]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/i386-tdep.c
* arch-utils.c (gdbarch_info_init): Set osabi to
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "objfiles.h"
29 #include "target.h"
30 #include "floatformat.h"
31 #include "symfile.h"
32 #include "symtab.h"
33 #include "gdbcmd.h"
34 #include "command.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "doublest.h"
38 #include "value.h"
39 #include "gdb_assert.h"
40 #include "reggroups.h"
41 #include "dummy-frame.h"
42 #include "osabi.h"
43
44 #include "i386-tdep.h"
45 #include "i387-tdep.h"
46
47 /* Names of the registers. The first 10 registers match the register
48 numbering scheme used by GCC for stabs and DWARF. */
49 static char *i386_register_names[] =
50 {
51 "eax", "ecx", "edx", "ebx",
52 "esp", "ebp", "esi", "edi",
53 "eip", "eflags", "cs", "ss",
54 "ds", "es", "fs", "gs",
55 "st0", "st1", "st2", "st3",
56 "st4", "st5", "st6", "st7",
57 "fctrl", "fstat", "ftag", "fiseg",
58 "fioff", "foseg", "fooff", "fop",
59 "xmm0", "xmm1", "xmm2", "xmm3",
60 "xmm4", "xmm5", "xmm6", "xmm7",
61 "mxcsr"
62 };
63
64 /* MMX registers. */
65
66 static char *i386_mmx_names[] =
67 {
68 "mm0", "mm1", "mm2", "mm3",
69 "mm4", "mm5", "mm6", "mm7"
70 };
71 static const int mmx_num_regs = (sizeof (i386_mmx_names)
72 / sizeof (i386_mmx_names[0]));
73 #define MM0_REGNUM (NUM_REGS)
74
75 static int
76 i386_mmx_regnum_p (int reg)
77 {
78 return (reg >= MM0_REGNUM && reg < MM0_REGNUM + mmx_num_regs);
79 }
80
81 /* FP register? */
82
83 int
84 i386_fp_regnum_p (int regnum)
85 {
86 return (regnum < NUM_REGS
87 && (FP0_REGNUM && FP0_REGNUM <= (regnum) && (regnum) < FPC_REGNUM));
88 }
89
90 int
91 i386_fpc_regnum_p (int regnum)
92 {
93 return (regnum < NUM_REGS
94 && (FPC_REGNUM <= (regnum) && (regnum) < XMM0_REGNUM));
95 }
96
97 /* SSE register? */
98
99 int
100 i386_sse_regnum_p (int regnum)
101 {
102 return (regnum < NUM_REGS
103 && (XMM0_REGNUM <= (regnum) && (regnum) < MXCSR_REGNUM));
104 }
105
106 int
107 i386_mxcsr_regnum_p (int regnum)
108 {
109 return (regnum < NUM_REGS
110 && (regnum == MXCSR_REGNUM));
111 }
112
113 /* Return the name of register REG. */
114
115 const char *
116 i386_register_name (int reg)
117 {
118 if (reg < 0)
119 return NULL;
120 if (i386_mmx_regnum_p (reg))
121 return i386_mmx_names[reg - MM0_REGNUM];
122 if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
123 return NULL;
124
125 return i386_register_names[reg];
126 }
127
128 /* Convert stabs register number REG to the appropriate register
129 number used by GDB. */
130
131 static int
132 i386_stab_reg_to_regnum (int reg)
133 {
134 /* This implements what GCC calls the "default" register map. */
135 if (reg >= 0 && reg <= 7)
136 {
137 /* General registers. */
138 return reg;
139 }
140 else if (reg >= 12 && reg <= 19)
141 {
142 /* Floating-point registers. */
143 return reg - 12 + FP0_REGNUM;
144 }
145 else if (reg >= 21 && reg <= 28)
146 {
147 /* SSE registers. */
148 return reg - 21 + XMM0_REGNUM;
149 }
150 else if (reg >= 29 && reg <= 36)
151 {
152 /* MMX registers. */
153 return reg - 29 + MM0_REGNUM;
154 }
155
156 /* This will hopefully provoke a warning. */
157 return NUM_REGS + NUM_PSEUDO_REGS;
158 }
159
160 /* Convert DWARF register number REG to the appropriate register
161 number used by GDB. */
162
163 static int
164 i386_dwarf_reg_to_regnum (int reg)
165 {
166 /* The DWARF register numbering includes %eip and %eflags, and
167 numbers the floating point registers differently. */
168 if (reg >= 0 && reg <= 9)
169 {
170 /* General registers. */
171 return reg;
172 }
173 else if (reg >= 11 && reg <= 18)
174 {
175 /* Floating-point registers. */
176 return reg - 11 + FP0_REGNUM;
177 }
178 else if (reg >= 21)
179 {
180 /* The SSE and MMX registers have identical numbers as in stabs. */
181 return i386_stab_reg_to_regnum (reg);
182 }
183
184 /* This will hopefully provoke a warning. */
185 return NUM_REGS + NUM_PSEUDO_REGS;
186 }
187 \f
188
189 /* This is the variable that is set with "set disassembly-flavor", and
190 its legitimate values. */
191 static const char att_flavor[] = "att";
192 static const char intel_flavor[] = "intel";
193 static const char *valid_flavors[] =
194 {
195 att_flavor,
196 intel_flavor,
197 NULL
198 };
199 static const char *disassembly_flavor = att_flavor;
200
201 /* Stdio style buffering was used to minimize calls to ptrace, but
202 this buffering did not take into account that the code section
203 being accessed may not be an even number of buffers long (even if
204 the buffer is only sizeof(int) long). In cases where the code
205 section size happened to be a non-integral number of buffers long,
206 attempting to read the last buffer would fail. Simply using
207 target_read_memory and ignoring errors, rather than read_memory, is
208 not the correct solution, since legitimate access errors would then
209 be totally ignored. To properly handle this situation and continue
210 to use buffering would require that this code be able to determine
211 the minimum code section size granularity (not the alignment of the
212 section itself, since the actual failing case that pointed out this
213 problem had a section alignment of 4 but was not a multiple of 4
214 bytes long), on a target by target basis, and then adjust it's
215 buffer size accordingly. This is messy, but potentially feasible.
