]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/i386-tdep.c
remove gdb_string.h
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "value.h"
43 #include "dis-asm.h"
44 #include "disasm.h"
45 #include "remote.h"
46 #include "exceptions.h"
47 #include "gdb_assert.h"
48 #include <string.h>
49
50 #include "i386-tdep.h"
51 #include "i387-tdep.h"
52 #include "i386-xstate.h"
53
54 #include "record.h"
55 #include "record-full.h"
56 #include <stdint.h>
57
58 #include "features/i386/i386.c"
59 #include "features/i386/i386-avx.c"
60 #include "features/i386/i386-mmx.c"
61
62 #include "ax.h"
63 #include "ax-gdb.h"
64
65 #include "stap-probe.h"
66 #include "user-regs.h"
67 #include "cli/cli-utils.h"
68 #include "expression.h"
69 #include "parser-defs.h"
70 #include <ctype.h>
71
72 /* Register names. */
73
74 static const char *i386_register_names[] =
75 {
76 "eax", "ecx", "edx", "ebx",
77 "esp", "ebp", "esi", "edi",
78 "eip", "eflags", "cs", "ss",
79 "ds", "es", "fs", "gs",
80 "st0", "st1", "st2", "st3",
81 "st4", "st5", "st6", "st7",
82 "fctrl", "fstat", "ftag", "fiseg",
83 "fioff", "foseg", "fooff", "fop",
84 "xmm0", "xmm1", "xmm2", "xmm3",
85 "xmm4", "xmm5", "xmm6", "xmm7",
86 "mxcsr"
87 };
88
89 static const char *i386_ymm_names[] =
90 {
91 "ymm0", "ymm1", "ymm2", "ymm3",
92 "ymm4", "ymm5", "ymm6", "ymm7",
93 };
94
95 static const char *i386_ymmh_names[] =
96 {
97 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
98 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
99 };
100
101 /* Register names for MMX pseudo-registers. */
102
103 static const char *i386_mmx_names[] =
104 {
105 "mm0", "mm1", "mm2", "mm3",
106 "mm4", "mm5", "mm6", "mm7"
107 };
108
109 /* Register names for byte pseudo-registers. */
110
111 static const char *i386_byte_names[] =
112 {
113 "al", "cl", "dl", "bl",
114 "ah", "ch", "dh", "bh"
115 };
116
117 /* Register names for word pseudo-registers. */
118
119 static const char *i386_word_names[] =
120 {
121 "ax", "cx", "dx", "bx",
122 "", "bp", "si", "di"
123 };
124
125 /* MMX register? */
126
127 static int
128 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
129 {
130 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
131 int mm0_regnum = tdep->mm0_regnum;
132
133 if (mm0_regnum < 0)
134 return 0;
135
136 regnum -= mm0_regnum;
137 return regnum >= 0 && regnum < tdep->num_mmx_regs;
138 }
139
140 /* Byte register? */
141
142 int
143 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
144 {
145 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
146
147 regnum -= tdep->al_regnum;
148 return regnum >= 0 && regnum < tdep->num_byte_regs;
149 }
150
151 /* Word register? */
152
153 int
154 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
155 {
156 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
157
158 regnum -= tdep->ax_regnum;
159 return regnum >= 0 && regnum < tdep->num_word_regs;
160 }
161
162 /* Dword register? */
163
164 int
165 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
166 {
167 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
168 int eax_regnum = tdep->eax_regnum;
169
170 if (eax_regnum < 0)
171 return 0;
172
173 regnum -= eax_regnum;
174 return regnum >= 0 && regnum < tdep->num_dword_regs;
175 }
176
177 static int
178 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181 int ymm0h_regnum = tdep->ymm0h_regnum;
182
183 if (ymm0h_regnum < 0)
184 return 0;
185
186 regnum -= ymm0h_regnum;
187 return regnum >= 0 && regnum < tdep->num_ymm_regs;
188 }
189
190 /* AVX register? */
191
192 int
193 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
194 {
195 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
196 int ymm0_regnum = tdep->ymm0_regnum;
197
198 if (ymm0_regnum < 0)
199 return 0;
200
201 regnum -= ymm0_regnum;
202 return regnum >= 0 && regnum < tdep->num_ymm_regs;
203 }
204
205 /* SSE register? */
206
207 int
208 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
209 {
210 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
211 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
212
213 if (num_xmm_regs == 0)
214 return 0;
215
216 regnum -= I387_XMM0_REGNUM (tdep);
217 return regnum >= 0 && regnum < num_xmm_regs;
218 }
219
220 static int
221 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
222 {
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224
225 if (I387_NUM_XMM_REGS (tdep) == 0)
226 return 0;
227
228 return (regnum == I387_MXCSR_REGNUM (tdep));
229 }
230
231 /* FP register? */
232
233 int
234 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
235 {
236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
237
238 if (I387_ST0_REGNUM (tdep) < 0)
239 return 0;
240
241 return (I387_ST0_REGNUM (tdep) <= regnum
242 && regnum < I387_FCTRL_REGNUM (tdep));
243 }
244
245 int
246 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
247 {
248 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
249
250 if (I387_ST0_REGNUM (tdep) < 0)
251 return 0;
252
253 return (I387_FCTRL_REGNUM (tdep) <= regnum
254 && regnum < I387_XMM0_REGNUM (tdep));
255 }
256
257 /* Return the name of register REGNUM, or the empty string if it is
258 an anonymous register. */
259
260 static const char *
261 i386_register_name (struct gdbarch *gdbarch, int regnum)
262 {
263 /* Hide the upper YMM registers. */
264 if (i386_ymmh_regnum_p (gdbarch, regnum))
265 return "";
266
267 return tdesc_register_name (gdbarch, regnum);
268 }
269
270 /* Return the name of register REGNUM. */
271
272 const char *
273 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
274 {
275 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
276 if (i386_mmx_regnum_p (gdbarch, regnum))
277 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
278 else if (i386_ymm_regnum_p (gdbarch, regnum))
279 return i386_ymm_names[regnum - tdep->ymm0_regnum];
280 else if (i386_byte_regnum_p (gdbarch, regnum))
281 return i386_byte_names[regnum - tdep->al_regnum];
282 else if (i386_word_regnum_p (gdbarch, regnum))
283 return i386_word_names[regnum - tdep->ax_regnum];
284
285 internal_error (__FILE__, __LINE__, _("invalid regnum"));
286 }
287
288 /* Convert a dbx register number REG to the appropriate register
289 number used by GDB. */
290
291 static int
292 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
293 {
294 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
295
296 /* This implements what GCC calls the "default" register map
297 (dbx_register_map[]). */
298
299 if (reg >= 0 && reg <= 7)
300 {
301 /* General-purpose registers. The debug info calls %ebp
302 register 4, and %esp register 5. */
303 if (reg == 4)
304 return 5;
305 else if (reg == 5)
306 return 4;
307 else return reg;
308 }
309 else if (reg >= 12 && reg <= 19)
310 {
311 /* Floating-point registers. */
312 return reg - 12 + I387_ST0_REGNUM (tdep);
313 }
314 else if (reg >= 21 && reg <= 28)
315 {
316 /* SSE registers. */
317 int ymm0_regnum = tdep->ymm0_regnum;
318
319 if (ymm0_regnum >= 0
320 && i386_xmm_regnum_p (gdbarch, reg))
321 return reg - 21 + ymm0_regnum;
322 else
323 return reg - 21 + I387_XMM0_REGNUM (tdep);
324 }
325 else if (reg >= 29 && reg <= 36)
326 {
327 /* MMX registers. */
328 return reg - 29 + I387_MM0_REGNUM (tdep);
329 }
330
331 /* This will hopefully provoke a warning. */
332 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
333 }
334
335 /* Convert SVR4 register number REG to the appropriate register number
336 used by GDB. */
337
338 static int
339 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
340 {
341 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
342
343 /* This implements the GCC register map that tries to be compatible
344 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
345
346 /* The SVR4 register numbering includes %eip and %eflags, and
347 numbers the floating point registers differently. */
348 if (reg >= 0 && reg <= 9)
349 {
350 /* General-purpose registers. */
351 return reg;
352 }
353 else if (reg >= 11 && reg <= 18)
354 {
355 /* Floating-point registers. */
356 return reg - 11 + I387_ST0_REGNUM (tdep);
357 }
358 else if (reg >= 21 && reg <= 36)
359 {
360 /* The SSE and MMX registers have the same numbers as with dbx. */
361 return i386_dbx_reg_to_regnum (gdbarch, reg);
362 }
363
364 switch (reg)
365 {
366 case 37: return I387_FCTRL_REGNUM (tdep);
367 case 38: return I387_FSTAT_REGNUM (tdep);
368 case 39: return I387_MXCSR_REGNUM (tdep);
369 case 40: return I386_ES_REGNUM;
370 case 41: return I386_CS_REGNUM;
371 case 42: return I386_SS_REGNUM;
372 case 43: return I386_DS_REGNUM;
373 case 44: return I386_FS_REGNUM;
374 case 45: return I386_GS_REGNUM;
375 }
376
377 /* This will hopefully provoke a warning. */
378 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
379 }
380
381 \f
382
383 /* This is the variable that is set with "set disassembly-flavor", and
384 its legitimate values. */
385 static const char att_flavor[] = "att";
386 static const char intel_flavor[] = "intel";
387 static const char *const valid_flavors[] =
388 {
389 att_flavor,
390 intel_flavor,
391 NULL
392 };
393 static const char *disassembly_flavor = att_flavor;
394 \f
395
396 /* Use the program counter to determine the contents and size of a
397 breakpoint instruction. Return a pointer to a string of bytes that
398 encode a breakpoint instruction, store the length of the string in
399 *LEN and optionally adjust *PC to point to the correct memory
400 location for inserting the breakpoint.
401
402 On the i386 we have a single breakpoint that fits in a single byte
403 and can be inserted anywhere.
404
405 This function is 64-bit safe. */
406
407 static const gdb_byte *
408 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
409 {
410 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
411
412 *len = sizeof (break_insn);
413 return break_insn;
414 }
415 \f
416 /* Displaced instruction handling. */
417
418 /* Skip the legacy instruction prefixes in INSN.
419 Not all prefixes are valid for any particular insn
420 but we needn't care, the insn will fault if it's invalid.
421 The result is a pointer to the first opcode byte,
422 or NULL if we run off the end of the buffer. */
423
424 static gdb_byte *
425 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
426 {
427 gdb_byte *end = insn + max_len;
428
429 while (insn < end)
430 {
431 switch (*insn)
432 {
433 case DATA_PREFIX_OPCODE:
434 case ADDR_PREFIX_OPCODE:
435 case CS_PREFIX_OPCODE:
436 case DS_PREFIX_OPCODE:
437 case ES_PREFIX_OPCODE:
438 case FS_PREFIX_OPCODE:
439 case GS_PREFIX_OPCODE:
440 case SS_PREFIX_OPCODE:
441 case LOCK_PREFIX_OPCODE:
442 case REPE_PREFIX_OPCODE:
443 case REPNE_PREFIX_OPCODE:
444 ++insn;
445 continue;
446 default:
447 return insn;
448 }
449 }
450
451 return NULL;
452 }
453
454 static int
455 i386_absolute_jmp_p (const gdb_byte *insn)
456 {
457 /* jmp far (absolute address in operand). */
458 if (insn[0] == 0xea)
459 return 1;
460
461 if (insn[0] == 0xff)
462 {
463 /* jump near, absolute indirect (/4). */
464 if ((insn[1] & 0x38) == 0x20)
465 return 1;
466
467 /* jump far, absolute indirect (/5). */
468 if ((insn[1] & 0x38) == 0x28)
469 return 1;
470 }
471
472 return 0;
473 }
474
475 static int
476 i386_absolute_call_p (const gdb_byte *insn)
477 {
478 /* call far, absolute. */
479 if (insn[0] == 0x9a)
480 return 1;
481
482 if (insn[0] == 0xff)
483 {
484 /* Call near, absolute indirect (/2). */
485 if ((insn[1] & 0x38) == 0x10)
486 return 1;
487
488 /* Call far, absolute indirect (/3). */
489 if ((insn[1] & 0x38) == 0x18)
490 return 1;
491 }
492
493 return 0;
494 }
495
496 static int
497 i386_ret_p (const gdb_byte *insn)
498 {
499 switch (insn[0])
500 {
501 case 0xc2: /* ret near, pop N bytes. */
502 case 0xc3: /* ret near */
503 case 0xca: /* ret far, pop N bytes. */
504 case 0xcb: /* ret far */
505 case 0xcf: /* iret */
506 return 1;
507
508 default:
509 return 0;
510 }
511 }
512
513 static int
514 i386_call_p (const gdb_byte *insn)
515 {
516 if (i386_absolute_call_p (insn))
517 return 1;
518
519 /* call near, relative. */
520 if (insn[0] == 0xe8)
521 return 1;
522
523 return 0;
524 }
525
526 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
527 length in bytes. Otherwise, return zero. */
528
529 static int
530 i386_syscall_p (const gdb_byte *insn, int *lengthp)
531 {
532 /* Is it 'int $0x80'? */
533 if ((insn[0] == 0xcd && insn[1] == 0x80)
534 /* Or is it 'sysenter'? */
535 || (insn[0] == 0x0f && insn[1] == 0x34)
536 /* Or is it 'syscall'? */
537 || (insn[0] == 0x0f && insn[1] == 0x05))
538 {
539 *lengthp = 2;
540 return 1;
541 }
542
543 return 0;
544 }
545
546 /* Some kernels may run one past a syscall insn, so we have to cope.
547 Otherwise this is just simple_displaced_step_copy_insn. */
548
549 struct displaced_step_closure *
550 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
551 CORE_ADDR from, CORE_ADDR to,
552 struct regcache *regs)
553 {
554 size_t len = gdbarch_max_insn_length (gdbarch);
555 gdb_byte *buf = xmalloc (len);
556
557 read_memory (from, buf, len);
558
559 /* GDB may get control back after the insn after the syscall.
560 Presumably this is a kernel bug.
561 If this is a syscall, make sure there's a nop afterwards. */
562 {
563 int syscall_length;
564 gdb_byte *insn;
565
566 insn = i386_skip_prefixes (buf, len);
567 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
568 insn[syscall_length] = NOP_OPCODE;
569 }
570
571 write_memory (to, buf, len);
572
573 if (debug_displaced)
574 {
575 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
576 paddress (gdbarch, from), paddress (gdbarch, to));
577 displaced_step_dump_bytes (gdb_stdlog, buf, len);
578 }
579
580 return (struct displaced_step_closure *) buf;
581 }
582
583 /* Fix up the state of registers and memory after having single-stepped
584 a displaced instruction. */
585
586 void
587 i386_displaced_step_fixup (struct gdbarch *gdbarch,
588 struct displaced_step_closure *closure,
589 CORE_ADDR from, CORE_ADDR to,
590 struct regcache *regs)
591 {
592 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
593
594 /* The offset we applied to the instruction's address.
595 This could well be negative (when viewed as a signed 32-bit
596 value), but ULONGEST won't reflect that, so take care when
597 applying it. */
598 ULONGEST insn_offset = to - from;
599
600 /* Since we use simple_displaced_step_copy_insn, our closure is a
601 copy of the instruction. */
602 gdb_byte *insn = (gdb_byte *) closure;
603 /* The start of the insn, needed in case we see some prefixes. */
604 gdb_byte *insn_start = insn;
605
606 if (debug_displaced)
607 fprintf_unfiltered (gdb_stdlog,
608 "displaced: fixup (%s, %s), "
609 "insn = 0x%02x 0x%02x ...\n",
610 paddress (gdbarch, from), paddress (gdbarch, to),
611 insn[0], insn[1]);
612
613 /* The list of issues to contend with here is taken from
614 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
615 Yay for Free Software! */
616
617 /* Relocate the %eip, if necessary. */
618
619 /* The instruction recognizers we use assume any leading prefixes
620 have been skipped. */
621 {
622 /* This is the size of the buffer in closure. */
623 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
624 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
625 /* If there are too many prefixes, just ignore the insn.
626 It will fault when run. */
627 if (opcode != NULL)
628 insn = opcode;
629 }
630
631 /* Except in the case of absolute or indirect jump or call
632 instructions, or a return instruction, the new eip is relative to
633 the displaced instruction; make it relative. Well, signal
634 handler returns don't need relocation either, but we use the
635 value of %eip to recognize those; see below. */
636 if (! i386_absolute_jmp_p (insn)
637 && ! i386_absolute_call_p (insn)
638 && ! i386_ret_p (insn))
639 {
640 ULONGEST orig_eip;
641 int insn_len;
642
643 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
644
645 /* A signal trampoline system call changes the %eip, resuming
646 execution of the main program after the signal handler has
647 returned. That makes them like 'return' instructions; we
648 shouldn't relocate %eip.
649
650 But most system calls don't, and we do need to relocate %eip.
651
652 Our heuristic for distinguishing these cases: if stepping
653 over the system call instruction left control directly after
654 the instruction, the we relocate --- control almost certainly
655 doesn't belong in the displaced copy. Otherwise, we assume
656 the instruction has put control where it belongs, and leave
657 it unrelocated. Goodness help us if there are PC-relative
658 system calls. */
659 if (i386_syscall_p (insn, &insn_len)
660 && orig_eip != to + (insn - insn_start) + insn_len
661 /* GDB can get control back after the insn after the syscall.
662 Presumably this is a kernel bug.
663 i386_displaced_step_copy_insn ensures its a nop,
664 we add one to the length for it. */
665 && orig_eip != to + (insn - insn_start) + insn_len + 1)
666 {
667 if (debug_displaced)
668 fprintf_unfiltered (gdb_stdlog,
669 "displaced: syscall changed %%eip; "
670 "not relocating\n");
671 }
672 else
673 {
674 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
675
676 /* If we just stepped over a breakpoint insn, we don't backup
677 the pc on purpose; this is to match behaviour without
678 stepping. */
679
680 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
681
682 if (debug_displaced)
683 fprintf_unfiltered (gdb_stdlog,
684 "displaced: "
685 "relocated %%eip from %s to %s\n",
686 paddress (gdbarch, orig_eip),
687 paddress (gdbarch, eip));
688 }
689 }
690
691 /* If the instruction was PUSHFL, then the TF bit will be set in the
692 pushed value, and should be cleared. We'll leave this for later,
693 since GDB already messes up the TF flag when stepping over a
694 pushfl. */
695
696 /* If the instruction was a call, the return address now atop the
697 stack is the address following the copied instruction. We need
698 to make it the address following the original instruction. */
699 if (i386_call_p (insn))
700 {
701 ULONGEST esp;
702 ULONGEST retaddr;
703 const ULONGEST retaddr_len = 4;
704
705 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
706 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
707 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
708 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
709
710 if (debug_displaced)
711 fprintf_unfiltered (gdb_stdlog,
712 "displaced: relocated return addr at %s to %s\n",
713 paddress (gdbarch, esp),
714 paddress (gdbarch, retaddr));
715 }
716 }
717
718 static void
719 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
720 {
721 target_write_memory (*to, buf, len);
722 *to += len;
723 }
724
725 static void
726 i386_relocate_instruction (struct gdbarch *gdbarch,
727 CORE_ADDR *to, CORE_ADDR oldloc)
728 {
729 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
730 gdb_byte buf[I386_MAX_INSN_LEN];
731 int offset = 0, rel32, newrel;
732 int insn_length;
733 gdb_byte *insn = buf;
734
735 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
736
737 insn_length = gdb_buffered_insn_length (gdbarch, insn,
738 I386_MAX_INSN_LEN, oldloc);
739
740 /* Get past the prefixes. */
741 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
742
743 /* Adjust calls with 32-bit relative addresses as push/jump, with
744 the address pushed being the location where the original call in
745 the user program would return to. */
746 if (insn[0] == 0xe8)
747 {
748 gdb_byte push_buf[16];
749 unsigned int ret_addr;
750
751 /* Where "ret" in the original code will return to. */
752 ret_addr = oldloc + insn_length;
753 push_buf[0] = 0x68; /* pushq $... */
754 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
755 /* Push the push. */
756 append_insns (to, 5, push_buf);
757
758 /* Convert the relative call to a relative jump. */
759 insn[0] = 0xe9;
760
761 /* Adjust the destination offset. */
762 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
763 newrel = (oldloc - *to) + rel32;
764 store_signed_integer (insn + 1, 4, byte_order, newrel);
765
766 if (debug_displaced)
767 fprintf_unfiltered (gdb_stdlog,
768 "Adjusted insn rel32=%s at %s to"
769 " rel32=%s at %s\n",
770 hex_string (rel32), paddress (gdbarch, oldloc),
771 hex_string (newrel), paddress (gdbarch, *to));
772
773 /* Write the adjusted jump into its displaced location. */
774 append_insns (to, 5, insn);
775 return;
776 }
777
778 /* Adjust jumps with 32-bit relative addresses. Calls are already
779 handled above. */
780 if (insn[0] == 0xe9)
781 offset = 1;
782 /* Adjust conditional jumps. */
783 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
784 offset = 2;
785
786 if (offset)
787 {
788 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
789 newrel = (oldloc - *to) + rel32;
790 store_signed_integer (insn + offset, 4, byte_order, newrel);
791 if (debug_displaced)
792 fprintf_unfiltered (gdb_stdlog,
793 "Adjusted insn rel32=%s at %s to"
794 " rel32=%s at %s\n",
795 hex_string (rel32), paddress (gdbarch, oldloc),
796 hex_string (newrel), paddress (gdbarch, *to));
797 }
798
799 /* Write the adjusted instructions into their displaced
800 location. */
801 append_insns (to, insn_length, buf);
802 }
803
804 \f
805 #ifdef I386_REGNO_TO_SYMMETRY
806 #error "The Sequent Symmetry is no longer supported."
807 #endif
808
809 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
810 and %esp "belong" to the calling function. Therefore these
811 registers should be saved if they're going to be modified. */
812
813 /* The maximum number of saved registers. This should include all
814 registers mentioned above, and %eip. */
815 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
816
817 struct i386_frame_cache
818 {
819 /* Base address. */
820 CORE_ADDR base;
821 int base_p;
822 LONGEST sp_offset;
823 CORE_ADDR pc;
824
825 /* Saved registers. */
826 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
827 CORE_ADDR saved_sp;
828 int saved_sp_reg;
829 int pc_in_eax;
830
831 /* Stack space reserved for local variables. */
832 long locals;
833 };
834
835 /* Allocate and initialize a frame cache. */
836
837 static struct i386_frame_cache *
838 i386_alloc_frame_cache (void)
839 {
840 struct i386_frame_cache *cache;
841 int i;
842
843 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
844
845 /* Base address. */
846 cache->base_p = 0;
847 cache->base = 0;
848 cache->sp_offset = -4;
849 cache->pc = 0;
850
851 /* Saved registers. We initialize these to -1 since zero is a valid
852 offset (that's where %ebp is supposed to be stored). */
853 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
854 cache->saved_regs[i] = -1;
855 cache->saved_sp = 0;
856 cache->saved_sp_reg = -1;
857 cache->pc_in_eax = 0;
858
859 /* Frameless until proven otherwise. */
860 cache->locals = -1;
861
862 return cache;
863 }
864
865 /* If the instruction at PC is a jump, return the address of its
866 target. Otherwise, return PC. */
867
868 static CORE_ADDR
869 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
870 {
871 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
872 gdb_byte op;
873 long delta = 0;
874 int data16 = 0;
875
876 if (target_read_memory (pc, &op, 1))
877 return pc;
878
879 if (op == 0x66)
880 {
881 data16 = 1;
882 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
883 }
884
885 switch (op)
886 {
887 case 0xe9:
888 /* Relative jump: if data16 == 0, disp32, else disp16. */
889 if (data16)
890 {
891 delta = read_memory_integer (pc + 2, 2, byte_order);
892
893 /* Include the size of the jmp instruction (including the
894 0x66 prefix). */
895 delta += 4;
896 }
897 else
898 {
899 delta = read_memory_integer (pc + 1, 4, byte_order);
900
901 /* Include the size of the jmp instruction. */
902 delta += 5;
903 }
904 break;
905 case 0xeb:
906 /* Relative jump, disp8 (ignore data16). */
907 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
908
909 delta += data16 + 2;
910 break;
911 }
912
913 return pc + delta;
914 }
915
916 /* Check whether PC points at a prologue for a function returning a
917 structure or union. If so, it updates CACHE and returns the
918 address of the first instruction after the code sequence that
919 removes the "hidden" argument from the stack or CURRENT_PC,
920 whichever is smaller. Otherwise, return PC. */
921
922 static CORE_ADDR
923 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
924 struct i386_frame_cache *cache)
925 {
926 /* Functions that return a structure or union start with:
927
928 popl %eax 0x58
929 xchgl %eax, (%esp) 0x87 0x04 0x24
930 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
931
932 (the System V compiler puts out the second `xchg' instruction,
933 and the assembler doesn't try to optimize it, so the 'sib' form
934 gets generated). This sequence is used to get the address of the
935 return buffer for a function that returns a structure. */
936 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
937 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
938 gdb_byte buf[4];
939 gdb_byte op;
940
941 if (current_pc <= pc)
942 return pc;
943
944 if (target_read_memory (pc, &op, 1))
945 return pc;
946
947 if (op != 0x58) /* popl %eax */
948 return pc;
949
950 if (target_read_memory (pc + 1, buf, 4))
951 return pc;
952
953 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
954 return pc;
955
956 if (current_pc == pc)
957 {
958 cache->sp_offset += 4;
959 return current_pc;
960 }
961
962 if (current_pc == pc + 1)
963 {
964 cache->pc_in_eax = 1;
965 return current_pc;
966 }
967
968 if (buf[1] == proto1[1])
969 return pc + 4;
970 else
971 return pc + 5;
972 }
973
974 static CORE_ADDR
975 i386_skip_probe (CORE_ADDR pc)
976 {
977 /* A function may start with
978
979 pushl constant
980 call _probe
981 addl $4, %esp
982
983 followed by
984
985 pushl %ebp
986
987 etc. */
988 gdb_byte buf[8];
989 gdb_byte op;
990
991 if (target_read_memory (pc, &op, 1))
992 return pc;
993
994 if (op == 0x68 || op == 0x6a)
995 {
996 int delta;
997
998 /* Skip past the `pushl' instruction; it has either a one-byte or a
999 four-byte operand, depending on the opcode. */
1000 if (op == 0x68)
1001 delta = 5;
1002 else
1003 delta = 2;
1004
1005 /* Read the following 8 bytes, which should be `call _probe' (6
1006 bytes) followed by `addl $4,%esp' (2 bytes). */
1007 read_memory (pc + delta, buf, sizeof (buf));
1008 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1009 pc += delta + sizeof (buf);
1010 }
1011
1012 return pc;
1013 }
1014
1015 /* GCC 4.1 and later, can put code in the prologue to realign the
1016 stack pointer. Check whether PC points to such code, and update
1017 CACHE accordingly. Return the first instruction after the code
1018 sequence or CURRENT_PC, whichever is smaller. If we don't
1019 recognize the code, return PC. */
1020
1021 static CORE_ADDR
1022 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1023 struct i386_frame_cache *cache)
1024 {
1025 /* There are 2 code sequences to re-align stack before the frame
1026 gets set up:
1027
1028 1. Use a caller-saved saved register:
1029
1030 leal 4(%esp), %reg
1031 andl $-XXX, %esp
1032 pushl -4(%reg)
1033
1034 2. Use a callee-saved saved register:
1035
1036 pushl %reg
1037 leal 8(%esp), %reg
1038 andl $-XXX, %esp
1039 pushl -4(%reg)
1040
1041 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1042
1043 0x83 0xe4 0xf0 andl $-16, %esp
1044 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1045 */
1046
1047 gdb_byte buf[14];
1048 int reg;
1049 int offset, offset_and;
1050 static int regnums[8] = {
1051 I386_EAX_REGNUM, /* %eax */
1052 I386_ECX_REGNUM, /* %ecx */
1053 I386_EDX_REGNUM, /* %edx */
1054 I386_EBX_REGNUM, /* %ebx */
1055 I386_ESP_REGNUM, /* %esp */
1056 I386_EBP_REGNUM, /* %ebp */
1057 I386_ESI_REGNUM, /* %esi */
1058 I386_EDI_REGNUM /* %edi */
1059 };
1060
1061 if (target_read_memory (pc, buf, sizeof buf))
1062 return pc;
1063
1064 /* Check caller-saved saved register. The first instruction has
1065 to be "leal 4(%esp), %reg". */
1066 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1067 {
1068 /* MOD must be binary 10 and R/M must be binary 100. */
1069 if ((buf[1] & 0xc7) != 0x44)
1070 return pc;
1071
1072 /* REG has register number. */
1073 reg = (buf[1] >> 3) & 7;
1074 offset = 4;
1075 }
1076 else
1077 {
1078 /* Check callee-saved saved register. The first instruction
1079 has to be "pushl %reg". */
1080 if ((buf[0] & 0xf8) != 0x50)
1081 return pc;
1082
1083 /* Get register. */
1084 reg = buf[0] & 0x7;
1085
1086 /* The next instruction has to be "leal 8(%esp), %reg". */
1087 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1088 return pc;
1089
1090 /* MOD must be binary 10 and R/M must be binary 100. */
1091 if ((buf[2] & 0xc7) != 0x44)
1092 return pc;
1093
1094 /* REG has register number. Registers in pushl and leal have to
1095 be the same. */
1096 if (reg != ((buf[2] >> 3) & 7))
1097 return pc;
1098
1099 offset = 5;
1100 }
1101
1102 /* Rigister can't be %esp nor %ebp. */
1103 if (reg == 4 || reg == 5)
1104 return pc;
1105
1106 /* The next instruction has to be "andl $-XXX, %esp". */
1107 if (buf[offset + 1] != 0xe4
1108 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1109 return pc;
1110
1111 offset_and = offset;
1112 offset += buf[offset] == 0x81 ? 6 : 3;
1113
1114 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1115 0xfc. REG must be binary 110 and MOD must be binary 01. */
1116 if (buf[offset] != 0xff
1117 || buf[offset + 2] != 0xfc
1118 || (buf[offset + 1] & 0xf8) != 0x70)
1119 return pc;
1120
1121 /* R/M has register. Registers in leal and pushl have to be the
1122 same. */
1123 if (reg != (buf[offset + 1] & 7))
1124 return pc;
1125
1126 if (current_pc > pc + offset_and)
1127 cache->saved_sp_reg = regnums[reg];
1128
1129 return min (pc + offset + 3, current_pc);
1130 }
1131
1132 /* Maximum instruction length we need to handle. */
1133 #define I386_MAX_MATCHED_INSN_LEN 6
1134
1135 /* Instruction description. */
1136 struct i386_insn
1137 {
1138 size_t len;
1139 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1140 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1141 };
1142
1143 /* Return whether instruction at PC matches PATTERN. */
1144
1145 static int
1146 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1147 {
1148 gdb_byte op;
1149
1150 if (target_read_memory (pc, &op, 1))
1151 return 0;
1152
1153 if ((op & pattern.mask[0]) == pattern.insn[0])
1154 {
1155 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1156 int insn_matched = 1;
1157 size_t i;
1158
1159 gdb_assert (pattern.len > 1);
1160 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1161
1162 if (target_read_memory (pc + 1, buf, pattern.len - 1))
1163 return 0;
1164
1165 for (i = 1; i < pattern.len; i++)
1166 {
1167 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1168 insn_matched = 0;
1169 }
1170 return insn_matched;
1171 }
1172 return 0;
1173 }
1174
1175 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1176 the first instruction description that matches. Otherwise, return
1177 NULL. */
1178
1179 static struct i386_insn *
1180 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1181 {
1182 struct i386_insn *pattern;
1183
1184 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1185 {
1186 if (i386_match_pattern (pc, *pattern))
1187 return pattern;
1188 }
1189
1190 return NULL;
1191 }
1192
1193 /* Return whether PC points inside a sequence of instructions that
1194 matches INSN_PATTERNS. */
1195
1196 static int
1197 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1198 {
1199 CORE_ADDR current_pc;
1200 int ix, i;
1201 struct i386_insn *insn;
1202
1203 insn = i386_match_insn (pc, insn_patterns);
1204 if (insn == NULL)
1205 return 0;
1206
1207 current_pc = pc;
1208 ix = insn - insn_patterns;
1209 for (i = ix - 1; i >= 0; i--)
1210 {
1211 current_pc -= insn_patterns[i].len;
1212
1213 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1214 return 0;
1215 }
1216
1217 current_pc = pc + insn->len;
1218 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1219 {
1220 if (!i386_match_pattern (current_pc, *insn))
1221 return 0;
1222
1223 current_pc += insn->len;
1224 }
1225
1226 return 1;
1227 }
1228
1229 /* Some special instructions that might be migrated by GCC into the
1230 part of the prologue that sets up the new stack frame. Because the
1231 stack frame hasn't been setup yet, no registers have been saved
1232 yet, and only the scratch registers %eax, %ecx and %edx can be
1233 touched. */
1234
1235 struct i386_insn i386_frame_setup_skip_insns[] =
1236 {
1237 /* Check for `movb imm8, r' and `movl imm32, r'.
