, 8, byte_order);
5870 }
5871 else if (ir.aflag)
5872 {
5873 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5874 return -1;
5875 ir.addr += 4;
5876 addr = extract_unsigned_integer (buf, 4, byte_order);
5877 }
5878 else
5879 {
5880 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5881 return -1;
5882 ir.addr += 2;
5883 addr = extract_unsigned_integer (buf, 2, byte_order);
5884 }
5885 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5886 return -1;
5887 }
5888 break;
5889
5890 case 0xb0: /* mov R, Ib */
5891 case 0xb1:
5892 case 0xb2:
5893 case 0xb3:
5894 case 0xb4:
5895 case 0xb5:
5896 case 0xb6:
5897 case 0xb7:
5898 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5899 ? ((opcode & 0x7) | ir.rex_b)
5900 : ((opcode & 0x7) & 0x3));
5901 break;
5902
5903 case 0xb8: /* mov R, Iv */
5904 case 0xb9:
5905 case 0xba:
5906 case 0xbb:
5907 case 0xbc:
5908 case 0xbd:
5909 case 0xbe:
5910 case 0xbf:
5911 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5912 break;
5913
5914 case 0x91: /* xchg R, EAX */
5915 case 0x92:
5916 case 0x93:
5917 case 0x94:
5918 case 0x95:
5919 case 0x96:
5920 case 0x97:
5921 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5922 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5923 break;
5924
5925 case 0x86: /* xchg Ev, Gv */
5926 case 0x87:
5927 if ((opcode & 1) == 0)
5928 ir.ot = OT_BYTE;
5929 else
5930 ir.ot = ir.dflag + OT_WORD;
5931 if (i386_record_modrm (&ir))
5932 return -1;
5933 if (ir.mod == 3)
5934 {
5935 ir.rm |= ir.rex_b;
5936 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5937 ir.rm &= 0x3;
5938 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5939 }
5940 else
5941 {
5942 if (i386_record_lea_modrm (&ir))
5943 return -1;
5944 }
5945 ir.reg |= rex_r;
5946 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5947 ir.reg &= 0x3;
5948 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5949 break;
5950
5951 case 0xc4: /* les Gv */
5952 case 0xc5: /* lds Gv */
5953 if (ir.regmap[X86_RECORD_R8_REGNUM])
5954 {
5955 ir.addr -= 1;
5956 goto no_support;
5957 }
5958 /* FALLTHROUGH */
5959 case 0x0fb2: /* lss Gv */
5960 case 0x0fb4: /* lfs Gv */
5961 case 0x0fb5: /* lgs Gv */
5962 if (i386_record_modrm (&ir))
5963 return -1;
5964 if (ir.mod == 3)
5965 {
5966 if (opcode > 0xff)
5967 ir.addr -= 3;
5968 else
5969 ir.addr -= 2;
5970 opcode = opcode << 8 | ir.modrm;
5971 goto no_support;
5972 }
5973 switch (opcode)
5974 {
5975 case 0xc4: /* les Gv */
5976 regnum = X86_RECORD_ES_REGNUM;
5977 break;
5978 case 0xc5: /* lds Gv */
5979 regnum = X86_RECORD_DS_REGNUM;
5980 break;
5981 case 0x0fb2: /* lss Gv */
5982 regnum = X86_RECORD_SS_REGNUM;
5983 break;
5984 case 0x0fb4: /* lfs Gv */
5985 regnum = X86_RECORD_FS_REGNUM;
5986 break;
5987 case 0x0fb5: /* lgs Gv */
5988 regnum = X86_RECORD_GS_REGNUM;
5989 break;
5990 }
5991 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5992 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5993 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5994 break;
5995
5996 case 0xc0: /* shifts */
5997 case 0xc1:
5998 case 0xd0:
5999 case 0xd1:
6000 case 0xd2:
6001 case 0xd3:
6002 if ((opcode & 1) == 0)
6003 ir.ot = OT_BYTE;
6004 else
6005 ir.ot = ir.dflag + OT_WORD;
6006 if (i386_record_modrm (&ir))
6007 return -1;
6008 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
6009 {
6010 if (i386_record_lea_modrm (&ir))
6011 return -1;
6012 }
6013 else
6014 {
6015 ir.rm |= ir.rex_b;
6016 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
6017 ir.rm &= 0x3;
6018 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
6019 }
6020 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6021 break;
6022
6023 case 0x0fa4:
6024 case 0x0fa5:
6025 case 0x0fac:
6026 case 0x0fad:
6027 if (i386_record_modrm (&ir))
6028 return -1;
6029 if (ir.mod == 3)
6030 {
6031 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
6032 return -1;
6033 }
6034 else
6035 {
6036 if (i386_record_lea_modrm (&ir))
6037 return -1;
6038 }
6039 break;
6040
6041 case 0xd8: /* Floats. */
6042 case 0xd9:
6043 case 0xda:
6044 case 0xdb:
6045 case 0xdc:
6046 case 0xdd:
6047 case 0xde:
6048 case 0xdf:
6049 if (i386_record_modrm (&ir))
6050 return -1;
6051 ir.reg |= ((opcode & 7) << 3);
6052 if (ir.mod != 3)
6053 {
6054 /* Memory. */
6055 uint64_t addr64;
6056
6057 if (i386_record_lea_modrm_addr (&ir, &addr64))
6058 return -1;
6059 switch (ir.reg)
6060 {
6061 case 0x02:
6062 case 0x12:
6063 case 0x22:
6064 case 0x32:
6065 /* For fcom, ficom nothing to do. */
6066 break;
6067 case 0x03:
6068 case 0x13:
6069 case 0x23:
6070 case 0x33:
6071 /* For fcomp, ficomp pop FPU stack, store all. */
6072 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6073 return -1;
6074 break;
6075 case 0x00:
6076 case 0x01:
6077 case 0x04:
6078 case 0x05:
6079 case 0x06:
6080 case 0x07:
6081 case 0x10:
6082 case 0x11:
6083 case 0x14:
6084 case 0x15:
6085 case 0x16:
6086 case 0x17:
6087 case 0x20:
6088 case 0x21:
6089 case 0x24:
6090 case 0x25:
6091 case 0x26:
6092 case 0x27:
6093 case 0x30:
6094 case 0x31:
6095 case 0x34:
6096 case 0x35:
6097 case 0x36:
6098 case 0x37:
6099 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6100 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6101 of code, always affects st(0) register. */
6102 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6103 return -1;
6104 break;
6105 case 0x08:
6106 case 0x0a:
6107 case 0x0b:
6108 case 0x18:
6109 case 0x19:
6110 case 0x1a:
6111 case 0x1b:
6112 case 0x1d:
6113 case 0x28:
6114 case 0x29:
6115 case 0x2a:
6116 case 0x2b:
6117 case 0x38:
6118 case 0x39:
6119 case 0x3a:
6120 case 0x3b:
6121 case 0x3c:
6122 case 0x3d:
6123 switch (ir.reg & 7)
6124 {
6125 case 0:
6126 /* Handling fld, fild. */
6127 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6128 return -1;
6129 break;
6130 case 1:
6131 switch (ir.reg >> 4)
6132 {
6133 case 0:
6134 if (record_full_arch_list_add_mem (addr64, 4))
6135 return -1;
6136 break;
6137 case 2:
6138 if (record_full_arch_list_add_mem (addr64, 8))
6139 return -1;
6140 break;
6141 case 3:
6142 break;
6143 default:
6144 if (record_full_arch_list_add_mem (addr64, 2))
6145 return -1;
6146 break;
6147 }
6148 break;
6149 default:
6150 switch (ir.reg >> 4)
6151 {
6152 case 0:
6153 if (record_full_arch_list_add_mem (addr64, 4))
6154 return -1;
6155 if (3 == (ir.reg & 7))
6156 {
6157 /* For fstp m32fp. */
6158 if (i386_record_floats (gdbarch, &ir,
6159 I386_SAVE_FPU_REGS))
6160 return -1;
6161 }
6162 break;
6163 case 1:
6164 if (record_full_arch_list_add_mem (addr64, 4))
6165 return -1;
6166 if ((3 == (ir.reg & 7))
6167 || (5 == (ir.reg & 7))
6168 || (7 == (ir.reg & 7)))
6169 {
6170 /* For fstp insn. */
6171 if (i386_record_floats (gdbarch, &ir,
6172 I386_SAVE_FPU_REGS))
6173 return -1;
6174 }
6175 break;
6176 case 2:
6177 if (record_full_arch_list_add_mem (addr64, 8))
6178 return -1;
6179 if (3 == (ir.reg & 7))
6180 {
6181 /* For fstp m64fp. */
6182 if (i386_record_floats (gdbarch, &ir,
6183 I386_SAVE_FPU_REGS))
6184 return -1;
6185 }
6186 break;
6187 case 3:
6188 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6189 {
6190 /* For fistp, fbld, fild, fbstp. */
6191 if (i386_record_floats (gdbarch, &ir,
6192 I386_SAVE_FPU_REGS))
6193 return -1;
6194 }
6195 /* Fall through */
6196 default:
6197 if (record_full_arch_list_add_mem (addr64, 2))
6198 return -1;
6199 break;
6200 }
6201 break;
6202 }
6203 break;
6204 case 0x0c:
6205 /* Insn fldenv. */
6206 if (i386_record_floats (gdbarch, &ir,
6207 I386_SAVE_FPU_ENV_REG_STACK))
6208 return -1;
6209 break;
6210 case 0x0d:
6211 /* Insn fldcw. */
6212 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6213 return -1;
6214 break;
6215 case 0x2c:
6216 /* Insn frstor. */
6217 if (i386_record_floats (gdbarch, &ir,
6218 I386_SAVE_FPU_ENV_REG_STACK))
6219 return -1;
6220 break;
6221 case 0x0e:
6222 if (ir.dflag)
6223 {
6224 if (record_full_arch_list_add_mem (addr64, 28))
6225 return -1;
6226 }
6227 else
6228 {
6229 if (record_full_arch_list_add_mem (addr64, 14))
6230 return -1;
6231 }
6232 break;
6233 case 0x0f:
6234 case 0x2f:
6235 if (record_full_arch_list_add_mem (addr64, 2))
6236 return -1;
6237 /* Insn fstp, fbstp. */
6238 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6239 return -1;
6240 break;
6241 case 0x1f:
6242 case 0x3e:
6243 if (record_full_arch_list_add_mem (addr64, 10))
6244 return -1;
6245 break;
6246 case 0x2e:
6247 if (ir.dflag)
6248 {
6249 if (record_full_arch_list_add_mem (addr64, 28))
6250 return -1;
6251 addr64 += 28;
6252 }
6253 else
6254 {
6255 if (record_full_arch_list_add_mem (addr64, 14))
6256 return -1;
6257 addr64 += 14;
6258 }
6259 if (record_full_arch_list_add_mem (addr64, 80))
6260 return -1;
6261 /* Insn fsave. */
6262 if (i386_record_floats (gdbarch, &ir,
6263 I386_SAVE_FPU_ENV_REG_STACK))
6264 return -1;
6265 break;
6266 case 0x3f:
6267 if (record_full_arch_list_add_mem (addr64, 8))
6268 return -1;
6269 /* Insn fistp. */
6270 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6271 return -1;
6272 break;
6273 default:
6274 ir.addr -= 2;
6275 opcode = opcode << 8 | ir.modrm;
6276 goto no_support;
6277 break;
6278 }
6279 }
6280 /* Opcode is an extension of modR/M byte. */
6281 else
6282 {
6283 switch (opcode)
6284 {
6285 case 0xd8:
6286 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6287 return -1;
6288 break;
6289 case 0xd9:
6290 if (0x0c == (ir.modrm >> 4))
6291 {
6292 if ((ir.modrm & 0x0f) <= 7)
6293 {
6294 if (i386_record_floats (gdbarch, &ir,
6295 I386_SAVE_FPU_REGS))
6296 return -1;
6297 }
6298 else
6299 {
6300 if (i386_record_floats (gdbarch, &ir,
6301 I387_ST0_REGNUM (tdep)))
6302 return -1;
6303 /* If only st(0) is changing, then we have already
6304 recorded. */
6305 if ((ir.modrm & 0x0f) - 0x08)
6306 {
6307 if (i386_record_floats (gdbarch, &ir,
