]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/i386-tdep.c
gdb: remove TYPE_LENGTH
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2/frame.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "target-float.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "gdbsupport/x86-xstate.h"
50 #include "x86-tdep.h"
51 #include "expop.h"
52
53 #include "record.h"
54 #include "record-full.h"
55 #include "target-descriptions.h"
56 #include "arch/i386.h"
57
58 #include "ax.h"
59 #include "ax-gdb.h"
60
61 #include "stap-probe.h"
62 #include "user-regs.h"
63 #include "cli/cli-utils.h"
64 #include "expression.h"
65 #include "parser-defs.h"
66 #include <ctype.h>
67 #include <algorithm>
68 #include <unordered_set>
69 #include "producer.h"
70 #include "infcall.h"
71 #include "maint.h"
72
73 /* Register names. */
74
75 static const char * const i386_register_names[] =
76 {
77 "eax", "ecx", "edx", "ebx",
78 "esp", "ebp", "esi", "edi",
79 "eip", "eflags", "cs", "ss",
80 "ds", "es", "fs", "gs",
81 "st0", "st1", "st2", "st3",
82 "st4", "st5", "st6", "st7",
83 "fctrl", "fstat", "ftag", "fiseg",
84 "fioff", "foseg", "fooff", "fop",
85 "xmm0", "xmm1", "xmm2", "xmm3",
86 "xmm4", "xmm5", "xmm6", "xmm7",
87 "mxcsr"
88 };
89
90 static const char * const i386_zmm_names[] =
91 {
92 "zmm0", "zmm1", "zmm2", "zmm3",
93 "zmm4", "zmm5", "zmm6", "zmm7"
94 };
95
96 static const char * const i386_zmmh_names[] =
97 {
98 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
99 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
100 };
101
102 static const char * const i386_k_names[] =
103 {
104 "k0", "k1", "k2", "k3",
105 "k4", "k5", "k6", "k7"
106 };
107
108 static const char * const i386_ymm_names[] =
109 {
110 "ymm0", "ymm1", "ymm2", "ymm3",
111 "ymm4", "ymm5", "ymm6", "ymm7",
112 };
113
114 static const char * const i386_ymmh_names[] =
115 {
116 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
117 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
118 };
119
120 static const char * const i386_mpx_names[] =
121 {
122 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
123 };
124
125 static const char * const i386_pkeys_names[] =
126 {
127 "pkru"
128 };
129
130 /* Register names for MPX pseudo-registers. */
131
132 static const char * const i386_bnd_names[] =
133 {
134 "bnd0", "bnd1", "bnd2", "bnd3"
135 };
136
137 /* Register names for MMX pseudo-registers. */
138
139 static const char * const i386_mmx_names[] =
140 {
141 "mm0", "mm1", "mm2", "mm3",
142 "mm4", "mm5", "mm6", "mm7"
143 };
144
145 /* Register names for byte pseudo-registers. */
146
147 static const char * const i386_byte_names[] =
148 {
149 "al", "cl", "dl", "bl",
150 "ah", "ch", "dh", "bh"
151 };
152
153 /* Register names for word pseudo-registers. */
154
155 static const char * const i386_word_names[] =
156 {
157 "ax", "cx", "dx", "bx",
158 "", "bp", "si", "di"
159 };
160
161 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
162 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
163 we have 16 upper ZMM regs that have to be handled differently. */
164
165 const int num_lower_zmm_regs = 16;
166
167 /* MMX register? */
168
169 static int
170 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
171 {
172 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
173 int mm0_regnum = tdep->mm0_regnum;
174
175 if (mm0_regnum < 0)
176 return 0;
177
178 regnum -= mm0_regnum;
179 return regnum >= 0 && regnum < tdep->num_mmx_regs;
180 }
181
182 /* Byte register? */
183
184 int
185 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
186 {
187 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
188
189 regnum -= tdep->al_regnum;
190 return regnum >= 0 && regnum < tdep->num_byte_regs;
191 }
192
193 /* Word register? */
194
195 int
196 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
197 {
198 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
199
200 regnum -= tdep->ax_regnum;
201 return regnum >= 0 && regnum < tdep->num_word_regs;
202 }
203
204 /* Dword register? */
205
206 int
207 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
208 {
209 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
210 int eax_regnum = tdep->eax_regnum;
211
212 if (eax_regnum < 0)
213 return 0;
214
215 regnum -= eax_regnum;
216 return regnum >= 0 && regnum < tdep->num_dword_regs;
217 }
218
219 /* AVX512 register? */
220
221 int
222 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
223 {
224 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
225 int zmm0h_regnum = tdep->zmm0h_regnum;
226
227 if (zmm0h_regnum < 0)
228 return 0;
229
230 regnum -= zmm0h_regnum;
231 return regnum >= 0 && regnum < tdep->num_zmm_regs;
232 }
233
234 int
235 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
236 {
237 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
238 int zmm0_regnum = tdep->zmm0_regnum;
239
240 if (zmm0_regnum < 0)
241 return 0;
242
243 regnum -= zmm0_regnum;
244 return regnum >= 0 && regnum < tdep->num_zmm_regs;
245 }
246
247 int
248 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
249 {
250 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
251 int k0_regnum = tdep->k0_regnum;
252
253 if (k0_regnum < 0)
254 return 0;
255
256 regnum -= k0_regnum;
257 return regnum >= 0 && regnum < I387_NUM_K_REGS;
258 }
259
260 static int
261 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
262 {
263 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
264 int ymm0h_regnum = tdep->ymm0h_regnum;
265
266 if (ymm0h_regnum < 0)
267 return 0;
268
269 regnum -= ymm0h_regnum;
270 return regnum >= 0 && regnum < tdep->num_ymm_regs;
271 }
272
273 /* AVX register? */
274
275 int
276 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
277 {
278 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
279 int ymm0_regnum = tdep->ymm0_regnum;
280
281 if (ymm0_regnum < 0)
282 return 0;
283
284 regnum -= ymm0_regnum;
285 return regnum >= 0 && regnum < tdep->num_ymm_regs;
286 }
287
288 static int
289 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
290 {
291 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
292 int ymm16h_regnum = tdep->ymm16h_regnum;
293
294 if (ymm16h_regnum < 0)
295 return 0;
296
297 regnum -= ymm16h_regnum;
298 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
299 }
300
301 int
302 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
303 {
304 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
305 int ymm16_regnum = tdep->ymm16_regnum;
306
307 if (ymm16_regnum < 0)
308 return 0;
309
310 regnum -= ymm16_regnum;
311 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
312 }
313
314 /* BND register? */
315
316 int
317 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
318 {
319 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
320 int bnd0_regnum = tdep->bnd0_regnum;
321
322 if (bnd0_regnum < 0)
323 return 0;
324
325 regnum -= bnd0_regnum;
326 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
327 }
328
329 /* SSE register? */
330
331 int
332 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
333 {
334 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
335 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
336
337 if (num_xmm_regs == 0)
338 return 0;
339
340 regnum -= I387_XMM0_REGNUM (tdep);
341 return regnum >= 0 && regnum < num_xmm_regs;
342 }
343
344 /* XMM_512 register? */
345
346 int
347 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
348 {
349 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
350 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
351
352 if (num_xmm_avx512_regs == 0)
353 return 0;
354
355 regnum -= I387_XMM16_REGNUM (tdep);
356 return regnum >= 0 && regnum < num_xmm_avx512_regs;
357 }
358
359 static int
360 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
361 {
362 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
363
364 if (I387_NUM_XMM_REGS (tdep) == 0)
365 return 0;
366
367 return (regnum == I387_MXCSR_REGNUM (tdep));
368 }
369
370 /* FP register? */
371
372 int
373 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
374 {
375 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
376
377 if (I387_ST0_REGNUM (tdep) < 0)
378 return 0;
379
380 return (I387_ST0_REGNUM (tdep) <= regnum
381 && regnum < I387_FCTRL_REGNUM (tdep));
382 }
383
384 int
385 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
386 {
387 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
388
389 if (I387_ST0_REGNUM (tdep) < 0)
390 return 0;
391
392 return (I387_FCTRL_REGNUM (tdep) <= regnum
393 && regnum < I387_XMM0_REGNUM (tdep));
394 }
395
396 /* BNDr (raw) register? */
397
398 static int
399 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
400 {
401 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
402
403 if (I387_BND0R_REGNUM (tdep) < 0)
404 return 0;
405
406 regnum -= tdep->bnd0r_regnum;
407 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
408 }
409
410 /* BND control register? */
411
412 static int
413 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
414 {
415 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
416
417 if (I387_BNDCFGU_REGNUM (tdep) < 0)
418 return 0;
419
420 regnum -= I387_BNDCFGU_REGNUM (tdep);
421 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
422 }
423
424 /* PKRU register? */
425
426 bool
427 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
428 {
429 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
430 int pkru_regnum = tdep->pkru_regnum;
431
432 if (pkru_regnum < 0)
433 return false;
434
435 regnum -= pkru_regnum;
436 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
437 }
438
439 /* Return the name of register REGNUM, or the empty string if it is
440 an anonymous register. */
441
442 static const char *
443 i386_register_name (struct gdbarch *gdbarch, int regnum)
444 {
445 /* Hide the upper YMM registers. */
446 if (i386_ymmh_regnum_p (gdbarch, regnum))
447 return "";
448
449 /* Hide the upper YMM16-31 registers. */
450 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
451 return "";
452
453 /* Hide the upper ZMM registers. */
454 if (i386_zmmh_regnum_p (gdbarch, regnum))
455 return "";
456
457 return tdesc_register_name (gdbarch, regnum);
458 }
459
460 /* Return the name of register REGNUM. */
461
462 const char *
463 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
464 {
465 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
466 if (i386_bnd_regnum_p (gdbarch, regnum))
467 return i386_bnd_names[regnum - tdep->bnd0_regnum];
468 if (i386_mmx_regnum_p (gdbarch, regnum))
469 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
470 else if (i386_ymm_regnum_p (gdbarch, regnum))
471 return i386_ymm_names[regnum - tdep->ymm0_regnum];
472 else if (i386_zmm_regnum_p (gdbarch, regnum))
473 return i386_zmm_names[regnum - tdep->zmm0_regnum];
474 else if (i386_byte_regnum_p (gdbarch, regnum))
475 return i386_byte_names[regnum - tdep->al_regnum];
476 else if (i386_word_regnum_p (gdbarch, regnum))
477 return i386_word_names[regnum - tdep->ax_regnum];
478
479 internal_error (__FILE__, __LINE__, _("invalid regnum"));
480 }
481
482 /* Convert a dbx register number REG to the appropriate register
483 number used by GDB. */
484
485 static int
486 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
487 {
488 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
489
490 /* This implements what GCC calls the "default" register map
491 (dbx_register_map[]). */
492
493 if (reg >= 0 && reg <= 7)
494 {
495 /* General-purpose registers. The debug info calls %ebp
496 register 4, and %esp register 5. */
497 if (reg == 4)
498 return 5;
499 else if (reg == 5)
500 return 4;
501 else return reg;
502 }
503 else if (reg >= 12 && reg <= 19)
504 {
505 /* Floating-point registers. */
506 return reg - 12 + I387_ST0_REGNUM (tdep);
507 }
508 else if (reg >= 21 && reg <= 28)
509 {
510 /* SSE registers. */
511 int ymm0_regnum = tdep->ymm0_regnum;
512
513 if (ymm0_regnum >= 0
514 && i386_xmm_regnum_p (gdbarch, reg))
515 return reg - 21 + ymm0_regnum;
516 else
517 return reg - 21 + I387_XMM0_REGNUM (tdep);
518 }
519 else if (reg >= 29 && reg <= 36)
520 {
521 /* MMX registers. */
522 return reg - 29 + I387_MM0_REGNUM (tdep);
523 }
524
525 /* This will hopefully provoke a warning. */
526 return gdbarch_num_cooked_regs (gdbarch);
527 }
528
529 /* Convert SVR4 DWARF register number REG to the appropriate register number
530 used by GDB. */
531
532 static int
533 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
534 {
535 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
536
537 /* This implements the GCC register map that tries to be compatible
538 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
539
540 /* The SVR4 register numbering includes %eip and %eflags, and
541 numbers the floating point registers differently. */
542 if (reg >= 0 && reg <= 9)
543 {
544 /* General-purpose registers. */
545 return reg;
546 }
547 else if (reg >= 11 && reg <= 18)
548 {
549 /* Floating-point registers. */
550 return reg - 11 + I387_ST0_REGNUM (tdep);
551 }
552 else if (reg >= 21 && reg <= 36)
553 {
554 /* The SSE and MMX registers have the same numbers as with dbx. */
555 return i386_dbx_reg_to_regnum (gdbarch, reg);
556 }
557
558 switch (reg)
559 {
560 case 37: return I387_FCTRL_REGNUM (tdep);
561 case 38: return I387_FSTAT_REGNUM (tdep);
562 case 39: return I387_MXCSR_REGNUM (tdep);
563 case 40: return I386_ES_REGNUM;
564 case 41: return I386_CS_REGNUM;
565 case 42: return I386_SS_REGNUM;
566 case 43: return I386_DS_REGNUM;
567 case 44: return I386_FS_REGNUM;
568 case 45: return I386_GS_REGNUM;
569 }
570
571 return -1;
572 }
573
574 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
575 num_regs + num_pseudo_regs for other debug formats. */
576
577 int
578 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
579 {
580 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
581
582 if (regnum == -1)
583 return gdbarch_num_cooked_regs (gdbarch);
584 return regnum;
585 }
586
587 \f
588
589 /* This is the variable that is set with "set disassembly-flavor", and
590 its legitimate values. */
591 static const char att_flavor[] = "att";
592 static const char intel_flavor[] = "intel";
593 static const char *const valid_flavors[] =
594 {
595 att_flavor,
596 intel_flavor,
597 NULL
598 };
599 static const char *disassembly_flavor = att_flavor;
600 \f
601
602 /* Use the program counter to determine the contents and size of a
603 breakpoint instruction. Return a pointer to a string of bytes that
604 encode a breakpoint instruction, store the length of the string in
605 *LEN and optionally adjust *PC to point to the correct memory
606 location for inserting the breakpoint.