216 It probably needs the bfd library's help and support. For now, the
217 buffer size is set to 1. (FIXME -fnf) */
218
219 #define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
220 static CORE_ADDR codestream_next_addr;
221 static CORE_ADDR codestream_addr;
222 static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
223 static int codestream_off;
224 static int codestream_cnt;
225
226 #define codestream_tell() (codestream_addr + codestream_off)
227 #define codestream_peek() \
228 (codestream_cnt == 0 ? \
229 codestream_fill(1) : codestream_buf[codestream_off])
230 #define codestream_get() \
231 (codestream_cnt-- == 0 ? \
232 codestream_fill(0) : codestream_buf[codestream_off++])
233
234 static unsigned char
235 codestream_fill (int peek_flag)
236 {
237 codestream_addr = codestream_next_addr;
238 codestream_next_addr += CODESTREAM_BUFSIZ;
239 codestream_off = 0;
240 codestream_cnt = CODESTREAM_BUFSIZ;
241 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
242
243 if (peek_flag)
244 return (codestream_peek ());
245 else
246 return (codestream_get ());
247 }
248
249 static void
250 codestream_seek (CORE_ADDR place)
251 {
252 codestream_next_addr = place / CODESTREAM_BUFSIZ;
253 codestream_next_addr *= CODESTREAM_BUFSIZ;
254 codestream_cnt = 0;
255 codestream_fill (1);
256 while (codestream_tell () != place)
257 codestream_get ();
258 }
259
260 static void
261 codestream_read (unsigned char *buf, int count)
262 {
263 unsigned char *p;
264 int i;
265 p = buf;
266 for (i = 0; i < count; i++)
267 *p++ = codestream_get ();
268 }
269 \f
270
271 /* If the next instruction is a jump, move to its target. */
272
273 static void
274 i386_follow_jump (void)
275 {
276 unsigned char buf[4];
277 long delta;
278
279 int data16;
280 CORE_ADDR pos;
281
282 pos = codestream_tell ();
283
284 data16 = 0;
285 if (codestream_peek () == 0x66)
286 {
287 codestream_get ();
288 data16 = 1;
289 }
290
291 switch (codestream_get ())
292 {
293 case 0xe9:
294 /* Relative jump: if data16 == 0, disp32, else disp16. */
295 if (data16)
296 {
297 codestream_read (buf, 2);
298 delta = extract_signed_integer (buf, 2);
299
300 /* Include the size of the jmp instruction (including the
301 0x66 prefix). */
302 pos += delta + 4;
303 }
304 else
305 {
306 codestream_read (buf, 4);
307 delta = extract_signed_integer (buf, 4);
308
309 pos += delta + 5;
310 }
311 break;
312 case 0xeb:
313 /* Relative jump, disp8 (ignore data16). */
314 codestream_read (buf, 1);
315 /* Sign-extend it. */
316 delta = extract_signed_integer (buf, 1);
317
318 pos += delta + 2;
319 break;
320 }
321 codestream_seek (pos);
322 }
323
324 /* Find & return the amount a local space allocated, and advance the
325 codestream to the first register push (if any).
326
327 If the entry sequence doesn't make sense, return -1, and leave
328 codestream pointer at a random spot. */
329
330 static long
331 i386_get_frame_setup (CORE_ADDR pc)
332 {
333 unsigned char op;
334
335 codestream_seek (pc);
336
337 i386_follow_jump ();
338
339 op = codestream_get ();
340
341 if (op == 0x58) /* popl %eax */
342 {
343 /* This function must start with
344
345 popl %eax 0x58
346 xchgl %eax, (%esp) 0x87 0x04 0x24
347 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
348
349 (the System V compiler puts out the second `xchg'
350 instruction, and the assembler doesn't try to optimize it, so
351 the 'sib' form gets generated). This sequence is used to get
352 the address of the return buffer for a function that returns
353 a structure. */
354 int pos;
355 unsigned char buf[4];
356 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
357 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
358
359 pos = codestream_tell ();
360 codestream_read (buf, 4);
361 if (memcmp (buf, proto1, 3) == 0)
362 pos += 3;
363 else if (memcmp (buf, proto2, 4) == 0)
364 pos += 4;
365
366 codestream_seek (pos);
367 op = codestream_get (); /* Update next opcode. */
368 }
369
370 if (op == 0x68 || op == 0x6a)
371 {
372 /* This function may start with
373
374 pushl constant
375 call _probe
376 addl $4, %esp
377
378 followed by
379
380 pushl %ebp
381
382 etc. */
383 int pos;
384 unsigned char buf[8];
385
386 /* Skip past the `pushl' instruction; it has either a one-byte
387 or a four-byte operand, depending on the opcode. */
388 pos = codestream_tell ();
389 if (op == 0x68)
390 pos += 4;
391 else
392 pos += 1;
393 codestream_seek (pos);
394
395 /* Read the following 8 bytes, which should be "call _probe" (6
396 bytes) followed by "addl $4,%esp" (2 bytes). */
397 codestream_read (buf, sizeof (buf));
398 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
399 pos += sizeof (buf);
400 codestream_seek (pos);
401 op = codestream_get (); /* Update next opcode. */
402 }
403
404 if (op == 0x55) /* pushl %ebp */
405 {
406 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
407 switch (codestream_get ())
408 {
409 case 0x8b:
410 if (codestream_get () != 0xec)
411 return -1;
412 break;
413 case 0x89:
414 if (codestream_get () != 0xe5)
415 return -1;
416 break;
417 default:
418 return -1;
419 }
420 /* Check for stack adjustment
421
422 subl $XXX, %esp
423
424 NOTE: You can't subtract a 16 bit immediate from a 32 bit
425 reg, so we don't have to worry about a data16 prefix. */
426 op = codestream_peek ();
427 if (op == 0x83)
428 {
429 /* `subl' with 8 bit immediate. */
430 codestream_get ();
431 if (codestream_get () != 0xec)
432 /* Some instruction starting with 0x83 other than `subl'. */
433 {
434 codestream_seek (codestream_tell () - 2);
435 return 0;
436 }
437 /* `subl' with signed byte immediate (though it wouldn't
438 make sense to be negative). */
439 return (codestream_get ());
440 }
441 else if (op == 0x81)
442 {
443 char buf[4];
444 /* Maybe it is `subl' with a 32 bit immedediate. */
445 codestream_get ();
446 if (codestream_get () != 0xec)
447 /* Some instruction starting with 0x81 other than `subl'. */
448 {
449 codestream_seek (codestream_tell () - 2);
450 return 0;
451 }
452 /* It is `subl' with a 32 bit immediate. */
453 codestream_read ((unsigned char *) buf, 4);
454 return extract_signed_integer (buf, 4);
455 }
456 else
457 {
458 return 0;
459 }
460 }
461 else if (op == 0xc8)
462 {
463 char buf[2];
464 /* `enter' with 16 bit unsigned immediate. */
465 codestream_read ((unsigned char *) buf, 2);
466 codestream_get (); /* Flush final byte of enter instruction. */
467 return extract_unsigned_integer (buf, 2);
468 }
469 return (-1);
470 }
471
472 /* Signal trampolines don't have a meaningful frame. The frame
473 pointer value we use is actually the frame pointer of the calling
474 frame -- that is, the frame which was in progress when the signal
475 trampoline was entered. GDB mostly treats this frame pointer value
476 as a magic cookie. We detect the case of a signal trampoline by
477 testing for get_frame_type() == SIGTRAMP_FRAME, which is set based
478 on PC_IN_SIGTRAMP.