6308 I387_ST0_REGNUM (tdep) +
6309 ((ir.modrm & 0x0f) - 0x08)))
6310 return -1;
6311 }
6312 }
6313 }
6314 else
6315 {
6316 switch (ir.modrm)
6317 {
6318 case 0xe0:
6319 case 0xe1:
6320 case 0xf0:
6321 case 0xf5:
6322 case 0xf8:
6323 case 0xfa:
6324 case 0xfc:
6325 case 0xfe:
6326 case 0xff:
6327 if (i386_record_floats (gdbarch, &ir,
6328 I387_ST0_REGNUM (tdep)))
6329 return -1;
6330 break;
6331 case 0xf1:
6332 case 0xf2:
6333 case 0xf3:
6334 case 0xf4:
6335 case 0xf6:
6336 case 0xf7:
6337 case 0xe8:
6338 case 0xe9:
6339 case 0xea:
6340 case 0xeb:
6341 case 0xec:
6342 case 0xed:
6343 case 0xee:
6344 case 0xf9:
6345 case 0xfb:
6346 if (i386_record_floats (gdbarch, &ir,
6347 I386_SAVE_FPU_REGS))
6348 return -1;
6349 break;
6350 case 0xfd:
6351 if (i386_record_floats (gdbarch, &ir,
6352 I387_ST0_REGNUM (tdep)))
6353 return -1;
6354 if (i386_record_floats (gdbarch, &ir,
6355 I387_ST0_REGNUM (tdep) + 1))
6356 return -1;
6357 break;
6358 }
6359 }
6360 break;
6361 case 0xda:
6362 if (0xe9 == ir.modrm)
6363 {
6364 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6365 return -1;
6366 }
6367 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6368 {
6369 if (i386_record_floats (gdbarch, &ir,
6370 I387_ST0_REGNUM (tdep)))
6371 return -1;
6372 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6373 {
6374 if (i386_record_floats (gdbarch, &ir,
6375 I387_ST0_REGNUM (tdep) +
6376 (ir.modrm & 0x0f)))
6377 return -1;
6378 }
6379 else if ((ir.modrm & 0x0f) - 0x08)
6380 {
6381 if (i386_record_floats (gdbarch, &ir,
6382 I387_ST0_REGNUM (tdep) +
6383 ((ir.modrm & 0x0f) - 0x08)))
6384 return -1;
6385 }
6386 }
6387 break;
6388 case 0xdb:
6389 if (0xe3 == ir.modrm)
6390 {
6391 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6392 return -1;
6393 }
6394 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6395 {
6396 if (i386_record_floats (gdbarch, &ir,
6397 I387_ST0_REGNUM (tdep)))
6398 return -1;
6399 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6400 {
6401 if (i386_record_floats (gdbarch, &ir,
6402 I387_ST0_REGNUM (tdep) +
6403 (ir.modrm & 0x0f)))
6404 return -1;
6405 }
6406 else if ((ir.modrm & 0x0f) - 0x08)
6407 {
6408 if (i386_record_floats (gdbarch, &ir,
6409 I387_ST0_REGNUM (tdep) +
6410 ((ir.modrm & 0x0f) - 0x08)))
6411 return -1;
6412 }
6413 }
6414 break;
6415 case 0xdc:
6416 if ((0x0c == ir.modrm >> 4)
6417 || (0x0d == ir.modrm >> 4)
6418 || (0x0f == ir.modrm >> 4))
6419 {
6420 if ((ir.modrm & 0x0f) <= 7)
6421 {
6422 if (i386_record_floats (gdbarch, &ir,
6423 I387_ST0_REGNUM (tdep) +
6424 (ir.modrm & 0x0f)))
6425 return -1;
6426 }
6427 else
6428 {
6429 if (i386_record_floats (gdbarch, &ir,
6430 I387_ST0_REGNUM (tdep) +
6431 ((ir.modrm & 0x0f) - 0x08)))
6432 return -1;
6433 }
6434 }
6435 break;
6436 case 0xdd:
6437 if (0x0c == ir.modrm >> 4)
6438 {
6439 if (i386_record_floats (gdbarch, &ir,
6440 I387_FTAG_REGNUM (tdep)))
6441 return -1;
6442 }
6443 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6444 {
6445 if ((ir.modrm & 0x0f) <= 7)
6446 {
6447 if (i386_record_floats (gdbarch, &ir,
6448 I387_ST0_REGNUM (tdep) +
6449 (ir.modrm & 0x0f)))
6450 return -1;
6451 }
6452 else
6453 {
6454 if (i386_record_floats (gdbarch, &ir,
6455 I386_SAVE_FPU_REGS))
6456 return -1;
6457 }
6458 }
6459 break;
6460 case 0xde:
6461 if ((0x0c == ir.modrm >> 4)
6462 || (0x0e == ir.modrm >> 4)
6463 || (0x0f == ir.modrm >> 4)
6464 || (0xd9 == ir.modrm))
6465 {
6466 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6467 return -1;
6468 }
6469 break;
6470 case 0xdf:
6471 if (0xe0 == ir.modrm)
6472 {
6473 if (record_full_arch_list_add_reg (ir.regcache,
6474 I386_EAX_REGNUM))
6475 return -1;
6476 }
6477 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6478 {
6479 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6480 return -1;
6481 }
6482 break;
6483 }
6484 }
6485 break;
6486 /* string ops */
6487 case 0xa4: /* movsS */
6488 case 0xa5:
6489 case 0xaa: /* stosS */
6490 case 0xab:
6491 case 0x6c: /* insS */
6492 case 0x6d:
6493 regcache_raw_read_unsigned (ir.regcache,
6494 ir.regmap[X86_RECORD_RECX_REGNUM],
6495 &addr);
6496 if (addr)
6497 {
6498 ULONGEST es, ds;
6499
6500 if ((opcode & 1) == 0)
6501 ir.ot = OT_BYTE;
6502 else
6503 ir.ot = ir.dflag + OT_WORD;
6504 regcache_raw_read_unsigned (ir.regcache,
6505 ir.regmap[X86_RECORD_REDI_REGNUM],
6506 &addr);
6507
6508 regcache_raw_read_unsigned (ir.regcache,
6509 ir.regmap[X86_RECORD_ES_REGNUM],
6510 &es);
6511 regcache_raw_read_unsigned (ir.regcache,
6512 ir.regmap[X86_RECORD_DS_REGNUM],
6513 &ds);
6514 if (ir.aflag && (es != ds))
6515 {
6516 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6517 if (record_full_memory_query)
6518 {
6519 if (yquery (_("\
6520 Process record ignores the memory change of instruction at address %s\n\
6521 because it can't get the value of the segment register.\n\
6522 Do you want to stop the program?"),
6523 paddress (gdbarch, ir.orig_addr)))
6524 return -1;
6525 }
6526 }
6527 else
6528 {
6529 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6530 return -1;
6531 }
6532
6533 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6534 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6535 if (opcode == 0xa4 || opcode == 0xa5)
6536 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6539 }
6540 break;
6541
6542 case 0xa6: /* cmpsS */
6543 case 0xa7:
6544 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6545 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6546 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6549 break;
6550
6551 case 0xac: /* lodsS */
6552 case 0xad:
6553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6554 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6555 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6556 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6557 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6558 break;
6559
6560 case 0xae: /* scasS */
6561 case 0xaf:
6562 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6563 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6566 break;
6567
6568 case 0x6e: /* outsS */
6569 case 0x6f:
6570 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6571 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6574 break;
6575
6576 case 0xe4: /* port I/O */
6577 case 0xe5:
6578 case 0xec:
6579 case 0xed:
6580 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6581 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6582 break;
6583
6584 case 0xe6:
6585 case 0xe7:
6586 case 0xee:
6587 case 0xef:
6588 break;
6589
6590 /* control */
6591 case 0xc2: /* ret im */
6592 case 0xc3: /* ret */
6593 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6594 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6595 break;
6596
6597 case 0xca: /* lret im */
6598 case 0xcb: /* lret */
6599 case 0xcf: /* iret */
6600 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6601 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6602 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6603 break;
6604
6605 case 0xe8: /* call im */
6606 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6607 ir.dflag = 2;
6608 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6609 return -1;
6610 break;
6611
6612 case 0x9a: /* lcall im */
6613 if (ir.regmap[X86_RECORD_R8_REGNUM])
6614 {
6615 ir.addr -= 1;
6616 goto no_support;
6617 }
6618 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6619 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6620 return -1;
6621 break;
6622
6623 case 0xe9: /* jmp im */
6624 case 0xea: /* ljmp im */
6625 case 0xeb: /* jmp Jb */
6626 case 0x70: /* jcc Jb */
6627 case 0x71:
6628 case 0x72:
6629 case 0x73:
6630 case 0x74:
6631 case 0x75:
6632 case 0x76:
6633 case 0x77:
6634 case 0x78:
6635 case 0x79:
6636 case 0x7a:
6637 case 0x7b:
6638 case 0x7c:
6639 case 0x7d:
6640 case 0x7e:
6641 case 0x7f:
6642 case 0x0f80: /* jcc Jv */
6643 case 0x0f81:
6644 case 0x0f82:
6645 case 0x0f83:
6646 case 0x0f84:
6647 case 0x0f85:
6648 case 0x0f86:
6649 case 0x0f87:
6650 case 0x0f88:
6651 case 0x0f89:
6652 case 0x0f8a:
6653 case 0x0f8b:
6654 case 0x0f8c:
6655 case 0x0f8d:
6656 case 0x0f8e:
6657 case 0x0f8f:
6658 break;
6659
6660 case 0x0f90: /* setcc Gv */
6661 case 0x0f91:
6662 case 0x0f92:
6663 case 0x0f93:
6664 case 0x0f94:
6665 case 0x0f95:
6666 case 0x0f96:
6667 case 0x0f97:
6668 case 0x0f98:
6669 case 0x0f99:
6670 case 0x0f9a:
6671 case 0x0f9b:
6672 case 0x0f9c:
6673 case 0x0f9d:
6674 case 0x0f9e:
6675 case 0x0f9f:
6676 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6677 ir.ot = OT_BYTE;
6678 if (i386_record_modrm (&ir))
6679 return -1;
6680 if (ir.mod == 3)
6681 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6682 : (ir.rm & 0x3));
6683 else
6684 {
6685 if (i386_record_lea_modrm (&ir))
6686 return -1;
6687 }
6688 break;
6689
6690 case 0x0f40: /* cmov Gv, Ev */
6691 case 0x0f41:
6692 case 0x0f42:
6693 case 0x0f43:
6694 case 0x0f44:
6695 case 0x0f45:
6696 case 0x0f46:
6697 case 0x0f47:
6698 case 0x0f48:
6699 case 0x0f49:
6700 case 0x0f4a:
6701 case 0x0f4b:
6702 case 0x0f4c:
6703 case 0x0f4d:
6704 case 0x0f4e:
6705 case 0x0f4f:
6706 if (i386_record_modrm (&ir))
6707 return -1;
6708 ir.reg |= rex_r;
6709 if (ir.dflag == OT_BYTE)
6710 ir.reg &= 0x3;
6711 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6712 break;
6713
6714 /* flags */
6715 case 0x9c: /* pushf */
6716 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6717 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6718 ir.dflag = 2;
6719 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6720 return -1;
6721 break;
6722
6723 case 0x9d: /* popf */
6724 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6725 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6726 break;
6727
6728 case 0x9e: /* sahf */
