]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/i386-tdep.c
gdb: move store/extract integer functions to extract-store-integer.{c,h}
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2024 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "extract-store-integer.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2/frame.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "target-float.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "gdbsupport/x86-xstate.h"
50 #include "x86-tdep.h"
51 #include "expop.h"
52
53 #include "record.h"
54 #include "record-full.h"
55 #include "target-descriptions.h"
56 #include "arch/i386.h"
57
58 #include "ax.h"
59 #include "ax-gdb.h"
60
61 #include "stap-probe.h"
62 #include "user-regs.h"
63 #include "cli/cli-utils.h"
64 #include "expression.h"
65 #include "parser-defs.h"
66 #include <ctype.h>
67 #include <algorithm>
68 #include <unordered_set>
69 #include "producer.h"
70 #include "infcall.h"
71 #include "maint.h"
72
73 /* Register names. */
74
75 static const char * const i386_register_names[] =
76 {
77 "eax", "ecx", "edx", "ebx",
78 "esp", "ebp", "esi", "edi",
79 "eip", "eflags", "cs", "ss",
80 "ds", "es", "fs", "gs",
81 "st0", "st1", "st2", "st3",
82 "st4", "st5", "st6", "st7",
83 "fctrl", "fstat", "ftag", "fiseg",
84 "fioff", "foseg", "fooff", "fop",
85 "xmm0", "xmm1", "xmm2", "xmm3",
86 "xmm4", "xmm5", "xmm6", "xmm7",
87 "mxcsr"
88 };
89
90 static const char * const i386_zmm_names[] =
91 {
92 "zmm0", "zmm1", "zmm2", "zmm3",
93 "zmm4", "zmm5", "zmm6", "zmm7"
94 };
95
96 static const char * const i386_zmmh_names[] =
97 {
98 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
99 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
100 };
101
102 static const char * const i386_k_names[] =
103 {
104 "k0", "k1", "k2", "k3",
105 "k4", "k5", "k6", "k7"
106 };
107
108 static const char * const i386_ymm_names[] =
109 {
110 "ymm0", "ymm1", "ymm2", "ymm3",
111 "ymm4", "ymm5", "ymm6", "ymm7",
112 };
113
114 static const char * const i386_ymmh_names[] =
115 {
116 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
117 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
118 };
119
120 static const char * const i386_mpx_names[] =
121 {
122 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
123 };
124
125 static const char * const i386_pkeys_names[] =
126 {
127 "pkru"
128 };
129
130 /* Register names for MPX pseudo-registers. */
131
132 static const char * const i386_bnd_names[] =
133 {
134 "bnd0", "bnd1", "bnd2", "bnd3"
135 };
136
137 /* Register names for MMX pseudo-registers. */
138
139 static const char * const i386_mmx_names[] =
140 {
141 "mm0", "mm1", "mm2", "mm3",
142 "mm4", "mm5", "mm6", "mm7"
143 };
144
145 /* Register names for byte pseudo-registers. */
146
147 static const char * const i386_byte_names[] =
148 {
149 "al", "cl", "dl", "bl",
150 "ah", "ch", "dh", "bh"
151 };
152
153 /* Register names for word pseudo-registers. */
154
155 static const char * const i386_word_names[] =
156 {
157 "ax", "cx", "dx", "bx",
158 "", "bp", "si", "di"
159 };
160
161 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
162 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
163 we have 16 upper ZMM regs that have to be handled differently. */
164
165 const int num_lower_zmm_regs = 16;
166
167 /* MMX register? */
168
169 static int
170 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
171 {
172 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
173 int mm0_regnum = tdep->mm0_regnum;
174
175 if (mm0_regnum < 0)
176 return 0;
177
178 regnum -= mm0_regnum;
179 return regnum >= 0 && regnum < tdep->num_mmx_regs;
180 }
181
182 /* Byte register? */
183
184 int
185 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
186 {
187 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
188
189 regnum -= tdep->al_regnum;
190 return regnum >= 0 && regnum < tdep->num_byte_regs;
191 }
192
193 /* Word register? */
194
195 int
196 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
197 {
198 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
199
200 regnum -= tdep->ax_regnum;
201 return regnum >= 0 && regnum < tdep->num_word_regs;
202 }
203
204 /* Dword register? */
205
206 int
207 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
208 {
209 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
210 int eax_regnum = tdep->eax_regnum;
211
212 if (eax_regnum < 0)
213 return 0;
214
215 regnum -= eax_regnum;
216 return regnum >= 0 && regnum < tdep->num_dword_regs;
217 }
218
219 /* AVX512 register? */
220
221 int
222 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
223 {
224 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
225 int zmm0h_regnum = tdep->zmm0h_regnum;
226
227 if (zmm0h_regnum < 0)
228 return 0;
229
230 regnum -= zmm0h_regnum;
231 return regnum >= 0 && regnum < tdep->num_zmm_regs;
232 }
233
234 int
235 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
236 {
237 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
238 int zmm0_regnum = tdep->zmm0_regnum;
239
240 if (zmm0_regnum < 0)
241 return 0;
242
243 regnum -= zmm0_regnum;
244 return regnum >= 0 && regnum < tdep->num_zmm_regs;
245 }
246
247 int
248 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
249 {
250 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
251 int k0_regnum = tdep->k0_regnum;
252
253 if (k0_regnum < 0)
254 return 0;
255
256 regnum -= k0_regnum;
257 return regnum >= 0 && regnum < I387_NUM_K_REGS;
258 }
259
260 static int
261 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
262 {
263 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
264 int ymm0h_regnum = tdep->ymm0h_regnum;
265
266 if (ymm0h_regnum < 0)
267 return 0;
268
269 regnum -= ymm0h_regnum;
270 return regnum >= 0 && regnum < tdep->num_ymm_regs;
271 }
272
273 /* AVX register? */
274
275 int
276 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
277 {
278 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
279 int ymm0_regnum = tdep->ymm0_regnum;
280
281 if (ymm0_regnum < 0)
282 return 0;
283
284 regnum -= ymm0_regnum;
285 return regnum >= 0 && regnum < tdep->num_ymm_regs;
286 }
287
288 static int
289 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
290 {
291 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
292 int ymm16h_regnum = tdep->ymm16h_regnum;
293
294 if (ymm16h_regnum < 0)
295 return 0;
296
297 regnum -= ymm16h_regnum;
298 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
299 }
300
301 int
302 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
303 {
304 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
305 int ymm16_regnum = tdep->ymm16_regnum;
306
307 if (ymm16_regnum < 0)
308 return 0;
309
310 regnum -= ymm16_regnum;
311 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
312 }
313
314 /* BND register? */
315
316 int
317 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
318 {
319 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
320 int bnd0_regnum = tdep->bnd0_regnum;
321
322 if (bnd0_regnum < 0)
323 return 0;
324
325 regnum -= bnd0_regnum;
326 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
327 }
328
329 /* SSE register? */
330
331 int
332 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
333 {
334 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
335 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
336
337 if (num_xmm_regs == 0)
338 return 0;
339
340 regnum -= I387_XMM0_REGNUM (tdep);
341 return regnum >= 0 && regnum < num_xmm_regs;
342 }
343
344 /* XMM_512 register? */
345
346 int
347 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
348 {
349 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
350 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
351
352 if (num_xmm_avx512_regs == 0)
353 return 0;
354
355 regnum -= I387_XMM16_REGNUM (tdep);
356 return regnum >= 0 && regnum < num_xmm_avx512_regs;
357 }
358
359 static int
360 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
361 {
362 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
363
364 if (I387_NUM_XMM_REGS (tdep) == 0)
365 return 0;
366
367 return (regnum == I387_MXCSR_REGNUM (tdep));
368 }
369
370 /* FP register? */
371
372 int
373 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
374 {
375 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
376
377 if (I387_ST0_REGNUM (tdep) < 0)
378 return 0;
379
380 return (I387_ST0_REGNUM (tdep) <= regnum
381 && regnum < I387_FCTRL_REGNUM (tdep));
382 }
383
384 int
385 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
386 {
387 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
388
389 if (I387_ST0_REGNUM (tdep) < 0)
390 return 0;
391
392 return (I387_FCTRL_REGNUM (tdep) <= regnum
393 && regnum < I387_XMM0_REGNUM (tdep));
394 }
395
396 /* BNDr (raw) register? */
397
398 static int
399 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
400 {
401 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
402
403 if (I387_BND0R_REGNUM (tdep) < 0)
404 return 0;
405
406 regnum -= tdep->bnd0r_regnum;
407 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
408 }
409
410 /* BND control register? */
411
412 static int
413 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
414 {
415 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
416
417 if (I387_BNDCFGU_REGNUM (tdep) < 0)
418 return 0;
419
420 regnum -= I387_BNDCFGU_REGNUM (tdep);
421 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
422 }
423
424 /* PKRU register? */
425
426 bool
427 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
428 {
429 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
430 int pkru_regnum = tdep->pkru_regnum;
431
432 if (pkru_regnum < 0)
433 return false;
434
435 regnum -= pkru_regnum;
436 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
437 }
438
439 /* Return the name of register REGNUM, or the empty string if it is
440 an anonymous register. */
441
442 static const char *
443 i386_register_name (struct gdbarch *gdbarch, int regnum)
444 {
445 /* Hide the upper YMM registers. */
446 if (i386_ymmh_regnum_p (gdbarch, regnum))
447 return "";
448
449 /* Hide the upper YMM16-31 registers. */
450 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
451 return "";
452
453 /* Hide the upper ZMM registers. */
454 if (i386_zmmh_regnum_p (gdbarch, regnum))
455 return "";
456
457 return tdesc_register_name (gdbarch, regnum);
458 }
459
460 /* Return the name of register REGNUM. */
461
462 const char *
463 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
464 {
465 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
466 if (i386_bnd_regnum_p (gdbarch, regnum))
467 return i386_bnd_names[regnum - tdep->bnd0_regnum];
468 if (i386_mmx_regnum_p (gdbarch, regnum))
469 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
470 else if (i386_ymm_regnum_p (gdbarch, regnum))
471 return i386_ymm_names[regnum - tdep->ymm0_regnum];
472 else if (i386_zmm_regnum_p (gdbarch, regnum))
473 return i386_zmm_names[regnum - tdep->zmm0_regnum];
474 else if (i386_byte_regnum_p (gdbarch, regnum))
475 return i386_byte_names[regnum - tdep->al_regnum];
476 else if (i386_word_regnum_p (gdbarch, regnum))
477 return i386_word_names[regnum - tdep->ax_regnum];
478
479 internal_error (_("invalid regnum"));
480 }
481
482 /* Convert a dbx register number REG to the appropriate register
483 number used by GDB. */
484
485 static int
486 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
487 {
488 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
489
490 /* This implements what GCC calls the "default" register map
491 (dbx_register_map[]). */
492
493 if (reg >= 0 && reg <= 7)
494 {
495 /* General-purpose registers. The debug info calls %ebp
496 register 4, and %esp register 5. */
497 if (reg == 4)
498 return 5;
499 else if (reg == 5)
500 return 4;
501 else return reg;
502 }
503 else if (reg >= 12 && reg <= 19)
504 {
505 /* Floating-point registers. */
506 return reg - 12 + I387_ST0_REGNUM (tdep);
507 }
508 else if (reg >= 21 && reg <= 28)
509 {
510 /* SSE registers. */
511 int ymm0_regnum = tdep->ymm0_regnum;
512
513 if (ymm0_regnum >= 0
514 && i386_xmm_regnum_p (gdbarch, reg))
515 return reg - 21 + ymm0_regnum;
516 else
517 return reg - 21 + I387_XMM0_REGNUM (tdep);
518 }
519 else if (reg >= 29 && reg <= 36)
520 {
521 /* MMX registers. */
522 return reg - 29 + I387_MM0_REGNUM (tdep);
523 }
524
525 /* This will hopefully provoke a warning. */
526 return gdbarch_num_cooked_regs (gdbarch);
527 }
528
529 /* Convert SVR4 DWARF register number REG to the appropriate register number
530 used by GDB. */
531
532 static int
533 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
534 {
535 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
536
537 /* This implements the GCC register map that tries to be compatible
538 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
539
540 /* The SVR4 register numbering includes %eip and %eflags, and
541 numbers the floating point registers differently. */
542 if (reg >= 0 && reg <= 9)
543 {
544 /* General-purpose registers. */
545 return reg;
546 }
547 else if (reg >= 11 && reg <= 18)
548 {
549 /* Floating-point registers. */
550 return reg - 11 + I387_ST0_REGNUM (tdep);
551 }
552 else if (reg >= 21 && reg <= 36)
553 {
554 /* The SSE and MMX registers have the same numbers as with dbx. */
555 return i386_dbx_reg_to_regnum (gdbarch, reg);
556 }
557
558 switch (reg)
559 {
560 case 37: return I387_FCTRL_REGNUM (tdep);
561 case 38: return I387_FSTAT_REGNUM (tdep);
562 case 39: return I387_MXCSR_REGNUM (tdep);
563 case 40: return I386_ES_REGNUM;
564 case 41: return I386_CS_REGNUM;
565 case 42: return I386_SS_REGNUM;
566 case 43: return I386_DS_REGNUM;
567 case 44: return I386_FS_REGNUM;
568 case 45: return I386_GS_REGNUM;
569 }
570
571 return -1;
572 }
573
574 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
575 num_regs + num_pseudo_regs for other debug formats. */
576
577 int
578 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
579 {
580 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
581
582 if (regnum == -1)
583 return gdbarch_num_cooked_regs (gdbarch);
584 return regnum;
585 }
586
587 \f
588
589 /* This is the variable that is set with "set disassembly-flavor", and
590 its legitimate values. */
591 static const char att_flavor[] = "att";
592 static const char intel_flavor[] = "intel";
593 static const char *const valid_flavors[] =
594 {
595 att_flavor,
596 intel_flavor,
597 NULL
598 };
599 static const char *disassembly_flavor = att_flavor;
600 \f
601
602 /* Use the program counter to determine the contents and size of a
603 breakpoint instruction. Return a pointer to a string of bytes that
604 encode a breakpoint instruction, store the length of the string in
605 *LEN and optionally adjust *PC to point to the correct memory
606 location for inserting the breakpoint.
607
608 On the i386 we have a single breakpoint that fits in a single byte
609 and can be inserted anywhere.
610
611 This function is 64-bit safe. */
612
613 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
614
615 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
616
617 \f
618 /* Displaced instruction handling. */
619
620 /* Skip the legacy instruction prefixes in INSN.
621 Not all prefixes are valid for any particular insn
622 but we needn't care, the insn will fault if it's invalid.
623 The result is a pointer to the first opcode byte,
624 or NULL if we run off the end of the buffer. */
625
626 static gdb_byte *
627 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
628 {
629 gdb_byte *end = insn + max_len;
630
631 while (insn < end)
632 {
633 switch (*insn)
634 {
635 case DATA_PREFIX_OPCODE:
636 case ADDR_PREFIX_OPCODE:
637 case CS_PREFIX_OPCODE:
638 case DS_PREFIX_OPCODE:
639 case ES_PREFIX_OPCODE:
640 case FS_PREFIX_OPCODE:
641 case GS_PREFIX_OPCODE:
642 case SS_PREFIX_OPCODE:
643 case LOCK_PREFIX_OPCODE:
644 case REPE_PREFIX_OPCODE:
645 case REPNE_PREFIX_OPCODE:
646 ++insn;
647 continue;
648 default:
649 return insn;
650 }
651 }
652
653 return NULL;
654 }
655
656 static int
657 i386_absolute_jmp_p (const gdb_byte *insn)
658 {
659 /* jmp far (absolute address in operand). */
660 if (insn[0] == 0xea)
661 return 1;
662
663 if (insn[0] == 0xff)
664 {
665 /* jump near, absolute indirect (/4). */
666 if ((insn[1] & 0x38) == 0x20)
667 return 1;
668
669 /* jump far, absolute indirect (/5). */
670 if ((insn[1] & 0x38) == 0x28)
671 return 1;
672 }
673
674 return 0;
675 }
676
677 /* Return non-zero if INSN is a jump, zero otherwise. */
678
679 static int
680 i386_jmp_p (const gdb_byte *insn)
681 {
682 /* jump short, relative. */
683 if (insn[0] == 0xeb)
684 return 1;
685
686 /* jump near, relative. */
687 if (insn[0] == 0xe9)
688 return 1;
689
690 return i386_absolute_jmp_p (insn);
691 }
692
693 static int
694 i386_absolute_call_p (const gdb_byte *insn)
695 {
696 /* call far, absolute. */
697 if (insn[0] == 0x9a)
698 return 1;
699
700 if (insn[0] == 0xff)
701 {
702 /* Call near, absolute indirect (/2). */
703 if ((insn[1] & 0x38) == 0x10)
704 return 1;
705
706 /* Call far, absolute indirect (/3). */
707 if ((insn[1] & 0x38) == 0x18)
708 return 1;
709 }
710
711 return 0;
712 }
713
714 static int
715 i386_ret_p (const gdb_byte *insn)
716 {
717 switch (insn[0])
718 {
719 case 0xc2: /* ret near, pop N bytes. */
720 case 0xc3: /* ret near */
721 case 0xca: /* ret far, pop N bytes. */
722 case 0xcb: /* ret far */
723 case 0xcf: /* iret */
724 return 1;
725
726 default:
727 return 0;
728 }
729 }
730
731 static int
732 i386_call_p (const gdb_byte *insn)
733 {
734 if (i386_absolute_call_p (insn))
735 return 1;
736
737 /* call near, relative. */
738 if (insn[0] == 0xe8)
739 return 1;
740
741 return 0;
742 }
743
744 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
745 length in bytes. Otherwise, return zero. */
746
747 static int
748 i386_syscall_p (const gdb_byte *insn, int *lengthp)
749 {
750 /* Is it 'int $0x80'? */
751 if ((insn[0] == 0xcd && insn[1] == 0x80)
752 /* Or is it 'sysenter'? */
753 || (insn[0] == 0x0f && insn[1] == 0x34)
754 /* Or is it 'syscall'? */
755 || (insn[0] == 0x0f && insn[1] == 0x05))
756 {
757 *lengthp = 2;
758 return 1;
759 }
760
761 return 0;
762 }
763
764 /* The gdbarch insn_is_call method. */
765
766 static int
767 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
768 {
769 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
770
771 read_code (addr, buf, I386_MAX_INSN_LEN);
772 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
773
774 return i386_call_p (insn);
775 }
776
777 /* The gdbarch insn_is_ret method. */
778
779 static int
780 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
781 {
782 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
783
784 read_code (addr, buf, I386_MAX_INSN_LEN);
785 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
786
787 return i386_ret_p (insn);
788 }
789
790 /* The gdbarch insn_is_jump method. */
791
792 static int
793 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
794 {
795 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
796
797 read_code (addr, buf, I386_MAX_INSN_LEN);
798 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
799
800 return i386_jmp_p (insn);
801 }
802
803 /* Some kernels may run one past a syscall insn, so we have to cope. */
804
805 displaced_step_copy_insn_closure_up
806 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
807 CORE_ADDR from, CORE_ADDR to,
808 struct regcache *regs)
809 {
810 size_t len = gdbarch_max_insn_length (gdbarch);
811 std::unique_ptr<i386_displaced_step_copy_insn_closure> closure
812 (new i386_displaced_step_copy_insn_closure (len));
813 gdb_byte *buf = closure->buf.data ();
814
815 read_memory (from, buf, len);
816
817 /* GDB may get control back after the insn after the syscall.
818 Presumably this is a kernel bug.
819 If this is a syscall, make sure there's a nop afterwards. */
820 {
821 int syscall_length;
822 gdb_byte *insn;
823
824 insn = i386_skip_prefixes (buf, len);
825 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
826 insn[syscall_length] = NOP_OPCODE;
827 }
828
829 write_memory (to, buf, len);
830
831 displaced_debug_printf ("%s->%s: %s",
832 paddress (gdbarch, from), paddress (gdbarch, to),
833 bytes_to_string (buf, len).c_str ());
834
835 /* This is a work around for a problem with g++ 4.8. */
836 return displaced_step_copy_insn_closure_up (closure.release ());
837 }
838
839 /* Fix up the state of registers and memory after having single-stepped
840 a displaced instruction. */
841
842 void
843 i386_displaced_step_fixup (struct gdbarch *gdbarch,
844 struct displaced_step_copy_insn_closure *closure_,
845 CORE_ADDR from, CORE_ADDR to,
846 struct regcache *regs, bool completed_p)
847 {
848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
849
850 /* The offset we applied to the instruction's address.
851 This could well be negative (when viewed as a signed 32-bit
852 value), but ULONGEST won't reflect that, so take care when
853 applying it. */
854 ULONGEST insn_offset = to - from;
855
856 i386_displaced_step_copy_insn_closure *closure
857 = (i386_displaced_step_copy_insn_closure *) closure_;
858 gdb_byte *insn = closure->buf.data ();
859 /* The start of the insn, needed in case we see some prefixes. */
860 gdb_byte *insn_start = insn;
861
862 displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...",
863 paddress (gdbarch, from), paddress (gdbarch, to),
864 insn[0], insn[1]);
865
866 /* The list of issues to contend with here is taken from
867 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
868 Yay for Free Software! */
869
870 /* Relocate the %eip, if necessary. */
871
872 /* The instruction recognizers we use assume any leading prefixes
873 have been skipped. */
874 {
875 /* This is the size of the buffer in closure. */
876 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
877 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
878 /* If there are too many prefixes, just ignore the insn.
879 It will fault when run. */
880 if (opcode != NULL)
881 insn = opcode;
882 }
883
884 /* Except in the case of absolute or indirect jump or call
885 instructions, or a return instruction, the new eip is relative to
886 the displaced instruction; make it relative. Well, signal
887 handler returns don't need relocation either, but we use the
888 value of %eip to recognize those; see below. */
889 if (!completed_p
890 || (!i386_absolute_jmp_p (insn)
891 && !i386_absolute_call_p (insn)
892 && !i386_ret_p (insn)))
893 {
894 int insn_len;
895
896 CORE_ADDR pc = regcache_read_pc (regs);
897
898 /* A signal trampoline system call changes the %eip, resuming
899 execution of the main program after the signal handler has
900 returned. That makes them like 'return' instructions; we
901 shouldn't relocate %eip.
902
903 But most system calls don't, and we do need to relocate %eip.
904
905 Our heuristic for distinguishing these cases: if stepping
906 over the system call instruction left control directly after
907 the instruction, the we relocate --- control almost certainly
908 doesn't belong in the displaced copy. Otherwise, we assume
909 the instruction has put control where it belongs, and leave
910 it unrelocated. Goodness help us if there are PC-relative
911 system calls. */
912 if (i386_syscall_p (insn, &insn_len)
913 && pc != to + (insn - insn_start) + insn_len
914 /* GDB can get control back after the insn after the syscall.
915 Presumably this is a kernel bug.
916 i386_displaced_step_copy_insn ensures it's a nop,
917 we add one to the length for it. */
918 && pc != to + (insn - insn_start) + insn_len + 1)
919 displaced_debug_printf ("syscall changed %%eip; not relocating");
920 else
921 {
922 ULONGEST eip = (pc - insn_offset) & 0xffffffffUL;
923
924 /* If we just stepped over a breakpoint insn, we don't backup
925 the pc on purpose; this is to match behaviour without
926 stepping. */
927
928 regcache_write_pc (regs, eip);
929
930 displaced_debug_printf ("relocated %%eip from %s to %s",
931 paddress (gdbarch, pc),
932 paddress (gdbarch, eip));
933 }
934 }
935
936 /* If the instruction was PUSHFL, then the TF bit will be set in the
937 pushed value, and should be cleared. We'll leave this for later,
938 since GDB already messes up the TF flag when stepping over a
939 pushfl. */
940
941 /* If the instruction was a call, the return address now atop the
942 stack is the address following the copied instruction. We need
943 to make it the address following the original instruction. */
944 if (completed_p && i386_call_p (insn))
945 {
946 ULONGEST esp;
947 ULONGEST retaddr;
948 const ULONGEST retaddr_len = 4;
949
950 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
951 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
952 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
953 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
954
955 displaced_debug_printf ("relocated return addr at %s to %s",
956 paddress (gdbarch, esp),
957 paddress (gdbarch, retaddr));
958 }
959 }
960
961 static void
962 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
963 {
964 target_write_memory (*to, buf, len);
965 *to += len;
966 }
967
968 static void
969 i386_relocate_instruction (struct gdbarch *gdbarch,
970 CORE_ADDR *to, CORE_ADDR oldloc)
971 {
972 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
973 gdb_byte buf[I386_MAX_INSN_LEN];
974 int offset = 0, rel32, newrel;
975 int insn_length;
976 gdb_byte *insn = buf;
977
978 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
979
980 insn_length = gdb_buffered_insn_length (gdbarch, insn,
981 I386_MAX_INSN_LEN, oldloc);
982
983 /* Get past the prefixes. */
984 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
985
986 /* Adjust calls with 32-bit relative addresses as push/jump, with
987 the address pushed being the location where the original call in
988 the user program would return to. */
989 if (insn[0] == 0xe8)
990 {
991 gdb_byte push_buf[16];
992 unsigned int ret_addr;
993
994 /* Where "ret" in the original code will return to. */
995 ret_addr = oldloc + insn_length;
996 push_buf[0] = 0x68; /* pushq $... */
997 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
998 /* Push the push. */
999 append_insns (to, 5, push_buf);
1000
1001 /* Convert the relative call to a relative jump. */
1002 insn[0] = 0xe9;
1003
1004 /* Adjust the destination offset. */
1005 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1006 newrel = (oldloc - *to) + rel32;
1007 store_signed_integer (insn + 1, 4, byte_order, newrel);
1008
1009 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1010 hex_string (rel32), paddress (gdbarch, oldloc),
1011 hex_string (newrel), paddress (gdbarch, *to));
1012
1013 /* Write the adjusted jump into its displaced location. */
1014 append_insns (to, 5, insn);
1015 return;
1016 }
1017
1018 /* Adjust jumps with 32-bit relative addresses. Calls are already
1019 handled above. */
1020 if (insn[0] == 0xe9)
1021 offset = 1;
1022 /* Adjust conditional jumps. */
1023 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1024 offset = 2;
1025
1026 if (offset)
1027 {
1028 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1029 newrel = (oldloc - *to) + rel32;
1030 store_signed_integer (insn + offset, 4, byte_order, newrel);
1031 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1032 hex_string (rel32), paddress (gdbarch, oldloc),
1033 hex_string (newrel), paddress (gdbarch, *to));
1034 }
1035
1036 /* Write the adjusted instructions into their displaced
1037 location. */
1038 append_insns (to, insn_length, buf);
1039 }
1040
1041 \f
1042 #ifdef I386_REGNO_TO_SYMMETRY
1043 #error "The Sequent Symmetry is no longer supported."
1044 #endif
1045
1046 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1047 and %esp "belong" to the calling function. Therefore these
1048 registers should be saved if they're going to be modified. */
1049
1050 /* The maximum number of saved registers. This should include all
1051 registers mentioned above, and %eip. */
1052 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1053
1054 struct i386_frame_cache
1055 {
1056 /* Base address. */
1057 CORE_ADDR base;
1058 int base_p;
1059 LONGEST sp_offset;
1060 CORE_ADDR pc;
1061
1062 /* Saved registers. */
1063 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1064 CORE_ADDR saved_sp;
1065 int saved_sp_reg;
1066 int pc_in_eax;
1067
1068 /* Stack space reserved for local variables. */
1069 long locals;
1070 };
1071
1072 /* Allocate and initialize a frame cache. */
1073
1074 static struct i386_frame_cache *
1075 i386_alloc_frame_cache (void)
1076 {
1077 struct i386_frame_cache *cache;
1078 int i;
1079
1080 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1081
1082 /* Base address. */
1083 cache->base_p = 0;
1084 cache->base = 0;
1085 cache->sp_offset = -4;
1086 cache->pc = 0;
1087
1088 /* Saved registers. We initialize these to -1 since zero is a valid
1089 offset (that's where %ebp is supposed to be stored). */
1090 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1091 cache->saved_regs[i] = -1;
1092 cache->saved_sp = 0;
1093 cache->saved_sp_reg = -1;
1094 cache->pc_in_eax = 0;
1095
1096 /* Frameless until proven otherwise. */
1097 cache->locals = -1;
1098
1099 return cache;
1100 }
1101
1102 /* If the instruction at PC is a jump, return the address of its
1103 target. Otherwise, return PC. */
1104
1105 static CORE_ADDR
1106 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1107 {
1108 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1109 gdb_byte op;
1110 long delta = 0;
1111 int data16 = 0;
1112
1113 if (target_read_code (pc, &op, 1))
1114 return pc;
1115
1116 if (op == 0x66)
1117 {
1118 data16 = 1;
1119
1120 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1121 }
1122
1123 switch (op)
1124 {
1125 case 0xe9:
1126 /* Relative jump: if data16 == 0, disp32, else disp16. */
1127 if (data16)
1128 {
1129 delta = read_memory_integer (pc + 2, 2, byte_order);
1130
1131 /* Include the size of the jmp instruction (including the
1132 0x66 prefix). */
1133 delta += 4;
1134 }
1135 else
1136 {
1137 delta = read_memory_integer (pc + 1, 4, byte_order);
1138
1139 /* Include the size of the jmp instruction. */
1140 delta += 5;
1141 }
1142 break;
1143 case 0xeb:
1144 /* Relative jump, disp8 (ignore data16). */
1145 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1146
1147 delta += data16 + 2;
1148 break;
1149 }
1150
1151 return pc + delta;
1152 }
1153
1154 /* Check whether PC points at a prologue for a function returning a
1155 structure or union. If so, it updates CACHE and returns the
1156 address of the first instruction after the code sequence that
1157 removes the "hidden" argument from the stack or CURRENT_PC,
1158 whichever is smaller. Otherwise, return PC. */
1159
1160 static CORE_ADDR
1161 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1162 struct i386_frame_cache *cache)
1163 {
1164 /* Functions that return a structure or union start with:
1165
1166 popl %eax 0x58
1167 xchgl %eax, (%esp) 0x87 0x04 0x24
1168 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1169
1170 (the System V compiler puts out the second `xchg' instruction,
1171 and the assembler doesn't try to optimize it, so the 'sib' form
1172 gets generated). This sequence is used to get the address of the
1173 return buffer for a function that returns a structure. */
1174 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1175 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1176 gdb_byte buf[4];
1177 gdb_byte op;
1178
1179 if (current_pc <= pc)
1180 return pc;
1181
1182 if (target_read_code (pc, &op, 1))
1183 return pc;
1184
1185 if (op != 0x58) /* popl %eax */
1186 return pc;
1187
1188 if (target_read_code (pc + 1, buf, 4))
1189 return pc;
1190
1191 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1192 return pc;
1193
1194 if (current_pc == pc)
1195 {
1196 cache->sp_offset += 4;
1197 return current_pc;
1198 }
1199
1200 if (current_pc == pc + 1)
1201 {
1202 cache->pc_in_eax = 1;
1203 return current_pc;
1204 }
1205
1206 if (buf[1] == proto1[1])
1207 return pc + 4;
1208 else
1209 return pc + 5;
1210 }
1211
1212 static CORE_ADDR
1213 i386_skip_probe (CORE_ADDR pc)
1214 {
1215 /* A function may start with
1216
1217 pushl constant
1218 call _probe
1219 addl $4, %esp
1220
1221 followed by
1222
1223 pushl %ebp
1224
1225 etc. */
1226 gdb_byte buf[8];
1227 gdb_byte op;
1228
1229 if (target_read_code (pc, &op, 1))
1230 return pc;
1231
1232 if (op == 0x68 || op == 0x6a)
1233 {
1234 int delta;
1235
1236 /* Skip past the `pushl' instruction; it has either a one-byte or a
1237 four-byte operand, depending on the opcode. */
1238 if (op == 0x68)
1239 delta = 5;
1240 else
1241 delta = 2;
1242
1243 /* Read the following 8 bytes, which should be `call _probe' (6
1244 bytes) followed by `addl $4,%esp' (2 bytes). */
1245 read_memory (pc + delta, buf, sizeof (buf));
1246 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1247 pc += delta + sizeof (buf);
1248 }
1249
1250 return pc;
1251 }
1252
1253 /* GCC 4.1 and later, can put code in the prologue to realign the
1254 stack pointer. Check whether PC points to such code, and update
1255 CACHE accordingly. Return the first instruction after the code
1256 sequence or CURRENT_PC, whichever is smaller. If we don't
1257 recognize the code, return PC. */
1258
1259 static CORE_ADDR
1260 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1261 struct i386_frame_cache *cache)
1262 {
1263 /* There are 2 code sequences to re-align stack before the frame
1264 gets set up:
1265
1266 1. Use a caller-saved saved register:
1267
1268 leal 4(%esp), %reg
1269 andl $-XXX, %esp
1270 pushl -4(%reg)
1271
1272 2. Use a callee-saved saved register:
1273
1274 pushl %reg
1275 leal 8(%esp), %reg
1276 andl $-XXX, %esp
1277 pushl -4(%reg)
1278
1279 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1280
1281 0x83 0xe4 0xf0 andl $-16, %esp
1282 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1283 */
1284
1285 gdb_byte buf[14];
1286 int reg;
1287 int offset, offset_and;
1288 static int regnums[8] = {
1289 I386_EAX_REGNUM, /* %eax */
1290 I386_ECX_REGNUM, /* %ecx */
1291 I386_EDX_REGNUM, /* %edx */
1292 I386_EBX_REGNUM, /* %ebx */
1293 I386_ESP_REGNUM, /* %esp */
1294 I386_EBP_REGNUM, /* %ebp */
1295 I386_ESI_REGNUM, /* %esi */
1296 I386_EDI_REGNUM /* %edi */
1297 };
1298
1299 if (target_read_code (pc, buf, sizeof buf))
1300 return pc;
1301
1302 /* Check caller-saved saved register. The first instruction has
1303 to be "leal 4(%esp), %reg". */
1304 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1305 {
1306 /* MOD must be binary 10 and R/M must be binary 100. */
1307 if ((buf[1] & 0xc7) != 0x44)
1308 return pc;
1309
1310 /* REG has register number. */
1311 reg = (buf[1] >> 3) & 7;
1312 offset = 4;
1313 }
1314 else
1315 {
1316 /* Check callee-saved saved register. The first instruction
1317 has to be "pushl %reg". */
1318 if ((buf[0] & 0xf8) != 0x50)
1319 return pc;
1320
1321 /* Get register. */
1322 reg = buf[0] & 0x7;
1323
1324 /* The next instruction has to be "leal 8(%esp), %reg". */
1325 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1326 return pc;
1327
1328 /* MOD must be binary 10 and R/M must be binary 100. */
1329 if ((buf[2] & 0xc7) != 0x44)
1330 return pc;
1331
1332 /* REG has register number. Registers in pushl and leal have to
1333 be the same. */
1334 if (reg != ((buf[2] >> 3) & 7))
1335 return pc;
1336
1337 offset = 5;
1338 }
1339
1340 /* Rigister can't be %esp nor %ebp. */
1341 if (reg == 4 || reg == 5)
1342 return pc;
1343
1344 /* The next instruction has to be "andl $-XXX, %esp". */
1345 if (buf[offset + 1] != 0xe4
1346 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1347 return pc;
1348
1349 offset_and = offset;
1350 offset += buf[offset] == 0x81 ? 6 : 3;
1351
1352 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1353 0xfc. REG must be binary 110 and MOD must be binary 01. */
1354 if (buf[offset] != 0xff
1355 || buf[offset + 2] != 0xfc
1356 || (buf[offset + 1] & 0xf8) != 0x70)
1357 return pc;
1358
1359 /* R/M has register. Registers in leal and pushl have to be the
1360 same. */
1361 if (reg != (buf[offset + 1] & 7))
1362 return pc;
1363
1364 if (current_pc > pc + offset_and)
1365 cache->saved_sp_reg = regnums[reg];
1366
1367 return std::min (pc + offset + 3, current_pc);
1368 }
1369
1370 /* Maximum instruction length we need to handle. */
1371 #define I386_MAX_MATCHED_INSN_LEN 6
1372
1373 /* Instruction description. */
1374 struct i386_insn
1375 {
1376 size_t len;
1377 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1378 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1379 };
1380
1381 /* Return whether instruction at PC matches PATTERN. */
1382
1383 static int
1384 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1385 {
1386 gdb_byte op;
1387
1388 if (target_read_code (pc, &op, 1))
1389 return 0;
1390
1391 if ((op & pattern.mask[0]) == pattern.insn[0])
1392 {
1393 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1394 int insn_matched = 1;
1395 size_t i;
1396
1397 gdb_assert (pattern.len > 1);
1398 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1399
1400 if (target_read_code (pc + 1, buf, pattern.len - 1))
1401 return 0;
1402
1403 for (i = 1; i < pattern.len; i++)
1404 {
1405 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1406 insn_matched = 0;
1407 }
1408 return insn_matched;
1409 }
1410 return 0;
1411 }
1412
1413 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1414 the first instruction description that matches. Otherwise, return
1415 NULL. */
1416
1417 static struct i386_insn *
1418 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1419 {
1420 struct i386_insn *pattern;
1421
1422 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1423 {
1424 if (i386_match_pattern (pc, *pattern))
1425 return pattern;
1426 }
1427
1428 return NULL;
1429 }
1430
1431 /* Return whether PC points inside a sequence of instructions that
1432 matches INSN_PATTERNS. */
1433
1434 static int
1435 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1436 {
1437 CORE_ADDR current_pc;
1438 int ix, i;
1439 struct i386_insn *insn;
1440
1441 insn = i386_match_insn (pc, insn_patterns);
1442 if (insn == NULL)
1443 return 0;
1444
1445 current_pc = pc;
1446 ix = insn - insn_patterns;
1447 for (i = ix - 1; i >= 0; i--)
1448 {
1449 current_pc -= insn_patterns[i].len;
1450
1451 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1452 return 0;
1453 }
1454
1455 current_pc = pc + insn->len;
1456 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1457 {
1458 if (!i386_match_pattern (current_pc, *insn))
1459 return 0;
1460
1461 current_pc += insn->len;
1462 }
1463
1464 return 1;
1465 }
1466
1467 /* Some special instructions that might be migrated by GCC into the
1468 part of the prologue that sets up the new stack frame. Because the
1469 stack frame hasn't been setup yet, no registers have been saved
1470 yet, and only the scratch registers %eax, %ecx and %edx can be
1471 touched. */
1472
1473 static i386_insn i386_frame_setup_skip_insns[] =
1474 {
1475 /* Check for `movb imm8, r' and `movl imm32, r'.