479
480 When a signal trampoline is invoked from a frameless function, we
481 essentially have two frameless functions in a row. In this case,
482 we use the same magic cookie for three frames in a row. We detect
483 this case by seeing whether the next frame is a SIGTRAMP_FRAME,
484 and, if it does, checking whether the current frame is actually
485 frameless. In this case, we need to get the PC by looking at the
486 SP register value stored in the signal context.
487
488 This should work in most cases except in horrible situations where
489 a signal occurs just as we enter a function but before the frame
490 has been set up. Incidentally, that's just what happens when we
491 call a function from GDB with a signal pending (there's a test in
492 the testsuite that makes this happen). Therefore we pretend that
493 we have a frameless function if we're stopped at the start of a
494 function. */
495
496 /* Return non-zero if we're dealing with a frameless signal, that is,
497 a signal trampoline invoked from a frameless function. */
498
499 int
500 i386_frameless_signal_p (struct frame_info *frame)
501 {
502 return (frame->next && get_frame_type (frame->next) == SIGTRAMP_FRAME
503 && (frameless_look_for_prologue (frame)
504 || get_frame_pc (frame) == get_pc_function_start (get_frame_pc (frame))));
505 }
506
507 /* Return the chain-pointer for FRAME. In the case of the i386, the
508 frame's nominal address is the address of a 4-byte word containing
509 the calling frame's address. */
510
511 static CORE_ADDR
512 i386_frame_chain (struct frame_info *frame)
513 {
514 if (pc_in_dummy_frame (get_frame_pc (frame)))
515 return frame->frame;
516
517 if (get_frame_type (frame) == SIGTRAMP_FRAME
518 || i386_frameless_signal_p (frame))
519 return frame->frame;
520
521 if (! inside_entry_file (get_frame_pc (frame)))
522 return read_memory_unsigned_integer (frame->frame, 4);
523
524 return 0;
525 }
526
527 /* Determine whether the function invocation represented by FRAME does
528 not have a from on the stack associated with it. If it does not,
529 return non-zero, otherwise return zero. */
530
531 static int
532 i386_frameless_function_invocation (struct frame_info *frame)
533 {
534 if (get_frame_type (frame) == SIGTRAMP_FRAME)
535 return 0;
536
537 return frameless_look_for_prologue (frame);
538 }
539
540 /* Assuming FRAME is for a sigtramp routine, return the saved program
541 counter. */
542
543 static CORE_ADDR
544 i386_sigtramp_saved_pc (struct frame_info *frame)
545 {
546 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
547 CORE_ADDR addr;
548
549 addr = tdep->sigcontext_addr (frame);
550 return read_memory_unsigned_integer (addr + tdep->sc_pc_offset, 4);
551 }
552
553 /* Assuming FRAME is for a sigtramp routine, return the saved stack
554 pointer. */
555
556 static CORE_ADDR
557 i386_sigtramp_saved_sp (struct frame_info *frame)
558 {
559 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
560 CORE_ADDR addr;
561
562 addr = tdep->sigcontext_addr (frame);
563 return read_memory_unsigned_integer (addr + tdep->sc_sp_offset, 4);
564 }
565
566 /* Return the saved program counter for FRAME. */
567
568 static CORE_ADDR
569 i386_frame_saved_pc (struct frame_info *frame)
570 {
571 if (pc_in_dummy_frame (get_frame_pc (frame)))
572 {
573 ULONGEST pc;
574
575 frame_unwind_unsigned_register (frame, PC_REGNUM, &pc);
576 return pc;
577 }
578
579 if (get_frame_type (frame) == SIGTRAMP_FRAME)
580 return i386_sigtramp_saved_pc (frame);
581
582 if (i386_frameless_signal_p (frame))
583 {
584 CORE_ADDR sp = i386_sigtramp_saved_sp (frame->next);
585 return read_memory_unsigned_integer (sp, 4);
586 }
587
588 return read_memory_unsigned_integer (frame->frame + 4, 4);
589 }
590
591 /* Immediately after a function call, return the saved pc. */
592
593 static CORE_ADDR
594 i386_saved_pc_after_call (struct frame_info *frame)
595 {
596 if (get_frame_type (frame) == SIGTRAMP_FRAME)
597 return i386_sigtramp_saved_pc (frame);
598
599 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
600 }
601
602 /* Return number of args passed to a frame.
603 Can return -1, meaning no way to tell. */
604
605 static int
606 i386_frame_num_args (struct frame_info *fi)
607 {
608 #if 1
609 return -1;
610 #else
611 /* This loses because not only might the compiler not be popping the
612 args right after the function call, it might be popping args from
613 both this call and a previous one, and we would say there are
614 more args than there really are. */
615
616 int retpc;
617 unsigned char op;
618 struct frame_info *pfi;
619
620 /* On the i386, the instruction following the call could be:
621 popl %ecx - one arg
622 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
623 anything else - zero args. */
624
625 int frameless;
626
627 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
628 if (frameless)
629 /* In the absence of a frame pointer, GDB doesn't get correct
630 values for nameless arguments. Return -1, so it doesn't print
631 any nameless arguments. */
632 return -1;
633
634 pfi = get_prev_frame (fi);
635 if (pfi == 0)
636 {
637 /* NOTE: This can happen if we are looking at the frame for
638 main, because FRAME_CHAIN_VALID won't let us go into start.