1238
1239 ??? Should we handle 16-bit operand-sizes here? */
1240
1241 /* `movb imm8, %al' and `movb imm8, %ah' */
1242 /* `movb imm8, %cl' and `movb imm8, %ch' */
1243 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1244 /* `movb imm8, %dl' and `movb imm8, %dh' */
1245 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1246 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1247 { 5, { 0xb8 }, { 0xfe } },
1248 /* `movl imm32, %edx' */
1249 { 5, { 0xba }, { 0xff } },
1250
1251 /* Check for `mov imm32, r32'. Note that there is an alternative
1252 encoding for `mov m32, %eax'.
1253
1254 ??? Should we handle SIB adressing here?
1255 ??? Should we handle 16-bit operand-sizes here? */
1256
1257 /* `movl m32, %eax' */
1258 { 5, { 0xa1 }, { 0xff } },
1259 /* `movl m32, %eax' and `mov; m32, %ecx' */
1260 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1261 /* `movl m32, %edx' */
1262 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1263
1264 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1265 Because of the symmetry, there are actually two ways to encode
1266 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1267 opcode bytes 0x31 and 0x33 for `xorl'. */
1268
1269 /* `subl %eax, %eax' */
1270 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1271 /* `subl %ecx, %ecx' */
1272 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1273 /* `subl %edx, %edx' */
1274 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1275 /* `xorl %eax, %eax' */
1276 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1277 /* `xorl %ecx, %ecx' */
1278 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1279 /* `xorl %edx, %edx' */
1280 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1281 { 0 }
1282 };
1283
1284
1285 /* Check whether PC points to a no-op instruction. */
1286 static CORE_ADDR
1287 i386_skip_noop (CORE_ADDR pc)
1288 {
1289 gdb_byte op;
1290 int check = 1;
1291
1292 if (target_read_memory (pc, &op, 1))
1293 return pc;
1294
1295 while (check)
1296 {
1297 check = 0;
1298 /* Ignore `nop' instruction. */
1299 if (op == 0x90)
1300 {
1301 pc += 1;
1302 if (target_read_memory (pc, &op, 1))
1303 return pc;
1304 check = 1;
1305 }
1306 /* Ignore no-op instruction `mov %edi, %edi'.
1307 Microsoft system dlls often start with
1308 a `mov %edi,%edi' instruction.
1309 The 5 bytes before the function start are
1310 filled with `nop' instructions.
1311 This pattern can be used for hot-patching:
1312 The `mov %edi, %edi' instruction can be replaced by a
1313 near jump to the location of the 5 `nop' instructions
1314 which can be replaced by a 32-bit jump to anywhere
1315 in the 32-bit address space. */
1316
1317 else if (op == 0x8b)
1318 {
1319 if (target_read_memory (pc + 1, &op, 1))
1320 return pc;
1321
1322 if (op == 0xff)
1323 {
1324 pc += 2;
1325 if (target_read_memory (pc, &op, 1))
1326 return pc;
1327
1328 check = 1;
1329 }
1330 }
1331 }
1332 return pc;
1333 }
1334
1335 /* Check whether PC points at a code that sets up a new stack frame.
1336 If so, it updates CACHE and returns the address of the first
1337 instruction after the sequence that sets up the frame or LIMIT,
1338 whichever is smaller. If we don't recognize the code, return PC. */
1339
1340 static CORE_ADDR
1341 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1342 CORE_ADDR pc, CORE_ADDR limit,
1343 struct i386_frame_cache *cache)
1344 {
1345 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1346 struct i386_insn *insn;
1347 gdb_byte op;
1348 int skip = 0;
1349
1350 if (limit <= pc)
1351 return limit;
1352
1353 if (target_read_memory (pc, &op, 1))
1354 return pc;
1355
1356 if (op == 0x55) /* pushl %ebp */
1357 {
1358 /* Take into account that we've executed the `pushl %ebp' that
1359 starts this instruction sequence. */
1360 cache->saved_regs[I386_EBP_REGNUM] = 0;
1361 cache->sp_offset += 4;
1362 pc++;
1363
1364 /* If that's all, return now. */
1365 if (limit <= pc)
1366 return limit;
1367
1368 /* Check for some special instructions that might be migrated by
1369 GCC into the prologue and skip them. At this point in the
1370 prologue, code should only touch the scratch registers %eax,
1371 %ecx and %edx, so while the number of posibilities is sheer,
1372 it is limited.
1373
1374 Make sure we only skip these instructions if we later see the
1375 `movl %esp, %ebp' that actually sets up the frame. */
1376 while (pc + skip < limit)
1377 {
1378 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1379 if (insn == NULL)
1380 break;
1381
1382 skip += insn->len;
1383 }
1384
1385 /* If that's all, return now. */
1386 if (limit <= pc + skip)
1387 return limit;
1388
1389 if (target_read_memory (pc + skip, &op, 1))
1390 return pc + skip;
1391
1392 /* The i386 prologue looks like
1393
1394 push %ebp
1395 mov %esp,%ebp
1396 sub $0x10,%esp
1397
1398 and a different prologue can be generated for atom.
1399
1400 push %ebp
1401 lea (%esp),%ebp
1402 lea -0x10(%esp),%esp
1403
1404 We handle both of them here. */
1405
1406 switch (op)
1407 {
1408 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1409 case 0x8b:
1410 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1411 != 0xec)
1412 return pc;
1413 pc += (skip + 2);
1414 break;
1415 case 0x89:
1416 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1417 != 0xe5)
1418 return pc;
1419 pc += (skip + 2);
1420 break;
1421 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1422 if (read_memory_unsigned_integer (pc + skip + 1, 2, byte_order)
1423 != 0x242c)
1424 return pc;
1425 pc += (skip + 3);
1426 break;
1427 default:
1428 return pc;
1429 }
1430
1431 /* OK, we actually have a frame. We just don't know how large
1432 it is yet. Set its size to zero. We'll adjust it if
1433 necessary. We also now commit to skipping the special
1434 instructions mentioned before. */
1435 cache->locals = 0;
1436
1437 /* If that's all, return now. */
1438 if (limit <= pc)
1439 return limit;
1440
1441 /* Check for stack adjustment
1442
1443 subl $XXX, %esp
1444 or
1445 lea -XXX(%esp),%esp
1446
1447 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1448 reg, so we don't have to worry about a data16 prefix. */
1449 if (target_read_memory (pc, &op, 1))
1450 return pc;
1451 if (op == 0x83)
1452 {
1453 /* `subl' with 8-bit immediate. */
1454 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1455 /* Some instruction starting with 0x83 other than `subl'. */
1456 return pc;
1457
1458 /* `subl' with signed 8-bit immediate (though it wouldn't
1459 make sense to be negative). */
1460 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
1461 return pc + 3;
1462 }
1463 else if (op == 0x81)
1464 {
1465 /* Maybe it is `subl' with a 32-bit immediate. */
1466 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1467 /* Some instruction starting with 0x81 other than `subl'. */
1468 return pc;
1469
1470 /* It is `subl' with a 32-bit immediate. */
1471 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
1472 return pc + 6;
1473 }
1474 else if (op == 0x8d)
1475 {
1476 /* The ModR/M byte is 0x64. */
1477 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1478 return pc;
1479 /* 'lea' with 8-bit displacement. */
1480 cache->locals = -1 * read_memory_integer (pc + 3, 1, byte_order);
1481 return pc + 4;
1482 }
1483 else
1484 {
1485 /* Some instruction other than `subl' nor 'lea'. */
1486 return pc;
1487 }
1488 }
1489 else if (op == 0xc8) /* enter */
1490 {
1491 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
1492 return pc + 4;
1493 }
1494
1495 return pc;
1496 }
1497
1498 /* Check whether PC points at code that saves registers on the stack.
1499 If so, it updates CACHE and returns the address of the first
1500 instruction after the register saves or CURRENT_PC, whichever is
1501 smaller. Otherwise, return PC. */
1502
1503 static CORE_ADDR
1504 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1505 struct i386_frame_cache *cache)
1506 {
1507 CORE_ADDR offset = 0;
1508 gdb_byte op;
1509 int i;
1510
1511 if (cache->locals > 0)
1512 offset -= cache->locals;
1513 for (i = 0; i < 8 && pc < current_pc; i++)
1514 {
1515 if (target_read_memory (pc, &op, 1))
1516 return pc;
1517 if (op < 0x50 || op > 0x57)
1518 break;
1519
1520 offset -= 4;
1521 cache->saved_regs[op - 0x50] = offset;
1522 cache->sp_offset += 4;
1523 pc++;
1524 }
1525
1526 return pc;
1527 }
1528
1529 /* Do a full analysis of the prologue at PC and update CACHE
1530 accordingly. Bail out early if CURRENT_PC is reached. Return the
1531 address where the analysis stopped.
1532
1533 We handle these cases:
1534
1535 The startup sequence can be at the start of the function, or the
1536 function can start with a branch to startup code at the end.
1537
1538 %ebp can be set up with either the 'enter' instruction, or "pushl
1539 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1540 once used in the System V compiler).
1541
1542 Local space is allocated just below the saved %ebp by either the
1543 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1544 16-bit unsigned argument for space to allocate, and the 'addl'
1545 instruction could have either a signed byte, or 32-bit immediate.
1546
1547 Next, the registers used by this function are pushed. With the
1548 System V compiler they will always be in the order: %edi, %esi,
1549 %ebx (and sometimes a harmless bug causes it to also save but not
1550 restore %eax); however, the code below is willing to see the pushes
1551 in any order, and will handle up to 8 of them.
1552
1553 If the setup sequence is at the end of the function, then the next
1554 instruction will be a branch back to the start. */
1555
1556 static CORE_ADDR
1557 i386_analyze_prologue (struct gdbarch *gdbarch,
1558 CORE_ADDR pc, CORE_ADDR current_pc,
1559 struct i386_frame_cache *cache)
1560 {
1561 pc = i386_skip_noop (pc);
1562 pc = i386_follow_jump (gdbarch, pc);
1563 pc = i386_analyze_struct_return (pc, current_pc, cache);
1564 pc = i386_skip_probe (pc);
1565 pc = i386_analyze_stack_align (pc, current_pc, cache);
1566 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1567 return i386_analyze_register_saves (pc, current_pc, cache);
1568 }
1569
1570 /* Return PC of first real instruction. */
1571
1572 static CORE_ADDR
1573 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1574 {
1575 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1576
1577 static gdb_byte pic_pat[6] =
1578 {
1579 0xe8, 0, 0, 0, 0, /* call 0x0 */
1580 0x5b, /* popl %ebx */
1581 };
1582 struct i386_frame_cache cache;
1583 CORE_ADDR pc;
1584 gdb_byte op;
1585 int i;
1586 CORE_ADDR func_addr;
1587
1588 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1589 {
1590 CORE_ADDR post_prologue_pc
1591 = skip_prologue_using_sal (gdbarch, func_addr);
1592 struct symtab *s = find_pc_symtab (func_addr);
1593
1594 /* Clang always emits a line note before the prologue and another
1595 one after. We trust clang to emit usable line notes. */
1596 if (post_prologue_pc
1597 && (s != NULL
1598 && s->producer != NULL
1599 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
1600 return max (start_pc, post_prologue_pc);
1601 }
1602
1603 cache.locals = -1;
1604 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1605 if (cache.locals < 0)
1606 return start_pc;
1607
1608 /* Found valid frame setup. */
1609
1610 /* The native cc on SVR4 in -K PIC mode inserts the following code
1611 to get the address of the global offset table (GOT) into register
1612 %ebx:
1613
1614 call 0x0
1615 popl %ebx
1616 movl %ebx,x(%ebp) (optional)
1617 addl y,%ebx
1618
1619 This code is with the rest of the prologue (at the end of the
1620 function), so we have to skip it to get to the first real
1621 instruction at the start of the function. */
1622
1623 for (i = 0; i < 6; i++)
1624 {
1625 if (target_read_memory (pc + i, &op, 1))
1626 return pc;
1627
1628 if (pic_pat[i] != op)
1629 break;
1630 }
1631 if (i == 6)
1632 {
1633 int delta = 6;
1634
1635 if (target_read_memory (pc + delta, &op, 1))
1636 return pc;
1637
1638 if (op == 0x89) /* movl %ebx, x(%ebp) */
1639 {
1640 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
1641
1642 if (op == 0x5d) /* One byte offset from %ebp. */
1643 delta += 3;
1644 else if (op == 0x9d) /* Four byte offset from %ebp. */
1645 delta += 6;
1646 else /* Unexpected instruction. */
1647 delta = 0;
1648
1649 if (target_read_memory (pc + delta, &op, 1))
1650 return pc;
1651 }
1652
1653 /* addl y,%ebx */
1654 if (delta > 0 && op == 0x81
1655 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1656 == 0xc3)
1657 {
1658 pc += delta + 6;
1659 }
1660 }
1661
1662 /* If the function starts with a branch (to startup code at the end)
1663 the last instruction should bring us back to the first
1664 instruction of the real code. */
1665 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1666 pc = i386_follow_jump (gdbarch, pc);
1667
1668 return pc;
1669 }
1670
1671 /* Check that the code pointed to by PC corresponds to a call to
1672 __main, skip it if so. Return PC otherwise. */
1673
1674 CORE_ADDR
1675 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1676 {
1677 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1678 gdb_byte op;
1679
1680 if (target_read_memory (pc, &op, 1))
1681 return pc;
1682 if (op == 0xe8)
1683 {
1684 gdb_byte buf[4];
1685
1686 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1687 {
1688 /* Make sure address is computed correctly as a 32bit
1689 integer even if CORE_ADDR is 64 bit wide. */
1690 struct bound_minimal_symbol s;
1691 CORE_ADDR call_dest;
1692
1693 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1694 call_dest = call_dest & 0xffffffffU;
1695 s = lookup_minimal_symbol_by_pc (call_dest);
1696 if (s.minsym != NULL
1697 && SYMBOL_LINKAGE_NAME (s.minsym) != NULL
1698 && strcmp (SYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1699 pc += 5;
1700 }
1701 }
1702
1703 return pc;
1704 }
1705
1706 /* This function is 64-bit safe. */
1707
1708 static CORE_ADDR
1709 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1710 {
1711 gdb_byte buf[8];
1712
1713 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1714 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1715 }
1716 \f
1717
1718 /* Normal frames. */
1719
1720 static void
1721 i386_frame_cache_1 (struct frame_info *this_frame,
1722 struct i386_frame_cache *cache)
1723 {
1724 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1725 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1726 gdb_byte buf[4];
1727 int i;
1728
1729 cache->pc = get_frame_func (this_frame);
1730
1731 /* In principle, for normal frames, %ebp holds the frame pointer,
1732 which holds the base address for the current stack frame.
1733 However, for functions that don't need it, the frame pointer is
1734 optional. For these "frameless" functions the frame pointer is
1735 actually the frame pointer of the calling frame. Signal
1736 trampolines are just a special case of a "frameless" function.
1737 They (usually) share their frame pointer with the frame that was
1738 in progress when the signal occurred. */
1739
1740 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1741 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1742 if (cache->base == 0)
1743 {
1744 cache->base_p = 1;
1745 return;
1746 }
1747
1748 /* For normal frames, %eip is stored at 4(%ebp). */
1749 cache->saved_regs[I386_EIP_REGNUM] = 4;
1750
1751 if (cache->pc != 0)
1752 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1753 cache);
1754
1755 if (cache->locals < 0)
1756 {
1757 /* We didn't find a valid frame, which means that CACHE->base
1758 currently holds the frame pointer for our calling frame. If
1759 we're at the start of a function, or somewhere half-way its
1760 prologue, the function's frame probably hasn't been fully
1761 setup yet. Try to reconstruct the base address for the stack
1762 frame by looking at the stack pointer. For truly "frameless"
1763 functions this might work too. */
1764
1765 if (cache->saved_sp_reg != -1)
1766 {
1767 /* Saved stack pointer has been saved. */
1768 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1769 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1770
1771 /* We're halfway aligning the stack. */
1772 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1773 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1774
1775 /* This will be added back below. */
1776 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1777 }
1778 else if (cache->pc != 0
1779 || target_read_memory (get_frame_pc (this_frame), buf, 1))
1780 {
1781 /* We're in a known function, but did not find a frame
1782 setup. Assume that the function does not use %ebp.
1783 Alternatively, we may have jumped to an invalid
1784 address; in that case there is definitely no new
1785 frame in %ebp. */
1786 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1787 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1788 + cache->sp_offset;
1789 }
1790 else
1791 /* We're in an unknown function. We could not find the start
1792 of the function to analyze the prologue; our best option is
1793 to assume a typical frame layout with the caller's %ebp
1794 saved. */
1795 cache->saved_regs[I386_EBP_REGNUM] = 0;
1796 }
1797
1798 if (cache->saved_sp_reg != -1)
1799 {
1800 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1801 register may be unavailable). */
1802 if (cache->saved_sp == 0
1803 && deprecated_frame_register_read (this_frame,
1804 cache->saved_sp_reg, buf))
1805 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1806 }
1807 /* Now that we have the base address for the stack frame we can
1808 calculate the value of %esp in the calling frame. */
1809 else if (cache->saved_sp == 0)
1810 cache->saved_sp = cache->base + 8;
1811
1812 /* Adjust all the saved registers such that they contain addresses
1813 instead of offsets. */
1814 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1815 if (cache->saved_regs[i] != -1)
1816 cache->saved_regs[i] += cache->base;
1817
1818 cache->base_p = 1;
1819 }
1820
1821 static struct i386_frame_cache *
1822 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1823 {
1824 volatile struct gdb_exception ex;
1825 struct i386_frame_cache *cache;
1826
1827 if (*this_cache)
1828 return *this_cache;
1829
1830 cache = i386_alloc_frame_cache ();
1831 *this_cache = cache;
1832
1833 TRY_CATCH (ex, RETURN_MASK_ERROR)
1834 {
1835 i386_frame_cache_1 (this_frame, cache);
1836 }
1837 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1838 throw_exception (ex);
1839
1840 return cache;
1841 }
1842
1843 static void
1844 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1845 struct frame_id *this_id)
1846 {
1847 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1848
1849 /* This marks the outermost frame. */
1850 if (cache->base == 0)
1851 return;
1852
1853 /* See the end of i386_push_dummy_call. */
1854 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1855 }
1856
1857 static enum unwind_stop_reason
1858 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1859 void **this_cache)
1860 {
1861 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1862
1863 if (!cache->base_p)
1864 return UNWIND_UNAVAILABLE;
1865
1866 /* This marks the outermost frame. */
1867 if (cache->base == 0)
1868 return UNWIND_OUTERMOST;
1869
1870 return UNWIND_NO_REASON;
1871 }
1872
1873 static struct value *
1874 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1875 int regnum)
1876 {
1877 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1878
1879 gdb_assert (regnum >= 0);
1880
1881 /* The System V ABI says that:
1882
1883 "The flags register contains the system flags, such as the
1884 direction flag and the carry flag. The direction flag must be
1885 set to the forward (that is, zero) direction before entry and
1886 upon exit from a function. Other user flags have no specified
1887 role in the standard calling sequence and are not preserved."
1888
1889 To guarantee the "upon exit" part of that statement we fake a
1890 saved flags register that has its direction flag cleared.
1891
1892 Note that GCC doesn't seem to rely on the fact that the direction
1893 flag is cleared after a function return; it always explicitly
1894 clears the flag before operations where it matters.