1476
1477 ??? Should we handle 16-bit operand-sizes here? */
1478
1479 /* `movb imm8, %al' and `movb imm8, %ah' */
1480 /* `movb imm8, %cl' and `movb imm8, %ch' */
1481 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1482 /* `movb imm8, %dl' and `movb imm8, %dh' */
1483 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1484 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1485 { 5, { 0xb8 }, { 0xfe } },
1486 /* `movl imm32, %edx' */
1487 { 5, { 0xba }, { 0xff } },
1488
1489 /* Check for `mov imm32, r32'. Note that there is an alternative
1490 encoding for `mov m32, %eax'.
1491
1492 ??? Should we handle SIB addressing here?
1493 ??? Should we handle 16-bit operand-sizes here? */
1494
1495 /* `movl m32, %eax' */
1496 { 5, { 0xa1 }, { 0xff } },
1497 /* `movl m32, %eax' and `mov; m32, %ecx' */
1498 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1499 /* `movl m32, %edx' */
1500 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1501
1502 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1503 Because of the symmetry, there are actually two ways to encode
1504 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1505 opcode bytes 0x31 and 0x33 for `xorl'. */
1506
1507 /* `subl %eax, %eax' */
1508 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1509 /* `subl %ecx, %ecx' */
1510 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1511 /* `subl %edx, %edx' */
1512 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1513 /* `xorl %eax, %eax' */
1514 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1515 /* `xorl %ecx, %ecx' */
1516 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1517 /* `xorl %edx, %edx' */
1518 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1519 { 0 }
1520 };
1521
1522 /* Check whether PC points to an endbr32 instruction. */
1523 static CORE_ADDR
1524 i386_skip_endbr (CORE_ADDR pc)
1525 {
1526 static const gdb_byte endbr32[] = { 0xf3, 0x0f, 0x1e, 0xfb };
1527
1528 gdb_byte buf[sizeof (endbr32)];
1529
1530 /* Stop there if we can't read the code */
1531 if (target_read_code (pc, buf, sizeof (endbr32)))
1532 return pc;
1533
1534 /* If the instruction isn't an endbr32, stop */
1535 if (memcmp (buf, endbr32, sizeof (endbr32)) != 0)
1536 return pc;
1537
1538 return pc + sizeof (endbr32);
1539 }
1540
1541 /* Check whether PC points to a no-op instruction. */
1542 static CORE_ADDR
1543 i386_skip_noop (CORE_ADDR pc)
1544 {
1545 gdb_byte op;
1546 int check = 1;
1547
1548 if (target_read_code (pc, &op, 1))
1549 return pc;
1550
1551 while (check)
1552 {
1553 check = 0;
1554 /* Ignore `nop' instruction. */
1555 if (op == 0x90)
1556 {
1557 pc += 1;
1558 if (target_read_code (pc, &op, 1))
1559 return pc;
1560 check = 1;
1561 }
1562 /* Ignore no-op instruction `mov %edi, %edi'.
1563 Microsoft system dlls often start with
1564 a `mov %edi,%edi' instruction.
1565 The 5 bytes before the function start are
1566 filled with `nop' instructions.
1567 This pattern can be used for hot-patching:
1568 The `mov %edi, %edi' instruction can be replaced by a
1569 near jump to the location of the 5 `nop' instructions
1570 which can be replaced by a 32-bit jump to anywhere
1571 in the 32-bit address space. */
1572
1573 else if (op == 0x8b)
1574 {
1575 if (target_read_code (pc + 1, &op, 1))
1576 return pc;
1577
1578 if (op == 0xff)
1579 {
1580 pc += 2;
1581 if (target_read_code (pc, &op, 1))
1582 return pc;
1583
1584 check = 1;
1585 }
1586 }
1587 }
1588 return pc;
1589 }
1590
1591 /* Check whether PC points at a code that sets up a new stack frame.
1592 If so, it updates CACHE and returns the address of the first
1593 instruction after the sequence that sets up the frame or LIMIT,
1594 whichever is smaller. If we don't recognize the code, return PC. */
1595
1596 static CORE_ADDR
1597 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1598 CORE_ADDR pc, CORE_ADDR limit,
1599 struct i386_frame_cache *cache)
1600 {
1601 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1602 struct i386_insn *insn;
1603 gdb_byte op;
1604 int skip = 0;
1605
1606 if (limit <= pc)
1607 return limit;
1608
1609 if (target_read_code (pc, &op, 1))
1610 return pc;
1611
1612 if (op == 0x55) /* pushl %ebp */
1613 {
1614 /* Take into account that we've executed the `pushl %ebp' that
1615 starts this instruction sequence. */
1616 cache->saved_regs[I386_EBP_REGNUM] = 0;
1617 cache->sp_offset += 4;
1618 pc++;
1619
1620 /* If that's all, return now. */
1621 if (limit <= pc)
1622 return limit;
1623
1624 /* Check for some special instructions that might be migrated by
1625 GCC into the prologue and skip them. At this point in the
1626 prologue, code should only touch the scratch registers %eax,
1627 %ecx and %edx, so while the number of possibilities is sheer,
1628 it is limited.
1629
1630 Make sure we only skip these instructions if we later see the
1631 `movl %esp, %ebp' that actually sets up the frame. */
1632 while (pc + skip < limit)
1633 {
1634 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1635 if (insn == NULL)
1636 break;
1637
1638 skip += insn->len;
1639 }
1640
1641 /* If that's all, return now. */
1642 if (limit <= pc + skip)
1643 return limit;
1644
1645 if (target_read_code (pc + skip, &op, 1))
1646 return pc + skip;
1647
1648 /* The i386 prologue looks like
1649
1650 push %ebp
1651 mov %esp,%ebp
1652 sub $0x10,%esp
1653
1654 and a different prologue can be generated for atom.
1655
1656 push %ebp
1657 lea (%esp),%ebp
1658 lea -0x10(%esp),%esp
1659
1660 We handle both of them here. */
1661
1662 switch (op)
1663 {
1664 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1665 case 0x8b:
1666 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1667 != 0xec)
1668 return pc;
1669 pc += (skip + 2);
1670 break;
1671 case 0x89:
1672 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1673 != 0xe5)
1674 return pc;
1675 pc += (skip + 2);
1676 break;
1677 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1678 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1679 != 0x242c)
1680 return pc;
1681 pc += (skip + 3);
1682 break;
1683 default:
1684 return pc;
1685 }
1686
1687 /* OK, we actually have a frame. We just don't know how large
1688 it is yet. Set its size to zero. We'll adjust it if
1689 necessary. We also now commit to skipping the special
1690 instructions mentioned before. */
1691 cache->locals = 0;
1692
1693 /* If that's all, return now. */
1694 if (limit <= pc)
1695 return limit;
1696
1697 /* Check for stack adjustment
1698
1699 subl $XXX, %esp
1700 or
1701 lea -XXX(%esp),%esp
1702
1703 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1704 reg, so we don't have to worry about a data16 prefix. */
1705 if (target_read_code (pc, &op, 1))
1706 return pc;
1707 if (op == 0x83)
1708 {
1709 /* `subl' with 8-bit immediate. */
1710 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1711 /* Some instruction starting with 0x83 other than `subl'. */
1712 return pc;
1713
1714 /* `subl' with signed 8-bit immediate (though it wouldn't
1715 make sense to be negative). */
1716 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1717 return pc + 3;
1718 }
1719 else if (op == 0x81)
1720 {
1721 /* Maybe it is `subl' with a 32-bit immediate. */
1722 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1723 /* Some instruction starting with 0x81 other than `subl'. */
1724 return pc;
1725
1726 /* It is `subl' with a 32-bit immediate. */
1727 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1728 return pc + 6;
1729 }
1730 else if (op == 0x8d)
1731 {
1732 /* The ModR/M byte is 0x64. */
1733 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1734 return pc;
1735 /* 'lea' with 8-bit displacement. */
1736 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1737 return pc + 4;
1738 }
1739 else
1740 {
1741 /* Some instruction other than `subl' nor 'lea'. */
1742 return pc;
1743 }
1744 }
1745 else if (op == 0xc8) /* enter */
1746 {
1747 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1748 return pc + 4;
1749 }
1750
1751 return pc;
1752 }
1753
1754 /* Check whether PC points at code that saves registers on the stack.
1755 If so, it updates CACHE and returns the address of the first
1756 instruction after the register saves or CURRENT_PC, whichever is
1757 smaller. Otherwise, return PC. */
1758
1759 static CORE_ADDR
1760 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1761 struct i386_frame_cache *cache)
1762 {
1763 CORE_ADDR offset = 0;
1764 gdb_byte op;
1765 int i;
1766
1767 if (cache->locals > 0)
1768 offset -= cache->locals;
1769 for (i = 0; i < 8 && pc < current_pc; i++)
1770 {
1771 if (target_read_code (pc, &op, 1))
1772 return pc;
1773 if (op < 0x50 || op > 0x57)
1774 break;
1775
1776 offset -= 4;
1777 cache->saved_regs[op - 0x50] = offset;
1778 cache->sp_offset += 4;
1779 pc++;
1780 }
1781
1782 return pc;
1783 }
1784
1785 /* Do a full analysis of the prologue at PC and update CACHE
1786 accordingly. Bail out early if CURRENT_PC is reached. Return the
1787 address where the analysis stopped.
1788
1789 We handle these cases:
1790
1791 The startup sequence can be at the start of the function, or the
1792 function can start with a branch to startup code at the end.
1793
1794 %ebp can be set up with either the 'enter' instruction, or "pushl
1795 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1796 once used in the System V compiler).
1797
1798 Local space is allocated just below the saved %ebp by either the
1799 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1800 16-bit unsigned argument for space to allocate, and the 'addl'
1801 instruction could have either a signed byte, or 32-bit immediate.
1802
1803 Next, the registers used by this function are pushed. With the
1804 System V compiler they will always be in the order: %edi, %esi,
1805 %ebx (and sometimes a harmless bug causes it to also save but not
1806 restore %eax); however, the code below is willing to see the pushes
1807 in any order, and will handle up to 8 of them.
1808
1809 If the setup sequence is at the end of the function, then the next
1810 instruction will be a branch back to the start. */
1811
1812 static CORE_ADDR
1813 i386_analyze_prologue (struct gdbarch *gdbarch,
1814 CORE_ADDR pc, CORE_ADDR current_pc,
1815 struct i386_frame_cache *cache)
1816 {
1817 pc = i386_skip_endbr (pc);
1818 pc = i386_skip_noop (pc);
1819 pc = i386_follow_jump (gdbarch, pc);
1820 pc = i386_analyze_struct_return (pc, current_pc, cache);
1821 pc = i386_skip_probe (pc);
1822 pc = i386_analyze_stack_align (pc, current_pc, cache);
1823 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1824 return i386_analyze_register_saves (pc, current_pc, cache);
1825 }
1826
1827 /* Return PC of first real instruction. */
1828
1829 static CORE_ADDR
1830 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1831 {
1832 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1833
1834 static gdb_byte pic_pat[6] =
1835 {
1836 0xe8, 0, 0, 0, 0, /* call 0x0 */
1837 0x5b, /* popl %ebx */
1838 };
1839 struct i386_frame_cache cache;
1840 CORE_ADDR pc;
1841 gdb_byte op;
1842 int i;
1843 CORE_ADDR func_addr;
1844
1845 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1846 {
1847 CORE_ADDR post_prologue_pc
1848 = skip_prologue_using_sal (gdbarch, func_addr);
1849 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1850
1851 /* LLVM backend (Clang/Flang) always emits a line note before the
1852 prologue and another one after. We trust clang and newer Intel
1853 compilers to emit usable line notes. */
1854 if (post_prologue_pc
1855 && (cust != NULL
1856 && cust->producer () != NULL
1857 && (producer_is_llvm (cust->producer ())
1858 || producer_is_icc_ge_19 (cust->producer ()))))
1859 return std::max (start_pc, post_prologue_pc);
1860 }
1861
1862 cache.locals = -1;
1863 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1864 if (cache.locals < 0)
1865 return start_pc;
1866
1867 /* Found valid frame setup. */
1868
1869 /* The native cc on SVR4 in -K PIC mode inserts the following code
1870 to get the address of the global offset table (GOT) into register
1871 %ebx:
1872
1873 call 0x0
1874 popl %ebx
1875 movl %ebx,x(%ebp) (optional)
1876 addl y,%ebx
1877
1878 This code is with the rest of the prologue (at the end of the
1879 function), so we have to skip it to get to the first real
1880 instruction at the start of the function. */
1881
1882 for (i = 0; i < 6; i++)
1883 {
1884 if (target_read_code (pc + i, &op, 1))
1885 return pc;
1886
1887 if (pic_pat[i] != op)
1888 break;
1889 }
1890 if (i == 6)
1891 {
1892 int delta = 6;
1893
1894 if (target_read_code (pc + delta, &op, 1))
1895 return pc;
1896
1897 if (op == 0x89) /* movl %ebx, x(%ebp) */
1898 {
1899 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1900
1901 if (op == 0x5d) /* One byte offset from %ebp. */
1902 delta += 3;
1903 else if (op == 0x9d) /* Four byte offset from %ebp. */
1904 delta += 6;
1905 else /* Unexpected instruction. */
1906 delta = 0;
1907
1908 if (target_read_code (pc + delta, &op, 1))
1909 return pc;
1910 }
1911
1912 /* addl y,%ebx */
1913 if (delta > 0 && op == 0x81
1914 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1915 == 0xc3)
1916 {
1917 pc += delta + 6;
1918 }
1919 }
1920
1921 /* If the function starts with a branch (to startup code at the end)
1922 the last instruction should bring us back to the first
1923 instruction of the real code. */
1924 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1925 pc = i386_follow_jump (gdbarch, pc);
1926
1927 return pc;
1928 }
1929
1930 /* Check that the code pointed to by PC corresponds to a call to
1931 __main, skip it if so. Return PC otherwise. */
1932
1933 CORE_ADDR
1934 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1935 {
1936 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1937 gdb_byte op;
1938
1939 if (target_read_code (pc, &op, 1))
1940 return pc;
1941 if (op == 0xe8)
1942 {
1943 gdb_byte buf[4];
1944
1945 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1946 {
1947 /* Make sure address is computed correctly as a 32bit
1948 integer even if CORE_ADDR is 64 bit wide. */
1949 struct bound_minimal_symbol s;
1950 CORE_ADDR call_dest;
1951
1952 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1953 call_dest = call_dest & 0xffffffffU;
1954 s = lookup_minimal_symbol_by_pc (call_dest);
1955 if (s.minsym != NULL
1956 && s.minsym->linkage_name () != NULL
1957 && strcmp (s.minsym->linkage_name (), "__main") == 0)
1958 pc += 5;
1959 }
1960 }
1961
1962 return pc;
1963 }
1964
1965 /* This function is 64-bit safe. */
1966
1967 static CORE_ADDR
1968 i386_unwind_pc (struct gdbarch *gdbarch, const frame_info_ptr &next_frame)
1969 {
1970 gdb_byte buf[8];
1971
1972 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1973 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1974 }
1975 \f
1976
1977 /* Normal frames. */
1978
1979 static void
1980 i386_frame_cache_1 (const frame_info_ptr &this_frame,
1981 struct i386_frame_cache *cache)
1982 {
1983 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1984 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1985 gdb_byte buf[4];
1986 int i;
1987
1988 cache->pc = get_frame_func (this_frame);
1989
1990 /* In principle, for normal frames, %ebp holds the frame pointer,
1991 which holds the base address for the current stack frame.
1992 However, for functions that don't need it, the frame pointer is
1993 optional. For these "frameless" functions the frame pointer is
1994 actually the frame pointer of the calling frame. Signal
1995 trampolines are just a special case of a "frameless" function.
1996 They (usually) share their frame pointer with the frame that was
1997 in progress when the signal occurred. */
1998
1999 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
2000 cache->base = extract_unsigned_integer (buf, 4, byte_order);
2001 if (cache->base == 0)
2002 {
2003 cache->base_p = 1;
2004 return;
2005 }
2006
2007 /* For normal frames, %eip is stored at 4(%ebp). */
2008 cache->saved_regs[I386_EIP_REGNUM] = 4;
2009
2010 if (cache->pc != 0)
2011 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2012 cache);
2013
2014 if (cache->locals < 0)
2015 {
2016 /* We didn't find a valid frame, which means that CACHE->base
2017 currently holds the frame pointer for our calling frame. If
2018 we're at the start of a function, or somewhere half-way its
2019 prologue, the function's frame probably hasn't been fully
2020 setup yet. Try to reconstruct the base address for the stack
2021 frame by looking at the stack pointer. For truly "frameless"
2022 functions this might work too. */
2023
2024 if (cache->saved_sp_reg != -1)
2025 {
2026 /* Saved stack pointer has been saved. */
2027 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2028 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2029
2030 /* We're halfway aligning the stack. */
2031 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2032 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2033
2034 /* This will be added back below. */
2035 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2036 }
2037 else if (cache->pc != 0
2038 || target_read_code (get_frame_pc (this_frame), buf, 1))
2039 {
2040 /* We're in a known function, but did not find a frame
2041 setup. Assume that the function does not use %ebp.
2042 Alternatively, we may have jumped to an invalid
2043 address; in that case there is definitely no new
2044 frame in %ebp. */
2045 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2046 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2047 + cache->sp_offset;
2048 }
2049 else
2050 /* We're in an unknown function. We could not find the start
2051 of the function to analyze the prologue; our best option is
2052 to assume a typical frame layout with the caller's %ebp
2053 saved. */
2054 cache->saved_regs[I386_EBP_REGNUM] = 0;
2055 }
2056
2057 if (cache->saved_sp_reg != -1)
2058 {
2059 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2060 register may be unavailable). */
2061 if (cache->saved_sp == 0
2062 && deprecated_frame_register_read (this_frame,
2063 cache->saved_sp_reg, buf))
2064 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2065 }
2066 /* Now that we have the base address for the stack frame we can
2067 calculate the value of %esp in the calling frame. */
2068 else if (cache->saved_sp == 0)
2069 cache->saved_sp = cache->base + 8;
2070
2071 /* Adjust all the saved registers such that they contain addresses
2072 instead of offsets. */
2073 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2074 if (cache->saved_regs[i] != -1)
2075 cache->saved_regs[i] += cache->base;
2076
2077 cache->base_p = 1;
2078 }
2079
2080 static struct i386_frame_cache *
2081 i386_frame_cache (const frame_info_ptr &this_frame, void **this_cache)
2082 {
2083 struct i386_frame_cache *cache;
2084
2085 if (*this_cache)
2086 return (struct i386_frame_cache *) *this_cache;
2087
2088 cache = i386_alloc_frame_cache ();
2089 *this_cache = cache;
2090
2091 try
2092 {
2093 i386_frame_cache_1 (this_frame, cache);
2094 }
2095 catch (const gdb_exception_error &ex)
2096 {
2097 if (ex.error != NOT_AVAILABLE_ERROR)
2098 throw;
2099 }
2100
2101 return cache;
2102 }
2103
2104 static void
2105 i386_frame_this_id (const frame_info_ptr &this_frame, void **this_cache,
2106 struct frame_id *this_id)
2107 {
2108 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2109
2110 if (!cache->base_p)
2111 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2112 else if (cache->base == 0)
2113 {
2114 /* This marks the outermost frame. */
2115 }
2116 else
2117 {
2118 /* See the end of i386_push_dummy_call. */
2119 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2120 }
2121 }
2122
2123 static enum unwind_stop_reason
2124 i386_frame_unwind_stop_reason (const frame_info_ptr &this_frame,
2125 void **this_cache)
2126 {
2127 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2128
2129 if (!cache->base_p)
2130 return UNWIND_UNAVAILABLE;
2131
2132 /* This marks the outermost frame. */
2133 if (cache->base == 0)
2134 return UNWIND_OUTERMOST;
2135
2136 return UNWIND_NO_REASON;
2137 }
2138
2139 static struct value *
2140 i386_frame_prev_register (const frame_info_ptr &this_frame, void **this_cache,
2141 int regnum)
2142 {
2143 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2144
2145 gdb_assert (regnum >= 0);
2146
2147 /* The System V ABI says that:
2148
2149 "The flags register contains the system flags, such as the
2150 direction flag and the carry flag. The direction flag must be
2151 set to the forward (that is, zero) direction before entry and
2152 upon exit from a function. Other user flags have no specified
2153 role in the standard calling sequence and are not preserved."
2154
2155 To guarantee the "upon exit" part of that statement we fake a
2156 saved flags register that has its direction flag cleared.
2157
2158 Note that GCC doesn't seem to rely on the fact that the direction
2159 flag is cleared after a function return; it always explicitly
2160 clears the flag before operations where it matters.
2161
2162 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2163 right thing to do. The way we fake the flags register here makes
2164 it impossible to change it. */
2165
2166 if (regnum == I386_EFLAGS_REGNUM)
2167 {
2168 ULONGEST val;
2169
2170 val = get_frame_register_unsigned (this_frame, regnum);
2171 val &= ~(1 << 10);
2172 return frame_unwind_got_constant (this_frame, regnum, val);
2173 }
2174
2175 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2176 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2177
2178 if (regnum == I386_ESP_REGNUM
2179 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2180 {
2181 /* If the SP has been saved, but we don't know where, then this
2182 means that SAVED_SP_REG register was found unavailable back
2183 when we built the cache. */
2184 if (cache->saved_sp == 0)
2185 return frame_unwind_got_register (this_frame, regnum,
2186 cache->saved_sp_reg);
2187 else
2188 return frame_unwind_got_constant (this_frame, regnum,
2189 cache->saved_sp);
2190 }
2191
2192 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2193 return frame_unwind_got_memory (this_frame, regnum,
2194 cache->saved_regs[regnum]);
2195
2196 return frame_unwind_got_register (this_frame, regnum, regnum);
2197 }
2198
2199 static const struct frame_unwind i386_frame_unwind =
2200 {
2201 "i386 prologue",
2202 NORMAL_FRAME,
2203 i386_frame_unwind_stop_reason,
2204 i386_frame_this_id,
2205 i386_frame_prev_register,
2206 NULL,
2207 default_frame_sniffer
2208 };
2209
2210 /* Normal frames, but in a function epilogue. */
2211
2212 /* Implement the stack_frame_destroyed_p gdbarch method.
2213
2214 The epilogue is defined here as the 'ret' instruction, which will
2215 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2216 the function's stack frame. */
2217
2218 static int
2219 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2220 {
2221 gdb_byte insn;
2222 if (target_read_memory (pc, &insn, 1))
2223 return 0; /* Can't read memory at pc. */
2224
2225 if (insn != 0xc3) /* 'ret' instruction. */
2226 return 0;
2227
2228 return 1;
2229 }
2230
2231 static int
2232 i386_epilogue_frame_sniffer_1 (const struct frame_unwind *self,
2233 const frame_info_ptr &this_frame,
2234 void **this_prologue_cache, bool override_p)
2235 {
2236 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2237 CORE_ADDR pc = get_frame_pc (this_frame);
2238
2239 if (frame_relative_level (this_frame) != 0)
2240 /* We're not in the inner frame, so assume we're not in an epilogue. */
2241 return 0;
2242
2243 bool unwind_valid_p
2244 = compunit_epilogue_unwind_valid (find_pc_compunit_symtab (pc));
2245 if (override_p)
2246 {
2247 if (unwind_valid_p)
2248 /* Don't override the symtab unwinders, skip
2249 "i386 epilogue override". */
2250 return 0;
2251 }
2252 else
2253 {
2254 if (!unwind_valid_p)
2255 /* "i386 epilogue override" unwinder already ran, skip
2256 "i386 epilogue". */
2257 return 0;
2258 }
2259
2260 /* Check whether we're in an epilogue. */
2261 return i386_stack_frame_destroyed_p (gdbarch, pc);
2262 }
2263
2264 static int
2265 i386_epilogue_override_frame_sniffer (const struct frame_unwind *self,
2266 const frame_info_ptr &this_frame,
2267 void **this_prologue_cache)
2268 {
2269 return i386_epilogue_frame_sniffer_1 (self, this_frame, this_prologue_cache,
2270 true);
2271 }
2272
2273 static int
2274 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2275 const frame_info_ptr &this_frame,
2276 void **this_prologue_cache)
2277 {
2278 return i386_epilogue_frame_sniffer_1 (self, this_frame, this_prologue_cache,
2279 false);
2280 }
2281
2282 static struct i386_frame_cache *
2283 i386_epilogue_frame_cache (const frame_info_ptr &this_frame, void **this_cache)
2284 {
2285 struct i386_frame_cache *cache;
2286 CORE_ADDR sp;
2287
2288 if (*this_cache)
2289 return (struct i386_frame_cache *) *this_cache;
2290
2291 cache = i386_alloc_frame_cache ();
2292 *this_cache = cache;
2293
2294 try
2295 {
2296 cache->pc = get_frame_func (this_frame);
2297
2298 /* At this point the stack looks as if we just entered the
2299 function, with the return address at the top of the
2300 stack. */
2301 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2302 cache->base = sp + cache->sp_offset;
2303 cache->saved_sp = cache->base + 8;
2304 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2305
2306 cache->base_p = 1;
2307 }
2308 catch (const gdb_exception_error &ex)
2309 {
2310 if (ex.error != NOT_AVAILABLE_ERROR)
2311 throw;
2312 }
2313
2314 return cache;
2315 }
2316
2317 static enum unwind_stop_reason
2318 i386_epilogue_frame_unwind_stop_reason (const frame_info_ptr &this_frame,
2319 void **this_cache)
2320 {
2321 struct i386_frame_cache *cache =
2322 i386_epilogue_frame_cache (this_frame, this_cache);
2323
2324 if (!cache->base_p)
2325 return UNWIND_UNAVAILABLE;
2326
2327 return UNWIND_NO_REASON;
2328 }
2329
2330 static void
2331 i386_epilogue_frame_this_id (const frame_info_ptr &this_frame,
2332 void **this_cache,
2333 struct frame_id *this_id)
2334 {
2335 struct i386_frame_cache *cache =
2336 i386_epilogue_frame_cache (this_frame, this_cache);
2337
2338 if (!cache->base_p)
2339 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2340 else
2341 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2342 }
2343
2344 static struct value *
2345 i386_epilogue_frame_prev_register (const frame_info_ptr &this_frame,
2346 void **this_cache, int regnum)
2347 {
2348 /* Make sure we've initialized the cache. */
2349 i386_epilogue_frame_cache (this_frame, this_cache);
2350
2351 return i386_frame_prev_register (this_frame, this_cache, regnum);
2352 }
2353
2354 static const struct frame_unwind i386_epilogue_override_frame_unwind =
2355 {
2356 "i386 epilogue override",
2357 NORMAL_FRAME,
2358 i386_epilogue_frame_unwind_stop_reason,
2359 i386_epilogue_frame_this_id,
2360 i386_epilogue_frame_prev_register,
2361 NULL,
2362 i386_epilogue_override_frame_sniffer
2363 };
2364
2365 static const struct frame_unwind i386_epilogue_frame_unwind =
2366 {
2367 "i386 epilogue",
2368 NORMAL_FRAME,
2369 i386_epilogue_frame_unwind_stop_reason,
2370 i386_epilogue_frame_this_id,
2371 i386_epilogue_frame_prev_register,
2372 NULL,
2373 i386_epilogue_frame_sniffer
2374 };
2375 \f
2376
2377 /* Stack-based trampolines. */
2378
2379 /* These trampolines are used on cross x86 targets, when taking the
2380 address of a nested function. When executing these trampolines,
2381 no stack frame is set up, so we are in a similar situation as in
2382 epilogues and i386_epilogue_frame_this_id can be re-used. */
2383
2384 /* Static chain passed in register. */
2385
2386 static i386_insn i386_tramp_chain_in_reg_insns[] =
2387 {
2388 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2389 { 5, { 0xb8 }, { 0xfe } },
2390
2391 /* `jmp imm32' */
2392 { 5, { 0xe9 }, { 0xff } },
2393
2394 {0}
2395 };
2396
2397 /* Static chain passed on stack (when regparm=3). */
2398
2399 static i386_insn i386_tramp_chain_on_stack_insns[] =
2400 {
2401 /* `push imm32' */
2402 { 5, { 0x68 }, { 0xff } },
2403
2404 /* `jmp imm32' */
2405 { 5, { 0xe9 }, { 0xff } },
2406
2407 {0}
2408 };
2409
2410 /* Return whether PC points inside a stack trampoline. */
2411
2412 static int
2413 i386_in_stack_tramp_p (CORE_ADDR pc)
2414 {
2415 gdb_byte insn;
2416 const char *name;
2417
2418 /* A stack trampoline is detected if no name is associated
2419 to the current pc and if it points inside a trampoline
2420 sequence. */
2421
2422 find_pc_partial_function (pc, &name, NULL, NULL);
2423 if (name)
2424 return 0;
2425
2426 if (target_read_memory (pc, &insn, 1))
2427 return 0;
2428
2429 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2430 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2431 return 0;
2432
2433 return 1;
2434 }
2435
2436 static int
2437 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2438 const frame_info_ptr &this_frame,
2439 void **this_cache)
2440 {
2441 if (frame_relative_level (this_frame) == 0)
2442 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2443 else
2444 return 0;
2445 }
2446
2447 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2448 {
2449 "i386 stack tramp",
2450 NORMAL_FRAME,
2451 i386_epilogue_frame_unwind_stop_reason,
2452 i386_epilogue_frame_this_id,
2453 i386_epilogue_frame_prev_register,
2454 NULL,
2455 i386_stack_tramp_frame_sniffer
2456 };
2457 \f
2458 /* Generate a bytecode expression to get the value of the saved PC. */
2459
2460 static void
2461 i386_gen_return_address (struct gdbarch *gdbarch,
2462 struct agent_expr *ax, struct axs_value *value,
2463 CORE_ADDR scope)
2464 {
2465 /* The following sequence assumes the traditional use of the base
2466 register. */
2467 ax_reg (ax, I386_EBP_REGNUM);
2468 ax_const_l (ax, 4);
2469 ax_simple (ax, aop_add);
2470 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2471 value->kind = axs_lvalue_memory;
2472 }
2473 \f
2474
2475 /* Signal trampolines. */
2476
2477 static struct i386_frame_cache *
2478 i386_sigtramp_frame_cache (const frame_info_ptr &this_frame, void **this_cache)
2479 {
2480 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2481 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
2482 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2483 struct i386_frame_cache *cache;
2484 CORE_ADDR addr;
2485 gdb_byte buf[4];
2486
2487 if (*this_cache)
2488 return (struct i386_frame_cache *) *this_cache;
2489
2490 cache = i386_alloc_frame_cache ();
2491
2492 try
2493 {
2494 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2495 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2496
2497 addr = tdep->sigcontext_addr (this_frame);
2498 if (tdep->sc_reg_offset)
2499 {
2500 int i;
2501
2502 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2503
2504 for (i = 0; i < tdep->sc_num_regs; i++)
2505 if (tdep->sc_reg_offset[i] != -1)
2506 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2507 }
2508 else
2509 {
2510 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2511 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2512 }
2513
2514 cache->base_p = 1;
2515 }
2516 catch (const gdb_exception_error &ex)
2517 {
2518 if (ex.error != NOT_AVAILABLE_ERROR)
2519 throw;
2520 }
2521
2522 *this_cache = cache;
2523 return cache;
2524 }
2525
2526 static enum unwind_stop_reason
2527 i386_sigtramp_frame_unwind_stop_reason (const frame_info_ptr &this_frame,
2528 void **this_cache)
2529 {
2530 struct i386_frame_cache *cache =
2531 i386_sigtramp_frame_cache (this_frame, this_cache);
2532
2533 if (!cache->base_p)
2534 return UNWIND_UNAVAILABLE;
2535
2536 return UNWIND_NO_REASON;
2537 }
2538
2539 static void
2540 i386_sigtramp_frame_this_id (const frame_info_ptr &this_frame, void **this_cache,
2541 struct frame_id *this_id)
2542 {
2543 struct i386_frame_cache *cache =
2544 i386_sigtramp_frame_cache (this_frame, this_cache);
2545
2546 if (!cache->base_p)
2547 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2548 else
2549 {
2550 /* See the end of i386_push_dummy_call. */
2551 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2552 }
2553 }
2554
2555 static struct value *
2556 i386_sigtramp_frame_prev_register (const frame_info_ptr &this_frame,
2557 void **this_cache, int regnum)
2558 {
2559 /* Make sure we've initialized the cache. */
2560 i386_sigtramp_frame_cache (this_frame, this_cache);
2561
2562 return i386_frame_prev_register (this_frame, this_cache, regnum);
2563 }
2564
2565 static int
2566 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2567 const frame_info_ptr &this_frame,
2568 void **this_prologue_cache)
2569 {
2570 gdbarch *arch = get_frame_arch (this_frame);
2571 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
2572
2573 /* We shouldn't even bother if we don't have a sigcontext_addr
2574 handler. */
2575 if (tdep->sigcontext_addr == NULL)
2576 return 0;
2577
2578 if (tdep->sigtramp_p != NULL)
2579 {
2580 if (tdep->sigtramp_p (this_frame))
2581 return 1;
2582 }
2583
2584 if (tdep->sigtramp_start != 0)
2585 {
2586 CORE_ADDR pc = get_frame_pc (this_frame);
2587
2588 gdb_assert (tdep->sigtramp_end != 0);
2589 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2590 return 1;
2591 }
2592
2593 return 0;
2594 }
2595
2596 static const struct frame_unwind i386_sigtramp_frame_unwind =
2597 {
2598 "i386 sigtramp",
2599 SIGTRAMP_FRAME,
2600 i386_sigtramp_frame_unwind_stop_reason,
2601 i386_sigtramp_frame_this_id,
2602 i386_sigtramp_frame_prev_register,
2603 NULL,
2604 i386_sigtramp_frame_sniffer
2605 };
2606 \f
2607
2608 static CORE_ADDR
2609 i386_frame_base_address (const frame_info_ptr &this_frame, void **this_cache)
2610 {
2611 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2612
2613 return cache->base;
2614 }
2615
2616 static const struct frame_base i386_frame_base =
2617 {
2618 &i386_frame_unwind,
2619 i386_frame_base_address,
2620 i386_frame_base_address,
2621 i386_frame_base_address
2622 };
2623
2624 static struct frame_id
2625 i386_dummy_id (struct gdbarch *gdbarch, const frame_info_ptr &this_frame)
2626 {
2627 CORE_ADDR fp;
2628
2629 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2630
2631 /* See the end of i386_push_dummy_call. */
2632 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2633 }
2634
2635 /* _Decimal128 function return values need 16-byte alignment on the
2636 stack. */
2637
2638 static CORE_ADDR
2639 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2640 {
2641 return sp & -(CORE_ADDR)16;
2642 }
2643 \f
2644
2645 /* Figure out where the longjmp will land. Slurp the args out of the
2646 stack. We expect the first arg to be a pointer to the jmp_buf
2647 structure from which we extract the address that we will land at.