607
608 On the i386 we have a single breakpoint that fits in a single byte
609 and can be inserted anywhere.
610
611 This function is 64-bit safe. */
612
613 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
614
615 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
616
617 \f
618 /* Displaced instruction handling. */
619
620 /* Skip the legacy instruction prefixes in INSN.
621 Not all prefixes are valid for any particular insn
622 but we needn't care, the insn will fault if it's invalid.
623 The result is a pointer to the first opcode byte,
624 or NULL if we run off the end of the buffer. */
625
626 static gdb_byte *
627 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
628 {
629 gdb_byte *end = insn + max_len;
630
631 while (insn < end)
632 {
633 switch (*insn)
634 {
635 case DATA_PREFIX_OPCODE:
636 case ADDR_PREFIX_OPCODE:
637 case CS_PREFIX_OPCODE:
638 case DS_PREFIX_OPCODE:
639 case ES_PREFIX_OPCODE:
640 case FS_PREFIX_OPCODE:
641 case GS_PREFIX_OPCODE:
642 case SS_PREFIX_OPCODE:
643 case LOCK_PREFIX_OPCODE:
644 case REPE_PREFIX_OPCODE:
645 case REPNE_PREFIX_OPCODE:
646 ++insn;
647 continue;
648 default:
649 return insn;
650 }
651 }
652
653 return NULL;
654 }
655
656 static int
657 i386_absolute_jmp_p (const gdb_byte *insn)
658 {
659 /* jmp far (absolute address in operand). */
660 if (insn[0] == 0xea)
661 return 1;
662
663 if (insn[0] == 0xff)
664 {
665 /* jump near, absolute indirect (/4). */
666 if ((insn[1] & 0x38) == 0x20)
667 return 1;
668
669 /* jump far, absolute indirect (/5). */
670 if ((insn[1] & 0x38) == 0x28)
671 return 1;
672 }
673
674 return 0;
675 }
676
677 /* Return non-zero if INSN is a jump, zero otherwise. */
678
679 static int
680 i386_jmp_p (const gdb_byte *insn)
681 {
682 /* jump short, relative. */
683 if (insn[0] == 0xeb)
684 return 1;
685
686 /* jump near, relative. */
687 if (insn[0] == 0xe9)
688 return 1;
689
690 return i386_absolute_jmp_p (insn);
691 }
692
693 static int
694 i386_absolute_call_p (const gdb_byte *insn)
695 {
696 /* call far, absolute. */
697 if (insn[0] == 0x9a)
698 return 1;
699
700 if (insn[0] == 0xff)
701 {
702 /* Call near, absolute indirect (/2). */
703 if ((insn[1] & 0x38) == 0x10)
704 return 1;
705
706 /* Call far, absolute indirect (/3). */
707 if ((insn[1] & 0x38) == 0x18)
708 return 1;
709 }
710
711 return 0;
712 }
713
714 static int
715 i386_ret_p (const gdb_byte *insn)
716 {
717 switch (insn[0])
718 {
719 case 0xc2: /* ret near, pop N bytes. */
720 case 0xc3: /* ret near */
721 case 0xca: /* ret far, pop N bytes. */
722 case 0xcb: /* ret far */
723 case 0xcf: /* iret */
724 return 1;
725
726 default:
727 return 0;
728 }
729 }
730
731 static int
732 i386_call_p (const gdb_byte *insn)
733 {
734 if (i386_absolute_call_p (insn))
735 return 1;
736
737 /* call near, relative. */
738 if (insn[0] == 0xe8)
739 return 1;
740
741 return 0;
742 }
743
744 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
745 length in bytes. Otherwise, return zero. */
746
747 static int
748 i386_syscall_p (const gdb_byte *insn, int *lengthp)
749 {
750 /* Is it 'int $0x80'? */
751 if ((insn[0] == 0xcd && insn[1] == 0x80)
752 /* Or is it 'sysenter'? */
753 || (insn[0] == 0x0f && insn[1] == 0x34)
754 /* Or is it 'syscall'? */
755 || (insn[0] == 0x0f && insn[1] == 0x05))
756 {
757 *lengthp = 2;
758 return 1;
759 }
760
761 return 0;
762 }
763
764 /* The gdbarch insn_is_call method. */
765
766 static int
767 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
768 {
769 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
770
771 read_code (addr, buf, I386_MAX_INSN_LEN);
772 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
773
774 return i386_call_p (insn);
775 }
776
777 /* The gdbarch insn_is_ret method. */
778
779 static int
780 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
781 {
782 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
783
784 read_code (addr, buf, I386_MAX_INSN_LEN);
785 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
786
787 return i386_ret_p (insn);
788 }
789
790 /* The gdbarch insn_is_jump method. */
791
792 static int
793 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
794 {
795 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
796
797 read_code (addr, buf, I386_MAX_INSN_LEN);
798 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
799
800 return i386_jmp_p (insn);
801 }
802
803 /* Some kernels may run one past a syscall insn, so we have to cope. */
804
805 displaced_step_copy_insn_closure_up
806 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
807 CORE_ADDR from, CORE_ADDR to,
808 struct regcache *regs)
809 {
810 size_t len = gdbarch_max_insn_length (gdbarch);
811 std::unique_ptr<i386_displaced_step_copy_insn_closure> closure
812 (new i386_displaced_step_copy_insn_closure (len));
813 gdb_byte *buf = closure->buf.data ();
814
815 read_memory (from, buf, len);
816
817 /* GDB may get control back after the insn after the syscall.
818 Presumably this is a kernel bug.
819 If this is a syscall, make sure there's a nop afterwards. */
820 {
821 int syscall_length;
822 gdb_byte *insn;
823
824 insn = i386_skip_prefixes (buf, len);
825 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
826 insn[syscall_length] = NOP_OPCODE;
827 }
828
829 write_memory (to, buf, len);
830
831 displaced_debug_printf ("%s->%s: %s",
832 paddress (gdbarch, from), paddress (gdbarch, to),
833 displaced_step_dump_bytes (buf, len).c_str ());
834
835 /* This is a work around for a problem with g++ 4.8. */
836 return displaced_step_copy_insn_closure_up (closure.release ());
837 }
838
839 /* Fix up the state of registers and memory after having single-stepped
840 a displaced instruction. */
841
842 void
843 i386_displaced_step_fixup (struct gdbarch *gdbarch,
844 struct displaced_step_copy_insn_closure *closure_,
845 CORE_ADDR from, CORE_ADDR to,
846 struct regcache *regs)
847 {
848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
849
850 /* The offset we applied to the instruction's address.
851 This could well be negative (when viewed as a signed 32-bit
852 value), but ULONGEST won't reflect that, so take care when
853 applying it. */
854 ULONGEST insn_offset = to - from;
855
856 i386_displaced_step_copy_insn_closure *closure
857 = (i386_displaced_step_copy_insn_closure *) closure_;
858 gdb_byte *insn = closure->buf.data ();
859 /* The start of the insn, needed in case we see some prefixes. */
860 gdb_byte *insn_start = insn;
861
862 displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...",
863 paddress (gdbarch, from), paddress (gdbarch, to),
864 insn[0], insn[1]);
865
866 /* The list of issues to contend with here is taken from
867 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
868 Yay for Free Software! */
869
870 /* Relocate the %eip, if necessary. */
871
872 /* The instruction recognizers we use assume any leading prefixes
873 have been skipped. */
874 {
875 /* This is the size of the buffer in closure. */
876 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
877 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
878 /* If there are too many prefixes, just ignore the insn.
879 It will fault when run. */
880 if (opcode != NULL)
881 insn = opcode;
882 }
883
884 /* Except in the case of absolute or indirect jump or call
885 instructions, or a return instruction, the new eip is relative to
886 the displaced instruction; make it relative. Well, signal
887 handler returns don't need relocation either, but we use the
888 value of %eip to recognize those; see below. */
889 if (! i386_absolute_jmp_p (insn)
890 && ! i386_absolute_call_p (insn)
891 && ! i386_ret_p (insn))
892 {
893 ULONGEST orig_eip;
894 int insn_len;
895
896 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
897
898 /* A signal trampoline system call changes the %eip, resuming
899 execution of the main program after the signal handler has
900 returned. That makes them like 'return' instructions; we
901 shouldn't relocate %eip.
902
903 But most system calls don't, and we do need to relocate %eip.
904
905 Our heuristic for distinguishing these cases: if stepping
906 over the system call instruction left control directly after
907 the instruction, the we relocate --- control almost certainly
908 doesn't belong in the displaced copy. Otherwise, we assume
909 the instruction has put control where it belongs, and leave
910 it unrelocated. Goodness help us if there are PC-relative
911 system calls. */
912 if (i386_syscall_p (insn, &insn_len)
913 && orig_eip != to + (insn - insn_start) + insn_len
914 /* GDB can get control back after the insn after the syscall.