639 If we have debugging symbols, that's not really a big deal;
640 it just means it will only show as many arguments to main as
641 are declared. */
642 return -1;
643 }
644 else
645 {
646 retpc = pfi->pc;
647 op = read_memory_integer (retpc, 1);
648 if (op == 0x59) /* pop %ecx */
649 return 1;
650 else if (op == 0x83)
651 {
652 op = read_memory_integer (retpc + 1, 1);
653 if (op == 0xc4)
654 /* addl $<signed imm 8 bits>, %esp */
655 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
656 else
657 return 0;
658 }
659 else if (op == 0x81) /* `add' with 32 bit immediate. */
660 {
661 op = read_memory_integer (retpc + 1, 1);
662 if (op == 0xc4)
663 /* addl $<imm 32>, %esp */
664 return read_memory_integer (retpc + 2, 4) / 4;
665 else
666 return 0;
667 }
668 else
669 {
670 return 0;
671 }
672 }
673 #endif
674 }
675
676 /* Parse the first few instructions the function to see what registers
677 were stored.
678
679 We handle these cases:
680
681 The startup sequence can be at the start of the function, or the
682 function can start with a branch to startup code at the end.
683
684 %ebp can be set up with either the 'enter' instruction, or "pushl
685 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
686 once used in the System V compiler).
687
688 Local space is allocated just below the saved %ebp by either the
689 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
690 bit unsigned argument for space to allocate, and the 'addl'
691 instruction could have either a signed byte, or 32 bit immediate.
692
693 Next, the registers used by this function are pushed. With the
694 System V compiler they will always be in the order: %edi, %esi,
695 %ebx (and sometimes a harmless bug causes it to also save but not
696 restore %eax); however, the code below is willing to see the pushes
697 in any order, and will handle up to 8 of them.
698
699 If the setup sequence is at the end of the function, then the next
700 instruction will be a branch back to the start. */
701
702 static void
703 i386_frame_init_saved_regs (struct frame_info *fip)
704 {
705 long locals = -1;
706 unsigned char op;
707 CORE_ADDR addr;
708 CORE_ADDR pc;
709 int i;
710
711 if (get_frame_saved_regs (fip))
712 return;
713
714 frame_saved_regs_zalloc (fip);
715
716 pc = get_pc_function_start (get_frame_pc (fip));
717 if (pc != 0)
718 locals = i386_get_frame_setup (pc);
719
720 if (locals >= 0)
721 {
722 addr = fip->frame - 4 - locals;
723 for (i = 0; i < 8; i++)
724 {
725 op = codestream_get ();
726 if (op < 0x50 || op > 0x57)
727 break;
728 #ifdef I386_REGNO_TO_SYMMETRY
729 /* Dynix uses different internal numbering. Ick. */
730 get_frame_saved_regs (fip)[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
731 #else
732 get_frame_saved_regs (fip)[op - 0x50] = addr;
733 #endif
734 addr -= 4;
735 }
736 }
737
738 get_frame_saved_regs (fip)[PC_REGNUM] = fip->frame + 4;
739 get_frame_saved_regs (fip)[FP_REGNUM] = fip->frame;
740 }
741
742 /* Return PC of first real instruction. */
743
744 static CORE_ADDR
745 i386_skip_prologue (CORE_ADDR pc)
746 {
747 unsigned char op;
748 int i;
749 static unsigned char pic_pat[6] =
750 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
751 0x5b, /* popl %ebx */
752 };
753 CORE_ADDR pos;
754
755 if (i386_get_frame_setup (pc) < 0)
756 return (pc);
757
758 /* Found valid frame setup -- codestream now points to start of push
759 instructions for saving registers. */
760
761 /* Skip over register saves. */
762 for (i = 0; i < 8; i++)
763 {
764 op = codestream_peek ();
765 /* Break if not `pushl' instrunction. */
766 if (op < 0x50 || op > 0x57)
767 break;
768 codestream_get ();
769 }
770
771 /* The native cc on SVR4 in -K PIC mode inserts the following code
772 to get the address of the global offset table (GOT) into register
773 %ebx
774
775 call 0x0
776 popl %ebx
777 movl %ebx,x(%ebp) (optional)
778 addl y,%ebx
779
780 This code is with the rest of the prologue (at the end of the
781 function), so we have to skip it to get to the first real
782 instruction at the start of the function. */
783
784 pos = codestream_tell ();
785 for (i = 0; i < 6; i++)
786 {
787 op = codestream_get ();
788 if (pic_pat[i] != op)
789 break;
790 }
791 if (i == 6)
792 {
793 unsigned char buf[4];
794 long delta = 6;
795
796 op = codestream_get ();
797 if (op == 0x89) /* movl %ebx, x(%ebp) */
798 {
799 op = codestream_get ();
800 if (op == 0x5d) /* One byte offset from %ebp. */
801 {
802 delta += 3;
803 codestream_read (buf, 1);
804 }
805 else if (op == 0x9d) /* Four byte offset from %ebp. */
806 {
807 delta += 6;
808 codestream_read (buf, 4);
809 }
810 else /* Unexpected instruction. */
811 delta = -1;
812 op = codestream_get ();
813 }
814 /* addl y,%ebx */
815 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
816 {
817 pos += delta + 6;
818 }
819 }
820 codestream_seek (pos);
821
822 i386_follow_jump ();
823
824 return (codestream_tell ());
825 }
826
827 /* Use the program counter to determine the contents and size of a
828 breakpoint instruction. Return a pointer to a string of bytes that
829 encode a breakpoint instruction, store the length of the string in
830 *LEN and optionally adjust *PC to point to the correct memory
831 location for inserting the breakpoint.
832
833 On the i386 we have a single breakpoint that fits in a single byte
834 and can be inserted anywhere. */
835
836 static const unsigned char *
837 i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
838 {
839 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
840
841 *len = sizeof (break_insn);
842 return break_insn;
843 }
844
845 /* Push the return address (pointing to the call dummy) onto the stack
846 and return the new value for the stack pointer. */
847
848 static CORE_ADDR
849 i386_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
850 {
851 char buf[4];
852
853 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
854 write_memory (sp - 4, buf, 4);
855 return sp - 4;
856 }
857
858 static void
859 i386_do_pop_frame (struct frame_info *frame)
860 {
861 CORE_ADDR fp;
862 int regnum;
863 char regbuf[I386_MAX_REGISTER_SIZE];
864
865 fp = get_frame_base (frame);
866 i386_frame_init_saved_regs (frame);
867
868 for (regnum = 0; regnum < NUM_REGS; regnum++)
869 {
870 CORE_ADDR addr;
871 addr = get_frame_saved_regs (frame)[regnum];
872 if (addr)
873 {
874 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
875 deprecated_write_register_gen (regnum, regbuf);
876 }
877 }
878 write_register (FP_REGNUM, read_memory_integer (fp, 4));
879 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
880 write_register (SP_REGNUM, fp + 8);
881 flush_cached_frames ();
882 }
883
884 static void
885 i386_pop_frame (void)
886 {
887 generic_pop_current_frame (i386_do_pop_frame);
888 }
889 \f
890
891 /* Figure out where the longjmp will land. Slurp the args out of the
892 stack. We expect the first arg to be a pointer to the jmp_buf
893 structure from which we extract the address that we will land at.