2648 This address is copied into PC. This routine returns non-zero on
2649 success. */
2650
2651 static int
2652 i386_get_longjmp_target (const frame_info_ptr &frame, CORE_ADDR *pc)
2653 {
2654 gdb_byte buf[4];
2655 CORE_ADDR sp, jb_addr;
2656 struct gdbarch *gdbarch = get_frame_arch (frame);
2657 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2658 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
2659 int jb_pc_offset = tdep->jb_pc_offset;
2660
2661 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2662 longjmp will land. */
2663 if (jb_pc_offset == -1)
2664 return 0;
2665
2666 get_frame_register (frame, I386_ESP_REGNUM, buf);
2667 sp = extract_unsigned_integer (buf, 4, byte_order);
2668 if (target_read_memory (sp + 4, buf, 4))
2669 return 0;
2670
2671 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2672 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2673 return 0;
2674
2675 *pc = extract_unsigned_integer (buf, 4, byte_order);
2676 return 1;
2677 }
2678 \f
2679
2680 /* Check whether TYPE must be 16-byte-aligned when passed as a
2681 function argument. 16-byte vectors, _Decimal128 and structures or
2682 unions containing such types must be 16-byte-aligned; other
2683 arguments are 4-byte-aligned. */
2684
2685 static int
2686 i386_16_byte_align_p (struct type *type)
2687 {
2688 type = check_typedef (type);
2689 if ((type->code () == TYPE_CODE_DECFLOAT
2690 || (type->code () == TYPE_CODE_ARRAY && type->is_vector ()))
2691 && type->length () == 16)
2692 return 1;
2693 if (type->code () == TYPE_CODE_ARRAY)
2694 return i386_16_byte_align_p (type->target_type ());
2695 if (type->code () == TYPE_CODE_STRUCT
2696 || type->code () == TYPE_CODE_UNION)
2697 {
2698 int i;
2699 for (i = 0; i < type->num_fields (); i++)
2700 {
2701 if (type->field (i).is_static ())
2702 continue;
2703 if (i386_16_byte_align_p (type->field (i).type ()))
2704 return 1;
2705 }
2706 }
2707 return 0;
2708 }
2709
2710 /* Implementation for set_gdbarch_push_dummy_code. */
2711
2712 static CORE_ADDR
2713 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2714 struct value **args, int nargs, struct type *value_type,
2715 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2716 struct regcache *regcache)
2717 {
2718 /* Use 0xcc breakpoint - 1 byte. */
2719 *bp_addr = sp - 1;
2720 *real_pc = funaddr;
2721
2722 /* Keep the stack aligned. */
2723 return sp - 16;
2724 }
2725
2726 /* The "push_dummy_call" gdbarch method, optionally with the thiscall
2727 calling convention. */
2728
2729 CORE_ADDR
2730 i386_thiscall_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2731 struct regcache *regcache, CORE_ADDR bp_addr,
2732 int nargs, struct value **args, CORE_ADDR sp,
2733 function_call_return_method return_method,
2734 CORE_ADDR struct_addr, bool thiscall)
2735 {
2736 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2737 gdb_byte buf[4];
2738 int i;
2739 int write_pass;
2740 int args_space = 0;
2741
2742 /* BND registers can be in arbitrary values at the moment of the
2743 inferior call. This can cause boundary violations that are not
2744 due to a real bug or even desired by the user. The best to be done
2745 is set the BND registers to allow access to the whole memory, INIT
2746 state, before pushing the inferior call. */
2747 i387_reset_bnd_regs (gdbarch, regcache);
2748
2749 /* Determine the total space required for arguments and struct
2750 return address in a first pass (allowing for 16-byte-aligned
2751 arguments), then push arguments in a second pass. */
2752
2753 for (write_pass = 0; write_pass < 2; write_pass++)
2754 {
2755 int args_space_used = 0;
2756
2757 if (return_method == return_method_struct)
2758 {
2759 if (write_pass)
2760 {
2761 /* Push value address. */
2762 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2763 write_memory (sp, buf, 4);
2764 args_space_used += 4;
2765 }
2766 else
2767 args_space += 4;
2768 }
2769
2770 for (i = thiscall ? 1 : 0; i < nargs; i++)
2771 {
2772 int len = args[i]->enclosing_type ()->length ();
2773
2774 if (write_pass)
2775 {
2776 if (i386_16_byte_align_p (args[i]->enclosing_type ()))
2777 args_space_used = align_up (args_space_used, 16);
2778
2779 write_memory (sp + args_space_used,
2780 args[i]->contents_all ().data (), len);
2781 /* The System V ABI says that:
2782
2783 "An argument's size is increased, if necessary, to make it a
2784 multiple of [32-bit] words. This may require tail padding,
2785 depending on the size of the argument."
2786
2787 This makes sure the stack stays word-aligned. */
2788 args_space_used += align_up (len, 4);
2789 }
2790 else
2791 {
2792 if (i386_16_byte_align_p (args[i]->enclosing_type ()))
2793 args_space = align_up (args_space, 16);
2794 args_space += align_up (len, 4);
2795 }
2796 }
2797
2798 if (!write_pass)
2799 {
2800 sp -= args_space;
2801
2802 /* The original System V ABI only requires word alignment,
2803 but modern incarnations need 16-byte alignment in order
2804 to support SSE. Since wasting a few bytes here isn't
2805 harmful we unconditionally enforce 16-byte alignment. */
2806 sp &= ~0xf;
2807 }
2808 }
2809
2810 /* Store return address. */
2811 sp -= 4;
2812 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2813 write_memory (sp, buf, 4);
2814
2815 /* Finally, update the stack pointer... */
2816 store_unsigned_integer (buf, 4, byte_order, sp);
2817 regcache->cooked_write (I386_ESP_REGNUM, buf);
2818
2819 /* ...and fake a frame pointer. */
2820 regcache->cooked_write (I386_EBP_REGNUM, buf);
2821
2822 /* The 'this' pointer needs to be in ECX. */
2823 if (thiscall)
2824 regcache->cooked_write (I386_ECX_REGNUM,
2825 args[0]->contents_all ().data ());
2826
2827 /* If the PLT is position-independent, the SYSTEM V ABI requires %ebx to be
2828 set to the address of the GOT when doing a call to a PLT address.
2829 Note that we do not try to determine whether the PLT is
2830 position-independent, we just set the register regardless. */
2831 CORE_ADDR func_addr = find_function_addr (function, nullptr, nullptr);
2832 if (in_plt_section (func_addr))
2833 {
2834 struct objfile *objf = nullptr;
2835 asection *asect = nullptr;
2836 obj_section *osect = nullptr;
2837
2838 /* Get object file containing func_addr. */
2839 obj_section *func_section = find_pc_section (func_addr);
2840 if (func_section != nullptr)
2841 objf = func_section->objfile;
2842
2843 if (objf != nullptr)
2844 {
2845 /* Get corresponding .got.plt or .got section. */
2846 asect = bfd_get_section_by_name (objf->obfd.get (), ".got.plt");
2847 if (asect == nullptr)
2848 asect = bfd_get_section_by_name (objf->obfd.get (), ".got");
2849 }
2850
2851 if (asect != nullptr)
2852 /* Translate asection to obj_section. */
2853 osect = maint_obj_section_from_bfd_section (objf->obfd.get (),
2854 asect, objf);
2855
2856 if (osect != nullptr)
2857 {
2858 /* Store the section address in %ebx. */
2859 store_unsigned_integer (buf, 4, byte_order, osect->addr ());
2860 regcache->cooked_write (I386_EBX_REGNUM, buf);
2861 }
2862 else
2863 {
2864 /* If we would only do this for a position-independent PLT, it would
2865 make sense to issue a warning here. */
2866 }
2867 }
2868
2869 /* MarkK wrote: This "+ 8" is all over the place:
2870 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2871 i386_dummy_id). It's there, since all frame unwinders for
2872 a given target have to agree (within a certain margin) on the
2873 definition of the stack address of a frame. Otherwise frame id
2874 comparison might not work correctly. Since DWARF2/GCC uses the
2875 stack address *before* the function call as a frame's CFA. On
2876 the i386, when %ebp is used as a frame pointer, the offset
2877 between the contents %ebp and the CFA as defined by GCC. */
2878 return sp + 8;
2879 }
2880
2881 /* Implement the "push_dummy_call" gdbarch method. */
2882
2883 static CORE_ADDR
2884 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2885 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2886 struct value **args, CORE_ADDR sp,
2887 function_call_return_method return_method,
2888 CORE_ADDR struct_addr)
2889 {
2890 return i386_thiscall_push_dummy_call (gdbarch, function, regcache, bp_addr,
2891 nargs, args, sp, return_method,
2892 struct_addr, false);
2893 }
2894
2895 /* These registers are used for returning integers (and on some
2896 targets also for returning `struct' and `union' values when their
2897 size and alignment match an integer type). */
2898 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2899 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2900
2901 /* Read, for architecture GDBARCH, a function return value of TYPE
2902 from REGCACHE, and copy that into VALBUF. */
2903
2904 static void
2905 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2906 struct regcache *regcache, gdb_byte *valbuf)
2907 {
2908 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
2909 int len = type->length ();
2910 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2911
2912 /* _Float16 and _Float16 _Complex values are returned via xmm0. */
2913 if (((type->code () == TYPE_CODE_FLT) && len == 2)
2914 || ((type->code () == TYPE_CODE_COMPLEX) && len == 4))
2915 {
2916 regcache->raw_read (I387_XMM0_REGNUM (tdep), valbuf);
2917 return;
2918 }
2919 else if (type->code () == TYPE_CODE_FLT)
2920 {
2921 if (tdep->st0_regnum < 0)
2922 {
2923 warning (_("Cannot find floating-point return value."));
2924 memset (valbuf, 0, len);
2925 return;
2926 }
2927
2928 /* Floating-point return values can be found in %st(0). Convert
2929 its contents to the desired type. This is probably not
2930 exactly how it would happen on the target itself, but it is
2931 the best we can do. */
2932 regcache->raw_read (I386_ST0_REGNUM, buf);
2933 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2934 }
2935 else
2936 {
2937 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2938 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2939
2940 if (len <= low_size)
2941 {
2942 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2943 memcpy (valbuf, buf, len);
2944 }
2945 else if (len <= (low_size + high_size))
2946 {
2947 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2948 memcpy (valbuf, buf, low_size);
2949 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
2950 memcpy (valbuf + low_size, buf, len - low_size);
2951 }
2952 else
2953 internal_error (_("Cannot extract return value of %d bytes long."),
2954 len);
2955 }
2956 }
2957
2958 /* Write, for architecture GDBARCH, a function return value of TYPE
2959 from VALBUF into REGCACHE. */
2960
2961 static void
2962 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2963 struct regcache *regcache, const gdb_byte *valbuf)
2964 {
2965 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
2966 int len = type->length ();
2967
2968 if (type->code () == TYPE_CODE_FLT)
2969 {
2970 ULONGEST fstat;
2971 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2972
2973 if (tdep->st0_regnum < 0)
2974 {
2975 warning (_("Cannot set floating-point return value."));
2976 return;
2977 }
2978
2979 /* Returning floating-point values is a bit tricky. Apart from
2980 storing the return value in %st(0), we have to simulate the
2981 state of the FPU at function return point. */
2982
2983 /* Convert the value found in VALBUF to the extended
2984 floating-point format used by the FPU. This is probably
2985 not exactly how it would happen on the target itself, but
2986 it is the best we can do. */
2987 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2988 regcache->raw_write (I386_ST0_REGNUM, buf);
2989
2990 /* Set the top of the floating-point register stack to 7. The
2991 actual value doesn't really matter, but 7 is what a normal
2992 function return would end up with if the program started out
2993 with a freshly initialized FPU. */
2994 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2995 fstat |= (7 << 11);
2996 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2997
2998 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2999 the floating-point register stack to 7, the appropriate value
3000 for the tag word is 0x3fff. */
3001 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
3002 }
3003 else
3004 {
3005 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
3006 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
3007
3008 if (len <= low_size)
3009 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
3010 else if (len <= (low_size + high_size))
3011 {
3012 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
3013 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
3014 valbuf + low_size);
3015 }
3016 else
3017 internal_error (_("Cannot store return value of %d bytes long."), len);
3018 }
3019 }
3020 \f
3021
3022 /* This is the variable that is set with "set struct-convention", and
3023 its legitimate values. */
3024 static const char default_struct_convention[] = "default";
3025 static const char pcc_struct_convention[] = "pcc";
3026 static const char reg_struct_convention[] = "reg";
3027 static const char *const valid_conventions[] =
3028 {
3029 default_struct_convention,
3030 pcc_struct_convention,
3031 reg_struct_convention,
3032 NULL
3033 };
3034 static const char *struct_convention = default_struct_convention;
3035
3036 /* Return non-zero if TYPE, which is assumed to be a structure,
3037 a union type, or an array type, should be returned in registers
3038 for architecture GDBARCH. */
3039
3040 static int
3041 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
3042 {
3043 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3044 enum type_code code = type->code ();
3045 int len = type->length ();
3046
3047 gdb_assert (code == TYPE_CODE_STRUCT
3048 || code == TYPE_CODE_UNION
3049 || code == TYPE_CODE_ARRAY);
3050
3051 if (struct_convention == pcc_struct_convention
3052 || (struct_convention == default_struct_convention
3053 && tdep->struct_return == pcc_struct_return)
3054 || TYPE_HAS_DYNAMIC_LENGTH (type))
3055 return 0;
3056
3057 /* Structures consisting of a single `float', `double' or 'long
3058 double' member are returned in %st(0). */
3059 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
3060 {
3061 type = check_typedef (type->field (0).type ());
3062 if (type->code () == TYPE_CODE_FLT)
3063 return (len == 4 || len == 8 || len == 12);
3064 }
3065
3066 return (len == 1 || len == 2 || len == 4 || len == 8);
3067 }
3068
3069 /* Determine, for architecture GDBARCH, how a return value of TYPE
3070 should be returned. If it is supposed to be returned in registers,
3071 and READBUF is non-zero, read the appropriate value from REGCACHE,
3072 and copy it into READBUF. If WRITEBUF is non-zero, write the value
3073 from WRITEBUF into REGCACHE. */
3074
3075 static enum return_value_convention
3076 i386_return_value (struct gdbarch *gdbarch, struct value *function,
3077 struct type *type, struct regcache *regcache,
3078 struct value **read_value, const gdb_byte *writebuf)
3079 {
3080 enum type_code code = type->code ();
3081
3082 if (((code == TYPE_CODE_STRUCT
3083 || code == TYPE_CODE_UNION
3084 || code == TYPE_CODE_ARRAY)
3085 && !i386_reg_struct_return_p (gdbarch, type))
3086 /* Complex double and long double uses the struct return convention. */
3087 || (code == TYPE_CODE_COMPLEX && type->length () == 16)
3088 || (code == TYPE_CODE_COMPLEX && type->length () == 24)
3089 /* 128-bit decimal float uses the struct return convention. */
3090 || (code == TYPE_CODE_DECFLOAT && type->length () == 16))
3091 {
3092 /* The System V ABI says that:
3093
3094 "A function that returns a structure or union also sets %eax
3095 to the value of the original address of the caller's area
3096 before it returns. Thus when the caller receives control
3097 again, the address of the returned object resides in register
3098 %eax and can be used to access the object."
3099
3100 So the ABI guarantees that we can always find the return
3101 value just after the function has returned. */
3102
3103 /* Note that the ABI doesn't mention functions returning arrays,
3104 which is something possible in certain languages such as Ada.
3105 In this case, the value is returned as if it was wrapped in
3106 a record, so the convention applied to records also applies
3107 to arrays. */
3108
3109 if (read_value != nullptr)
3110 {
3111 ULONGEST addr;
3112
3113 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
3114 *read_value = value_at_non_lval (type, addr);
3115 }
3116
3117 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
3118 }
3119
3120 /* This special case is for structures consisting of a single
3121 `float', `double' or 'long double' member. These structures are
3122 returned in %st(0). For these structures, we call ourselves
3123 recursively, changing TYPE into the type of the first member of
3124 the structure. Since that should work for all structures that
3125 have only one member, we don't bother to check the member's type
3126 here. */
3127 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
3128 {
3129 struct type *inner_type = check_typedef (type->field (0).type ());
3130 enum return_value_convention result
3131 = i386_return_value (gdbarch, function, inner_type, regcache,
3132 read_value, writebuf);
3133 if (read_value != nullptr)
3134 (*read_value)->deprecated_set_type (type);
3135 return result;
3136 }
3137
3138 if (read_value != nullptr)
3139 {
3140 *read_value = value::allocate (type);
3141 i386_extract_return_value (gdbarch, type, regcache,
3142 (*read_value)->contents_raw ().data ());
3143 }
3144 if (writebuf)
3145 i386_store_return_value (gdbarch, type, regcache, writebuf);
3146
3147 return RETURN_VALUE_REGISTER_CONVENTION;
3148 }
3149 \f
3150
3151 struct type *
3152 i387_ext_type (struct gdbarch *gdbarch)
3153 {
3154 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3155
3156 if (!tdep->i387_ext_type)
3157 {
3158 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3159 gdb_assert (tdep->i387_ext_type != NULL);
3160 }
3161
3162 return tdep->i387_ext_type;
3163 }
3164
3165 /* Construct type for pseudo BND registers. We can't use
3166 tdesc_find_type since a complement of one value has to be used
3167 to describe the upper bound. */
3168
3169 static struct type *
3170 i386_bnd_type (struct gdbarch *gdbarch)
3171 {
3172 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3173
3174
3175 if (!tdep->i386_bnd_type)
3176 {
3177 struct type *t;
3178 const struct builtin_type *bt = builtin_type (gdbarch);
3179
3180 /* The type we're building is described bellow: */
3181 #if 0
3182 struct __bound128
3183 {
3184 void *lbound;
3185 void *ubound; /* One complement of raw ubound field. */
3186 };
3187 #endif
3188
3189 t = arch_composite_type (gdbarch,
3190 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3191
3192 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3193 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3194
3195 t->set_name ("builtin_type_bound128");
3196 tdep->i386_bnd_type = t;
3197 }
3198
3199 return tdep->i386_bnd_type;
3200 }
3201
3202 /* Construct vector type for pseudo ZMM registers. We can't use
3203 tdesc_find_type since ZMM isn't described in target description. */
3204
3205 static struct type *
3206 i386_zmm_type (struct gdbarch *gdbarch)
3207 {
3208 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3209
3210 if (!tdep->i386_zmm_type)
3211 {
3212 const struct builtin_type *bt = builtin_type (gdbarch);
3213
3214 /* The type we're building is this: */
3215 #if 0
3216 union __gdb_builtin_type_vec512i
3217 {
3218 int128_t v4_int128[4];
3219 int64_t v8_int64[8];
3220 int32_t v16_int32[16];
3221 int16_t v32_int16[32];
3222 int8_t v64_int8[64];
3223 double v8_double[8];
3224 float v16_float[16];
3225 float16_t v32_half[32];
3226 bfloat16_t v32_bfloat16[32];
3227 };
3228 #endif
3229
3230 struct type *t;
3231
3232 t = arch_composite_type (gdbarch,
3233 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3234 append_composite_type_field (t, "v32_bfloat16",
3235 init_vector_type (bt->builtin_bfloat16, 32));
3236 append_composite_type_field (t, "v32_half",
3237 init_vector_type (bt->builtin_half, 32));
3238 append_composite_type_field (t, "v16_float",
3239 init_vector_type (bt->builtin_float, 16));
3240 append_composite_type_field (t, "v8_double",
3241 init_vector_type (bt->builtin_double, 8));
3242 append_composite_type_field (t, "v64_int8",
3243 init_vector_type (bt->builtin_int8, 64));
3244 append_composite_type_field (t, "v32_int16",
3245 init_vector_type (bt->builtin_int16, 32));
3246 append_composite_type_field (t, "v16_int32",
3247 init_vector_type (bt->builtin_int32, 16));
3248 append_composite_type_field (t, "v8_int64",
3249 init_vector_type (bt->builtin_int64, 8));
3250 append_composite_type_field (t, "v4_int128",
3251 init_vector_type (bt->builtin_int128, 4));
3252
3253 t->set_is_vector (true);
3254 t->set_name ("builtin_type_vec512i");
3255 tdep->i386_zmm_type = t;
3256 }
3257
3258 return tdep->i386_zmm_type;
3259 }
3260
3261 /* Construct vector type for pseudo YMM registers. We can't use
3262 tdesc_find_type since YMM isn't described in target description. */
3263
3264 static struct type *
3265 i386_ymm_type (struct gdbarch *gdbarch)
3266 {
3267 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3268
3269 if (!tdep->i386_ymm_type)
3270 {
3271 const struct builtin_type *bt = builtin_type (gdbarch);
3272
3273 /* The type we're building is this: */
3274 #if 0
3275 union __gdb_builtin_type_vec256i
3276 {
3277 int128_t v2_int128[2];
3278 int64_t v4_int64[4];
3279 int32_t v8_int32[8];
3280 int16_t v16_int16[16];
3281 int8_t v32_int8[32];
3282 double v4_double[4];
3283 float v8_float[8];
3284 float16_t v16_half[16];
3285 bfloat16_t v16_bfloat16[16];
3286 };
3287 #endif
3288
3289 struct type *t;
3290
3291 t = arch_composite_type (gdbarch,
3292 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3293 append_composite_type_field (t, "v16_bfloat16",
3294 init_vector_type (bt->builtin_bfloat16, 16));
3295 append_composite_type_field (t, "v16_half",
3296 init_vector_type (bt->builtin_half, 16));
3297 append_composite_type_field (t, "v8_float",
3298 init_vector_type (bt->builtin_float, 8));
3299 append_composite_type_field (t, "v4_double",
3300 init_vector_type (bt->builtin_double, 4));
3301 append_composite_type_field (t, "v32_int8",
3302 init_vector_type (bt->builtin_int8, 32));
3303 append_composite_type_field (t, "v16_int16",
3304 init_vector_type (bt->builtin_int16, 16));
3305 append_composite_type_field (t, "v8_int32",
3306 init_vector_type (bt->builtin_int32, 8));
3307 append_composite_type_field (t, "v4_int64",
3308 init_vector_type (bt->builtin_int64, 4));
3309 append_composite_type_field (t, "v2_int128",
3310 init_vector_type (bt->builtin_int128, 2));
3311
3312 t->set_is_vector (true);
3313 t->set_name ("builtin_type_vec256i");
3314 tdep->i386_ymm_type = t;
3315 }
3316
3317 return tdep->i386_ymm_type;
3318 }
3319
3320 /* Construct vector type for MMX registers. */
3321 static struct type *
3322 i386_mmx_type (struct gdbarch *gdbarch)
3323 {
3324 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3325
3326 if (!tdep->i386_mmx_type)
3327 {
3328 const struct builtin_type *bt = builtin_type (gdbarch);
3329
3330 /* The type we're building is this: */
3331 #if 0
3332 union __gdb_builtin_type_vec64i
3333 {
3334 int64_t uint64;
3335 int32_t v2_int32[2];
3336 int16_t v4_int16[4];
3337 int8_t v8_int8[8];
3338 };
3339 #endif
3340
3341 struct type *t;
3342
3343 t = arch_composite_type (gdbarch,
3344 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3345
3346 append_composite_type_field (t, "uint64", bt->builtin_int64);
3347 append_composite_type_field (t, "v2_int32",
3348 init_vector_type (bt->builtin_int32, 2));
3349 append_composite_type_field (t, "v4_int16",
3350 init_vector_type (bt->builtin_int16, 4));
3351 append_composite_type_field (t, "v8_int8",
3352 init_vector_type (bt->builtin_int8, 8));
3353
3354 t->set_is_vector (true);
3355 t->set_name ("builtin_type_vec64i");
3356 tdep->i386_mmx_type = t;
3357 }
3358
3359 return tdep->i386_mmx_type;
3360 }
3361
3362 /* Return the GDB type object for the "standard" data type of data in
3363 register REGNUM. */
3364
3365 struct type *
3366 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3367 {
3368 if (i386_bnd_regnum_p (gdbarch, regnum))
3369 return i386_bnd_type (gdbarch);
3370 if (i386_mmx_regnum_p (gdbarch, regnum))
3371 return i386_mmx_type (gdbarch);
3372 else if (i386_ymm_regnum_p (gdbarch, regnum))
3373 return i386_ymm_type (gdbarch);
3374 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3375 return i386_ymm_type (gdbarch);
3376 else if (i386_zmm_regnum_p (gdbarch, regnum))
3377 return i386_zmm_type (gdbarch);
3378 else
3379 {
3380 const struct builtin_type *bt = builtin_type (gdbarch);
3381 if (i386_byte_regnum_p (gdbarch, regnum))
3382 return bt->builtin_int8;
3383 else if (i386_word_regnum_p (gdbarch, regnum))
3384 return bt->builtin_int16;
3385 else if (i386_dword_regnum_p (gdbarch, regnum))
3386 return bt->builtin_int32;
3387 else if (i386_k_regnum_p (gdbarch, regnum))
3388 return bt->builtin_int64;
3389 }
3390
3391 internal_error (_("invalid regnum"));
3392 }
3393
3394 /* Map a cooked register onto a raw register or memory. For the i386,
3395 the MMX registers need to be mapped onto floating point registers. */
3396
3397 static int
3398 i386_mmx_regnum_to_fp_regnum (const frame_info_ptr &next_frame, int regnum)
3399 {
3400 gdbarch *arch = frame_unwind_arch (next_frame);
3401 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
3402 ULONGEST fstat
3403 = frame_unwind_register_unsigned (next_frame, I387_FSTAT_REGNUM (tdep));
3404 int tos = (fstat >> 11) & 0x7;
3405 int mmxreg = regnum - tdep->mm0_regnum;
3406 int fpreg = (mmxreg + tos) % 8;
3407
3408 return (I387_ST0_REGNUM (tdep) + fpreg);
3409 }
3410
3411 /* A helper function for us by i386_pseudo_register_read_value and
3412 amd64_pseudo_register_read_value. It does all the work but reads
3413 the data into an already-allocated value. */
3414
3415 value *
3416 i386_pseudo_register_read_value (gdbarch *gdbarch, const frame_info_ptr &next_frame,
3417 const int pseudo_reg_num)
3418 {
3419 if (i386_mmx_regnum_p (gdbarch, pseudo_reg_num))
3420 {
3421 int fpnum = i386_mmx_regnum_to_fp_regnum (next_frame, pseudo_reg_num);
3422
3423 /* Extract (always little endian). */
3424 return pseudo_from_raw_part (next_frame, pseudo_reg_num, fpnum, 0);
3425 }
3426 else
3427 {
3428 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3429 if (i386_bnd_regnum_p (gdbarch, pseudo_reg_num))
3430 {
3431 int i = pseudo_reg_num - tdep->bnd0_regnum;
3432
3433 /* Extract (always little endian). Read lower 128bits. */
3434 value *bndr_value
3435 = value_of_register (I387_BND0R_REGNUM (tdep) + i, next_frame);
3436 int size = builtin_type (gdbarch)->builtin_data_ptr->length ();
3437 value *result
3438 = value::allocate_register (next_frame, pseudo_reg_num);
3439
3440 /* Copy the lower. */
3441 bndr_value->contents_copy (result, 0, 0, size);
3442
3443 /* Copy the upper. */
3444 bndr_value->contents_copy (result, size, 8, size);
3445
3446 /* If upper bytes are available, compute ones' complement. */
3447 if (result->bytes_available (size, size))
3448 {
3449 bfd_endian byte_order
3450 = gdbarch_byte_order (frame_unwind_arch (next_frame));
3451 gdb::array_view<gdb_byte> upper_bytes
3452 = result->contents_raw ().slice (size, size);
3453 ULONGEST upper
3454 = extract_unsigned_integer (upper_bytes, byte_order);
3455 upper = ~upper;
3456 store_unsigned_integer (upper_bytes, byte_order, upper);
3457 }
3458
3459 return result;
3460 }
3461 else if (i386_zmm_regnum_p (gdbarch, pseudo_reg_num))
3462 {
3463 /* Which register is it, relative to zmm0. */
3464 int i_0 = pseudo_reg_num - tdep->zmm0_regnum;
3465
3466 if (i_0 < num_lower_zmm_regs)
3467 return pseudo_from_concat_raw (next_frame, pseudo_reg_num,
3468 I387_XMM0_REGNUM (tdep) + i_0,
3469 tdep->ymm0h_regnum + i_0,
3470 tdep->zmm0h_regnum + i_0);
3471 else
3472 {
3473 /* Which register is it, relative to zmm16. */
3474 int i_16 = i_0 - num_lower_zmm_regs;
3475
3476 return pseudo_from_concat_raw (next_frame, pseudo_reg_num,
3477 I387_XMM16_REGNUM (tdep) + i_16,
3478 I387_YMM16H_REGNUM (tdep) + i_16,
3479 tdep->zmm0h_regnum + i_0);
3480 }
3481 }
3482 else if (i386_ymm_regnum_p (gdbarch, pseudo_reg_num))
3483 {
3484 int i = pseudo_reg_num - tdep->ymm0_regnum;
3485
3486 return pseudo_from_concat_raw (next_frame, pseudo_reg_num,
3487 I387_XMM0_REGNUM (tdep) + i,
3488 tdep->ymm0h_regnum + i);
3489 }
3490 else if (i386_ymm_avx512_regnum_p (gdbarch, pseudo_reg_num))
3491 {
3492 int i = pseudo_reg_num - tdep->ymm16_regnum;
3493
3494 return pseudo_from_concat_raw (next_frame, pseudo_reg_num,
3495 I387_XMM16_REGNUM (tdep) + i,
3496 tdep->ymm16h_regnum + i);
3497 }
3498 else if (i386_word_regnum_p (gdbarch, pseudo_reg_num))
3499 {
3500 int gpnum = pseudo_reg_num - tdep->ax_regnum;
3501
3502 /* Extract (always little endian). */
3503 return pseudo_from_raw_part (next_frame, pseudo_reg_num, gpnum, 0);
3504 }
3505 else if (i386_byte_regnum_p (gdbarch, pseudo_reg_num))
3506 {
3507 int gpnum = pseudo_reg_num - tdep->al_regnum;
3508
3509 /* Extract (always little endian). We read both lower and
3510 upper registers. */
3511 return pseudo_from_raw_part (next_frame, pseudo_reg_num, gpnum % 4,
3512 gpnum >= 4 ? 1 : 0);
3513 }
3514 else
3515 internal_error (_("invalid regnum"));
3516 }
3517 }
3518
3519 void
3520 i386_pseudo_register_write (gdbarch *gdbarch, const frame_info_ptr &next_frame,
3521 const int pseudo_reg_num,
3522 gdb::array_view<const gdb_byte> buf)
3523 {
3524 if (i386_mmx_regnum_p (gdbarch, pseudo_reg_num))
3525 {
3526 int fpnum = i386_mmx_regnum_to_fp_regnum (next_frame, pseudo_reg_num);
3527
3528 pseudo_to_raw_part (next_frame, buf, fpnum, 0);
3529 }
3530 else
3531 {
3532 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3533
3534 if (i386_bnd_regnum_p (gdbarch, pseudo_reg_num))
3535 {
3536 int size = builtin_type (gdbarch)->builtin_data_ptr->length ();
3537 bfd_endian byte_order
3538 = gdbarch_byte_order (current_inferior ()->arch ());
3539
3540 /* New values from input value. */
3541 int reg_index = pseudo_reg_num - tdep->bnd0_regnum;
3542 int raw_regnum = I387_BND0R_REGNUM (tdep) + reg_index;
3543
3544 value *bndr_value = value_of_register (raw_regnum, next_frame);
3545 gdb::array_view<gdb_byte> bndr_view
3546 = bndr_value->contents_writeable ();
3547
3548 /* Copy lower bytes directly. */
3549 copy (buf.slice (0, size), bndr_view.slice (0, size));
3550
3551 /* Convert and then copy upper bytes. */
3552 ULONGEST upper
3553 = extract_unsigned_integer (buf.slice (size, size), byte_order);
3554 upper = ~upper;
3555 store_unsigned_integer (bndr_view.slice (8, size), byte_order,
3556 upper);
3557
3558 put_frame_register (next_frame, raw_regnum, bndr_view);
3559 }
3560 else if (i386_zmm_regnum_p (gdbarch, pseudo_reg_num))
3561 {
3562 /* Which register is it, relative to zmm0. */