1895
1896 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1897 right thing to do. The way we fake the flags register here makes
1898 it impossible to change it. */
1899
1900 if (regnum == I386_EFLAGS_REGNUM)
1901 {
1902 ULONGEST val;
1903
1904 val = get_frame_register_unsigned (this_frame, regnum);
1905 val &= ~(1 << 10);
1906 return frame_unwind_got_constant (this_frame, regnum, val);
1907 }
1908
1909 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1910 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1911
1912 if (regnum == I386_ESP_REGNUM
1913 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
1914 {
1915 /* If the SP has been saved, but we don't know where, then this
1916 means that SAVED_SP_REG register was found unavailable back
1917 when we built the cache. */
1918 if (cache->saved_sp == 0)
1919 return frame_unwind_got_register (this_frame, regnum,
1920 cache->saved_sp_reg);
1921 else
1922 return frame_unwind_got_constant (this_frame, regnum,
1923 cache->saved_sp);
1924 }
1925
1926 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1927 return frame_unwind_got_memory (this_frame, regnum,
1928 cache->saved_regs[regnum]);
1929
1930 return frame_unwind_got_register (this_frame, regnum, regnum);
1931 }
1932
1933 static const struct frame_unwind i386_frame_unwind =
1934 {
1935 NORMAL_FRAME,
1936 i386_frame_unwind_stop_reason,
1937 i386_frame_this_id,
1938 i386_frame_prev_register,
1939 NULL,
1940 default_frame_sniffer
1941 };
1942
1943 /* Normal frames, but in a function epilogue. */
1944
1945 /* The epilogue is defined here as the 'ret' instruction, which will
1946 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1947 the function's stack frame. */
1948
1949 static int
1950 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1951 {
1952 gdb_byte insn;
1953 struct symtab *symtab;
1954
1955 symtab = find_pc_symtab (pc);
1956 if (symtab && symtab->epilogue_unwind_valid)
1957 return 0;
1958
1959 if (target_read_memory (pc, &insn, 1))
1960 return 0; /* Can't read memory at pc. */
1961
1962 if (insn != 0xc3) /* 'ret' instruction. */
1963 return 0;
1964
1965 return 1;
1966 }
1967
1968 static int
1969 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1970 struct frame_info *this_frame,
1971 void **this_prologue_cache)
1972 {
1973 if (frame_relative_level (this_frame) == 0)
1974 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1975 get_frame_pc (this_frame));
1976 else
1977 return 0;
1978 }
1979
1980 static struct i386_frame_cache *
1981 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1982 {
1983 volatile struct gdb_exception ex;
1984 struct i386_frame_cache *cache;
1985 CORE_ADDR sp;
1986
1987 if (*this_cache)
1988 return *this_cache;
1989
1990 cache = i386_alloc_frame_cache ();
1991 *this_cache = cache;
1992
1993 TRY_CATCH (ex, RETURN_MASK_ERROR)
1994 {
1995 cache->pc = get_frame_func (this_frame);
1996
1997 /* At this point the stack looks as if we just entered the
1998 function, with the return address at the top of the
1999 stack. */
2000 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2001 cache->base = sp + cache->sp_offset;
2002 cache->saved_sp = cache->base + 8;
2003 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2004
2005 cache->base_p = 1;
2006 }
2007 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2008 throw_exception (ex);
2009
2010 return cache;
2011 }
2012
2013 static enum unwind_stop_reason
2014 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2015 void **this_cache)
2016 {
2017 struct i386_frame_cache *cache =
2018 i386_epilogue_frame_cache (this_frame, this_cache);
2019
2020 if (!cache->base_p)
2021 return UNWIND_UNAVAILABLE;
2022
2023 return UNWIND_NO_REASON;
2024 }
2025
2026 static void
2027 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2028 void **this_cache,
2029 struct frame_id *this_id)
2030 {
2031 struct i386_frame_cache *cache =
2032 i386_epilogue_frame_cache (this_frame, this_cache);
2033
2034 if (!cache->base_p)
2035 return;
2036
2037 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2038 }
2039
2040 static struct value *
2041 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2042 void **this_cache, int regnum)
2043 {
2044 /* Make sure we've initialized the cache. */
2045 i386_epilogue_frame_cache (this_frame, this_cache);
2046
2047 return i386_frame_prev_register (this_frame, this_cache, regnum);
2048 }
2049
2050 static const struct frame_unwind i386_epilogue_frame_unwind =
2051 {
2052 NORMAL_FRAME,
2053 i386_epilogue_frame_unwind_stop_reason,
2054 i386_epilogue_frame_this_id,
2055 i386_epilogue_frame_prev_register,
2056 NULL,
2057 i386_epilogue_frame_sniffer
2058 };
2059 \f
2060
2061 /* Stack-based trampolines. */
2062
2063 /* These trampolines are used on cross x86 targets, when taking the
2064 address of a nested function. When executing these trampolines,
2065 no stack frame is set up, so we are in a similar situation as in
2066 epilogues and i386_epilogue_frame_this_id can be re-used. */
2067
2068 /* Static chain passed in register. */
2069
2070 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2071 {
2072 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2073 { 5, { 0xb8 }, { 0xfe } },
2074
2075 /* `jmp imm32' */
2076 { 5, { 0xe9 }, { 0xff } },
2077
2078 {0}
2079 };
2080
2081 /* Static chain passed on stack (when regparm=3). */
2082
2083 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2084 {
2085 /* `push imm32' */
2086 { 5, { 0x68 }, { 0xff } },
2087
2088 /* `jmp imm32' */
2089 { 5, { 0xe9 }, { 0xff } },
2090
2091 {0}
2092 };
2093
2094 /* Return whether PC points inside a stack trampoline. */
2095
2096 static int
2097 i386_in_stack_tramp_p (CORE_ADDR pc)
2098 {
2099 gdb_byte insn;
2100 const char *name;
2101
2102 /* A stack trampoline is detected if no name is associated
2103 to the current pc and if it points inside a trampoline
2104 sequence. */
2105
2106 find_pc_partial_function (pc, &name, NULL, NULL);
2107 if (name)
2108 return 0;
2109
2110 if (target_read_memory (pc, &insn, 1))
2111 return 0;
2112
2113 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2114 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2115 return 0;
2116
2117 return 1;
2118 }
2119
2120 static int
2121 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2122 struct frame_info *this_frame,
2123 void **this_cache)
2124 {
2125 if (frame_relative_level (this_frame) == 0)
2126 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2127 else
2128 return 0;
2129 }
2130
2131 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2132 {
2133 NORMAL_FRAME,
2134 i386_epilogue_frame_unwind_stop_reason,
2135 i386_epilogue_frame_this_id,
2136 i386_epilogue_frame_prev_register,
2137 NULL,
2138 i386_stack_tramp_frame_sniffer
2139 };
2140 \f
2141 /* Generate a bytecode expression to get the value of the saved PC. */
2142
2143 static void
2144 i386_gen_return_address (struct gdbarch *gdbarch,
2145 struct agent_expr *ax, struct axs_value *value,
2146 CORE_ADDR scope)
2147 {
2148 /* The following sequence assumes the traditional use of the base
2149 register. */
2150 ax_reg (ax, I386_EBP_REGNUM);
2151 ax_const_l (ax, 4);
2152 ax_simple (ax, aop_add);
2153 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2154 value->kind = axs_lvalue_memory;
2155 }
2156 \f
2157
2158 /* Signal trampolines. */
2159
2160 static struct i386_frame_cache *
2161 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2162 {
2163 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2165 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2166 volatile struct gdb_exception ex;
2167 struct i386_frame_cache *cache;
2168 CORE_ADDR addr;
2169 gdb_byte buf[4];
2170
2171 if (*this_cache)
2172 return *this_cache;
2173
2174 cache = i386_alloc_frame_cache ();
2175
2176 TRY_CATCH (ex, RETURN_MASK_ERROR)
2177 {
2178 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2179 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2180
2181 addr = tdep->sigcontext_addr (this_frame);
2182 if (tdep->sc_reg_offset)
2183 {
2184 int i;
2185
2186 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2187
2188 for (i = 0; i < tdep->sc_num_regs; i++)
2189 if (tdep->sc_reg_offset[i] != -1)
2190 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2191 }
2192 else
2193 {
2194 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2195 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2196 }
2197
2198 cache->base_p = 1;
2199 }
2200 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2201 throw_exception (ex);
2202
2203 *this_cache = cache;
2204 return cache;
2205 }
2206
2207 static enum unwind_stop_reason
2208 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2209 void **this_cache)
2210 {
2211 struct i386_frame_cache *cache =
2212 i386_sigtramp_frame_cache (this_frame, this_cache);
2213
2214 if (!cache->base_p)
2215 return UNWIND_UNAVAILABLE;
2216
2217 return UNWIND_NO_REASON;
2218 }
2219
2220 static void
2221 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2222 struct frame_id *this_id)
2223 {
2224 struct i386_frame_cache *cache =
2225 i386_sigtramp_frame_cache (this_frame, this_cache);
2226
2227 if (!cache->base_p)
2228 return;
2229
2230 /* See the end of i386_push_dummy_call. */
2231 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2232 }
2233
2234 static struct value *
2235 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2236 void **this_cache, int regnum)
2237 {
2238 /* Make sure we've initialized the cache. */
2239 i386_sigtramp_frame_cache (this_frame, this_cache);
2240
2241 return i386_frame_prev_register (this_frame, this_cache, regnum);
2242 }
2243
2244 static int
2245 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2246 struct frame_info *this_frame,
2247 void **this_prologue_cache)
2248 {
2249 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2250
2251 /* We shouldn't even bother if we don't have a sigcontext_addr
2252 handler. */
2253 if (tdep->sigcontext_addr == NULL)
2254 return 0;
2255
2256 if (tdep->sigtramp_p != NULL)
2257 {
2258 if (tdep->sigtramp_p (this_frame))
2259 return 1;
2260 }
2261
2262 if (tdep->sigtramp_start != 0)
2263 {
2264 CORE_ADDR pc = get_frame_pc (this_frame);
2265
2266 gdb_assert (tdep->sigtramp_end != 0);
2267 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2268 return 1;
2269 }
2270
2271 return 0;
2272 }
2273
2274 static const struct frame_unwind i386_sigtramp_frame_unwind =
2275 {
2276 SIGTRAMP_FRAME,
2277 i386_sigtramp_frame_unwind_stop_reason,
2278 i386_sigtramp_frame_this_id,
2279 i386_sigtramp_frame_prev_register,
2280 NULL,
2281 i386_sigtramp_frame_sniffer
2282 };
2283 \f
2284
2285 static CORE_ADDR
2286 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2287 {
2288 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2289
2290 return cache->base;
2291 }
2292
2293 static const struct frame_base i386_frame_base =
2294 {
2295 &i386_frame_unwind,
2296 i386_frame_base_address,
2297 i386_frame_base_address,
2298 i386_frame_base_address
2299 };
2300
2301 static struct frame_id
2302 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2303 {
2304 CORE_ADDR fp;
2305
2306 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2307
2308 /* See the end of i386_push_dummy_call. */
2309 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2310 }
2311
2312 /* _Decimal128 function return values need 16-byte alignment on the
2313 stack. */
2314
2315 static CORE_ADDR
2316 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2317 {
2318 return sp & -(CORE_ADDR)16;
2319 }
2320 \f
2321
2322 /* Figure out where the longjmp will land. Slurp the args out of the
2323 stack. We expect the first arg to be a pointer to the jmp_buf
2324 structure from which we extract the address that we will land at.
2325 This address is copied into PC. This routine returns non-zero on
2326 success. */
2327
2328 static int
2329 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2330 {
2331 gdb_byte buf[4];
2332 CORE_ADDR sp, jb_addr;
2333 struct gdbarch *gdbarch = get_frame_arch (frame);
2334 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2335 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2336
2337 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2338 longjmp will land. */
2339 if (jb_pc_offset == -1)
2340 return 0;
2341
2342 get_frame_register (frame, I386_ESP_REGNUM, buf);
2343 sp = extract_unsigned_integer (buf, 4, byte_order);
2344 if (target_read_memory (sp + 4, buf, 4))
2345 return 0;
2346
2347 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2348 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2349 return 0;
2350
2351 *pc = extract_unsigned_integer (buf, 4, byte_order);
2352 return 1;
2353 }
2354 \f
2355
2356 /* Check whether TYPE must be 16-byte-aligned when passed as a
2357 function argument. 16-byte vectors, _Decimal128 and structures or
2358 unions containing such types must be 16-byte-aligned; other
2359 arguments are 4-byte-aligned. */
2360
2361 static int
2362 i386_16_byte_align_p (struct type *type)
2363 {
2364 type = check_typedef (type);
2365 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2366 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2367 && TYPE_LENGTH (type) == 16)
2368 return 1;
2369 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2370 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2371 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2372 || TYPE_CODE (type) == TYPE_CODE_UNION)
2373 {
2374 int i;
2375 for (i = 0; i < TYPE_NFIELDS (type); i++)
2376 {
2377 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2378 return 1;
2379 }
2380 }
2381 return 0;
2382 }
2383
2384 /* Implementation for set_gdbarch_push_dummy_code. */
2385
2386 static CORE_ADDR
2387 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2388 struct value **args, int nargs, struct type *value_type,
2389 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2390 struct regcache *regcache)
2391 {
2392 /* Use 0xcc breakpoint - 1 byte. */
2393 *bp_addr = sp - 1;
2394 *real_pc = funaddr;
2395
2396 /* Keep the stack aligned. */
2397 return sp - 16;
2398 }
2399
2400 static CORE_ADDR
2401 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2402 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2403 struct value **args, CORE_ADDR sp, int struct_return,
2404 CORE_ADDR struct_addr)
2405 {
2406 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2407 gdb_byte buf[4];
2408 int i;
2409 int write_pass;
2410 int args_space = 0;
2411
2412 /* Determine the total space required for arguments and struct
2413 return address in a first pass (allowing for 16-byte-aligned
2414 arguments), then push arguments in a second pass. */
2415
2416 for (write_pass = 0; write_pass < 2; write_pass++)
2417 {
2418 int args_space_used = 0;
2419
2420 if (struct_return)
2421 {
2422 if (write_pass)
2423 {
2424 /* Push value address. */
2425 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2426 write_memory (sp, buf, 4);
2427 args_space_used += 4;
2428 }
2429 else
2430 args_space += 4;
2431 }
2432
2433 for (i = 0; i < nargs; i++)
2434 {
2435 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2436
2437 if (write_pass)
2438 {
2439 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2440 args_space_used = align_up (args_space_used, 16);
2441
2442 write_memory (sp + args_space_used,
2443 value_contents_all (args[i]), len);
2444 /* The System V ABI says that:
2445
2446 "An argument's size is increased, if necessary, to make it a
2447 multiple of [32-bit] words. This may require tail padding,
2448 depending on the size of the argument."
2449
2450 This makes sure the stack stays word-aligned. */
2451 args_space_used += align_up (len, 4);
2452 }
2453 else
2454 {
2455 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2456 args_space = align_up (args_space, 16);
2457 args_space += align_up (len, 4);
2458 }
2459 }
2460
2461 if (!write_pass)
2462 {
2463 sp -= args_space;
2464
2465 /* The original System V ABI only requires word alignment,
2466 but modern incarnations need 16-byte alignment in order
2467 to support SSE. Since wasting a few bytes here isn't
2468 harmful we unconditionally enforce 16-byte alignment. */
2469 sp &= ~0xf;
2470 }
2471 }
2472
2473 /* Store return address. */
2474 sp -= 4;
2475 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2476 write_memory (sp, buf, 4);
2477
2478 /* Finally, update the stack pointer... */
2479 store_unsigned_integer (buf, 4, byte_order, sp);
2480 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2481
2482 /* ...and fake a frame pointer. */
2483 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2484
2485 /* MarkK wrote: This "+ 8" is all over the place:
2486 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2487 i386_dummy_id). It's there, since all frame unwinders for
2488 a given target have to agree (within a certain margin) on the
2489 definition of the stack address of a frame. Otherwise frame id
2490 comparison might not work correctly. Since DWARF2/GCC uses the
2491 stack address *before* the function call as a frame's CFA. On
2492 the i386, when %ebp is used as a frame pointer, the offset
2493 between the contents %ebp and the CFA as defined by GCC. */
2494 return sp + 8;
2495 }
2496
2497 /* These registers are used for returning integers (and on some
2498 targets also for returning `struct' and `union' values when their
2499 size and alignment match an integer type). */
2500 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2501 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2502
2503 /* Read, for architecture GDBARCH, a function return value of TYPE
2504 from REGCACHE, and copy that into VALBUF. */
2505
2506 static void
2507 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2508 struct regcache *regcache, gdb_byte *valbuf)
2509 {
2510 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2511 int len = TYPE_LENGTH (type);
2512 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2513
2514 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2515 {
2516 if (tdep->st0_regnum < 0)
2517 {
2518 warning (_("Cannot find floating-point return value."));
2519 memset (valbuf, 0, len);
2520 return;
2521 }
2522
2523 /* Floating-point return values can be found in %st(0). Convert
2524 its contents to the desired type. This is probably not
2525 exactly how it would happen on the target itself, but it is
2526 the best we can do. */
2527 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2528 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2529 }
2530 else
2531 {
2532 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2533 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2534
2535 if (len <= low_size)
2536 {
2537 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2538 memcpy (valbuf, buf, len);
2539 }
2540 else if (len <= (low_size + high_size))
2541 {
2542 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2543 memcpy (valbuf, buf, low_size);
2544 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2545 memcpy (valbuf + low_size, buf, len - low_size);
2546 }
2547 else
2548 internal_error (__FILE__, __LINE__,
2549 _("Cannot extract return value of %d bytes long."),
2550 len);
2551 }
2552 }
2553
2554 /* Write, for architecture GDBARCH, a function return value of TYPE
2555 from VALBUF into REGCACHE. */
2556
2557 static void
2558 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2559 struct regcache *regcache, const gdb_byte *valbuf)
2560 {
2561 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2562 int len = TYPE_LENGTH (type);
2563
2564 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2565 {
2566 ULONGEST fstat;
2567 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2568
2569 if (tdep->st0_regnum < 0)
2570 {
2571 warning (_("Cannot set floating-point return value."));
2572 return;
2573 }
2574
2575 /* Returning floating-point values is a bit tricky. Apart from
2576 storing the return value in %st(0), we have to simulate the
2577 state of the FPU at function return point. */
2578
2579 /* Convert the value found in VALBUF to the extended
2580 floating-point format used by the FPU. This is probably
2581 not exactly how it would happen on the target itself, but
2582 it is the best we can do. */
2583 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2584 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2585
2586 /* Set the top of the floating-point register stack to 7. The
2587 actual value doesn't really matter, but 7 is what a normal
2588 function return would end up with if the program started out
2589 with a freshly initialized FPU. */
2590 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2591 fstat |= (7 << 11);
2592 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2593
2594 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2595 the floating-point register stack to 7, the appropriate value
2596 for the tag word is 0x3fff. */
2597 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2598 }
2599 else
2600 {
2601 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2602 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2603
2604 if (len <= low_size)
2605 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2606 else if (len <= (low_size + high_size))
2607 {
2608 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2609 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2610 len - low_size, valbuf + low_size);
2611 }
2612 else
2613 internal_error (__FILE__, __LINE__,
2614 _("Cannot store return value of %d bytes long."), len);
2615 }
2616 }
2617 \f
2618
2619 /* This is the variable that is set with "set struct-convention", and
2620 its legitimate values. */
2621 static const char default_struct_convention[] = "default";
2622 static const char pcc_struct_convention[] = "pcc";
2623 static const char reg_struct_convention[] = "reg";
2624 static const char *const valid_conventions[] =
2625 {
2626 default_struct_convention,
2627 pcc_struct_convention,
2628 reg_struct_convention,
2629 NULL
2630 };
2631 static const char *struct_convention = default_struct_convention;
2632
2633 /* Return non-zero if TYPE, which is assumed to be a structure,
2634 a union type, or an array type, should be returned in registers
2635 for architecture GDBARCH. */
2636
2637 static int
2638 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2639 {
2640 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2641 enum type_code code = TYPE_CODE (type);
2642 int len = TYPE_LENGTH (type);
2643
2644 gdb_assert (code == TYPE_CODE_STRUCT
2645 || code == TYPE_CODE_UNION
2646 || code == TYPE_CODE_ARRAY);
2647
2648 if (struct_convention == pcc_struct_convention
2649 || (struct_convention == default_struct_convention
2650 && tdep->struct_return == pcc_struct_return))
2651 return 0;
2652
2653 /* Structures consisting of a single `float', `double' or 'long
2654 double' member are returned in %st(0). */
2655 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2656 {
2657 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2658 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2659 return (len == 4 || len == 8 || len == 12);
2660 }
2661
2662 return (len == 1 || len == 2 || len == 4 || len == 8);
2663 }
2664
2665 /* Determine, for architecture GDBARCH, how a return value of TYPE
2666 should be returned. If it is supposed to be returned in registers,
2667 and READBUF is non-zero, read the appropriate value from REGCACHE,
2668 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2669 from WRITEBUF into REGCACHE. */
2670
2671 static enum return_value_convention
2672 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2673 struct type *type, struct regcache *regcache,
2674 gdb_byte *readbuf, const gdb_byte *writebuf)
2675 {
2676 enum type_code code = TYPE_CODE (type);
2677
2678 if (((code == TYPE_CODE_STRUCT
2679 || code == TYPE_CODE_UNION
2680 || code == TYPE_CODE_ARRAY)
2681 && !i386_reg_struct_return_p (gdbarch, type))
2682 /* Complex double and long double uses the struct return covention. */
2683 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2684 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2685 /* 128-bit decimal float uses the struct return convention. */
2686 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2687 {
2688 /* The System V ABI says that:
2689
2690 "A function that returns a structure or union also sets %eax
2691 to the value of the original address of the caller's area
2692 before it returns. Thus when the caller receives control
2693 again, the address of the returned object resides in register
2694 %eax and can be used to access the object."
2695
2696 So the ABI guarantees that we can always find the return
2697 value just after the function has returned. */
2698
2699 /* Note that the ABI doesn't mention functions returning arrays,
2700 which is something possible in certain languages such as Ada.
2701 In this case, the value is returned as if it was wrapped in
2702 a record, so the convention applied to records also applies
2703 to arrays. */
2704
2705 if (readbuf)
2706 {
2707 ULONGEST addr;
2708
2709 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2710 read_memory (addr, readbuf, TYPE_LENGTH (type));
2711 }
2712
2713 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2714 }
2715
2716 /* This special case is for structures consisting of a single
2717 `float', `double' or 'long double' member. These structures are
2718 returned in %st(0). For these structures, we call ourselves
2719 recursively, changing TYPE into the type of the first member of
2720 the structure. Since that should work for all structures that
2721 have only one member, we don't bother to check the member's type
2722 here. */
2723 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2724 {
2725 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2726 return i386_return_value (gdbarch, function, type, regcache,
2727 readbuf, writebuf);
2728 }
2729
2730 if (readbuf)
2731 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2732 if (writebuf)
2733 i386_store_return_value (gdbarch, type, regcache, writebuf);
2734
2735 return RETURN_VALUE_REGISTER_CONVENTION;
2736 }
2737 \f
2738
2739 struct type *
2740 i387_ext_type (struct gdbarch *gdbarch)
2741 {
2742 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2743
2744 if (!tdep->i387_ext_type)
2745 {
2746 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2747 gdb_assert (tdep->i387_ext_type != NULL);
2748 }
2749
2750 return tdep->i387_ext_type;
2751 }
2752
2753 /* Construct vector type for pseudo YMM registers. We can't use
2754 tdesc_find_type since YMM isn't described in target description. */
2755
2756 static struct type *
2757 i386_ymm_type (struct gdbarch *gdbarch)
2758 {
2759 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2760
2761 if (!tdep->i386_ymm_type)
2762 {
2763 const struct builtin_type *bt = builtin_type (gdbarch);
2764
2765 /* The type we're building is this: */
2766 #if 0
2767 union __gdb_builtin_type_vec256i
2768 {
2769 int128_t uint128[2];
2770 int64_t v2_int64[4];
2771 int32_t v4_int32[8];
2772 int16_t v8_int16[16];
2773 int8_t v16_int8[32];
2774 double v2_double[4];
2775 float v4_float[8];
2776 };
2777 #endif
2778
2779 struct type *t;
2780
2781 t = arch_composite_type (gdbarch,
2782 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2783 append_composite_type_field (t, "v8_float",
2784 init_vector_type (bt->builtin_float, 8));
2785 append_composite_type_field (t, "v4_double",
2786 init_vector_type (bt->builtin_double, 4));
2787 append_composite_type_field (t, "v32_int8",
2788 init_vector_type (bt->builtin_int8, 32));
2789 append_composite_type_field (t, "v16_int16",
2790 init_vector_type (bt->builtin_int16, 16));
2791 append_composite_type_field (t, "v8_int32",
2792 init_vector_type (bt->builtin_int32, 8));
2793 append_composite_type_field (t, "v4_int64",
2794 init_vector_type (bt->builtin_int64, 4));
2795 append_composite_type_field (t, "v2_int128",
2796 init_vector_type (bt->builtin_int128, 2));
2797
2798 TYPE_VECTOR (t) = 1;
2799 TYPE_NAME (t) = "builtin_type_vec256i";
2800 tdep->i386_ymm_type = t;
2801 }
2802
2803 return tdep->i386_ymm_type;
2804 }
2805
2806 /* Construct vector type for MMX registers. */
2807 static struct type *
2808 i386_mmx_type (struct gdbarch *gdbarch)
2809 {
2810 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2811
2812 if (!tdep->i386_mmx_type)
2813 {
2814 const struct builtin_type *bt = builtin_type (gdbarch);
2815
2816 /* The type we're building is this: */
2817 #if 0
2818 union __gdb_builtin_type_vec64i
2819 {
2820 int64_t uint64;
2821 int32_t v2_int32[2];
2822 int16_t v4_int16[4];
2823 int8_t v8_int8[8];
2824 };
2825 #endif
2826
2827 struct type *t;
2828
2829 t = arch_composite_type (gdbarch,
2830 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2831
2832 append_composite_type_field (t, "uint64", bt->builtin_int64);
2833 append_composite_type_field (t, "v2_int32",
2834 init_vector_type (bt->builtin_int32, 2));
2835 append_composite_type_field (t, "v4_int16",
2836 init_vector_type (bt->builtin_int16, 4));
2837 append_composite_type_field (t, "v8_int8",
2838 init_vector_type (bt->builtin_int8, 8));
2839
2840 TYPE_VECTOR (t) = 1;
2841 TYPE_NAME (t) = "builtin_type_vec64i";
2842 tdep->i386_mmx_type = t;
2843 }
2844
2845 return tdep->i386_mmx_type;
2846 }
2847
2848 /* Return the GDB type object for the "standard" data type of data in
2849 register REGNUM. */
2850
2851 struct type *
2852 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2853 {
2854 if (i386_mmx_regnum_p (gdbarch, regnum))
2855 return i386_mmx_type (gdbarch);
2856 else if (i386_ymm_regnum_p (gdbarch, regnum))
2857 return i386_ymm_type (gdbarch);
2858 else
2859 {
2860 const struct builtin_type *bt = builtin_type (gdbarch);
2861 if (i386_byte_regnum_p (gdbarch, regnum))
2862 return bt->builtin_int8;
2863 else if (i386_word_regnum_p (gdbarch, regnum))
2864 return bt->builtin_int16;
2865 else if (i386_dword_regnum_p (gdbarch, regnum))
2866 return bt->builtin_int32;
2867 }
2868
2869 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2870 }
2871
2872 /* Map a cooked register onto a raw register or memory. For the i386,
2873 the MMX registers need to be mapped onto floating point registers. */
2874
2875 static int
2876 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2877 {
2878 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2879 int mmxreg, fpreg;
2880 ULONGEST fstat;
2881 int tos;
2882
2883 mmxreg = regnum - tdep->mm0_regnum;
2884 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2885 tos = (fstat >> 11) & 0x7;