894 This address is copied into PC. This routine returns true on
895 success. */
896
897 static int
898 i386_get_longjmp_target (CORE_ADDR *pc)
899 {
900 char buf[4];
901 CORE_ADDR sp, jb_addr;
902 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
903
904 /* If JB_PC_OFFSET is -1, we have no way to find out where the
905 longjmp will land. */
906 if (jb_pc_offset == -1)
907 return 0;
908
909 sp = read_register (SP_REGNUM);
910 if (target_read_memory (sp + 4, buf, 4))
911 return 0;
912
913 jb_addr = extract_address (buf, 4);
914 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
915 return 0;
916
917 *pc = extract_address (buf, 4);
918 return 1;
919 }
920 \f
921
922 static CORE_ADDR
923 i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
924 int struct_return, CORE_ADDR struct_addr)
925 {
926 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
927
928 if (struct_return)
929 {
930 char buf[4];
931
932 sp -= 4;
933 store_address (buf, 4, struct_addr);
934 write_memory (sp, buf, 4);
935 }
936
937 return sp;
938 }
939
940 static void
941 i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
942 {
943 /* Do nothing. Everything was already done by i386_push_arguments. */
944 }
945
946 /* These registers are used for returning integers (and on some
947 targets also for returning `struct' and `union' values when their
948 size and alignment match an integer type). */
949 #define LOW_RETURN_REGNUM 0 /* %eax */
950 #define HIGH_RETURN_REGNUM 2 /* %edx */
951
952 /* Extract from an array REGBUF containing the (raw) register state, a
953 function return value of TYPE, and copy that, in virtual format,
954 into VALBUF. */
955
956 static void
957 i386_extract_return_value (struct type *type, struct regcache *regcache,
958 void *dst)
959 {
960 bfd_byte *valbuf = dst;
961 int len = TYPE_LENGTH (type);
962 char buf[I386_MAX_REGISTER_SIZE];
963
964 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
965 && TYPE_NFIELDS (type) == 1)
966 {
967 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
968 return;
969 }
970
971 if (TYPE_CODE (type) == TYPE_CODE_FLT)
972 {
973 if (FP0_REGNUM == 0)
974 {
975 warning ("Cannot find floating-point return value.");
976 memset (valbuf, 0, len);
977 return;
978 }
979
980 /* Floating-point return values can be found in %st(0). Convert
981 its contents to the desired type. This is probably not
982 exactly how it would happen on the target itself, but it is
983 the best we can do. */
984 regcache_raw_read (regcache, FP0_REGNUM, buf);
985 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
986 }
987 else
988 {
989 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
990 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
991
992 if (len <= low_size)
993 {
994 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
995 memcpy (valbuf, buf, len);
996 }
997 else if (len <= (low_size + high_size))
998 {
999 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1000 memcpy (valbuf, buf, low_size);
1001 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1002 memcpy (valbuf + low_size, buf, len - low_size);
1003 }
1004 else
1005 internal_error (__FILE__, __LINE__,
1006 "Cannot extract return value of %d bytes long.", len);
1007 }
1008 }
1009
1010 /* Write into the appropriate registers a function return value stored
1011 in VALBUF of type TYPE, given in virtual format. */
1012
1013 static void
1014 i386_store_return_value (struct type *type, struct regcache *regcache,
1015 const void *valbuf)
1016 {
1017 int len = TYPE_LENGTH (type);
1018
1019 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1020 && TYPE_NFIELDS (type) == 1)
1021 {
1022 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
1023 return;
1024 }
1025
1026 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1027 {
1028 ULONGEST fstat;
1029 char buf[FPU_REG_RAW_SIZE];
1030
1031 if (FP0_REGNUM == 0)
1032 {
1033 warning ("Cannot set floating-point return value.");
1034 return;
1035 }
1036
1037 /* Returning floating-point values is a bit tricky. Apart from
1038 storing the return value in %st(0), we have to simulate the
1039 state of the FPU at function return point. */
1040
1041 /* Convert the value found in VALBUF to the extended
1042 floating-point format used by the FPU. This is probably
1043 not exactly how it would happen on the target itself, but
1044 it is the best we can do. */
1045 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1046 regcache_raw_write (regcache, FP0_REGNUM, buf);
1047
1048 /* Set the top of the floating-point register stack to 7. The
1049 actual value doesn't really matter, but 7 is what a normal
1050 function return would end up with if the program started out
1051 with a freshly initialized FPU. */
1052 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1053 fstat |= (7 << 11);
1054 regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat);
1055
1056 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1057 the floating-point register stack to 7, the appropriate value
1058 for the tag word is 0x3fff. */
1059 regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff);
1060 }
1061 else
1062 {
1063 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1064 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1065
1066 if (len <= low_size)
1067 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1068 else if (len <= (low_size + high_size))
1069 {
1070 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1071 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1072 len - low_size, (char *) valbuf + low_size);
1073 }
1074 else
1075 internal_error (__FILE__, __LINE__,
1076 "Cannot store return value of %d bytes long.", len);
1077 }
1078 }
1079
1080 /* Extract from REGCACHE, which contains the (raw) register state, the
1081 address in which a function should return its structure value, as a
1082 CORE_ADDR. */
1083
1084 static CORE_ADDR
1085 i386_extract_struct_value_address (struct regcache *regcache)
1086 {
1087 ULONGEST addr;
1088
1089 regcache_raw_read_unsigned (regcache, LOW_RETURN_REGNUM, &addr);
1090 return addr;
1091 }
1092 \f
1093
1094 /* This is the variable that is set with "set struct-convention", and
1095 its legitimate values. */
1096 static const char default_struct_convention[] = "default";
1097 static const char pcc_struct_convention[] = "pcc";
1098 static const char reg_struct_convention[] = "reg";
1099 static const char *valid_conventions[] =
1100 {
1101 default_struct_convention,
1102 pcc_struct_convention,