3563 int reg_index_0 = pseudo_reg_num - tdep->zmm0_regnum;
3564
3565 if (reg_index_0 < num_lower_zmm_regs)
3566 pseudo_to_concat_raw (next_frame, buf,
3567 I387_XMM0_REGNUM (tdep) + reg_index_0,
3568 I387_YMM0_REGNUM (tdep) + reg_index_0,
3569 tdep->zmm0h_regnum + reg_index_0);
3570 else
3571 {
3572 /* Which register is it, relative to zmm16. */
3573 int reg_index_16 = reg_index_0 - num_lower_zmm_regs;
3574
3575 pseudo_to_concat_raw (next_frame, buf,
3576 I387_XMM16_REGNUM (tdep) + reg_index_16,
3577 I387_YMM16H_REGNUM (tdep) + reg_index_16,
3578 tdep->zmm0h_regnum + +reg_index_0);
3579 }
3580 }
3581 else if (i386_ymm_regnum_p (gdbarch, pseudo_reg_num))
3582 {
3583 int i = pseudo_reg_num - tdep->ymm0_regnum;
3584
3585 pseudo_to_concat_raw (next_frame, buf, I387_XMM0_REGNUM (tdep) + i,
3586 tdep->ymm0h_regnum + i);
3587 }
3588 else if (i386_ymm_avx512_regnum_p (gdbarch, pseudo_reg_num))
3589 {
3590 int i = pseudo_reg_num - tdep->ymm16_regnum;
3591
3592 pseudo_to_concat_raw (next_frame, buf, I387_XMM16_REGNUM (tdep) + i,
3593 tdep->ymm16h_regnum + i);
3594 }
3595 else if (i386_word_regnum_p (gdbarch, pseudo_reg_num))
3596 {
3597 int gpnum = pseudo_reg_num - tdep->ax_regnum;
3598
3599 pseudo_to_raw_part (next_frame, buf, gpnum, 0);
3600 }
3601 else if (i386_byte_regnum_p (gdbarch, pseudo_reg_num))
3602 {
3603 int gpnum = pseudo_reg_num - tdep->al_regnum;
3604
3605 pseudo_to_raw_part (next_frame, buf, gpnum % 4, gpnum >= 4 ? 1 : 0);
3606 }
3607 else
3608 internal_error (_("invalid regnum"));
3609 }
3610 }
3611
3612 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3613
3614 int
3615 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3616 struct agent_expr *ax, int regnum)
3617 {
3618 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3619
3620 if (i386_mmx_regnum_p (gdbarch, regnum))
3621 {
3622 /* MMX to FPU register mapping depends on current TOS. Let's just
3623 not care and collect everything... */
3624 int i;
3625
3626 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3627 for (i = 0; i < 8; i++)
3628 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3629 return 0;
3630 }
3631 else if (i386_bnd_regnum_p (gdbarch, regnum))
3632 {
3633 regnum -= tdep->bnd0_regnum;
3634 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3635 return 0;
3636 }
3637 else if (i386_zmm_regnum_p (gdbarch, regnum))
3638 {
3639 regnum -= tdep->zmm0_regnum;
3640 if (regnum < num_lower_zmm_regs)
3641 {
3642 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3643 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3644 }
3645 else
3646 {
3647 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3648 - num_lower_zmm_regs);
3649 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3650 - num_lower_zmm_regs);
3651 }
3652 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3653 return 0;
3654 }
3655 else if (i386_ymm_regnum_p (gdbarch, regnum))
3656 {
3657 regnum -= tdep->ymm0_regnum;
3658 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3659 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3660 return 0;
3661 }
3662 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3663 {
3664 regnum -= tdep->ymm16_regnum;
3665 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3666 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3667 return 0;
3668 }
3669 else if (i386_word_regnum_p (gdbarch, regnum))
3670 {
3671 int gpnum = regnum - tdep->ax_regnum;
3672
3673 ax_reg_mask (ax, gpnum);
3674 return 0;
3675 }
3676 else if (i386_byte_regnum_p (gdbarch, regnum))
3677 {
3678 int gpnum = regnum - tdep->al_regnum;
3679
3680 ax_reg_mask (ax, gpnum % 4);
3681 return 0;
3682 }
3683 else
3684 internal_error (_("invalid regnum"));
3685 return 1;
3686 }
3687 \f
3688
3689 /* Return the register number of the register allocated by GCC after
3690 REGNUM, or -1 if there is no such register. */
3691
3692 static int
3693 i386_next_regnum (int regnum)
3694 {
3695 /* GCC allocates the registers in the order:
3696
3697 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3698
3699 Since storing a variable in %esp doesn't make any sense we return
3700 -1 for %ebp and for %esp itself. */
3701 static int next_regnum[] =
3702 {
3703 I386_EDX_REGNUM, /* Slot for %eax. */
3704 I386_EBX_REGNUM, /* Slot for %ecx. */
3705 I386_ECX_REGNUM, /* Slot for %edx. */
3706 I386_ESI_REGNUM, /* Slot for %ebx. */
3707 -1, -1, /* Slots for %esp and %ebp. */
3708 I386_EDI_REGNUM, /* Slot for %esi. */
3709 I386_EBP_REGNUM /* Slot for %edi. */
3710 };
3711
3712 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3713 return next_regnum[regnum];
3714
3715 return -1;
3716 }
3717
3718 /* Return nonzero if a value of type TYPE stored in register REGNUM
3719 needs any special handling. */
3720
3721 static int
3722 i386_convert_register_p (struct gdbarch *gdbarch,
3723 int regnum, struct type *type)
3724 {
3725 int len = type->length ();
3726
3727 /* Values may be spread across multiple registers. Most debugging
3728 formats aren't expressive enough to specify the locations, so
3729 some heuristics is involved. Right now we only handle types that
3730 have a length that is a multiple of the word size, since GCC
3731 doesn't seem to put any other types into registers. */
3732 if (len > 4 && len % 4 == 0)
3733 {
3734 int last_regnum = regnum;
3735
3736 while (len > 4)
3737 {
3738 last_regnum = i386_next_regnum (last_regnum);
3739 len -= 4;
3740 }
3741
3742 if (last_regnum != -1)
3743 return 1;
3744 }
3745
3746 return i387_convert_register_p (gdbarch, regnum, type);
3747 }
3748
3749 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3750 return its contents in TO. */
3751
3752 static int
3753 i386_register_to_value (const frame_info_ptr &frame, int regnum,
3754 struct type *type, gdb_byte *to,
3755 int *optimizedp, int *unavailablep)
3756 {
3757 struct gdbarch *gdbarch = get_frame_arch (frame);
3758 int len = type->length ();
3759
3760 if (i386_fp_regnum_p (gdbarch, regnum))
3761 return i387_register_to_value (frame, regnum, type, to,
3762 optimizedp, unavailablep);
3763
3764 /* Read a value spread across multiple registers. */
3765
3766 gdb_assert (len > 4 && len % 4 == 0);
3767
3768 while (len > 0)
3769 {
3770 gdb_assert (regnum != -1);
3771 gdb_assert (register_size (gdbarch, regnum) == 4);
3772
3773 auto to_view
3774 = gdb::make_array_view (to, register_size (gdbarch, regnum));
3775 frame_info_ptr next_frame = get_next_frame_sentinel_okay (frame);
3776 if (!get_frame_register_bytes (next_frame, regnum, 0, to_view,
3777 optimizedp, unavailablep))
3778 return 0;
3779
3780 regnum = i386_next_regnum (regnum);
3781 len -= 4;
3782 to += 4;
3783 }
3784
3785 *optimizedp = *unavailablep = 0;
3786 return 1;
3787 }
3788
3789 /* Write the contents FROM of a value of type TYPE into register
3790 REGNUM in frame FRAME. */
3791
3792 static void
3793 i386_value_to_register (const frame_info_ptr &frame, int regnum,
3794 struct type *type, const gdb_byte *from)
3795 {
3796 int len = type->length ();
3797
3798 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3799 {
3800 i387_value_to_register (frame, regnum, type, from);
3801 return;
3802 }
3803
3804 /* Write a value spread across multiple registers. */
3805
3806 gdb_assert (len > 4 && len % 4 == 0);
3807
3808 while (len > 0)
3809 {
3810 gdb_assert (regnum != -1);
3811 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3812
3813 auto from_view = gdb::make_array_view (from, 4);
3814 put_frame_register (get_next_frame_sentinel_okay (frame), regnum,
3815 from_view);
3816 regnum = i386_next_regnum (regnum);
3817 len -= 4;
3818 from += 4;
3819 }
3820 }
3821 \f
3822 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3823 in the general-purpose register set REGSET to register cache
3824 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3825
3826 void
3827 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3828 int regnum, const void *gregs, size_t len)
3829 {
3830 struct gdbarch *gdbarch = regcache->arch ();
3831 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3832 const gdb_byte *regs = (const gdb_byte *) gregs;
3833 int i;
3834
3835 gdb_assert (len >= tdep->sizeof_gregset);
3836
3837 for (i = 0; i < tdep->gregset_num_regs; i++)
3838 {
3839 if ((regnum == i || regnum == -1)
3840 && tdep->gregset_reg_offset[i] != -1)
3841 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
3842 }
3843 }
3844
3845 /* Collect register REGNUM from the register cache REGCACHE and store
3846 it in the buffer specified by GREGS and LEN as described by the
3847 general-purpose register set REGSET. If REGNUM is -1, do this for
3848 all registers in REGSET. */
3849
3850 static void
3851 i386_collect_gregset (const struct regset *regset,
3852 const struct regcache *regcache,
3853 int regnum, void *gregs, size_t len)
3854 {
3855 struct gdbarch *gdbarch = regcache->arch ();
3856 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3857 gdb_byte *regs = (gdb_byte *) gregs;
3858 int i;
3859
3860 gdb_assert (len >= tdep->sizeof_gregset);
3861
3862 for (i = 0; i < tdep->gregset_num_regs; i++)
3863 {
3864 if ((regnum == i || regnum == -1)
3865 && tdep->gregset_reg_offset[i] != -1)
3866 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
3867 }
3868 }
3869
3870 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3871 in the floating-point register set REGSET to register cache
3872 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3873
3874 static void
3875 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3876 int regnum, const void *fpregs, size_t len)
3877 {
3878 struct gdbarch *gdbarch = regcache->arch ();
3879 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3880
3881 if (len == I387_SIZEOF_FXSAVE)
3882 {
3883 i387_supply_fxsave (regcache, regnum, fpregs);
3884 return;
3885 }
3886
3887 gdb_assert (len >= tdep->sizeof_fpregset);
3888 i387_supply_fsave (regcache, regnum, fpregs);
3889 }
3890
3891 /* Collect register REGNUM from the register cache REGCACHE and store
3892 it in the buffer specified by FPREGS and LEN as described by the
3893 floating-point register set REGSET. If REGNUM is -1, do this for
3894 all registers in REGSET. */
3895
3896 static void
3897 i386_collect_fpregset (const struct regset *regset,
3898 const struct regcache *regcache,
3899 int regnum, void *fpregs, size_t len)
3900 {
3901 struct gdbarch *gdbarch = regcache->arch ();
3902 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3903
3904 if (len == I387_SIZEOF_FXSAVE)
3905 {
3906 i387_collect_fxsave (regcache, regnum, fpregs);
3907 return;
3908 }
3909
3910 gdb_assert (len >= tdep->sizeof_fpregset);
3911 i387_collect_fsave (regcache, regnum, fpregs);
3912 }
3913
3914 /* Register set definitions. */
3915
3916 const struct regset i386_gregset =
3917 {
3918 NULL, i386_supply_gregset, i386_collect_gregset
3919 };
3920
3921 const struct regset i386_fpregset =
3922 {
3923 NULL, i386_supply_fpregset, i386_collect_fpregset
3924 };
3925
3926 /* Default iterator over core file register note sections. */
3927
3928 void
3929 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3930 iterate_over_regset_sections_cb *cb,
3931 void *cb_data,
3932 const struct regcache *regcache)
3933 {
3934 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3935
3936 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
3937 cb_data);
3938 if (tdep->sizeof_fpregset)
3939 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
3940 NULL, cb_data);
3941 }
3942 \f
3943
3944 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3945
3946 CORE_ADDR
3947 i386_pe_skip_trampoline_code (const frame_info_ptr &frame,
3948 CORE_ADDR pc, char *name)
3949 {
3950 struct gdbarch *gdbarch = get_frame_arch (frame);
3951 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3952
3953 /* jmp *(dest) */
3954 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3955 {
3956 unsigned long indirect =
3957 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3958 struct minimal_symbol *indsym =
3959 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3960 const char *symname = indsym ? indsym->linkage_name () : 0;
3961
3962 if (symname)
3963 {
3964 if (startswith (symname, "__imp_")
3965 || startswith (symname, "_imp_"))
3966 return name ? 1 :
3967 read_memory_unsigned_integer (indirect, 4, byte_order);
3968 }
3969 }
3970 return 0; /* Not a trampoline. */
3971 }
3972 \f
3973
3974 /* Return whether the THIS_FRAME corresponds to a sigtramp
3975 routine. */
3976
3977 int
3978 i386_sigtramp_p (const frame_info_ptr &this_frame)
3979 {
3980 CORE_ADDR pc = get_frame_pc (this_frame);
3981 const char *name;
3982
3983 find_pc_partial_function (pc, &name, NULL, NULL);
3984 return (name && strcmp ("_sigtramp", name) == 0);
3985 }
3986 \f
3987
3988 /* We have two flavours of disassembly. The machinery on this page
3989 deals with switching between those. */
3990
3991 static int
3992 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3993 {
3994 gdb_assert (disassembly_flavor == att_flavor
3995 || disassembly_flavor == intel_flavor);
3996
3997 info->disassembler_options = disassembly_flavor;
3998
3999 return default_print_insn (pc, info);
4000 }
4001 \f
4002
4003 /* There are a few i386 architecture variants that differ only
4004 slightly from the generic i386 target. For now, we don't give them
4005 their own source file, but include them here. As a consequence,
4006 they'll always be included. */
4007
4008 /* System V Release 4 (SVR4). */
4009
4010 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4011 routine. */
4012
4013 static int
4014 i386_svr4_sigtramp_p (const frame_info_ptr &this_frame)
4015 {
4016 CORE_ADDR pc = get_frame_pc (this_frame);
4017 const char *name;
4018
4019 /* The origin of these symbols is currently unknown. */
4020 find_pc_partial_function (pc, &name, NULL, NULL);
4021 return (name && (strcmp ("_sigreturn", name) == 0
4022 || strcmp ("sigvechandler", name) == 0));
4023 }
4024
4025 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4026 address of the associated sigcontext (ucontext) structure. */
4027
4028 static CORE_ADDR
4029 i386_svr4_sigcontext_addr (const frame_info_ptr &this_frame)
4030 {
4031 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4032 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4033 gdb_byte buf[4];
4034 CORE_ADDR sp;
4035
4036 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4037 sp = extract_unsigned_integer (buf, 4, byte_order);
4038
4039 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4040 }
4041
4042 \f
4043
4044 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4045 gdbarch.h. */
4046
4047 int
4048 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4049 {
4050 return (*s == '$' /* Literal number. */
4051 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4052 || (*s == '(' && s[1] == '%') /* Register indirection. */
4053 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4054 }
4055
4056 /* Helper function for i386_stap_parse_special_token.
4057
4058 This function parses operands of the form `-8+3+1(%rbp)', which
4059 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4060
4061 Return true if the operand was parsed successfully, false
4062 otherwise. */
4063
4064 static expr::operation_up
4065 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4066 struct stap_parse_info *p)
4067 {
4068 const char *s = p->arg;
4069
4070 if (isdigit (*s) || *s == '-' || *s == '+')
4071 {
4072 bool got_minus[3];
4073 int i;
4074 long displacements[3];
4075 const char *start;
4076 int len;
4077 char *endp;
4078
4079 got_minus[0] = false;
4080 if (*s == '+')
4081 ++s;
4082 else if (*s == '-')
4083 {
4084 ++s;
4085 got_minus[0] = true;
4086 }
4087
4088 if (!isdigit ((unsigned char) *s))
4089 return {};
4090
4091 displacements[0] = strtol (s, &endp, 10);
4092 s = endp;
4093
4094 if (*s != '+' && *s != '-')
4095 {
4096 /* We are not dealing with a triplet. */
4097 return {};
4098 }
4099
4100 got_minus[1] = false;
4101 if (*s == '+')
4102 ++s;
4103 else
4104 {
4105 ++s;
4106 got_minus[1] = true;
4107 }
4108
4109 if (!isdigit ((unsigned char) *s))
4110 return {};
4111
4112 displacements[1] = strtol (s, &endp, 10);
4113 s = endp;
4114
4115 if (*s != '+' && *s != '-')
4116 {
4117 /* We are not dealing with a triplet. */
4118 return {};
4119 }
4120
4121 got_minus[2] = false;
4122 if (*s == '+')
4123 ++s;
4124 else
4125 {
4126 ++s;
4127 got_minus[2] = true;
4128 }
4129
4130 if (!isdigit ((unsigned char) *s))
4131 return {};
4132
4133 displacements[2] = strtol (s, &endp, 10);
4134 s = endp;
4135
4136 if (*s != '(' || s[1] != '%')
4137 return {};
4138
4139 s += 2;
4140 start = s;
4141
4142 while (isalnum (*s))
4143 ++s;
4144
4145 if (*s++ != ')')
4146 return {};
4147
4148 len = s - start - 1;
4149 std::string regname (start, len);
4150
4151 if (user_reg_map_name_to_regnum (gdbarch, regname.c_str (), len) == -1)
4152 error (_("Invalid register name `%s' on expression `%s'."),
4153 regname.c_str (), p->saved_arg);
4154
4155 LONGEST value = 0;
4156 for (i = 0; i < 3; i++)
4157 {
4158 LONGEST this_val = displacements[i];
4159 if (got_minus[i])
4160 this_val = -this_val;
4161 value += this_val;
4162 }
4163
4164 p->arg = s;
4165
4166 using namespace expr;
4167
4168 struct type *long_type = builtin_type (gdbarch)->builtin_long;
4169 operation_up offset
4170 = make_operation<long_const_operation> (long_type, value);
4171
4172 operation_up reg
4173 = make_operation<register_operation> (std::move (regname));
4174 struct type *void_ptr = builtin_type (gdbarch)->builtin_data_ptr;
4175 reg = make_operation<unop_cast_operation> (std::move (reg), void_ptr);
4176
4177 operation_up sum
4178 = make_operation<add_operation> (std::move (reg), std::move (offset));
4179 struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
4180 sum = make_operation<unop_cast_operation> (std::move (sum),
4181 arg_ptr_type);
4182 return make_operation<unop_ind_operation> (std::move (sum));
4183 }
4184
4185 return {};
4186 }
4187
4188 /* Helper function for i386_stap_parse_special_token.
4189
4190 This function parses operands of the form `register base +
4191 (register index * size) + offset', as represented in
4192 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4193
4194 Return true if the operand was parsed successfully, false
4195 otherwise. */
4196
4197 static expr::operation_up
4198 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4199 struct stap_parse_info *p)
4200 {
4201 const char *s = p->arg;
4202
4203 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4204 {
4205 bool offset_minus = false;
4206 long offset = 0;
4207 bool size_minus = false;
4208 long size = 0;
4209 const char *start;
4210 int len_base;
4211 int len_index;
4212
4213 if (*s == '+')
4214 ++s;
4215 else if (*s == '-')
4216 {
4217 ++s;
4218 offset_minus = true;
4219 }
4220
4221 if (offset_minus && !isdigit (*s))
4222 return {};
4223
4224 if (isdigit (*s))
4225 {
4226 char *endp;
4227
4228 offset = strtol (s, &endp, 10);
4229 s = endp;
4230 }
4231
4232 if (*s != '(' || s[1] != '%')
4233 return {};
4234
4235 s += 2;
4236 start = s;
4237
4238 while (isalnum (*s))
4239 ++s;
4240
4241 if (*s != ',' || s[1] != '%')
4242 return {};
4243
4244 len_base = s - start;
4245 std::string base (start, len_base);
4246
4247 if (user_reg_map_name_to_regnum (gdbarch, base.c_str (), len_base) == -1)
4248 error (_("Invalid register name `%s' on expression `%s'."),
4249 base.c_str (), p->saved_arg);
4250
4251 s += 2;
4252 start = s;
4253
4254 while (isalnum (*s))
4255 ++s;
4256
4257 len_index = s - start;
4258 std::string index (start, len_index);
4259
4260 if (user_reg_map_name_to_regnum (gdbarch, index.c_str (),
4261 len_index) == -1)
4262 error (_("Invalid register name `%s' on expression `%s'."),
4263 index.c_str (), p->saved_arg);
4264
4265 if (*s != ',' && *s != ')')
4266 return {};
4267
4268 if (*s == ',')
4269 {
4270 char *endp;
4271
4272 ++s;
4273 if (*s == '+')
4274 ++s;
4275 else if (*s == '-')
4276 {
4277 ++s;
4278 size_minus = true;
4279 }
4280
4281 size = strtol (s, &endp, 10);
4282 s = endp;
4283
4284 if (*s != ')')
4285 return {};
4286 }
4287
4288 ++s;
4289 p->arg = s;
4290
4291 using namespace expr;
4292
4293 struct type *long_type = builtin_type (gdbarch)->builtin_long;
4294 operation_up reg = make_operation<register_operation> (std::move (base));
4295
4296 if (offset != 0)
4297 {
4298 if (offset_minus)
4299 offset = -offset;
4300 operation_up value
4301 = make_operation<long_const_operation> (long_type, offset);
4302 reg = make_operation<add_operation> (std::move (reg),
4303 std::move (value));
4304 }
4305
4306 operation_up ind_reg
4307 = make_operation<register_operation> (std::move (index));
4308
4309 if (size != 0)
4310 {
4311 if (size_minus)
4312 size = -size;
4313 operation_up value
4314 = make_operation<long_const_operation> (long_type, size);
4315 ind_reg = make_operation<mul_operation> (std::move (ind_reg),
4316 std::move (value));
4317 }
4318
4319 operation_up sum
4320 = make_operation<add_operation> (std::move (reg),
4321 std::move (ind_reg));
4322
4323 struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
4324 sum = make_operation<unop_cast_operation> (std::move (sum),
4325 arg_ptr_type);
4326 return make_operation<unop_ind_operation> (std::move (sum));
4327 }
4328
4329 return {};
4330 }
4331
4332 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4333 gdbarch.h. */
4334
4335 expr::operation_up
4336 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4337 struct stap_parse_info *p)
4338 {
4339 /* The special tokens to be parsed here are:
4340
4341 - `register base + (register index * size) + offset', as represented
4342 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4343
4344 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4345 `*(-8 + 3 - 1 + (void *) $eax)'. */
4346
4347 expr::operation_up result
4348 = i386_stap_parse_special_token_triplet (gdbarch, p);
4349
4350 if (result == nullptr)
4351 result = i386_stap_parse_special_token_three_arg_disp (gdbarch, p);
4352
4353 return result;
4354 }
4355
4356 /* Implementation of 'gdbarch_stap_adjust_register', as defined in
4357 gdbarch.h. */
4358
4359 static std::string
4360 i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
4361 const std::string &regname, int regnum)
4362 {
4363 static const std::unordered_set<std::string> reg_assoc
4364 = { "ax", "bx", "cx", "dx",
4365 "si", "di", "bp", "sp" };
4366
4367 /* If we are dealing with a register whose size is less than the size
4368 specified by the "[-]N@" prefix, and it is one of the registers that
4369 we know has an extended variant available, then use the extended
4370 version of the register instead. */
4371 if (register_size (gdbarch, regnum) < p->arg_type->length ()
4372 && reg_assoc.find (regname) != reg_assoc.end ())
4373 return "e" + regname;
4374
4375 /* Otherwise, just use the requested register. */
4376 return regname;
4377 }
4378
4379 \f
4380
4381 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4382 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4383
4384 static const char *
4385 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4386 {
4387 return "(x86_64|i.86)";
4388 }
4389
4390 \f
4391
4392 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4393
4394 static bool
4395 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4396 {
4397 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4398 I386_EAX_REGNUM, I386_EIP_REGNUM);
4399 }
4400
4401 /* Generic ELF. */
4402
4403 void
4404 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4405 {
4406 static const char *const stap_integer_prefixes[] = { "$", NULL };
4407 static const char *const stap_register_prefixes[] = { "%", NULL };
4408 static const char *const stap_register_indirection_prefixes[] = { "(",
4409 NULL };
4410 static const char *const stap_register_indirection_suffixes[] = { ")",
4411 NULL };
4412
4413 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4414 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4415
4416 /* Registering SystemTap handlers. */
4417 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4418 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4419 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4420 stap_register_indirection_prefixes);
4421 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4422 stap_register_indirection_suffixes);
4423 set_gdbarch_stap_is_single_operand (gdbarch,
4424 i386_stap_is_single_operand);
4425 set_gdbarch_stap_parse_special_token (gdbarch,
4426 i386_stap_parse_special_token);
4427 set_gdbarch_stap_adjust_register (gdbarch,
4428 i386_stap_adjust_register);
4429
4430 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4431 i386_in_indirect_branch_thunk);
4432 }
4433
4434 /* System V Release 4 (SVR4). */
4435
4436 void
4437 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4438 {
4439 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
4440
4441 /* System V Release 4 uses ELF. */
4442 i386_elf_init_abi (info, gdbarch);
4443
4444 /* System V Release 4 has shared libraries. */
4445 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4446
4447 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4448 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4449 tdep->sc_pc_offset = 36 + 14 * 4;
4450 tdep->sc_sp_offset = 36 + 17 * 4;
4451
4452 tdep->jb_pc_offset = 20;
4453 }
4454
4455 \f
4456
4457 /* i386 register groups. In addition to the normal groups, add "mmx"
4458 and "sse". */
4459
4460 static const reggroup *i386_sse_reggroup;
4461 static const reggroup *i386_mmx_reggroup;
4462
4463 static void
4464 i386_init_reggroups (void)
4465 {
4466 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4467 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4468 }
4469
4470 static void
4471 i386_add_reggroups (struct gdbarch *gdbarch)
4472 {
4473 reggroup_add (gdbarch, i386_sse_reggroup);
4474 reggroup_add (gdbarch, i386_mmx_reggroup);
4475 }
4476
4477 int
4478 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4479 const struct reggroup *group)
4480 {
4481 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
4482 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4483 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4484 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4485 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4486 avx512_p, avx_p, sse_p, pkru_regnum_p;
4487
4488 /* Don't include pseudo registers, except for MMX, in any register
4489 groups. */
4490 if (i386_byte_regnum_p (gdbarch, regnum))
4491 return 0;
4492
4493 if (i386_word_regnum_p (gdbarch, regnum))
4494 return 0;
4495
4496 if (i386_dword_regnum_p (gdbarch, regnum))
4497 return 0;
4498
4499 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4500 if (group == i386_mmx_reggroup)
4501 return mmx_regnum_p;
4502
4503 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4504 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4505 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4506 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4507 if (group == i386_sse_reggroup)
4508 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4509
4510 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4511 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4512 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4513
4514 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4515 == X86_XSTATE_AVX_AVX512_MASK);
4516 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4517 == X86_XSTATE_AVX_MASK) && !avx512_p;
4518 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4519 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4520
4521 if (group == vector_reggroup)
4522 return (mmx_regnum_p
4523 || (zmm_regnum_p && avx512_p)
4524 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4525 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4526 || mxcsr_regnum_p);
4527
4528 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4529 || i386_fpc_regnum_p (gdbarch, regnum));
4530 if (group == float_reggroup)
4531 return fp_regnum_p;
4532
4533 /* For "info reg all", don't include upper YMM registers nor XMM
4534 registers when AVX is supported. */
4535 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4536 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4537 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4538 if (group == all_reggroup
4539 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4540 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4541 || ymmh_regnum_p
4542 || ymmh_avx512_regnum_p
4543 || zmmh_regnum_p))
4544 return 0;
4545
4546 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4547 if (group == all_reggroup
4548 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4549 return bnd_regnum_p;
4550
4551 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4552 if (group == all_reggroup
4553 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4554 return 0;
4555
4556 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4557 if (group == all_reggroup
4558 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4559 return mpx_ctrl_regnum_p;
4560
4561 if (group == general_reggroup)
4562 return (!fp_regnum_p
4563 && !mmx_regnum_p
4564 && !mxcsr_regnum_p
4565 && !xmm_regnum_p
4566 && !xmm_avx512_regnum_p
4567 && !ymm_regnum_p
4568 && !ymmh_regnum_p
4569 && !ymm_avx512_regnum_p
4570 && !ymmh_avx512_regnum_p
4571 && !bndr_regnum_p
4572 && !bnd_regnum_p
4573 && !mpx_ctrl_regnum_p
4574 && !zmm_regnum_p
4575 && !zmmh_regnum_p
4576 && !pkru_regnum_p);
4577
4578 return default_register_reggroup_p (gdbarch, regnum, group);
4579 }
4580 \f
4581
4582 /* Get the ARGIth function argument for the current function. */
4583
4584 static CORE_ADDR
4585 i386_fetch_pointer_argument (const frame_info_ptr &frame, int argi,
4586 struct type *type)
4587 {
4588 struct gdbarch *gdbarch = get_frame_arch (frame);
4589 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4590 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4591 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4592 }
4593
4594 #define PREFIX_REPZ 0x01
4595 #define PREFIX_REPNZ 0x02
4596 #define PREFIX_LOCK 0x04
4597 #define PREFIX_DATA 0x08
4598 #define PREFIX_ADDR 0x10
4599
4600 /* operand size */
4601 enum
4602 {
4603 OT_BYTE = 0,
4604 OT_WORD,
4605 OT_LONG,
4606 OT_QUAD,
4607 OT_DQUAD,
4608 };
4609
4610 /* i386 arith/logic operations */
4611 enum
4612 {
4613 OP_ADDL,
4614 OP_ORL,
4615 OP_ADCL,
4616 OP_SBBL,
4617 OP_ANDL,
4618 OP_SUBL,
4619 OP_XORL,
4620 OP_CMPL,
4621 };
4622
4623 struct i386_record_s
4624 {
4625 struct gdbarch *gdbarch;
4626 struct regcache *regcache;
4627 CORE_ADDR orig_addr;
4628 CORE_ADDR addr;
4629 int aflag;
4630 int dflag;
4631 int override;
4632 uint8_t modrm;
4633 uint8_t mod, reg, rm;
4634 int ot;
4635 uint8_t rex_x;
4636 uint8_t rex_b;
4637 int rip_offset;
4638 int popl_esp_hack;
4639 const int *regmap;
4640 };
4641
4642 /* Parse the "modrm" part of the memory address irp->addr points at.