915 Presumably this is a kernel bug.
916 i386_displaced_step_copy_insn ensures its a nop,
917 we add one to the length for it. */
918 && orig_eip != to + (insn - insn_start) + insn_len + 1)
919 displaced_debug_printf ("syscall changed %%eip; not relocating");
920 else
921 {
922 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
923
924 /* If we just stepped over a breakpoint insn, we don't backup
925 the pc on purpose; this is to match behaviour without
926 stepping. */
927
928 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
929
930 displaced_debug_printf ("relocated %%eip from %s to %s",
931 paddress (gdbarch, orig_eip),
932 paddress (gdbarch, eip));
933 }
934 }
935
936 /* If the instruction was PUSHFL, then the TF bit will be set in the
937 pushed value, and should be cleared. We'll leave this for later,
938 since GDB already messes up the TF flag when stepping over a
939 pushfl. */
940
941 /* If the instruction was a call, the return address now atop the
942 stack is the address following the copied instruction. We need
943 to make it the address following the original instruction. */
944 if (i386_call_p (insn))
945 {
946 ULONGEST esp;
947 ULONGEST retaddr;
948 const ULONGEST retaddr_len = 4;
949
950 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
951 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
952 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
953 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
954
955 displaced_debug_printf ("relocated return addr at %s to %s",
956 paddress (gdbarch, esp),
957 paddress (gdbarch, retaddr));
958 }
959 }
960
961 static void
962 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
963 {
964 target_write_memory (*to, buf, len);
965 *to += len;
966 }
967
968 static void
969 i386_relocate_instruction (struct gdbarch *gdbarch,
970 CORE_ADDR *to, CORE_ADDR oldloc)
971 {
972 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
973 gdb_byte buf[I386_MAX_INSN_LEN];
974 int offset = 0, rel32, newrel;
975 int insn_length;
976 gdb_byte *insn = buf;
977
978 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
979
980 insn_length = gdb_buffered_insn_length (gdbarch, insn,
981 I386_MAX_INSN_LEN, oldloc);
982
983 /* Get past the prefixes. */
984 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
985
986 /* Adjust calls with 32-bit relative addresses as push/jump, with
987 the address pushed being the location where the original call in
988 the user program would return to. */
989 if (insn[0] == 0xe8)
990 {
991 gdb_byte push_buf[16];
992 unsigned int ret_addr;
993
994 /* Where "ret" in the original code will return to. */
995 ret_addr = oldloc + insn_length;
996 push_buf[0] = 0x68; /* pushq $... */
997 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
998 /* Push the push. */
999 append_insns (to, 5, push_buf);
1000
1001 /* Convert the relative call to a relative jump. */
1002 insn[0] = 0xe9;
1003
1004 /* Adjust the destination offset. */
1005 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1006 newrel = (oldloc - *to) + rel32;
1007 store_signed_integer (insn + 1, 4, byte_order, newrel);
1008
1009 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1010 hex_string (rel32), paddress (gdbarch, oldloc),
1011 hex_string (newrel), paddress (gdbarch, *to));
1012
1013 /* Write the adjusted jump into its displaced location. */
1014 append_insns (to, 5, insn);
1015 return;
1016 }
1017
1018 /* Adjust jumps with 32-bit relative addresses. Calls are already
1019 handled above. */
1020 if (insn[0] == 0xe9)
1021 offset = 1;
1022 /* Adjust conditional jumps. */
1023 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1024 offset = 2;
1025
1026 if (offset)
1027 {
1028 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1029 newrel = (oldloc - *to) + rel32;
1030 store_signed_integer (insn + offset, 4, byte_order, newrel);
1031 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1032 hex_string (rel32), paddress (gdbarch, oldloc),
1033 hex_string (newrel), paddress (gdbarch, *to));
1034 }
1035
1036 /* Write the adjusted instructions into their displaced
1037 location. */
1038 append_insns (to, insn_length, buf);
1039 }
1040
1041 \f
1042 #ifdef I386_REGNO_TO_SYMMETRY
1043 #error "The Sequent Symmetry is no longer supported."
1044 #endif
1045
1046 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1047 and %esp "belong" to the calling function. Therefore these
1048 registers should be saved if they're going to be modified. */
1049
1050 /* The maximum number of saved registers. This should include all
1051 registers mentioned above, and %eip. */
1052 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1053
1054 struct i386_frame_cache
1055 {
1056 /* Base address. */
1057 CORE_ADDR base;
1058 int base_p;
1059 LONGEST sp_offset;
1060 CORE_ADDR pc;
1061
1062 /* Saved registers. */
1063 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1064 CORE_ADDR saved_sp;
1065 int saved_sp_reg;
1066 int pc_in_eax;
1067
1068 /* Stack space reserved for local variables. */
1069 long locals;
1070 };
1071
1072 /* Allocate and initialize a frame cache. */
1073
1074 static struct i386_frame_cache *
1075 i386_alloc_frame_cache (void)
1076 {
1077 struct i386_frame_cache *cache;
1078 int i;
1079
1080 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1081
1082 /* Base address. */
1083 cache->base_p = 0;
1084 cache->base = 0;
1085 cache->sp_offset = -4;
1086 cache->pc = 0;
1087
1088 /* Saved registers. We initialize these to -1 since zero is a valid
1089 offset (that's where %ebp is supposed to be stored). */
1090 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1091 cache->saved_regs[i] = -1;
1092 cache->saved_sp = 0;
1093 cache->saved_sp_reg = -1;
1094 cache->pc_in_eax = 0;
1095
1096 /* Frameless until proven otherwise. */
1097 cache->locals = -1;
1098
1099 return cache;
1100 }
1101
1102 /* If the instruction at PC is a jump, return the address of its
1103 target. Otherwise, return PC. */
1104
1105 static CORE_ADDR
1106 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1107 {
1108 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1109 gdb_byte op;
1110 long delta = 0;
1111 int data16 = 0;
1112
1113 if (target_read_code (pc, &op, 1))
1114 return pc;
1115
1116 if (op == 0x66)
1117 {
1118 data16 = 1;
1119
1120 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1121 }
1122
1123 switch (op)
1124 {
1125 case 0xe9:
1126 /* Relative jump: if data16 == 0, disp32, else disp16. */
1127 if (data16)
1128 {
1129 delta = read_memory_integer (pc + 2, 2, byte_order);
1130
1131 /* Include the size of the jmp instruction (including the
1132 0x66 prefix). */
1133 delta += 4;
1134 }
1135 else
1136 {
1137 delta = read_memory_integer (pc + 1, 4, byte_order);
1138
1139 /* Include the size of the jmp instruction. */
1140 delta += 5;
1141 }
1142 break;
1143 case 0xeb:
1144 /* Relative jump, disp8 (ignore data16). */
1145 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1146
1147 delta += data16 + 2;
1148 break;
1149 }
1150
1151 return pc + delta;
1152 }
1153
1154 /* Check whether PC points at a prologue for a function returning a
1155 structure or union. If so, it updates CACHE and returns the
1156 address of the first instruction after the code sequence that
1157 removes the "hidden" argument from the stack or CURRENT_PC,
1158 whichever is smaller. Otherwise, return PC. */
1159
1160 static CORE_ADDR
1161 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1162 struct i386_frame_cache *cache)
1163 {
1164 /* Functions that return a structure or union start with:
1165
1166 popl %eax 0x58
1167 xchgl %eax, (%esp) 0x87 0x04 0x24
1168 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1169
1170 (the System V compiler puts out the second `xchg' instruction,
1171 and the assembler doesn't try to optimize it, so the 'sib' form
1172 gets generated). This sequence is used to get the address of the
1173 return buffer for a function that returns a structure. */
1174 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1175 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1176 gdb_byte buf[4];
1177 gdb_byte op;
1178
1179 if (current_pc <= pc)
1180 return pc;
1181
1182 if (target_read_code (pc, &op, 1))
1183 return pc;
1184
1185 if (op != 0x58) /* popl %eax */
1186 return pc;
1187
1188 if (target_read_code (pc + 1, buf, 4))
1189 return pc;
1190
1191 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1192 return pc;
1193
1194 if (current_pc == pc)
1195 {
1196 cache->sp_offset += 4;
1197 return current_pc;
1198 }
1199
1200 if (current_pc == pc + 1)
1201 {
1202 cache->pc_in_eax = 1;
1203 return current_pc;
1204 }
1205
1206 if (buf[1] == proto1[1])
1207 return pc + 4;
1208 else
1209 return pc + 5;
1210 }
1211
1212 static CORE_ADDR
1213 i386_skip_probe (CORE_ADDR pc)
1214 {
1215 /* A function may start with
1216
1217 pushl constant
1218 call _probe
1219 addl $4, %esp
1220
1221 followed by
1222
1223 pushl %ebp
1224
1225 etc. */
1226 gdb_byte buf[8];
1227 gdb_byte op;
1228
1229 if (target_read_code (pc, &op, 1))
1230 return pc;
1231
1232 if (op == 0x68 || op == 0x6a)
1233 {
1234 int delta;
1235
1236 /* Skip past the `pushl' instruction; it has either a one-byte or a
1237 four-byte operand, depending on the opcode. */
1238 if (op == 0x68)
1239 delta = 5;
1240 else
1241 delta = 2;
1242
1243 /* Read the following 8 bytes, which should be `call _probe' (6
1244 bytes) followed by `addl $4,%esp' (2 bytes). */
1245 read_memory (pc + delta, buf, sizeof (buf));
1246 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1247 pc += delta + sizeof (buf);
1248 }
1249
1250 return pc;
1251 }
1252
1253 /* GCC 4.1 and later, can put code in the prologue to realign the
1254 stack pointer. Check whether PC points to such code, and update
1255 CACHE accordingly. Return the first instruction after the code
1256 sequence or CURRENT_PC, whichever is smaller. If we don't
1257 recognize the code, return PC. */
1258
1259 static CORE_ADDR
1260 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1261 struct i386_frame_cache *cache)
1262 {
1263 /* There are 2 code sequences to re-align stack before the frame
1264 gets set up:
1265
1266 1. Use a caller-saved saved register:
1267
1268 leal 4(%esp), %reg
1269 andl $-XXX, %esp
1270 pushl -4(%reg)
1271
1272 2. Use a callee-saved saved register:
1273
1274 pushl %reg
1275 leal 8(%esp), %reg
1276 andl $-XXX, %esp
1277 pushl -4(%reg)
1278
1279 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1280
1281 0x83 0xe4 0xf0 andl $-16, %esp
1282 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1283 */