1103 reg_struct_convention,
1104 NULL
1105 };
1106 static const char *struct_convention = default_struct_convention;
1107
1108 static int
1109 i386_use_struct_convention (int gcc_p, struct type *type)
1110 {
1111 enum struct_return struct_return;
1112
1113 if (struct_convention == default_struct_convention)
1114 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1115 else if (struct_convention == pcc_struct_convention)
1116 struct_return = pcc_struct_return;
1117 else
1118 struct_return = reg_struct_return;
1119
1120 return generic_use_struct_convention (struct_return == reg_struct_return,
1121 type);
1122 }
1123 \f
1124
1125 /* Return the GDB type object for the "standard" data type of data in
1126 register REGNUM. Perhaps %esi and %edi should go here, but
1127 potentially they could be used for things other than address. */
1128
1129 static struct type *
1130 i386_register_virtual_type (int regnum)
1131 {
1132 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1133 return lookup_pointer_type (builtin_type_void);
1134
1135 if (i386_fp_regnum_p (regnum))
1136 return builtin_type_i387_ext;
1137
1138 if (i386_sse_regnum_p (regnum))
1139 return builtin_type_vec128i;
1140
1141 if (i386_mmx_regnum_p (regnum))
1142 return builtin_type_vec64i;
1143
1144 return builtin_type_int;
1145 }
1146
1147 /* Map a cooked register onto a raw register or memory. For the i386,
1148 the MMX registers need to be mapped onto floating point registers. */
1149
1150 static int
1151 mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1152 {
1153 int mmxi;
1154 ULONGEST fstat;
1155 int tos;
1156 int fpi;
1157 mmxi = regnum - MM0_REGNUM;
1158 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1159 tos = (fstat >> 11) & 0x7;
1160 fpi = (mmxi + tos) % 8;
1161 return (FP0_REGNUM + fpi);
1162 }
1163
1164 static void
1165 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1166 int regnum, void *buf)
1167 {
1168 if (i386_mmx_regnum_p (regnum))
1169 {
1170 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1171 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1172 regcache_raw_read (regcache, fpnum, mmx_buf);
1173 /* Extract (always little endian). */
1174 memcpy (buf, mmx_buf, REGISTER_RAW_SIZE (regnum));
1175 }
1176 else
1177 regcache_raw_read (regcache, regnum, buf);
1178 }
1179
1180 static void
1181 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1182 int regnum, const void *buf)
1183 {
1184 if (i386_mmx_regnum_p (regnum))
1185 {
1186 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1187 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1188 /* Read ... */
1189 regcache_raw_read (regcache, fpnum, mmx_buf);
1190 /* ... Modify ... (always little endian). */
1191 memcpy (mmx_buf, buf, REGISTER_RAW_SIZE (regnum));
1192 /* ... Write. */
1193 regcache_raw_write (regcache, fpnum, mmx_buf);
1194 }
1195 else
1196 regcache_raw_write (regcache, regnum, buf);
1197 }
1198
1199 /* Return true iff register REGNUM's virtual format is different from
1200 its raw format. Note that this definition assumes that the host
1201 supports IEEE 32-bit floats, since it doesn't say that SSE
1202 registers need conversion. Even if we can't find a counterexample,
1203 this is still sloppy. */
1204
1205 static int
1206 i386_register_convertible (int regnum)
1207 {
1208 return i386_fp_regnum_p (regnum);
1209 }
1210
1211 /* Convert data from raw format for register REGNUM in buffer FROM to
1212 virtual format with type TYPE in buffer TO. */
1213
1214 static void
1215 i386_register_convert_to_virtual (int regnum, struct type *type,
1216 char *from, char *to)
1217 {
1218 gdb_assert (i386_fp_regnum_p (regnum));
1219
1220 /* We only support floating-point values. */
1221 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1222 {
1223 warning ("Cannot convert floating-point register value "
1224 "to non-floating-point type.");
1225 memset (to, 0, TYPE_LENGTH (type));
1226 return;
1227 }
1228
1229 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1230 the extended floating-point format used by the FPU. */
1231 convert_typed_floating (from, builtin_type_i387_ext, to, type);
1232 }
1233
1234 /* Convert data from virtual format with type TYPE in buffer FROM to
1235 raw format for register REGNUM in buffer TO. */
1236
1237 static void
1238 i386_register_convert_to_raw (struct type *type, int regnum,
1239 char *from, char *to)
1240 {
1241 gdb_assert (i386_fp_regnum_p (regnum));
1242
1243 /* We only support floating-point values. */
1244 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1245 {
1246 warning ("Cannot convert non-floating-point type "
1247 "to floating-point register value.");
1248 memset (to, 0, TYPE_LENGTH (type));
1249 return;
1250 }
1251
1252 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1253 to the extended floating-point format used by the FPU. */
1254 convert_typed_floating (from, type, to, builtin_type_i387_ext);
1255 }
1256 \f
1257
1258 #ifdef STATIC_TRANSFORM_NAME
1259 /* SunPRO encodes the static variables. This is not related to C++
1260 mangling, it is done for C too. */
1261
1262 char *
1263 sunpro_static_transform_name (char *name)
1264 {
1265 char *p;
1266 if (IS_STATIC_TRANSFORM_NAME (name))
1267 {
1268 /* For file-local statics there will be a period, a bunch of
1269 junk (the contents of which match a string given in the
1270 N_OPT), a period and the name. For function-local statics
1271 there will be a bunch of junk (which seems to change the
1272 second character from 'A' to 'B'), a period, the name of the
1273 function, and the name. So just skip everything before the
1274 last period. */
1275 p = strrchr (name, '.');
1276 if (p != NULL)
1277 name = p + 1;
1278 }
1279 return name;
1280 }
1281 #endif /* STATIC_TRANSFORM_NAME */
1282 \f
1283
1284 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1285
1286 CORE_ADDR
1287 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
1288 {
1289 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1290 {
1291 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1292 struct minimal_symbol *indsym =
1293 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1294 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
1295
1296 if (symname)
1297 {
1298 if (strncmp (symname, "__imp_", 6) == 0
1299 || strncmp (symname, "_imp_", 5) == 0)
1300 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1301 }
1302 }
1303 return 0; /* Not a trampoline. */
1304 }
1305 \f
1306
1307 /* Return non-zero if PC and NAME show that we are in a signal