4643 Returns -1 if something goes wrong, 0 otherwise. */
4644
4645 static int
4646 i386_record_modrm (struct i386_record_s *irp)
4647 {
4648 struct gdbarch *gdbarch = irp->gdbarch;
4649
4650 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4651 return -1;
4652
4653 irp->addr++;
4654 irp->mod = (irp->modrm >> 6) & 3;
4655 irp->reg = (irp->modrm >> 3) & 7;
4656 irp->rm = irp->modrm & 7;
4657
4658 return 0;
4659 }
4660
4661 /* Extract the memory address that the current instruction writes to,
4662 and return it in *ADDR. Return -1 if something goes wrong. */
4663
4664 static int
4665 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4666 {
4667 struct gdbarch *gdbarch = irp->gdbarch;
4668 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4669 gdb_byte buf[4];
4670 ULONGEST offset64;
4671
4672 *addr = 0;
4673 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4674 {
4675 /* 32/64 bits */
4676 int havesib = 0;
4677 uint8_t scale = 0;
4678 uint8_t byte;
4679 uint8_t index = 0;
4680 uint8_t base = irp->rm;
4681
4682 if (base == 4)
4683 {
4684 havesib = 1;
4685 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4686 return -1;
4687 irp->addr++;
4688 scale = (byte >> 6) & 3;
4689 index = ((byte >> 3) & 7) | irp->rex_x;
4690 base = (byte & 7);
4691 }
4692 base |= irp->rex_b;
4693
4694 switch (irp->mod)
4695 {
4696 case 0:
4697 if ((base & 7) == 5)
4698 {
4699 base = 0xff;
4700 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4701 return -1;
4702 irp->addr += 4;
4703 *addr = extract_signed_integer (buf, 4, byte_order);
4704 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4705 *addr += irp->addr + irp->rip_offset;
4706 }
4707 break;
4708 case 1:
4709 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4710 return -1;
4711 irp->addr++;
4712 *addr = (int8_t) buf[0];
4713 break;
4714 case 2:
4715 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4716 return -1;
4717 *addr = extract_signed_integer (buf, 4, byte_order);
4718 irp->addr += 4;
4719 break;
4720 }
4721
4722 offset64 = 0;
4723 if (base != 0xff)
4724 {
4725 if (base == 4 && irp->popl_esp_hack)
4726 *addr += irp->popl_esp_hack;
4727 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4728 &offset64);
4729 }
4730 if (irp->aflag == 2)
4731 {
4732 *addr += offset64;
4733 }
4734 else
4735 *addr = (uint32_t) (offset64 + *addr);
4736
4737 if (havesib && (index != 4 || scale != 0))
4738 {
4739 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4740 &offset64);
4741 if (irp->aflag == 2)
4742 *addr += offset64 << scale;
4743 else
4744 *addr = (uint32_t) (*addr + (offset64 << scale));
4745 }
4746
4747 if (!irp->aflag)
4748 {
4749 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4750 address from 32-bit to 64-bit. */
4751 *addr = (uint32_t) *addr;
4752 }
4753 }
4754 else
4755 {
4756 /* 16 bits */
4757 switch (irp->mod)
4758 {
4759 case 0:
4760 if (irp->rm == 6)
4761 {
4762 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4763 return -1;
4764 irp->addr += 2;
4765 *addr = extract_signed_integer (buf, 2, byte_order);
4766 irp->rm = 0;
4767 goto no_rm;
4768 }
4769 break;
4770 case 1:
4771 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4772 return -1;
4773 irp->addr++;
4774 *addr = (int8_t) buf[0];
4775 break;
4776 case 2:
4777 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4778 return -1;
4779 irp->addr += 2;
4780 *addr = extract_signed_integer (buf, 2, byte_order);
4781 break;
4782 }
4783
4784 switch (irp->rm)
4785 {
4786 case 0:
4787 regcache_raw_read_unsigned (irp->regcache,
4788 irp->regmap[X86_RECORD_REBX_REGNUM],
4789 &offset64);
4790 *addr = (uint32_t) (*addr + offset64);
4791 regcache_raw_read_unsigned (irp->regcache,
4792 irp->regmap[X86_RECORD_RESI_REGNUM],
4793 &offset64);
4794 *addr = (uint32_t) (*addr + offset64);
4795 break;
4796 case 1:
4797 regcache_raw_read_unsigned (irp->regcache,
4798 irp->regmap[X86_RECORD_REBX_REGNUM],
4799 &offset64);
4800 *addr = (uint32_t) (*addr + offset64);
4801 regcache_raw_read_unsigned (irp->regcache,
4802 irp->regmap[X86_RECORD_REDI_REGNUM],
4803 &offset64);
4804 *addr = (uint32_t) (*addr + offset64);
4805 break;
4806 case 2:
4807 regcache_raw_read_unsigned (irp->regcache,
4808 irp->regmap[X86_RECORD_REBP_REGNUM],
4809 &offset64);
4810 *addr = (uint32_t) (*addr + offset64);
4811 regcache_raw_read_unsigned (irp->regcache,
4812 irp->regmap[X86_RECORD_RESI_REGNUM],
4813 &offset64);
4814 *addr = (uint32_t) (*addr + offset64);
4815 break;
4816 case 3:
4817 regcache_raw_read_unsigned (irp->regcache,
4818 irp->regmap[X86_RECORD_REBP_REGNUM],
4819 &offset64);
4820 *addr = (uint32_t) (*addr + offset64);
4821 regcache_raw_read_unsigned (irp->regcache,
4822 irp->regmap[X86_RECORD_REDI_REGNUM],
4823 &offset64);
4824 *addr = (uint32_t) (*addr + offset64);
4825 break;
4826 case 4:
4827 regcache_raw_read_unsigned (irp->regcache,
4828 irp->regmap[X86_RECORD_RESI_REGNUM],
4829 &offset64);
4830 *addr = (uint32_t) (*addr + offset64);
4831 break;
4832 case 5:
4833 regcache_raw_read_unsigned (irp->regcache,
4834 irp->regmap[X86_RECORD_REDI_REGNUM],
4835 &offset64);
4836 *addr = (uint32_t) (*addr + offset64);
4837 break;
4838 case 6:
4839 regcache_raw_read_unsigned (irp->regcache,
4840 irp->regmap[X86_RECORD_REBP_REGNUM],
4841 &offset64);
4842 *addr = (uint32_t) (*addr + offset64);
4843 break;
4844 case 7:
4845 regcache_raw_read_unsigned (irp->regcache,
4846 irp->regmap[X86_RECORD_REBX_REGNUM],
4847 &offset64);
4848 *addr = (uint32_t) (*addr + offset64);
4849 break;
4850 }
4851 *addr &= 0xffff;
4852 }
4853
4854 no_rm:
4855 return 0;
4856 }
4857
4858 /* Record the address and contents of the memory that will be changed
4859 by the current instruction. Return -1 if something goes wrong, 0
4860 otherwise. */
4861
4862 static int
4863 i386_record_lea_modrm (struct i386_record_s *irp)
4864 {
4865 struct gdbarch *gdbarch = irp->gdbarch;
4866 uint64_t addr;
4867
4868 if (irp->override >= 0)
4869 {
4870 if (record_full_memory_query)
4871 {
4872 if (yquery (_("\
4873 Process record ignores the memory change of instruction at address %s\n\
4874 because it can't get the value of the segment register.\n\
4875 Do you want to stop the program?"),
4876 paddress (gdbarch, irp->orig_addr)))
4877 return -1;
4878 }
4879
4880 return 0;
4881 }
4882
4883 if (i386_record_lea_modrm_addr (irp, &addr))
4884 return -1;
4885
4886 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4887 return -1;
4888
4889 return 0;
4890 }
4891
4892 /* Record the effects of a push operation. Return -1 if something
4893 goes wrong, 0 otherwise. */
4894
4895 static int
4896 i386_record_push (struct i386_record_s *irp, int size)
4897 {
4898 ULONGEST addr;
4899
4900 if (record_full_arch_list_add_reg (irp->regcache,
4901 irp->regmap[X86_RECORD_RESP_REGNUM]))
4902 return -1;
4903 regcache_raw_read_unsigned (irp->regcache,
4904 irp->regmap[X86_RECORD_RESP_REGNUM],
4905 &addr);
4906 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4907 return -1;
4908
4909 return 0;
4910 }
4911
4912
4913 /* Defines contents to record. */
4914 #define I386_SAVE_FPU_REGS 0xfffd
4915 #define I386_SAVE_FPU_ENV 0xfffe
4916 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4917
4918 /* Record the values of the floating point registers which will be
4919 changed by the current instruction. Returns -1 if something is
4920 wrong, 0 otherwise. */
4921
4922 static int i386_record_floats (struct gdbarch *gdbarch,
4923 struct i386_record_s *ir,
4924 uint32_t iregnum)
4925 {
4926 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
4927 int i;
4928
4929 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4930 happen. Currently we store st0-st7 registers, but we need not store all
4931 registers all the time, in future we use ftag register and record only
4932 those who are not marked as an empty. */
4933
4934 if (I386_SAVE_FPU_REGS == iregnum)
4935 {
4936 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4937 {
4938 if (record_full_arch_list_add_reg (ir->regcache, i))
4939 return -1;
4940 }
4941 }
4942 else if (I386_SAVE_FPU_ENV == iregnum)
4943 {
4944 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4945 {
4946 if (record_full_arch_list_add_reg (ir->regcache, i))
4947 return -1;
4948 }
4949 }
4950 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4951 {
4952 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4953 if (record_full_arch_list_add_reg (ir->regcache, i))
4954 return -1;
4955 }
4956 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4957 (iregnum <= I387_FOP_REGNUM (tdep)))
4958 {
4959 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4960 return -1;
4961 }
4962 else
4963 {
4964 /* Parameter error. */
4965 return -1;
4966 }
4967 if(I386_SAVE_FPU_ENV != iregnum)
4968 {
4969 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4970 {
4971 if (record_full_arch_list_add_reg (ir->regcache, i))
4972 return -1;
4973 }
4974 }
4975 return 0;
4976 }
4977
4978 /* Parse the current instruction, and record the values of the
4979 registers and memory that will be changed by the current
4980 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4981
4982 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4983 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4984
4985 int
4986 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4987 CORE_ADDR input_addr)
4988 {
4989 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4990 int prefixes = 0;
4991 int regnum = 0;
4992 uint32_t opcode;
4993 uint8_t opcode8;
4994 ULONGEST addr;
4995 gdb_byte buf[I386_MAX_REGISTER_SIZE];
4996 struct i386_record_s ir;
4997 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
4998 uint8_t rex_w = -1;
4999 uint8_t rex_r = 0;
5000
5001 memset (&ir, 0, sizeof (struct i386_record_s));
5002 ir.regcache = regcache;
5003 ir.addr = input_addr;
5004 ir.orig_addr = input_addr;
5005 ir.aflag = 1;
5006 ir.dflag = 1;
5007 ir.override = -1;
5008 ir.popl_esp_hack = 0;
5009 ir.regmap = tdep->record_regmap;
5010 ir.gdbarch = gdbarch;
5011
5012 if (record_debug > 1)
5013 gdb_printf (gdb_stdlog, "Process record: i386_process_record "
5014 "addr = %s\n",
5015 paddress (gdbarch, ir.addr));
5016
5017 /* prefixes */
5018 while (1)
5019 {
5020 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5021 return -1;
5022 ir.addr++;
5023 switch (opcode8) /* Instruction prefixes */
5024 {
5025 case REPE_PREFIX_OPCODE:
5026 prefixes |= PREFIX_REPZ;
5027 break;
5028 case REPNE_PREFIX_OPCODE:
5029 prefixes |= PREFIX_REPNZ;
5030 break;
5031 case LOCK_PREFIX_OPCODE:
5032 prefixes |= PREFIX_LOCK;
5033 break;
5034 case CS_PREFIX_OPCODE:
5035 ir.override = X86_RECORD_CS_REGNUM;
5036 break;
5037 case SS_PREFIX_OPCODE:
5038 ir.override = X86_RECORD_SS_REGNUM;
5039 break;
5040 case DS_PREFIX_OPCODE:
5041 ir.override = X86_RECORD_DS_REGNUM;
5042 break;
5043 case ES_PREFIX_OPCODE:
5044 ir.override = X86_RECORD_ES_REGNUM;
5045 break;
5046 case FS_PREFIX_OPCODE:
5047 ir.override = X86_RECORD_FS_REGNUM;
5048 break;
5049 case GS_PREFIX_OPCODE:
5050 ir.override = X86_RECORD_GS_REGNUM;
5051 break;
5052 case DATA_PREFIX_OPCODE:
5053 prefixes |= PREFIX_DATA;
5054 break;
5055 case ADDR_PREFIX_OPCODE:
5056 prefixes |= PREFIX_ADDR;
5057 break;
5058 case 0x40: /* i386 inc %eax */
5059 case 0x41: /* i386 inc %ecx */
5060 case 0x42: /* i386 inc %edx */
5061 case 0x43: /* i386 inc %ebx */
5062 case 0x44: /* i386 inc %esp */
5063 case 0x45: /* i386 inc %ebp */
5064 case 0x46: /* i386 inc %esi */
5065 case 0x47: /* i386 inc %edi */
5066 case 0x48: /* i386 dec %eax */
5067 case 0x49: /* i386 dec %ecx */
5068 case 0x4a: /* i386 dec %edx */
5069 case 0x4b: /* i386 dec %ebx */
5070 case 0x4c: /* i386 dec %esp */
5071 case 0x4d: /* i386 dec %ebp */
5072 case 0x4e: /* i386 dec %esi */
5073 case 0x4f: /* i386 dec %edi */
5074 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5075 {
5076 /* REX */
5077 rex_w = (opcode8 >> 3) & 1;
5078 rex_r = (opcode8 & 0x4) << 1;
5079 ir.rex_x = (opcode8 & 0x2) << 2;
5080 ir.rex_b = (opcode8 & 0x1) << 3;
5081 }
5082 else /* 32 bit target */
5083 goto out_prefixes;
5084 break;
5085 default:
5086 goto out_prefixes;
5087 break;
5088 }
5089 }
5090 out_prefixes:
5091 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5092 {
5093 ir.dflag = 2;
5094 }
5095 else
5096 {
5097 if (prefixes & PREFIX_DATA)
5098 ir.dflag ^= 1;
5099 }
5100 if (prefixes & PREFIX_ADDR)
5101 ir.aflag ^= 1;
5102 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5103 ir.aflag = 2;
5104
5105 /* Now check op code. */
5106 opcode = (uint32_t) opcode8;
5107 reswitch:
5108 switch (opcode)
5109 {
5110 case 0x0f:
5111 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5112 return -1;
5113 ir.addr++;
5114 opcode = (uint32_t) opcode8 | 0x0f00;
5115 goto reswitch;
5116 break;
5117
5118 case 0x00: /* arith & logic */
5119 case 0x01:
5120 case 0x02:
5121 case 0x03:
5122 case 0x04:
5123 case 0x05:
5124 case 0x08:
5125 case 0x09:
5126 case 0x0a:
5127 case 0x0b:
5128 case 0x0c:
5129 case 0x0d:
5130 case 0x10:
5131 case 0x11:
5132 case 0x12:
5133 case 0x13:
5134 case 0x14:
5135 case 0x15:
5136 case 0x18:
5137 case 0x19:
5138 case 0x1a:
5139 case 0x1b:
5140 case 0x1c:
5141 case 0x1d:
5142 case 0x20:
5143 case 0x21:
5144 case 0x22:
5145 case 0x23:
5146 case 0x24:
5147 case 0x25:
5148 case 0x28:
5149 case 0x29:
5150 case 0x2a:
5151 case 0x2b:
5152 case 0x2c:
5153 case 0x2d:
5154 case 0x30:
5155 case 0x31:
5156 case 0x32:
5157 case 0x33:
5158 case 0x34:
5159 case 0x35:
5160 case 0x38:
5161 case 0x39:
5162 case 0x3a:
5163 case 0x3b:
5164 case 0x3c:
5165 case 0x3d:
5166 if (((opcode >> 3) & 7) != OP_CMPL)
5167 {
5168 if ((opcode & 1) == 0)
5169 ir.ot = OT_BYTE;
5170 else
5171 ir.ot = ir.dflag + OT_WORD;
5172
5173 switch ((opcode >> 1) & 3)
5174 {
5175 case 0: /* OP Ev, Gv */
5176 if (i386_record_modrm (&ir))
5177 return -1;
5178 if (ir.mod != 3)
5179 {
5180 if (i386_record_lea_modrm (&ir))
5181 return -1;
5182 }
5183 else
5184 {
5185 ir.rm |= ir.rex_b;
5186 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5187 ir.rm &= 0x3;
5188 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5189 }
5190 break;
5191 case 1: /* OP Gv, Ev */
5192 if (i386_record_modrm (&ir))
5193 return -1;
5194 ir.reg |= rex_r;
5195 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5196 ir.reg &= 0x3;
5197 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5198 break;
5199 case 2: /* OP A, Iv */
5200 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5201 break;
5202 }
5203 }
5204 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5205 break;
5206
5207 case 0x80: /* GRP1 */
5208 case 0x81:
5209 case 0x82:
5210 case 0x83:
5211 if (i386_record_modrm (&ir))
5212 return -1;
5213
5214 if (ir.reg != OP_CMPL)
5215 {
5216 if ((opcode & 1) == 0)
5217 ir.ot = OT_BYTE;
5218 else
5219 ir.ot = ir.dflag + OT_WORD;
5220
5221 if (ir.mod != 3)
5222 {
5223 if (opcode == 0x83)
5224 ir.rip_offset = 1;
5225 else
5226 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5227 if (i386_record_lea_modrm (&ir))
5228 return -1;
5229 }
5230 else
5231 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5232 }
5233 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5234 break;
5235
5236 case 0x40: /* inc */
5237 case 0x41:
5238 case 0x42:
5239 case 0x43:
5240 case 0x44:
5241 case 0x45:
5242 case 0x46:
5243 case 0x47:
5244
5245 case 0x48: /* dec */
5246 case 0x49:
5247 case 0x4a:
5248 case 0x4b:
5249 case 0x4c:
5250 case 0x4d:
5251 case 0x4e:
5252 case 0x4f:
5253
5254 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5255 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5256 break;
5257
5258 case 0xf6: /* GRP3 */
5259 case 0xf7:
5260 if ((opcode & 1) == 0)
5261 ir.ot = OT_BYTE;
5262 else
5263 ir.ot = ir.dflag + OT_WORD;
5264 if (i386_record_modrm (&ir))
5265 return -1;
5266
5267 if (ir.mod != 3 && ir.reg == 0)
5268 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5269
5270 switch (ir.reg)
5271 {
5272 case 0: /* test */
5273 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5274 break;
5275 case 2: /* not */
5276 case 3: /* neg */
5277 if (ir.mod != 3)
5278 {
5279 if (i386_record_lea_modrm (&ir))
5280 return -1;
5281 }
5282 else
5283 {
5284 ir.rm |= ir.rex_b;
5285 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5286 ir.rm &= 0x3;
5287 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5288 }
5289 if (ir.reg == 3) /* neg */
5290 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5291 break;
5292 case 4: /* mul */
5293 case 5: /* imul */
5294 case 6: /* div */
5295 case 7: /* idiv */
5296 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5297 if (ir.ot != OT_BYTE)
5298 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5299 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5300 break;
5301 default:
5302 ir.addr -= 2;
5303 opcode = opcode << 8 | ir.modrm;
5304 goto no_support;
5305 break;
5306 }
5307 break;
5308
5309 case 0xfe: /* GRP4 */
5310 case 0xff: /* GRP5 */
5311 if (i386_record_modrm (&ir))
5312 return -1;
5313 if (ir.reg >= 2 && opcode == 0xfe)
5314 {
5315 ir.addr -= 2;
5316 opcode = opcode << 8 | ir.modrm;
5317 goto no_support;
5318 }
5319 switch (ir.reg)
5320 {
5321 case 0: /* inc */
5322 case 1: /* dec */
5323 if ((opcode & 1) == 0)
5324 ir.ot = OT_BYTE;
5325 else
5326 ir.ot = ir.dflag + OT_WORD;
5327 if (ir.mod != 3)
5328 {
5329 if (i386_record_lea_modrm (&ir))
5330 return -1;
5331 }
5332 else
5333 {
5334 ir.rm |= ir.rex_b;
5335 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5336 ir.rm &= 0x3;
5337 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5338 }
5339 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5340 break;
5341 case 2: /* call */
5342 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5343 ir.dflag = 2;
5344 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5345 return -1;
5346 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5347 break;
5348 case 3: /* lcall */
5349 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5350 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5351 return -1;
5352 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5353 break;
5354 case 4: /* jmp */
5355 case 5: /* ljmp */
5356 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5357 break;
5358 case 6: /* push */
5359 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5360 ir.dflag = 2;
5361 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5362 return -1;
5363 break;
5364 default:
5365 ir.addr -= 2;
5366 opcode = opcode << 8 | ir.modrm;
5367 goto no_support;
5368 break;
5369 }
5370 break;
5371
5372 case 0x84: /* test */
5373 case 0x85:
5374 case 0xa8:
5375 case 0xa9:
5376 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5377 break;
5378
5379 case 0x98: /* CWDE/CBW */
5380 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5381 break;
5382
5383 case 0x99: /* CDQ/CWD */
5384 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5385 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5386 break;
5387
5388 case 0x0faf: /* imul */
5389 case 0x69:
5390 case 0x6b:
5391 ir.ot = ir.dflag + OT_WORD;
5392 if (i386_record_modrm (&ir))
5393 return -1;
5394 if (opcode == 0x69)
5395 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5396 else if (opcode == 0x6b)
5397 ir.rip_offset = 1;
5398 ir.reg |= rex_r;
5399 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5400 ir.reg &= 0x3;
5401 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5402 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5403 break;
5404
5405 case 0x0fc0: /* xadd */
5406 case 0x0fc1:
5407 if ((opcode & 1) == 0)
5408 ir.ot = OT_BYTE;
5409 else
5410 ir.ot = ir.dflag + OT_WORD;
5411 if (i386_record_modrm (&ir))
5412 return -1;
5413 ir.reg |= rex_r;
5414 if (ir.mod == 3)
5415 {
5416 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5417 ir.reg &= 0x3;
5418 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5419 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5420 ir.rm &= 0x3;
5421 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5422 }
5423 else
5424 {
5425 if (i386_record_lea_modrm (&ir))
5426 return -1;
5427 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5428 ir.reg &= 0x3;
5429 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5430 }
5431 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5432 break;
5433
5434 case 0x0fb0: /* cmpxchg */
5435 case 0x0fb1:
5436 if ((opcode & 1) == 0)
5437 ir.ot = OT_BYTE;
5438 else
5439 ir.ot = ir.dflag + OT_WORD;
5440 if (i386_record_modrm (&ir))
5441 return -1;
5442 if (ir.mod == 3)
5443 {
5444 ir.reg |= rex_r;
5445 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5446 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5447 ir.reg &= 0x3;
5448 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5449 }
5450 else
5451 {
5452 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5453 if (i386_record_lea_modrm (&ir))
5454 return -1;
5455 }
5456 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5457 break;
5458
5459 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5460 if (i386_record_modrm (&ir))
5461 return -1;
5462 if (ir.mod == 3)
5463 {
5464 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5465 an extended opcode. rdrand has bits 110 (/6) and rdseed
5466 has bits 111 (/7). */
5467 if (ir.reg == 6 || ir.reg == 7)
5468 {
5469 /* The storage register is described by the 3 R/M bits, but the
5470 REX.B prefix may be used to give access to registers
5471 R8~R15. In this case ir.rex_b + R/M will give us the register
5472 in the range R8~R15.