2886 fpreg = (mmxreg + tos) % 8;
2887
2888 return (I387_ST0_REGNUM (tdep) + fpreg);
2889 }
2890
2891 /* A helper function for us by i386_pseudo_register_read_value and
2892 amd64_pseudo_register_read_value. It does all the work but reads
2893 the data into an already-allocated value. */
2894
2895 void
2896 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
2897 struct regcache *regcache,
2898 int regnum,
2899 struct value *result_value)
2900 {
2901 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2902 enum register_status status;
2903 gdb_byte *buf = value_contents_raw (result_value);
2904
2905 if (i386_mmx_regnum_p (gdbarch, regnum))
2906 {
2907 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2908
2909 /* Extract (always little endian). */
2910 status = regcache_raw_read (regcache, fpnum, raw_buf);
2911 if (status != REG_VALID)
2912 mark_value_bytes_unavailable (result_value, 0,
2913 TYPE_LENGTH (value_type (result_value)));
2914 else
2915 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
2916 }
2917 else
2918 {
2919 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2920
2921 if (i386_ymm_regnum_p (gdbarch, regnum))
2922 {
2923 regnum -= tdep->ymm0_regnum;
2924
2925 /* Extract (always little endian). Read lower 128bits. */
2926 status = regcache_raw_read (regcache,
2927 I387_XMM0_REGNUM (tdep) + regnum,
2928 raw_buf);
2929 if (status != REG_VALID)
2930 mark_value_bytes_unavailable (result_value, 0, 16);
2931 else
2932 memcpy (buf, raw_buf, 16);
2933 /* Read upper 128bits. */
2934 status = regcache_raw_read (regcache,
2935 tdep->ymm0h_regnum + regnum,
2936 raw_buf);
2937 if (status != REG_VALID)
2938 mark_value_bytes_unavailable (result_value, 16, 32);
2939 else
2940 memcpy (buf + 16, raw_buf, 16);
2941 }
2942 else if (i386_word_regnum_p (gdbarch, regnum))
2943 {
2944 int gpnum = regnum - tdep->ax_regnum;
2945
2946 /* Extract (always little endian). */
2947 status = regcache_raw_read (regcache, gpnum, raw_buf);
2948 if (status != REG_VALID)
2949 mark_value_bytes_unavailable (result_value, 0,
2950 TYPE_LENGTH (value_type (result_value)));
2951 else
2952 memcpy (buf, raw_buf, 2);
2953 }
2954 else if (i386_byte_regnum_p (gdbarch, regnum))
2955 {
2956 /* Check byte pseudo registers last since this function will
2957 be called from amd64_pseudo_register_read, which handles
2958 byte pseudo registers differently. */
2959 int gpnum = regnum - tdep->al_regnum;
2960
2961 /* Extract (always little endian). We read both lower and
2962 upper registers. */
2963 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
2964 if (status != REG_VALID)
2965 mark_value_bytes_unavailable (result_value, 0,
2966 TYPE_LENGTH (value_type (result_value)));
2967 else if (gpnum >= 4)
2968 memcpy (buf, raw_buf + 1, 1);
2969 else
2970 memcpy (buf, raw_buf, 1);
2971 }
2972 else
2973 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2974 }
2975 }
2976
2977 static struct value *
2978 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
2979 struct regcache *regcache,
2980 int regnum)
2981 {
2982 struct value *result;
2983
2984 result = allocate_value (register_type (gdbarch, regnum));
2985 VALUE_LVAL (result) = lval_register;
2986 VALUE_REGNUM (result) = regnum;
2987
2988 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
2989
2990 return result;
2991 }
2992
2993 void
2994 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2995 int regnum, const gdb_byte *buf)
2996 {
2997 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2998
2999 if (i386_mmx_regnum_p (gdbarch, regnum))
3000 {
3001 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3002
3003 /* Read ... */
3004 regcache_raw_read (regcache, fpnum, raw_buf);
3005 /* ... Modify ... (always little endian). */
3006 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3007 /* ... Write. */
3008 regcache_raw_write (regcache, fpnum, raw_buf);
3009 }
3010 else
3011 {
3012 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3013
3014 if (i386_ymm_regnum_p (gdbarch, regnum))
3015 {
3016 regnum -= tdep->ymm0_regnum;
3017
3018 /* ... Write lower 128bits. */
3019 regcache_raw_write (regcache,
3020 I387_XMM0_REGNUM (tdep) + regnum,
3021 buf);
3022 /* ... Write upper 128bits. */
3023 regcache_raw_write (regcache,
3024 tdep->ymm0h_regnum + regnum,
3025 buf + 16);
3026 }
3027 else if (i386_word_regnum_p (gdbarch, regnum))
3028 {
3029 int gpnum = regnum - tdep->ax_regnum;
3030
3031 /* Read ... */
3032 regcache_raw_read (regcache, gpnum, raw_buf);
3033 /* ... Modify ... (always little endian). */
3034 memcpy (raw_buf, buf, 2);
3035 /* ... Write. */
3036 regcache_raw_write (regcache, gpnum, raw_buf);
3037 }
3038 else if (i386_byte_regnum_p (gdbarch, regnum))
3039 {
3040 /* Check byte pseudo registers last since this function will
3041 be called from amd64_pseudo_register_read, which handles
3042 byte pseudo registers differently. */
3043 int gpnum = regnum - tdep->al_regnum;
3044
3045 /* Read ... We read both lower and upper registers. */
3046 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3047 /* ... Modify ... (always little endian). */
3048 if (gpnum >= 4)
3049 memcpy (raw_buf + 1, buf, 1);
3050 else
3051 memcpy (raw_buf, buf, 1);
3052 /* ... Write. */
3053 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3054 }
3055 else
3056 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3057 }
3058 }
3059 \f
3060
3061 /* Return the register number of the register allocated by GCC after
3062 REGNUM, or -1 if there is no such register. */
3063
3064 static int
3065 i386_next_regnum (int regnum)
3066 {
3067 /* GCC allocates the registers in the order:
3068
3069 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3070
3071 Since storing a variable in %esp doesn't make any sense we return
3072 -1 for %ebp and for %esp itself. */
3073 static int next_regnum[] =
3074 {
3075 I386_EDX_REGNUM, /* Slot for %eax. */
3076 I386_EBX_REGNUM, /* Slot for %ecx. */
3077 I386_ECX_REGNUM, /* Slot for %edx. */
3078 I386_ESI_REGNUM, /* Slot for %ebx. */
3079 -1, -1, /* Slots for %esp and %ebp. */
3080 I386_EDI_REGNUM, /* Slot for %esi. */
3081 I386_EBP_REGNUM /* Slot for %edi. */
3082 };
3083
3084 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3085 return next_regnum[regnum];
3086
3087 return -1;
3088 }
3089
3090 /* Return nonzero if a value of type TYPE stored in register REGNUM
3091 needs any special handling. */
3092
3093 static int
3094 i386_convert_register_p (struct gdbarch *gdbarch,
3095 int regnum, struct type *type)
3096 {
3097 int len = TYPE_LENGTH (type);
3098
3099 /* Values may be spread across multiple registers. Most debugging
3100 formats aren't expressive enough to specify the locations, so
3101 some heuristics is involved. Right now we only handle types that
3102 have a length that is a multiple of the word size, since GCC
3103 doesn't seem to put any other types into registers. */
3104 if (len > 4 && len % 4 == 0)
3105 {
3106 int last_regnum = regnum;
3107
3108 while (len > 4)
3109 {
3110 last_regnum = i386_next_regnum (last_regnum);
3111 len -= 4;
3112 }
3113
3114 if (last_regnum != -1)
3115 return 1;
3116 }
3117
3118 return i387_convert_register_p (gdbarch, regnum, type);
3119 }
3120
3121 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3122 return its contents in TO. */
3123
3124 static int
3125 i386_register_to_value (struct frame_info *frame, int regnum,
3126 struct type *type, gdb_byte *to,
3127 int *optimizedp, int *unavailablep)
3128 {
3129 struct gdbarch *gdbarch = get_frame_arch (frame);
3130 int len = TYPE_LENGTH (type);
3131
3132 if (i386_fp_regnum_p (gdbarch, regnum))
3133 return i387_register_to_value (frame, regnum, type, to,
3134 optimizedp, unavailablep);
3135
3136 /* Read a value spread across multiple registers. */
3137
3138 gdb_assert (len > 4 && len % 4 == 0);
3139
3140 while (len > 0)
3141 {
3142 gdb_assert (regnum != -1);
3143 gdb_assert (register_size (gdbarch, regnum) == 4);
3144
3145 if (!get_frame_register_bytes (frame, regnum, 0,
3146 register_size (gdbarch, regnum),
3147 to, optimizedp, unavailablep))
3148 return 0;
3149
3150 regnum = i386_next_regnum (regnum);
3151 len -= 4;
3152 to += 4;
3153 }
3154
3155 *optimizedp = *unavailablep = 0;
3156 return 1;
3157 }
3158
3159 /* Write the contents FROM of a value of type TYPE into register
3160 REGNUM in frame FRAME. */
3161
3162 static void
3163 i386_value_to_register (struct frame_info *frame, int regnum,
3164 struct type *type, const gdb_byte *from)
3165 {
3166 int len = TYPE_LENGTH (type);
3167
3168 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3169 {
3170 i387_value_to_register (frame, regnum, type, from);
3171 return;
3172 }
3173
3174 /* Write a value spread across multiple registers. */
3175
3176 gdb_assert (len > 4 && len % 4 == 0);
3177
3178 while (len > 0)
3179 {
3180 gdb_assert (regnum != -1);
3181 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3182
3183 put_frame_register (frame, regnum, from);
3184 regnum = i386_next_regnum (regnum);
3185 len -= 4;
3186 from += 4;
3187 }
3188 }
3189 \f
3190 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3191 in the general-purpose register set REGSET to register cache
3192 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3193
3194 void
3195 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3196 int regnum, const void *gregs, size_t len)
3197 {
3198 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3199 const gdb_byte *regs = gregs;
3200 int i;
3201
3202 gdb_assert (len == tdep->sizeof_gregset);
3203
3204 for (i = 0; i < tdep->gregset_num_regs; i++)
3205 {
3206 if ((regnum == i || regnum == -1)
3207 && tdep->gregset_reg_offset[i] != -1)
3208 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3209 }
3210 }
3211
3212 /* Collect register REGNUM from the register cache REGCACHE and store
3213 it in the buffer specified by GREGS and LEN as described by the
3214 general-purpose register set REGSET. If REGNUM is -1, do this for
3215 all registers in REGSET. */
3216
3217 void
3218 i386_collect_gregset (const struct regset *regset,
3219 const struct regcache *regcache,
3220 int regnum, void *gregs, size_t len)
3221 {
3222 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3223 gdb_byte *regs = gregs;
3224 int i;
3225
3226 gdb_assert (len == tdep->sizeof_gregset);
3227
3228 for (i = 0; i < tdep->gregset_num_regs; i++)
3229 {
3230 if ((regnum == i || regnum == -1)
3231 && tdep->gregset_reg_offset[i] != -1)
3232 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3233 }
3234 }
3235
3236 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3237 in the floating-point register set REGSET to register cache
3238 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3239
3240 static void
3241 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3242 int regnum, const void *fpregs, size_t len)
3243 {
3244 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3245
3246 if (len == I387_SIZEOF_FXSAVE)
3247 {
3248 i387_supply_fxsave (regcache, regnum, fpregs);
3249 return;
3250 }
3251
3252 gdb_assert (len == tdep->sizeof_fpregset);
3253 i387_supply_fsave (regcache, regnum, fpregs);
3254 }
3255
3256 /* Collect register REGNUM from the register cache REGCACHE and store
3257 it in the buffer specified by FPREGS and LEN as described by the
3258 floating-point register set REGSET. If REGNUM is -1, do this for
3259 all registers in REGSET. */
3260
3261 static void
3262 i386_collect_fpregset (const struct regset *regset,
3263 const struct regcache *regcache,
3264 int regnum, void *fpregs, size_t len)
3265 {
3266 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3267
3268 if (len == I387_SIZEOF_FXSAVE)
3269 {
3270 i387_collect_fxsave (regcache, regnum, fpregs);
3271 return;
3272 }
3273
3274 gdb_assert (len == tdep->sizeof_fpregset);
3275 i387_collect_fsave (regcache, regnum, fpregs);
3276 }
3277
3278 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3279
3280 static void
3281 i386_supply_xstateregset (const struct regset *regset,
3282 struct regcache *regcache, int regnum,
3283 const void *xstateregs, size_t len)
3284 {
3285 i387_supply_xsave (regcache, regnum, xstateregs);
3286 }
3287
3288 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3289
3290 static void
3291 i386_collect_xstateregset (const struct regset *regset,
3292 const struct regcache *regcache,
3293 int regnum, void *xstateregs, size_t len)
3294 {
3295 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3296 }
3297
3298 /* Return the appropriate register set for the core section identified
3299 by SECT_NAME and SECT_SIZE. */
3300
3301 const struct regset *
3302 i386_regset_from_core_section (struct gdbarch *gdbarch,
3303 const char *sect_name, size_t sect_size)
3304 {
3305 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3306
3307 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3308 {
3309 if (tdep->gregset == NULL)
3310 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3311 i386_collect_gregset);
3312 return tdep->gregset;
3313 }
3314
3315 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3316 || (strcmp (sect_name, ".reg-xfp") == 0
3317 && sect_size == I387_SIZEOF_FXSAVE))
3318 {
3319 if (tdep->fpregset == NULL)
3320 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3321 i386_collect_fpregset);
3322 return tdep->fpregset;
3323 }
3324
3325 if (strcmp (sect_name, ".reg-xstate") == 0)
3326 {
3327 if (tdep->xstateregset == NULL)
3328 tdep->xstateregset = regset_alloc (gdbarch,
3329 i386_supply_xstateregset,
3330 i386_collect_xstateregset);
3331
3332 return tdep->xstateregset;
3333 }
3334
3335 return NULL;
3336 }
3337 \f
3338
3339 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3340
3341 CORE_ADDR
3342 i386_pe_skip_trampoline_code (struct frame_info *frame,
3343 CORE_ADDR pc, char *name)
3344 {
3345 struct gdbarch *gdbarch = get_frame_arch (frame);
3346 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3347
3348 /* jmp *(dest) */
3349 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3350 {
3351 unsigned long indirect =
3352 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3353 struct minimal_symbol *indsym =
3354 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3355 const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
3356
3357 if (symname)
3358 {
3359 if (strncmp (symname, "__imp_", 6) == 0
3360 || strncmp (symname, "_imp_", 5) == 0)
3361 return name ? 1 :
3362 read_memory_unsigned_integer (indirect, 4, byte_order);
3363 }
3364 }
3365 return 0; /* Not a trampoline. */
3366 }
3367 \f
3368
3369 /* Return whether the THIS_FRAME corresponds to a sigtramp
3370 routine. */
3371
3372 int
3373 i386_sigtramp_p (struct frame_info *this_frame)
3374 {
3375 CORE_ADDR pc = get_frame_pc (this_frame);
3376 const char *name;
3377
3378 find_pc_partial_function (pc, &name, NULL, NULL);
3379 return (name && strcmp ("_sigtramp", name) == 0);
3380 }
3381 \f
3382
3383 /* We have two flavours of disassembly. The machinery on this page
3384 deals with switching between those. */
3385
3386 static int
3387 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3388 {
3389 gdb_assert (disassembly_flavor == att_flavor
3390 || disassembly_flavor == intel_flavor);
3391
3392 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3393 constified, cast to prevent a compiler warning. */
3394 info->disassembler_options = (char *) disassembly_flavor;
3395
3396 return print_insn_i386 (pc, info);
3397 }
3398 \f
3399
3400 /* There are a few i386 architecture variants that differ only
3401 slightly from the generic i386 target. For now, we don't give them
3402 their own source file, but include them here. As a consequence,
3403 they'll always be included. */
3404
3405 /* System V Release 4 (SVR4). */
3406
3407 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3408 routine. */
3409
3410 static int
3411 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3412 {
3413 CORE_ADDR pc = get_frame_pc (this_frame);
3414 const char *name;
3415
3416 /* The origin of these symbols is currently unknown. */
3417 find_pc_partial_function (pc, &name, NULL, NULL);
3418 return (name && (strcmp ("_sigreturn", name) == 0
3419 || strcmp ("sigvechandler", name) == 0));
3420 }
3421
3422 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3423 address of the associated sigcontext (ucontext) structure. */
3424
3425 static CORE_ADDR
3426 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3427 {
3428 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3429 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3430 gdb_byte buf[4];
3431 CORE_ADDR sp;
3432
3433 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3434 sp = extract_unsigned_integer (buf, 4, byte_order);
3435
3436 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3437 }
3438
3439 \f
3440
3441 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3442 gdbarch.h. */
3443
3444 int
3445 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3446 {
3447 return (*s == '$' /* Literal number. */
3448 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3449 || (*s == '(' && s[1] == '%') /* Register indirection. */
3450 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3451 }
3452
3453 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
3454 gdbarch.h. */
3455
3456 int
3457 i386_stap_parse_special_token (struct gdbarch *gdbarch,
3458 struct stap_parse_info *p)
3459 {
3460 /* In order to parse special tokens, we use a state-machine that go
3461 through every known token and try to get a match. */
3462 enum
3463 {
3464 TRIPLET,
3465 THREE_ARG_DISPLACEMENT,
3466 DONE
3467 } current_state;
3468
3469 current_state = TRIPLET;
3470
3471 /* The special tokens to be parsed here are:
3472
3473 - `register base + (register index * size) + offset', as represented
3474 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3475
3476 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
3477 `*(-8 + 3 - 1 + (void *) $eax)'. */
3478
3479 while (current_state != DONE)
3480 {
3481 const char *s = p->arg;
3482
3483 switch (current_state)
3484 {
3485 case TRIPLET:
3486 {
3487 if (isdigit (*s) || *s == '-' || *s == '+')
3488 {
3489 int got_minus[3];
3490 int i;
3491 long displacements[3];
3492 const char *start;
3493 char *regname;
3494 int len;
3495 struct stoken str;
3496 char *endp;
3497
3498 got_minus[0] = 0;
3499 if (*s == '+')
3500 ++s;
3501 else if (*s == '-')
3502 {
3503 ++s;
3504 got_minus[0] = 1;
3505 }
3506
3507 displacements[0] = strtol (s, &endp, 10);
3508 s = endp;
3509
3510 if (*s != '+' && *s != '-')
3511 {
3512 /* We are not dealing with a triplet. */
3513 break;
3514 }
3515
3516 got_minus[1] = 0;
3517 if (*s == '+')
3518 ++s;
3519 else
3520 {
3521 ++s;
3522 got_minus[1] = 1;
3523 }
3524
3525 displacements[1] = strtol (s, &endp, 10);
3526 s = endp;
3527
3528 if (*s != '+' && *s != '-')
3529 {
3530 /* We are not dealing with a triplet. */
3531 break;
3532 }
3533
3534 got_minus[2] = 0;
3535 if (*s == '+')
3536 ++s;
3537 else
3538 {
3539 ++s;
3540 got_minus[2] = 1;
3541 }
3542
3543 displacements[2] = strtol (s, &endp, 10);
3544 s = endp;
3545
3546 if (*s != '(' || s[1] != '%')
3547 break;
3548
3549 s += 2;
3550 start = s;
3551
3552 while (isalnum (*s))
3553 ++s;
3554
3555 if (*s++ != ')')
3556 break;
3557
3558 len = s - start;
3559 regname = alloca (len + 1);
3560
3561 strncpy (regname, start, len);
3562 regname[len] = '\0';
3563
3564 if (user_reg_map_name_to_regnum (gdbarch,
3565 regname, len) == -1)
3566 error (_("Invalid register name `%s' "
3567 "on expression `%s'."),
3568 regname, p->saved_arg);
3569
3570 for (i = 0; i < 3; i++)
3571 {
3572 write_exp_elt_opcode (OP_LONG);
3573 write_exp_elt_type
3574 (builtin_type (gdbarch)->builtin_long);
3575 write_exp_elt_longcst (displacements[i]);
3576 write_exp_elt_opcode (OP_LONG);
3577 if (got_minus[i])
3578 write_exp_elt_opcode (UNOP_NEG);
3579 }
3580
3581 write_exp_elt_opcode (OP_REGISTER);
3582 str.ptr = regname;
3583 str.length = len;
3584 write_exp_string (str);
3585 write_exp_elt_opcode (OP_REGISTER);
3586
3587 write_exp_elt_opcode (UNOP_CAST);
3588 write_exp_elt_type (builtin_type (gdbarch)->builtin_data_ptr);
3589 write_exp_elt_opcode (UNOP_CAST);
3590
3591 write_exp_elt_opcode (BINOP_ADD);
3592 write_exp_elt_opcode (BINOP_ADD);
3593 write_exp_elt_opcode (BINOP_ADD);
3594
3595 write_exp_elt_opcode (UNOP_CAST);
3596 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3597 write_exp_elt_opcode (UNOP_CAST);
3598
3599 write_exp_elt_opcode (UNOP_IND);
3600
3601 p->arg = s;
3602
3603 return 1;
3604 }
3605 break;
3606 }
3607 case THREE_ARG_DISPLACEMENT:
3608 {
3609 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
3610 {
3611 int offset_minus = 0;
3612 long offset = 0;
3613 int size_minus = 0;
3614 long size = 0;
3615 const char *start;
3616 char *base;
3617 int len_base;
3618 char *index;
3619 int len_index;
3620 struct stoken base_token, index_token;
3621
3622 if (*s == '+')
3623 ++s;
3624 else if (*s == '-')
3625 {
3626 ++s;
3627 offset_minus = 1;
3628 }
3629
3630 if (offset_minus && !isdigit (*s))
3631 break;
3632
3633 if (isdigit (*s))
3634 {
3635 char *endp;
3636
3637 offset = strtol (s, &endp, 10);
3638 s = endp;
3639 }
3640
3641 if (*s != '(' || s[1] != '%')
3642 break;
3643
3644 s += 2;
3645 start = s;
3646
3647 while (isalnum (*s))
3648 ++s;
3649
3650 if (*s != ',' || s[1] != '%')
3651 break;
3652
3653 len_base = s - start;
3654 base = alloca (len_base + 1);
3655 strncpy (base, start, len_base);
3656 base[len_base] = '\0';
3657
3658 if (user_reg_map_name_to_regnum (gdbarch,
3659 base, len_base) == -1)
3660 error (_("Invalid register name `%s' "
3661 "on expression `%s'."),
3662 base, p->saved_arg);
3663
3664 s += 2;
3665 start = s;
3666
3667 while (isalnum (*s))
3668 ++s;
3669
3670 len_index = s - start;
3671 index = alloca (len_index + 1);
3672 strncpy (index, start, len_index);
3673 index[len_index] = '\0';
3674
3675 if (user_reg_map_name_to_regnum (gdbarch,
3676 index, len_index) == -1)
3677 error (_("Invalid register name `%s' "
3678 "on expression `%s'."),
3679 index, p->saved_arg);
3680
3681 if (*s != ',' && *s != ')')
3682 break;
3683
3684 if (*s == ',')
3685 {
3686 char *endp;
3687
3688 ++s;
3689 if (*s == '+')
3690 ++s;
3691 else if (*s == '-')
3692 {
3693 ++s;
3694 size_minus = 1;
3695 }
3696
3697 size = strtol (s, &endp, 10);
3698 s = endp;
3699
3700 if (*s != ')')
3701 break;
3702 }
3703
3704 ++s;
3705
3706 if (offset)
3707 {
3708 write_exp_elt_opcode (OP_LONG);
3709 write_exp_elt_type
3710 (builtin_type (gdbarch)->builtin_long);
3711 write_exp_elt_longcst (offset);
3712 write_exp_elt_opcode (OP_LONG);
3713 if (offset_minus)
3714 write_exp_elt_opcode (UNOP_NEG);
3715 }
3716
3717 write_exp_elt_opcode (OP_REGISTER);
3718 base_token.ptr = base;
3719 base_token.length = len_base;
3720 write_exp_string (base_token);
3721 write_exp_elt_opcode (OP_REGISTER);
3722
3723 if (offset)
3724 write_exp_elt_opcode (BINOP_ADD);
3725
3726 write_exp_elt_opcode (OP_REGISTER);
3727 index_token.ptr = index;
3728 index_token.length = len_index;
3729 write_exp_string (index_token);
3730 write_exp_elt_opcode (OP_REGISTER);
3731
3732 if (size)
3733 {
3734 write_exp_elt_opcode (OP_LONG);
3735 write_exp_elt_type
3736 (builtin_type (gdbarch)->builtin_long);
3737 write_exp_elt_longcst (size);
3738 write_exp_elt_opcode (OP_LONG);
3739 if (size_minus)
3740 write_exp_elt_opcode (UNOP_NEG);
3741 write_exp_elt_opcode (BINOP_MUL);
3742 }
3743
3744 write_exp_elt_opcode (BINOP_ADD);
3745
3746 write_exp_elt_opcode (UNOP_CAST);
3747 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3748 write_exp_elt_opcode (UNOP_CAST);
3749
3750 write_exp_elt_opcode (UNOP_IND);
3751
3752 p->arg = s;
3753
3754 return 1;
3755 }
3756 break;
3757 }
3758 }
3759
3760 /* Advancing to the next state. */
3761 ++current_state;
3762 }
3763
3764 return 0;
3765 }
3766
3767 \f
3768
3769 /* Generic ELF. */
3770
3771 void
3772 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3773 {
3774 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3775 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3776
3777 /* Registering SystemTap handlers. */
3778 set_gdbarch_stap_integer_prefix (gdbarch, "$");
3779 set_gdbarch_stap_register_prefix (gdbarch, "%");
3780 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
3781 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
3782 set_gdbarch_stap_is_single_operand (gdbarch,
3783 i386_stap_is_single_operand);
3784 set_gdbarch_stap_parse_special_token (gdbarch,
3785 i386_stap_parse_special_token);
3786 }
3787
3788 /* System V Release 4 (SVR4). */
3789
3790 void
3791 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3792 {
3793 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3794
3795 /* System V Release 4 uses ELF. */
3796 i386_elf_init_abi (info, gdbarch);
3797
3798 /* System V Release 4 has shared libraries. */
3799 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3800
3801 tdep->sigtramp_p = i386_svr4_sigtramp_p;
3802 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3803 tdep->sc_pc_offset = 36 + 14 * 4;
3804 tdep->sc_sp_offset = 36 + 17 * 4;
3805
3806 tdep->jb_pc_offset = 20;
3807 }
3808
3809 /* DJGPP. */
3810
3811 static void
3812 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3813 {
3814 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3815
3816 /* DJGPP doesn't have any special frames for signal handlers. */
3817 tdep->sigtramp_p = NULL;
3818
3819 tdep->jb_pc_offset = 36;
3820
3821 /* DJGPP does not support the SSE registers. */
3822 if (! tdesc_has_registers (info.target_desc))
3823 tdep->tdesc = tdesc_i386_mmx;
3824
3825 /* Native compiler is GCC, which uses the SVR4 register numbering
3826 even in COFF and STABS. See the comment in i386_gdbarch_init,
3827 before the calls to set_gdbarch_stab_reg_to_regnum and
3828 set_gdbarch_sdb_reg_to_regnum. */
3829 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3830 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3831
3832 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3833 }
3834 \f
3835
3836 /* i386 register groups. In addition to the normal groups, add "mmx"
3837 and "sse". */
3838
3839 static struct reggroup *i386_sse_reggroup;
3840 static struct reggroup *i386_mmx_reggroup;
3841
3842 static void
3843 i386_init_reggroups (void)
3844 {
3845 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3846 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3847 }
3848
3849 static void
3850 i386_add_reggroups (struct gdbarch *gdbarch)
3851 {
3852 reggroup_add (gdbarch, i386_sse_reggroup);
3853 reggroup_add (gdbarch, i386_mmx_reggroup);
3854 reggroup_add (gdbarch, general_reggroup);
3855 reggroup_add (gdbarch, float_reggroup);
3856 reggroup_add (gdbarch, all_reggroup);
3857 reggroup_add (gdbarch, save_reggroup);
3858 reggroup_add (gdbarch, restore_reggroup);
3859 reggroup_add (gdbarch, vector_reggroup);
3860 reggroup_add (gdbarch, system_reggroup);
3861 }
3862
3863 int
3864 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3865 struct reggroup *group)
3866 {
3867 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3868 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3869 ymm_regnum_p, ymmh_regnum_p;
3870
3871 /* Don't include pseudo registers, except for MMX, in any register
3872 groups. */
3873 if (i386_byte_regnum_p (gdbarch, regnum))
3874 return 0;
3875
3876 if (i386_word_regnum_p (gdbarch, regnum))
3877 return 0;
3878
3879 if (i386_dword_regnum_p (gdbarch, regnum))
3880 return 0;
3881
3882 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
3883 if (group == i386_mmx_reggroup)
3884 return mmx_regnum_p;
3885
3886 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3887 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
3888 if (group == i386_sse_reggroup)
3889 return xmm_regnum_p || mxcsr_regnum_p;
3890
3891 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
3892 if (group == vector_reggroup)
3893 return (mmx_regnum_p
3894 || ymm_regnum_p
3895 || mxcsr_regnum_p
3896 || (xmm_regnum_p
3897 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3898 == I386_XSTATE_SSE_MASK)));
3899
3900 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3901 || i386_fpc_regnum_p (gdbarch, regnum));
3902 if (group == float_reggroup)
3903 return fp_regnum_p;
3904
3905 /* For "info reg all", don't include upper YMM registers nor XMM
3906 registers when AVX is supported. */
3907 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3908 if (group == all_reggroup
3909 && ((xmm_regnum_p
3910 && (tdep->xcr0 & I386_XSTATE_AVX))
3911 || ymmh_regnum_p))
3912 return 0;
3913
3914 if (group == general_reggroup)
3915 return (!fp_regnum_p
3916 && !mmx_regnum_p
3917 && !mxcsr_regnum_p
3918 && !xmm_regnum_p
3919 && !ymm_regnum_p
3920 && !ymmh_regnum_p);
3921
3922 return default_register_reggroup_p (gdbarch, regnum, group);
3923 }
3924 \f
3925
3926 /* Get the ARGIth function argument for the current function. */
3927
3928 static CORE_ADDR
3929 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3930 struct type *type)
3931 {
3932 struct gdbarch *gdbarch = get_frame_arch (frame);
3933 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3934 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
3935 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
3936 }
3937
3938 static void
3939 i386_skip_permanent_breakpoint (struct regcache *regcache)
3940 {
3941 CORE_ADDR current_pc = regcache_read_pc (regcache);
3942
3943 /* On i386, breakpoint is exactly 1 byte long, so we just
3944 adjust the PC in the regcache. */
3945 current_pc += 1;
3946 regcache_write_pc (regcache, current_pc);
3947 }
3948
3949
3950 #define PREFIX_REPZ 0x01
3951 #define PREFIX_REPNZ 0x02
3952 #define PREFIX_LOCK 0x04
3953 #define PREFIX_DATA 0x08
3954 #define PREFIX_ADDR 0x10
3955
3956 /* operand size */
3957 enum
3958 {
3959 OT_BYTE = 0,
3960 OT_WORD,
3961 OT_LONG,
3962 OT_QUAD,
3963 OT_DQUAD,
3964 };
3965
3966 /* i386 arith/logic operations */
3967 enum
3968 {
3969 OP_ADDL,
3970 OP_ORL,
3971 OP_ADCL,
3972 OP_SBBL,
3973 OP_ANDL,
3974 OP_SUBL,
3975 OP_XORL,
3976 OP_CMPL,
3977 };
3978
3979 struct i386_record_s
3980 {
3981 struct gdbarch *gdbarch;
3982 struct regcache *regcache;
3983 CORE_ADDR orig_addr;
3984 CORE_ADDR addr;
3985 int aflag;
3986 int dflag;
3987 int override;
3988 uint8_t modrm;
3989 uint8_t mod, reg, rm;
3990 int ot;
3991 uint8_t rex_x;
3992 uint8_t rex_b;
3993 int rip_offset;
3994 int popl_esp_hack;
3995 const int *regmap;
3996 };
3997
3998 /* Parse the "modrm" part of the memory address irp->addr points at.