1308 trampoline. */
1309
1310 static int
1311 i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1312 {
1313 return (name && strcmp ("_sigtramp", name) == 0);
1314 }
1315 \f
1316
1317 /* We have two flavours of disassembly. The machinery on this page
1318 deals with switching between those. */
1319
1320 static int
1321 i386_print_insn (bfd_vma pc, disassemble_info *info)
1322 {
1323 gdb_assert (disassembly_flavor == att_flavor
1324 || disassembly_flavor == intel_flavor);
1325
1326 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1327 constified, cast to prevent a compiler warning. */
1328 info->disassembler_options = (char *) disassembly_flavor;
1329 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1330
1331 return print_insn_i386 (pc, info);
1332 }
1333 \f
1334
1335 /* There are a few i386 architecture variants that differ only
1336 slightly from the generic i386 target. For now, we don't give them
1337 their own source file, but include them here. As a consequence,
1338 they'll always be included. */
1339
1340 /* System V Release 4 (SVR4). */
1341
1342 static int
1343 i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
1344 {
1345 return (name && (strcmp ("_sigreturn", name) == 0
1346 || strcmp ("_sigacthandler", name) == 0
1347 || strcmp ("sigvechandler", name) == 0));
1348 }
1349
1350 /* Get address of the pushed ucontext (sigcontext) on the stack for
1351 all three variants of SVR4 sigtramps. */
1352
1353 static CORE_ADDR
1354 i386_svr4_sigcontext_addr (struct frame_info *frame)
1355 {
1356 int sigcontext_offset = -1;
1357 char *name = NULL;
1358
1359 find_pc_partial_function (get_frame_pc (frame), &name, NULL, NULL);
1360 if (name)
1361 {
1362 if (strcmp (name, "_sigreturn") == 0)
1363 sigcontext_offset = 132;
1364 else if (strcmp (name, "_sigacthandler") == 0)
1365 sigcontext_offset = 80;
1366 else if (strcmp (name, "sigvechandler") == 0)
1367 sigcontext_offset = 120;
1368 }
1369
1370 gdb_assert (sigcontext_offset != -1);
1371
1372 if (frame->next)
1373 return frame->next->frame + sigcontext_offset;
1374 return read_register (SP_REGNUM) + sigcontext_offset;
1375 }
1376 \f
1377
1378 /* DJGPP. */
1379
1380 static int
1381 i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1382 {
1383 /* DJGPP doesn't have any special frames for signal handlers. */
1384 return 0;
1385 }
1386 \f
1387
1388 /* Generic ELF. */
1389
1390 void
1391 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1392 {
1393 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1394 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1395 }
1396
1397 /* System V Release 4 (SVR4). */
1398
1399 void
1400 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1401 {
1402 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1403
1404 /* System V Release 4 uses ELF. */
1405 i386_elf_init_abi (info, gdbarch);
1406
1407 /* System V Release 4 has shared libraries. */
1408 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1409 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1410
1411 /* FIXME: kettenis/20020511: Why do we override this function here? */
1412 set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);
1413
1414 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
1415 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1416 tdep->sc_pc_offset = 14 * 4;
1417 tdep->sc_sp_offset = 7 * 4;
1418
1419 tdep->jb_pc_offset = 20;
1420 }
1421
1422 /* DJGPP. */
1423
1424 static void
1425 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1426 {
1427 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1428
1429 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
1430
1431 tdep->jb_pc_offset = 36;
1432 }
1433
1434 /* NetWare. */
1435
1436 static void
1437 i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1438 {
1439 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1440
1441 /* FIXME: kettenis/20020511: Why do we override this function here? */
1442 set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);
1443
1444 tdep->jb_pc_offset = 24;
1445 }
1446 \f
1447
1448 /* i386 register groups. In addition to the normal groups, add "mmx"
1449 and "sse". */
1450
1451 static struct reggroup *i386_sse_reggroup;
1452 static struct reggroup *i386_mmx_reggroup;
1453
1454 static void
1455 i386_init_reggroups (void)
1456 {
1457 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
1458 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
1459 }
1460
1461 static void
1462 i386_add_reggroups (struct gdbarch *gdbarch)
1463 {
1464 reggroup_add (gdbarch, i386_sse_reggroup);
1465 reggroup_add (gdbarch, i386_mmx_reggroup);
1466 reggroup_add (gdbarch, general_reggroup);
1467 reggroup_add (gdbarch, float_reggroup);
1468 reggroup_add (gdbarch, all_reggroup);
1469 reggroup_add (gdbarch, save_reggroup);
1470 reggroup_add (gdbarch, restore_reggroup);
1471 reggroup_add (gdbarch, vector_reggroup);
1472 reggroup_add (gdbarch, system_reggroup);
1473 }
1474
1475 int
1476 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1477 struct reggroup *group)
1478 {
1479 int sse_regnum_p = (i386_sse_regnum_p (regnum)
1480 || i386_mxcsr_regnum_p (regnum));
1481 int fp_regnum_p = (i386_fp_regnum_p (regnum)
1482 || i386_fpc_regnum_p (regnum));
1483 int mmx_regnum_p = (i386_mmx_regnum_p (regnum));
1484 if (group == i386_mmx_reggroup)
1485 return mmx_regnum_p;
1486 if (group == i386_sse_reggroup)
1487 return sse_regnum_p;
1488 if (group == vector_reggroup)
1489 return (mmx_regnum_p || sse_regnum_p);
1490 if (group == float_reggroup)
1491 return fp_regnum_p;
1492 if (group == general_reggroup)
1493 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
1494 return default_register_reggroup_p (gdbarch, regnum, group);
1495 }
1496
1497 \f
1498 static struct gdbarch *
1499 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1500 {
1501 struct gdbarch_tdep *tdep;
1502 struct gdbarch *gdbarch;
1503
1504 /* If there is already a candidate, use it. */
1505 arches = gdbarch_list_lookup_by_info (arches, &info);
1506 if (arches != NULL)
1507 return arches->gdbarch;
1508
1509 /* Allocate space for the new architecture. */
1510 tdep = XMALLOC (struct gdbarch_tdep);
1511 gdbarch = gdbarch_alloc (&info, tdep);
1512
1513 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1514 ready to unwind the PC first (see frame.c:get_prev_frame()). */
1515 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
1516
1517 /* The i386 default settings don't include the SSE registers.