5473
5474 REX.W may also be used to access 64-bit registers, but we
5475 already record entire registers and not just partial bits
5476 of them. */
5477 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5478 /* These instructions also set conditional bits. */
5479 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5480 break;
5481 }
5482 else
5483 {
5484 /* We don't handle this particular instruction yet. */
5485 ir.addr -= 2;
5486 opcode = opcode << 8 | ir.modrm;
5487 goto no_support;
5488 }
5489 }
5490 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5491 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5492 if (i386_record_lea_modrm (&ir))
5493 return -1;
5494 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5495 break;
5496
5497 case 0x50: /* push */
5498 case 0x51:
5499 case 0x52:
5500 case 0x53:
5501 case 0x54:
5502 case 0x55:
5503 case 0x56:
5504 case 0x57:
5505 case 0x68:
5506 case 0x6a:
5507 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5508 ir.dflag = 2;
5509 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5510 return -1;
5511 break;
5512
5513 case 0x06: /* push es */
5514 case 0x0e: /* push cs */
5515 case 0x16: /* push ss */
5516 case 0x1e: /* push ds */
5517 if (ir.regmap[X86_RECORD_R8_REGNUM])
5518 {
5519 ir.addr -= 1;
5520 goto no_support;
5521 }
5522 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5523 return -1;
5524 break;
5525
5526 case 0x0fa0: /* push fs */
5527 case 0x0fa8: /* push gs */
5528 if (ir.regmap[X86_RECORD_R8_REGNUM])
5529 {
5530 ir.addr -= 2;
5531 goto no_support;
5532 }
5533 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5534 return -1;
5535 break;
5536
5537 case 0x60: /* pusha */
5538 if (ir.regmap[X86_RECORD_R8_REGNUM])
5539 {
5540 ir.addr -= 1;
5541 goto no_support;
5542 }
5543 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5544 return -1;
5545 break;
5546
5547 case 0x58: /* pop */
5548 case 0x59:
5549 case 0x5a:
5550 case 0x5b:
5551 case 0x5c:
5552 case 0x5d:
5553 case 0x5e:
5554 case 0x5f:
5555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5556 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5557 break;
5558
5559 case 0x61: /* popa */
5560 if (ir.regmap[X86_RECORD_R8_REGNUM])
5561 {
5562 ir.addr -= 1;
5563 goto no_support;
5564 }
5565 for (regnum = X86_RECORD_REAX_REGNUM;
5566 regnum <= X86_RECORD_REDI_REGNUM;
5567 regnum++)
5568 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5569 break;
5570
5571 case 0x8f: /* pop */
5572 if (ir.regmap[X86_RECORD_R8_REGNUM])
5573 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5574 else
5575 ir.ot = ir.dflag + OT_WORD;
5576 if (i386_record_modrm (&ir))
5577 return -1;
5578 if (ir.mod == 3)
5579 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5580 else
5581 {
5582 ir.popl_esp_hack = 1 << ir.ot;
5583 if (i386_record_lea_modrm (&ir))
5584 return -1;
5585 }
5586 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5587 break;
5588
5589 case 0xc8: /* enter */
5590 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5591 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5592 ir.dflag = 2;
5593 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5594 return -1;
5595 break;
5596
5597 case 0xc9: /* leave */
5598 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5599 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5600 break;
5601
5602 case 0x07: /* pop es */
5603 if (ir.regmap[X86_RECORD_R8_REGNUM])
5604 {
5605 ir.addr -= 1;
5606 goto no_support;
5607 }
5608 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5609 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5610 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5611 break;
5612
5613 case 0x17: /* pop ss */
5614 if (ir.regmap[X86_RECORD_R8_REGNUM])
5615 {
5616 ir.addr -= 1;
5617 goto no_support;
5618 }
5619 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5620 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5621 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5622 break;
5623
5624 case 0x1f: /* pop ds */
5625 if (ir.regmap[X86_RECORD_R8_REGNUM])
5626 {
5627 ir.addr -= 1;
5628 goto no_support;
5629 }
5630 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5631 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5632 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5633 break;
5634
5635 case 0x0fa1: /* pop fs */
5636 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5637 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5638 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5639 break;
5640
5641 case 0x0fa9: /* pop gs */
5642 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5643 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5644 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5645 break;
5646
5647 case 0x88: /* mov */
5648 case 0x89:
5649 case 0xc6:
5650 case 0xc7:
5651 if ((opcode & 1) == 0)
5652 ir.ot = OT_BYTE;
5653 else
5654 ir.ot = ir.dflag + OT_WORD;
5655
5656 if (i386_record_modrm (&ir))
5657 return -1;
5658
5659 if (ir.mod != 3)
5660 {
5661 if (opcode == 0xc6 || opcode == 0xc7)
5662 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5663 if (i386_record_lea_modrm (&ir))
5664 return -1;
5665 }
5666 else
5667 {
5668 if (opcode == 0xc6 || opcode == 0xc7)
5669 ir.rm |= ir.rex_b;
5670 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5671 ir.rm &= 0x3;
5672 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5673 }
5674 break;
5675
5676 case 0x8a: /* mov */
5677 case 0x8b:
5678 if ((opcode & 1) == 0)
5679 ir.ot = OT_BYTE;
5680 else
5681 ir.ot = ir.dflag + OT_WORD;
5682 if (i386_record_modrm (&ir))
5683 return -1;
5684 ir.reg |= rex_r;
5685 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5686 ir.reg &= 0x3;
5687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5688 break;
5689
5690 case 0x8c: /* mov seg */
5691 if (i386_record_modrm (&ir))
5692 return -1;
5693 if (ir.reg > 5)
5694 {
5695 ir.addr -= 2;
5696 opcode = opcode << 8 | ir.modrm;
5697 goto no_support;
5698 }
5699
5700 if (ir.mod == 3)
5701 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5702 else
5703 {
5704 ir.ot = OT_WORD;
5705 if (i386_record_lea_modrm (&ir))
5706 return -1;
5707 }
5708 break;
5709
5710 case 0x8e: /* mov seg */
5711 if (i386_record_modrm (&ir))
5712 return -1;
5713 switch (ir.reg)
5714 {
5715 case 0:
5716 regnum = X86_RECORD_ES_REGNUM;
5717 break;
5718 case 2:
5719 regnum = X86_RECORD_SS_REGNUM;
5720 break;
5721 case 3:
5722 regnum = X86_RECORD_DS_REGNUM;
5723 break;
5724 case 4:
5725 regnum = X86_RECORD_FS_REGNUM;
5726 break;
5727 case 5:
5728 regnum = X86_RECORD_GS_REGNUM;
5729 break;
5730 default:
5731 ir.addr -= 2;
5732 opcode = opcode << 8 | ir.modrm;
5733 goto no_support;
5734 break;
5735 }
5736 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5737 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5738 break;
5739
5740 case 0x0fb6: /* movzbS */
5741 case 0x0fb7: /* movzwS */
5742 case 0x0fbe: /* movsbS */
5743 case 0x0fbf: /* movswS */
5744 if (i386_record_modrm (&ir))
5745 return -1;
5746 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5747 break;
5748
5749 case 0x8d: /* lea */
5750 if (i386_record_modrm (&ir))
5751 return -1;
5752 if (ir.mod == 3)
5753 {
5754 ir.addr -= 2;
5755 opcode = opcode << 8 | ir.modrm;
5756 goto no_support;
5757 }
5758 ir.ot = ir.dflag;
5759 ir.reg |= rex_r;
5760 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5761 ir.reg &= 0x3;
5762 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5763 break;
5764
5765 case 0xa0: /* mov EAX */
5766 case 0xa1:
5767
5768 case 0xd7: /* xlat */
5769 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5770 break;
5771
5772 case 0xa2: /* mov EAX */
5773 case 0xa3:
5774 if (ir.override >= 0)
5775 {
5776 if (record_full_memory_query)
5777 {
5778 if (yquery (_("\
5779 Process record ignores the memory change of instruction at address %s\n\
5780 because it can't get the value of the segment register.\n\
5781 Do you want to stop the program?"),
5782 paddress (gdbarch, ir.orig_addr)))
5783 return -1;
5784 }
5785 }
5786 else
5787 {
5788 if ((opcode & 1) == 0)
5789 ir.ot = OT_BYTE;
5790 else
5791 ir.ot = ir.dflag + OT_WORD;
5792 if (ir.aflag == 2)
5793 {
5794 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5795 return -1;
5796 ir.addr += 8;
5797 addr = extract_unsigned_integer (buf, 8, byte_order);
5798 }
5799 else if (ir.aflag)
5800 {
5801 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5802 return -1;
5803 ir.addr += 4;
5804 addr = extract_unsigned_integer (buf, 4, byte_order);
5805 }
5806 else
5807 {
5808 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5809 return -1;
5810 ir.addr += 2;
5811 addr = extract_unsigned_integer (buf, 2, byte_order);
5812 }
5813 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5814 return -1;
5815 }
5816 break;
5817
5818 case 0xb0: /* mov R, Ib */
5819 case 0xb1:
5820 case 0xb2:
5821 case 0xb3:
5822 case 0xb4:
5823 case 0xb5:
5824 case 0xb6:
5825 case 0xb7:
5826 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5827 ? ((opcode & 0x7) | ir.rex_b)
5828 : ((opcode & 0x7) & 0x3));
5829 break;
5830
5831 case 0xb8: /* mov R, Iv */
5832 case 0xb9:
5833 case 0xba:
5834 case 0xbb:
5835 case 0xbc:
5836 case 0xbd:
5837 case 0xbe:
5838 case 0xbf:
5839 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5840 break;
5841
5842 case 0x91: /* xchg R, EAX */
5843 case 0x92:
5844 case 0x93:
5845 case 0x94:
5846 case 0x95:
5847 case 0x96:
5848 case 0x97:
5849 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5850 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5851 break;
5852
5853 case 0x86: /* xchg Ev, Gv */
5854 case 0x87:
5855 if ((opcode & 1) == 0)
5856 ir.ot = OT_BYTE;
5857 else
5858 ir.ot = ir.dflag + OT_WORD;
5859 if (i386_record_modrm (&ir))
5860 return -1;
5861 if (ir.mod == 3)
5862 {
5863 ir.rm |= ir.rex_b;
5864 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5865 ir.rm &= 0x3;
5866 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5867 }
5868 else
5869 {
5870 if (i386_record_lea_modrm (&ir))
5871 return -1;
5872 }
5873 ir.reg |= rex_r;
5874 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5875 ir.reg &= 0x3;
5876 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5877 break;
5878
5879 case 0xc4: /* les Gv */
5880 case 0xc5: /* lds Gv */
5881 if (ir.regmap[X86_RECORD_R8_REGNUM])
5882 {
5883 ir.addr -= 1;
5884 goto no_support;
5885 }
5886 [[fallthrough]];
5887 case 0x0fb2: /* lss Gv */
5888 case 0x0fb4: /* lfs Gv */
5889 case 0x0fb5: /* lgs Gv */
5890 if (i386_record_modrm (&ir))
5891 return -1;
5892 if (ir.mod == 3)
5893 {
5894 if (opcode > 0xff)
5895 ir.addr -= 3;
5896 else
5897 ir.addr -= 2;
5898 opcode = opcode << 8 | ir.modrm;
5899 goto no_support;
5900 }
5901 switch (opcode)
5902 {
5903 case 0xc4: /* les Gv */
5904 regnum = X86_RECORD_ES_REGNUM;
5905 break;
5906 case 0xc5: /* lds Gv */
5907 regnum = X86_RECORD_DS_REGNUM;
5908 break;
5909 case 0x0fb2: /* lss Gv */
5910 regnum = X86_RECORD_SS_REGNUM;
5911 break;
5912 case 0x0fb4: /* lfs Gv */
5913 regnum = X86_RECORD_FS_REGNUM;
5914 break;
5915 case 0x0fb5: /* lgs Gv */
5916 regnum = X86_RECORD_GS_REGNUM;
5917 break;
5918 }
5919 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5920 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5921 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5922 break;
5923
5924 case 0xc0: /* shifts */
5925 case 0xc1:
5926 case 0xd0:
5927 case 0xd1:
5928 case 0xd2:
5929 case 0xd3:
5930 if ((opcode & 1) == 0)
5931 ir.ot = OT_BYTE;
5932 else
5933 ir.ot = ir.dflag + OT_WORD;
5934 if (i386_record_modrm (&ir))
5935 return -1;
5936 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5937 {
5938 if (i386_record_lea_modrm (&ir))
5939 return -1;
5940 }
5941 else
5942 {
5943 ir.rm |= ir.rex_b;
5944 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5945 ir.rm &= 0x3;
5946 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5947 }
5948 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5949 break;
5950
5951 case 0x0fa4:
5952 case 0x0fa5:
5953 case 0x0fac:
5954 case 0x0fad:
5955 if (i386_record_modrm (&ir))
5956 return -1;
5957 if (ir.mod == 3)
5958 {
5959 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5960 return -1;
5961 }
5962 else
5963 {
5964 if (i386_record_lea_modrm (&ir))
5965 return -1;
5966 }
5967 break;
5968
5969 case 0xd8: /* Floats. */
5970 case 0xd9:
5971 case 0xda:
5972 case 0xdb:
5973 case 0xdc:
5974 case 0xdd:
5975 case 0xde:
5976 case 0xdf:
5977 if (i386_record_modrm (&ir))
5978 return -1;
5979 ir.reg |= ((opcode & 7) << 3);
5980 if (ir.mod != 3)
5981 {
5982 /* Memory. */
5983 uint64_t addr64;
5984
5985 if (i386_record_lea_modrm_addr (&ir, &addr64))
5986 return -1;
5987 switch (ir.reg)
5988 {
5989 case 0x02:
5990 case 0x12:
5991 case 0x22:
5992 case 0x32:
5993 /* For fcom, ficom nothing to do. */
5994 break;
5995 case 0x03:
5996 case 0x13:
5997 case 0x23:
5998 case 0x33:
5999 /* For fcomp, ficomp pop FPU stack, store all. */
6000 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6001 return -1;
6002 break;
6003 case 0x00:
6004 case 0x01:
6005 case 0x04:
6006 case 0x05:
6007 case 0x06:
6008 case 0x07:
6009 case 0x10:
6010 case 0x11:
6011 case 0x14:
6012 case 0x15:
6013 case 0x16:
6014 case 0x17:
6015 case 0x20:
6016 case 0x21:
6017 case 0x24:
6018 case 0x25:
6019 case 0x26:
6020 case 0x27:
6021 case 0x30:
6022 case 0x31:
6023 case 0x34:
6024 case 0x35:
6025 case 0x36:
6026 case 0x37:
6027 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6028 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6029 of code, always affects st(0) register. */
6030 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6031 return -1;
6032 break;
6033 case 0x08:
6034 case 0x0a:
6035 case 0x0b:
6036 case 0x18:
6037 case 0x19:
6038 case 0x1a:
6039 case 0x1b:
6040 case 0x1d:
6041 case 0x28:
6042 case 0x29:
6043 case 0x2a:
6044 case 0x2b:
6045 case 0x38:
6046 case 0x39:
6047 case 0x3a:
6048 case 0x3b:
6049 case 0x3c:
6050 case 0x3d:
6051 switch (ir.reg & 7)
6052 {
6053 case 0:
6054 /* Handling fld, fild. */
6055 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6056 return -1;
6057 break;
6058 case 1:
6059 switch (ir.reg >> 4)
6060 {
6061 case 0:
6062 if (record_full_arch_list_add_mem (addr64, 4))
6063 return -1;
6064 break;
6065 case 2:
6066 if (record_full_arch_list_add_mem (addr64, 8))
6067 return -1;
6068 break;
6069 case 3:
6070 break;
6071 default:
6072 if (record_full_arch_list_add_mem (addr64, 2))
6073 return -1;
6074 break;
6075 }
6076 break;
6077 default:
6078 switch (ir.reg >> 4)
6079 {
6080 case 0:
6081 if (record_full_arch_list_add_mem (addr64, 4))
6082 return -1;
6083 if (3 == (ir.reg & 7))
6084 {
6085 /* For fstp m32fp. */
6086 if (i386_record_floats (gdbarch, &ir,
6087 I386_SAVE_FPU_REGS))
6088 return -1;
6089 }
6090 break;
6091 case 1:
6092 if (record_full_arch_list_add_mem (addr64, 4))
6093 return -1;
6094 if ((3 == (ir.reg & 7))
6095 || (5 == (ir.reg & 7))
6096 || (7 == (ir.reg & 7)))
6097 {
6098 /* For fstp insn. */
6099 if (i386_record_floats (gdbarch, &ir,
6100 I386_SAVE_FPU_REGS))
6101 return -1;
6102 }
6103 break;
6104 case 2:
6105 if (record_full_arch_list_add_mem (addr64, 8))
6106 return -1;
6107 if (3 == (ir.reg & 7))
6108 {
6109 /* For fstp m64fp. */
6110 if (i386_record_floats (gdbarch, &ir,
6111 I386_SAVE_FPU_REGS))
6112 return -1;
6113 }
6114 break;
6115 case 3:
6116 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6117 {
6118 /* For fistp, fbld, fild, fbstp. */
6119 if (i386_record_floats (gdbarch, &ir,
6120 I386_SAVE_FPU_REGS))
6121 return -1;
6122 }
6123 [[fallthrough]];
6124 default:
6125 if (record_full_arch_list_add_mem (addr64, 2))
6126 return -1;
6127 break;
6128 }
6129 break;
6130 }
6131 break;
6132 case 0x0c:
6133 /* Insn fldenv. */
6134 if (i386_record_floats (gdbarch, &ir,
6135 I386_SAVE_FPU_ENV_REG_STACK))
6136 return -1;
6137 break;
6138 case 0x0d:
6139 /* Insn fldcw. */
6140 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6141 return -1;
6142 break;
6143 case 0x2c:
6144 /* Insn frstor. */
6145 if (i386_record_floats (gdbarch, &ir,
6146 I386_SAVE_FPU_ENV_REG_STACK))
6147 return -1;
6148 break;
6149 case 0x0e:
6150 if (ir.dflag)
6151 {
6152 if (record_full_arch_list_add_mem (addr64, 28))
6153 return -1;
6154 }
6155 else
6156 {
6157 if (record_full_arch_list_add_mem (addr64, 14))
6158 return -1;
6159 }
6160 break;
6161 case 0x0f:
6162 case 0x2f:
6163 if (record_full_arch_list_add_mem (addr64, 2))
6164 return -1;
6165 /* Insn fstp, fbstp. */
6166 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6167 return -1;
6168 break;
6169 case 0x1f:
6170 case 0x3e:
6171 if (record_full_arch_list_add_mem (addr64, 10))
6172 return -1;
6173 break;
6174 case 0x2e:
6175 if (ir.dflag)
6176 {
6177 if (record_full_arch_list_add_mem (addr64, 28))
6178 return -1;
6179 addr64 += 28;
6180 }
6181 else
6182 {
6183 if (record_full_arch_list_add_mem (addr64, 14))
6184 return -1;
6185 addr64 += 14;
6186 }
6187 if (record_full_arch_list_add_mem (addr64, 80))
6188 return -1;
6189 /* Insn fsave. */
6190 if (i386_record_floats (gdbarch, &ir,
6191 I386_SAVE_FPU_ENV_REG_STACK))
6192 return -1;
6193 break;
6194 case 0x3f:
6195 if (record_full_arch_list_add_mem (addr64, 8))
6196 return -1;
6197 /* Insn fistp. */
6198 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6199 return -1;
6200 break;
6201 default:
6202 ir.addr -= 2;
6203 opcode = opcode << 8 | ir.modrm;
6204 goto no_support;
6205 break;
6206 }
6207 }
6208 /* Opcode is an extension of modR/M byte. */
6209 else
6210 {
6211 switch (opcode)
6212 {
6213 case 0xd8:
6214 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6215 return -1;
6216 break;
6217 case 0xd9:
6218 if (0x0c == (ir.modrm >> 4))
6219 {
6220 if ((ir.modrm & 0x0f) <= 7)
6221 {
6222 if (i386_record_floats (gdbarch, &ir,
6223 I386_SAVE_FPU_REGS))
6224 return -1;
6225 }
6226 else
6227 {
6228 if (i386_record_floats (gdbarch, &ir,
6229 I387_ST0_REGNUM (tdep)))
6230 return -1;
6231 /* If only st(0) is changing, then we have already
6232 recorded. */
6233 if ((ir.modrm & 0x0f) - 0x08)
6234 {
6235 if (i386_record_floats (gdbarch, &ir,
6236 I387_ST0_REGNUM (tdep) +
6237 ((ir.modrm & 0x0f) - 0x08)))
6238 return -1;
6239 }
6240 }
6241 }
6242 else
6243 {
6244 switch (ir.modrm)
6245 {
6246 case 0xe0:
6247 case 0xe1:
6248 case 0xf0:
6249 case 0xf5:
6250 case 0xf8:
6251 case 0xfa:
6252 case 0xfc:
6253 case 0xfe:
6254 case 0xff:
6255 if (i386_record_floats (gdbarch, &ir,
6256 I387_ST0_REGNUM (tdep)))
6257 return -1;
6258 break;
6259 case 0xf1:
6260 case 0xf2:
6261 case 0xf3:
6262 case 0xf4:
6263 case 0xf6:
6264 case 0xf7:
6265 case 0xe8:
6266 case 0xe9:
6267 case 0xea:
6268 case 0xeb:
6269 case 0xec:
6270 case 0xed:
6271 case 0xee:
6272 case 0xf9:
6273 case 0xfb:
6274 if (i386_record_floats (gdbarch, &ir,
6275 I386_SAVE_FPU_REGS))
6276 return -1;
6277 break;
6278 case 0xfd:
6279 if (i386_record_floats (gdbarch, &ir,
6280 I387_ST0_REGNUM (tdep)))
6281 return -1;
6282 if (i386_record_floats (gdbarch, &ir,
6283 I387_ST0_REGNUM (tdep) + 1))
6284 return -1;
6285 break;
6286 }
6287 }
6288 break;
6289 case 0xda:
6290 if (0xe9 == ir.modrm)
6291 {
6292 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6293 return -1;
6294 }
6295 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6296 {
6297 if (i386_record_floats (gdbarch, &ir,
6298 I387_ST0_REGNUM (tdep)))
6299 return -1;
6300 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6301 {
6302 if (i386_record_floats (gdbarch, &ir,
6303 I387_ST0_REGNUM (tdep) +
6304 (ir.modrm & 0x0f)))
6305 return -1;
6306 }
6307 else if ((ir.modrm & 0x0f) - 0x08)
6308 {
6309 if (i386_record_floats (gdbarch, &ir,
6310 I387_ST0_REGNUM (tdep) +
6311 ((ir.modrm & 0x0f) - 0x08)))
6312 return -1;
6313 }
6314 }
6315 break;
6316 case 0xdb:
6317 if (0xe3 == ir.modrm)
6318 {
6319 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6320 return -1;
6321 }
6322 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6323 {
6324 if (i386_record_floats (gdbarch, &ir,
6325 I387_ST0_REGNUM (tdep)))
6326 return -1;
6327 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6328 {
6329 if (i386_record_floats (gdbarch, &ir,
6330 I387_ST0_REGNUM (tdep) +
6331 (ir.modrm & 0x0f)))
6332 return -1;
6333 }
6334 else if ((ir.modrm & 0x0f) - 0x08)
6335 {
6336 if (i386_record_floats (gdbarch, &ir,
6337 I387_ST0_REGNUM (tdep) +
6338 ((ir.modrm & 0x0f) - 0x08)))
6339 return -1;
6340 }
6341 }
6342 break;
6343 case 0xdc:
6344 if ((0x0c == ir.modrm >> 4)
6345 || (0x0d == ir.modrm >> 4)
6346 || (0x0f == ir.modrm >> 4))
6347 {
6348 if ((ir.modrm & 0x0f) <= 7)
6349 {
6350 if (i386_record_floats (gdbarch, &ir,
6351 I387_ST0_REGNUM (tdep) +
6352 (ir.modrm & 0x0f)))
6353 return -1;
6354 }
6355 else
6356 {
6357 if (i386_record_floats (gdbarch, &ir,
6358 I387_ST0_REGNUM (tdep) +
6359 ((ir.modrm & 0x0f) - 0x08)))
6360 return -1;
6361 }
6362 }
6363 break;
6364 case 0xdd:
6365 if (0x0c == ir.modrm >> 4)
6366 {
6367 if (i386_record_floats (gdbarch, &ir,
6368 I387_FTAG_REGNUM (tdep)))
6369 return -1;
6370 }
6371 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6372 {
6373 if ((ir.modrm & 0x0f) <= 7)
6374 {
6375 if (i386_record_floats (gdbarch, &ir,
6376 I387_ST0_REGNUM (tdep) +
6377 (ir.modrm & 0x0f)))
6378 return -1;
6379 }
6380 else
6381 {
6382 if (i386_record_floats (gdbarch, &ir,
6383 I386_SAVE_FPU_REGS))
6384 return -1;
6385 }
6386 }
6387 break;
6388 case 0xde:
6389 if ((0x0c == ir.modrm >> 4)
6390 || (0x0e == ir.modrm >> 4)
6391 || (0x0f == ir.modrm >> 4)
6392 || (0xd9 == ir.modrm))
6393 {
6394 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6395 return -1;
6396 }
6397 break;
6398 case 0xdf:
6399 if (0xe0 == ir.modrm)
6400 {
6401 if (record_full_arch_list_add_reg (ir.regcache,
6402 I386_EAX_REGNUM))
6403 return -1;
6404 }
6405 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6406 {
6407 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6408 return -1;
6409 }
6410 break;
6411 }
6412 }
6413 break;
6414 /* string ops */
6415 case 0xa4: /* movsS */
6416 case 0xa5:
6417 case 0xaa: /* stosS */
6418 case 0xab:
6419 case 0x6c: /* insS */
6420 case 0x6d:
6421 regcache_raw_read_unsigned (ir.regcache,
6422 ir.regmap[X86_RECORD_RECX_REGNUM],
6423 &addr);
6424 if (addr)
6425 {
6426 ULONGEST es, ds;
6427
6428 if ((opcode & 1) == 0)
6429 ir.ot = OT_BYTE;
6430 else
6431 ir.ot = ir.dflag + OT_WORD;
6432 regcache_raw_read_unsigned (ir.regcache,
6433 ir.regmap[X86_RECORD_REDI_REGNUM],
6434 &addr);
6435
6436 regcache_raw_read_unsigned (ir.regcache,
6437 ir.regmap[X86_RECORD_ES_REGNUM],
6438 &es);
6439 regcache_raw_read_unsigned (ir.regcache,
6440 ir.regmap[X86_RECORD_DS_REGNUM],
6441 &ds);
6442 if (ir.aflag && (es != ds))
6443 {
6444 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6445 if (record_full_memory_query)
6446 {
6447 if (yquery (_("\
6448 Process record ignores the memory change of instruction at address %s\n\
6449 because it can't get the value of the segment register.\n\
6450 Do you want to stop the program?"),
6451 paddress (gdbarch, ir.orig_addr)))
6452 return -1;
6453 }
6454 }
6455 else
6456 {
6457 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6458 return -1;
6459 }
6460
6461 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6462 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6463 if (opcode == 0xa4 || opcode == 0xa5)
6464 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6465 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6466 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6467 }
6468 break;
6469
6470 case 0xa6: /* cmpsS */
6471 case 0xa7:
6472 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6473 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6474 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6475 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6476 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6477 break;
6478
6479 case 0xac: /* lodsS */
6480 case 0xad:
6481 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6482 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6483 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6484 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6485 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6486 break;
6487
6488 case 0xae: /* scasS */
6489 case 0xaf:
6490 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6491 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6492 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6493 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6494 break;
6495
6496 case 0x6e: /* outsS */
6497 case 0x6f:
6498 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6499 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6500 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6501 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6502 break;
6503
6504 case 0xe4: /* port I/O */
6505 case 0xe5:
6506 case 0xec:
6507 case 0xed:
6508 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6510 break;
6511
6512 case 0xe6:
6513 case 0xe7:
6514 case 0xee:
6515 case 0xef:
6516 break;
6517
6518 /* control */
6519 case 0xc2: /* ret im */
6520 case 0xc3: /* ret */
6521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6522 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6523 break;
6524
6525 case 0xca: /* lret im */
6526 case 0xcb: /* lret */
6527 case 0xcf: /* iret */
6528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6529 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6530 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6531 break;
6532
6533 case 0xe8: /* call im */
6534 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6535 ir.dflag = 2;
6536 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6537 return -1;
6538 break;
6539
6540 case 0x9a: /* lcall im */
6541 if (ir.regmap[X86_RECORD_R8_REGNUM])
6542 {
6543 ir.addr -= 1;
6544 goto no_support;
6545 }
6546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6547 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6548 return -1;
6549 break;
6550
6551 case 0xe9: /* jmp im */
6552 case 0xea: /* ljmp im */
6553 case 0xeb: /* jmp Jb */
6554 case 0x70: /* jcc Jb */
6555 case 0x71:
6556 case 0x72:
6557 case 0x73:
6558 case 0x74:
6559 case 0x75:
6560 case 0x76:
6561 case 0x77:
6562 case 0x78:
6563 case 0x79:
6564 case 0x7a:
6565 case 0x7b:
6566 case 0x7c:
6567 case 0x7d:
6568 case 0x7e:
6569 case 0x7f:
6570 case 0x0f80: /* jcc Jv */
6571 case 0x0f81:
6572 case 0x0f82:
6573 case 0x0f83:
6574 case 0x0f84:
6575 case 0x0f85:
6576 case 0x0f86:
6577 case 0x0f87:
6578 case 0x0f88:
6579 case 0x0f89:
6580 case 0x0f8a:
6581 case 0x0f8b:
6582 case 0x0f8c:
6583 case 0x0f8d:
6584 case 0x0f8e:
6585 case 0x0f8f:
6586 break;
6587
6588 case 0x0f90: /* setcc Gv */
6589 case 0x0f91:
6590 case 0x0f92:
6591 case 0x0f93:
6592 case 0x0f94:
6593 case 0x0f95:
6594 case 0x0f96:
6595 case 0x0f97:
6596 case 0x0f98:
6597 case 0x0f99:
6598 case 0x0f9a:
6599 case 0x0f9b:
6600 case 0x0f9c:
6601 case 0x0f9d:
6602 case 0x0f9e:
6603 case 0x0f9f:
6604 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6605 ir.ot = OT_BYTE;
6606 if (i386_record_modrm (&ir))
6607 return -1;
6608 if (ir.mod == 3)
6609 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6610 : (ir.rm & 0x3));
6611 else
6612 {
6613 if (i386_record_lea_modrm (&ir))
6614 return -1;
6615 }
6616 break;
6617
6618 case 0x0f40: /* cmov Gv, Ev */
6619 case 0x0f41:
6620 case 0x0f42:
6621 case 0x0f43:
6622 case 0x0f44:
6623 case 0x0f45:
6624 case 0x0f46:
6625 case 0x0f47:
6626 case 0x0f48:
6627 case 0x0f49:
6628 case 0x0f4a:
6629 case 0x0f4b:
6630 case 0x0f4c:
6631 case 0x0f4d:
6632 case 0x0f4e:
6633 case 0x0f4f:
6634 if (i386_record_modrm (&ir))
6635 return -1;
6636 ir.reg |= rex_r;
6637 if (ir.dflag == OT_BYTE)
6638 ir.reg &= 0x3;
6639 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6640 break;
6641
6642 /* flags */
6643 case 0x9c: /* pushf */
6644 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6645 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6646 ir.dflag = 2;
6647 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6648 return -1;
6649 break;
6650
6651 case 0x9d: /* popf */
6652 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6653 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6654 break;
6655
6656 case 0x9e: /* sahf */
6657 if (ir.regmap[X86_RECORD_R8_REGNUM])
6658 {
6659 ir.addr -= 1;
6660 goto no_support;
6661 }
6662 [[fallthrough]];
6663 case 0xf5: /* cmc */
6664 case 0xf8: /* clc */
6665 case 0xf9: /* stc */
6666 case 0xfc: /* cld */
6667 case 0xfd: /* std */
6668 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6669 break;
6670
6671 case 0x9f: /* lahf */
6672 if (ir.regmap[X86_RECORD_R8_REGNUM])
6673 {
6674 ir.addr -= 1;
6675 goto no_support;
6676 }
6677 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6678 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6679 break;
6680
6681 /* bit operations */
6682 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6683 ir.ot = ir.dflag + OT_WORD;
6684 if (i386_record_modrm (&ir))
6685 return -1;
6686 if (ir.reg < 4)
6687 {
6688 ir.addr -= 2;
6689 opcode = opcode << 8 | ir.modrm;
6690 goto no_support;
6691 }
6692 if (ir.reg != 4)
6693 {
6694 if (ir.mod == 3)
6695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6696 else
6697 {
6698 if (i386_record_lea_modrm (&ir))
6699 return -1;
6700 }
6701 }
6702 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6703 break;
6704
6705 case 0x0fa3: /* bt Gv, Ev */
6706 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6707 break;
6708
6709 case 0x0fab: /* bts */
6710 case 0x0fb3: /* btr */
6711 case 0x0fbb: /* btc */
6712 ir.ot = ir.dflag + OT_WORD;
6713 if (i386_record_modrm (&ir))
6714 return -1;
6715 if (ir.mod == 3)
6716 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6717 else
6718 {
6719 uint64_t addr64;
6720 if (i386_record_lea_modrm_addr (&ir, &addr64))
6721 return -1;
6722 regcache_raw_read_unsigned (ir.regcache,
6723 ir.regmap[ir.reg | rex_r],
6724 &addr);
6725 switch (ir.dflag)
6726 {
6727 case 0:
6728 addr64 += ((int16_t) addr >> 4) << 4;
6729 break;
6730 case 1:
6731 addr64 += ((int32_t) addr >> 5) << 5;
6732 break;
6733 case 2:
6734 addr64 += ((int64_t) addr >> 6) << 6;
6735 break;
6736 }
6737 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6738 return -1;
6739 if (i386_record_lea_modrm (&ir))
6740 return -1;
6741 }
6742 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6743 break;
6744
6745 case 0x0fbc: /* bsf */
6746 case 0x0fbd: /* bsr */
6747 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6748 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6749 break;
6750
6751 /* bcd */
6752 case 0x27: /* daa */
6753 case 0x2f: /* das */
6754 case 0x37: /* aaa */
6755 case 0x3f: /* aas */
6756 case 0xd4: /* aam */
6757 case 0xd5: /* aad */
6758 if (ir.regmap[X86_RECORD_R8_REGNUM])
6759 {
6760 ir.addr -= 1;
6761 goto no_support;
6762 }
6763 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6764 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6765 break;
6766
6767 /* misc */
6768 case 0x90: /* nop */
6769 if (prefixes & PREFIX_LOCK)
6770 {
6771 ir.addr -= 1;
6772 goto no_support;
6773 }
6774 break;
6775
6776 case 0x9b: /* fwait */
6777 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6778 return -1;
6779 opcode = (uint32_t) opcode8;
6780 ir.addr++;
6781 goto reswitch;
6782 break;
6783
6784 /* XXX */
6785 case 0xcc: /* int3 */
6786 gdb_printf (gdb_stderr,
6787 _("Process record does not support instruction "
6788 "int3.\n"));
6789 ir.addr -= 1;
6790 goto no_support;
6791 break;
6792
6793 /* XXX */
6794 case 0xcd: /* int */
6795 {
6796 int ret;
6797 uint8_t interrupt;
6798 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6799 return -1;
6800 ir.addr++;
6801 if (interrupt != 0x80
6802 || tdep->i386_intx80_record == NULL)
6803 {
6804 gdb_printf (gdb_stderr,
6805 _("Process record does not support "
6806 "instruction int 0x%02x.\n"),
6807 interrupt);
6808 ir.addr -= 2;
6809 goto no_support;
6810 }
6811 ret = tdep->i386_intx80_record (ir.regcache);
6812 if (ret)
6813 return ret;
6814 }
6815 break;
6816
6817 /* XXX */
6818 case 0xce: /* into */
6819 gdb_printf (gdb_stderr,
6820 _("Process record does not support "
6821 "instruction into.\n"));
6822 ir.addr -= 1;
6823 goto no_support;
6824 break;
6825
6826 case 0xfa: /* cli */
6827 case 0xfb: /* sti */
6828 break;
6829
6830 case 0x62: /* bound */
6831 gdb_printf (gdb_stderr,
6832 _("Process record does not support "
6833 "instruction bound.\n"));
6834 ir.addr -= 1;
6835 goto no_support;
6836 break;
6837
6838 case 0x0fc8: /* bswap reg */
6839 case 0x0fc9:
6840 case 0x0fca:
6841 case 0x0fcb:
6842 case 0x0fcc:
6843 case 0x0fcd:
6844 case 0x0fce:
6845 case 0x0fcf:
6846 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6847 break;
6848
6849 case 0xd6: /* salc */
6850 if (ir.regmap[X86_RECORD_R8_REGNUM])
6851 {
6852 ir.addr -= 1;
6853 goto no_support;
6854 }
6855 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6856 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6857 break;
6858
6859 case 0xe0: /* loopnz */
6860 case 0xe1: /* loopz */
6861 case 0xe2: /* loop */
6862 case 0xe3: /* jecxz */
6863 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6864 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6865 break;
6866
6867 case 0x0f30: /* wrmsr */
6868 gdb_printf (gdb_stderr,
6869 _("Process record does not support "
6870 "instruction wrmsr.\n"));
6871 ir.addr -= 2;
6872 goto no_support;
6873 break;
6874
6875 case 0x0f32: /* rdmsr */
6876 gdb_printf (gdb_stderr,
6877 _("Process record does not support "
6878 "instruction rdmsr.\n"));
6879 ir.addr -= 2;
6880 goto no_support;
6881 break;
6882
6883 case 0x0f01f9: /* rdtscp */
6884 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6885 [[fallthrough]];
6886 case 0x0f31: /* rdtsc */
6887 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6888 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6889 break;