3999 Returns -1 if something goes wrong, 0 otherwise. */
4000
4001 static int
4002 i386_record_modrm (struct i386_record_s *irp)
4003 {
4004 struct gdbarch *gdbarch = irp->gdbarch;
4005
4006 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4007 return -1;
4008
4009 irp->addr++;
4010 irp->mod = (irp->modrm >> 6) & 3;
4011 irp->reg = (irp->modrm >> 3) & 7;
4012 irp->rm = irp->modrm & 7;
4013
4014 return 0;
4015 }
4016
4017 /* Extract the memory address that the current instruction writes to,
4018 and return it in *ADDR. Return -1 if something goes wrong. */
4019
4020 static int
4021 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4022 {
4023 struct gdbarch *gdbarch = irp->gdbarch;
4024 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4025 gdb_byte buf[4];
4026 ULONGEST offset64;
4027
4028 *addr = 0;
4029 if (irp->aflag)
4030 {
4031 /* 32 bits */
4032 int havesib = 0;
4033 uint8_t scale = 0;
4034 uint8_t byte;
4035 uint8_t index = 0;
4036 uint8_t base = irp->rm;
4037
4038 if (base == 4)
4039 {
4040 havesib = 1;
4041 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4042 return -1;
4043 irp->addr++;
4044 scale = (byte >> 6) & 3;
4045 index = ((byte >> 3) & 7) | irp->rex_x;
4046 base = (byte & 7);
4047 }
4048 base |= irp->rex_b;
4049
4050 switch (irp->mod)
4051 {
4052 case 0:
4053 if ((base & 7) == 5)
4054 {
4055 base = 0xff;
4056 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4057 return -1;
4058 irp->addr += 4;
4059 *addr = extract_signed_integer (buf, 4, byte_order);
4060 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4061 *addr += irp->addr + irp->rip_offset;
4062 }
4063 break;
4064 case 1:
4065 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4066 return -1;
4067 irp->addr++;
4068 *addr = (int8_t) buf[0];
4069 break;
4070 case 2:
4071 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4072 return -1;
4073 *addr = extract_signed_integer (buf, 4, byte_order);
4074 irp->addr += 4;
4075 break;
4076 }
4077
4078 offset64 = 0;
4079 if (base != 0xff)
4080 {
4081 if (base == 4 && irp->popl_esp_hack)
4082 *addr += irp->popl_esp_hack;
4083 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4084 &offset64);
4085 }
4086 if (irp->aflag == 2)
4087 {
4088 *addr += offset64;
4089 }
4090 else
4091 *addr = (uint32_t) (offset64 + *addr);
4092
4093 if (havesib && (index != 4 || scale != 0))
4094 {
4095 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4096 &offset64);
4097 if (irp->aflag == 2)
4098 *addr += offset64 << scale;
4099 else
4100 *addr = (uint32_t) (*addr + (offset64 << scale));
4101 }
4102 }
4103 else
4104 {
4105 /* 16 bits */
4106 switch (irp->mod)
4107 {
4108 case 0:
4109 if (irp->rm == 6)
4110 {
4111 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4112 return -1;
4113 irp->addr += 2;
4114 *addr = extract_signed_integer (buf, 2, byte_order);
4115 irp->rm = 0;
4116 goto no_rm;
4117 }
4118 break;
4119 case 1:
4120 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4121 return -1;
4122 irp->addr++;
4123 *addr = (int8_t) buf[0];
4124 break;
4125 case 2:
4126 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4127 return -1;
4128 irp->addr += 2;
4129 *addr = extract_signed_integer (buf, 2, byte_order);
4130 break;
4131 }
4132
4133 switch (irp->rm)
4134 {
4135 case 0:
4136 regcache_raw_read_unsigned (irp->regcache,
4137 irp->regmap[X86_RECORD_REBX_REGNUM],
4138 &offset64);
4139 *addr = (uint32_t) (*addr + offset64);
4140 regcache_raw_read_unsigned (irp->regcache,
4141 irp->regmap[X86_RECORD_RESI_REGNUM],
4142 &offset64);
4143 *addr = (uint32_t) (*addr + offset64);
4144 break;
4145 case 1:
4146 regcache_raw_read_unsigned (irp->regcache,
4147 irp->regmap[X86_RECORD_REBX_REGNUM],
4148 &offset64);
4149 *addr = (uint32_t) (*addr + offset64);
4150 regcache_raw_read_unsigned (irp->regcache,
4151 irp->regmap[X86_RECORD_REDI_REGNUM],
4152 &offset64);
4153 *addr = (uint32_t) (*addr + offset64);
4154 break;
4155 case 2:
4156 regcache_raw_read_unsigned (irp->regcache,
4157 irp->regmap[X86_RECORD_REBP_REGNUM],
4158 &offset64);
4159 *addr = (uint32_t) (*addr + offset64);
4160 regcache_raw_read_unsigned (irp->regcache,
4161 irp->regmap[X86_RECORD_RESI_REGNUM],
4162 &offset64);
4163 *addr = (uint32_t) (*addr + offset64);
4164 break;
4165 case 3:
4166 regcache_raw_read_unsigned (irp->regcache,
4167 irp->regmap[X86_RECORD_REBP_REGNUM],
4168 &offset64);
4169 *addr = (uint32_t) (*addr + offset64);
4170 regcache_raw_read_unsigned (irp->regcache,
4171 irp->regmap[X86_RECORD_REDI_REGNUM],
4172 &offset64);
4173 *addr = (uint32_t) (*addr + offset64);
4174 break;
4175 case 4:
4176 regcache_raw_read_unsigned (irp->regcache,
4177 irp->regmap[X86_RECORD_RESI_REGNUM],
4178 &offset64);
4179 *addr = (uint32_t) (*addr + offset64);
4180 break;
4181 case 5:
4182 regcache_raw_read_unsigned (irp->regcache,
4183 irp->regmap[X86_RECORD_REDI_REGNUM],
4184 &offset64);
4185 *addr = (uint32_t) (*addr + offset64);
4186 break;
4187 case 6:
4188 regcache_raw_read_unsigned (irp->regcache,
4189 irp->regmap[X86_RECORD_REBP_REGNUM],
4190 &offset64);
4191 *addr = (uint32_t) (*addr + offset64);
4192 break;
4193 case 7:
4194 regcache_raw_read_unsigned (irp->regcache,
4195 irp->regmap[X86_RECORD_REBX_REGNUM],
4196 &offset64);
4197 *addr = (uint32_t) (*addr + offset64);
4198 break;
4199 }
4200 *addr &= 0xffff;
4201 }
4202
4203 no_rm:
4204 return 0;
4205 }
4206
4207 /* Record the address and contents of the memory that will be changed
4208 by the current instruction. Return -1 if something goes wrong, 0
4209 otherwise. */
4210
4211 static int
4212 i386_record_lea_modrm (struct i386_record_s *irp)
4213 {
4214 struct gdbarch *gdbarch = irp->gdbarch;
4215 uint64_t addr;
4216
4217 if (irp->override >= 0)
4218 {
4219 if (record_full_memory_query)
4220 {
4221 int q;
4222
4223 target_terminal_ours ();
4224 q = yquery (_("\
4225 Process record ignores the memory change of instruction at address %s\n\
4226 because it can't get the value of the segment register.\n\
4227 Do you want to stop the program?"),
4228 paddress (gdbarch, irp->orig_addr));
4229 target_terminal_inferior ();
4230 if (q)
4231 return -1;
4232 }
4233
4234 return 0;
4235 }
4236
4237 if (i386_record_lea_modrm_addr (irp, &addr))
4238 return -1;
4239
4240 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4241 return -1;
4242
4243 return 0;
4244 }
4245
4246 /* Record the effects of a push operation. Return -1 if something
4247 goes wrong, 0 otherwise. */
4248
4249 static int
4250 i386_record_push (struct i386_record_s *irp, int size)
4251 {
4252 ULONGEST addr;
4253
4254 if (record_full_arch_list_add_reg (irp->regcache,
4255 irp->regmap[X86_RECORD_RESP_REGNUM]))
4256 return -1;
4257 regcache_raw_read_unsigned (irp->regcache,
4258 irp->regmap[X86_RECORD_RESP_REGNUM],
4259 &addr);
4260 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4261 return -1;
4262
4263 return 0;
4264 }
4265
4266
4267 /* Defines contents to record. */
4268 #define I386_SAVE_FPU_REGS 0xfffd
4269 #define I386_SAVE_FPU_ENV 0xfffe
4270 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4271
4272 /* Record the values of the floating point registers which will be
4273 changed by the current instruction. Returns -1 if something is
4274 wrong, 0 otherwise. */
4275
4276 static int i386_record_floats (struct gdbarch *gdbarch,
4277 struct i386_record_s *ir,
4278 uint32_t iregnum)
4279 {
4280 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4281 int i;
4282
4283 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4284 happen. Currently we store st0-st7 registers, but we need not store all
4285 registers all the time, in future we use ftag register and record only
4286 those who are not marked as an empty. */
4287
4288 if (I386_SAVE_FPU_REGS == iregnum)
4289 {
4290 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4291 {
4292 if (record_full_arch_list_add_reg (ir->regcache, i))
4293 return -1;
4294 }
4295 }
4296 else if (I386_SAVE_FPU_ENV == iregnum)
4297 {
4298 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4299 {
4300 if (record_full_arch_list_add_reg (ir->regcache, i))
4301 return -1;
4302 }
4303 }
4304 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4305 {
4306 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4307 {
4308 if (record_full_arch_list_add_reg (ir->regcache, i))
4309 return -1;
4310 }
4311 }
4312 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4313 (iregnum <= I387_FOP_REGNUM (tdep)))
4314 {
4315 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4316 return -1;
4317 }
4318 else
4319 {
4320 /* Parameter error. */
4321 return -1;
4322 }
4323 if(I386_SAVE_FPU_ENV != iregnum)
4324 {
4325 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4326 {
4327 if (record_full_arch_list_add_reg (ir->regcache, i))
4328 return -1;
4329 }
4330 }
4331 return 0;
4332 }
4333
4334 /* Parse the current instruction, and record the values of the
4335 registers and memory that will be changed by the current
4336 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4337
4338 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4339 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4340
4341 int
4342 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4343 CORE_ADDR input_addr)
4344 {
4345 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4346 int prefixes = 0;
4347 int regnum = 0;
4348 uint32_t opcode;
4349 uint8_t opcode8;
4350 ULONGEST addr;
4351 gdb_byte buf[MAX_REGISTER_SIZE];
4352 struct i386_record_s ir;
4353 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4354 uint8_t rex_w = -1;
4355 uint8_t rex_r = 0;
4356
4357 memset (&ir, 0, sizeof (struct i386_record_s));
4358 ir.regcache = regcache;
4359 ir.addr = input_addr;
4360 ir.orig_addr = input_addr;
4361 ir.aflag = 1;
4362 ir.dflag = 1;
4363 ir.override = -1;
4364 ir.popl_esp_hack = 0;
4365 ir.regmap = tdep->record_regmap;
4366 ir.gdbarch = gdbarch;
4367
4368 if (record_debug > 1)
4369 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
4370 "addr = %s\n",
4371 paddress (gdbarch, ir.addr));
4372
4373 /* prefixes */
4374 while (1)
4375 {
4376 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4377 return -1;
4378 ir.addr++;
4379 switch (opcode8) /* Instruction prefixes */
4380 {
4381 case REPE_PREFIX_OPCODE:
4382 prefixes |= PREFIX_REPZ;
4383 break;
4384 case REPNE_PREFIX_OPCODE:
4385 prefixes |= PREFIX_REPNZ;
4386 break;
4387 case LOCK_PREFIX_OPCODE:
4388 prefixes |= PREFIX_LOCK;
4389 break;
4390 case CS_PREFIX_OPCODE:
4391 ir.override = X86_RECORD_CS_REGNUM;
4392 break;
4393 case SS_PREFIX_OPCODE:
4394 ir.override = X86_RECORD_SS_REGNUM;
4395 break;
4396 case DS_PREFIX_OPCODE:
4397 ir.override = X86_RECORD_DS_REGNUM;
4398 break;
4399 case ES_PREFIX_OPCODE:
4400 ir.override = X86_RECORD_ES_REGNUM;
4401 break;
4402 case FS_PREFIX_OPCODE:
4403 ir.override = X86_RECORD_FS_REGNUM;
4404 break;
4405 case GS_PREFIX_OPCODE:
4406 ir.override = X86_RECORD_GS_REGNUM;
4407 break;
4408 case DATA_PREFIX_OPCODE:
4409 prefixes |= PREFIX_DATA;
4410 break;
4411 case ADDR_PREFIX_OPCODE:
4412 prefixes |= PREFIX_ADDR;
4413 break;
4414 case 0x40: /* i386 inc %eax */
4415 case 0x41: /* i386 inc %ecx */
4416 case 0x42: /* i386 inc %edx */
4417 case 0x43: /* i386 inc %ebx */
4418 case 0x44: /* i386 inc %esp */
4419 case 0x45: /* i386 inc %ebp */
4420 case 0x46: /* i386 inc %esi */
4421 case 0x47: /* i386 inc %edi */
4422 case 0x48: /* i386 dec %eax */
4423 case 0x49: /* i386 dec %ecx */
4424 case 0x4a: /* i386 dec %edx */
4425 case 0x4b: /* i386 dec %ebx */
4426 case 0x4c: /* i386 dec %esp */
4427 case 0x4d: /* i386 dec %ebp */
4428 case 0x4e: /* i386 dec %esi */
4429 case 0x4f: /* i386 dec %edi */
4430 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
4431 {
4432 /* REX */
4433 rex_w = (opcode8 >> 3) & 1;
4434 rex_r = (opcode8 & 0x4) << 1;
4435 ir.rex_x = (opcode8 & 0x2) << 2;
4436 ir.rex_b = (opcode8 & 0x1) << 3;
4437 }
4438 else /* 32 bit target */
4439 goto out_prefixes;
4440 break;
4441 default:
4442 goto out_prefixes;
4443 break;
4444 }
4445 }
4446 out_prefixes:
4447 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4448 {
4449 ir.dflag = 2;
4450 }
4451 else
4452 {
4453 if (prefixes & PREFIX_DATA)
4454 ir.dflag ^= 1;
4455 }
4456 if (prefixes & PREFIX_ADDR)
4457 ir.aflag ^= 1;
4458 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4459 ir.aflag = 2;
4460
4461 /* Now check op code. */
4462 opcode = (uint32_t) opcode8;
4463 reswitch:
4464 switch (opcode)
4465 {
4466 case 0x0f:
4467 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4468 return -1;
4469 ir.addr++;
4470 opcode = (uint32_t) opcode8 | 0x0f00;
4471 goto reswitch;
4472 break;
4473
4474 case 0x00: /* arith & logic */
4475 case 0x01:
4476 case 0x02:
4477 case 0x03:
4478 case 0x04:
4479 case 0x05:
4480 case 0x08:
4481 case 0x09:
4482 case 0x0a:
4483 case 0x0b:
4484 case 0x0c:
4485 case 0x0d:
4486 case 0x10:
4487 case 0x11:
4488 case 0x12:
4489 case 0x13:
4490 case 0x14:
4491 case 0x15:
4492 case 0x18:
4493 case 0x19:
4494 case 0x1a:
4495 case 0x1b:
4496 case 0x1c:
4497 case 0x1d:
4498 case 0x20:
4499 case 0x21:
4500 case 0x22:
4501 case 0x23:
4502 case 0x24:
4503 case 0x25:
4504 case 0x28:
4505 case 0x29:
4506 case 0x2a:
4507 case 0x2b:
4508 case 0x2c:
4509 case 0x2d:
4510 case 0x30:
4511 case 0x31:
4512 case 0x32:
4513 case 0x33:
4514 case 0x34:
4515 case 0x35:
4516 case 0x38:
4517 case 0x39:
4518 case 0x3a:
4519 case 0x3b:
4520 case 0x3c:
4521 case 0x3d:
4522 if (((opcode >> 3) & 7) != OP_CMPL)
4523 {
4524 if ((opcode & 1) == 0)
4525 ir.ot = OT_BYTE;
4526 else
4527 ir.ot = ir.dflag + OT_WORD;
4528
4529 switch ((opcode >> 1) & 3)
4530 {
4531 case 0: /* OP Ev, Gv */
4532 if (i386_record_modrm (&ir))
4533 return -1;
4534 if (ir.mod != 3)
4535 {
4536 if (i386_record_lea_modrm (&ir))
4537 return -1;
4538 }
4539 else
4540 {
4541 ir.rm |= ir.rex_b;
4542 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4543 ir.rm &= 0x3;
4544 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4545 }
4546 break;
4547 case 1: /* OP Gv, Ev */
4548 if (i386_record_modrm (&ir))
4549 return -1;
4550 ir.reg |= rex_r;
4551 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4552 ir.reg &= 0x3;
4553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4554 break;
4555 case 2: /* OP A, Iv */
4556 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4557 break;
4558 }
4559 }
4560 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4561 break;
4562
4563 case 0x80: /* GRP1 */
4564 case 0x81:
4565 case 0x82:
4566 case 0x83:
4567 if (i386_record_modrm (&ir))
4568 return -1;
4569
4570 if (ir.reg != OP_CMPL)
4571 {
4572 if ((opcode & 1) == 0)
4573 ir.ot = OT_BYTE;
4574 else
4575 ir.ot = ir.dflag + OT_WORD;
4576
4577 if (ir.mod != 3)
4578 {
4579 if (opcode == 0x83)
4580 ir.rip_offset = 1;
4581 else
4582 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4583 if (i386_record_lea_modrm (&ir))
4584 return -1;
4585 }
4586 else
4587 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4588 }
4589 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4590 break;
4591
4592 case 0x40: /* inc */
4593 case 0x41:
4594 case 0x42:
4595 case 0x43:
4596 case 0x44:
4597 case 0x45:
4598 case 0x46:
4599 case 0x47:
4600
4601 case 0x48: /* dec */
4602 case 0x49:
4603 case 0x4a:
4604 case 0x4b:
4605 case 0x4c:
4606 case 0x4d:
4607 case 0x4e:
4608 case 0x4f:
4609
4610 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
4611 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4612 break;
4613
4614 case 0xf6: /* GRP3 */
4615 case 0xf7:
4616 if ((opcode & 1) == 0)
4617 ir.ot = OT_BYTE;
4618 else
4619 ir.ot = ir.dflag + OT_WORD;
4620 if (i386_record_modrm (&ir))
4621 return -1;
4622
4623 if (ir.mod != 3 && ir.reg == 0)
4624 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4625
4626 switch (ir.reg)
4627 {
4628 case 0: /* test */
4629 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4630 break;
4631 case 2: /* not */
4632 case 3: /* neg */
4633 if (ir.mod != 3)
4634 {
4635 if (i386_record_lea_modrm (&ir))
4636 return -1;
4637 }
4638 else
4639 {
4640 ir.rm |= ir.rex_b;
4641 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4642 ir.rm &= 0x3;
4643 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4644 }
4645 if (ir.reg == 3) /* neg */
4646 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4647 break;
4648 case 4: /* mul */
4649 case 5: /* imul */
4650 case 6: /* div */
4651 case 7: /* idiv */
4652 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4653 if (ir.ot != OT_BYTE)
4654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4655 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4656 break;
4657 default:
4658 ir.addr -= 2;
4659 opcode = opcode << 8 | ir.modrm;
4660 goto no_support;
4661 break;
4662 }
4663 break;
4664
4665 case 0xfe: /* GRP4 */
4666 case 0xff: /* GRP5 */
4667 if (i386_record_modrm (&ir))
4668 return -1;
4669 if (ir.reg >= 2 && opcode == 0xfe)
4670 {
4671 ir.addr -= 2;
4672 opcode = opcode << 8 | ir.modrm;
4673 goto no_support;
4674 }
4675 switch (ir.reg)
4676 {
4677 case 0: /* inc */
4678 case 1: /* dec */
4679 if ((opcode & 1) == 0)
4680 ir.ot = OT_BYTE;
4681 else
4682 ir.ot = ir.dflag + OT_WORD;
4683 if (ir.mod != 3)
4684 {
4685 if (i386_record_lea_modrm (&ir))
4686 return -1;
4687 }
4688 else
4689 {
4690 ir.rm |= ir.rex_b;
4691 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4692 ir.rm &= 0x3;
4693 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4694 }
4695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4696 break;
4697 case 2: /* call */
4698 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4699 ir.dflag = 2;
4700 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4701 return -1;
4702 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4703 break;
4704 case 3: /* lcall */
4705 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4706 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4707 return -1;
4708 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4709 break;
4710 case 4: /* jmp */
4711 case 5: /* ljmp */
4712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4713 break;
4714 case 6: /* push */
4715 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4716 ir.dflag = 2;
4717 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4718 return -1;
4719 break;
4720 default:
4721 ir.addr -= 2;
4722 opcode = opcode << 8 | ir.modrm;
4723 goto no_support;
4724 break;
4725 }
4726 break;
4727
4728 case 0x84: /* test */
4729 case 0x85:
4730 case 0xa8:
4731 case 0xa9:
4732 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4733 break;
4734
4735 case 0x98: /* CWDE/CBW */
4736 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4737 break;
4738
4739 case 0x99: /* CDQ/CWD */
4740 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4741 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4742 break;
4743
4744 case 0x0faf: /* imul */
4745 case 0x69:
4746 case 0x6b:
4747 ir.ot = ir.dflag + OT_WORD;
4748 if (i386_record_modrm (&ir))
4749 return -1;
4750 if (opcode == 0x69)
4751 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4752 else if (opcode == 0x6b)
4753 ir.rip_offset = 1;
4754 ir.reg |= rex_r;
4755 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4756 ir.reg &= 0x3;
4757 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4758 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4759 break;
4760
4761 case 0x0fc0: /* xadd */
4762 case 0x0fc1:
4763 if ((opcode & 1) == 0)
4764 ir.ot = OT_BYTE;
4765 else
4766 ir.ot = ir.dflag + OT_WORD;
4767 if (i386_record_modrm (&ir))
4768 return -1;
4769 ir.reg |= rex_r;
4770 if (ir.mod == 3)
4771 {
4772 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4773 ir.reg &= 0x3;
4774 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4775 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4776 ir.rm &= 0x3;
4777 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4778 }
4779 else
4780 {
4781 if (i386_record_lea_modrm (&ir))
4782 return -1;
4783 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4784 ir.reg &= 0x3;
4785 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4786 }
4787 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4788 break;
4789
4790 case 0x0fb0: /* cmpxchg */
4791 case 0x0fb1:
4792 if ((opcode & 1) == 0)
4793 ir.ot = OT_BYTE;
4794 else
4795 ir.ot = ir.dflag + OT_WORD;
4796 if (i386_record_modrm (&ir))
4797 return -1;
4798 if (ir.mod == 3)
4799 {
4800 ir.reg |= rex_r;
4801 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4802 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4803 ir.reg &= 0x3;
4804 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4805 }
4806 else
4807 {
4808 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4809 if (i386_record_lea_modrm (&ir))
4810 return -1;
4811 }
4812 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4813 break;
4814
4815 case 0x0fc7: /* cmpxchg8b */
4816 if (i386_record_modrm (&ir))
4817 return -1;
4818 if (ir.mod == 3)
4819 {
4820 ir.addr -= 2;
4821 opcode = opcode << 8 | ir.modrm;
4822 goto no_support;
4823 }
4824 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4825 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4826 if (i386_record_lea_modrm (&ir))
4827 return -1;
4828 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4829 break;
4830
4831 case 0x50: /* push */
4832 case 0x51:
4833 case 0x52:
4834 case 0x53:
4835 case 0x54:
4836 case 0x55:
4837 case 0x56:
4838 case 0x57:
4839 case 0x68:
4840 case 0x6a:
4841 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4842 ir.dflag = 2;
4843 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4844 return -1;
4845 break;
4846
4847 case 0x06: /* push es */
4848 case 0x0e: /* push cs */
4849 case 0x16: /* push ss */
4850 case 0x1e: /* push ds */
4851 if (ir.regmap[X86_RECORD_R8_REGNUM])
4852 {
4853 ir.addr -= 1;
4854 goto no_support;
4855 }
4856 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4857 return -1;
4858 break;
4859
4860 case 0x0fa0: /* push fs */
4861 case 0x0fa8: /* push gs */
4862 if (ir.regmap[X86_RECORD_R8_REGNUM])
4863 {
4864 ir.addr -= 2;
4865 goto no_support;
4866 }
4867 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4868 return -1;
4869 break;
4870
4871 case 0x60: /* pusha */
4872 if (ir.regmap[X86_RECORD_R8_REGNUM])
4873 {
4874 ir.addr -= 1;
4875 goto no_support;
4876 }
4877 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
4878 return -1;
4879 break;
4880
4881 case 0x58: /* pop */
4882 case 0x59:
4883 case 0x5a:
4884 case 0x5b:
4885 case 0x5c:
4886 case 0x5d:
4887 case 0x5e:
4888 case 0x5f:
4889 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4890 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4891 break;
4892
4893 case 0x61: /* popa */
4894 if (ir.regmap[X86_RECORD_R8_REGNUM])
4895 {
4896 ir.addr -= 1;
4897 goto no_support;
4898 }
4899 for (regnum = X86_RECORD_REAX_REGNUM;
4900 regnum <= X86_RECORD_REDI_REGNUM;
4901 regnum++)
4902 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
4903 break;
4904
4905 case 0x8f: /* pop */
4906 if (ir.regmap[X86_RECORD_R8_REGNUM])
4907 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4908 else
4909 ir.ot = ir.dflag + OT_WORD;
4910 if (i386_record_modrm (&ir))
4911 return -1;
4912 if (ir.mod == 3)
4913 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4914 else
4915 {
4916 ir.popl_esp_hack = 1 << ir.ot;
4917 if (i386_record_lea_modrm (&ir))
4918 return -1;
4919 }
4920 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4921 break;
4922
4923 case 0xc8: /* enter */
4924 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4925 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4926 ir.dflag = 2;
4927 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4928 return -1;
4929 break;
4930
4931 case 0xc9: /* leave */
4932 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4933 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4934 break;
4935
4936 case 0x07: /* pop es */
4937 if (ir.regmap[X86_RECORD_R8_REGNUM])
4938 {
4939 ir.addr -= 1;
4940 goto no_support;
4941 }
4942 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4943 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4944 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4945 break;
4946
4947 case 0x17: /* pop ss */
4948 if (ir.regmap[X86_RECORD_R8_REGNUM])
4949 {
4950 ir.addr -= 1;
4951 goto no_support;
4952 }
4953 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4954 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4955 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4956 break;
4957
4958 case 0x1f: /* pop ds */
4959 if (ir.regmap[X86_RECORD_R8_REGNUM])
4960 {
4961 ir.addr -= 1;
4962 goto no_support;
4963 }
4964 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4965 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4966 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4967 break;
4968
4969 case 0x0fa1: /* pop fs */
4970 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4971 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4972 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4973 break;
4974
4975 case 0x0fa9: /* pop gs */
4976 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4977 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4978 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4979 break;
4980
4981 case 0x88: /* mov */
4982 case 0x89:
4983 case 0xc6:
4984 case 0xc7:
4985 if ((opcode & 1) == 0)
4986 ir.ot = OT_BYTE;
4987 else
4988 ir.ot = ir.dflag + OT_WORD;
4989
4990 if (i386_record_modrm (&ir))
4991 return -1;
4992
4993 if (ir.mod != 3)
4994 {
4995 if (opcode == 0xc6 || opcode == 0xc7)
4996 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4997 if (i386_record_lea_modrm (&ir))
4998 return -1;
4999 }
5000 else
5001 {
5002 if (opcode == 0xc6 || opcode == 0xc7)
5003 ir.rm |= ir.rex_b;
5004 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5005 ir.rm &= 0x3;