6729 if (ir.regmap[X86_RECORD_R8_REGNUM])
6730 {
6731 ir.addr -= 1;
6732 goto no_support;
6733 }
6734 /* FALLTHROUGH */
6735 case 0xf5: /* cmc */
6736 case 0xf8: /* clc */
6737 case 0xf9: /* stc */
6738 case 0xfc: /* cld */
6739 case 0xfd: /* std */
6740 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6741 break;
6742
6743 case 0x9f: /* lahf */
6744 if (ir.regmap[X86_RECORD_R8_REGNUM])
6745 {
6746 ir.addr -= 1;
6747 goto no_support;
6748 }
6749 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6750 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6751 break;
6752
6753 /* bit operations */
6754 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6755 ir.ot = ir.dflag + OT_WORD;
6756 if (i386_record_modrm (&ir))
6757 return -1;
6758 if (ir.reg < 4)
6759 {
6760 ir.addr -= 2;
6761 opcode = opcode << 8 | ir.modrm;
6762 goto no_support;
6763 }
6764 if (ir.reg != 4)
6765 {
6766 if (ir.mod == 3)
6767 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6768 else
6769 {
6770 if (i386_record_lea_modrm (&ir))
6771 return -1;
6772 }
6773 }
6774 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6775 break;
6776
6777 case 0x0fa3: /* bt Gv, Ev */
6778 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6779 break;
6780
6781 case 0x0fab: /* bts */
6782 case 0x0fb3: /* btr */
6783 case 0x0fbb: /* btc */
6784 ir.ot = ir.dflag + OT_WORD;
6785 if (i386_record_modrm (&ir))
6786 return -1;
6787 if (ir.mod == 3)
6788 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6789 else
6790 {
6791 uint64_t addr64;
6792 if (i386_record_lea_modrm_addr (&ir, &addr64))
6793 return -1;
6794 regcache_raw_read_unsigned (ir.regcache,
6795 ir.regmap[ir.reg | rex_r],
6796 &addr);
6797 switch (ir.dflag)
6798 {
6799 case 0:
6800 addr64 += ((int16_t) addr >> 4) << 4;
6801 break;
6802 case 1:
6803 addr64 += ((int32_t) addr >> 5) << 5;
6804 break;
6805 case 2:
6806 addr64 += ((int64_t) addr >> 6) << 6;
6807 break;
6808 }
6809 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6810 return -1;
6811 if (i386_record_lea_modrm (&ir))
6812 return -1;
6813 }
6814 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6815 break;
6816
6817 case 0x0fbc: /* bsf */
6818 case 0x0fbd: /* bsr */
6819 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6820 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6821 break;
6822
6823 /* bcd */
6824 case 0x27: /* daa */
6825 case 0x2f: /* das */
6826 case 0x37: /* aaa */
6827 case 0x3f: /* aas */
6828 case 0xd4: /* aam */
6829 case 0xd5: /* aad */
6830 if (ir.regmap[X86_RECORD_R8_REGNUM])
6831 {
6832 ir.addr -= 1;
6833 goto no_support;
6834 }
6835 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6836 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6837 break;
6838
6839 /* misc */
6840 case 0x90: /* nop */
6841 if (prefixes & PREFIX_LOCK)
6842 {
6843 ir.addr -= 1;
6844 goto no_support;
6845 }
6846 break;
6847
6848 case 0x9b: /* fwait */
6849 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6850 return -1;
6851 opcode = (uint32_t) opcode8;
6852 ir.addr++;
6853 goto reswitch;
6854 break;
6855
6856 /* XXX */
6857 case 0xcc: /* int3 */
6858 printf_unfiltered (_("Process record does not support instruction "
6859 "int3.\n"));
6860 ir.addr -= 1;
6861 goto no_support;
6862 break;
6863
6864 /* XXX */
6865 case 0xcd: /* int */
6866 {
6867 int ret;
6868 uint8_t interrupt;
6869 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6870 return -1;
6871 ir.addr++;
6872 if (interrupt != 0x80
6873 || tdep->i386_intx80_record == NULL)
6874 {
6875 printf_unfiltered (_("Process record does not support "
6876 "instruction int 0x%02x.\n"),
6877 interrupt);
6878 ir.addr -= 2;
6879 goto no_support;
6880 }
6881 ret = tdep->i386_intx80_record (ir.regcache);
6882 if (ret)
6883 return ret;
6884 }
6885 break;
6886
6887 /* XXX */
6888 case 0xce: /* into */
6889 printf_unfiltered (_("Process record does not support "
6890 "instruction into.\n"));
6891 ir.addr -= 1;
6892 goto no_support;
6893 break;
6894
6895 case 0xfa: /* cli */
6896 case 0xfb: /* sti */
6897 break;
6898
6899 case 0x62: /* bound */
6900 printf_unfiltered (_("Process record does not support "
6901 "instruction bound.\n"));
6902 ir.addr -= 1;
6903 goto no_support;
6904 break;
6905
6906 case 0x0fc8: /* bswap reg */
6907 case 0x0fc9:
6908 case 0x0fca:
6909 case 0x0fcb:
6910 case 0x0fcc:
6911 case 0x0fcd:
6912 case 0x0fce:
6913 case 0x0fcf:
6914 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6915 break;
6916
6917 case 0xd6: /* salc */
6918 if (ir.regmap[X86_RECORD_R8_REGNUM])
6919 {
6920 ir.addr -= 1;
6921 goto no_support;
6922 }
6923 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6924 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6925 break;
6926
6927 case 0xe0: /* loopnz */
6928 case 0xe1: /* loopz */
6929 case 0xe2: /* loop */
6930 case 0xe3: /* jecxz */
6931 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6932 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6933 break;
6934
6935 case 0x0f30: /* wrmsr */
6936 printf_unfiltered (_("Process record does not support "
6937 "instruction wrmsr.\n"));
6938 ir.addr -= 2;
6939 goto no_support;
6940 break;
6941
6942 case 0x0f32: /* rdmsr */
6943 printf_unfiltered (_("Process record does not support "
6944 "instruction rdmsr.\n"));
6945 ir.addr -= 2;
6946 goto no_support;
6947 break;
6948
6949 case 0x0f31: /* rdtsc */
6950 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6951 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6952 break;
6953
6954 case 0x0f34: /* sysenter */
6955 {
6956 int ret;
6957 if (ir.regmap[X86_RECORD_R8_REGNUM])
6958 {
6959 ir.addr -= 2;
6960 goto no_support;
6961 }
6962 if (tdep->i386_sysenter_record == NULL)
6963 {
6964 printf_unfiltered (_("Process record does not support "
6965 "instruction sysenter.\n"));
6966 ir.addr -= 2;
6967 goto no_support;
6968 }
6969 ret = tdep->i386_sysenter_record (ir.regcache);
6970 if (ret)
6971 return ret;
6972 }
6973 break;
6974
6975 case 0x0f35: /* sysexit */
6976 printf_unfiltered (_("Process record does not support "
6977 "instruction sysexit.\n"));
6978 ir.addr -= 2;
6979 goto no_support;
6980 break;
6981
6982 case 0x0f05: /* syscall */
6983 {
6984 int ret;
6985 if (tdep->i386_syscall_record == NULL)
6986 {
6987 printf_unfiltered (_("Process record does not support "
6988 "instruction syscall.\n"));
6989 ir.addr -= 2;
6990 goto no_support;
6991 }
6992 ret = tdep->i386_syscall_record (ir.regcache);
6993 if (ret)
6994 return ret;
6995 }
6996 break;
6997
6998 case 0x0f07: /* sysret */
6999 printf_unfiltered (_("Process record does not support "
7000 "instruction sysret.\n"));
7001 ir.addr -= 2;
7002 goto no_support;
7003 break;
7004
7005 case 0x0fa2: /* cpuid */
7006 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7007 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7008 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7009 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7010 break;
7011
7012 case 0xf4: /* hlt */
7013 printf_unfiltered (_("Process record does not support "
7014 "instruction hlt.\n"));
7015 ir.addr -= 1;
7016 goto no_support;
7017 break;
7018
7019 case 0x0f00:
7020 if (i386_record_modrm (&ir))
7021 return -1;
7022 switch (ir.reg)
7023 {
7024 case 0: /* sldt */
7025 case 1: /* str */
7026 if (ir.mod == 3)
7027 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7028 else
7029 {
7030 ir.ot = OT_WORD;
7031 if (i386_record_lea_modrm (&ir))
7032 return -1;
7033 }
7034 break;
7035 case 2: /* lldt */
7036 case 3: /* ltr */
7037 break;
7038 case 4: /* verr */
7039 case 5: /* verw */
7040 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7041 break;
7042 default:
7043 ir.addr -= 3;
7044 opcode = opcode << 8 | ir.modrm;
7045 goto no_support;
7046 break;
7047 }
7048 break;
7049
7050 case 0x0f01:
7051 if (i386_record_modrm (&ir))
7052 return -1;
7053 switch (ir.reg)
7054 {
7055 case 0: /* sgdt */
7056 {
7057 uint64_t addr64;
7058
7059 if (ir.mod == 3)
7060 {
7061 ir.addr -= 3;
7062 opcode = opcode << 8 | ir.modrm;
7063 goto no_support;
7064 }
7065 if (ir.override >= 0)
7066 {
7067 if (record_full_memory_query)
7068 {
7069 if (yquery (_("\
7070 Process record ignores the memory change of instruction at address %s\n\
7071 because it can't get the value of the segment register.\n\
7072 Do you want to stop the program?"),
7073 paddress (gdbarch, ir.orig_addr)))
7074 return -1;
7075 }
7076 }
7077 else
7078 {
7079 if (i386_record_lea_modrm_addr (&ir, &addr64))
7080 return -1;
7081 if (record_full_arch_list_add_mem (addr64, 2))
7082 return -1;
7083 addr64 += 2;
7084 if (ir.regmap[X86_RECORD_R8_REGNUM])
7085 {
7086 if (record_full_arch_list_add_mem (addr64, 8))
7087 return -1;
7088 }
7089 else
7090 {
7091 if (record_full_arch_list_add_mem (addr64, 4))
7092 return -1;
7093 }
7094 }
7095 }
7096 break;
7097 case 1:
7098 if (ir.mod == 3)
7099 {
7100 switch (ir.rm)
7101 {
7102 case 0: /* monitor */
7103 break;
7104 case 1: /* mwait */
7105 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7106 break;
7107 default:
7108 ir.addr -= 3;
7109 opcode = opcode << 8 | ir.modrm;
7110 goto no_support;
7111 break;
7112 }
7113 }
7114 else
7115 {
7116 /* sidt */
7117 if (ir.override >= 0)
7118 {
7119 if (record_full_memory_query)
7120 {
7121 if (yquery (_("\
7122 Process record ignores the memory change of instruction at address %s\n\
7123 because it can't get the value of the segment register.\n\
7124 Do you want to stop the program?"),
7125 paddress (gdbarch, ir.orig_addr)))
7126 return -1;
7127 }
7128 }
7129 else
7130 {
7131 uint64_t addr64;
7132
7133 if (i386_record_lea_modrm_addr (&ir, &addr64))
7134 return -1;
7135 if (record_full_arch_list_add_mem (addr64, 2))
7136 return -1;
7137 addr64 += 2;
7138 if (ir.regmap[X86_RECORD_R8_REGNUM])