6890
6891 case 0x0f34: /* sysenter */
6892 {
6893 int ret;
6894 if (ir.regmap[X86_RECORD_R8_REGNUM])
6895 {
6896 ir.addr -= 2;
6897 goto no_support;
6898 }
6899 if (tdep->i386_sysenter_record == NULL)
6900 {
6901 gdb_printf (gdb_stderr,
6902 _("Process record does not support "
6903 "instruction sysenter.\n"));
6904 ir.addr -= 2;
6905 goto no_support;
6906 }
6907 ret = tdep->i386_sysenter_record (ir.regcache);
6908 if (ret)
6909 return ret;
6910 }
6911 break;
6912
6913 case 0x0f35: /* sysexit */
6914 gdb_printf (gdb_stderr,
6915 _("Process record does not support "
6916 "instruction sysexit.\n"));
6917 ir.addr -= 2;
6918 goto no_support;
6919 break;
6920
6921 case 0x0f05: /* syscall */
6922 {
6923 int ret;
6924 if (tdep->i386_syscall_record == NULL)
6925 {
6926 gdb_printf (gdb_stderr,
6927 _("Process record does not support "
6928 "instruction syscall.\n"));
6929 ir.addr -= 2;
6930 goto no_support;
6931 }
6932 ret = tdep->i386_syscall_record (ir.regcache);
6933 if (ret)
6934 return ret;
6935 }
6936 break;
6937
6938 case 0x0f07: /* sysret */
6939 gdb_printf (gdb_stderr,
6940 _("Process record does not support "
6941 "instruction sysret.\n"));
6942 ir.addr -= 2;
6943 goto no_support;
6944 break;
6945
6946 case 0x0fa2: /* cpuid */
6947 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6948 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6949 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6950 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6951 break;
6952
6953 case 0xf4: /* hlt */
6954 gdb_printf (gdb_stderr,
6955 _("Process record does not support "
6956 "instruction hlt.\n"));
6957 ir.addr -= 1;
6958 goto no_support;
6959 break;
6960
6961 case 0x0f00:
6962 if (i386_record_modrm (&ir))
6963 return -1;
6964 switch (ir.reg)
6965 {
6966 case 0: /* sldt */
6967 case 1: /* str */
6968 if (ir.mod == 3)
6969 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6970 else
6971 {
6972 ir.ot = OT_WORD;
6973 if (i386_record_lea_modrm (&ir))
6974 return -1;
6975 }
6976 break;
6977 case 2: /* lldt */
6978 case 3: /* ltr */
6979 break;
6980 case 4: /* verr */
6981 case 5: /* verw */
6982 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6983 break;
6984 default:
6985 ir.addr -= 3;
6986 opcode = opcode << 8 | ir.modrm;
6987 goto no_support;
6988 break;
6989 }
6990 break;
6991
6992 case 0x0f01:
6993 if (i386_record_modrm (&ir))
6994 return -1;
6995 if (ir.modrm == 0xf9)
6996 {
6997 opcode = (opcode << 8) | 0xf9;
6998 goto reswitch;
6999 }
7000 switch (ir.reg)
7001 {
7002 case 0: /* sgdt */
7003 {
7004 uint64_t addr64;
7005
7006 if (ir.mod == 3)
7007 {
7008 ir.addr -= 3;
7009 opcode = opcode << 8 | ir.modrm;
7010 goto no_support;
7011 }
7012 if (ir.override >= 0)
7013 {
7014 if (record_full_memory_query)
7015 {
7016 if (yquery (_("\
7017 Process record ignores the memory change of instruction at address %s\n\
7018 because it can't get the value of the segment register.\n\
7019 Do you want to stop the program?"),
7020 paddress (gdbarch, ir.orig_addr)))
7021 return -1;
7022 }
7023 }
7024 else
7025 {
7026 if (i386_record_lea_modrm_addr (&ir, &addr64))
7027 return -1;
7028 if (record_full_arch_list_add_mem (addr64, 2))
7029 return -1;
7030 addr64 += 2;
7031 if (ir.regmap[X86_RECORD_R8_REGNUM])
7032 {
7033 if (record_full_arch_list_add_mem (addr64, 8))
7034 return -1;
7035 }
7036 else
7037 {
7038 if (record_full_arch_list_add_mem (addr64, 4))
7039 return -1;
7040 }
7041 }
7042 }
7043 break;
7044 case 1:
7045 if (ir.mod == 3)
7046 {
7047 switch (ir.rm)
7048 {
7049 case 0: /* monitor */
7050 break;
7051 case 1: /* mwait */
7052 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7053 break;
7054 default:
7055 ir.addr -= 3;
7056 opcode = opcode << 8 | ir.modrm;
7057 goto no_support;
7058 break;
7059 }
7060 }
7061 else
7062 {
7063 /* sidt */
7064 if (ir.override >= 0)
7065 {
7066 if (record_full_memory_query)
7067 {
7068 if (yquery (_("\
7069 Process record ignores the memory change of instruction at address %s\n\
7070 because it can't get the value of the segment register.\n\
7071 Do you want to stop the program?"),
7072 paddress (gdbarch, ir.orig_addr)))
7073 return -1;
7074 }
7075 }
7076 else
7077 {
7078 uint64_t addr64;
7079
7080 if (i386_record_lea_modrm_addr (&ir, &addr64))
7081 return -1;
7082 if (record_full_arch_list_add_mem (addr64, 2))
7083 return -1;
7084 addr64 += 2;
7085 if (ir.regmap[X86_RECORD_R8_REGNUM])
7086 {
7087 if (record_full_arch_list_add_mem (addr64, 8))
7088 return -1;
7089 }
7090 else
7091 {
7092 if (record_full_arch_list_add_mem (addr64, 4))
7093 return -1;
7094 }
7095 }
7096 }
7097 break;
7098 case 2: /* lgdt */
7099 if (ir.mod == 3)
7100 {
7101 /* xgetbv */
7102 if (ir.rm == 0)
7103 {
7104 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7105 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7106 break;
7107 }
7108 /* xsetbv */
7109 else if (ir.rm == 1)
7110 break;
7111 }
7112 [[fallthrough]];
7113 case 3: /* lidt */
7114 if (ir.mod == 3)
7115 {
7116 ir.addr -= 3;
7117 opcode = opcode << 8 | ir.modrm;
7118 goto no_support;
7119 }
7120 break;
7121 case 4: /* smsw */
7122 if (ir.mod == 3)
7123 {
7124 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7125 return -1;
7126 }
7127 else
7128 {
7129 ir.ot = OT_WORD;
7130 if (i386_record_lea_modrm (&ir))
7131 return -1;
7132 }
7133 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7134 break;
7135 case 6: /* lmsw */
7136 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7137 break;
7138 case 7: /* invlpg */
7139 if (ir.mod == 3)
7140 {
7141 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7142 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7143 else
7144 {
7145 ir.addr -= 3;
7146 opcode = opcode << 8 | ir.modrm;
7147 goto no_support;
7148 }
7149 }
7150 else
7151 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7152 break;
7153 default:
7154 ir.addr -= 3;
7155 opcode = opcode << 8 | ir.modrm;
7156 goto no_support;
7157 break;
7158 }
7159 break;
7160
7161 case 0x0f08: /* invd */
7162 case 0x0f09: /* wbinvd */
7163 break;
7164
7165 case 0x63: /* arpl */
7166 if (i386_record_modrm (&ir))
7167 return -1;
7168 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7169 {
7170 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7171 ? (ir.reg | rex_r) : ir.rm);
7172 }
7173 else
7174 {
7175 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7176 if (i386_record_lea_modrm (&ir))
7177 return -1;
7178 }
7179 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7180 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7181 break;
7182
7183 case 0x0f02: /* lar */
7184 case 0x0f03: /* lsl */
7185 if (i386_record_modrm (&ir))
7186 return -1;
7187 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7188 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7189 break;
7190
7191 case 0x0f18:
7192 if (i386_record_modrm (&ir))
7193 return -1;
7194 if (ir.mod == 3 && ir.reg == 3)
7195 {
7196 ir.addr -= 3;
7197 opcode = opcode << 8 | ir.modrm;
7198 goto no_support;
7199 }
7200 break;
7201
7202 case 0x0f19:
7203 case 0x0f1a:
7204 case 0x0f1b:
7205 case 0x0f1c:
7206 case 0x0f1d:
7207 case 0x0f1e:
7208 case 0x0f1f:
7209 /* nop (multi byte) */
7210 break;
7211
7212 case 0x0f20: /* mov reg, crN */
7213 case 0x0f22: /* mov crN, reg */
7214 if (i386_record_modrm (&ir))
7215 return -1;
7216 if ((ir.modrm & 0xc0) != 0xc0)
7217 {
7218 ir.addr -= 3;
7219 opcode = opcode << 8 | ir.modrm;
7220 goto no_support;
7221 }
7222 switch (ir.reg)
7223 {
7224 case 0:
7225 case 2:
7226 case 3:
7227 case 4:
7228 case 8:
7229 if (opcode & 2)
7230 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7231 else
7232 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7233 break;
7234 default:
7235 ir.addr -= 3;
7236 opcode = opcode << 8 | ir.modrm;
7237 goto no_support;
7238 break;
7239 }
7240 break;
7241
7242 case 0x0f21: /* mov reg, drN */
7243 case 0x0f23: /* mov drN, reg */
7244 if (i386_record_modrm (&ir))
7245 return -1;
7246 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7247 || ir.reg == 5 || ir.reg >= 8)
7248 {
7249 ir.addr -= 3;
7250 opcode = opcode << 8 | ir.modrm;
7251 goto no_support;
7252 }
7253 if (opcode & 2)
7254 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7255 else
7256 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7257 break;
7258
7259 case 0x0f06: /* clts */
7260 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7261 break;
7262
7263 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7264
7265 case 0x0f0d: /* 3DNow! prefetch */
7266 break;
7267
7268 case 0x0f0e: /* 3DNow! femms */
7269 case 0x0f77: /* emms */
7270 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7271 goto no_support;
7272 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7273 break;
7274
7275 case 0x0f0f: /* 3DNow! data */
7276 if (i386_record_modrm (&ir))
7277 return -1;
7278 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7279 return -1;
7280 ir.addr++;
7281 switch (opcode8)
7282 {
7283 case 0x0c: /* 3DNow! pi2fw */
7284 case 0x0d: /* 3DNow! pi2fd */
7285 case 0x1c: /* 3DNow! pf2iw */
7286 case 0x1d: /* 3DNow! pf2id */
7287 case 0x8a: /* 3DNow! pfnacc */
7288 case 0x8e: /* 3DNow! pfpnacc */
7289 case 0x90: /* 3DNow! pfcmpge */
7290 case 0x94: /* 3DNow! pfmin */
7291 case 0x96: /* 3DNow! pfrcp */
7292 case 0x97: /* 3DNow! pfrsqrt */
7293 case 0x9a: /* 3DNow! pfsub */
7294 case 0x9e: /* 3DNow! pfadd */
7295 case 0xa0: /* 3DNow! pfcmpgt */
7296 case 0xa4: /* 3DNow! pfmax */
7297 case 0xa6: /* 3DNow! pfrcpit1 */
7298 case 0xa7: /* 3DNow! pfrsqit1 */
7299 case 0xaa: /* 3DNow! pfsubr */
7300 case 0xae: /* 3DNow! pfacc */
7301 case 0xb0: /* 3DNow! pfcmpeq */
7302 case 0xb4: /* 3DNow! pfmul */
7303 case 0xb6: /* 3DNow! pfrcpit2 */
7304 case 0xb7: /* 3DNow! pmulhrw */
7305 case 0xbb: /* 3DNow! pswapd */
7306 case 0xbf: /* 3DNow! pavgusb */
7307 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7308 goto no_support_3dnow_data;
7309 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7310 break;
7311
7312 default:
7313 no_support_3dnow_data:
7314 opcode = (opcode << 8) | opcode8;
7315 goto no_support;
7316 break;
7317 }
7318 break;
7319
7320 case 0x0faa: /* rsm */
7321 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7322 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7323 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7324 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7325 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7326 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7327 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7328 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7329 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7330 break;
7331
7332 case 0x0fae:
7333 if (i386_record_modrm (&ir))
7334 return -1;
7335 switch(ir.reg)
7336 {
7337 case 0: /* fxsave */
7338 {
7339 uint64_t tmpu64;
7340
7341 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7342 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7343 return -1;
7344 if (record_full_arch_list_add_mem (tmpu64, 512))
7345 return -1;
7346 }
7347 break;
7348
7349 case 1: /* fxrstor */
7350 {
7351 int i;
7352
7353 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7354
7355 for (i = I387_MM0_REGNUM (tdep);
7356 i386_mmx_regnum_p (gdbarch, i); i++)
7357 record_full_arch_list_add_reg (ir.regcache, i);
7358
7359 for (i = I387_XMM0_REGNUM (tdep);
7360 i386_xmm_regnum_p (gdbarch, i); i++)
7361 record_full_arch_list_add_reg (ir.regcache, i);
7362
7363 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7364 record_full_arch_list_add_reg (ir.regcache,
7365 I387_MXCSR_REGNUM(tdep));
7366
7367 for (i = I387_ST0_REGNUM (tdep);
7368 i386_fp_regnum_p (gdbarch, i); i++)
7369 record_full_arch_list_add_reg (ir.regcache, i);
7370
7371 for (i = I387_FCTRL_REGNUM (tdep);
7372 i386_fpc_regnum_p (gdbarch, i); i++)
7373 record_full_arch_list_add_reg (ir.regcache, i);
7374 }
7375 break;
7376
7377 case 2: /* ldmxcsr */
7378 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7379 goto no_support;
7380 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7381 break;
7382
7383 case 3: /* stmxcsr */
7384 ir.ot = OT_LONG;
7385 if (i386_record_lea_modrm (&ir))
7386 return -1;
7387 break;
7388
7389 case 5: /* lfence */
7390 case 6: /* mfence */
7391 case 7: /* sfence clflush */
7392 break;
7393
7394 default:
7395 opcode = (opcode << 8) | ir.modrm;
7396 goto no_support;
7397 break;
7398 }
7399 break;
7400
7401 case 0x0fc3: /* movnti */
7402 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7403 if (i386_record_modrm (&ir))
7404 return -1;
7405 if (ir.mod == 3)
7406 goto no_support;
7407 ir.reg |= rex_r;
7408 if (i386_record_lea_modrm (&ir))
7409 return -1;
7410 break;
7411
7412 /* Add prefix to opcode. */
7413 case 0x0f10:
7414 case 0x0f11:
7415 case 0x0f12:
7416 case 0x0f13:
7417 case 0x0f14:
7418 case 0x0f15:
7419 case 0x0f16:
7420 case 0x0f17:
7421 case 0x0f28:
7422 case 0x0f29:
7423 case 0x0f2a:
7424 case 0x0f2b:
7425 case 0x0f2c:
7426 case 0x0f2d:
7427 case 0x0f2e:
7428 case 0x0f2f:
7429 case 0x0f38:
7430 case 0x0f39:
7431 case 0x0f3a:
7432 case 0x0f50:
7433 case 0x0f51:
7434 case 0x0f52:
7435 case 0x0f53:
7436 case 0x0f54:
7437 case 0x0f55:
7438 case 0x0f56:
7439 case 0x0f57:
7440 case 0x0f58:
7441 case 0x0f59:
7442 case 0x0f5a:
7443 case 0x0f5b:
7444 case 0x0f5c:
7445 case 0x0f5d:
7446 case 0x0f5e:
7447 case 0x0f5f:
7448 case 0x0f60:
7449 case 0x0f61:
7450 case 0x0f62:
7451 case 0x0f63:
7452 case 0x0f64:
7453 case 0x0f65:
7454 case 0x0f66:
7455 case 0x0f67:
7456 case 0x0f68:
7457 case 0x0f69:
7458 case 0x0f6a:
7459 case 0x0f6b:
7460 case 0x0f6c:
7461 case 0x0f6d:
7462 case 0x0f6e:
7463 case 0x0f6f:
7464 case 0x0f70:
7465 case 0x0f71:
7466 case 0x0f72:
7467 case 0x0f73:
7468 case 0x0f74:
7469 case 0x0f75:
7470 case 0x0f76:
7471 case 0x0f7c:
7472 case 0x0f7d:
7473 case 0x0f7e:
7474 case 0x0f7f:
7475 case 0x0fb8:
7476 case 0x0fc2:
7477 case 0x0fc4:
7478 case 0x0fc5:
7479 case 0x0fc6:
7480 case 0x0fd0:
7481 case 0x0fd1:
7482 case 0x0fd2:
7483 case 0x0fd3:
7484 case 0x0fd4:
7485 case 0x0fd5:
7486 case 0x0fd6:
7487 case 0x0fd7:
7488 case 0x0fd8:
7489 case 0x0fd9:
7490 case 0x0fda:
7491 case 0x0fdb:
7492 case 0x0fdc:
7493 case 0x0fdd:
7494 case 0x0fde:
7495 case 0x0fdf:
7496 case 0x0fe0:
7497 case 0x0fe1:
7498 case 0x0fe2:
7499 case 0x0fe3:
7500 case 0x0fe4:
7501 case 0x0fe5:
7502 case 0x0fe6:
7503 case 0x0fe7:
7504 case 0x0fe8:
7505 case 0x0fe9:
7506 case 0x0fea:
7507 case 0x0feb:
7508 case 0x0fec:
7509 case 0x0fed:
7510 case 0x0fee:
7511 case 0x0fef:
7512 case 0x0ff0:
7513 case 0x0ff1:
7514 case 0x0ff2:
7515 case 0x0ff3:
7516 case 0x0ff4:
7517 case 0x0ff5:
7518 case 0x0ff6:
7519 case 0x0ff7:
7520 case 0x0ff8:
7521 case 0x0ff9:
7522 case 0x0ffa:
7523 case 0x0ffb:
7524 case 0x0ffc:
7525 case 0x0ffd:
7526 case 0x0ffe:
7527 /* Mask out PREFIX_ADDR. */
7528 switch ((prefixes & ~PREFIX_ADDR))
7529 {
7530 case PREFIX_REPNZ:
7531 opcode |= 0xf20000;
7532 break;
7533 case PREFIX_DATA:
7534 opcode |= 0x660000;
7535 break;
7536 case PREFIX_REPZ:
7537 opcode |= 0xf30000;
7538 break;
7539 }
7540 reswitch_prefix_add:
7541 switch (opcode)
7542 {
7543 case 0x0f38:
7544 case 0x660f38:
7545 case 0xf20f38:
7546 case 0x0f3a:
7547 case 0x660f3a:
7548 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7549 return -1;
7550 ir.addr++;
7551 opcode = (uint32_t) opcode8 | opcode << 8;
7552 goto reswitch_prefix_add;
7553 break;
7554
7555 case 0x0f10: /* movups */
7556 case 0x660f10: /* movupd */
7557 case 0xf30f10: /* movss */
7558 case 0xf20f10: /* movsd */
7559 case 0x0f12: /* movlps */
7560 case 0x660f12: /* movlpd */
7561 case 0xf30f12: /* movsldup */
7562 case 0xf20f12: /* movddup */
7563 case 0x0f14: /* unpcklps */
7564 case 0x660f14: /* unpcklpd */
7565 case 0x0f15: /* unpckhps */
7566 case 0x660f15: /* unpckhpd */
7567 case 0x0f16: /* movhps */
7568 case 0x660f16: /* movhpd */
7569 case 0xf30f16: /* movshdup */
7570 case 0x0f28: /* movaps */
7571 case 0x660f28: /* movapd */
7572 case 0x0f2a: /* cvtpi2ps */
7573 case 0x660f2a: /* cvtpi2pd */
7574 case 0xf30f2a: /* cvtsi2ss */
7575 case 0xf20f2a: /* cvtsi2sd */
7576 case 0x0f2c: /* cvttps2pi */
7577 case 0x660f2c: /* cvttpd2pi */
7578 case 0x0f2d: /* cvtps2pi */
7579 case 0x660f2d: /* cvtpd2pi */
7580 case 0x660f3800: /* pshufb */
7581 case 0x660f3801: /* phaddw */
7582 case 0x660f3802: /* phaddd */
7583 case 0x660f3803: /* phaddsw */
7584 case 0x660f3804: /* pmaddubsw */
7585 case 0x660f3805: /* phsubw */
7586 case 0x660f3806: /* phsubd */
7587 case 0x660f3807: /* phsubsw */
7588 case 0x660f3808: /* psignb */
7589 case 0x660f3809: /* psignw */
7590 case 0x660f380a: /* psignd */
7591 case 0x660f380b: /* pmulhrsw */
7592 case 0x660f3810: /* pblendvb */
7593 case 0x660f3814: /* blendvps */
7594 case 0x660f3815: /* blendvpd */
7595 case 0x660f381c: /* pabsb */
7596 case 0x660f381d: /* pabsw */
7597 case 0x660f381e: /* pabsd */
7598 case 0x660f3820: /* pmovsxbw */
7599 case 0x660f3821: /* pmovsxbd */
7600 case 0x660f3822: /* pmovsxbq */
7601 case 0x660f3823: /* pmovsxwd */
7602 case 0x660f3824: /* pmovsxwq */
7603 case 0x660f3825: /* pmovsxdq */
7604 case 0x660f3828: /* pmuldq */
7605 case 0x660f3829: /* pcmpeqq */
7606 case 0x660f382a: /* movntdqa */
7607 case 0x660f3a08: /* roundps */
7608 case 0x660f3a09: /* roundpd */
7609 case 0x660f3a0a: /* roundss */
7610 case 0x660f3a0b: /* roundsd */
7611 case 0x660f3a0c: /* blendps */
7612 case 0x660f3a0d: /* blendpd */
7613 case 0x660f3a0e: /* pblendw */
7614 case 0x660f3a0f: /* palignr */
7615 case 0x660f3a20: /* pinsrb */
7616 case 0x660f3a21: /* insertps */
7617 case 0x660f3a22: /* pinsrd pinsrq */
7618 case 0x660f3a40: /* dpps */
7619 case 0x660f3a41: /* dppd */
7620 case 0x660f3a42: /* mpsadbw */
7621 case 0x660f3a60: /* pcmpestrm */
7622 case 0x660f3a61: /* pcmpestri */
7623 case 0x660f3a62: /* pcmpistrm */
7624 case 0x660f3a63: /* pcmpistri */
7625 case 0x0f51: /* sqrtps */
7626 case 0x660f51: /* sqrtpd */
7627 case 0xf20f51: /* sqrtsd */
7628 case 0xf30f51: /* sqrtss */
7629 case 0x0f52: /* rsqrtps */
7630 case 0xf30f52: /* rsqrtss */
7631 case 0x0f53: /* rcpps */
7632 case 0xf30f53: /* rcpss */
7633 case 0x0f54: /* andps */
7634 case 0x660f54: /* andpd */
7635 case 0x0f55: /* andnps */
7636 case 0x660f55: /* andnpd */
7637 case 0x0f56: /* orps */
7638 case 0x660f56: /* orpd */
7639 case 0x0f57: /* xorps */
7640 case 0x660f57: /* xorpd */
7641 case 0x0f58: /* addps */
7642 case 0x660f58: /* addpd */
7643 case 0xf20f58: /* addsd */
7644 case 0xf30f58: /* addss */
7645 case 0x0f59: /* mulps */
7646 case 0x660f59: /* mulpd */
7647 case 0xf20f59: /* mulsd */
7648 case 0xf30f59: /* mulss */
7649 case 0x0f5a: /* cvtps2pd */
7650 case 0x660f5a: /* cvtpd2ps */
7651 case 0xf20f5a: /* cvtsd2ss */
7652 case 0xf30f5a: /* cvtss2sd */
7653 case 0x0f5b: /* cvtdq2ps */
7654 case 0x660f5b: /* cvtps2dq */
7655 case 0xf30f5b: /* cvttps2dq */
7656 case 0x0f5c: /* subps */
7657 case 0x660f5c: /* subpd */
7658 case 0xf20f5c: /* subsd */
7659 case 0xf30f5c: /* subss */
7660 case 0x0f5d: /* minps */
7661 case 0x660f5d: /* minpd */
7662 case 0xf20f5d: /* minsd */
7663 case 0xf30f5d: /* minss */
7664 case 0x0f5e: /* divps */
7665 case 0x660f5e: /* divpd */
7666 case 0xf20f5e: /* divsd */
7667 case 0xf30f5e: /* divss */
7668 case 0x0f5f: /* maxps */
7669 case 0x660f5f: /* maxpd */
7670 case 0xf20f5f: /* maxsd */
7671 case 0xf30f5f: /* maxss */
7672 case 0x660f60: /* punpcklbw */
7673 case 0x660f61: /* punpcklwd */
7674 case 0x660f62: /* punpckldq */
7675 case 0x660f63: /* packsswb */
7676 case 0x660f64: /* pcmpgtb */
7677 case 0x660f65: /* pcmpgtw */
7678 case 0x660f66: /* pcmpgtd */
7679 case 0x660f67: /* packuswb */
7680 case 0x660f68: /* punpckhbw */
7681 case 0x660f69: /* punpckhwd */
7682 case 0x660f6a: /* punpckhdq */
7683 case 0x660f6b: /* packssdw */
7684 case 0x660f6c: /* punpcklqdq */
7685 case 0x660f6d: /* punpckhqdq */
7686 case 0x660f6e: /* movd */
7687 case 0x660f6f: /* movdqa */
7688 case 0xf30f6f: /* movdqu */
7689 case 0x660f70: /* pshufd */
7690 case 0xf20f70: /* pshuflw */
7691 case 0xf30f70: /* pshufhw */
7692 case 0x660f74: /* pcmpeqb */
7693 case 0x660f75: /* pcmpeqw */
7694 case 0x660f76: /* pcmpeqd */
7695 case 0x660f7c: /* haddpd */
7696 case 0xf20f7c: /* haddps */
7697 case 0x660f7d: /* hsubpd */
7698 case 0xf20f7d: /* hsubps */
7699 case 0xf30f7e: /* movq */
7700 case 0x0fc2: /* cmpps */
7701 case 0x660fc2: /* cmppd */
7702 case 0xf20fc2: /* cmpsd */
7703 case 0xf30fc2: /* cmpss */
7704 case 0x660fc4: /* pinsrw */
7705 case 0x0fc6: /* shufps */
7706 case 0x660fc6: /* shufpd */
7707 case 0x660fd0: /* addsubpd */
7708 case 0xf20fd0: /* addsubps */
7709 case 0x660fd1: /* psrlw */
7710 case 0x660fd2: /* psrld */
7711 case 0x660fd3: /* psrlq */
7712 case 0x660fd4: /* paddq */
7713 case 0x660fd5: /* pmullw */
7714 case 0xf30fd6: /* movq2dq */
7715 case 0x660fd8: /* psubusb */
7716 case 0x660fd9: /* psubusw */
7717 case 0x660fda: /* pminub */
7718 case 0x660fdb: /* pand */
7719 case 0x660fdc: /* paddusb */
7720 case 0x660fdd: /* paddusw */
7721 case 0x660fde: /* pmaxub */
7722 case 0x660fdf: /* pandn */
7723 case 0x660fe0: /* pavgb */
7724 case 0x660fe1: /* psraw */
7725 case 0x660fe2: /* psrad */
7726 case 0x660fe3: /* pavgw */
7727 case 0x660fe4: /* pmulhuw */
7728 case 0x660fe5: /* pmulhw */
7729 case 0x660fe6: /* cvttpd2dq */
7730 case 0xf20fe6: /* cvtpd2dq */
7731 case 0xf30fe6: /* cvtdq2pd */
7732 case 0x660fe8: /* psubsb */
7733 case 0x660fe9: /* psubsw */
7734 case 0x660fea: /* pminsw */
7735 case 0x660feb: /* por */
7736 case 0x660fec: /* paddsb */
7737 case 0x660fed: /* paddsw */
7738 case 0x660fee: /* pmaxsw */
7739 case 0x660fef: /* pxor */
7740 case 0xf20ff0: /* lddqu */
7741 case 0x660ff1: /* psllw */
7742 case 0x660ff2: /* pslld */
7743 case 0x660ff3: /* psllq */
7744 case 0x660ff4: /* pmuludq */
7745 case 0x660ff5: /* pmaddwd */
7746 case 0x660ff6: /* psadbw */
7747 case 0x660ff8: /* psubb */
7748 case 0x660ff9: /* psubw */
7749 case 0x660ffa: /* psubd */
7750 case 0x660ffb: /* psubq */
7751 case 0x660ffc: /* paddb */
7752 case 0x660ffd: /* paddw */
7753 case 0x660ffe: /* paddd */
7754 if (i386_record_modrm (&ir))
7755 return -1;
7756 ir.reg |= rex_r;
7757 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7758 goto no_support;
7759 record_full_arch_list_add_reg (ir.regcache,
7760 I387_XMM0_REGNUM (tdep) + ir.reg);
7761 if ((opcode & 0xfffffffc) == 0x660f3a60)
7762 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7763 break;
7764
7765 case 0x0f11: /* movups */
7766 case 0x660f11: /* movupd */
7767 case 0xf30f11: /* movss */
7768 case 0xf20f11: /* movsd */
7769 case 0x0f13: /* movlps */
7770 case 0x660f13: /* movlpd */
7771 case 0x0f17: /* movhps */
7772 case 0x660f17: /* movhpd */
7773 case 0x0f29: /* movaps */
7774 case 0x660f29: /* movapd */
7775 case 0x660f3a14: /* pextrb */
7776 case 0x660f3a15: /* pextrw */
7777 case 0x660f3a16: /* pextrd pextrq */
7778 case 0x660f3a17: /* extractps */
7779 case 0x660f7f: /* movdqa */
7780 case 0xf30f7f: /* movdqu */
7781 if (i386_record_modrm (&ir))
7782 return -1;
7783 if (ir.mod == 3)
7784 {
7785 if (opcode == 0x0f13 || opcode == 0x660f13
7786 || opcode == 0x0f17 || opcode == 0x660f17)
7787 goto no_support;
7788 ir.rm |= ir.rex_b;
7789 if (!i386_xmm_regnum_p (gdbarch,
7790 I387_XMM0_REGNUM (tdep) + ir.rm))
7791 goto no_support;
7792 record_full_arch_list_add_reg (ir.regcache,
7793 I387_XMM0_REGNUM (tdep) + ir.rm);
7794 }
7795 else
7796 {
7797 switch (opcode)
7798 {
7799 case 0x660f3a14:
7800 ir.ot = OT_BYTE;
7801 break;
7802 case 0x660f3a15:
7803 ir.ot = OT_WORD;
7804 break;
7805 case 0x660f3a16:
7806 ir.ot = OT_LONG;
7807 break;
7808 case 0x660f3a17:
7809 ir.ot = OT_QUAD;
7810 break;
7811 default:
7812 ir.ot = OT_DQUAD;
7813 break;
7814 }
7815 if (i386_record_lea_modrm (&ir))
7816 return -1;
7817 }
7818 break;
7819
7820 case 0x0f2b: /* movntps */
7821 case 0x660f2b: /* movntpd */
7822 case 0x0fe7: /* movntq */
7823 case 0x660fe7: /* movntdq */
7824 if (ir.mod == 3)
7825 goto no_support;
7826 if (opcode == 0x0fe7)
7827 ir.ot = OT_QUAD;
7828 else
7829 ir.ot = OT_DQUAD;
7830 if (i386_record_lea_modrm (&ir))
7831 return -1;
7832 break;
7833
7834 case 0xf30f2c: /* cvttss2si */
7835 case 0xf20f2c: /* cvttsd2si */
7836 case 0xf30f2d: /* cvtss2si */
7837 case 0xf20f2d: /* cvtsd2si */
7838 case 0xf20f38f0: /* crc32 */
7839 case 0xf20f38f1: /* crc32 */
7840 case 0x0f50: /* movmskps */
7841 case 0x660f50: /* movmskpd */
7842 case 0x0fc5: /* pextrw */
7843 case 0x660fc5: /* pextrw */
7844 case 0x0fd7: /* pmovmskb */
7845 case 0x660fd7: /* pmovmskb */
7846 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7847 break;
7848
7849 case 0x0f3800: /* pshufb */
7850 case 0x0f3801: /* phaddw */
7851 case 0x0f3802: /* phaddd */
7852 case 0x0f3803: /* phaddsw */
7853 case 0x0f3804: /* pmaddubsw */
7854 case 0x0f3805: /* phsubw */
7855 case 0x0f3806: /* phsubd */
7856 case 0x0f3807: /* phsubsw */
7857 case 0x0f3808: /* psignb */
7858 case 0x0f3809: /* psignw */
7859 case 0x0f380a: /* psignd */
7860 case 0x0f380b: /* pmulhrsw */
7861 case 0x0f381c: /* pabsb */
7862 case 0x0f381d: /* pabsw */
7863 case 0x0f381e: /* pabsd */
7864 case 0x0f382b: /* packusdw */
7865 case 0x0f3830: /* pmovzxbw */
7866 case 0x0f3831: /* pmovzxbd */
7867 case 0x0f3832: /* pmovzxbq */
7868 case 0x0f3833: /* pmovzxwd */
7869 case 0x0f3834: /* pmovzxwq */
7870 case 0x0f3835: /* pmovzxdq */
7871 case 0x0f3837: /* pcmpgtq */
7872 case 0x0f3838: /* pminsb */
7873 case 0x0f3839: /* pminsd */
7874 case 0x0f383a: /* pminuw */
7875 case 0x0f383b: /* pminud */
7876 case 0x0f383c: /* pmaxsb */
7877 case 0x0f383d: /* pmaxsd */
7878 case 0x0f383e: /* pmaxuw */
7879 case 0x0f383f: /* pmaxud */
7880 case 0x0f3840: /* pmulld */
7881 case 0x0f3841: /* phminposuw */
7882 case 0x0f3a0f: /* palignr */
7883 case 0x0f60: /* punpcklbw */
7884 case 0x0f61: /* punpcklwd */
7885 case 0x0f62: /* punpckldq */
7886 case 0x0f63: /* packsswb */
7887 case 0x0f64: /* pcmpgtb */
7888 case 0x0f65: /* pcmpgtw */
7889 case 0x0f66: /* pcmpgtd */
7890 case 0x0f67: /* packuswb */
7891 case 0x0f68: /* punpckhbw */
7892 case 0x0f69: /* punpckhwd */
7893 case 0x0f6a: /* punpckhdq */
7894 case 0x0f6b: /* packssdw */
7895 case 0x0f6e: /* movd */
7896 case 0x0f6f: /* movq */
7897 case 0x0f70: /* pshufw */
7898 case 0x0f74: /* pcmpeqb */
7899 case 0x0f75: /* pcmpeqw */
7900 case 0x0f76: /* pcmpeqd */
7901 case 0x0fc4: /* pinsrw */
7902 case 0x0fd1: /* psrlw */
7903 case 0x0fd2: /* psrld */
7904 case 0x0fd3: /* psrlq */
7905 case 0x0fd4: /* paddq */
7906 case 0x0fd5: /* pmullw */
7907 case 0xf20fd6: /* movdq2q */
7908 case 0x0fd8: /* psubusb */
7909 case 0x0fd9: /* psubusw */
7910 case 0x0fda: /* pminub */
7911 case 0x0fdb: /* pand */
7912 case 0x0fdc: /* paddusb */
7913 case 0x0fdd: /* paddusw */
7914 case 0x0fde: /* pmaxub */
7915 case 0x0fdf: /* pandn */
7916 case 0x0fe0: /* pavgb */
7917 case 0x0fe1: /* psraw */
7918 case 0x0fe2: /* psrad */
7919 case 0x0fe3: /* pavgw */
7920 case 0x0fe4: /* pmulhuw */
7921 case 0x0fe5: /* pmulhw */
7922 case 0x0fe8: /* psubsb */
7923 case 0x0fe9: /* psubsw */
7924 case 0x0fea: /* pminsw */
7925 case 0x0feb: /* por */
7926 case 0x0fec: /* paddsb */
7927 case 0x0fed: /* paddsw */
7928 case 0x0fee: /* pmaxsw */
7929 case 0x0fef: /* pxor */
7930 case 0x0ff1: /* psllw */
7931 case 0x0ff2: /* pslld */
7932 case 0x0ff3: /* psllq */
7933 case 0x0ff4: /* pmuludq */
7934 case 0x0ff5: /* pmaddwd */
7935 case 0x0ff6: /* psadbw */
7936 case 0x0ff8: /* psubb */
7937 case 0x0ff9: /* psubw */
7938 case 0x0ffa: /* psubd */
7939 case 0x0ffb: /* psubq */
7940 case 0x0ffc: /* paddb */
7941 case 0x0ffd: /* paddw */
7942 case 0x0ffe: /* paddd */
7943 if (i386_record_modrm (&ir))
7944 return -1;
7945 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7946 goto no_support;
7947 record_full_arch_list_add_reg (ir.regcache,
7948 I387_MM0_REGNUM (tdep) + ir.reg);
7949 break;
7950
7951 case 0x0f71: /* psllw */
7952 case 0x0f72: /* pslld */
7953 case 0x0f73: /* psllq */
7954 if (i386_record_modrm (&ir))
7955 return -1;
7956 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7957 goto no_support;
7958 record_full_arch_list_add_reg (ir.regcache,
7959 I387_MM0_REGNUM (tdep) + ir.rm);
7960 break;
7961
7962 case 0x660f71: /* psllw */
7963 case 0x660f72: /* pslld */
7964 case 0x660f73: /* psllq */
7965 if (i386_record_modrm (&ir))
7966 return -1;
7967 ir.rm |= ir.rex_b;
7968 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7969 goto no_support;
7970 record_full_arch_list_add_reg (ir.regcache,
7971 I387_XMM0_REGNUM (tdep) + ir.rm);
7972 break;
7973
7974 case 0x0f7e: /* movd */
7975 case 0x660f7e: /* movd */
7976 if (i386_record_modrm (&ir))
7977 return -1;
7978 if (ir.mod == 3)
7979 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7980 else
7981 {
7982 if (ir.dflag == 2)
7983 ir.ot = OT_QUAD;
7984 else
7985 ir.ot = OT_LONG;
7986 if (i386_record_lea_modrm (&ir))
7987 return -1;
7988 }
7989 break;
7990
7991 case 0x0f7f: /* movq */
7992 if (i386_record_modrm (&ir))
7993 return -1;
7994 if (ir.mod == 3)
7995 {
7996 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7997 goto no_support;
7998 record_full_arch_list_add_reg (ir.regcache,
7999 I387_MM0_REGNUM (tdep) + ir.rm);
8000 }
8001 else
8002 {
8003 ir.ot = OT_QUAD;
8004 if (i386_record_lea_modrm (&ir))
8005 return -1;
8006 }
8007 break;
8008
8009 case 0xf30fb8: /* popcnt */
8010 if (i386_record_modrm (&ir))
8011 return -1;
8012 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8013 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8014 break;
8015
8016 case 0x660fd6: /* movq */
8017 if (i386_record_modrm (&ir))
8018 return -1;
8019 if (ir.mod == 3)
8020 {
8021 ir.rm |= ir.rex_b;
8022 if (!i386_xmm_regnum_p (gdbarch,
8023 I387_XMM0_REGNUM (tdep) + ir.rm))
8024 goto no_support;
8025 record_full_arch_list_add_reg (ir.regcache,
8026 I387_XMM0_REGNUM (tdep) + ir.rm);
8027 }
8028 else
8029 {
8030 ir.ot = OT_QUAD;
8031 if (i386_record_lea_modrm (&ir))
8032 return -1;
8033 }
8034 break;
8035
8036 case 0x660f3817: /* ptest */
8037 case 0x0f2e: /* ucomiss */
8038 case 0x660f2e: /* ucomisd */
8039 case 0x0f2f: /* comiss */
8040 case 0x660f2f: /* comisd */
8041 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8042 break;
8043
8044 case 0x0ff7: /* maskmovq */
8045 regcache_raw_read_unsigned (ir.regcache,
8046 ir.regmap[X86_RECORD_REDI_REGNUM],
8047 &addr);
8048 if (record_full_arch_list_add_mem (addr, 64))
8049 return -1;
8050 break;
8051
8052 case 0x660ff7: /* maskmovdqu */
8053 regcache_raw_read_unsigned (ir.regcache,
8054 ir.regmap[X86_RECORD_REDI_REGNUM],
8055 &addr);
8056 if (record_full_arch_list_add_mem (addr, 128))
8057 return -1;
8058 break;
8059
8060 default:
8061 goto no_support;
8062 break;
8063 }
8064 break;
8065
8066 default:
8067 goto no_support;
8068 break;
8069 }
8070
8071 /* In the future, maybe still need to deal with need_dasm. */
8072 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8073 if (record_full_arch_list_add_end ())
8074 return -1;
8075
8076 return 0;
8077
8078 no_support:
8079 gdb_printf (gdb_stderr,
8080 _("Process record does not support instruction 0x%02x "
8081 "at address %s.\n"),
8082 (unsigned int) (opcode),
8083 paddress (gdbarch, ir.orig_addr));
8084 return -1;
8085 }
8086
8087 static const int i386_record_regmap[] =
8088 {
8089 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8090 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8091 0, 0, 0, 0, 0, 0, 0, 0,
8092 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8093 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8094 };
8095
8096 /* Check that the given address appears suitable for a fast
8097 tracepoint, which on x86-64 means that we need an instruction of at
8098 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8099 jump and not have to worry about program jumps to an address in the
8100 middle of the tracepoint jump. On x86, it may be possible to use
8101 4-byte jumps with a 2-byte offset to a trampoline located in the
8102 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8103 of instruction to replace, and 0 if not, plus an explanatory
8104 string. */
8105
8106 static int
8107 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8108 std::string *msg)
8109 {
8110 int len, jumplen;
8111
8112 /* Ask the target for the minimum instruction length supported. */
8113 jumplen = target_get_min_fast_tracepoint_insn_len ();
8114
8115 if (jumplen < 0)
8116 {
8117 /* If the target does not support the get_min_fast_tracepoint_insn_len
8118 operation, assume that fast tracepoints will always be implemented
8119 using 4-byte relative jumps on both x86 and x86-64. */
8120 jumplen = 5;
8121 }
8122 else if (jumplen == 0)
8123 {
8124 /* If the target does support get_min_fast_tracepoint_insn_len but
8125 returns zero, then the IPA has not loaded yet. In this case,
8126 we optimistically assume that truncated 2-byte relative jumps
8127 will be available on x86, and compensate later if this assumption
8128 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8129 jumps will always be used. */
8130 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8131 }
8132
8133 /* Check for fit. */
8134 len = gdb_insn_length (gdbarch, addr);
8135
8136 if (len < jumplen)
8137 {
8138 /* Return a bit of target-specific detail to add to the caller's
8139 generic failure message. */
8140 if (msg)
8141 *msg = string_printf (_("; instruction is only %d bytes long, "
8142 "need at least %d bytes for the jump"),
8143 len, jumplen);
8144 return 0;
8145 }
8146 else
8147 {
8148 if (msg)
8149 msg->clear ();
8150 return 1;
8151 }
8152 }
8153
8154 /* Return a floating-point format for a floating-point variable of
8155 length LEN in bits. If non-NULL, NAME is the name of its type.