5006 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5007 }
5008 break;
5009
5010 case 0x8a: /* mov */
5011 case 0x8b:
5012 if ((opcode & 1) == 0)
5013 ir.ot = OT_BYTE;
5014 else
5015 ir.ot = ir.dflag + OT_WORD;
5016 if (i386_record_modrm (&ir))
5017 return -1;
5018 ir.reg |= rex_r;
5019 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5020 ir.reg &= 0x3;
5021 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5022 break;
5023
5024 case 0x8c: /* mov seg */
5025 if (i386_record_modrm (&ir))
5026 return -1;
5027 if (ir.reg > 5)
5028 {
5029 ir.addr -= 2;
5030 opcode = opcode << 8 | ir.modrm;
5031 goto no_support;
5032 }
5033
5034 if (ir.mod == 3)
5035 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5036 else
5037 {
5038 ir.ot = OT_WORD;
5039 if (i386_record_lea_modrm (&ir))
5040 return -1;
5041 }
5042 break;
5043
5044 case 0x8e: /* mov seg */
5045 if (i386_record_modrm (&ir))
5046 return -1;
5047 switch (ir.reg)
5048 {
5049 case 0:
5050 regnum = X86_RECORD_ES_REGNUM;
5051 break;
5052 case 2:
5053 regnum = X86_RECORD_SS_REGNUM;
5054 break;
5055 case 3:
5056 regnum = X86_RECORD_DS_REGNUM;
5057 break;
5058 case 4:
5059 regnum = X86_RECORD_FS_REGNUM;
5060 break;
5061 case 5:
5062 regnum = X86_RECORD_GS_REGNUM;
5063 break;
5064 default:
5065 ir.addr -= 2;
5066 opcode = opcode << 8 | ir.modrm;
5067 goto no_support;
5068 break;
5069 }
5070 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5071 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5072 break;
5073
5074 case 0x0fb6: /* movzbS */
5075 case 0x0fb7: /* movzwS */
5076 case 0x0fbe: /* movsbS */
5077 case 0x0fbf: /* movswS */
5078 if (i386_record_modrm (&ir))
5079 return -1;
5080 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5081 break;
5082
5083 case 0x8d: /* lea */
5084 if (i386_record_modrm (&ir))
5085 return -1;
5086 if (ir.mod == 3)
5087 {
5088 ir.addr -= 2;
5089 opcode = opcode << 8 | ir.modrm;
5090 goto no_support;
5091 }
5092 ir.ot = ir.dflag;
5093 ir.reg |= rex_r;
5094 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5095 ir.reg &= 0x3;
5096 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5097 break;
5098
5099 case 0xa0: /* mov EAX */
5100 case 0xa1:
5101
5102 case 0xd7: /* xlat */
5103 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5104 break;
5105
5106 case 0xa2: /* mov EAX */
5107 case 0xa3:
5108 if (ir.override >= 0)
5109 {
5110 if (record_full_memory_query)
5111 {
5112 int q;
5113
5114 target_terminal_ours ();
5115 q = yquery (_("\
5116 Process record ignores the memory change of instruction at address %s\n\
5117 because it can't get the value of the segment register.\n\
5118 Do you want to stop the program?"),
5119 paddress (gdbarch, ir.orig_addr));
5120 target_terminal_inferior ();
5121 if (q)
5122 return -1;
5123 }
5124 }
5125 else
5126 {
5127 if ((opcode & 1) == 0)
5128 ir.ot = OT_BYTE;
5129 else
5130 ir.ot = ir.dflag + OT_WORD;
5131 if (ir.aflag == 2)
5132 {
5133 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5134 return -1;
5135 ir.addr += 8;
5136 addr = extract_unsigned_integer (buf, 8, byte_order);
5137 }
5138 else if (ir.aflag)
5139 {
5140 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5141 return -1;
5142 ir.addr += 4;
5143 addr = extract_unsigned_integer (buf, 4, byte_order);
5144 }
5145 else
5146 {
5147 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5148 return -1;
5149 ir.addr += 2;
5150 addr = extract_unsigned_integer (buf, 2, byte_order);
5151 }
5152 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5153 return -1;
5154 }
5155 break;
5156
5157 case 0xb0: /* mov R, Ib */
5158 case 0xb1:
5159 case 0xb2:
5160 case 0xb3:
5161 case 0xb4:
5162 case 0xb5:
5163 case 0xb6:
5164 case 0xb7:
5165 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5166 ? ((opcode & 0x7) | ir.rex_b)
5167 : ((opcode & 0x7) & 0x3));
5168 break;
5169
5170 case 0xb8: /* mov R, Iv */
5171 case 0xb9:
5172 case 0xba:
5173 case 0xbb:
5174 case 0xbc:
5175 case 0xbd:
5176 case 0xbe:
5177 case 0xbf:
5178 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5179 break;
5180
5181 case 0x91: /* xchg R, EAX */
5182 case 0x92:
5183 case 0x93:
5184 case 0x94:
5185 case 0x95:
5186 case 0x96:
5187 case 0x97:
5188 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5189 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5190 break;
5191
5192 case 0x86: /* xchg Ev, Gv */
5193 case 0x87:
5194 if ((opcode & 1) == 0)
5195 ir.ot = OT_BYTE;
5196 else
5197 ir.ot = ir.dflag + OT_WORD;
5198 if (i386_record_modrm (&ir))
5199 return -1;
5200 if (ir.mod == 3)
5201 {
5202 ir.rm |= ir.rex_b;
5203 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5204 ir.rm &= 0x3;
5205 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5206 }
5207 else
5208 {
5209 if (i386_record_lea_modrm (&ir))
5210 return -1;
5211 }
5212 ir.reg |= rex_r;
5213 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5214 ir.reg &= 0x3;
5215 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5216 break;
5217
5218 case 0xc4: /* les Gv */
5219 case 0xc5: /* lds Gv */
5220 if (ir.regmap[X86_RECORD_R8_REGNUM])
5221 {
5222 ir.addr -= 1;
5223 goto no_support;
5224 }
5225 /* FALLTHROUGH */
5226 case 0x0fb2: /* lss Gv */
5227 case 0x0fb4: /* lfs Gv */
5228 case 0x0fb5: /* lgs Gv */
5229 if (i386_record_modrm (&ir))
5230 return -1;
5231 if (ir.mod == 3)
5232 {
5233 if (opcode > 0xff)
5234 ir.addr -= 3;
5235 else
5236 ir.addr -= 2;
5237 opcode = opcode << 8 | ir.modrm;
5238 goto no_support;
5239 }
5240 switch (opcode)
5241 {
5242 case 0xc4: /* les Gv */
5243 regnum = X86_RECORD_ES_REGNUM;
5244 break;
5245 case 0xc5: /* lds Gv */
5246 regnum = X86_RECORD_DS_REGNUM;
5247 break;
5248 case 0x0fb2: /* lss Gv */
5249 regnum = X86_RECORD_SS_REGNUM;
5250 break;
5251 case 0x0fb4: /* lfs Gv */
5252 regnum = X86_RECORD_FS_REGNUM;
5253 break;
5254 case 0x0fb5: /* lgs Gv */
5255 regnum = X86_RECORD_GS_REGNUM;
5256 break;
5257 }
5258 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5259 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5260 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5261 break;
5262
5263 case 0xc0: /* shifts */
5264 case 0xc1:
5265 case 0xd0:
5266 case 0xd1:
5267 case 0xd2:
5268 case 0xd3:
5269 if ((opcode & 1) == 0)
5270 ir.ot = OT_BYTE;
5271 else
5272 ir.ot = ir.dflag + OT_WORD;
5273 if (i386_record_modrm (&ir))
5274 return -1;
5275 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5276 {
5277 if (i386_record_lea_modrm (&ir))
5278 return -1;
5279 }
5280 else
5281 {
5282 ir.rm |= ir.rex_b;
5283 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5284 ir.rm &= 0x3;
5285 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5286 }
5287 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5288 break;
5289
5290 case 0x0fa4:
5291 case 0x0fa5:
5292 case 0x0fac:
5293 case 0x0fad:
5294 if (i386_record_modrm (&ir))
5295 return -1;
5296 if (ir.mod == 3)
5297 {
5298 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5299 return -1;
5300 }
5301 else
5302 {
5303 if (i386_record_lea_modrm (&ir))
5304 return -1;
5305 }
5306 break;
5307
5308 case 0xd8: /* Floats. */
5309 case 0xd9:
5310 case 0xda:
5311 case 0xdb:
5312 case 0xdc:
5313 case 0xdd:
5314 case 0xde:
5315 case 0xdf:
5316 if (i386_record_modrm (&ir))
5317 return -1;
5318 ir.reg |= ((opcode & 7) << 3);
5319 if (ir.mod != 3)
5320 {
5321 /* Memory. */
5322 uint64_t addr64;
5323
5324 if (i386_record_lea_modrm_addr (&ir, &addr64))
5325 return -1;
5326 switch (ir.reg)
5327 {
5328 case 0x02:
5329 case 0x12:
5330 case 0x22:
5331 case 0x32:
5332 /* For fcom, ficom nothing to do. */
5333 break;
5334 case 0x03:
5335 case 0x13:
5336 case 0x23:
5337 case 0x33:
5338 /* For fcomp, ficomp pop FPU stack, store all. */
5339 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5340 return -1;
5341 break;
5342 case 0x00:
5343 case 0x01:
5344 case 0x04:
5345 case 0x05:
5346 case 0x06:
5347 case 0x07:
5348 case 0x10:
5349 case 0x11:
5350 case 0x14:
5351 case 0x15:
5352 case 0x16:
5353 case 0x17:
5354 case 0x20:
5355 case 0x21:
5356 case 0x24:
5357 case 0x25:
5358 case 0x26:
5359 case 0x27:
5360 case 0x30:
5361 case 0x31:
5362 case 0x34:
5363 case 0x35:
5364 case 0x36:
5365 case 0x37:
5366 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5367 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5368 of code, always affects st(0) register. */
5369 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5370 return -1;
5371 break;
5372 case 0x08:
5373 case 0x0a:
5374 case 0x0b:
5375 case 0x18:
5376 case 0x19:
5377 case 0x1a:
5378 case 0x1b:
5379 case 0x1d:
5380 case 0x28:
5381 case 0x29:
5382 case 0x2a:
5383 case 0x2b:
5384 case 0x38:
5385 case 0x39:
5386 case 0x3a:
5387 case 0x3b:
5388 case 0x3c:
5389 case 0x3d:
5390 switch (ir.reg & 7)
5391 {
5392 case 0:
5393 /* Handling fld, fild. */
5394 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5395 return -1;
5396 break;
5397 case 1:
5398 switch (ir.reg >> 4)
5399 {
5400 case 0:
5401 if (record_full_arch_list_add_mem (addr64, 4))
5402 return -1;
5403 break;
5404 case 2:
5405 if (record_full_arch_list_add_mem (addr64, 8))
5406 return -1;
5407 break;
5408 case 3:
5409 break;
5410 default:
5411 if (record_full_arch_list_add_mem (addr64, 2))
5412 return -1;
5413 break;
5414 }
5415 break;
5416 default:
5417 switch (ir.reg >> 4)
5418 {
5419 case 0:
5420 if (record_full_arch_list_add_mem (addr64, 4))
5421 return -1;
5422 if (3 == (ir.reg & 7))
5423 {
5424 /* For fstp m32fp. */
5425 if (i386_record_floats (gdbarch, &ir,
5426 I386_SAVE_FPU_REGS))
5427 return -1;
5428 }
5429 break;
5430 case 1:
5431 if (record_full_arch_list_add_mem (addr64, 4))
5432 return -1;
5433 if ((3 == (ir.reg & 7))
5434 || (5 == (ir.reg & 7))
5435 || (7 == (ir.reg & 7)))
5436 {
5437 /* For fstp insn. */
5438 if (i386_record_floats (gdbarch, &ir,
5439 I386_SAVE_FPU_REGS))
5440 return -1;
5441 }
5442 break;
5443 case 2:
5444 if (record_full_arch_list_add_mem (addr64, 8))
5445 return -1;
5446 if (3 == (ir.reg & 7))
5447 {
5448 /* For fstp m64fp. */
5449 if (i386_record_floats (gdbarch, &ir,
5450 I386_SAVE_FPU_REGS))
5451 return -1;
5452 }
5453 break;
5454 case 3:
5455 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5456 {
5457 /* For fistp, fbld, fild, fbstp. */
5458 if (i386_record_floats (gdbarch, &ir,
5459 I386_SAVE_FPU_REGS))
5460 return -1;
5461 }
5462 /* Fall through */
5463 default:
5464 if (record_full_arch_list_add_mem (addr64, 2))
5465 return -1;
5466 break;
5467 }
5468 break;
5469 }
5470 break;
5471 case 0x0c:
5472 /* Insn fldenv. */
5473 if (i386_record_floats (gdbarch, &ir,
5474 I386_SAVE_FPU_ENV_REG_STACK))
5475 return -1;
5476 break;
5477 case 0x0d:
5478 /* Insn fldcw. */
5479 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5480 return -1;
5481 break;
5482 case 0x2c:
5483 /* Insn frstor. */
5484 if (i386_record_floats (gdbarch, &ir,
5485 I386_SAVE_FPU_ENV_REG_STACK))
5486 return -1;
5487 break;
5488 case 0x0e:
5489 if (ir.dflag)
5490 {
5491 if (record_full_arch_list_add_mem (addr64, 28))
5492 return -1;
5493 }
5494 else
5495 {
5496 if (record_full_arch_list_add_mem (addr64, 14))
5497 return -1;
5498 }
5499 break;
5500 case 0x0f:
5501 case 0x2f:
5502 if (record_full_arch_list_add_mem (addr64, 2))
5503 return -1;
5504 /* Insn fstp, fbstp. */
5505 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5506 return -1;
5507 break;
5508 case 0x1f:
5509 case 0x3e:
5510 if (record_full_arch_list_add_mem (addr64, 10))
5511 return -1;
5512 break;
5513 case 0x2e:
5514 if (ir.dflag)
5515 {
5516 if (record_full_arch_list_add_mem (addr64, 28))
5517 return -1;
5518 addr64 += 28;
5519 }
5520 else
5521 {
5522 if (record_full_arch_list_add_mem (addr64, 14))
5523 return -1;
5524 addr64 += 14;
5525 }
5526 if (record_full_arch_list_add_mem (addr64, 80))
5527 return -1;
5528 /* Insn fsave. */
5529 if (i386_record_floats (gdbarch, &ir,
5530 I386_SAVE_FPU_ENV_REG_STACK))
5531 return -1;
5532 break;
5533 case 0x3f:
5534 if (record_full_arch_list_add_mem (addr64, 8))
5535 return -1;
5536 /* Insn fistp. */
5537 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5538 return -1;
5539 break;
5540 default:
5541 ir.addr -= 2;
5542 opcode = opcode << 8 | ir.modrm;
5543 goto no_support;
5544 break;
5545 }
5546 }
5547 /* Opcode is an extension of modR/M byte. */
5548 else
5549 {
5550 switch (opcode)
5551 {
5552 case 0xd8:
5553 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5554 return -1;
5555 break;
5556 case 0xd9:
5557 if (0x0c == (ir.modrm >> 4))
5558 {
5559 if ((ir.modrm & 0x0f) <= 7)
5560 {
5561 if (i386_record_floats (gdbarch, &ir,
5562 I386_SAVE_FPU_REGS))
5563 return -1;
5564 }
5565 else
5566 {
5567 if (i386_record_floats (gdbarch, &ir,
5568 I387_ST0_REGNUM (tdep)))
5569 return -1;
5570 /* If only st(0) is changing, then we have already
5571 recorded. */
5572 if ((ir.modrm & 0x0f) - 0x08)
5573 {
5574 if (i386_record_floats (gdbarch, &ir,
5575 I387_ST0_REGNUM (tdep) +
5576 ((ir.modrm & 0x0f) - 0x08)))
5577 return -1;
5578 }
5579 }
5580 }
5581 else
5582 {
5583 switch (ir.modrm)
5584 {
5585 case 0xe0:
5586 case 0xe1:
5587 case 0xf0:
5588 case 0xf5:
5589 case 0xf8:
5590 case 0xfa:
5591 case 0xfc:
5592 case 0xfe:
5593 case 0xff:
5594 if (i386_record_floats (gdbarch, &ir,
5595 I387_ST0_REGNUM (tdep)))
5596 return -1;
5597 break;
5598 case 0xf1:
5599 case 0xf2:
5600 case 0xf3:
5601 case 0xf4:
5602 case 0xf6:
5603 case 0xf7:
5604 case 0xe8:
5605 case 0xe9:
5606 case 0xea:
5607 case 0xeb:
5608 case 0xec:
5609 case 0xed:
5610 case 0xee:
5611 case 0xf9:
5612 case 0xfb:
5613 if (i386_record_floats (gdbarch, &ir,
5614 I386_SAVE_FPU_REGS))
5615 return -1;
5616 break;
5617 case 0xfd:
5618 if (i386_record_floats (gdbarch, &ir,
5619 I387_ST0_REGNUM (tdep)))
5620 return -1;
5621 if (i386_record_floats (gdbarch, &ir,
5622 I387_ST0_REGNUM (tdep) + 1))
5623 return -1;
5624 break;
5625 }
5626 }
5627 break;
5628 case 0xda:
5629 if (0xe9 == ir.modrm)
5630 {
5631 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5632 return -1;
5633 }
5634 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5635 {
5636 if (i386_record_floats (gdbarch, &ir,
5637 I387_ST0_REGNUM (tdep)))
5638 return -1;
5639 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5640 {
5641 if (i386_record_floats (gdbarch, &ir,
5642 I387_ST0_REGNUM (tdep) +
5643 (ir.modrm & 0x0f)))
5644 return -1;
5645 }
5646 else if ((ir.modrm & 0x0f) - 0x08)
5647 {
5648 if (i386_record_floats (gdbarch, &ir,
5649 I387_ST0_REGNUM (tdep) +
5650 ((ir.modrm & 0x0f) - 0x08)))
5651 return -1;
5652 }
5653 }
5654 break;
5655 case 0xdb:
5656 if (0xe3 == ir.modrm)
5657 {
5658 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5659 return -1;
5660 }
5661 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5662 {
5663 if (i386_record_floats (gdbarch, &ir,
5664 I387_ST0_REGNUM (tdep)))
5665 return -1;
5666 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5667 {
5668 if (i386_record_floats (gdbarch, &ir,
5669 I387_ST0_REGNUM (tdep) +
5670 (ir.modrm & 0x0f)))
5671 return -1;
5672 }
5673 else if ((ir.modrm & 0x0f) - 0x08)
5674 {
5675 if (i386_record_floats (gdbarch, &ir,
5676 I387_ST0_REGNUM (tdep) +
5677 ((ir.modrm & 0x0f) - 0x08)))
5678 return -1;
5679 }
5680 }
5681 break;
5682 case 0xdc:
5683 if ((0x0c == ir.modrm >> 4)
5684 || (0x0d == ir.modrm >> 4)
5685 || (0x0f == ir.modrm >> 4))
5686 {
5687 if ((ir.modrm & 0x0f) <= 7)
5688 {
5689 if (i386_record_floats (gdbarch, &ir,
5690 I387_ST0_REGNUM (tdep) +
5691 (ir.modrm & 0x0f)))
5692 return -1;
5693 }
5694 else
5695 {
5696 if (i386_record_floats (gdbarch, &ir,
5697 I387_ST0_REGNUM (tdep) +
5698 ((ir.modrm & 0x0f) - 0x08)))
5699 return -1;
5700 }
5701 }
5702 break;
5703 case 0xdd:
5704 if (0x0c == ir.modrm >> 4)
5705 {
5706 if (i386_record_floats (gdbarch, &ir,
5707 I387_FTAG_REGNUM (tdep)))
5708 return -1;
5709 }
5710 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5711 {
5712 if ((ir.modrm & 0x0f) <= 7)
5713 {
5714 if (i386_record_floats (gdbarch, &ir,
5715 I387_ST0_REGNUM (tdep) +
5716 (ir.modrm & 0x0f)))
5717 return -1;
5718 }
5719 else
5720 {
5721 if (i386_record_floats (gdbarch, &ir,
5722 I386_SAVE_FPU_REGS))
5723 return -1;
5724 }
5725 }
5726 break;
5727 case 0xde:
5728 if ((0x0c == ir.modrm >> 4)
5729 || (0x0e == ir.modrm >> 4)
5730 || (0x0f == ir.modrm >> 4)
5731 || (0xd9 == ir.modrm))
5732 {
5733 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5734 return -1;
5735 }
5736 break;
5737 case 0xdf:
5738 if (0xe0 == ir.modrm)
5739 {
5740 if (record_full_arch_list_add_reg (ir.regcache,
5741 I386_EAX_REGNUM))
5742 return -1;
5743 }
5744 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5745 {
5746 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5747 return -1;
5748 }
5749 break;
5750 }
5751 }
5752 break;
5753 /* string ops */
5754 case 0xa4: /* movsS */
5755 case 0xa5:
5756 case 0xaa: /* stosS */
5757 case 0xab:
5758 case 0x6c: /* insS */
5759 case 0x6d:
5760 regcache_raw_read_unsigned (ir.regcache,
5761 ir.regmap[X86_RECORD_RECX_REGNUM],
5762 &addr);
5763 if (addr)
5764 {
5765 ULONGEST es, ds;
5766
5767 if ((opcode & 1) == 0)
5768 ir.ot = OT_BYTE;
5769 else
5770 ir.ot = ir.dflag + OT_WORD;
5771 regcache_raw_read_unsigned (ir.regcache,
5772 ir.regmap[X86_RECORD_REDI_REGNUM],
5773 &addr);
5774
5775 regcache_raw_read_unsigned (ir.regcache,
5776 ir.regmap[X86_RECORD_ES_REGNUM],
5777 &es);
5778 regcache_raw_read_unsigned (ir.regcache,
5779 ir.regmap[X86_RECORD_DS_REGNUM],
5780 &ds);
5781 if (ir.aflag && (es != ds))
5782 {
5783 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5784 if (record_full_memory_query)
5785 {
5786 int q;
5787
5788 target_terminal_ours ();
5789 q = yquery (_("\
5790 Process record ignores the memory change of instruction at address %s\n\
5791 because it can't get the value of the segment register.\n\
5792 Do you want to stop the program?"),
5793 paddress (gdbarch, ir.orig_addr));
5794 target_terminal_inferior ();
5795 if (q)
5796 return -1;
5797 }
5798 }
5799 else
5800 {
5801 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5802 return -1;
5803 }
5804
5805 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5806 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5807 if (opcode == 0xa4 || opcode == 0xa5)
5808 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5809 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5810 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5811 }
5812 break;
5813
5814 case 0xa6: /* cmpsS */
5815 case 0xa7:
5816 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5817 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5818 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5819 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5820 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5821 break;
5822
5823 case 0xac: /* lodsS */
5824 case 0xad:
5825 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5826 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5827 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5828 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5829 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5830 break;
5831
5832 case 0xae: /* scasS */
5833 case 0xaf:
5834 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5835 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5836 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5837 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5838 break;
5839
5840 case 0x6e: /* outsS */
5841 case 0x6f:
5842 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5843 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5844 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5845 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5846 break;
5847
5848 case 0xe4: /* port I/O */
5849 case 0xe5:
5850 case 0xec:
5851 case 0xed:
5852 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5853 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5854 break;
5855
5856 case 0xe6:
5857 case 0xe7:
5858 case 0xee:
5859 case 0xef:
5860 break;
5861
5862 /* control */
5863 case 0xc2: /* ret im */
5864 case 0xc3: /* ret */
5865 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5866 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5867 break;
5868
5869 case 0xca: /* lret im */
5870 case 0xcb: /* lret */
5871 case 0xcf: /* iret */
5872 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5873 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5874 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5875 break;
5876
5877 case 0xe8: /* call im */
5878 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5879 ir.dflag = 2;
5880 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5881 return -1;
5882 break;
5883
5884 case 0x9a: /* lcall im */
5885 if (ir.regmap[X86_RECORD_R8_REGNUM])
5886 {
5887 ir.addr -= 1;
5888 goto no_support;
5889 }
5890 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5891 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5892 return -1;
5893 break;
5894
5895 case 0xe9: /* jmp im */
5896 case 0xea: /* ljmp im */
5897 case 0xeb: /* jmp Jb */
5898 case 0x70: /* jcc Jb */
5899 case 0x71:
5900 case 0x72:
5901 case 0x73:
5902 case 0x74:
5903 case 0x75:
5904 case 0x76:
5905 case 0x77:
5906 case 0x78:
5907 case 0x79:
5908 case 0x7a:
5909 case 0x7b:
5910 case 0x7c:
5911 case 0x7d:
5912 case 0x7e:
5913 case 0x7f:
5914 case 0x0f80: /* jcc Jv */
5915 case 0x0f81:
5916 case 0x0f82:
5917 case 0x0f83:
5918 case 0x0f84:
5919 case 0x0f85:
5920 case 0x0f86:
5921 case 0x0f87:
5922 case 0x0f88:
5923 case 0x0f89:
5924 case 0x0f8a:
5925 case 0x0f8b:
5926 case 0x0f8c:
5927 case 0x0f8d:
5928 case 0x0f8e:
5929 case 0x0f8f:
5930 break;
5931
5932 case 0x0f90: /* setcc Gv */
5933 case 0x0f91:
5934 case 0x0f92:
5935 case 0x0f93:
5936 case 0x0f94:
5937 case 0x0f95:
5938 case 0x0f96:
5939 case 0x0f97:
5940 case 0x0f98:
5941 case 0x0f99:
5942 case 0x0f9a:
5943 case 0x0f9b:
5944 case 0x0f9c:
5945 case 0x0f9d:
5946 case 0x0f9e:
5947 case 0x0f9f:
5948 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5949 ir.ot = OT_BYTE;
5950 if (i386_record_modrm (&ir))
5951 return -1;
5952 if (ir.mod == 3)
5953 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5954 : (ir.rm & 0x3));
5955 else
5956 {
5957 if (i386_record_lea_modrm (&ir))
5958 return -1;
5959 }
5960 break;
5961
5962 case 0x0f40: /* cmov Gv, Ev */
5963 case 0x0f41:
5964 case 0x0f42:
5965 case 0x0f43:
5966 case 0x0f44:
5967 case 0x0f45:
5968 case 0x0f46:
5969 case 0x0f47:
5970 case 0x0f48:
5971 case 0x0f49:
5972 case 0x0f4a:
5973 case 0x0f4b:
5974 case 0x0f4c:
5975 case 0x0f4d:
5976 case 0x0f4e:
5977 case 0x0f4f:
5978 if (i386_record_modrm (&ir))
5979 return -1;
5980 ir.reg |= rex_r;
5981 if (ir.dflag == OT_BYTE)
5982 ir.reg &= 0x3;
5983 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5984 break;
5985
5986 /* flags */
5987 case 0x9c: /* pushf */
5988 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5989 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5990 ir.dflag = 2;
5991 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5992 return -1;
5993 break;
5994
5995 case 0x9d: /* popf */
5996 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5997 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5998 break;
5999
6000 case 0x9e: /* sahf */
6001 if (ir.regmap[X86_RECORD_R8_REGNUM])
6002 {
6003 ir.addr -= 1;
6004 goto no_support;
6005 }
6006 /* FALLTHROUGH */
6007 case 0xf5: /* cmc */
6008 case 0xf8: /* clc */
6009 case 0xf9: /* stc */
6010 case 0xfc: /* cld */
6011 case 0xfd: /* std */
6012 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6013 break;
6014
6015 case 0x9f: /* lahf */
6016 if (ir.regmap[X86_RECORD_R8_REGNUM])
6017 {
6018 ir.addr -= 1;
6019 goto no_support;
6020 }
6021 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6022 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6023 break;
6024
6025 /* bit operations */
6026 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6027 ir.ot = ir.dflag + OT_WORD;
6028 if (i386_record_modrm (&ir))
6029 return -1;
6030 if (ir.reg < 4)
6031 {
6032 ir.addr -= 2;
6033 opcode = opcode << 8 | ir.modrm;
6034 goto no_support;
6035 }
6036 if (ir.reg != 4)
6037 {
6038 if (ir.mod == 3)
6039 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6040 else
6041 {
6042 if (i386_record_lea_modrm (&ir))
6043 return -1;
6044 }
6045 }
6046 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6047 break;
6048
6049 case 0x0fa3: /* bt Gv, Ev */
6050 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6051 break;
6052
6053 case 0x0fab: /* bts */
6054 case 0x0fb3: /* btr */
6055 case 0x0fbb: /* btc */
6056 ir.ot = ir.dflag + OT_WORD;
6057 if (i386_record_modrm (&ir))
6058 return -1;
6059 if (ir.mod == 3)
6060 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6061 else
6062 {
6063 uint64_t addr64;
6064 if (i386_record_lea_modrm_addr (&ir, &addr64))
6065 return -1;
6066 regcache_raw_read_unsigned (ir.regcache,
6067 ir.regmap[ir.reg | rex_r],
6068 &addr);
6069 switch (ir.dflag)
6070 {
6071 case 0:
6072 addr64 += ((int16_t) addr >> 4) << 4;
6073 break;
6074 case 1:
6075 addr64 += ((int32_t) addr >> 5) << 5;
6076 break;
6077 case 2:
6078 addr64 += ((int64_t) addr >> 6) << 6;
6079 break;
6080 }
6081 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6082 return -1;
6083 if (i386_record_lea_modrm (&ir))
6084 return -1;
6085 }
6086 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6087 break;
6088
6089 case 0x0fbc: /* bsf */
6090 case 0x0fbd: /* bsr */
6091 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6092 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6093 break;
6094
6095 /* bcd */
6096 case 0x27: /* daa */
6097 case 0x2f: /* das */
6098 case 0x37: /* aaa */
6099 case 0x3f: /* aas */
6100 case 0xd4: /* aam */
6101 case 0xd5: /* aad */
6102 if (ir.regmap[X86_RECORD_R8_REGNUM])
6103 {
6104 ir.addr -= 1;
6105 goto no_support;
6106 }