7139 {
7140 if (record_full_arch_list_add_mem (addr64, 8))
7141 return -1;
7142 }
7143 else
7144 {
7145 if (record_full_arch_list_add_mem (addr64, 4))
7146 return -1;
7147 }
7148 }
7149 }
7150 break;
7151 case 2: /* lgdt */
7152 if (ir.mod == 3)
7153 {
7154 /* xgetbv */
7155 if (ir.rm == 0)
7156 {
7157 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7158 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7159 break;
7160 }
7161 /* xsetbv */
7162 else if (ir.rm == 1)
7163 break;
7164 }
7165 /* Fall through. */
7166 case 3: /* lidt */
7167 if (ir.mod == 3)
7168 {
7169 ir.addr -= 3;
7170 opcode = opcode << 8 | ir.modrm;
7171 goto no_support;
7172 }
7173 break;
7174 case 4: /* smsw */
7175 if (ir.mod == 3)
7176 {
7177 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7178 return -1;
7179 }
7180 else
7181 {
7182 ir.ot = OT_WORD;
7183 if (i386_record_lea_modrm (&ir))
7184 return -1;
7185 }
7186 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7187 break;
7188 case 6: /* lmsw */
7189 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7190 break;
7191 case 7: /* invlpg */
7192 if (ir.mod == 3)
7193 {
7194 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7195 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7196 else
7197 {
7198 ir.addr -= 3;
7199 opcode = opcode << 8 | ir.modrm;
7200 goto no_support;
7201 }
7202 }
7203 else
7204 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7205 break;
7206 default:
7207 ir.addr -= 3;
7208 opcode = opcode << 8 | ir.modrm;
7209 goto no_support;
7210 break;
7211 }
7212 break;
7213
7214 case 0x0f08: /* invd */
7215 case 0x0f09: /* wbinvd */
7216 break;
7217
7218 case 0x63: /* arpl */
7219 if (i386_record_modrm (&ir))
7220 return -1;
7221 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7222 {
7223 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7224 ? (ir.reg | rex_r) : ir.rm);
7225 }
7226 else
7227 {
7228 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7229 if (i386_record_lea_modrm (&ir))
7230 return -1;
7231 }
7232 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7233 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7234 break;
7235
7236 case 0x0f02: /* lar */
7237 case 0x0f03: /* lsl */
7238 if (i386_record_modrm (&ir))
7239 return -1;
7240 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7241 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7242 break;
7243
7244 case 0x0f18:
7245 if (i386_record_modrm (&ir))
7246 return -1;
7247 if (ir.mod == 3 && ir.reg == 3)
7248 {
7249 ir.addr -= 3;
7250 opcode = opcode << 8 | ir.modrm;
7251 goto no_support;
7252 }
7253 break;
7254
7255 case 0x0f19:
7256 case 0x0f1a:
7257 case 0x0f1b:
7258 case 0x0f1c:
7259 case 0x0f1d:
7260 case 0x0f1e:
7261 case 0x0f1f:
7262 /* nop (multi byte) */
7263 break;
7264
7265 case 0x0f20: /* mov reg, crN */
7266 case 0x0f22: /* mov crN, reg */
7267 if (i386_record_modrm (&ir))
7268 return -1;
7269 if ((ir.modrm & 0xc0) != 0xc0)
7270 {
7271 ir.addr -= 3;
7272 opcode = opcode << 8 | ir.modrm;
7273 goto no_support;
7274 }
7275 switch (ir.reg)
7276 {
7277 case 0:
7278 case 2:
7279 case 3:
7280 case 4:
7281 case 8:
7282 if (opcode & 2)
7283 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7284 else
7285 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7286 break;
7287 default:
7288 ir.addr -= 3;
7289 opcode = opcode << 8 | ir.modrm;
7290 goto no_support;
7291 break;
7292 }
7293 break;
7294
7295 case 0x0f21: /* mov reg, drN */
7296 case 0x0f23: /* mov drN, reg */
7297 if (i386_record_modrm (&ir))
7298 return -1;
7299 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7300 || ir.reg == 5 || ir.reg >= 8)
7301 {
7302 ir.addr -= 3;
7303 opcode = opcode << 8 | ir.modrm;
7304 goto no_support;
7305 }
7306 if (opcode & 2)
7307 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7308 else
7309 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7310 break;
7311
7312 case 0x0f06: /* clts */
7313 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7314 break;
7315
7316 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7317
7318 case 0x0f0d: /* 3DNow! prefetch */
7319 break;
7320
7321 case 0x0f0e: /* 3DNow! femms */
7322 case 0x0f77: /* emms */
7323 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7324 goto no_support;
7325 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7326 break;
7327
7328 case 0x0f0f: /* 3DNow! data */
7329 if (i386_record_modrm (&ir))
7330 return -1;
7331 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7332 return -1;
7333 ir.addr++;
7334 switch (opcode8)
7335 {
7336 case 0x0c: /* 3DNow! pi2fw */
7337 case 0x0d: /* 3DNow! pi2fd */
7338 case 0x1c: /* 3DNow! pf2iw */
7339 case 0x1d: /* 3DNow! pf2id */
7340 case 0x8a: /* 3DNow! pfnacc */
7341 case 0x8e: /* 3DNow! pfpnacc */
7342 case 0x90: /* 3DNow! pfcmpge */
7343 case 0x94: /* 3DNow! pfmin */
7344 case 0x96: /* 3DNow! pfrcp */
7345 case 0x97: /* 3DNow! pfrsqrt */
7346 case 0x9a: /* 3DNow! pfsub */
7347 case 0x9e: /* 3DNow! pfadd */
7348 case 0xa0: /* 3DNow! pfcmpgt */
7349 case 0xa4: /* 3DNow! pfmax */
7350 case 0xa6: /* 3DNow! pfrcpit1 */
7351 case 0xa7: /* 3DNow! pfrsqit1 */
7352 case 0xaa: /* 3DNow! pfsubr */
7353 case 0xae: /* 3DNow! pfacc */
7354 case 0xb0: /* 3DNow! pfcmpeq */
7355 case 0xb4: /* 3DNow! pfmul */
7356 case 0xb6: /* 3DNow! pfrcpit2 */
7357 case 0xb7: /* 3DNow! pmulhrw */
7358 case 0xbb: /* 3DNow! pswapd */
7359 case 0xbf: /* 3DNow! pavgusb */
7360 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7361 goto no_support_3dnow_data;
7362 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7363 break;
7364
7365 default:
7366 no_support_3dnow_data:
7367 opcode = (opcode << 8) | opcode8;
7368 goto no_support;
7369 break;
7370 }
7371 break;
7372
7373 case 0x0faa: /* rsm */
7374 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7375 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7376 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7378 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7379 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7380 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7381 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7382 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7383 break;
7384
7385 case 0x0fae:
7386 if (i386_record_modrm (&ir))
7387 return -1;
7388 switch(ir.reg)
7389 {
7390 case 0: /* fxsave */
7391 {
7392 uint64_t tmpu64;
7393
7394 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7395 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7396 return -1;
7397 if (record_full_arch_list_add_mem (tmpu64, 512))
7398 return -1;
7399 }
7400 break;
7401
7402 case 1: /* fxrstor */
7403 {
7404 int i;
7405
7406 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7407
7408 for (i = I387_MM0_REGNUM (tdep);
7409 i386_mmx_regnum_p (gdbarch, i); i++)
7410 record_full_arch_list_add_reg (ir.regcache, i);
7411
7412 for (i = I387_XMM0_REGNUM (tdep);
7413 i386_xmm_regnum_p (gdbarch, i); i++)
7414 record_full_arch_list_add_reg (ir.regcache, i);
7415
7416 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7417 record_full_arch_list_add_reg (ir.regcache,
7418 I387_MXCSR_REGNUM(tdep));
7419
7420 for (i = I387_ST0_REGNUM (tdep);
7421 i386_fp_regnum_p (gdbarch, i); i++)
7422 record_full_arch_list_add_reg (ir.regcache, i);
7423
7424 for (i = I387_FCTRL_REGNUM (tdep);
7425 i386_fpc_regnum_p (gdbarch, i); i++)
7426 record_full_arch_list_add_reg (ir.regcache, i);
7427 }
7428 break;
7429
7430 case 2: /* ldmxcsr */
7431 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7432 goto no_support;
7433 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7434 break;
7435
7436 case 3: /* stmxcsr */
7437 ir.ot = OT_LONG;
7438 if (i386_record_lea_modrm (&ir))
7439 return -1;
7440 break;
7441
7442 case 5: /* lfence */
7443 case 6: /* mfence */
7444 case 7: /* sfence clflush */
7445 break;
7446
7447 default:
7448 opcode = (opcode << 8) | ir.modrm;
7449 goto no_support;
7450 break;
7451 }
7452 break;
7453
7454 case 0x0fc3: /* movnti */
7455 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7456 if (i386_record_modrm (&ir))
7457 return -1;
7458 if (ir.mod == 3)
7459 goto no_support;
7460 ir.reg |= rex_r;
7461 if (i386_record_lea_modrm (&ir))
7462 return -1;
7463 break;
7464
7465 /* Add prefix to opcode. */
7466 case 0x0f10:
7467 case 0x0f11:
7468 case 0x0f12:
7469 case 0x0f13:
7470 case 0x0f14:
7471 case 0x0f15:
7472 case 0x0f16:
7473 case 0x0f17:
7474 case 0x0f28:
7475 case 0x0f29:
7476 case 0x0f2a:
7477 case 0x0f2b:
7478 case 0x0f2c:
7479 case 0x0f2d:
7480 case 0x0f2e:
7481 case 0x0f2f:
7482 case 0x0f38:
7483 case 0x0f39:
7484 case 0x0f3a:
7485 case 0x0f50:
7486 case 0x0f51:
7487 case 0x0f52:
7488 case 0x0f53:
7489 case 0x0f54:
7490 case 0x0f55:
7491 case 0x0f56:
7492 case 0x0f57:
7493 case 0x0f58:
7494 case 0x0f59:
7495 case 0x0f5a:
7496 case 0x0f5b:
7497 case 0x0f5c:
7498 case 0x0f5d:
7499 case 0x0f5e:
7500 case 0x0f5f:
7501 case 0x0f60:
7502 case 0x0f61:
7503 case 0x0f62:
7504 case 0x0f63:
7505 case 0x0f64:
7506 case 0x0f65:
7507 case 0x0f66:
7508 case 0x0f67:
7509 case 0x0f68:
7510 case 0x0f69:
7511 case 0x0f6a:
7512 case 0x0f6b:
7513 case 0x0f6c:
7514 case 0x0f6d:
7515 case 0x0f6e:
7516 case 0x0f6f:
7517 case 0x0f70:
7518 case 0x0f71:
7519 case 0x0f72:
7520 case 0x0f73:
7521 case 0x0f74:
7522 case 0x0f75:
7523 case 0x0f76:
7524 case 0x0f7c:
7525 case 0x0f7d:
7526 case 0x0f7e:
7527 case 0x0f7f:
7528 case 0x0fb8:
7529 case 0x0fc2:
7530 case 0x0fc4:
7531 case 0x0fc5:
7532 case 0x0fc6:
7533 case 0x0fd0:
7534 case 0x0fd1:
7535 case 0x0fd2:
7536 case 0x0fd3:
7537 case 0x0fd4:
7538 case 0x0fd5:
7539 case 0x0fd6:
7540 case 0x0fd7:
7541 case 0x0fd8:
7542 case 0x0fd9:
7543 case 0x0fda:
7544 case 0x0fdb:
7545 case 0x0fdc:
7546 case 0x0fdd:
7547 case 0x0fde:
7548 case 0x0fdf:
7549 case 0x0fe0:
7550 case 0x0fe1:
7551 case 0x0fe2:
7552 case 0x0fe3:
7553 case 0x0fe4:
7554 case 0x0fe5:
7555 case 0x0fe6:
7556 case 0x0fe7:
7557 case 0x0fe8:
7558 case 0x0fe9:
7559 case 0x0fea:
7560 case 0x0feb:
7561 case 0x0fec:
7562 case 0x0fed:
7563 case 0x0fee:
7564 case 0x0fef:
7565 case 0x0ff0:
7566 case 0x0ff1:
7567 case 0x0ff2:
7568 case 0x0ff3:
7569 case 0x0ff4:
7570 case 0x0ff5:
7571 case 0x0ff6:
7572 case 0x0ff7:
7573 case 0x0ff8:
7574 case 0x0ff9:
7575 case 0x0ffa:
7576 case 0x0ffb:
7577 case 0x0ffc:
7578 case 0x0ffd:
7579 case 0x0ffe:
7580 /* Mask out PREFIX_ADDR. */
7581 switch ((prefixes & ~PREFIX_ADDR))
7582 {
7583 case PREFIX_REPNZ:
7584 opcode |= 0xf20000;
7585 break;
7586 case PREFIX_DATA:
7587 opcode |= 0x660000;
7588 break;
7589 case PREFIX_REPZ:
7590 opcode |= 0xf30000;
7591 break;
7592 }
7593 reswitch_prefix_add:
7594 switch (opcode)
7595 {
7596 case 0x0f38:
7597 case 0x660f38:
7598 case 0xf20f38:
7599 case 0x0f3a:
7600 case 0x660f3a:
7601 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7602 return -1;
7603 ir.addr++;
7604 opcode = (uint32_t) opcode8 | opcode << 8;
7605 goto reswitch_prefix_add;
7606 break;
7607
7608 case 0x0f10: /* movups */
7609 case 0x660f10: /* movupd */
7610 case 0xf30f10: /* movss */
7611 case 0xf20f10: /* movsd */
7612 case 0x0f12: /* movlps */
7613 case 0x660f12: /* movlpd */
7614 case 0xf30f12: /* movsldup */
7615 case 0xf20f12: /* movddup */
7616 case 0x0f14: /* unpcklps */
7617 case 0x660f14: /* unpcklpd */
7618 case 0x0f15: /* unpckhps */
7619 case 0x660f15: /* unpckhpd */
7620 case 0x0f16: /* movhps */
7621 case 0x660f16: /* movhpd */
7622 case 0xf30f16: /* movshdup */
7623 case 0x0f28: /* movaps */
7624 case 0x660f28: /* movapd */
7625 case 0x0f2a: /* cvtpi2ps */
7626 case 0x660f2a: /* cvtpi2pd */
7627 case 0xf30f2a: /* cvtsi2ss */
7628 case 0xf20f2a: /* cvtsi2sd */
7629 case 0x0f2c: /* cvttps2pi */
7630 case 0x660f2c: /* cvttpd2pi */
7631 case 0x0f2d: /* cvtps2pi */
7632 case 0x660f2d: /* cvtpd2pi */
7633 case 0x660f3800: /* pshufb */
7634 case 0x660f3801: /* phaddw */
7635 case 0x660f3802: /* phaddd */
7636 case 0x660f3803: /* phaddsw */
7637 case 0x660f3804: /* pmaddubsw */
7638 case 0x660f3805: /* phsubw */
7639 case 0x660f3806: /* phsubd */
7640 case 0x660f3807: /* phsubsw */
7641 case 0x660f3808: /* psignb */
7642 case 0x660f3809: /* psignw */
7643 case 0x660f380a: /* psignd */
7644 case 0x660f380b: /* pmulhrsw */
7645 case 0x660f3810: /* pblendvb */
7646 case 0x660f3814: /* blendvps */
7647 case 0x660f3815: /* blendvpd */
7648 case 0x660f381c: /* pabsb */
7649 case 0x660f381d: /* pabsw */
7650 case 0x660f381e: /* pabsd */
7651 case 0x660f3820: /* pmovsxbw */
7652 case 0x660f3821: /* pmovsxbd */
7653 case 0x660f3822: /* pmovsxbq */
7654 case 0x660f3823: /* pmovsxwd */
7655 case 0x660f3824: /* pmovsxwq */
7656 case 0x660f3825: /* pmovsxdq */
7657 case 0x660f3828: /* pmuldq */
7658 case 0x660f3829: /* pcmpeqq */
7659 case 0x660f382a: /* movntdqa */
7660 case 0x660f3a08: /* roundps */
7661 case 0x660f3a09: /* roundpd */
7662 case 0x660f3a0a: /* roundss */
7663 case 0x660f3a0b: /* roundsd */
7664 case 0x660f3a0c: /* blendps */
7665 case 0x660f3a0d: /* blendpd */
7666 case 0x660f3a0e: /* pblendw */
7667 case 0x660f3a0f: /* palignr */
7668 case 0x660f3a20: /* pinsrb */
7669 case 0x660f3a21: /* insertps */
7670 case 0x660f3a22: /* pinsrd pinsrq */
7671 case 0x660f3a40: /* dpps */
7672 case 0x660f3a41: /* dppd */
7673 case 0x660f3a42: /* mpsadbw */
7674 case 0x660f3a60: /* pcmpestrm */
7675 case 0x660f3a61: /* pcmpestri */
7676 case 0x660f3a62: /* pcmpistrm */
7677 case 0x660f3a63: /* pcmpistri */
7678 case 0x0f51: /* sqrtps */
7679 case 0x660f51: /* sqrtpd */
7680 case 0xf20f51: /* sqrtsd */
7681 case 0xf30f51: /* sqrtss */
7682 case 0x0f52: /* rsqrtps */
7683 case 0xf30f52: /* rsqrtss */
7684 case 0x0f53: /* rcpps */
7685 case 0xf30f53: /* rcpss */
7686 case 0x0f54: /* andps */
7687 case 0x660f54: /* andpd */
7688 case 0x0f55: /* andnps */
7689 case 0x660f55: /* andnpd */
7690 case 0x0f56: /* orps */
7691 case 0x660f56: /* orpd */
7692 case 0x0f57: /* xorps */
7693 case 0x660f57: /* xorpd */
7694 case 0x0f58: /* addps */
7695 case 0x660f58: /* addpd */
7696 case 0xf20f58: /* addsd */
7697 case 0xf30f58: /* addss */
7698 case 0x0f59: /* mulps */
7699 case 0x660f59: /* mulpd */
7700 case 0xf20f59: /* mulsd */
7701 case 0xf30f59: /* mulss */
7702 case 0x0f5a: /* cvtps2pd */
7703 case 0x660f5a: /* cvtpd2ps */
7704 case 0xf20f5a: /* cvtsd2ss */
7705 case 0xf30f5a: /* cvtss2sd */
7706 case 0x0f5b: /* cvtdq2ps */
7707 case 0x660f5b: /* cvtps2dq */
7708 case 0xf30f5b: /* cvttps2dq */
7709 case 0x0f5c: /* subps */
7710 case 0x660f5c: /* subpd */
7711 case 0xf20f5c: /* subsd */
7712 case 0xf30f5c: /* subss */
7713 case 0x0f5d: /* minps */
7714 case 0x660f5d: /* minpd */
7715 case 0xf20f5d: /* minsd */
7716 case 0xf30f5d: /* minss */
7717 case 0x0f5e: /* divps */
7718 case 0x660f5e: /* divpd */
7719 case 0xf20f5e: /* divsd */
7720 case 0xf30f5e: /* divss */
7721 case 0x0f5f: /* maxps */
7722 case 0x660f5f: /* maxpd */
7723 case 0xf20f5f: /* maxsd */
7724 case 0xf30f5f: /* maxss */
7725 case 0x660f60: /* punpcklbw */
7726 case 0x660f61: /* punpcklwd */
7727 case 0x660f62: /* punpckldq */
7728 case 0x660f63: /* packsswb */
7729 case 0x660f64: /* pcmpgtb */
7730 case 0x660f65: /* pcmpgtw */
7731 case 0x660f66: /* pcmpgtd */
7732 case 0x660f67: /* packuswb */
7733 case 0x660f68: /* punpckhbw */
7734 case 0x660f69: /* punpckhwd */
7735 case 0x660f6a: /* punpckhdq */
7736 case 0x660f6b: /* packssdw */
7737 case 0x660f6c: /* punpcklqdq */
7738 case 0x660f6d: /* punpckhqdq */
7739 case 0x660f6e: /* movd */
7740 case 0x660f6f: /* movdqa */
7741 case 0xf30f6f: /* movdqu */
7742 case 0x660f70: /* pshufd */
7743 case 0xf20f70: /* pshuflw */
7744 case 0xf30f70: /* pshufhw */
7745 case 0x660f74: /* pcmpeqb */
7746 case 0x660f75: /* pcmpeqw */
7747 case 0x660f76: /* pcmpeqd */
7748 case 0x660f7c: /* haddpd */
7749 case 0xf20f7c: /* haddps */
7750 case 0x660f7d: /* hsubpd */
7751 case 0xf20f7d: /* hsubps */
7752 case 0xf30f7e: /* movq */
7753 case 0x0fc2: /* cmpps */
7754 case 0x660fc2: /* cmppd */
7755 case 0xf20fc2: /* cmpsd */
7756 case 0xf30fc2: /* cmpss */
7757 case 0x660fc4: /* pinsrw */
7758 case 0x0fc6: /* shufps */
7759 case 0x660fc6: /* shufpd */
7760 case 0x660fd0: /* addsubpd */
7761 case 0xf20fd0: /* addsubps */
7762 case 0x660fd1: /* psrlw */
7763 case 0x660fd2: /* psrld */
7764 case 0x660fd3: /* psrlq */
7765 case 0x660fd4: /* paddq */
7766 case 0x660fd5: /* pmullw */
7767 case 0xf30fd6: /* movq2dq */
7768 case 0x660fd8: /* psubusb */
7769 case 0x660fd9: /* psubusw */
7770 case 0x660fda: /* pminub */
7771 case 0x660fdb: /* pand */
7772 case 0x660fdc: /* paddusb */
7773 case 0x660fdd: /* paddusw */
7774 case 0x660fde: /* pmaxub */
7775 case 0x660fdf: /* pandn */
7776 case 0x660fe0: /* pavgb */
7777 case 0x660fe1: /* psraw */
7778 case 0x660fe2: /* psrad */
7779 case 0x660fe3: /* pavgw */
7780 case 0x660fe4: /* pmulhuw */
7781 case 0x660fe5: /* pmulhw */
7782 case 0x660fe6: /* cvttpd2dq */
7783 case 0xf20fe6: /* cvtpd2dq */
7784 case 0xf30fe6: /* cvtdq2pd */
7785 case 0x660fe8: /* psubsb */
7786 case 0x660fe9: /* psubsw */
7787 case 0x660fea: /* pminsw */
7788 case 0x660feb: /* por */
7789 case 0x660fec: /* paddsb */
7790 case 0x660fed: /* paddsw */
7791 case 0x660fee: /* pmaxsw */
7792 case 0x660fef: /* pxor */
7793 case 0xf20ff0: /* lddqu */
7794 case 0x660ff1: /* psllw */
7795 case 0x660ff2: /* pslld */
7796 case 0x660ff3: /* psllq */
7797 case 0x660ff4: /* pmuludq */
7798 case 0x660ff5: /* pmaddwd */
7799 case 0x660ff6: /* psadbw */
7800 case 0x660ff8: /* psubb */
7801 case 0x660ff9: /* psubw */
7802 case 0x660ffa: /* psubd */
7803 case 0x660ffb: /* psubq */
7804 case 0x660ffc: /* paddb */
7805 case 0x660ffd: /* paddw */
7806 case 0x660ffe: /* paddd */
7807 if (i386_record_modrm (&ir))
7808 return -1;
7809 ir.reg |= rex_r;
7810 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7811 goto no_support;
7812 record_full_arch_list_add_reg (ir.regcache,
7813 I387_XMM0_REGNUM (tdep) + ir.reg);
7814 if ((opcode & 0xfffffffc) == 0x660f3a60)
7815 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7816 break;
7817
7818 case 0x0f11: /* movups */
7819 case 0x660f11: /* movupd */
7820 case 0xf30f11: /* movss */
7821 case 0xf20f11: /* movsd */
7822 case 0x0f13: /* movlps */
7823 case 0x660f13: /* movlpd */
7824 case 0x0f17: /* movhps */
7825 case 0x660f17: /* movhpd */
7826 case 0x0f29: /* movaps */
7827 case 0x660f29: /* movapd */
7828 case 0x660f3a14: /* pextrb */
7829 case 0x660f3a15: /* pextrw */
7830 case 0x660f3a16: /* pextrd pextrq */
7831 case 0x660f3a17: /* extractps */
7832 case 0x660f7f: /* movdqa */
7833 case 0xf30f7f: /* movdqu */
7834 if (i386_record_modrm (&ir))
7835 return -1;
7836 if (ir.mod == 3)
7837 {
7838 if (opcode == 0x0f13 || opcode == 0x660f13
7839 || opcode == 0x0f17 || opcode == 0x660f17)
7840 goto no_support;
7841 ir.rm |= ir.rex_b;
7842 if (!i386_xmm_regnum_p (gdbarch,
7843 I387_XMM0_REGNUM (tdep) + ir.rm))
7844 goto no_support;
7845 record_full_arch_list_add_reg (ir.regcache,
7846 I387_XMM0_REGNUM (tdep) + ir.rm);
7847 }
7848 else
7849 {
7850 switch (opcode)
7851 {
7852 case 0x660f3a14:
7853 ir.ot = OT_BYTE;
7854 break;
7855 case 0x660f3a15:
7856 ir.ot = OT_WORD;
7857 break;
7858 case 0x660f3a16:
7859 ir.ot = OT_LONG;
7860 break;
7861 case 0x660f3a17:
7862 ir.ot = OT_QUAD;
7863 break;
7864 default:
7865 ir.ot = OT_DQUAD;
7866 break;
7867 }
7868 if (i386_record_lea_modrm (&ir))
7869 return -1;
7870 }
7871 break;
7872
7873 case 0x0f2b: /* movntps */
7874 case 0x660f2b: /* movntpd */
7875 case 0x0fe7: /* movntq */
7876 case 0x660fe7: /* movntdq */
7877 if (ir.mod == 3)