1284
1285 gdb_byte buf[14];
1286 int reg;
1287 int offset, offset_and;
1288 static int regnums[8] = {
1289 I386_EAX_REGNUM, /* %eax */
1290 I386_ECX_REGNUM, /* %ecx */
1291 I386_EDX_REGNUM, /* %edx */
1292 I386_EBX_REGNUM, /* %ebx */
1293 I386_ESP_REGNUM, /* %esp */
1294 I386_EBP_REGNUM, /* %ebp */
1295 I386_ESI_REGNUM, /* %esi */
1296 I386_EDI_REGNUM /* %edi */
1297 };
1298
1299 if (target_read_code (pc, buf, sizeof buf))
1300 return pc;
1301
1302 /* Check caller-saved saved register. The first instruction has
1303 to be "leal 4(%esp), %reg". */
1304 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1305 {
1306 /* MOD must be binary 10 and R/M must be binary 100. */
1307 if ((buf[1] & 0xc7) != 0x44)
1308 return pc;
1309
1310 /* REG has register number. */
1311 reg = (buf[1] >> 3) & 7;
1312 offset = 4;
1313 }
1314 else
1315 {
1316 /* Check callee-saved saved register. The first instruction
1317 has to be "pushl %reg". */
1318 if ((buf[0] & 0xf8) != 0x50)
1319 return pc;
1320
1321 /* Get register. */
1322 reg = buf[0] & 0x7;
1323
1324 /* The next instruction has to be "leal 8(%esp), %reg". */
1325 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1326 return pc;
1327
1328 /* MOD must be binary 10 and R/M must be binary 100. */
1329 if ((buf[2] & 0xc7) != 0x44)
1330 return pc;
1331
1332 /* REG has register number. Registers in pushl and leal have to
1333 be the same. */
1334 if (reg != ((buf[2] >> 3) & 7))
1335 return pc;
1336
1337 offset = 5;
1338 }
1339
1340 /* Rigister can't be %esp nor %ebp. */
1341 if (reg == 4 || reg == 5)
1342 return pc;
1343
1344 /* The next instruction has to be "andl $-XXX, %esp". */
1345 if (buf[offset + 1] != 0xe4
1346 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1347 return pc;
1348
1349 offset_and = offset;
1350 offset += buf[offset] == 0x81 ? 6 : 3;
1351
1352 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1353 0xfc. REG must be binary 110 and MOD must be binary 01. */
1354 if (buf[offset] != 0xff
1355 || buf[offset + 2] != 0xfc
1356 || (buf[offset + 1] & 0xf8) != 0x70)
1357 return pc;
1358
1359 /* R/M has register. Registers in leal and pushl have to be the
1360 same. */
1361 if (reg != (buf[offset + 1] & 7))
1362 return pc;
1363
1364 if (current_pc > pc + offset_and)
1365 cache->saved_sp_reg = regnums[reg];
1366
1367 return std::min (pc + offset + 3, current_pc);
1368 }
1369
1370 /* Maximum instruction length we need to handle. */
1371 #define I386_MAX_MATCHED_INSN_LEN 6
1372
1373 /* Instruction description. */
1374 struct i386_insn
1375 {
1376 size_t len;
1377 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1378 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1379 };
1380
1381 /* Return whether instruction at PC matches PATTERN. */
1382
1383 static int
1384 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1385 {
1386 gdb_byte op;
1387
1388 if (target_read_code (pc, &op, 1))
1389 return 0;
1390
1391 if ((op & pattern.mask[0]) == pattern.insn[0])
1392 {
1393 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1394 int insn_matched = 1;
1395 size_t i;
1396
1397 gdb_assert (pattern.len > 1);
1398 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1399
1400 if (target_read_code (pc + 1, buf, pattern.len - 1))
1401 return 0;
1402
1403 for (i = 1; i < pattern.len; i++)
1404 {
1405 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1406 insn_matched = 0;
1407 }
1408 return insn_matched;
1409 }
1410 return 0;
1411 }
1412
1413 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1414 the first instruction description that matches. Otherwise, return
1415 NULL. */
1416
1417 static struct i386_insn *
1418 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1419 {
1420 struct i386_insn *pattern;
1421
1422 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1423 {
1424 if (i386_match_pattern (pc, *pattern))
1425 return pattern;
1426 }
1427
1428 return NULL;
1429 }
1430
1431 /* Return whether PC points inside a sequence of instructions that
1432 matches INSN_PATTERNS. */
1433
1434 static int
1435 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1436 {
1437 CORE_ADDR current_pc;
1438 int ix, i;
1439 struct i386_insn *insn;
1440
1441 insn = i386_match_insn (pc, insn_patterns);
1442 if (insn == NULL)
1443 return 0;
1444
1445 current_pc = pc;
1446 ix = insn - insn_patterns;
1447 for (i = ix - 1; i >= 0; i--)
1448 {
1449 current_pc -= insn_patterns[i].len;
1450
1451 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1452 return 0;
1453 }
1454
1455 current_pc = pc + insn->len;
1456 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1457 {
1458 if (!i386_match_pattern (current_pc, *insn))
1459 return 0;
1460
1461 current_pc += insn->len;
1462 }
1463
1464 return 1;
1465 }
1466
1467 /* Some special instructions that might be migrated by GCC into the
1468 part of the prologue that sets up the new stack frame. Because the
1469 stack frame hasn't been setup yet, no registers have been saved
1470 yet, and only the scratch registers %eax, %ecx and %edx can be
1471 touched. */
1472
1473 static i386_insn i386_frame_setup_skip_insns[] =
1474 {
1475 /* Check for `movb imm8, r' and `movl imm32, r'.
1476
1477 ??? Should we handle 16-bit operand-sizes here? */
1478
1479 /* `movb imm8, %al' and `movb imm8, %ah' */
1480 /* `movb imm8, %cl' and `movb imm8, %ch' */
1481 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1482 /* `movb imm8, %dl' and `movb imm8, %dh' */
1483 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1484 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1485 { 5, { 0xb8 }, { 0xfe } },
1486 /* `movl imm32, %edx' */
1487 { 5, { 0xba }, { 0xff } },
1488
1489 /* Check for `mov imm32, r32'. Note that there is an alternative
1490 encoding for `mov m32, %eax'.
1491
1492 ??? Should we handle SIB addressing here?
1493 ??? Should we handle 16-bit operand-sizes here? */
1494
1495 /* `movl m32, %eax' */
1496 { 5, { 0xa1 }, { 0xff } },
1497 /* `movl m32, %eax' and `mov; m32, %ecx' */
1498 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1499 /* `movl m32, %edx' */
1500 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1501
1502 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1503 Because of the symmetry, there are actually two ways to encode
1504 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1505 opcode bytes 0x31 and 0x33 for `xorl'. */
1506
1507 /* `subl %eax, %eax' */
1508 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1509 /* `subl %ecx, %ecx' */
1510 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1511 /* `subl %edx, %edx' */
1512 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1513 /* `xorl %eax, %eax' */
1514 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1515 /* `xorl %ecx, %ecx' */
1516 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1517 /* `xorl %edx, %edx' */
1518 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1519 { 0 }
1520 };
1521
1522 /* Check whether PC points to an endbr32 instruction. */
1523 static CORE_ADDR
1524 i386_skip_endbr (CORE_ADDR pc)
1525 {
1526 static const gdb_byte endbr32[] = { 0xf3, 0x0f, 0x1e, 0xfb };
1527
1528 gdb_byte buf[sizeof (endbr32)];
1529
1530 /* Stop there if we can't read the code */
1531 if (target_read_code (pc, buf, sizeof (endbr32)))
1532 return pc;
1533
1534 /* If the instruction isn't an endbr32, stop */
1535 if (memcmp (buf, endbr32, sizeof (endbr32)) != 0)
1536 return pc;
1537
1538 return pc + sizeof (endbr32);
1539 }
1540
1541 /* Check whether PC points to a no-op instruction. */
1542 static CORE_ADDR
1543 i386_skip_noop (CORE_ADDR pc)
1544 {
1545 gdb_byte op;
1546 int check = 1;
1547
1548 if (target_read_code (pc, &op, 1))
1549 return pc;
1550
1551 while (check)
1552 {
1553 check = 0;
1554 /* Ignore `nop' instruction. */
1555 if (op == 0x90)
1556 {
1557 pc += 1;
1558 if (target_read_code (pc, &op, 1))
1559 return pc;
1560 check = 1;
1561 }
1562 /* Ignore no-op instruction `mov %edi, %edi'.
1563 Microsoft system dlls often start with
1564 a `mov %edi,%edi' instruction.
1565 The 5 bytes before the function start are
1566 filled with `nop' instructions.
1567 This pattern can be used for hot-patching:
1568 The `mov %edi, %edi' instruction can be replaced by a
1569 near jump to the location of the 5 `nop' instructions
1570 which can be replaced by a 32-bit jump to anywhere
1571 in the 32-bit address space. */
1572
1573 else if (op == 0x8b)
1574 {
1575 if (target_read_code (pc + 1, &op, 1))
1576 return pc;
1577
1578 if (op == 0xff)
1579 {
1580 pc += 2;
1581 if (target_read_code (pc, &op, 1))
1582 return pc;
1583
1584 check = 1;
1585 }
1586 }
1587 }
1588 return pc;
1589 }
1590
1591 /* Check whether PC points at a code that sets up a new stack frame.
1592 If so, it updates CACHE and returns the address of the first
1593 instruction after the sequence that sets up the frame or LIMIT,
1594 whichever is smaller. If we don't recognize the code, return PC. */
1595
1596 static CORE_ADDR
1597 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1598 CORE_ADDR pc, CORE_ADDR limit,
1599 struct i386_frame_cache *cache)
1600 {
1601 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1602 struct i386_insn *insn;
1603 gdb_byte op;
1604 int skip = 0;
1605
1606 if (limit <= pc)
1607 return limit;
1608
1609 if (target_read_code (pc, &op, 1))
1610 return pc;
1611
1612 if (op == 0x55) /* pushl %ebp */
1613 {
1614 /* Take into account that we've executed the `pushl %ebp' that
1615 starts this instruction sequence. */
1616 cache->saved_regs[I386_EBP_REGNUM] = 0;
1617 cache->sp_offset += 4;
1618 pc++;
1619
1620 /* If that's all, return now. */
1621 if (limit <= pc)
1622 return limit;
1623
1624 /* Check for some special instructions that might be migrated by
1625 GCC into the prologue and skip them. At this point in the
1626 prologue, code should only touch the scratch registers %eax,
1627 %ecx and %edx, so while the number of possibilities is sheer,
1628 it is limited.
1629
1630 Make sure we only skip these instructions if we later see the
1631 `movl %esp, %ebp' that actually sets up the frame. */
1632 while (pc + skip < limit)
1633 {
1634 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1635 if (insn == NULL)
1636 break;
1637
1638 skip += insn->len;
1639 }
1640
1641 /* If that's all, return now. */
1642 if (limit <= pc + skip)
1643 return limit;
1644
1645 if (target_read_code (pc + skip, &op, 1))
1646 return pc + skip;
1647
1648 /* The i386 prologue looks like
1649
1650 push %ebp
1651 mov %esp,%ebp
1652 sub $0x10,%esp
1653
1654 and a different prologue can be generated for atom.