6107 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6108 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6109 break;
6110
6111 /* misc */
6112 case 0x90: /* nop */
6113 if (prefixes & PREFIX_LOCK)
6114 {
6115 ir.addr -= 1;
6116 goto no_support;
6117 }
6118 break;
6119
6120 case 0x9b: /* fwait */
6121 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6122 return -1;
6123 opcode = (uint32_t) opcode8;
6124 ir.addr++;
6125 goto reswitch;
6126 break;
6127
6128 /* XXX */
6129 case 0xcc: /* int3 */
6130 printf_unfiltered (_("Process record does not support instruction "
6131 "int3.\n"));
6132 ir.addr -= 1;
6133 goto no_support;
6134 break;
6135
6136 /* XXX */
6137 case 0xcd: /* int */
6138 {
6139 int ret;
6140 uint8_t interrupt;
6141 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6142 return -1;
6143 ir.addr++;
6144 if (interrupt != 0x80
6145 || tdep->i386_intx80_record == NULL)
6146 {
6147 printf_unfiltered (_("Process record does not support "
6148 "instruction int 0x%02x.\n"),
6149 interrupt);
6150 ir.addr -= 2;
6151 goto no_support;
6152 }
6153 ret = tdep->i386_intx80_record (ir.regcache);
6154 if (ret)
6155 return ret;
6156 }
6157 break;
6158
6159 /* XXX */
6160 case 0xce: /* into */
6161 printf_unfiltered (_("Process record does not support "
6162 "instruction into.\n"));
6163 ir.addr -= 1;
6164 goto no_support;
6165 break;
6166
6167 case 0xfa: /* cli */
6168 case 0xfb: /* sti */
6169 break;
6170
6171 case 0x62: /* bound */
6172 printf_unfiltered (_("Process record does not support "
6173 "instruction bound.\n"));
6174 ir.addr -= 1;
6175 goto no_support;
6176 break;
6177
6178 case 0x0fc8: /* bswap reg */
6179 case 0x0fc9:
6180 case 0x0fca:
6181 case 0x0fcb:
6182 case 0x0fcc:
6183 case 0x0fcd:
6184 case 0x0fce:
6185 case 0x0fcf:
6186 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6187 break;
6188
6189 case 0xd6: /* salc */
6190 if (ir.regmap[X86_RECORD_R8_REGNUM])
6191 {
6192 ir.addr -= 1;
6193 goto no_support;
6194 }
6195 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6196 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6197 break;
6198
6199 case 0xe0: /* loopnz */
6200 case 0xe1: /* loopz */
6201 case 0xe2: /* loop */
6202 case 0xe3: /* jecxz */
6203 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6204 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6205 break;
6206
6207 case 0x0f30: /* wrmsr */
6208 printf_unfiltered (_("Process record does not support "
6209 "instruction wrmsr.\n"));
6210 ir.addr -= 2;
6211 goto no_support;
6212 break;
6213
6214 case 0x0f32: /* rdmsr */
6215 printf_unfiltered (_("Process record does not support "
6216 "instruction rdmsr.\n"));
6217 ir.addr -= 2;
6218 goto no_support;
6219 break;
6220
6221 case 0x0f31: /* rdtsc */
6222 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6223 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6224 break;
6225
6226 case 0x0f34: /* sysenter */
6227 {
6228 int ret;
6229 if (ir.regmap[X86_RECORD_R8_REGNUM])
6230 {
6231 ir.addr -= 2;
6232 goto no_support;
6233 }
6234 if (tdep->i386_sysenter_record == NULL)
6235 {
6236 printf_unfiltered (_("Process record does not support "
6237 "instruction sysenter.\n"));
6238 ir.addr -= 2;
6239 goto no_support;
6240 }
6241 ret = tdep->i386_sysenter_record (ir.regcache);
6242 if (ret)
6243 return ret;
6244 }
6245 break;
6246
6247 case 0x0f35: /* sysexit */
6248 printf_unfiltered (_("Process record does not support "
6249 "instruction sysexit.\n"));
6250 ir.addr -= 2;
6251 goto no_support;
6252 break;
6253
6254 case 0x0f05: /* syscall */
6255 {
6256 int ret;
6257 if (tdep->i386_syscall_record == NULL)
6258 {
6259 printf_unfiltered (_("Process record does not support "
6260 "instruction syscall.\n"));
6261 ir.addr -= 2;
6262 goto no_support;
6263 }
6264 ret = tdep->i386_syscall_record (ir.regcache);
6265 if (ret)
6266 return ret;
6267 }
6268 break;
6269
6270 case 0x0f07: /* sysret */
6271 printf_unfiltered (_("Process record does not support "
6272 "instruction sysret.\n"));
6273 ir.addr -= 2;
6274 goto no_support;
6275 break;
6276
6277 case 0x0fa2: /* cpuid */
6278 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6279 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6280 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6281 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6282 break;
6283
6284 case 0xf4: /* hlt */
6285 printf_unfiltered (_("Process record does not support "
6286 "instruction hlt.\n"));
6287 ir.addr -= 1;
6288 goto no_support;
6289 break;
6290
6291 case 0x0f00:
6292 if (i386_record_modrm (&ir))
6293 return -1;
6294 switch (ir.reg)
6295 {
6296 case 0: /* sldt */
6297 case 1: /* str */
6298 if (ir.mod == 3)
6299 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6300 else
6301 {
6302 ir.ot = OT_WORD;
6303 if (i386_record_lea_modrm (&ir))
6304 return -1;
6305 }
6306 break;
6307 case 2: /* lldt */
6308 case 3: /* ltr */
6309 break;
6310 case 4: /* verr */
6311 case 5: /* verw */
6312 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6313 break;
6314 default:
6315 ir.addr -= 3;
6316 opcode = opcode << 8 | ir.modrm;
6317 goto no_support;
6318 break;
6319 }
6320 break;
6321
6322 case 0x0f01:
6323 if (i386_record_modrm (&ir))
6324 return -1;
6325 switch (ir.reg)
6326 {
6327 case 0: /* sgdt */
6328 {
6329 uint64_t addr64;
6330
6331 if (ir.mod == 3)
6332 {
6333 ir.addr -= 3;
6334 opcode = opcode << 8 | ir.modrm;
6335 goto no_support;
6336 }
6337 if (ir.override >= 0)
6338 {
6339 if (record_full_memory_query)
6340 {
6341 int q;
6342
6343 target_terminal_ours ();
6344 q = yquery (_("\
6345 Process record ignores the memory change of instruction at address %s\n\
6346 because it can't get the value of the segment register.\n\
6347 Do you want to stop the program?"),
6348 paddress (gdbarch, ir.orig_addr));
6349 target_terminal_inferior ();
6350 if (q)
6351 return -1;
6352 }
6353 }
6354 else
6355 {
6356 if (i386_record_lea_modrm_addr (&ir, &addr64))
6357 return -1;
6358 if (record_full_arch_list_add_mem (addr64, 2))
6359 return -1;
6360 addr64 += 2;
6361 if (ir.regmap[X86_RECORD_R8_REGNUM])
6362 {
6363 if (record_full_arch_list_add_mem (addr64, 8))
6364 return -1;
6365 }
6366 else
6367 {
6368 if (record_full_arch_list_add_mem (addr64, 4))
6369 return -1;
6370 }
6371 }
6372 }
6373 break;
6374 case 1:
6375 if (ir.mod == 3)
6376 {
6377 switch (ir.rm)
6378 {
6379 case 0: /* monitor */
6380 break;
6381 case 1: /* mwait */
6382 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6383 break;
6384 default:
6385 ir.addr -= 3;
6386 opcode = opcode << 8 | ir.modrm;
6387 goto no_support;
6388 break;
6389 }
6390 }
6391 else
6392 {
6393 /* sidt */
6394 if (ir.override >= 0)
6395 {
6396 if (record_full_memory_query)
6397 {
6398 int q;
6399
6400 target_terminal_ours ();
6401 q = yquery (_("\
6402 Process record ignores the memory change of instruction at address %s\n\
6403 because it can't get the value of the segment register.\n\
6404 Do you want to stop the program?"),
6405 paddress (gdbarch, ir.orig_addr));
6406 target_terminal_inferior ();
6407 if (q)
6408 return -1;
6409 }
6410 }
6411 else
6412 {
6413 uint64_t addr64;
6414
6415 if (i386_record_lea_modrm_addr (&ir, &addr64))
6416 return -1;
6417 if (record_full_arch_list_add_mem (addr64, 2))
6418 return -1;
6419 addr64 += 2;
6420 if (ir.regmap[X86_RECORD_R8_REGNUM])
6421 {
6422 if (record_full_arch_list_add_mem (addr64, 8))
6423 return -1;
6424 }
6425 else
6426 {
6427 if (record_full_arch_list_add_mem (addr64, 4))
6428 return -1;
6429 }
6430 }
6431 }
6432 break;
6433 case 2: /* lgdt */
6434 if (ir.mod == 3)
6435 {
6436 /* xgetbv */
6437 if (ir.rm == 0)
6438 {
6439 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6440 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6441 break;
6442 }
6443 /* xsetbv */
6444 else if (ir.rm == 1)
6445 break;
6446 }
6447 case 3: /* lidt */
6448 if (ir.mod == 3)
6449 {
6450 ir.addr -= 3;
6451 opcode = opcode << 8 | ir.modrm;
6452 goto no_support;
6453 }
6454 break;
6455 case 4: /* smsw */
6456 if (ir.mod == 3)
6457 {
6458 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
6459 return -1;
6460 }
6461 else
6462 {
6463 ir.ot = OT_WORD;
6464 if (i386_record_lea_modrm (&ir))
6465 return -1;
6466 }
6467 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6468 break;
6469 case 6: /* lmsw */
6470 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6471 break;
6472 case 7: /* invlpg */
6473 if (ir.mod == 3)
6474 {
6475 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6476 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6477 else
6478 {
6479 ir.addr -= 3;
6480 opcode = opcode << 8 | ir.modrm;
6481 goto no_support;
6482 }
6483 }
6484 else
6485 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6486 break;
6487 default:
6488 ir.addr -= 3;
6489 opcode = opcode << 8 | ir.modrm;
6490 goto no_support;
6491 break;
6492 }
6493 break;
6494
6495 case 0x0f08: /* invd */
6496 case 0x0f09: /* wbinvd */
6497 break;
6498
6499 case 0x63: /* arpl */
6500 if (i386_record_modrm (&ir))
6501 return -1;
6502 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6503 {
6504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6505 ? (ir.reg | rex_r) : ir.rm);
6506 }
6507 else
6508 {
6509 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6510 if (i386_record_lea_modrm (&ir))
6511 return -1;
6512 }
6513 if (!ir.regmap[X86_RECORD_R8_REGNUM])
6514 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6515 break;
6516
6517 case 0x0f02: /* lar */
6518 case 0x0f03: /* lsl */
6519 if (i386_record_modrm (&ir))
6520 return -1;
6521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6522 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6523 break;
6524
6525 case 0x0f18:
6526 if (i386_record_modrm (&ir))
6527 return -1;
6528 if (ir.mod == 3 && ir.reg == 3)
6529 {
6530 ir.addr -= 3;
6531 opcode = opcode << 8 | ir.modrm;
6532 goto no_support;
6533 }
6534 break;
6535
6536 case 0x0f19:
6537 case 0x0f1a:
6538 case 0x0f1b:
6539 case 0x0f1c:
6540 case 0x0f1d:
6541 case 0x0f1e:
6542 case 0x0f1f:
6543 /* nop (multi byte) */
6544 break;
6545
6546 case 0x0f20: /* mov reg, crN */
6547 case 0x0f22: /* mov crN, reg */
6548 if (i386_record_modrm (&ir))
6549 return -1;
6550 if ((ir.modrm & 0xc0) != 0xc0)
6551 {
6552 ir.addr -= 3;
6553 opcode = opcode << 8 | ir.modrm;
6554 goto no_support;
6555 }
6556 switch (ir.reg)
6557 {
6558 case 0:
6559 case 2:
6560 case 3:
6561 case 4:
6562 case 8:
6563 if (opcode & 2)
6564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6565 else
6566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6567 break;
6568 default:
6569 ir.addr -= 3;
6570 opcode = opcode << 8 | ir.modrm;
6571 goto no_support;
6572 break;
6573 }
6574 break;
6575
6576 case 0x0f21: /* mov reg, drN */
6577 case 0x0f23: /* mov drN, reg */
6578 if (i386_record_modrm (&ir))
6579 return -1;
6580 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6581 || ir.reg == 5 || ir.reg >= 8)
6582 {
6583 ir.addr -= 3;
6584 opcode = opcode << 8 | ir.modrm;
6585 goto no_support;
6586 }
6587 if (opcode & 2)
6588 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6589 else
6590 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6591 break;
6592
6593 case 0x0f06: /* clts */
6594 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6595 break;
6596
6597 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6598
6599 case 0x0f0d: /* 3DNow! prefetch */
6600 break;
6601
6602 case 0x0f0e: /* 3DNow! femms */
6603 case 0x0f77: /* emms */
6604 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6605 goto no_support;
6606 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6607 break;
6608
6609 case 0x0f0f: /* 3DNow! data */
6610 if (i386_record_modrm (&ir))
6611 return -1;
6612 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6613 return -1;
6614 ir.addr++;
6615 switch (opcode8)
6616 {
6617 case 0x0c: /* 3DNow! pi2fw */
6618 case 0x0d: /* 3DNow! pi2fd */
6619 case 0x1c: /* 3DNow! pf2iw */
6620 case 0x1d: /* 3DNow! pf2id */
6621 case 0x8a: /* 3DNow! pfnacc */
6622 case 0x8e: /* 3DNow! pfpnacc */
6623 case 0x90: /* 3DNow! pfcmpge */
6624 case 0x94: /* 3DNow! pfmin */
6625 case 0x96: /* 3DNow! pfrcp */
6626 case 0x97: /* 3DNow! pfrsqrt */
6627 case 0x9a: /* 3DNow! pfsub */
6628 case 0x9e: /* 3DNow! pfadd */
6629 case 0xa0: /* 3DNow! pfcmpgt */
6630 case 0xa4: /* 3DNow! pfmax */
6631 case 0xa6: /* 3DNow! pfrcpit1 */
6632 case 0xa7: /* 3DNow! pfrsqit1 */
6633 case 0xaa: /* 3DNow! pfsubr */
6634 case 0xae: /* 3DNow! pfacc */
6635 case 0xb0: /* 3DNow! pfcmpeq */
6636 case 0xb4: /* 3DNow! pfmul */
6637 case 0xb6: /* 3DNow! pfrcpit2 */
6638 case 0xb7: /* 3DNow! pmulhrw */
6639 case 0xbb: /* 3DNow! pswapd */
6640 case 0xbf: /* 3DNow! pavgusb */
6641 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6642 goto no_support_3dnow_data;
6643 record_full_arch_list_add_reg (ir.regcache, ir.reg);
6644 break;
6645
6646 default:
6647 no_support_3dnow_data:
6648 opcode = (opcode << 8) | opcode8;
6649 goto no_support;
6650 break;
6651 }
6652 break;
6653
6654 case 0x0faa: /* rsm */
6655 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6656 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6657 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6658 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6659 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6660 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6661 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6662 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6664 break;
6665
6666 case 0x0fae:
6667 if (i386_record_modrm (&ir))
6668 return -1;
6669 switch(ir.reg)
6670 {
6671 case 0: /* fxsave */
6672 {
6673 uint64_t tmpu64;
6674
6675 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6676 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6677 return -1;
6678 if (record_full_arch_list_add_mem (tmpu64, 512))
6679 return -1;
6680 }
6681 break;
6682
6683 case 1: /* fxrstor */
6684 {
6685 int i;
6686
6687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6688
6689 for (i = I387_MM0_REGNUM (tdep);
6690 i386_mmx_regnum_p (gdbarch, i); i++)
6691 record_full_arch_list_add_reg (ir.regcache, i);
6692
6693 for (i = I387_XMM0_REGNUM (tdep);
6694 i386_xmm_regnum_p (gdbarch, i); i++)
6695 record_full_arch_list_add_reg (ir.regcache, i);
6696
6697 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6698 record_full_arch_list_add_reg (ir.regcache,
6699 I387_MXCSR_REGNUM(tdep));
6700
6701 for (i = I387_ST0_REGNUM (tdep);
6702 i386_fp_regnum_p (gdbarch, i); i++)
6703 record_full_arch_list_add_reg (ir.regcache, i);
6704
6705 for (i = I387_FCTRL_REGNUM (tdep);
6706 i386_fpc_regnum_p (gdbarch, i); i++)
6707 record_full_arch_list_add_reg (ir.regcache, i);
6708 }
6709 break;
6710
6711 case 2: /* ldmxcsr */
6712 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6713 goto no_support;
6714 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6715 break;
6716
6717 case 3: /* stmxcsr */
6718 ir.ot = OT_LONG;
6719 if (i386_record_lea_modrm (&ir))
6720 return -1;
6721 break;
6722
6723 case 5: /* lfence */
6724 case 6: /* mfence */
6725 case 7: /* sfence clflush */
6726 break;
6727
6728 default:
6729 opcode = (opcode << 8) | ir.modrm;
6730 goto no_support;
6731 break;
6732 }
6733 break;
6734
6735 case 0x0fc3: /* movnti */
6736 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6737 if (i386_record_modrm (&ir))
6738 return -1;
6739 if (ir.mod == 3)
6740 goto no_support;
6741 ir.reg |= rex_r;
6742 if (i386_record_lea_modrm (&ir))
6743 return -1;
6744 break;
6745
6746 /* Add prefix to opcode. */
6747 case 0x0f10:
6748 case 0x0f11:
6749 case 0x0f12:
6750 case 0x0f13:
6751 case 0x0f14:
6752 case 0x0f15:
6753 case 0x0f16:
6754 case 0x0f17:
6755 case 0x0f28:
6756 case 0x0f29:
6757 case 0x0f2a:
6758 case 0x0f2b:
6759 case 0x0f2c:
6760 case 0x0f2d:
6761 case 0x0f2e:
6762 case 0x0f2f:
6763 case 0x0f38:
6764 case 0x0f39:
6765 case 0x0f3a:
6766 case 0x0f50:
6767 case 0x0f51:
6768 case 0x0f52:
6769 case 0x0f53:
6770 case 0x0f54:
6771 case 0x0f55:
6772 case 0x0f56:
6773 case 0x0f57:
6774 case 0x0f58:
6775 case 0x0f59:
6776 case 0x0f5a:
6777 case 0x0f5b:
6778 case 0x0f5c:
6779 case 0x0f5d:
6780 case 0x0f5e:
6781 case 0x0f5f:
6782 case 0x0f60:
6783 case 0x0f61:
6784 case 0x0f62:
6785 case 0x0f63:
6786 case 0x0f64:
6787 case 0x0f65:
6788 case 0x0f66:
6789 case 0x0f67:
6790 case 0x0f68:
6791 case 0x0f69:
6792 case 0x0f6a:
6793 case 0x0f6b:
6794 case 0x0f6c:
6795 case 0x0f6d:
6796 case 0x0f6e:
6797 case 0x0f6f:
6798 case 0x0f70:
6799 case 0x0f71:
6800 case 0x0f72:
6801 case 0x0f73:
6802 case 0x0f74:
6803 case 0x0f75:
6804 case 0x0f76:
6805 case 0x0f7c:
6806 case 0x0f7d:
6807 case 0x0f7e:
6808 case 0x0f7f:
6809 case 0x0fb8:
6810 case 0x0fc2:
6811 case 0x0fc4:
6812 case 0x0fc5:
6813 case 0x0fc6:
6814 case 0x0fd0:
6815 case 0x0fd1:
6816 case 0x0fd2:
6817 case 0x0fd3:
6818 case 0x0fd4:
6819 case 0x0fd5:
6820 case 0x0fd6:
6821 case 0x0fd7:
6822 case 0x0fd8:
6823 case 0x0fd9:
6824 case 0x0fda:
6825 case 0x0fdb:
6826 case 0x0fdc:
6827 case 0x0fdd:
6828 case 0x0fde:
6829 case 0x0fdf:
6830 case 0x0fe0:
6831 case 0x0fe1:
6832 case 0x0fe2:
6833 case 0x0fe3:
6834 case 0x0fe4:
6835 case 0x0fe5:
6836 case 0x0fe6:
6837 case 0x0fe7:
6838 case 0x0fe8:
6839 case 0x0fe9:
6840 case 0x0fea:
6841 case 0x0feb:
6842 case 0x0fec:
6843 case 0x0fed:
6844 case 0x0fee:
6845 case 0x0fef:
6846 case 0x0ff0:
6847 case 0x0ff1:
6848 case 0x0ff2:
6849 case 0x0ff3:
6850 case 0x0ff4:
6851 case 0x0ff5:
6852 case 0x0ff6:
6853 case 0x0ff7:
6854 case 0x0ff8:
6855 case 0x0ff9:
6856 case 0x0ffa:
6857 case 0x0ffb:
6858 case 0x0ffc:
6859 case 0x0ffd:
6860 case 0x0ffe:
6861 switch (prefixes)
6862 {
6863 case PREFIX_REPNZ:
6864 opcode |= 0xf20000;
6865 break;
6866 case PREFIX_DATA:
6867 opcode |= 0x660000;
6868 break;
6869 case PREFIX_REPZ:
6870 opcode |= 0xf30000;
6871 break;
6872 }
6873 reswitch_prefix_add:
6874 switch (opcode)
6875 {
6876 case 0x0f38:
6877 case 0x660f38:
6878 case 0xf20f38:
6879 case 0x0f3a:
6880 case 0x660f3a:
6881 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6882 return -1;
6883 ir.addr++;
6884 opcode = (uint32_t) opcode8 | opcode << 8;
6885 goto reswitch_prefix_add;
6886 break;
6887
6888 case 0x0f10: /* movups */
6889 case 0x660f10: /* movupd */
6890 case 0xf30f10: /* movss */
6891 case 0xf20f10: /* movsd */
6892 case 0x0f12: /* movlps */
6893 case 0x660f12: /* movlpd */
6894 case 0xf30f12: /* movsldup */
6895 case 0xf20f12: /* movddup */
6896 case 0x0f14: /* unpcklps */
6897 case 0x660f14: /* unpcklpd */
6898 case 0x0f15: /* unpckhps */
6899 case 0x660f15: /* unpckhpd */
6900 case 0x0f16: /* movhps */
6901 case 0x660f16: /* movhpd */
6902 case 0xf30f16: /* movshdup */
6903 case 0x0f28: /* movaps */
6904 case 0x660f28: /* movapd */
6905 case 0x0f2a: /* cvtpi2ps */
6906 case 0x660f2a: /* cvtpi2pd */
6907 case 0xf30f2a: /* cvtsi2ss */
6908 case 0xf20f2a: /* cvtsi2sd */
6909 case 0x0f2c: /* cvttps2pi */
6910 case 0x660f2c: /* cvttpd2pi */
6911 case 0x0f2d: /* cvtps2pi */
6912 case 0x660f2d: /* cvtpd2pi */
6913 case 0x660f3800: /* pshufb */
6914 case 0x660f3801: /* phaddw */
6915 case 0x660f3802: /* phaddd */
6916 case 0x660f3803: /* phaddsw */
6917 case 0x660f3804: /* pmaddubsw */
6918 case 0x660f3805: /* phsubw */
6919 case 0x660f3806: /* phsubd */
6920 case 0x660f3807: /* phsubsw */
6921 case 0x660f3808: /* psignb */
6922 case 0x660f3809: /* psignw */
6923 case 0x660f380a: /* psignd */
6924 case 0x660f380b: /* pmulhrsw */
6925 case 0x660f3810: /* pblendvb */
6926 case 0x660f3814: /* blendvps */
6927 case 0x660f3815: /* blendvpd */
6928 case 0x660f381c: /* pabsb */
6929 case 0x660f381d: /* pabsw */
6930 case 0x660f381e: /* pabsd */
6931 case 0x660f3820: /* pmovsxbw */
6932 case 0x660f3821: /* pmovsxbd */
6933 case 0x660f3822: /* pmovsxbq */
6934 case 0x660f3823: /* pmovsxwd */
6935 case 0x660f3824: /* pmovsxwq */
6936 case 0x660f3825: /* pmovsxdq */
6937 case 0x660f3828: /* pmuldq */
6938 case 0x660f3829: /* pcmpeqq */
6939 case 0x660f382a: /* movntdqa */
6940 case 0x660f3a08: /* roundps */
6941 case 0x660f3a09: /* roundpd */
6942 case 0x660f3a0a: /* roundss */
6943 case 0x660f3a0b: /* roundsd */
6944 case 0x660f3a0c: /* blendps */
6945 case 0x660f3a0d: /* blendpd */
6946 case 0x660f3a0e: /* pblendw */
6947 case 0x660f3a0f: /* palignr */
6948 case 0x660f3a20: /* pinsrb */
6949 case 0x660f3a21: /* insertps */
6950 case 0x660f3a22: /* pinsrd pinsrq */
6951 case 0x660f3a40: /* dpps */
6952 case 0x660f3a41: /* dppd */
6953 case 0x660f3a42: /* mpsadbw */
6954 case 0x660f3a60: /* pcmpestrm */
6955 case 0x660f3a61: /* pcmpestri */
6956 case 0x660f3a62: /* pcmpistrm */
6957 case 0x660f3a63: /* pcmpistri */
6958 case 0x0f51: /* sqrtps */
6959 case 0x660f51: /* sqrtpd */
6960 case 0xf20f51: /* sqrtsd */
6961 case 0xf30f51: /* sqrtss */
6962 case 0x0f52: /* rsqrtps */
6963 case 0xf30f52: /* rsqrtss */
6964 case 0x0f53: /* rcpps */
6965 case 0xf30f53: /* rcpss */
6966 case 0x0f54: /* andps */
6967 case 0x660f54: /* andpd */
6968 case 0x0f55: /* andnps */
6969 case 0x660f55: /* andnpd */
6970 case 0x0f56: /* orps */
6971 case 0x660f56: /* orpd */
6972 case 0x0f57: /* xorps */
6973 case 0x660f57: /* xorpd */
6974 case 0x0f58: /* addps */
6975 case 0x660f58: /* addpd */
6976 case 0xf20f58: /* addsd */
6977 case 0xf30f58: /* addss */
6978 case 0x0f59: /* mulps */
6979 case 0x660f59: /* mulpd */
6980 case 0xf20f59: /* mulsd */
6981 case 0xf30f59: /* mulss */
6982 case 0x0f5a: /* cvtps2pd */
6983 case 0x660f5a: /* cvtpd2ps */
6984 case 0xf20f5a: /* cvtsd2ss */
6985 case 0xf30f5a: /* cvtss2sd */
6986 case 0x0f5b: /* cvtdq2ps */
6987 case 0x660f5b: /* cvtps2dq */
6988 case 0xf30f5b: /* cvttps2dq */
6989 case 0x0f5c: /* subps */
6990 case 0x660f5c: /* subpd */
6991 case 0xf20f5c: /* subsd */
6992 case 0xf30f5c: /* subss */
6993 case 0x0f5d: /* minps */
6994 case 0x660f5d: /* minpd */
6995 case 0xf20f5d: /* minsd */
6996 case 0xf30f5d: /* minss */
6997 case 0x0f5e: /* divps */
6998 case 0x660f5e: /* divpd */
6999 case 0xf20f5e: /* divsd */
7000 case 0xf30f5e: /* divss */
7001 case 0x0f5f: /* maxps */
7002 case 0x660f5f: /* maxpd */
7003 case 0xf20f5f: /* maxsd */
7004 case 0xf30f5f: /* maxss */
7005 case 0x660f60: /* punpcklbw */
7006 case 0x660f61: /* punpcklwd */
7007 case 0x660f62: /* punpckldq */
7008 case 0x660f63: /* packsswb */
7009 case 0x660f64: /* pcmpgtb */
7010 case 0x660f65: /* pcmpgtw */
7011 case 0x660f66: /* pcmpgtd */
7012 case 0x660f67: /* packuswb */
7013 case 0x660f68: /* punpckhbw */
7014 case 0x660f69: /* punpckhwd */
7015 case 0x660f6a: /* punpckhdq */
7016 case 0x660f6b: /* packssdw */
7017 case 0x660f6c: /* punpcklqdq */
7018 case 0x660f6d: /* punpckhqdq */
7019 case 0x660f6e: /* movd */
7020 case 0x660f6f: /* movdqa */
7021 case 0xf30f6f: /* movdqu */
7022 case 0x660f70: /* pshufd */
7023 case 0xf20f70: /* pshuflw */
7024 case 0xf30f70: /* pshufhw */
7025 case 0x660f74: /* pcmpeqb */
7026 case 0x660f75: /* pcmpeqw */
7027 case 0x660f76: /* pcmpeqd */
7028 case 0x660f7c: /* haddpd */
7029 case 0xf20f7c: /* haddps */
7030 case 0x660f7d: /* hsubpd */
7031 case 0xf20f7d: /* hsubps */
7032 case 0xf30f7e: /* movq */
7033 case 0x0fc2: /* cmpps */
7034 case 0x660fc2: /* cmppd */
7035 case 0xf20fc2: /* cmpsd */
7036 case 0xf30fc2: /* cmpss */
7037 case 0x660fc4: /* pinsrw */
7038 case 0x0fc6: /* shufps */
7039 case 0x660fc6: /* shufpd */
7040 case 0x660fd0: /* addsubpd */
7041 case 0xf20fd0: /* addsubps */
7042 case 0x660fd1: /* psrlw */
7043 case 0x660fd2: /* psrld */
7044 case 0x660fd3: /* psrlq */
7045 case 0x660fd4: /* paddq */
7046 case 0x660fd5: /* pmullw */
7047 case 0xf30fd6: /* movq2dq */
7048 case 0x660fd8: /* psubusb */
7049 case 0x660fd9: /* psubusw */
7050 case 0x660fda: /* pminub */
7051 case 0x660fdb: /* pand */
7052 case 0x660fdc: /* paddusb */
7053 case 0x660fdd: /* paddusw */
7054 case 0x660fde: /* pmaxub */
7055 case 0x660fdf: /* pandn */
7056 case 0x660fe0: /* pavgb */
7057 case 0x660fe1: /* psraw */
7058 case 0x660fe2: /* psrad */
7059 case 0x660fe3: /* pavgw */
7060 case 0x660fe4: /* pmulhuw */
7061 case 0x660fe5: /* pmulhw */
7062 case 0x660fe6: /* cvttpd2dq */
7063 case 0xf20fe6: /* cvtpd2dq */
7064 case 0xf30fe6: /* cvtdq2pd */
7065 case 0x660fe8: /* psubsb */
7066 case 0x660fe9: /* psubsw */
7067 case 0x660fea: /* pminsw */
7068 case 0x660feb: /* por */
7069 case 0x660fec: /* paddsb */
7070 case 0x660fed: /* paddsw */
7071 case 0x660fee: /* pmaxsw */
7072 case 0x660fef: /* pxor */
7073 case 0xf20ff0: /* lddqu */
7074 case 0x660ff1: /* psllw */
7075 case 0x660ff2: /* pslld */
7076 case 0x660ff3: /* psllq */
7077 case 0x660ff4: /* pmuludq */
7078 case 0x660ff5: /* pmaddwd */
7079 case 0x660ff6: /* psadbw */
7080 case 0x660ff8: /* psubb */
7081 case 0x660ff9: /* psubw */
7082 case 0x660ffa: /* psubd */
7083 case 0x660ffb: /* psubq */
7084 case 0x660ffc: /* paddb */
7085 case 0x660ffd: /* paddw */
7086 case 0x660ffe: /* paddd */
7087 if (i386_record_modrm (&ir))
7088 return -1;
7089 ir.reg |= rex_r;
7090 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7091 goto no_support;
7092 record_full_arch_list_add_reg (ir.regcache,
7093 I387_XMM0_REGNUM (tdep) + ir.reg);
7094 if ((opcode & 0xfffffffc) == 0x660f3a60)
7095 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7096 break;
7097
7098 case 0x0f11: /* movups */
7099 case 0x660f11: /* movupd */
7100 case 0xf30f11: /* movss */
7101 case 0xf20f11: /* movsd */
7102 case 0x0f13: /* movlps */
7103 case 0x660f13: /* movlpd */
7104 case 0x0f17: /* movhps */
7105 case 0x660f17: /* movhpd */
7106 case 0x0f29: /* movaps */
7107 case 0x660f29: /* movapd */
7108 case 0x660f3a14: /* pextrb */
7109 case 0x660f3a15: /* pextrw */
7110 case 0x660f3a16: /* pextrd pextrq */
7111 case 0x660f3a17: /* extractps */
7112 case 0x660f7f: /* movdqa */