7878 goto no_support;
7879 if (opcode == 0x0fe7)
7880 ir.ot = OT_QUAD;
7881 else
7882 ir.ot = OT_DQUAD;
7883 if (i386_record_lea_modrm (&ir))
7884 return -1;
7885 break;
7886
7887 case 0xf30f2c: /* cvttss2si */
7888 case 0xf20f2c: /* cvttsd2si */
7889 case 0xf30f2d: /* cvtss2si */
7890 case 0xf20f2d: /* cvtsd2si */
7891 case 0xf20f38f0: /* crc32 */
7892 case 0xf20f38f1: /* crc32 */
7893 case 0x0f50: /* movmskps */
7894 case 0x660f50: /* movmskpd */
7895 case 0x0fc5: /* pextrw */
7896 case 0x660fc5: /* pextrw */
7897 case 0x0fd7: /* pmovmskb */
7898 case 0x660fd7: /* pmovmskb */
7899 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7900 break;
7901
7902 case 0x0f3800: /* pshufb */
7903 case 0x0f3801: /* phaddw */
7904 case 0x0f3802: /* phaddd */
7905 case 0x0f3803: /* phaddsw */
7906 case 0x0f3804: /* pmaddubsw */
7907 case 0x0f3805: /* phsubw */
7908 case 0x0f3806: /* phsubd */
7909 case 0x0f3807: /* phsubsw */
7910 case 0x0f3808: /* psignb */
7911 case 0x0f3809: /* psignw */
7912 case 0x0f380a: /* psignd */
7913 case 0x0f380b: /* pmulhrsw */
7914 case 0x0f381c: /* pabsb */
7915 case 0x0f381d: /* pabsw */
7916 case 0x0f381e: /* pabsd */
7917 case 0x0f382b: /* packusdw */
7918 case 0x0f3830: /* pmovzxbw */
7919 case 0x0f3831: /* pmovzxbd */
7920 case 0x0f3832: /* pmovzxbq */
7921 case 0x0f3833: /* pmovzxwd */
7922 case 0x0f3834: /* pmovzxwq */
7923 case 0x0f3835: /* pmovzxdq */
7924 case 0x0f3837: /* pcmpgtq */
7925 case 0x0f3838: /* pminsb */
7926 case 0x0f3839: /* pminsd */
7927 case 0x0f383a: /* pminuw */
7928 case 0x0f383b: /* pminud */
7929 case 0x0f383c: /* pmaxsb */
7930 case 0x0f383d: /* pmaxsd */
7931 case 0x0f383e: /* pmaxuw */
7932 case 0x0f383f: /* pmaxud */
7933 case 0x0f3840: /* pmulld */
7934 case 0x0f3841: /* phminposuw */
7935 case 0x0f3a0f: /* palignr */
7936 case 0x0f60: /* punpcklbw */
7937 case 0x0f61: /* punpcklwd */
7938 case 0x0f62: /* punpckldq */
7939 case 0x0f63: /* packsswb */
7940 case 0x0f64: /* pcmpgtb */
7941 case 0x0f65: /* pcmpgtw */
7942 case 0x0f66: /* pcmpgtd */
7943 case 0x0f67: /* packuswb */
7944 case 0x0f68: /* punpckhbw */
7945 case 0x0f69: /* punpckhwd */
7946 case 0x0f6a: /* punpckhdq */
7947 case 0x0f6b: /* packssdw */
7948 case 0x0f6e: /* movd */
7949 case 0x0f6f: /* movq */
7950 case 0x0f70: /* pshufw */
7951 case 0x0f74: /* pcmpeqb */
7952 case 0x0f75: /* pcmpeqw */
7953 case 0x0f76: /* pcmpeqd */
7954 case 0x0fc4: /* pinsrw */
7955 case 0x0fd1: /* psrlw */
7956 case 0x0fd2: /* psrld */
7957 case 0x0fd3: /* psrlq */
7958 case 0x0fd4: /* paddq */
7959 case 0x0fd5: /* pmullw */
7960 case 0xf20fd6: /* movdq2q */
7961 case 0x0fd8: /* psubusb */
7962 case 0x0fd9: /* psubusw */
7963 case 0x0fda: /* pminub */
7964 case 0x0fdb: /* pand */
7965 case 0x0fdc: /* paddusb */
7966 case 0x0fdd: /* paddusw */
7967 case 0x0fde: /* pmaxub */
7968 case 0x0fdf: /* pandn */
7969 case 0x0fe0: /* pavgb */
7970 case 0x0fe1: /* psraw */
7971 case 0x0fe2: /* psrad */
7972 case 0x0fe3: /* pavgw */
7973 case 0x0fe4: /* pmulhuw */
7974 case 0x0fe5: /* pmulhw */
7975 case 0x0fe8: /* psubsb */
7976 case 0x0fe9: /* psubsw */
7977 case 0x0fea: /* pminsw */
7978 case 0x0feb: /* por */
7979 case 0x0fec: /* paddsb */
7980 case 0x0fed: /* paddsw */
7981 case 0x0fee: /* pmaxsw */
7982 case 0x0fef: /* pxor */
7983 case 0x0ff1: /* psllw */
7984 case 0x0ff2: /* pslld */
7985 case 0x0ff3: /* psllq */
7986 case 0x0ff4: /* pmuludq */
7987 case 0x0ff5: /* pmaddwd */
7988 case 0x0ff6: /* psadbw */
7989 case 0x0ff8: /* psubb */
7990 case 0x0ff9: /* psubw */
7991 case 0x0ffa: /* psubd */
7992 case 0x0ffb: /* psubq */
7993 case 0x0ffc: /* paddb */
7994 case 0x0ffd: /* paddw */
7995 case 0x0ffe: /* paddd */
7996 if (i386_record_modrm (&ir))
7997 return -1;
7998 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7999 goto no_support;
8000 record_full_arch_list_add_reg (ir.regcache,
8001 I387_MM0_REGNUM (tdep) + ir.reg);
8002 break;
8003
8004 case 0x0f71: /* psllw */
8005 case 0x0f72: /* pslld */
8006 case 0x0f73: /* psllq */
8007 if (i386_record_modrm (&ir))
8008 return -1;
8009 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8010 goto no_support;
8011 record_full_arch_list_add_reg (ir.regcache,
8012 I387_MM0_REGNUM (tdep) + ir.rm);
8013 break;
8014
8015 case 0x660f71: /* psllw */
8016 case 0x660f72: /* pslld */
8017 case 0x660f73: /* psllq */
8018 if (i386_record_modrm (&ir))
8019 return -1;
8020 ir.rm |= ir.rex_b;
8021 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
8022 goto no_support;
8023 record_full_arch_list_add_reg (ir.regcache,
8024 I387_XMM0_REGNUM (tdep) + ir.rm);
8025 break;
8026
8027 case 0x0f7e: /* movd */
8028 case 0x660f7e: /* movd */
8029 if (i386_record_modrm (&ir))
8030 return -1;
8031 if (ir.mod == 3)
8032 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8033 else
8034 {
8035 if (ir.dflag == 2)
8036 ir.ot = OT_QUAD;
8037 else
8038 ir.ot = OT_LONG;
8039 if (i386_record_lea_modrm (&ir))
8040 return -1;
8041 }
8042 break;
8043
8044 case 0x0f7f: /* movq */
8045 if (i386_record_modrm (&ir))
8046 return -1;
8047 if (ir.mod == 3)
8048 {
8049 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8050 goto no_support;
8051 record_full_arch_list_add_reg (ir.regcache,
8052 I387_MM0_REGNUM (tdep) + ir.rm);
8053 }
8054 else
8055 {
8056 ir.ot = OT_QUAD;
8057 if (i386_record_lea_modrm (&ir))
8058 return -1;
8059 }
8060 break;
8061
8062 case 0xf30fb8: /* popcnt */
8063 if (i386_record_modrm (&ir))
8064 return -1;
8065 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8066 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8067 break;
8068
8069 case 0x660fd6: /* movq */
8070 if (i386_record_modrm (&ir))
8071 return -1;
8072 if (ir.mod == 3)
8073 {
8074 ir.rm |= ir.rex_b;
8075 if (!i386_xmm_regnum_p (gdbarch,
8076 I387_XMM0_REGNUM (tdep) + ir.rm))
8077 goto no_support;
8078 record_full_arch_list_add_reg (ir.regcache,
8079 I387_XMM0_REGNUM (tdep) + ir.rm);
8080 }
8081 else
8082 {
8083 ir.ot = OT_QUAD;
8084 if (i386_record_lea_modrm (&ir))
8085 return -1;
8086 }
8087 break;
8088
8089 case 0x660f3817: /* ptest */
8090 case 0x0f2e: /* ucomiss */
8091 case 0x660f2e: /* ucomisd */
8092 case 0x0f2f: /* comiss */
8093 case 0x660f2f: /* comisd */
8094 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8095 break;
8096
8097 case 0x0ff7: /* maskmovq */
8098 regcache_raw_read_unsigned (ir.regcache,
8099 ir.regmap[X86_RECORD_REDI_REGNUM],
8100 &addr);
8101 if (record_full_arch_list_add_mem (addr, 64))
8102 return -1;
8103 break;
8104
8105 case 0x660ff7: /* maskmovdqu */
8106 regcache_raw_read_unsigned (ir.regcache,
8107 ir.regmap[X86_RECORD_REDI_REGNUM],
8108 &addr);
8109 if (record_full_arch_list_add_mem (addr, 128))
8110 return -1;
8111 break;
8112
8113 default:
8114 goto no_support;
8115 break;
8116 }
8117 break;
8118
8119 default:
8120 goto no_support;
8121 break;
8122 }
8123
8124 /* In the future, maybe still need to deal with need_dasm. */
8125 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8126 if (record_full_arch_list_add_end ())
8127 return -1;
8128
8129 return 0;
8130
8131 no_support:
8132 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8133 "at address %s.\n"),
8134 (unsigned int) (opcode),
8135 paddress (gdbarch, ir.orig_addr));
8136 return -1;
8137 }
8138
8139 static const int i386_record_regmap[] =
8140 {
8141 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8142 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8143 0, 0, 0, 0, 0, 0, 0, 0,
8144 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8145 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8146 };
8147
8148 /* Check that the given address appears suitable for a fast
8149 tracepoint, which on x86-64 means that we need an instruction of at
8150 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8151 jump and not have to worry about program jumps to an address in the
8152 middle of the tracepoint jump. On x86, it may be possible to use
8153 4-byte jumps with a 2-byte offset to a trampoline located in the
8154 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8155 of instruction to replace, and 0 if not, plus an explanatory
8156 string. */
8157
8158 static int
8159 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8160 std::string *msg)
8161 {
8162 int len, jumplen;
8163
8164 /* Ask the target for the minimum instruction length supported. */
8165 jumplen = target_get_min_fast_tracepoint_insn_len ();
8166
8167 if (jumplen < 0)
8168 {
8169 /* If the target does not support the get_min_fast_tracepoint_insn_len
8170 operation, assume that fast tracepoints will always be implemented
8171 using 4-byte relative jumps on both x86 and x86-64. */
8172 jumplen = 5;
8173 }
8174 else if (jumplen == 0)
8175 {
8176 /* If the target does support get_min_fast_tracepoint_insn_len but
8177 returns zero, then the IPA has not loaded yet. In this case,
8178 we optimistically assume that truncated 2-byte relative jumps
8179 will be available on x86, and compensate later if this assumption
8180 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8181 jumps will always be used. */
8182 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8183 }
8184
8185 /* Check for fit. */
8186 len = gdb_insn_length (gdbarch, addr);
8187
8188 if (len < jumplen)
8189 {
8190 /* Return a bit of target-specific detail to add to the caller's
8191 generic failure message. */
8192 if (msg)
8193 *msg = string_printf (_("; instruction is only %d bytes long, "
8194 "need at least %d bytes for the jump"),
8195 len, jumplen);
8196 return 0;
8197 }
8198 else
8199 {
8200 if (msg)
8201 msg->clear ();
8202 return 1;
8203 }
8204 }
8205
8206 /* Return a floating-point format for a floating-point variable of
8207 length LEN in bits. If non-NULL, NAME is the name of its type.