1655
1656 push %ebp
1657 lea (%esp),%ebp
1658 lea -0x10(%esp),%esp
1659
1660 We handle both of them here. */
1661
1662 switch (op)
1663 {
1664 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1665 case 0x8b:
1666 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1667 != 0xec)
1668 return pc;
1669 pc += (skip + 2);
1670 break;
1671 case 0x89:
1672 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1673 != 0xe5)
1674 return pc;
1675 pc += (skip + 2);
1676 break;
1677 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1678 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1679 != 0x242c)
1680 return pc;
1681 pc += (skip + 3);
1682 break;
1683 default:
1684 return pc;
1685 }
1686
1687 /* OK, we actually have a frame. We just don't know how large
1688 it is yet. Set its size to zero. We'll adjust it if
1689 necessary. We also now commit to skipping the special
1690 instructions mentioned before. */
1691 cache->locals = 0;
1692
1693 /* If that's all, return now. */
1694 if (limit <= pc)
1695 return limit;
1696
1697 /* Check for stack adjustment
1698
1699 subl $XXX, %esp
1700 or
1701 lea -XXX(%esp),%esp
1702
1703 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1704 reg, so we don't have to worry about a data16 prefix. */
1705 if (target_read_code (pc, &op, 1))
1706 return pc;
1707 if (op == 0x83)
1708 {
1709 /* `subl' with 8-bit immediate. */
1710 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1711 /* Some instruction starting with 0x83 other than `subl'. */
1712 return pc;
1713
1714 /* `subl' with signed 8-bit immediate (though it wouldn't
1715 make sense to be negative). */
1716 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1717 return pc + 3;
1718 }
1719 else if (op == 0x81)
1720 {
1721 /* Maybe it is `subl' with a 32-bit immediate. */
1722 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1723 /* Some instruction starting with 0x81 other than `subl'. */
1724 return pc;
1725
1726 /* It is `subl' with a 32-bit immediate. */
1727 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1728 return pc + 6;
1729 }
1730 else if (op == 0x8d)
1731 {
1732 /* The ModR/M byte is 0x64. */
1733 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1734 return pc;
1735 /* 'lea' with 8-bit displacement. */
1736 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1737 return pc + 4;
1738 }
1739 else
1740 {
1741 /* Some instruction other than `subl' nor 'lea'. */
1742 return pc;
1743 }
1744 }
1745 else if (op == 0xc8) /* enter */
1746 {
1747 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1748 return pc + 4;
1749 }
1750
1751 return pc;
1752 }
1753
1754 /* Check whether PC points at code that saves registers on the stack.
1755 If so, it updates CACHE and returns the address of the first
1756 instruction after the register saves or CURRENT_PC, whichever is
1757 smaller. Otherwise, return PC. */
1758
1759 static CORE_ADDR
1760 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1761 struct i386_frame_cache *cache)
1762 {
1763 CORE_ADDR offset = 0;
1764 gdb_byte op;
1765 int i;
1766
1767 if (cache->locals > 0)
1768 offset -= cache->locals;
1769 for (i = 0; i < 8 && pc < current_pc; i++)
1770 {
1771 if (target_read_code (pc, &op, 1))
1772 return pc;
1773 if (op < 0x50 || op > 0x57)
1774 break;
1775
1776 offset -= 4;
1777 cache->saved_regs[op - 0x50] = offset;
1778 cache->sp_offset += 4;
1779 pc++;
1780 }
1781
1782 return pc;
1783 }
1784
1785 /* Do a full analysis of the prologue at PC and update CACHE
1786 accordingly. Bail out early if CURRENT_PC is reached. Return the
1787 address where the analysis stopped.
1788
1789 We handle these cases:
1790
1791 The startup sequence can be at the start of the function, or the
1792 function can start with a branch to startup code at the end.
1793
1794 %ebp can be set up with either the 'enter' instruction, or "pushl
1795 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1796 once used in the System V compiler).
1797
1798 Local space is allocated just below the saved %ebp by either the
1799 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1800 16-bit unsigned argument for space to allocate, and the 'addl'
1801 instruction could have either a signed byte, or 32-bit immediate.
1802
1803 Next, the registers used by this function are pushed. With the
1804 System V compiler they will always be in the order: %edi, %esi,
1805 %ebx (and sometimes a harmless bug causes it to also save but not
1806 restore %eax); however, the code below is willing to see the pushes
1807 in any order, and will handle up to 8 of them.
1808
1809 If the setup sequence is at the end of the function, then the next
1810 instruction will be a branch back to the start. */
1811
1812 static CORE_ADDR
1813 i386_analyze_prologue (struct gdbarch *gdbarch,
1814 CORE_ADDR pc, CORE_ADDR current_pc,
1815 struct i386_frame_cache *cache)
1816 {
1817 pc = i386_skip_endbr (pc);
1818 pc = i386_skip_noop (pc);
1819 pc = i386_follow_jump (gdbarch, pc);
1820 pc = i386_analyze_struct_return (pc, current_pc, cache);
1821 pc = i386_skip_probe (pc);
1822 pc = i386_analyze_stack_align (pc, current_pc, cache);
1823 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1824 return i386_analyze_register_saves (pc, current_pc, cache);
1825 }
1826
1827 /* Return PC of first real instruction. */
1828
1829 static CORE_ADDR
1830 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1831 {
1832 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1833
1834 static gdb_byte pic_pat[6] =
1835 {
1836 0xe8, 0, 0, 0, 0, /* call 0x0 */
1837 0x5b, /* popl %ebx */
1838 };
1839 struct i386_frame_cache cache;
1840 CORE_ADDR pc;
1841 gdb_byte op;
1842 int i;
1843 CORE_ADDR func_addr;
1844
1845 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1846 {
1847 CORE_ADDR post_prologue_pc
1848 = skip_prologue_using_sal (gdbarch, func_addr);
1849 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1850
1851 /* LLVM backend (Clang/Flang) always emits a line note before the
1852 prologue and another one after. We trust clang and newer Intel
1853 compilers to emit usable line notes. */
1854 if (post_prologue_pc
1855 && (cust != NULL
1856 && cust->producer () != NULL
1857 && (producer_is_llvm (cust->producer ())
1858 || producer_is_icc_ge_19 (cust->producer ()))))
1859 return std::max (start_pc, post_prologue_pc);
1860 }
1861
1862 cache.locals = -1;
1863 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1864 if (cache.locals < 0)
1865 return start_pc;
1866
1867 /* Found valid frame setup. */
1868
1869 /* The native cc on SVR4 in -K PIC mode inserts the following code
1870 to get the address of the global offset table (GOT) into register
1871 %ebx:
1872
1873 call 0x0
1874 popl %ebx
1875 movl %ebx,x(%ebp) (optional)
1876 addl y,%ebx
1877
1878 This code is with the rest of the prologue (at the end of the
1879 function), so we have to skip it to get to the first real
1880 instruction at the start of the function. */
1881
1882 for (i = 0; i < 6; i++)
1883 {
1884 if (target_read_code (pc + i, &op, 1))
1885 return pc;
1886
1887 if (pic_pat[i] != op)
1888 break;
1889 }
1890 if (i == 6)
1891 {
1892 int delta = 6;
1893
1894 if (target_read_code (pc + delta, &op, 1))
1895 return pc;
1896
1897 if (op == 0x89) /* movl %ebx, x(%ebp) */
1898 {
1899 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1900
1901 if (op == 0x5d) /* One byte offset from %ebp. */
1902 delta += 3;
1903 else if (op == 0x9d) /* Four byte offset from %ebp. */
1904 delta += 6;
1905 else /* Unexpected instruction. */
1906 delta = 0;
1907
1908 if (target_read_code (pc + delta, &op, 1))
1909 return pc;
1910 }
1911
1912 /* addl y,%ebx */
1913 if (delta > 0 && op == 0x81
1914 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1915 == 0xc3)
1916 {
1917 pc += delta + 6;
1918 }
1919 }
1920
1921 /* If the function starts with a branch (to startup code at the end)
1922 the last instruction should bring us back to the first
1923 instruction of the real code. */
1924 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1925 pc = i386_follow_jump (gdbarch, pc);
1926
1927 return pc;
1928 }
1929
1930 /* Check that the code pointed to by PC corresponds to a call to
1931 __main, skip it if so. Return PC otherwise. */
1932
1933 CORE_ADDR
1934 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1935 {
1936 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1937 gdb_byte op;
1938
1939 if (target_read_code (pc, &op, 1))
1940 return pc;
1941 if (op == 0xe8)
1942 {
1943 gdb_byte buf[4];
1944
1945 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1946 {
1947 /* Make sure address is computed correctly as a 32bit
1948 integer even if CORE_ADDR is 64 bit wide. */
1949 struct bound_minimal_symbol s;
1950 CORE_ADDR call_dest;
1951
1952 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1953 call_dest = call_dest & 0xffffffffU;
1954 s = lookup_minimal_symbol_by_pc (call_dest);
1955 if (s.minsym != NULL
1956 && s.minsym->linkage_name () != NULL
1957 && strcmp (s.minsym->linkage_name (), "__main") == 0)
1958 pc += 5;
1959 }
1960 }
1961
1962 return pc;
1963 }
1964
1965 /* This function is 64-bit safe. */
1966
1967 static CORE_ADDR
1968 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1969 {
1970 gdb_byte buf[8];
1971
1972 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1973 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1974 }
1975 \f
1976
1977 /* Normal frames. */
1978
1979 static void
1980 i386_frame_cache_1 (struct frame_info *this_frame,
1981 struct i386_frame_cache *cache)
1982 {
1983 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1984 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1985 gdb_byte buf[4];
1986 int i;
1987
1988 cache->pc = get_frame_func (this_frame);
1989
1990 /* In principle, for normal frames, %ebp holds the frame pointer,
1991 which holds the base address for the current stack frame.
1992 However, for functions that don't need it, the frame pointer is
1993 optional. For these "frameless" functions the frame pointer is
1994 actually the frame pointer of the calling frame. Signal
1995 trampolines are just a special case of a "frameless" function.
1996 They (usually) share their frame pointer with the frame that was
1997 in progress when the signal occurred. */
1998
1999 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
2000 cache->base = extract_unsigned_integer (buf, 4, byte_order);
2001 if (cache->base == 0)
2002 {
2003 cache->base_p = 1;
2004 return;
2005 }
2006
2007 /* For normal frames, %eip is stored at 4(%ebp). */
2008 cache->saved_regs[I386_EIP_REGNUM] = 4;
2009
2010 if (cache->pc != 0)
2011 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2012 cache);
2013
2014 if (cache->locals < 0)
2015 {
2016 /* We didn't find a valid frame, which means that CACHE->base
2017 currently holds the frame pointer for our calling frame. If
2018 we're at the start of a function, or somewhere half-way its
2019 prologue, the function's frame probably hasn't been fully
2020 setup yet. Try to reconstruct the base address for the stack
2021 frame by looking at the stack pointer. For truly "frameless"
2022 functions this might work too. */
2023
2024 if (cache->saved_sp_reg != -1)
2025 {
2026 /* Saved stack pointer has been saved. */
2027 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2028 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2029
2030 /* We're halfway aligning the stack. */
2031 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2032 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2033
2034 /* This will be added back below. */
2035 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2036 }
2037 else if (cache->pc != 0
2038 || target_read_code (get_frame_pc (this_frame), buf, 1))
2039 {
2040 /* We're in a known function, but did not find a frame
2041 setup. Assume that the function does not use %ebp.