7113 case 0xf30f7f: /* movdqu */
7114 if (i386_record_modrm (&ir))
7115 return -1;
7116 if (ir.mod == 3)
7117 {
7118 if (opcode == 0x0f13 || opcode == 0x660f13
7119 || opcode == 0x0f17 || opcode == 0x660f17)
7120 goto no_support;
7121 ir.rm |= ir.rex_b;
7122 if (!i386_xmm_regnum_p (gdbarch,
7123 I387_XMM0_REGNUM (tdep) + ir.rm))
7124 goto no_support;
7125 record_full_arch_list_add_reg (ir.regcache,
7126 I387_XMM0_REGNUM (tdep) + ir.rm);
7127 }
7128 else
7129 {
7130 switch (opcode)
7131 {
7132 case 0x660f3a14:
7133 ir.ot = OT_BYTE;
7134 break;
7135 case 0x660f3a15:
7136 ir.ot = OT_WORD;
7137 break;
7138 case 0x660f3a16:
7139 ir.ot = OT_LONG;
7140 break;
7141 case 0x660f3a17:
7142 ir.ot = OT_QUAD;
7143 break;
7144 default:
7145 ir.ot = OT_DQUAD;
7146 break;
7147 }
7148 if (i386_record_lea_modrm (&ir))
7149 return -1;
7150 }
7151 break;
7152
7153 case 0x0f2b: /* movntps */
7154 case 0x660f2b: /* movntpd */
7155 case 0x0fe7: /* movntq */
7156 case 0x660fe7: /* movntdq */
7157 if (ir.mod == 3)
7158 goto no_support;
7159 if (opcode == 0x0fe7)
7160 ir.ot = OT_QUAD;
7161 else
7162 ir.ot = OT_DQUAD;
7163 if (i386_record_lea_modrm (&ir))
7164 return -1;
7165 break;
7166
7167 case 0xf30f2c: /* cvttss2si */
7168 case 0xf20f2c: /* cvttsd2si */
7169 case 0xf30f2d: /* cvtss2si */
7170 case 0xf20f2d: /* cvtsd2si */
7171 case 0xf20f38f0: /* crc32 */
7172 case 0xf20f38f1: /* crc32 */
7173 case 0x0f50: /* movmskps */
7174 case 0x660f50: /* movmskpd */
7175 case 0x0fc5: /* pextrw */
7176 case 0x660fc5: /* pextrw */
7177 case 0x0fd7: /* pmovmskb */
7178 case 0x660fd7: /* pmovmskb */
7179 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7180 break;
7181
7182 case 0x0f3800: /* pshufb */
7183 case 0x0f3801: /* phaddw */
7184 case 0x0f3802: /* phaddd */
7185 case 0x0f3803: /* phaddsw */
7186 case 0x0f3804: /* pmaddubsw */
7187 case 0x0f3805: /* phsubw */
7188 case 0x0f3806: /* phsubd */
7189 case 0x0f3807: /* phsubsw */
7190 case 0x0f3808: /* psignb */
7191 case 0x0f3809: /* psignw */
7192 case 0x0f380a: /* psignd */
7193 case 0x0f380b: /* pmulhrsw */
7194 case 0x0f381c: /* pabsb */
7195 case 0x0f381d: /* pabsw */
7196 case 0x0f381e: /* pabsd */
7197 case 0x0f382b: /* packusdw */
7198 case 0x0f3830: /* pmovzxbw */
7199 case 0x0f3831: /* pmovzxbd */
7200 case 0x0f3832: /* pmovzxbq */
7201 case 0x0f3833: /* pmovzxwd */
7202 case 0x0f3834: /* pmovzxwq */
7203 case 0x0f3835: /* pmovzxdq */
7204 case 0x0f3837: /* pcmpgtq */
7205 case 0x0f3838: /* pminsb */
7206 case 0x0f3839: /* pminsd */
7207 case 0x0f383a: /* pminuw */
7208 case 0x0f383b: /* pminud */
7209 case 0x0f383c: /* pmaxsb */
7210 case 0x0f383d: /* pmaxsd */
7211 case 0x0f383e: /* pmaxuw */
7212 case 0x0f383f: /* pmaxud */
7213 case 0x0f3840: /* pmulld */
7214 case 0x0f3841: /* phminposuw */
7215 case 0x0f3a0f: /* palignr */
7216 case 0x0f60: /* punpcklbw */
7217 case 0x0f61: /* punpcklwd */
7218 case 0x0f62: /* punpckldq */
7219 case 0x0f63: /* packsswb */
7220 case 0x0f64: /* pcmpgtb */
7221 case 0x0f65: /* pcmpgtw */
7222 case 0x0f66: /* pcmpgtd */
7223 case 0x0f67: /* packuswb */
7224 case 0x0f68: /* punpckhbw */
7225 case 0x0f69: /* punpckhwd */
7226 case 0x0f6a: /* punpckhdq */
7227 case 0x0f6b: /* packssdw */
7228 case 0x0f6e: /* movd */
7229 case 0x0f6f: /* movq */
7230 case 0x0f70: /* pshufw */
7231 case 0x0f74: /* pcmpeqb */
7232 case 0x0f75: /* pcmpeqw */
7233 case 0x0f76: /* pcmpeqd */
7234 case 0x0fc4: /* pinsrw */
7235 case 0x0fd1: /* psrlw */
7236 case 0x0fd2: /* psrld */
7237 case 0x0fd3: /* psrlq */
7238 case 0x0fd4: /* paddq */
7239 case 0x0fd5: /* pmullw */
7240 case 0xf20fd6: /* movdq2q */
7241 case 0x0fd8: /* psubusb */
7242 case 0x0fd9: /* psubusw */
7243 case 0x0fda: /* pminub */
7244 case 0x0fdb: /* pand */
7245 case 0x0fdc: /* paddusb */
7246 case 0x0fdd: /* paddusw */
7247 case 0x0fde: /* pmaxub */
7248 case 0x0fdf: /* pandn */
7249 case 0x0fe0: /* pavgb */
7250 case 0x0fe1: /* psraw */
7251 case 0x0fe2: /* psrad */
7252 case 0x0fe3: /* pavgw */
7253 case 0x0fe4: /* pmulhuw */
7254 case 0x0fe5: /* pmulhw */
7255 case 0x0fe8: /* psubsb */
7256 case 0x0fe9: /* psubsw */
7257 case 0x0fea: /* pminsw */
7258 case 0x0feb: /* por */
7259 case 0x0fec: /* paddsb */
7260 case 0x0fed: /* paddsw */
7261 case 0x0fee: /* pmaxsw */
7262 case 0x0fef: /* pxor */
7263 case 0x0ff1: /* psllw */
7264 case 0x0ff2: /* pslld */
7265 case 0x0ff3: /* psllq */
7266 case 0x0ff4: /* pmuludq */
7267 case 0x0ff5: /* pmaddwd */
7268 case 0x0ff6: /* psadbw */
7269 case 0x0ff8: /* psubb */
7270 case 0x0ff9: /* psubw */
7271 case 0x0ffa: /* psubd */
7272 case 0x0ffb: /* psubq */
7273 case 0x0ffc: /* paddb */
7274 case 0x0ffd: /* paddw */
7275 case 0x0ffe: /* paddd */
7276 if (i386_record_modrm (&ir))
7277 return -1;
7278 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7279 goto no_support;
7280 record_full_arch_list_add_reg (ir.regcache,
7281 I387_MM0_REGNUM (tdep) + ir.reg);
7282 break;
7283
7284 case 0x0f71: /* psllw */
7285 case 0x0f72: /* pslld */
7286 case 0x0f73: /* psllq */
7287 if (i386_record_modrm (&ir))
7288 return -1;
7289 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7290 goto no_support;
7291 record_full_arch_list_add_reg (ir.regcache,
7292 I387_MM0_REGNUM (tdep) + ir.rm);
7293 break;
7294
7295 case 0x660f71: /* psllw */
7296 case 0x660f72: /* pslld */
7297 case 0x660f73: /* psllq */
7298 if (i386_record_modrm (&ir))
7299 return -1;
7300 ir.rm |= ir.rex_b;
7301 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7302 goto no_support;
7303 record_full_arch_list_add_reg (ir.regcache,
7304 I387_XMM0_REGNUM (tdep) + ir.rm);
7305 break;
7306
7307 case 0x0f7e: /* movd */
7308 case 0x660f7e: /* movd */
7309 if (i386_record_modrm (&ir))
7310 return -1;
7311 if (ir.mod == 3)
7312 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7313 else
7314 {
7315 if (ir.dflag == 2)
7316 ir.ot = OT_QUAD;
7317 else
7318 ir.ot = OT_LONG;
7319 if (i386_record_lea_modrm (&ir))
7320 return -1;
7321 }
7322 break;
7323
7324 case 0x0f7f: /* movq */
7325 if (i386_record_modrm (&ir))
7326 return -1;
7327 if (ir.mod == 3)
7328 {
7329 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7330 goto no_support;
7331 record_full_arch_list_add_reg (ir.regcache,
7332 I387_MM0_REGNUM (tdep) + ir.rm);
7333 }
7334 else
7335 {
7336 ir.ot = OT_QUAD;
7337 if (i386_record_lea_modrm (&ir))
7338 return -1;
7339 }
7340 break;
7341
7342 case 0xf30fb8: /* popcnt */
7343 if (i386_record_modrm (&ir))
7344 return -1;
7345 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7346 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7347 break;
7348
7349 case 0x660fd6: /* movq */
7350 if (i386_record_modrm (&ir))
7351 return -1;
7352 if (ir.mod == 3)
7353 {
7354 ir.rm |= ir.rex_b;
7355 if (!i386_xmm_regnum_p (gdbarch,
7356 I387_XMM0_REGNUM (tdep) + ir.rm))
7357 goto no_support;
7358 record_full_arch_list_add_reg (ir.regcache,
7359 I387_XMM0_REGNUM (tdep) + ir.rm);
7360 }
7361 else
7362 {
7363 ir.ot = OT_QUAD;
7364 if (i386_record_lea_modrm (&ir))
7365 return -1;
7366 }
7367 break;
7368
7369 case 0x660f3817: /* ptest */
7370 case 0x0f2e: /* ucomiss */
7371 case 0x660f2e: /* ucomisd */
7372 case 0x0f2f: /* comiss */
7373 case 0x660f2f: /* comisd */
7374 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7375 break;
7376
7377 case 0x0ff7: /* maskmovq */
7378 regcache_raw_read_unsigned (ir.regcache,
7379 ir.regmap[X86_RECORD_REDI_REGNUM],
7380 &addr);
7381 if (record_full_arch_list_add_mem (addr, 64))
7382 return -1;
7383 break;
7384
7385 case 0x660ff7: /* maskmovdqu */
7386 regcache_raw_read_unsigned (ir.regcache,
7387 ir.regmap[X86_RECORD_REDI_REGNUM],
7388 &addr);
7389 if (record_full_arch_list_add_mem (addr, 128))
7390 return -1;
7391 break;
7392
7393 default:
7394 goto no_support;
7395 break;
7396 }
7397 break;
7398
7399 default:
7400 goto no_support;
7401 break;
7402 }
7403
7404 /* In the future, maybe still need to deal with need_dasm. */
7405 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7406 if (record_full_arch_list_add_end ())
7407 return -1;
7408
7409 return 0;
7410
7411 no_support:
7412 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7413 "at address %s.\n"),
7414 (unsigned int) (opcode),
7415 paddress (gdbarch, ir.orig_addr));
7416 return -1;
7417 }
7418
7419 static const int i386_record_regmap[] =
7420 {
7421 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7422 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7423 0, 0, 0, 0, 0, 0, 0, 0,
7424 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7425 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7426 };
7427
7428 /* Check that the given address appears suitable for a fast
7429 tracepoint, which on x86-64 means that we need an instruction of at
7430 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7431 jump and not have to worry about program jumps to an address in the
7432 middle of the tracepoint jump. On x86, it may be possible to use
7433 4-byte jumps with a 2-byte offset to a trampoline located in the
7434 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7435 of instruction to replace, and 0 if not, plus an explanatory
7436 string. */
7437
7438 static int
7439 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7440 CORE_ADDR addr, int *isize, char **msg)
7441 {
7442 int len, jumplen;
7443 static struct ui_file *gdb_null = NULL;
7444
7445 /* Ask the target for the minimum instruction length supported. */
7446 jumplen = target_get_min_fast_tracepoint_insn_len ();
7447
7448 if (jumplen < 0)
7449 {
7450 /* If the target does not support the get_min_fast_tracepoint_insn_len
7451 operation, assume that fast tracepoints will always be implemented
7452 using 4-byte relative jumps on both x86 and x86-64. */
7453 jumplen = 5;
7454 }
7455 else if (jumplen == 0)
7456 {
7457 /* If the target does support get_min_fast_tracepoint_insn_len but
7458 returns zero, then the IPA has not loaded yet. In this case,
7459 we optimistically assume that truncated 2-byte relative jumps
7460 will be available on x86, and compensate later if this assumption
7461 turns out to be incorrect. On x86-64 architectures, 4-byte relative
7462 jumps will always be used. */
7463 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
7464 }
7465
7466 /* Dummy file descriptor for the disassembler. */
7467 if (!gdb_null)
7468 gdb_null = ui_file_new ();
7469
7470 /* Check for fit. */
7471 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
7472 if (isize)
7473 *isize = len;
7474
7475 if (len < jumplen)
7476 {
7477 /* Return a bit of target-specific detail to add to the caller's
7478 generic failure message. */
7479 if (msg)
7480 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7481 "need at least %d bytes for the jump"),
7482 len, jumplen);
7483 return 0;
7484 }
7485 else
7486 {
7487 if (msg)
7488 *msg = NULL;
7489 return 1;
7490 }
7491 }
7492
7493 static int
7494 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7495 struct tdesc_arch_data *tdesc_data)
7496 {
7497 const struct target_desc *tdesc = tdep->tdesc;
7498 const struct tdesc_feature *feature_core;
7499 const struct tdesc_feature *feature_sse, *feature_avx;
7500 int i, num_regs, valid_p;
7501
7502 if (! tdesc_has_registers (tdesc))
7503 return 0;
7504
7505 /* Get core registers. */
7506 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
7507 if (feature_core == NULL)
7508 return 0;
7509
7510 /* Get SSE registers. */
7511 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
7512
7513 /* Try AVX registers. */
7514 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7515
7516 valid_p = 1;
7517
7518 /* The XCR0 bits. */
7519 if (feature_avx)
7520 {
7521 /* AVX register description requires SSE register description. */
7522 if (!feature_sse)
7523 return 0;
7524
7525 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7526
7527 /* It may have been set by OSABI initialization function. */
7528 if (tdep->num_ymm_regs == 0)
7529 {
7530 tdep->ymmh_register_names = i386_ymmh_names;
7531 tdep->num_ymm_regs = 8;
7532 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7533 }
7534
7535 for (i = 0; i < tdep->num_ymm_regs; i++)
7536 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7537 tdep->ymm0h_regnum + i,
7538 tdep->ymmh_register_names[i]);
7539 }
7540 else if (feature_sse)
7541 tdep->xcr0 = I386_XSTATE_SSE_MASK;
7542 else
7543 {
7544 tdep->xcr0 = I386_XSTATE_X87_MASK;
7545 tdep->num_xmm_regs = 0;
7546 }
7547
7548 num_regs = tdep->num_core_regs;
7549 for (i = 0; i < num_regs; i++)
7550 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7551 tdep->register_names[i]);
7552
7553 if (feature_sse)
7554 {
7555 /* Need to include %mxcsr, so add one. */
7556 num_regs += tdep->num_xmm_regs + 1;
7557 for (; i < num_regs; i++)
7558 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7559 tdep->register_names[i]);
7560 }
7561
7562 return valid_p;
7563 }
7564
7565 \f
7566 static struct gdbarch *
7567 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7568 {
7569 struct gdbarch_tdep *tdep;
7570 struct gdbarch *gdbarch;
7571 struct tdesc_arch_data *tdesc_data;
7572 const struct target_desc *tdesc;
7573 int mm0_regnum;
7574 int ymm0_regnum;
7575
7576 /* If there is already a candidate, use it. */
7577 arches = gdbarch_list_lookup_by_info (arches, &info);
7578 if (arches != NULL)
7579 return arches->gdbarch;
7580
7581 /* Allocate space for the new architecture. */
7582 tdep = XCALLOC (1, struct gdbarch_tdep);
7583 gdbarch = gdbarch_alloc (&info, tdep);
7584
7585 /* General-purpose registers. */
7586 tdep->gregset = NULL;
7587 tdep->gregset_reg_offset = NULL;
7588 tdep->gregset_num_regs = I386_NUM_GREGS;
7589 tdep->sizeof_gregset = 0;
7590
7591 /* Floating-point registers. */
7592 tdep->fpregset = NULL;
7593 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7594
7595 tdep->xstateregset = NULL;
7596
7597 /* The default settings include the FPU registers, the MMX registers
7598 and the SSE registers. This can be overridden for a specific ABI
7599 by adjusting the members `st0_regnum', `mm0_regnum' and
7600 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
7601 will show up in the output of "info all-registers". */
7602
7603 tdep->st0_regnum = I386_ST0_REGNUM;
7604
7605 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7606 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7607
7608 tdep->jb_pc_offset = -1;
7609 tdep->struct_return = pcc_struct_return;
7610 tdep->sigtramp_start = 0;
7611 tdep->sigtramp_end = 0;
7612 tdep->sigtramp_p = i386_sigtramp_p;
7613 tdep->sigcontext_addr = NULL;
7614 tdep->sc_reg_offset = NULL;
7615 tdep->sc_pc_offset = -1;
7616 tdep->sc_sp_offset = -1;
7617
7618 tdep->xsave_xcr0_offset = -1;
7619
7620 tdep->record_regmap = i386_record_regmap;
7621
7622 set_gdbarch_long_long_align_bit (gdbarch, 32);
7623
7624 /* The format used for `long double' on almost all i386 targets is
7625 the i387 extended floating-point format. In fact, of all targets
7626 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7627 on having a `long double' that's not `long' at all. */
7628 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7629
7630 /* Although the i387 extended floating-point has only 80 significant
7631 bits, a `long double' actually takes up 96, probably to enforce
7632 alignment. */
7633 set_gdbarch_long_double_bit (gdbarch, 96);
7634
7635 /* Register numbers of various important registers. */
7636 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7637 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7638 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7639 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7640
7641 /* NOTE: kettenis/20040418: GCC does have two possible register
7642 numbering schemes on the i386: dbx and SVR4. These schemes
7643 differ in how they number %ebp, %esp, %eflags, and the
7644 floating-point registers, and are implemented by the arrays
7645 dbx_register_map[] and svr4_dbx_register_map in
7646 gcc/config/i386.c. GCC also defines a third numbering scheme in
7647 gcc/config/i386.c, which it designates as the "default" register
7648 map used in 64bit mode. This last register numbering scheme is
7649 implemented in dbx64_register_map, and is used for AMD64; see
7650 amd64-tdep.c.
7651
7652 Currently, each GCC i386 target always uses the same register
7653 numbering scheme across all its supported debugging formats
7654 i.e. SDB (COFF), stabs and DWARF 2. This is because
7655 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7656 DBX_REGISTER_NUMBER macro which is defined by each target's
7657 respective config header in a manner independent of the requested
7658 output debugging format.
7659
7660 This does not match the arrangement below, which presumes that
7661 the SDB and stabs numbering schemes differ from the DWARF and
7662 DWARF 2 ones. The reason for this arrangement is that it is
7663 likely to get the numbering scheme for the target's
7664 default/native debug format right. For targets where GCC is the
7665 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7666 targets where the native toolchain uses a different numbering
7667 scheme for a particular debug format (stabs-in-ELF on Solaris)
7668 the defaults below will have to be overridden, like
7669 i386_elf_init_abi() does. */
7670
7671 /* Use the dbx register numbering scheme for stabs and COFF. */
7672 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7673 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7674
7675 /* Use the SVR4 register numbering scheme for DWARF 2. */
7676 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7677
7678 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7679 be in use on any of the supported i386 targets. */
7680
7681 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7682
7683 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7684
7685 /* Call dummy code. */
7686 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
7687 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7688 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7689 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7690
7691 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7692 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7693 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7694
7695 set_gdbarch_return_value (gdbarch, i386_return_value);
7696
7697 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7698
7699 /* Stack grows downward. */
7700 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7701
7702 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7703 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7704 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7705
7706 set_gdbarch_frame_args_skip (gdbarch, 8);
7707
7708 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7709
7710 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7711
7712 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7713
7714 /* Add the i386 register groups. */
7715 i386_add_reggroups (gdbarch);
7716 tdep->register_reggroup_p = i386_register_reggroup_p;
7717
7718 /* Helper for function argument information. */
7719 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7720
7721 /* Hook the function epilogue frame unwinder. This unwinder is
7722 appended to the list first, so that it supercedes the DWARF
7723 unwinder in function epilogues (where the DWARF unwinder
7724 currently fails). */
7725 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7726
7727 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7728 to the list before the prologue-based unwinders, so that DWARF
7729 CFI info will be used if it is available. */
7730 dwarf2_append_unwinders (gdbarch);
7731
7732 frame_base_set_default (gdbarch, &i386_frame_base);
7733
7734 /* Pseudo registers may be changed by amd64_init_abi. */
7735 set_gdbarch_pseudo_register_read_value (gdbarch,
7736 i386_pseudo_register_read_value);
7737 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7738
7739 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7740 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7741
7742 /* Override the normal target description method to make the AVX
7743 upper halves anonymous. */
7744 set_gdbarch_register_name (gdbarch, i386_register_name);
7745
7746 /* Even though the default ABI only includes general-purpose registers,
7747 floating-point registers and the SSE registers, we have to leave a
7748 gap for the upper AVX registers. */
7749 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
7750
7751 /* Get the x86 target description from INFO. */
7752 tdesc = info.target_desc;
7753 if (! tdesc_has_registers (tdesc))
7754 tdesc = tdesc_i386;
7755 tdep->tdesc = tdesc;
7756
7757 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7758 tdep->register_names = i386_register_names;
7759
7760 /* No upper YMM registers. */
7761 tdep->ymmh_register_names = NULL;
7762 tdep->ymm0h_regnum = -1;
7763
7764 tdep->num_byte_regs = 8;
7765 tdep->num_word_regs = 8;
7766 tdep->num_dword_regs = 0;
7767 tdep->num_mmx_regs = 8;
7768 tdep->num_ymm_regs = 0;
7769
7770 tdesc_data = tdesc_data_alloc ();
7771
7772 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7773
7774 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
7775
7776 /* Hook in ABI-specific overrides, if they have been registered. */
7777 info.tdep_info = (void *) tdesc_data;
7778 gdbarch_init_osabi (info, gdbarch);
7779
7780 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7781 {
7782 tdesc_data_cleanup (tdesc_data);
7783 xfree (tdep);
7784 gdbarch_free (gdbarch);
7785 return NULL;
7786 }
7787
7788 /* Wire in pseudo registers. Number of pseudo registers may be
7789 changed. */
7790 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7791 + tdep->num_word_regs
7792 + tdep->num_dword_regs
7793 + tdep->num_mmx_regs
7794 + tdep->num_ymm_regs));
7795
7796 /* Target description may be changed. */
7797 tdesc = tdep->tdesc;
7798
7799 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7800
7801 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7802 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7803
7804 /* Make %al the first pseudo-register. */
7805 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7806 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7807
7808 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
7809 if (tdep->num_dword_regs)
7810 {
7811 /* Support dword pseudo-register if it hasn't been disabled. */
7812 tdep->eax_regnum = ymm0_regnum;
7813 ymm0_regnum += tdep->num_dword_regs;
7814 }
7815 else
7816 tdep->eax_regnum = -1;
7817
7818 mm0_regnum = ymm0_regnum;
7819 if (tdep->num_ymm_regs)
7820 {
7821 /* Support YMM pseudo-register if it is available. */
7822 tdep->ymm0_regnum = ymm0_regnum;
7823 mm0_regnum += tdep->num_ymm_regs;
7824 }
7825 else
7826 tdep->ymm0_regnum = -1;
7827
7828 if (tdep->num_mmx_regs != 0)
7829 {
7830 /* Support MMX pseudo-register if MMX hasn't been disabled. */
7831 tdep->mm0_regnum = mm0_regnum;
7832 }
7833 else
7834 tdep->mm0_regnum = -1;
7835
7836 /* Hook in the legacy prologue-based unwinders last (fallback). */
7837 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
7838 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7839 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
7840
7841 /* If we have a register mapping, enable the generic core file
7842 support, unless it has already been enabled. */
7843 if (tdep->gregset_reg_offset
7844 && !gdbarch_regset_from_core_section_p (gdbarch))
7845 set_gdbarch_regset_from_core_section (gdbarch,
7846 i386_regset_from_core_section);
7847
7848 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7849 i386_skip_permanent_breakpoint);
7850
7851 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7852 i386_fast_tracepoint_valid_at);
7853
7854 return gdbarch;
7855 }
7856
7857 static enum gdb_osabi
7858 i386_coff_osabi_sniffer (bfd *abfd)
7859 {
7860 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7861 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
7862 return GDB_OSABI_GO32;
7863
7864 return GDB_OSABI_UNKNOWN;
7865 }
7866 \f
7867
7868 /* Provide a prototype to silence -Wmissing-prototypes. */
7869 void _initialize_i386_tdep (void);
7870
7871 void
7872 _initialize_i386_tdep (void)
7873 {
7874 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7875
7876 /* Add the variable that controls the disassembly flavor. */
7877 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7878 &disassembly_flavor, _("\
7879 Set the disassembly flavor."), _("\
7880 Show the disassembly flavor."), _("\
7881 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7882 NULL,
7883 NULL, /* FIXME: i18n: */
7884 &setlist, &showlist);
7885
7886 /* Add the variable that controls the convention for returning
7887 structs. */
7888 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7889 &struct_convention, _("\
7890 Set the convention for returning small structs."), _("\
7891 Show the convention for returning small structs."), _("\
7892 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7893 is \"default\"."),
7894 NULL,
7895 NULL, /* FIXME: i18n: */
7896 &setlist, &showlist);
7897
7898 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7899 i386_coff_osabi_sniffer);
7900
7901 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
7902 i386_svr4_init_abi);
7903 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
7904 i386_go32_init_abi);
7905
7906 /* Initialize the i386-specific register groups. */
7907 i386_init_reggroups ();
7908
7909 /* Initialize the standard target descriptions. */
7910 initialize_tdesc_i386 ();
7911 initialize_tdesc_i386_mmx ();
7912 initialize_tdesc_i386_avx ();
7913
7914 /* Tell remote stub that we support XML target description. */
7915 register_remote_support_xml ("i386");
7916 }