1518 FIXME: kettenis/20020614: They do include the FPU registers for
1519 now, which probably is not quite right. */
1520 tdep->num_xmm_regs = 0;
1521
1522 tdep->jb_pc_offset = -1;
1523 tdep->struct_return = pcc_struct_return;
1524 tdep->sigtramp_start = 0;
1525 tdep->sigtramp_end = 0;
1526 tdep->sigcontext_addr = NULL;
1527 tdep->sc_pc_offset = -1;
1528 tdep->sc_sp_offset = -1;
1529
1530 /* The format used for `long double' on almost all i386 targets is
1531 the i387 extended floating-point format. In fact, of all targets
1532 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1533 on having a `long double' that's not `long' at all. */
1534 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
1535
1536 /* Although the i387 extended floating-point has only 80 significant
1537 bits, a `long double' actually takes up 96, probably to enforce
1538 alignment. */
1539 set_gdbarch_long_double_bit (gdbarch, 96);
1540
1541 /* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-ptx.h,
1542 tm-symmetry.h currently override this. Sigh. */
1543 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
1544
1545 set_gdbarch_sp_regnum (gdbarch, 4); /* %esp */
1546 set_gdbarch_fp_regnum (gdbarch, 5); /* %ebp */
1547 set_gdbarch_pc_regnum (gdbarch, 8); /* %eip */
1548 set_gdbarch_ps_regnum (gdbarch, 9); /* %eflags */
1549 set_gdbarch_fp0_regnum (gdbarch, 16); /* %st(0) */
1550
1551 /* Use the "default" register numbering scheme for stabs and COFF. */
1552 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1553 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1554
1555 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1556 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1557 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1558
1559 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1560 be in use on any of the supported i386 targets. */
1561
1562 set_gdbarch_register_name (gdbarch, i386_register_name);
1563 set_gdbarch_register_size (gdbarch, 4);
1564 set_gdbarch_register_bytes (gdbarch, I386_SIZEOF_GREGS + I386_SIZEOF_FREGS);
1565 set_gdbarch_max_register_raw_size (gdbarch, I386_MAX_REGISTER_SIZE);
1566 set_gdbarch_max_register_virtual_size (gdbarch, I386_MAX_REGISTER_SIZE);
1567 set_gdbarch_register_virtual_type (gdbarch, i386_register_virtual_type);
1568
1569 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
1570
1571 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
1572
1573 /* Call dummy code. */
1574 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1575 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1576 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1577 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1578 set_gdbarch_call_dummy_length (gdbarch, 0);
1579 set_gdbarch_call_dummy_p (gdbarch, 1);
1580 set_gdbarch_call_dummy_words (gdbarch, NULL);
1581 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
1582 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1583 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1584
1585 set_gdbarch_register_convertible (gdbarch, i386_register_convertible);
1586 set_gdbarch_register_convert_to_virtual (gdbarch,
1587 i386_register_convert_to_virtual);
1588 set_gdbarch_register_convert_to_raw (gdbarch, i386_register_convert_to_raw);
1589
1590 /* "An argument's size is increased, if necessary, to make it a
1591 multiple of [32-bit] words. This may require tail padding,
1592 depending on the size of the argument" -- from the x86 ABI. */
1593 set_gdbarch_parm_boundary (gdbarch, 32);
1594
1595 set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
1596 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
1597 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1598 set_gdbarch_push_return_address (gdbarch, i386_push_return_address);
1599 set_gdbarch_pop_frame (gdbarch, i386_pop_frame);
1600 set_gdbarch_store_struct_return (gdbarch, i386_store_struct_return);
1601 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
1602 set_gdbarch_extract_struct_value_address (gdbarch,
1603 i386_extract_struct_value_address);
1604 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1605
1606 set_gdbarch_frame_init_saved_regs (gdbarch, i386_frame_init_saved_regs);
1607 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1608
1609 /* Stack grows downward. */
1610 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1611
1612 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1613 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1614 set_gdbarch_function_start_offset (gdbarch, 0);
1615
1616 /* The following redefines make backtracing through sigtramp work.
1617 They manufacture a fake sigtramp frame and obtain the saved pc in
1618 sigtramp from the sigcontext structure which is pushed by the
1619 kernel on the user stack, along with a pointer to it. */
1620
1621 set_gdbarch_frame_args_skip (gdbarch, 8);
1622 set_gdbarch_frameless_function_invocation (gdbarch,
1623 i386_frameless_function_invocation);
1624 set_gdbarch_frame_chain (gdbarch, i386_frame_chain);
1625 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
1626 set_gdbarch_frame_saved_pc (gdbarch, i386_frame_saved_pc);
1627 set_gdbarch_saved_pc_after_call (gdbarch, i386_saved_pc_after_call);
1628 set_gdbarch_frame_num_args (gdbarch, i386_frame_num_args);
1629 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1630
1631 /* Wire in the MMX registers. */
1632 set_gdbarch_num_pseudo_regs (gdbarch, mmx_num_regs);
1633 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
1634 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
1635
1636 set_gdbarch_print_insn (gdbarch, i386_print_insn);
1637
1638 /* Add the i386 register groups. */
1639 i386_add_reggroups (gdbarch);
1640 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
1641
1642 /* Hook in ABI-specific overrides, if they have been registered. */
1643 gdbarch_init_osabi (info, gdbarch);
1644
1645 return gdbarch;
1646 }
1647
1648 static enum gdb_osabi
1649 i386_coff_osabi_sniffer (bfd *abfd)
1650 {
1651 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1652 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
1653 return GDB_OSABI_GO32;
1654
1655 return GDB_OSABI_UNKNOWN;
1656 }
1657
1658 static enum gdb_osabi
1659 i386_nlm_osabi_sniffer (bfd *abfd)
1660 {
1661 return GDB_OSABI_NETWARE;
1662 }
1663 \f
1664
1665 /* Provide a prototype to silence -Wmissing-prototypes. */
1666 void _initialize_i386_tdep (void);
1667
1668 void
1669 _initialize_i386_tdep (void)
1670 {
1671 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1672
1673 /* Add the variable that controls the disassembly flavor. */
1674 {
1675 struct cmd_list_element *new_cmd;
1676
1677 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1678 valid_flavors,
1679 &disassembly_flavor,
1680 "\
1681 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
1682 and the default value is \"att\".",
1683 &setlist);
1684 add_show_from_set (new_cmd, &showlist);
1685 }
1686
1687 /* Add the variable that controls the convention for returning
1688 structs. */
1689 {
1690 struct cmd_list_element *new_cmd;
1691
1692 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
1693 valid_conventions,
1694 &struct_convention, "\
1695 Set the convention for returning small structs, valid values \
1696 are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1697 &setlist);
1698 add_show_from_set (new_cmd, &showlist);
1699 }
1700
1701 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1702 i386_coff_osabi_sniffer);
1703 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1704 i386_nlm_osabi_sniffer);
1705
1706 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
1707 i386_svr4_init_abi);
1708 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
1709 i386_go32_init_abi);
1710 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
1711 i386_nw_init_abi);
1712
1713 /* Initialize the i386 specific register groups. */
1714 i386_init_reggroups ();
1715 }