8156 If no suitable type is found, return NULL. */
8157
8158 static const struct floatformat **
8159 i386_floatformat_for_type (struct gdbarch *gdbarch,
8160 const char *name, int len)
8161 {
8162 if (len == 128 && name)
8163 if (strcmp (name, "__float128") == 0
8164 || strcmp (name, "_Float128") == 0
8165 || strcmp (name, "complex _Float128") == 0
8166 || strcmp (name, "complex(kind=16)") == 0
8167 || strcmp (name, "COMPLEX(16)") == 0
8168 || strcmp (name, "complex*32") == 0
8169 || strcmp (name, "COMPLEX*32") == 0
8170 || strcmp (name, "quad complex") == 0
8171 || strcmp (name, "real(kind=16)") == 0
8172 || strcmp (name, "real*16") == 0
8173 || strcmp (name, "REAL*16") == 0
8174 || strcmp (name, "REAL(16)") == 0)
8175 return floatformats_ieee_quad;
8176
8177 return default_floatformat_for_type (gdbarch, name, len);
8178 }
8179
8180 /* Compute an XCR0 mask based on a target description. */
8181
8182 static uint64_t
8183 i386_xcr0_from_tdesc (const struct target_desc *tdesc)
8184 {
8185 if (! tdesc_has_registers (tdesc))
8186 return 0;
8187
8188 const struct tdesc_feature *feature_core;
8189
8190 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8191 *feature_avx512, *feature_pkeys;
8192
8193 /* Get core registers. */
8194 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8195 if (feature_core == NULL)
8196 return 0;
8197
8198 /* Get SSE registers. */
8199 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8200
8201 /* Try AVX registers. */
8202 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8203
8204 /* Try MPX registers. */
8205 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8206
8207 /* Try AVX512 registers. */
8208 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8209
8210 /* Try PKEYS */
8211 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8212
8213 /* The XCR0 bits. */
8214 uint64_t xcr0 = X86_XSTATE_X87;
8215
8216 if (feature_sse)
8217 xcr0 |= X86_XSTATE_SSE;
8218
8219 if (feature_avx)
8220 {
8221 /* AVX register description requires SSE register description. */
8222 if (!feature_sse)
8223 return 0;
8224
8225 xcr0 |= X86_XSTATE_AVX;
8226 }
8227
8228 if (feature_mpx)
8229 xcr0 |= X86_XSTATE_MPX_MASK;
8230
8231 if (feature_avx512)
8232 {
8233 /* AVX512 register description requires AVX register description. */
8234 if (!feature_avx)
8235 return 0;
8236
8237 xcr0 |= X86_XSTATE_AVX512;
8238 }
8239
8240 if (feature_pkeys)
8241 xcr0 |= X86_XSTATE_PKRU;
8242
8243 return xcr0;
8244 }
8245
8246 static int
8247 i386_validate_tdesc_p (i386_gdbarch_tdep *tdep,
8248 struct tdesc_arch_data *tdesc_data)
8249 {
8250 const struct target_desc *tdesc = tdep->tdesc;
8251 const struct tdesc_feature *feature_core;
8252
8253 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8254 *feature_avx512, *feature_pkeys, *feature_segments;
8255 int i, num_regs, valid_p;
8256
8257 if (! tdesc_has_registers (tdesc))
8258 return 0;
8259
8260 /* Get core registers. */
8261 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8262 if (feature_core == NULL)
8263 return 0;
8264
8265 /* Get SSE registers. */
8266 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8267
8268 /* Try AVX registers. */
8269 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8270
8271 /* Try MPX registers. */
8272 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8273
8274 /* Try AVX512 registers. */
8275 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8276
8277 /* Try segment base registers. */
8278 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8279
8280 /* Try PKEYS */
8281 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8282
8283 valid_p = 1;
8284
8285 /* The XCR0 bits. */
8286 if (feature_avx512)
8287 {
8288 /* AVX512 register description requires AVX register description. */
8289 if (!feature_avx)
8290 return 0;
8291
8292 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8293
8294 /* It may have been set by OSABI initialization function. */
8295 if (tdep->k0_regnum < 0)
8296 {
8297 tdep->k_register_names = i386_k_names;
8298 tdep->k0_regnum = I386_K0_REGNUM;
8299 }
8300
8301 for (i = 0; i < I387_NUM_K_REGS; i++)
8302 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8303 tdep->k0_regnum + i,
8304 i386_k_names[i]);
8305
8306 if (tdep->num_zmm_regs == 0)
8307 {
8308 tdep->zmmh_register_names = i386_zmmh_names;
8309 tdep->num_zmm_regs = 8;
8310 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8311 }
8312
8313 for (i = 0; i < tdep->num_zmm_regs; i++)
8314 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8315 tdep->zmm0h_regnum + i,
8316 tdep->zmmh_register_names[i]);
8317
8318 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8319 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8320 tdep->xmm16_regnum + i,
8321 tdep->xmm_avx512_register_names[i]);
8322
8323 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8324 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8325 tdep->ymm16h_regnum + i,
8326 tdep->ymm16h_register_names[i]);
8327 }
8328 if (feature_avx)
8329 {
8330 /* AVX register description requires SSE register description. */
8331 if (!feature_sse)
8332 return 0;
8333
8334 if (!feature_avx512)
8335 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8336
8337 /* It may have been set by OSABI initialization function. */
8338 if (tdep->num_ymm_regs == 0)
8339 {
8340 tdep->ymmh_register_names = i386_ymmh_names;
8341 tdep->num_ymm_regs = 8;
8342 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8343 }
8344
8345 for (i = 0; i < tdep->num_ymm_regs; i++)
8346 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8347 tdep->ymm0h_regnum + i,
8348 tdep->ymmh_register_names[i]);
8349 }
8350 else if (feature_sse)
8351 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8352 else
8353 {
8354 tdep->xcr0 = X86_XSTATE_X87_MASK;
8355 tdep->num_xmm_regs = 0;
8356 }
8357
8358 num_regs = tdep->num_core_regs;
8359 for (i = 0; i < num_regs; i++)
8360 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8361 tdep->register_names[i]);
8362
8363 if (feature_sse)
8364 {
8365 /* Need to include %mxcsr, so add one. */
8366 num_regs += tdep->num_xmm_regs + 1;
8367 for (; i < num_regs; i++)
8368 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8369 tdep->register_names[i]);
8370 }
8371
8372 if (feature_mpx)
8373 {
8374 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8375
8376 if (tdep->bnd0r_regnum < 0)
8377 {
8378 tdep->mpx_register_names = i386_mpx_names;
8379 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8380 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8381 }
8382
8383 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8384 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8385 I387_BND0R_REGNUM (tdep) + i,
8386 tdep->mpx_register_names[i]);
8387 }
8388
8389 if (feature_segments)
8390 {
8391 if (tdep->fsbase_regnum < 0)
8392 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8393 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8394 tdep->fsbase_regnum, "fs_base");
8395 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8396 tdep->fsbase_regnum + 1, "gs_base");
8397 }
8398
8399 if (feature_pkeys)
8400 {
8401 tdep->xcr0 |= X86_XSTATE_PKRU;
8402 if (tdep->pkru_regnum < 0)
8403 {
8404 tdep->pkeys_register_names = i386_pkeys_names;
8405 tdep->pkru_regnum = I386_PKRU_REGNUM;
8406 tdep->num_pkeys_regs = 1;
8407 }
8408
8409 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8410 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8411 I387_PKRU_REGNUM (tdep) + i,
8412 tdep->pkeys_register_names[i]);
8413 }
8414
8415 return valid_p;
8416 }
8417
8418 \f
8419
8420 /* Implement the type_align gdbarch function. */
8421
8422 static ULONGEST
8423 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8424 {
8425 type = check_typedef (type);
8426
8427 if (gdbarch_ptr_bit (gdbarch) == 32)
8428 {
8429 if ((type->code () == TYPE_CODE_INT
8430 || type->code () == TYPE_CODE_FLT)
8431 && type->length () > 4)
8432 return 4;
8433
8434 /* Handle x86's funny long double. */
8435 if (type->code () == TYPE_CODE_FLT
8436 && gdbarch_long_double_bit (gdbarch) == type->length () * 8)
8437 return 4;
8438 }
8439
8440 return 0;
8441 }
8442
8443 \f
8444 /* Note: This is called for both i386 and amd64. */
8445
8446 static struct gdbarch *
8447 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8448 {
8449 const struct target_desc *tdesc;
8450 int mm0_regnum;
8451 int ymm0_regnum;
8452 int bnd0_regnum;
8453 int num_bnd_cooked;
8454
8455 x86_xsave_layout xsave_layout = target_fetch_x86_xsave_layout ();
8456
8457 /* If the target did not provide an XSAVE layout but the target
8458 description includes registers from the XSAVE extended region,
8459 use a fallback XSAVE layout. Specifically, this fallback layout
8460 is used when writing out a local core dump for a remote
8461 target. */
8462 if (xsave_layout.sizeof_xsave == 0)
8463 xsave_layout
8464 = i387_fallback_xsave_layout (i386_xcr0_from_tdesc (info.target_desc));
8465
8466 /* If there is already a candidate, use it. */
8467 for (arches = gdbarch_list_lookup_by_info (arches, &info);
8468 arches != NULL;
8469 arches = gdbarch_list_lookup_by_info (arches->next, &info))
8470 {
8471 /* Check that the XSAVE layout of ARCHES matches the layout for
8472 the current target. */
8473 i386_gdbarch_tdep *other_tdep
8474 = gdbarch_tdep<i386_gdbarch_tdep> (arches->gdbarch);
8475
8476 if (other_tdep->xsave_layout == xsave_layout)
8477 return arches->gdbarch;
8478 }
8479
8480 /* Allocate space for the new architecture. Assume i386 for now. */
8481 gdbarch *gdbarch
8482 = gdbarch_alloc (&info, gdbarch_tdep_up (new i386_gdbarch_tdep));
8483 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
8484
8485 /* General-purpose registers. */
8486 tdep->gregset_reg_offset = NULL;
8487 tdep->gregset_num_regs = I386_NUM_GREGS;
8488 tdep->sizeof_gregset = 0;
8489
8490 /* Floating-point registers. */
8491 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8492 tdep->fpregset = &i386_fpregset;
8493
8494 /* The default settings include the FPU registers, the MMX registers
8495 and the SSE registers. This can be overridden for a specific ABI
8496 by adjusting the members `st0_regnum', `mm0_regnum' and
8497 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8498 will show up in the output of "info all-registers". */
8499
8500 tdep->st0_regnum = I386_ST0_REGNUM;
8501
8502 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8503 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8504
8505 tdep->jb_pc_offset = -1;
8506 tdep->struct_return = pcc_struct_return;
8507 tdep->sigtramp_start = 0;
8508 tdep->sigtramp_end = 0;
8509 tdep->sigtramp_p = i386_sigtramp_p;
8510 tdep->sigcontext_addr = NULL;
8511 tdep->sc_reg_offset = NULL;
8512 tdep->sc_pc_offset = -1;
8513 tdep->sc_sp_offset = -1;
8514
8515 tdep->xsave_xcr0_offset = -1;
8516
8517 tdep->record_regmap = i386_record_regmap;
8518
8519 set_gdbarch_type_align (gdbarch, i386_type_align);
8520
8521 /* The format used for `long double' on almost all i386 targets is
8522 the i387 extended floating-point format. In fact, of all targets
8523 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8524 on having a `long double' that's not `long' at all. */
8525 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8526
8527 /* Although the i387 extended floating-point has only 80 significant
8528 bits, a `long double' actually takes up 96, probably to enforce
8529 alignment. */
8530 set_gdbarch_long_double_bit (gdbarch, 96);
8531
8532 /* Support of bfloat16 format. */
8533 set_gdbarch_bfloat16_format (gdbarch, floatformats_bfloat16);
8534
8535 /* Support for floating-point data type variants. */
8536 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8537
8538 /* Register numbers of various important registers. */
8539 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8540 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8541 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8542 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8543
8544 /* NOTE: kettenis/20040418: GCC does have two possible register
8545 numbering schemes on the i386: dbx and SVR4. These schemes
8546 differ in how they number %ebp, %esp, %eflags, and the
8547 floating-point registers, and are implemented by the arrays
8548 dbx_register_map[] and svr4_dbx_register_map in
8549 gcc/config/i386.c. GCC also defines a third numbering scheme in
8550 gcc/config/i386.c, which it designates as the "default" register
8551 map used in 64bit mode. This last register numbering scheme is
8552 implemented in dbx64_register_map, and is used for AMD64; see
8553 amd64-tdep.c.
8554
8555 Currently, each GCC i386 target always uses the same register
8556 numbering scheme across all its supported debugging formats
8557 i.e. SDB (COFF), stabs and DWARF 2. This is because
8558 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8559 DBX_REGISTER_NUMBER macro which is defined by each target's
8560 respective config header in a manner independent of the requested
8561 output debugging format.
8562
8563 This does not match the arrangement below, which presumes that
8564 the SDB and stabs numbering schemes differ from the DWARF and
8565 DWARF 2 ones. The reason for this arrangement is that it is
8566 likely to get the numbering scheme for the target's
8567 default/native debug format right. For targets where GCC is the
8568 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8569 targets where the native toolchain uses a different numbering
8570 scheme for a particular debug format (stabs-in-ELF on Solaris)
8571 the defaults below will have to be overridden, like
8572 i386_elf_init_abi() does. */
8573
8574 /* Use the dbx register numbering scheme for stabs and COFF. */
8575 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8576 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8577
8578 /* Use the SVR4 register numbering scheme for DWARF 2. */
8579 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8580
8581 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8582 be in use on any of the supported i386 targets. */
8583
8584 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8585
8586 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8587
8588 /* Call dummy code. */
8589 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8590 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8591 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8592 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8593
8594 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8595 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8596 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8597
8598 set_gdbarch_return_value_as_value (gdbarch, i386_return_value);
8599
8600 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8601
8602 /* Stack grows downward. */
8603 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8604
8605 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8606 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8607
8608 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8609 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8610
8611 set_gdbarch_frame_args_skip (gdbarch, 8);
8612
8613 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8614
8615 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8616
8617 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8618
8619 /* Add the i386 register groups. */
8620 i386_add_reggroups (gdbarch);
8621 tdep->register_reggroup_p = i386_register_reggroup_p;
8622
8623 /* Helper for function argument information. */
8624 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8625
8626 /* Hook the function epilogue frame unwinder. This unwinder is
8627 appended to the list first, so that it supersedes the DWARF
8628 unwinder in function epilogues (where the DWARF unwinder
8629 currently fails). */
8630 if (info.bfd_arch_info->bits_per_word == 32)
8631 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_override_frame_unwind);
8632
8633 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8634 to the list before the prologue-based unwinders, so that DWARF
8635 CFI info will be used if it is available. */
8636 dwarf2_append_unwinders (gdbarch);
8637
8638 if (info.bfd_arch_info->bits_per_word == 32)
8639 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8640
8641 frame_base_set_default (gdbarch, &i386_frame_base);
8642
8643 /* Pseudo registers may be changed by amd64_init_abi. */
8644 set_gdbarch_pseudo_register_read_value (gdbarch,
8645 i386_pseudo_register_read_value);
8646 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8647 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8648 i386_ax_pseudo_register_collect);
8649
8650 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8651 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8652
8653 /* Override the normal target description method to make the AVX
8654 upper halves anonymous. */
8655 set_gdbarch_register_name (gdbarch, i386_register_name);
8656
8657 /* Even though the default ABI only includes general-purpose registers,
8658 floating-point registers and the SSE registers, we have to leave a
8659 gap for the upper AVX, MPX and AVX512 registers. */
8660 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
8661
8662 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8663
8664 /* Get the x86 target description from INFO. */
8665 tdesc = info.target_desc;
8666 if (! tdesc_has_registers (tdesc))
8667 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
8668 tdep->tdesc = tdesc;
8669
8670 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8671 tdep->register_names = i386_register_names;
8672
8673 /* No upper YMM registers. */
8674 tdep->ymmh_register_names = NULL;
8675 tdep->ymm0h_regnum = -1;
8676
8677 /* No upper ZMM registers. */
8678 tdep->zmmh_register_names = NULL;
8679 tdep->zmm0h_regnum = -1;
8680
8681 /* No high XMM registers. */
8682 tdep->xmm_avx512_register_names = NULL;
8683 tdep->xmm16_regnum = -1;
8684
8685 /* No upper YMM16-31 registers. */
8686 tdep->ymm16h_register_names = NULL;
8687 tdep->ymm16h_regnum = -1;
8688
8689 tdep->num_byte_regs = 8;
8690 tdep->num_word_regs = 8;
8691 tdep->num_dword_regs = 0;
8692 tdep->num_mmx_regs = 8;
8693 tdep->num_ymm_regs = 0;
8694
8695 /* No MPX registers. */
8696 tdep->bnd0r_regnum = -1;
8697 tdep->bndcfgu_regnum = -1;
8698
8699 /* No AVX512 registers. */
8700 tdep->k0_regnum = -1;
8701 tdep->num_zmm_regs = 0;
8702 tdep->num_ymm_avx512_regs = 0;
8703 tdep->num_xmm_avx512_regs = 0;
8704
8705 /* No PKEYS registers */
8706 tdep->pkru_regnum = -1;
8707 tdep->num_pkeys_regs = 0;
8708
8709 /* No segment base registers. */
8710 tdep->fsbase_regnum = -1;
8711
8712 tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();
8713
8714 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8715
8716 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8717
8718 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8719 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8720 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8721
8722 /* Hook in ABI-specific overrides, if they have been registered.
8723 Note: If INFO specifies a 64 bit arch, this is where we turn
8724 a 32-bit i386 into a 64-bit amd64. */
8725 info.tdesc_data = tdesc_data.get ();
8726 gdbarch_init_osabi (info, gdbarch);
8727
8728 if (!i386_validate_tdesc_p (tdep, tdesc_data.get ()))
8729 {
8730 gdbarch_free (gdbarch);
8731 return NULL;
8732 }
8733 tdep->xsave_layout = xsave_layout;
8734
8735 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8736
8737 /* Wire in pseudo registers. Number of pseudo registers may be
8738 changed. */
8739 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8740 + tdep->num_word_regs
8741 + tdep->num_dword_regs
8742 + tdep->num_mmx_regs
8743 + tdep->num_ymm_regs
8744 + num_bnd_cooked
8745 + tdep->num_ymm_avx512_regs
8746 + tdep->num_zmm_regs));
8747
8748 /* Target description may be changed. */
8749 tdesc = tdep->tdesc;
8750
8751 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
8752
8753 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8754 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8755
8756 /* Make %al the first pseudo-register. */
8757 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8758 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8759
8760 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8761 if (tdep->num_dword_regs)
8762 {
8763 /* Support dword pseudo-register if it hasn't been disabled. */
8764 tdep->eax_regnum = ymm0_regnum;
8765 ymm0_regnum += tdep->num_dword_regs;
8766 }
8767 else
8768 tdep->eax_regnum = -1;
8769
8770 mm0_regnum = ymm0_regnum;
8771 if (tdep->num_ymm_regs)
8772 {
8773 /* Support YMM pseudo-register if it is available. */
8774 tdep->ymm0_regnum = ymm0_regnum;
8775 mm0_regnum += tdep->num_ymm_regs;
8776 }
8777 else
8778 tdep->ymm0_regnum = -1;
8779
8780 if (tdep->num_ymm_avx512_regs)
8781 {
8782 /* Support YMM16-31 pseudo registers if available. */
8783 tdep->ymm16_regnum = mm0_regnum;
8784 mm0_regnum += tdep->num_ymm_avx512_regs;
8785 }
8786 else
8787 tdep->ymm16_regnum = -1;
8788
8789 if (tdep->num_zmm_regs)
8790 {
8791 /* Support ZMM pseudo-register if it is available. */
8792 tdep->zmm0_regnum = mm0_regnum;
8793 mm0_regnum += tdep->num_zmm_regs;
8794 }
8795 else
8796 tdep->zmm0_regnum = -1;
8797
8798 bnd0_regnum = mm0_regnum;
8799 if (tdep->num_mmx_regs != 0)
8800 {
8801 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8802 tdep->mm0_regnum = mm0_regnum;
8803 bnd0_regnum += tdep->num_mmx_regs;
8804 }
8805 else
8806 tdep->mm0_regnum = -1;
8807
8808 if (tdep->bnd0r_regnum > 0)
8809 tdep->bnd0_regnum = bnd0_regnum;
8810 else
8811 tdep-> bnd0_regnum = -1;
8812
8813 /* Hook in the legacy prologue-based unwinders last (fallback). */
8814 if (info.bfd_arch_info->bits_per_word == 32)
8815 {
8816 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8817 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8818 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8819 }
8820
8821 /* If we have a register mapping, enable the generic core file
8822 support, unless it has already been enabled. */
8823 if (tdep->gregset_reg_offset
8824 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8825 set_gdbarch_iterate_over_regset_sections
8826 (gdbarch, i386_iterate_over_regset_sections);
8827
8828 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8829 i386_fast_tracepoint_valid_at);
8830
8831 return gdbarch;
8832 }
8833
8834 \f
8835
8836 /* Return the target description for a specified XSAVE feature mask. */
8837
8838 const struct target_desc *
8839 i386_target_description (uint64_t xcr0, bool segments)
8840 {
8841 static target_desc *i386_tdescs \
8842 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8843 target_desc **tdesc;
8844
8845 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8846 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8847 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8848 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8849 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8850 [segments ? 1 : 0];
8851
8852 if (*tdesc == NULL)
8853 *tdesc = i386_create_target_description (xcr0, false, segments);
8854
8855 return *tdesc;
8856 }
8857
8858 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8859
8860 /* Find the bound directory base address. */
8861
8862 static unsigned long
8863 i386_mpx_bd_base (void)
8864 {
8865 ULONGEST ret;
8866 enum register_status regstatus;
8867
8868 regcache *rcache = get_thread_regcache (inferior_thread ());
8869 gdbarch *arch = rcache->arch ();
8870 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
8871
8872 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8873
8874 if (regstatus != REG_VALID)
8875 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8876
8877 return ret & MPX_BASE_MASK;
8878 }
8879
8880 int
8881 i386_mpx_enabled (void)
8882 {
8883 gdbarch *arch = get_current_arch ();
8884 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
8885 const struct target_desc *tdesc = tdep->tdesc;
8886
8887 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8888 }
8889
8890 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8891 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8892 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8893 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8894
8895 /* Find the bound table entry given the pointer location and the base
8896 address of the table. */
8897
8898 static CORE_ADDR
8899 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8900 {
8901 CORE_ADDR offset1;
8902 CORE_ADDR offset2;
8903 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8904 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8905 CORE_ADDR bd_entry_addr;
8906 CORE_ADDR bt_addr;
8907 CORE_ADDR bd_entry;
8908 struct gdbarch *gdbarch = get_current_arch ();
8909 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8910
8911
8912 if (gdbarch_ptr_bit (gdbarch) == 64)
8913 {
8914 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8915 bd_ptr_r_shift = 20;
8916 bd_ptr_l_shift = 3;
8917 bt_select_r_shift = 3;
8918 bt_select_l_shift = 5;
8919 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8920
8921 if ( sizeof (CORE_ADDR) == 4)
8922 error (_("bound table examination not supported\
8923 for 64-bit process with 32-bit GDB"));
8924 }
8925 else
8926 {
8927 mpx_bd_mask = MPX_BD_MASK_32;
8928 bd_ptr_r_shift = 12;
8929 bd_ptr_l_shift = 2;
8930 bt_select_r_shift = 2;
8931 bt_select_l_shift = 4;
8932 bt_mask = MPX_BT_MASK_32;
8933 }
8934
8935 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8936 bd_entry_addr = bd_base + offset1;
8937 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8938
8939 if ((bd_entry & 0x1) == 0)
8940 error (_("Invalid bounds directory entry at %s."),
8941 paddress (get_current_arch (), bd_entry_addr));
8942
8943 /* Clearing status bit. */
8944 bd_entry--;
8945 bt_addr = bd_entry & ~bt_select_r_shift;
8946 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8947
8948 return bt_addr + offset2;
8949 }
8950
8951 /* Print routine for the mpx bounds. */
8952
8953 static void
8954 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8955 {
8956 struct ui_out *uiout = current_uiout;
8957 LONGEST size;
8958 struct gdbarch *gdbarch = get_current_arch ();
8959 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8960 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8961
8962 if (bounds_in_map == 1)
8963 {
8964 uiout->text ("Null bounds on map:");
8965 uiout->text (" pointer value = ");
8966 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8967 uiout->text (".");
8968 uiout->text ("\n");
8969 }
8970 else
8971 {
8972 uiout->text ("{lbound = ");
8973 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8974 uiout->text (", ubound = ");
8975
8976 /* The upper bound is stored in 1's complement. */
8977 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8978 uiout->text ("}: pointer value = ");
8979 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8980
8981 if (gdbarch_ptr_bit (gdbarch) == 64)
8982 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8983 else
8984 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8985
8986 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8987 -1 represents in this sense full memory access, and there is no need
8988 one to the size. */
8989
8990 size = (size > -1 ? size + 1 : size);
8991 uiout->text (", size = ");
8992 uiout->field_string ("size", plongest (size));
8993
8994 uiout->text (", metadata = ");
8995 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8996 uiout->text ("\n");
8997 }
8998 }
8999
9000 /* Implement the command "show mpx bound". */
9001
9002 static void
9003 i386_mpx_info_bounds (const char *args, int from_tty)
9004 {
9005 CORE_ADDR bd_base = 0;
9006 CORE_ADDR addr;
9007 CORE_ADDR bt_entry_addr = 0;
9008 CORE_ADDR bt_entry[4];
9009 int i;
9010 struct gdbarch *gdbarch = get_current_arch ();
9011 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
9012
9013 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
9014 || !i386_mpx_enabled ())
9015 {
9016 gdb_printf (_("Intel Memory Protection Extensions not "
9017 "supported on this target.\n"));
9018 return;
9019 }
9020
9021 if (args == NULL)
9022 {
9023 gdb_printf (_("Address of pointer variable expected.\n"));
9024 return;
9025 }
9026
9027 addr = parse_and_eval_address (args);
9028
9029 bd_base = i386_mpx_bd_base ();
9030 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9031
9032 memset (bt_entry, 0, sizeof (bt_entry));
9033
9034 for (i = 0; i < 4; i++)
9035 bt_entry[i] = read_memory_typed_address (bt_entry_addr
9036 + i * data_ptr_type->length (),
9037 data_ptr_type);
9038
9039 i386_mpx_print_bounds (bt_entry);
9040 }
9041
9042 /* Implement the command "set mpx bound". */
9043
9044 static void
9045 i386_mpx_set_bounds (const char *args, int from_tty)
9046 {
9047 CORE_ADDR bd_base = 0;
9048 CORE_ADDR addr, lower, upper;
9049 CORE_ADDR bt_entry_addr = 0;
9050 CORE_ADDR bt_entry[2];
9051 const char *input = args;
9052 int i;
9053 struct gdbarch *gdbarch = get_current_arch ();
9054 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9055 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
9056
9057 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
9058 || !i386_mpx_enabled ())
9059 error (_("Intel Memory Protection Extensions not supported\
9060 on this target."));
9061
9062 if (args == NULL)
9063 error (_("Pointer value expected."));
9064
9065 addr = value_as_address (parse_to_comma_and_eval (&input));
9066
9067 if (input[0] == ',')
9068 ++input;
9069 if (input[0] == '\0')
9070 error (_("wrong number of arguments: missing lower and upper bound."));
9071 lower = value_as_address (parse_to_comma_and_eval (&input));
9072
9073 if (input[0] == ',')
9074 ++input;
9075 if (input[0] == '\0')
9076 error (_("Wrong number of arguments; Missing upper bound."));
9077 upper = value_as_address (parse_to_comma_and_eval (&input));
9078
9079 bd_base = i386_mpx_bd_base ();
9080 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9081 for (i = 0; i < 2; i++)
9082 bt_entry[i] = read_memory_typed_address (bt_entry_addr
9083 + i * data_ptr_type->length (),
9084 data_ptr_type);
9085 bt_entry[0] = (uint64_t) lower;
9086 bt_entry[1] = ~(uint64_t) upper;
9087
9088 for (i = 0; i < 2; i++)
9089 write_memory_unsigned_integer (bt_entry_addr
9090 + i * data_ptr_type->length (),
9091 data_ptr_type->length (), byte_order,
9092 bt_entry[i]);
9093 }
9094
9095 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9096
9097 void _initialize_i386_tdep ();
9098 void
9099 _initialize_i386_tdep ()
9100 {
9101 gdbarch_register (bfd_arch_i386, i386_gdbarch_init);
9102
9103 /* Add the variable that controls the disassembly flavor. */
9104 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9105 &disassembly_flavor, _("\
9106 Set the disassembly flavor."), _("\
9107 Show the disassembly flavor."), _("\
9108 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9109 NULL,
9110 NULL, /* FIXME: i18n: */
9111 &setlist, &showlist);
9112
9113 /* Add the variable that controls the convention for returning
9114 structs. */
9115 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9116 &struct_convention, _("\
9117 Set the convention for returning small structs."), _("\
9118 Show the convention for returning small structs."), _("\
9119 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9120 is \"default\"."),
9121 NULL,
9122 NULL, /* FIXME: i18n: */
9123 &setlist, &showlist);
9124
9125 /* Add "mpx" prefix for the set and show commands. */
9126
9127 add_setshow_prefix_cmd
9128 ("mpx", class_support,
9129 _("Set Intel Memory Protection Extensions specific variables."),
9130 _("Show Intel Memory Protection Extensions specific variables."),
9131 &mpx_set_cmdlist, &mpx_show_cmdlist, &setlist, &showlist);
9132
9133 /* Add "bound" command for the show mpx commands list. */
9134
9135 cmd_list_element *c = add_cmd ("bound", no_class, i386_mpx_info_bounds,
9136 "Show the memory bounds for a given array/pointer storage\
9137 in the bound table.",
9138 &mpx_show_cmdlist);
9139 deprecate_cmd (c, nullptr);
9140
9141 /* Add "bound" command for the set mpx commands list. */
9142
9143 c = add_cmd ("bound", no_class, i386_mpx_set_bounds,
9144 "Set the memory bounds for a given array/pointer storage\
9145 in the bound table.",
9146 &mpx_set_cmdlist);
9147 deprecate_cmd (c, nullptr);
9148
9149 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9150 i386_svr4_init_abi);
9151
9152 /* Initialize the i386-specific register groups. */
9153 i386_init_reggroups ();
9154
9155 /* Tell remote stub that we support XML target description. */
9156 register_remote_support_xml ("i386");
9157 }