8208 If no suitable type is found, return NULL. */
8209
8210 static const struct floatformat **
8211 i386_floatformat_for_type (struct gdbarch *gdbarch,
8212 const char *name, int len)
8213 {
8214 if (len == 128 && name)
8215 if (strcmp (name, "__float128") == 0
8216 || strcmp (name, "_Float128") == 0
8217 || strcmp (name, "complex _Float128") == 0
8218 || strcmp (name, "complex(kind=16)") == 0
8219 || strcmp (name, "quad complex") == 0
8220 || strcmp (name, "real(kind=16)") == 0
8221 || strcmp (name, "real*16") == 0)
8222 return floatformats_ia64_quad;
8223
8224 return default_floatformat_for_type (gdbarch, name, len);
8225 }
8226
8227 static int
8228 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8229 struct tdesc_arch_data *tdesc_data)
8230 {
8231 const struct target_desc *tdesc = tdep->tdesc;
8232 const struct tdesc_feature *feature_core;
8233
8234 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8235 *feature_avx512, *feature_pkeys, *feature_segments;
8236 int i, num_regs, valid_p;
8237
8238 if (! tdesc_has_registers (tdesc))
8239 return 0;
8240
8241 /* Get core registers. */
8242 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8243 if (feature_core == NULL)
8244 return 0;
8245
8246 /* Get SSE registers. */
8247 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8248
8249 /* Try AVX registers. */
8250 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8251
8252 /* Try MPX registers. */
8253 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8254
8255 /* Try AVX512 registers. */
8256 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8257
8258 /* Try segment base registers. */
8259 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8260
8261 /* Try PKEYS */
8262 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8263
8264 valid_p = 1;
8265
8266 /* The XCR0 bits. */
8267 if (feature_avx512)
8268 {
8269 /* AVX512 register description requires AVX register description. */
8270 if (!feature_avx)
8271 return 0;
8272
8273 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8274
8275 /* It may have been set by OSABI initialization function. */
8276 if (tdep->k0_regnum < 0)
8277 {
8278 tdep->k_register_names = i386_k_names;
8279 tdep->k0_regnum = I386_K0_REGNUM;
8280 }
8281
8282 for (i = 0; i < I387_NUM_K_REGS; i++)
8283 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8284 tdep->k0_regnum + i,
8285 i386_k_names[i]);
8286
8287 if (tdep->num_zmm_regs == 0)
8288 {
8289 tdep->zmmh_register_names = i386_zmmh_names;
8290 tdep->num_zmm_regs = 8;
8291 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8292 }
8293
8294 for (i = 0; i < tdep->num_zmm_regs; i++)
8295 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8296 tdep->zmm0h_regnum + i,
8297 tdep->zmmh_register_names[i]);
8298
8299 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8300 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8301 tdep->xmm16_regnum + i,
8302 tdep->xmm_avx512_register_names[i]);
8303
8304 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8305 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8306 tdep->ymm16h_regnum + i,
8307 tdep->ymm16h_register_names[i]);
8308 }
8309 if (feature_avx)
8310 {
8311 /* AVX register description requires SSE register description. */
8312 if (!feature_sse)
8313 return 0;
8314
8315 if (!feature_avx512)
8316 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8317
8318 /* It may have been set by OSABI initialization function. */
8319 if (tdep->num_ymm_regs == 0)
8320 {
8321 tdep->ymmh_register_names = i386_ymmh_names;
8322 tdep->num_ymm_regs = 8;
8323 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8324 }
8325
8326 for (i = 0; i < tdep->num_ymm_regs; i++)
8327 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8328 tdep->ymm0h_regnum + i,
8329 tdep->ymmh_register_names[i]);
8330 }
8331 else if (feature_sse)
8332 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8333 else
8334 {
8335 tdep->xcr0 = X86_XSTATE_X87_MASK;
8336 tdep->num_xmm_regs = 0;
8337 }
8338
8339 num_regs = tdep->num_core_regs;
8340 for (i = 0; i < num_regs; i++)
8341 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8342 tdep->register_names[i]);
8343
8344 if (feature_sse)
8345 {
8346 /* Need to include %mxcsr, so add one. */
8347 num_regs += tdep->num_xmm_regs + 1;
8348 for (; i < num_regs; i++)
8349 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8350 tdep->register_names[i]);
8351 }
8352
8353 if (feature_mpx)
8354 {
8355 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8356
8357 if (tdep->bnd0r_regnum < 0)
8358 {
8359 tdep->mpx_register_names = i386_mpx_names;
8360 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8361 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8362 }
8363
8364 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8365 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8366 I387_BND0R_REGNUM (tdep) + i,
8367 tdep->mpx_register_names[i]);
8368 }
8369
8370 if (feature_segments)
8371 {
8372 if (tdep->fsbase_regnum < 0)
8373 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8374 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8375 tdep->fsbase_regnum, "fs_base");
8376 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8377 tdep->fsbase_regnum + 1, "gs_base");
8378 }
8379
8380 if (feature_pkeys)
8381 {
8382 tdep->xcr0 |= X86_XSTATE_PKRU;
8383 if (tdep->pkru_regnum < 0)
8384 {
8385 tdep->pkeys_register_names = i386_pkeys_names;
8386 tdep->pkru_regnum = I386_PKRU_REGNUM;
8387 tdep->num_pkeys_regs = 1;
8388 }
8389
8390 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8391 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8392 I387_PKRU_REGNUM (tdep) + i,
8393 tdep->pkeys_register_names[i]);
8394 }
8395
8396 return valid_p;
8397 }
8398
8399 \f
8400
8401 /* Implement the type_align gdbarch function. */
8402
8403 static ULONGEST
8404 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8405 {
8406 type = check_typedef (type);
8407
8408 if (gdbarch_ptr_bit (gdbarch) == 32)
8409 {
8410 if ((type->code () == TYPE_CODE_INT
8411 || type->code () == TYPE_CODE_FLT)
8412 && TYPE_LENGTH (type) > 4)
8413 return 4;
8414
8415 /* Handle x86's funny long double. */
8416 if (type->code () == TYPE_CODE_FLT
8417 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8418 return 4;
8419 }
8420
8421 return 0;
8422 }
8423
8424 \f
8425 /* Note: This is called for both i386 and amd64. */
8426
8427 static struct gdbarch *
8428 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8429 {
8430 struct gdbarch_tdep *tdep;
8431 struct gdbarch *gdbarch;
8432 const struct target_desc *tdesc;
8433 int mm0_regnum;
8434 int ymm0_regnum;
8435 int bnd0_regnum;
8436 int num_bnd_cooked;
8437
8438 /* If there is already a candidate, use it. */
8439 arches = gdbarch_list_lookup_by_info (arches, &info);
8440 if (arches != NULL)
8441 return arches->gdbarch;
8442
8443 /* Allocate space for the new architecture. Assume i386 for now. */
8444 tdep = XCNEW (struct gdbarch_tdep);
8445 gdbarch = gdbarch_alloc (&info, tdep);
8446
8447 /* General-purpose registers. */
8448 tdep->gregset_reg_offset = NULL;
8449 tdep->gregset_num_regs = I386_NUM_GREGS;
8450 tdep->sizeof_gregset = 0;
8451
8452 /* Floating-point registers. */
8453 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8454 tdep->fpregset = &i386_fpregset;
8455
8456 /* The default settings include the FPU registers, the MMX registers
8457 and the SSE registers. This can be overridden for a specific ABI
8458 by adjusting the members `st0_regnum', `mm0_regnum' and
8459 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8460 will show up in the output of "info all-registers". */
8461
8462 tdep->st0_regnum = I386_ST0_REGNUM;
8463
8464 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8465 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8466
8467 tdep->jb_pc_offset = -1;
8468 tdep->struct_return = pcc_struct_return;
8469 tdep->sigtramp_start = 0;
8470 tdep->sigtramp_end = 0;
8471 tdep->sigtramp_p = i386_sigtramp_p;
8472 tdep->sigcontext_addr = NULL;
8473 tdep->sc_reg_offset = NULL;
8474 tdep->sc_pc_offset = -1;
8475 tdep->sc_sp_offset = -1;
8476
8477 tdep->xsave_xcr0_offset = -1;
8478
8479 tdep->record_regmap = i386_record_regmap;
8480
8481 set_gdbarch_type_align (gdbarch, i386_type_align);
8482
8483 /* The format used for `long double' on almost all i386 targets is
8484 the i387 extended floating-point format. In fact, of all targets
8485 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8486 on having a `long double' that's not `long' at all. */
8487 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8488
8489 /* Although the i387 extended floating-point has only 80 significant
8490 bits, a `long double' actually takes up 96, probably to enforce
8491 alignment. */
8492 set_gdbarch_long_double_bit (gdbarch, 96);
8493
8494 /* Support of bfloat16 format. */
8495 set_gdbarch_bfloat16_format (gdbarch, floatformats_bfloat16);
8496
8497 /* Support for floating-point data type variants. */
8498 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8499
8500 /* Register numbers of various important registers. */
8501 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8502 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8503 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8504 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8505
8506 /* NOTE: kettenis/20040418: GCC does have two possible register
8507 numbering schemes on the i386: dbx and SVR4. These schemes
8508 differ in how they number %ebp, %esp, %eflags, and the
8509 floating-point registers, and are implemented by the arrays
8510 dbx_register_map[] and svr4_dbx_register_map in
8511 gcc/config/i386.c. GCC also defines a third numbering scheme in
8512 gcc/config/i386.c, which it designates as the "default" register
8513 map used in 64bit mode. This last register numbering scheme is
8514 implemented in dbx64_register_map, and is used for AMD64; see
8515 amd64-tdep.c.
8516
8517 Currently, each GCC i386 target always uses the same register
8518 numbering scheme across all its supported debugging formats
8519 i.e. SDB (COFF), stabs and DWARF 2. This is because
8520 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8521 DBX_REGISTER_NUMBER macro which is defined by each target's
8522 respective config header in a manner independent of the requested
8523 output debugging format.
8524
8525 This does not match the arrangement below, which presumes that
8526 the SDB and stabs numbering schemes differ from the DWARF and
8527 DWARF 2 ones. The reason for this arrangement is that it is
8528 likely to get the numbering scheme for the target's
8529 default/native debug format right. For targets where GCC is the
8530 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8531 targets where the native toolchain uses a different numbering
8532 scheme for a particular debug format (stabs-in-ELF on Solaris)
8533 the defaults below will have to be overridden, like
8534 i386_elf_init_abi() does. */
8535
8536 /* Use the dbx register numbering scheme for stabs and COFF. */
8537 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8538 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8539
8540 /* Use the SVR4 register numbering scheme for DWARF 2. */
8541 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8542
8543 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8544 be in use on any of the supported i386 targets. */
8545
8546 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8547
8548 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8549
8550 /* Call dummy code. */
8551 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8552 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8553 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8554 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8555
8556 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8557 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8558 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8559
8560 set_gdbarch_return_value (gdbarch, i386_return_value);
8561
8562 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8563
8564 /* Stack grows downward. */
8565 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8566
8567 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8568 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8569
8570 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8571 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8572
8573 set_gdbarch_frame_args_skip (gdbarch, 8);
8574
8575 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8576
8577 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8578
8579 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8580
8581 /* Add the i386 register groups. */
8582 i386_add_reggroups (gdbarch);
8583 tdep->register_reggroup_p = i386_register_reggroup_p;
8584
8585 /* Helper for function argument information. */
8586 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8587
8588 /* Hook the function epilogue frame unwinder. This unwinder is
8589 appended to the list first, so that it supercedes the DWARF
8590 unwinder in function epilogues (where the DWARF unwinder
8591 currently fails). */
8592 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8593
8594 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8595 to the list before the prologue-based unwinders, so that DWARF
8596 CFI info will be used if it is available. */
8597 dwarf2_append_unwinders (gdbarch);
8598
8599 frame_base_set_default (gdbarch, &i386_frame_base);
8600
8601 /* Pseudo registers may be changed by amd64_init_abi. */
8602 set_gdbarch_pseudo_register_read_value (gdbarch,
8603 i386_pseudo_register_read_value);
8604 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8605 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8606 i386_ax_pseudo_register_collect);
8607
8608 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8609 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8610
8611 /* Override the normal target description method to make the AVX
8612 upper halves anonymous. */
8613 set_gdbarch_register_name (gdbarch, i386_register_name);
8614
8615 /* Even though the default ABI only includes general-purpose registers,
8616 floating-point registers and the SSE registers, we have to leave a
8617 gap for the upper AVX, MPX and AVX512 registers. */
8618 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
8619
8620 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8621
8622 /* Get the x86 target description from INFO. */
8623 tdesc = info.target_desc;
8624 if (! tdesc_has_registers (tdesc))
8625 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
8626 tdep->tdesc = tdesc;
8627
8628 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8629 tdep->register_names = i386_register_names;
8630
8631 /* No upper YMM registers. */
8632 tdep->ymmh_register_names = NULL;
8633 tdep->ymm0h_regnum = -1;
8634
8635 /* No upper ZMM registers. */
8636 tdep->zmmh_register_names = NULL;
8637 tdep->zmm0h_regnum = -1;
8638
8639 /* No high XMM registers. */
8640 tdep->xmm_avx512_register_names = NULL;
8641 tdep->xmm16_regnum = -1;
8642
8643 /* No upper YMM16-31 registers. */
8644 tdep->ymm16h_register_names = NULL;
8645 tdep->ymm16h_regnum = -1;
8646
8647 tdep->num_byte_regs = 8;
8648 tdep->num_word_regs = 8;
8649 tdep->num_dword_regs = 0;
8650 tdep->num_mmx_regs = 8;
8651 tdep->num_ymm_regs = 0;
8652
8653 /* No MPX registers. */
8654 tdep->bnd0r_regnum = -1;
8655 tdep->bndcfgu_regnum = -1;
8656
8657 /* No AVX512 registers. */
8658 tdep->k0_regnum = -1;
8659 tdep->num_zmm_regs = 0;
8660 tdep->num_ymm_avx512_regs = 0;
8661 tdep->num_xmm_avx512_regs = 0;
8662
8663 /* No PKEYS registers */
8664 tdep->pkru_regnum = -1;
8665 tdep->num_pkeys_regs = 0;
8666
8667 /* No segment base registers. */
8668 tdep->fsbase_regnum = -1;
8669
8670 tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();
8671
8672 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8673
8674 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8675
8676 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8677 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8678 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8679
8680 /* Hook in ABI-specific overrides, if they have been registered.