2042 Alternatively, we may have jumped to an invalid
2043 address; in that case there is definitely no new
2044 frame in %ebp. */
2045 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2046 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2047 + cache->sp_offset;
2048 }
2049 else
2050 /* We're in an unknown function. We could not find the start
2051 of the function to analyze the prologue; our best option is
2052 to assume a typical frame layout with the caller's %ebp
2053 saved. */
2054 cache->saved_regs[I386_EBP_REGNUM] = 0;
2055 }
2056
2057 if (cache->saved_sp_reg != -1)
2058 {
2059 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2060 register may be unavailable). */
2061 if (cache->saved_sp == 0
2062 && deprecated_frame_register_read (this_frame,
2063 cache->saved_sp_reg, buf))
2064 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2065 }
2066 /* Now that we have the base address for the stack frame we can
2067 calculate the value of %esp in the calling frame. */
2068 else if (cache->saved_sp == 0)
2069 cache->saved_sp = cache->base + 8;
2070
2071 /* Adjust all the saved registers such that they contain addresses
2072 instead of offsets. */
2073 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2074 if (cache->saved_regs[i] != -1)
2075 cache->saved_regs[i] += cache->base;
2076
2077 cache->base_p = 1;
2078 }
2079
2080 static struct i386_frame_cache *
2081 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2082 {
2083 struct i386_frame_cache *cache;
2084
2085 if (*this_cache)
2086 return (struct i386_frame_cache *) *this_cache;
2087
2088 cache = i386_alloc_frame_cache ();
2089 *this_cache = cache;
2090
2091 try
2092 {
2093 i386_frame_cache_1 (this_frame, cache);
2094 }
2095 catch (const gdb_exception_error &ex)
2096 {
2097 if (ex.error != NOT_AVAILABLE_ERROR)
2098 throw;
2099 }
2100
2101 return cache;
2102 }
2103
2104 static void
2105 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2106 struct frame_id *this_id)
2107 {
2108 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2109
2110 if (!cache->base_p)
2111 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2112 else if (cache->base == 0)
2113 {
2114 /* This marks the outermost frame. */
2115 }
2116 else
2117 {
2118 /* See the end of i386_push_dummy_call. */
2119 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2120 }
2121 }
2122
2123 static enum unwind_stop_reason
2124 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2125 void **this_cache)
2126 {
2127 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2128
2129 if (!cache->base_p)
2130 return UNWIND_UNAVAILABLE;
2131
2132 /* This marks the outermost frame. */
2133 if (cache->base == 0)
2134 return UNWIND_OUTERMOST;
2135
2136 return UNWIND_NO_REASON;
2137 }
2138
2139 static struct value *
2140 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2141 int regnum)
2142 {
2143 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2144
2145 gdb_assert (regnum >= 0);
2146
2147 /* The System V ABI says that:
2148
2149 "The flags register contains the system flags, such as the
2150 direction flag and the carry flag. The direction flag must be
2151 set to the forward (that is, zero) direction before entry and
2152 upon exit from a function. Other user flags have no specified
2153 role in the standard calling sequence and are not preserved."
2154
2155 To guarantee the "upon exit" part of that statement we fake a
2156 saved flags register that has its direction flag cleared.
2157
2158 Note that GCC doesn't seem to rely on the fact that the direction
2159 flag is cleared after a function return; it always explicitly
2160 clears the flag before operations where it matters.
2161
2162 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2163 right thing to do. The way we fake the flags register here makes
2164 it impossible to change it. */
2165
2166 if (regnum == I386_EFLAGS_REGNUM)
2167 {
2168 ULONGEST val;
2169
2170 val = get_frame_register_unsigned (this_frame, regnum);
2171 val &= ~(1 << 10);
2172 return frame_unwind_got_constant (this_frame, regnum, val);
2173 }
2174
2175 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2176 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2177
2178 if (regnum == I386_ESP_REGNUM
2179 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2180 {
2181 /* If the SP has been saved, but we don't know where, then this
2182 means that SAVED_SP_REG register was found unavailable back
2183 when we built the cache. */
2184 if (cache->saved_sp == 0)
2185 return frame_unwind_got_register (this_frame, regnum,
2186 cache->saved_sp_reg);
2187 else
2188 return frame_unwind_got_constant (this_frame, regnum,
2189 cache->saved_sp);
2190 }
2191
2192 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2193 return frame_unwind_got_memory (this_frame, regnum,
2194 cache->saved_regs[regnum]);
2195
2196 return frame_unwind_got_register (this_frame, regnum, regnum);
2197 }
2198
2199 static const struct frame_unwind i386_frame_unwind =
2200 {
2201 "i386 prologue",
2202 NORMAL_FRAME,
2203 i386_frame_unwind_stop_reason,
2204 i386_frame_this_id,
2205 i386_frame_prev_register,
2206 NULL,
2207 default_frame_sniffer
2208 };
2209
2210 /* Normal frames, but in a function epilogue. */
2211
2212 /* Implement the stack_frame_destroyed_p gdbarch method.
2213
2214 The epilogue is defined here as the 'ret' instruction, which will
2215 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2216 the function's stack frame. */
2217
2218 static int
2219 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2220 {
2221 gdb_byte insn;
2222 struct compunit_symtab *cust;
2223
2224 cust = find_pc_compunit_symtab (pc);
2225 if (cust != NULL && cust->epilogue_unwind_valid ())
2226 return 0;
2227
2228 if (target_read_memory (pc, &insn, 1))
2229 return 0; /* Can't read memory at pc. */
2230
2231 if (insn != 0xc3) /* 'ret' instruction. */
2232 return 0;
2233
2234 return 1;
2235 }
2236
2237 static int
2238 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2239 struct frame_info *this_frame,
2240 void **this_prologue_cache)
2241 {
2242 if (frame_relative_level (this_frame) == 0)
2243 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2244 get_frame_pc (this_frame));
2245 else
2246 return 0;
2247 }
2248
2249 static struct i386_frame_cache *
2250 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2251 {
2252 struct i386_frame_cache *cache;
2253 CORE_ADDR sp;
2254
2255 if (*this_cache)
2256 return (struct i386_frame_cache *) *this_cache;
2257
2258 cache = i386_alloc_frame_cache ();
2259 *this_cache = cache;
2260
2261 try
2262 {
2263 cache->pc = get_frame_func (this_frame);
2264
2265 /* At this point the stack looks as if we just entered the
2266 function, with the return address at the top of the
2267 stack. */
2268 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2269 cache->base = sp + cache->sp_offset;
2270 cache->saved_sp = cache->base + 8;
2271 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2272
2273 cache->base_p = 1;
2274 }
2275 catch (const gdb_exception_error &ex)
2276 {
2277 if (ex.error != NOT_AVAILABLE_ERROR)
2278 throw;
2279 }
2280
2281 return cache;
2282 }
2283
2284 static enum unwind_stop_reason
2285 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2286 void **this_cache)
2287 {
2288 struct i386_frame_cache *cache =
2289 i386_epilogue_frame_cache (this_frame, this_cache);
2290
2291 if (!cache->base_p)
2292 return UNWIND_UNAVAILABLE;
2293
2294 return UNWIND_NO_REASON;
2295 }
2296
2297 static void
2298 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2299 void **this_cache,
2300 struct frame_id *this_id)
2301 {
2302 struct i386_frame_cache *cache =
2303 i386_epilogue_frame_cache (this_frame, this_cache);
2304
2305 if (!cache->base_p)
2306 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2307 else
2308 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2309 }
2310
2311 static struct value *
2312 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2313 void **this_cache, int regnum)
2314 {
2315 /* Make sure we've initialized the cache. */
2316 i386_epilogue_frame_cache (this_frame, this_cache);
2317
2318 return i386_frame_prev_register (this_frame, this_cache, regnum);
2319 }
2320
2321 static const struct frame_unwind i386_epilogue_frame_unwind =
2322 {
2323 "i386 epilogue",
2324 NORMAL_FRAME,
2325 i386_epilogue_frame_unwind_stop_reason,
2326 i386_epilogue_frame_this_id,
2327 i386_epilogue_frame_prev_register,
2328 NULL,
2329 i386_epilogue_frame_sniffer
2330 };
2331 \f
2332
2333 /* Stack-based trampolines. */
2334
2335 /* These trampolines are used on cross x86 targets, when taking the
2336 address of a nested function. When executing these trampolines,
2337 no stack frame is set up, so we are in a similar situation as in
2338 epilogues and i386_epilogue_frame_this_id can be re-used. */
2339
2340 /* Static chain passed in register. */
2341
2342 static i386_insn i386_tramp_chain_in_reg_insns[] =
2343 {
2344 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2345 { 5, { 0xb8 }, { 0xfe } },
2346
2347 /* `jmp imm32' */
2348 { 5, { 0xe9 }, { 0xff } },
2349
2350 {0}
2351 };
2352
2353 /* Static chain passed on stack (when regparm=3). */
2354
2355 static i386_insn i386_tramp_chain_on_stack_insns[] =
2356 {
2357 /* `push imm32' */
2358 { 5, { 0x68 }, { 0xff } },
2359
2360 /* `jmp imm32' */
2361 { 5, { 0xe9 }, { 0xff } },
2362
2363 {0}
2364 };
2365
2366 /* Return whether PC points inside a stack trampoline. */
2367
2368 static int
2369 i386_in_stack_tramp_p (CORE_ADDR pc)
2370 {
2371 gdb_byte insn;
2372 const char *name;
2373
2374 /* A stack trampoline is detected if no name is associated
2375 to the current pc and if it points inside a trampoline
2376 sequence. */
2377
2378 find_pc_partial_function (pc, &name, NULL, NULL);
2379 if (name)
2380 return 0;
2381
2382 if (target_read_memory (pc, &insn, 1))
2383 return 0;
2384
2385 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2386 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2387 return 0;
2388
2389 return 1;
2390 }
2391
2392 static int
2393 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2394 struct frame_info *this_frame,
2395 void **this_cache)
2396 {
2397 if (frame_relative_level (this_frame) == 0)
2398 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2399 else
2400 return 0;
2401 }
2402
2403 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2404 {
2405 "i386 stack tramp",
2406 NORMAL_FRAME,
2407 i386_epilogue_frame_unwind_stop_reason,
2408 i386_epilogue_frame_this_id,
2409 i386_epilogue_frame_prev_register,
2410 NULL,
2411 i386_stack_tramp_frame_sniffer
2412 };
2413 \f
2414 /* Generate a bytecode expression to get the value of the saved PC. */
2415
2416 static void
2417 i386_gen_return_address (struct gdbarch *gdbarch,
2418 struct agent_expr *ax, struct axs_value *value,
2419 CORE_ADDR scope)
2420 {
2421 /* The following sequence assumes the traditional use of the base
2422 register. */
2423 ax_reg (ax, I386_EBP_REGNUM);
2424 ax_const_l (ax, 4);
2425 ax_simple (ax, aop_add);
2426 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2427 value->kind = axs_lvalue_memory;
2428 }
2429 \f
2430
2431 /* Signal trampolines. */
2432
2433 static struct i386_frame_cache *
2434 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2435 {
2436 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2437 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
2438 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2439 struct i386_frame_cache *cache;
2440 CORE_ADDR addr;
2441 gdb_byte buf[4];
2442
2443 if (*this_cache)
2444 return (struct i386_frame_cache *) *this_cache;
2445
2446 cache = i386_alloc_frame_cache ();
2447
2448 try
2449 {
2450 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2451 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2452
2453 addr = tdep->sigcontext_addr (this_frame);
2454 if (tdep->sc_reg_offset)
2455 {
2456 int i;
2457
2458 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2459
2460 for (i = 0; i < tdep->sc_num_regs; i++)
2461 if (tdep->sc_reg_offset[i] != -1)
2462 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2463 }
2464 else
2465 {
2466 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2467 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2468 }
2469
2470 cache->base_p = 1;
2471 }
2472 catch (const gdb_exception_error &ex)
2473 {
2474 if (ex.error != NOT_AVAILABLE_ERROR)
2475 throw;
2476 }
2477
2478 *this_cache = cache;
2479 return cache;
2480 }
2481
2482 static enum unwind_stop_reason
2483 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2484 void **this_cache)
2485 {
2486 struct i386_frame_cache *cache =
2487 i386_sigtramp_frame_cache (this_frame, this_cache);
2488
2489 if (!cache->base_p)
2490 return UNWIND_UNAVAILABLE;
2491
2492 return UNWIND_NO_REASON;
2493 }
2494
2495 static void
2496 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2497 struct frame_id *this_id)
2498 {
2499 struct i386_frame_cache *cache =
2500 i386_sigtramp_frame_cache (this_frame, this_cache);
2501
2502 if (!cache->base_p)
2503 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2504 else
2505 {
2506 /* See the end of i386_push_dummy_call. */
2507 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2508 }
2509 }
2510
2511 static struct value *
2512 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2513 void **this_cache, int regnum)
2514 {
2515 /* Make sure we've initialized the cache. */
2516 i386_sigtramp_frame_cache (this_frame, this_cache);
2517
2518 return i386_frame_prev_register (this_frame, this_cache, regnum);
2519 }
2520
2521 static int
2522 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2523 struct frame_info *this_frame,
2524 void **this_prologue_cache)
2525 {
2526 gdbarch *arch = get_frame_arch (this_frame);
2527 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
2528
2529 /* We shouldn't even bother if we don't have a sigcontext_addr
2530 handler. */
2531 if (tdep->sigcontext_addr == NULL)
2532 return 0;
2533
2534 if (tdep->sigtramp_p != NULL)
2535 {
2536 if (tdep->sigtramp_p (this_frame))
2537 return 1;
2538 }
2539
2540 if (tdep->sigtramp_start != 0)
2541 {
2542 CORE_ADDR pc = get_frame_pc (this_frame);
2543
2544 gdb_assert (tdep->sigtramp_end != 0);
2545 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2546 return 1;
2547 }
2548
2549 return 0;
2550 }
2551
2552 static const struct frame_unwind i386_sigtramp_frame_unwind =
2553 {
2554 "i386 sigtramp",
2555 SIGTRAMP_FRAME,
2556 i386_sigtramp_frame_unwind_stop_reason,
2557 i386_sigtramp_frame_this_id,
2558 i386_sigtramp_frame_prev_register,
2559 NULL,
2560 i386_sigtramp_frame_sniffer
2561 };
2562 \f
2563
2564 static CORE_ADDR
2565 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2566 {
2567 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2568
2569 return cache->base;
2570 }
2571
2572 static const struct frame_base i386_frame_base =
2573 {
2574 &i386_frame_unwind,
2575 i386_frame_base_address,
2576 i386_frame_base_address,
2577 i386_frame_base_address
2578 };
2579
2580 static struct frame_id
2581 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2582 {
2583 CORE_ADDR fp;
2584
2585 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2586
2587 /* See the end of i386_push_dummy_call. */
2588 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2589 }
2590
2591 /* _Decimal128 function return values need 16-byte alignment on the
2592 stack. */
2593
2594 static CORE_ADDR
2595 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2596 {
2597 return sp & -(CORE_ADDR)16;
2598 }
2599 \f
2600
2601 /* Figure out where the longjmp will land. Slurp the args out of the
2602 stack. We expect the first arg to be a pointer to the jmp_buf
2603 structure from which we extract the address that we will land at.