8681 Note: If INFO specifies a 64 bit arch, this is where we turn
8682 a 32-bit i386 into a 64-bit amd64. */
8683 info.tdesc_data = tdesc_data.get ();
8684 gdbarch_init_osabi (info, gdbarch);
8685
8686 if (!i386_validate_tdesc_p (tdep, tdesc_data.get ()))
8687 {
8688 xfree (tdep);
8689 gdbarch_free (gdbarch);
8690 return NULL;
8691 }
8692
8693 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8694
8695 /* Wire in pseudo registers. Number of pseudo registers may be
8696 changed. */
8697 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8698 + tdep->num_word_regs
8699 + tdep->num_dword_regs
8700 + tdep->num_mmx_regs
8701 + tdep->num_ymm_regs
8702 + num_bnd_cooked
8703 + tdep->num_ymm_avx512_regs
8704 + tdep->num_zmm_regs));
8705
8706 /* Target description may be changed. */
8707 tdesc = tdep->tdesc;
8708
8709 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
8710
8711 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8712 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8713
8714 /* Make %al the first pseudo-register. */
8715 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8716 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8717
8718 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8719 if (tdep->num_dword_regs)
8720 {
8721 /* Support dword pseudo-register if it hasn't been disabled. */
8722 tdep->eax_regnum = ymm0_regnum;
8723 ymm0_regnum += tdep->num_dword_regs;
8724 }
8725 else
8726 tdep->eax_regnum = -1;
8727
8728 mm0_regnum = ymm0_regnum;
8729 if (tdep->num_ymm_regs)
8730 {
8731 /* Support YMM pseudo-register if it is available. */
8732 tdep->ymm0_regnum = ymm0_regnum;
8733 mm0_regnum += tdep->num_ymm_regs;
8734 }
8735 else
8736 tdep->ymm0_regnum = -1;
8737
8738 if (tdep->num_ymm_avx512_regs)
8739 {
8740 /* Support YMM16-31 pseudo registers if available. */
8741 tdep->ymm16_regnum = mm0_regnum;
8742 mm0_regnum += tdep->num_ymm_avx512_regs;
8743 }
8744 else
8745 tdep->ymm16_regnum = -1;
8746
8747 if (tdep->num_zmm_regs)
8748 {
8749 /* Support ZMM pseudo-register if it is available. */
8750 tdep->zmm0_regnum = mm0_regnum;
8751 mm0_regnum += tdep->num_zmm_regs;
8752 }
8753 else
8754 tdep->zmm0_regnum = -1;
8755
8756 bnd0_regnum = mm0_regnum;
8757 if (tdep->num_mmx_regs != 0)
8758 {
8759 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8760 tdep->mm0_regnum = mm0_regnum;
8761 bnd0_regnum += tdep->num_mmx_regs;
8762 }
8763 else
8764 tdep->mm0_regnum = -1;
8765
8766 if (tdep->bnd0r_regnum > 0)
8767 tdep->bnd0_regnum = bnd0_regnum;
8768 else
8769 tdep-> bnd0_regnum = -1;
8770
8771 /* Hook in the legacy prologue-based unwinders last (fallback). */
8772 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8773 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8774 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8775
8776 /* If we have a register mapping, enable the generic core file
8777 support, unless it has already been enabled. */
8778 if (tdep->gregset_reg_offset
8779 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8780 set_gdbarch_iterate_over_regset_sections
8781 (gdbarch, i386_iterate_over_regset_sections);
8782
8783 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8784 i386_fast_tracepoint_valid_at);
8785
8786 return gdbarch;
8787 }
8788
8789 \f
8790
8791 /* Return the target description for a specified XSAVE feature mask. */
8792
8793 const struct target_desc *
8794 i386_target_description (uint64_t xcr0, bool segments)
8795 {
8796 static target_desc *i386_tdescs \
8797 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8798 target_desc **tdesc;
8799
8800 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8801 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8802 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8803 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8804 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8805 [segments ? 1 : 0];
8806
8807 if (*tdesc == NULL)
8808 *tdesc = i386_create_target_description (xcr0, false, segments);
8809
8810 return *tdesc;
8811 }
8812
8813 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8814
8815 /* Find the bound directory base address. */
8816
8817 static unsigned long
8818 i386_mpx_bd_base (void)
8819 {
8820 struct regcache *rcache;
8821 struct gdbarch_tdep *tdep;
8822 ULONGEST ret;
8823 enum register_status regstatus;
8824
8825 rcache = get_current_regcache ();
8826 tdep = gdbarch_tdep (rcache->arch ());
8827
8828 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8829
8830 if (regstatus != REG_VALID)
8831 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8832
8833 return ret & MPX_BASE_MASK;
8834 }
8835
8836 int
8837 i386_mpx_enabled (void)
8838 {
8839 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8840 const struct target_desc *tdesc = tdep->tdesc;
8841
8842 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8843 }
8844
8845 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8846 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8847 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8848 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8849
8850 /* Find the bound table entry given the pointer location and the base
8851 address of the table. */
8852
8853 static CORE_ADDR
8854 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8855 {
8856 CORE_ADDR offset1;
8857 CORE_ADDR offset2;
8858 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8859 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8860 CORE_ADDR bd_entry_addr;
8861 CORE_ADDR bt_addr;
8862 CORE_ADDR bd_entry;
8863 struct gdbarch *gdbarch = get_current_arch ();
8864 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8865
8866
8867 if (gdbarch_ptr_bit (gdbarch) == 64)
8868 {
8869 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8870 bd_ptr_r_shift = 20;
8871 bd_ptr_l_shift = 3;
8872 bt_select_r_shift = 3;
8873 bt_select_l_shift = 5;
8874 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8875
8876 if ( sizeof (CORE_ADDR) == 4)
8877 error (_("bound table examination not supported\
8878 for 64-bit process with 32-bit GDB"));
8879 }
8880 else
8881 {
8882 mpx_bd_mask = MPX_BD_MASK_32;
8883 bd_ptr_r_shift = 12;
8884 bd_ptr_l_shift = 2;
8885 bt_select_r_shift = 2;
8886 bt_select_l_shift = 4;
8887 bt_mask = MPX_BT_MASK_32;
8888 }
8889
8890 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8891 bd_entry_addr = bd_base + offset1;
8892 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8893
8894 if ((bd_entry & 0x1) == 0)
8895 error (_("Invalid bounds directory entry at %s."),
8896 paddress (get_current_arch (), bd_entry_addr));
8897
8898 /* Clearing status bit. */
8899 bd_entry--;
8900 bt_addr = bd_entry & ~bt_select_r_shift;
8901 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8902
8903 return bt_addr + offset2;
8904 }
8905
8906 /* Print routine for the mpx bounds. */
8907
8908 static void
8909 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8910 {
8911 struct ui_out *uiout = current_uiout;
8912 LONGEST size;
8913 struct gdbarch *gdbarch = get_current_arch ();
8914 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8915 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8916
8917 if (bounds_in_map == 1)
8918 {
8919 uiout->text ("Null bounds on map:");
8920 uiout->text (" pointer value = ");
8921 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8922 uiout->text (".");
8923 uiout->text ("\n");
8924 }
8925 else
8926 {
8927 uiout->text ("{lbound = ");
8928 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8929 uiout->text (", ubound = ");
8930
8931 /* The upper bound is stored in 1's complement. */
8932 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8933 uiout->text ("}: pointer value = ");
8934 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8935
8936 if (gdbarch_ptr_bit (gdbarch) == 64)
8937 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8938 else
8939 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8940
8941 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8942 -1 represents in this sense full memory access, and there is no need
8943 one to the size. */
8944
8945 size = (size > -1 ? size + 1 : size);
8946 uiout->text (", size = ");
8947 uiout->field_string ("size", plongest (size));
8948
8949 uiout->text (", metadata = ");
8950 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8951 uiout->text ("\n");
8952 }
8953 }
8954
8955 /* Implement the command "show mpx bound". */
8956
8957 static void
8958 i386_mpx_info_bounds (const char *args, int from_tty)
8959 {
8960 CORE_ADDR bd_base = 0;
8961 CORE_ADDR addr;
8962 CORE_ADDR bt_entry_addr = 0;
8963 CORE_ADDR bt_entry[4];
8964 int i;
8965 struct gdbarch *gdbarch = get_current_arch ();
8966 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8967
8968 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8969 || !i386_mpx_enabled ())
8970 {
8971 printf_unfiltered (_("Intel Memory Protection Extensions not "
8972 "supported on this target.\n"));
8973 return;
8974 }
8975
8976 if (args == NULL)
8977 {
8978 printf_unfiltered (_("Address of pointer variable expected.\n"));
8979 return;
8980 }
8981
8982 addr = parse_and_eval_address (args);
8983
8984 bd_base = i386_mpx_bd_base ();
8985 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8986
8987 memset (bt_entry, 0, sizeof (bt_entry));
8988
8989 for (i = 0; i < 4; i++)
8990 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8991 + i * TYPE_LENGTH (data_ptr_type),
8992 data_ptr_type);
8993
8994 i386_mpx_print_bounds (bt_entry);
8995 }
8996
8997 /* Implement the command "set mpx bound". */
8998
8999 static void
9000 i386_mpx_set_bounds (const char *args, int from_tty)
9001 {
9002 CORE_ADDR bd_base = 0;
9003 CORE_ADDR addr, lower, upper;
9004 CORE_ADDR bt_entry_addr = 0;
9005 CORE_ADDR bt_entry[2];
9006 const char *input = args;
9007 int i;
9008 struct gdbarch *gdbarch = get_current_arch ();
9009 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9010 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
9011
9012 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
9013 || !i386_mpx_enabled ())
9014 error (_("Intel Memory Protection Extensions not supported\
9015 on this target."));
9016
9017 if (args == NULL)
9018 error (_("Pointer value expected."));
9019
9020 addr = value_as_address (parse_to_comma_and_eval (&input));
9021
9022 if (input[0] == ',')
9023 ++input;
9024 if (input[0] == '\0')
9025 error (_("wrong number of arguments: missing lower and upper bound."));
9026 lower = value_as_address (parse_to_comma_and_eval (&input));
9027
9028 if (input[0] == ',')
9029 ++input;
9030 if (input[0] == '\0')
9031 error (_("Wrong number of arguments; Missing upper bound."));
9032 upper = value_as_address (parse_to_comma_and_eval (&input));
9033
9034 bd_base = i386_mpx_bd_base ();
9035 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9036 for (i = 0; i < 2; i++)
9037 bt_entry[i] = read_memory_typed_address (bt_entry_addr
9038 + i * TYPE_LENGTH (data_ptr_type),
9039 data_ptr_type);
9040 bt_entry[0] = (uint64_t) lower;
9041 bt_entry[1] = ~(uint64_t) upper;
9042
9043 for (i = 0; i < 2; i++)
9044 write_memory_unsigned_integer (bt_entry_addr
9045 + i * TYPE_LENGTH (data_ptr_type),
9046 TYPE_LENGTH (data_ptr_type), byte_order,
9047 bt_entry[i]);
9048 }
9049
9050 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9051
9052 void _initialize_i386_tdep ();
9053 void
9054 _initialize_i386_tdep ()
9055 {
9056 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9057
9058 /* Add the variable that controls the disassembly flavor. */
9059 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9060 &disassembly_flavor, _("\
9061 Set the disassembly flavor."), _("\
9062 Show the disassembly flavor."), _("\
9063 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9064 NULL,
9065 NULL, /* FIXME: i18n: */
9066 &setlist, &showlist);
9067
9068 /* Add the variable that controls the convention for returning
9069 structs. */
9070 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9071 &struct_convention, _("\
9072 Set the convention for returning small structs."), _("\
9073 Show the convention for returning small structs."), _("\
9074 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9075 is \"default\"."),
9076 NULL,
9077 NULL, /* FIXME: i18n: */
9078 &setlist, &showlist);
9079
9080 /* Add "mpx" prefix for the set commands. */
9081
9082 add_basic_prefix_cmd ("mpx", class_support, _("\
9083 Set Intel Memory Protection Extensions specific variables."),
9084 &mpx_set_cmdlist, "set mpx ",
9085 0 /* allow-unknown */, &setlist);
9086
9087 /* Add "mpx" prefix for the show commands. */
9088
9089 add_show_prefix_cmd ("mpx", class_support, _("\
9090 Show Intel Memory Protection Extensions specific variables."),
9091 &mpx_show_cmdlist, "show mpx ",
9092 0 /* allow-unknown */, &showlist);
9093
9094 /* Add "bound" command for the show mpx commands list. */
9095
9096 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9097 "Show the memory bounds for a given array/pointer storage\
9098 in the bound table.",
9099 &mpx_show_cmdlist);
9100
9101 /* Add "bound" command for the set mpx commands list. */
9102
9103 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9104 "Set the memory bounds for a given array/pointer storage\
9105 in the bound table.",
9106 &mpx_set_cmdlist);
9107
9108 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9109 i386_svr4_init_abi);
9110
9111 /* Initialize the i386-specific register groups. */
9112 i386_init_reggroups ();
9113
9114 /* Tell remote stub that we support XML target description. */
9115 register_remote_support_xml ("i386");
9116 }