2604 This address is copied into PC. This routine returns non-zero on
2605 success. */
2606
2607 static int
2608 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2609 {
2610 gdb_byte buf[4];
2611 CORE_ADDR sp, jb_addr;
2612 struct gdbarch *gdbarch = get_frame_arch (frame);
2613 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2614 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
2615 int jb_pc_offset = tdep->jb_pc_offset;
2616
2617 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2618 longjmp will land. */
2619 if (jb_pc_offset == -1)
2620 return 0;
2621
2622 get_frame_register (frame, I386_ESP_REGNUM, buf);
2623 sp = extract_unsigned_integer (buf, 4, byte_order);
2624 if (target_read_memory (sp + 4, buf, 4))
2625 return 0;
2626
2627 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2628 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2629 return 0;
2630
2631 *pc = extract_unsigned_integer (buf, 4, byte_order);
2632 return 1;
2633 }
2634 \f
2635
2636 /* Check whether TYPE must be 16-byte-aligned when passed as a
2637 function argument. 16-byte vectors, _Decimal128 and structures or
2638 unions containing such types must be 16-byte-aligned; other
2639 arguments are 4-byte-aligned. */
2640
2641 static int
2642 i386_16_byte_align_p (struct type *type)
2643 {
2644 type = check_typedef (type);
2645 if ((type->code () == TYPE_CODE_DECFLOAT
2646 || (type->code () == TYPE_CODE_ARRAY && type->is_vector ()))
2647 && type->length () == 16)
2648 return 1;
2649 if (type->code () == TYPE_CODE_ARRAY)
2650 return i386_16_byte_align_p (type->target_type ());
2651 if (type->code () == TYPE_CODE_STRUCT
2652 || type->code () == TYPE_CODE_UNION)
2653 {
2654 int i;
2655 for (i = 0; i < type->num_fields (); i++)
2656 {
2657 if (field_is_static (&type->field (i)))
2658 continue;
2659 if (i386_16_byte_align_p (type->field (i).type ()))
2660 return 1;
2661 }
2662 }
2663 return 0;
2664 }
2665
2666 /* Implementation for set_gdbarch_push_dummy_code. */
2667
2668 static CORE_ADDR
2669 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2670 struct value **args, int nargs, struct type *value_type,
2671 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2672 struct regcache *regcache)
2673 {
2674 /* Use 0xcc breakpoint - 1 byte. */
2675 *bp_addr = sp - 1;
2676 *real_pc = funaddr;
2677
2678 /* Keep the stack aligned. */
2679 return sp - 16;
2680 }
2681
2682 /* The "push_dummy_call" gdbarch method, optionally with the thiscall
2683 calling convention. */
2684
2685 CORE_ADDR
2686 i386_thiscall_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2687 struct regcache *regcache, CORE_ADDR bp_addr,
2688 int nargs, struct value **args, CORE_ADDR sp,
2689 function_call_return_method return_method,
2690 CORE_ADDR struct_addr, bool thiscall)
2691 {
2692 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2693 gdb_byte buf[4];
2694 int i;
2695 int write_pass;
2696 int args_space = 0;
2697
2698 /* BND registers can be in arbitrary values at the moment of the
2699 inferior call. This can cause boundary violations that are not
2700 due to a real bug or even desired by the user. The best to be done
2701 is set the BND registers to allow access to the whole memory, INIT
2702 state, before pushing the inferior call. */
2703 i387_reset_bnd_regs (gdbarch, regcache);
2704
2705 /* Determine the total space required for arguments and struct
2706 return address in a first pass (allowing for 16-byte-aligned
2707 arguments), then push arguments in a second pass. */
2708
2709 for (write_pass = 0; write_pass < 2; write_pass++)
2710 {
2711 int args_space_used = 0;
2712
2713 if (return_method == return_method_struct)
2714 {
2715 if (write_pass)
2716 {
2717 /* Push value address. */
2718 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2719 write_memory (sp, buf, 4);
2720 args_space_used += 4;
2721 }
2722 else
2723 args_space += 4;
2724 }
2725
2726 for (i = thiscall ? 1 : 0; i < nargs; i++)
2727 {
2728 int len = value_enclosing_type (args[i])->length ();
2729
2730 if (write_pass)
2731 {
2732 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2733 args_space_used = align_up (args_space_used, 16);
2734
2735 write_memory (sp + args_space_used,
2736 value_contents_all (args[i]).data (), len);
2737 /* The System V ABI says that:
2738
2739 "An argument's size is increased, if necessary, to make it a
2740 multiple of [32-bit] words. This may require tail padding,
2741 depending on the size of the argument."
2742
2743 This makes sure the stack stays word-aligned. */
2744 args_space_used += align_up (len, 4);
2745 }
2746 else
2747 {
2748 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2749 args_space = align_up (args_space, 16);
2750 args_space += align_up (len, 4);
2751 }
2752 }
2753
2754 if (!write_pass)
2755 {
2756 sp -= args_space;
2757
2758 /* The original System V ABI only requires word alignment,
2759 but modern incarnations need 16-byte alignment in order
2760 to support SSE. Since wasting a few bytes here isn't
2761 harmful we unconditionally enforce 16-byte alignment. */
2762 sp &= ~0xf;
2763 }
2764 }
2765
2766 /* Store return address. */
2767 sp -= 4;
2768 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2769 write_memory (sp, buf, 4);
2770
2771 /* Finally, update the stack pointer... */
2772 store_unsigned_integer (buf, 4, byte_order, sp);
2773 regcache->cooked_write (I386_ESP_REGNUM, buf);
2774
2775 /* ...and fake a frame pointer. */
2776 regcache->cooked_write (I386_EBP_REGNUM, buf);
2777
2778 /* The 'this' pointer needs to be in ECX. */
2779 if (thiscall)
2780 regcache->cooked_write (I386_ECX_REGNUM,
2781 value_contents_all (args[0]).data ());
2782
2783 /* If the PLT is position-independent, the SYSTEM V ABI requires %ebx to be
2784 set to the address of the GOT when doing a call to a PLT address.
2785 Note that we do not try to determine whether the PLT is
2786 position-independent, we just set the register regardless. */
2787 CORE_ADDR func_addr = find_function_addr (function, nullptr, nullptr);
2788 if (in_plt_section (func_addr))
2789 {
2790 struct objfile *objf = nullptr;
2791 asection *asect = nullptr;
2792 obj_section *osect = nullptr;
2793
2794 /* Get object file containing func_addr. */
2795 obj_section *func_section = find_pc_section (func_addr);
2796 if (func_section != nullptr)
2797 objf = func_section->objfile;
2798
2799 if (objf != nullptr)
2800 {
2801 /* Get corresponding .got.plt or .got section. */
2802 asect = bfd_get_section_by_name (objf->obfd.get (), ".got.plt");
2803 if (asect == nullptr)
2804 asect = bfd_get_section_by_name (objf->obfd.get (), ".got");
2805 }
2806
2807 if (asect != nullptr)
2808 /* Translate asection to obj_section. */
2809 osect = maint_obj_section_from_bfd_section (objf->obfd.get (),
2810 asect, objf);
2811
2812 if (osect != nullptr)
2813 {
2814 /* Store the section address in %ebx. */
2815 store_unsigned_integer (buf, 4, byte_order, osect->addr ());
2816 regcache->cooked_write (I386_EBX_REGNUM, buf);
2817 }
2818 else
2819 {
2820 /* If we would only do this for a position-independent PLT, it would
2821 make sense to issue a warning here. */
2822 }
2823 }
2824
2825 /* MarkK wrote: This "+ 8" is all over the place:
2826 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2827 i386_dummy_id). It's there, since all frame unwinders for
2828 a given target have to agree (within a certain margin) on the
2829 definition of the stack address of a frame. Otherwise frame id
2830 comparison might not work correctly. Since DWARF2/GCC uses the
2831 stack address *before* the function call as a frame's CFA. On
2832 the i386, when %ebp is used as a frame pointer, the offset
2833 between the contents %ebp and the CFA as defined by GCC. */
2834 return sp + 8;
2835 }
2836
2837 /* Implement the "push_dummy_call" gdbarch method. */
2838
2839 static CORE_ADDR
2840 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2841 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2842 struct value **args, CORE_ADDR sp,
2843 function_call_return_method return_method,
2844 CORE_ADDR struct_addr)
2845 {
2846 return i386_thiscall_push_dummy_call (gdbarch, function, regcache, bp_addr,
2847 nargs, args, sp, return_method,
2848 struct_addr, false);
2849 }
2850
2851 /* These registers are used for returning integers (and on some
2852 targets also for returning `struct' and `union' values when their
2853 size and alignment match an integer type). */
2854 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2855 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2856
2857 /* Read, for architecture GDBARCH, a function return value of TYPE
2858 from REGCACHE, and copy that into VALBUF. */
2859
2860 static void
2861 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2862 struct regcache *regcache, gdb_byte *valbuf)
2863 {
2864 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
2865 int len = type->length ();
2866 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2867
2868 /* _Float16 and _Float16 _Complex values are returned via xmm0. */
2869 if (((type->code () == TYPE_CODE_FLT) && len == 2)
2870 || ((type->code () == TYPE_CODE_COMPLEX) && len == 4))
2871 {
2872 regcache->raw_read (I387_XMM0_REGNUM (tdep), valbuf);
2873 return;
2874 }
2875 else if (type->code () == TYPE_CODE_FLT)
2876 {
2877 if (tdep->st0_regnum < 0)
2878 {
2879 warning (_("Cannot find floating-point return value."));
2880 memset (valbuf, 0, len);
2881 return;
2882 }
2883
2884 /* Floating-point return values can be found in %st(0). Convert
2885 its contents to the desired type. This is probably not
2886 exactly how it would happen on the target itself, but it is
2887 the best we can do. */
2888 regcache->raw_read (I386_ST0_REGNUM, buf);
2889 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2890 }
2891 else
2892 {
2893 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2894 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2895
2896 if (len <= low_size)
2897 {
2898 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2899 memcpy (valbuf, buf, len);
2900 }
2901 else if (len <= (low_size + high_size))
2902 {
2903 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2904 memcpy (valbuf, buf, low_size);
2905 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
2906 memcpy (valbuf + low_size, buf, len - low_size);
2907 }
2908 else
2909 internal_error (__FILE__, __LINE__,
2910 _("Cannot extract return value of %d bytes long."),
2911 len);
2912 }
2913 }
2914
2915 /* Write, for architecture GDBARCH, a function return value of TYPE
2916 from VALBUF into REGCACHE. */
2917
2918 static void
2919 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2920 struct regcache *regcache, const gdb_byte *valbuf)
2921 {
2922 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
2923 int len = type->length ();
2924
2925 if (type->code () == TYPE_CODE_FLT)
2926 {
2927 ULONGEST fstat;
2928 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2929
2930 if (tdep->st0_regnum < 0)
2931 {
2932 warning (_("Cannot set floating-point return value."));
2933 return;
2934 }
2935
2936 /* Returning floating-point values is a bit tricky. Apart from
2937 storing the return value in %st(0), we have to simulate the
2938 state of the FPU at function return point. */
2939
2940 /* Convert the value found in VALBUF to the extended
2941 floating-point format used by the FPU. This is probably
2942 not exactly how it would happen on the target itself, but
2943 it is the best we can do. */
2944 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2945 regcache->raw_write (I386_ST0_REGNUM, buf);
2946
2947 /* Set the top of the floating-point register stack to 7. The
2948 actual value doesn't really matter, but 7 is what a normal
2949 function return would end up with if the program started out
2950 with a freshly initialized FPU. */
2951 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2952 fstat |= (7 << 11);
2953 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2954
2955 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2956 the floating-point register stack to 7, the appropriate value
2957 for the tag word is 0x3fff. */
2958 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2959 }
2960 else
2961 {
2962 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2963 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2964
2965 if (len <= low_size)
2966 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
2967 else if (len <= (low_size + high_size))
2968 {
2969 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
2970 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2971 valbuf + low_size);
2972 }
2973 else
2974 internal_error (__FILE__, __LINE__,
2975 _("Cannot store return value of %d bytes long."), len);
2976 }
2977 }
2978 \f
2979
2980 /* This is the variable that is set with "set struct-convention", and
2981 its legitimate values. */
2982 static const char default_struct_convention[] = "default";
2983 static const char pcc_struct_convention[] = "pcc";
2984 static const char reg_struct_convention[] = "reg";
2985 static const char *const valid_conventions[] =
2986 {
2987 default_struct_convention,
2988 pcc_struct_convention,
2989 reg_struct_convention,
2990 NULL
2991 };
2992 static const char *struct_convention = default_struct_convention;
2993
2994 /* Return non-zero if TYPE, which is assumed to be a structure,
2995 a union type, or an array type, should be returned in registers
2996 for architecture GDBARCH. */
2997
2998 static int
2999 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
3000 {
3001 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3002 enum type_code code = type->code ();
3003 int len = type->length ();
3004
3005 gdb_assert (code == TYPE_CODE_STRUCT
3006 || code == TYPE_CODE_UNION
3007 || code == TYPE_CODE_ARRAY);
3008
3009 if (struct_convention == pcc_struct_convention
3010 || (struct_convention == default_struct_convention
3011 && tdep->struct_return == pcc_struct_return))
3012 return 0;
3013
3014 /* Structures consisting of a single `float', `double' or 'long
3015 double' member are returned in %st(0). */
3016 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
3017 {
3018 type = check_typedef (type->field (0).type ());
3019 if (type->code () == TYPE_CODE_FLT)
3020 return (len == 4 || len == 8 || len == 12);
3021 }
3022
3023 return (len == 1 || len == 2 || len == 4 || len == 8);
3024 }
3025
3026 /* Determine, for architecture GDBARCH, how a return value of TYPE
3027 should be returned. If it is supposed to be returned in registers,
3028 and READBUF is non-zero, read the appropriate value from REGCACHE,
3029 and copy it into READBUF. If WRITEBUF is non-zero, write the value
3030 from WRITEBUF into REGCACHE. */
3031
3032 static enum return_value_convention
3033 i386_return_value (struct gdbarch *gdbarch, struct value *function,
3034 struct type *type, struct regcache *regcache,
3035 gdb_byte *readbuf, const gdb_byte *writebuf)
3036 {
3037 enum type_code code = type->code ();
3038
3039 if (((code == TYPE_CODE_STRUCT
3040 || code == TYPE_CODE_UNION
3041 || code == TYPE_CODE_ARRAY)
3042 && !i386_reg_struct_return_p (gdbarch, type))
3043 /* Complex double and long double uses the struct return convention. */
3044 || (code == TYPE_CODE_COMPLEX && type->length () == 16)
3045 || (code == TYPE_CODE_COMPLEX && type->length () == 24)
3046 /* 128-bit decimal float uses the struct return convention. */
3047 || (code == TYPE_CODE_DECFLOAT && type->length () == 16))
3048 {
3049 /* The System V ABI says that:
3050
3051 "A function that returns a structure or union also sets %eax
3052 to the value of the original address of the caller's area
3053 before it returns. Thus when the caller receives control
3054 again, the address of the returned object resides in register
3055 %eax and can be used to access the object."
3056
3057 So the ABI guarantees that we can always find the return
3058 value just after the function has returned. */
3059
3060 /* Note that the ABI doesn't mention functions returning arrays,
3061 which is something possible in certain languages such as Ada.
3062 In this case, the value is returned as if it was wrapped in
3063 a record, so the convention applied to records also applies
3064 to arrays. */
3065
3066 if (readbuf)
3067 {
3068 ULONGEST addr;
3069
3070 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
3071 read_memory (addr, readbuf, type->length ());
3072 }
3073
3074 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
3075 }
3076
3077 /* This special case is for structures consisting of a single
3078 `float', `double' or 'long double' member. These structures are
3079 returned in %st(0). For these structures, we call ourselves
3080 recursively, changing TYPE into the type of the first member of
3081 the structure. Since that should work for all structures that
3082 have only one member, we don't bother to check the member's type
3083 here. */
3084 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
3085 {
3086 type = check_typedef (type->field (0).type ());
3087 return i386_return_value (gdbarch, function, type, regcache,
3088 readbuf, writebuf);
3089 }
3090
3091 if (readbuf)
3092 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3093 if (writebuf)
3094 i386_store_return_value (gdbarch, type, regcache, writebuf);
3095
3096 return RETURN_VALUE_REGISTER_CONVENTION;
3097 }
3098 \f
3099
3100 struct type *
3101 i387_ext_type (struct gdbarch *gdbarch)
3102 {
3103 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3104
3105 if (!tdep->i387_ext_type)
3106 {
3107 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3108 gdb_assert (tdep->i387_ext_type != NULL);
3109 }
3110
3111 return tdep->i387_ext_type;
3112 }
3113
3114 /* Construct type for pseudo BND registers. We can't use
3115 tdesc_find_type since a complement of one value has to be used
3116 to describe the upper bound. */
3117
3118 static struct type *
3119 i386_bnd_type (struct gdbarch *gdbarch)
3120 {
3121 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3122
3123
3124 if (!tdep->i386_bnd_type)
3125 {
3126 struct type *t;
3127 const struct builtin_type *bt = builtin_type (gdbarch);
3128
3129 /* The type we're building is described bellow: */
3130 #if 0
3131 struct __bound128
3132 {
3133 void *lbound;
3134 void *ubound; /* One complement of raw ubound field. */
3135 };
3136 #endif
3137
3138 t = arch_composite_type (gdbarch,
3139 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3140
3141 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3142 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3143
3144 t->set_name ("builtin_type_bound128");
3145 tdep->i386_bnd_type = t;
3146 }
3147
3148 return tdep->i386_bnd_type;
3149 }
3150
3151 /* Construct vector type for pseudo ZMM registers. We can't use
3152 tdesc_find_type since ZMM isn't described in target description. */
3153
3154 static struct type *
3155 i386_zmm_type (struct gdbarch *gdbarch)
3156 {
3157 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3158
3159 if (!tdep->i386_zmm_type)
3160 {
3161 const struct builtin_type *bt = builtin_type (gdbarch);
3162
3163 /* The type we're building is this: */
3164 #if 0
3165 union __gdb_builtin_type_vec512i
3166 {
3167 int128_t v4_int128[4];
3168 int64_t v8_int64[8];
3169 int32_t v16_int32[16];
3170 int16_t v32_int16[32];
3171 int8_t v64_int8[64];
3172 double v8_double[8];
3173 float v16_float[16];
3174 float16_t v32_half[32];
3175 bfloat16_t v32_bfloat16[32];
3176 };
3177 #endif
3178
3179 struct type *t;
3180
3181 t = arch_composite_type (gdbarch,
3182 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3183 append_composite_type_field (t, "v32_bfloat16",
3184 init_vector_type (bt->builtin_bfloat16, 32));
3185 append_composite_type_field (t, "v32_half",
3186 init_vector_type (bt->builtin_half, 32));
3187 append_composite_type_field (t, "v16_float",
3188 init_vector_type (bt->builtin_float, 16));
3189 append_composite_type_field (t, "v8_double",
3190 init_vector_type (bt->builtin_double, 8));
3191 append_composite_type_field (t, "v64_int8",
3192 init_vector_type (bt->builtin_int8, 64));
3193 append_composite_type_field (t, "v32_int16",
3194 init_vector_type (bt->builtin_int16, 32));
3195 append_composite_type_field (t, "v16_int32",
3196 init_vector_type (bt->builtin_int32, 16));
3197 append_composite_type_field (t, "v8_int64",
3198 init_vector_type (bt->builtin_int64, 8));
3199 append_composite_type_field (t, "v4_int128",
3200 init_vector_type (bt->builtin_int128, 4));
3201
3202 t->set_is_vector (true);
3203 t->set_name ("builtin_type_vec512i");
3204 tdep->i386_zmm_type = t;
3205 }
3206
3207 return tdep->i386_zmm_type;
3208 }
3209
3210 /* Construct vector type for pseudo YMM registers. We can't use
3211 tdesc_find_type since YMM isn't described in target description. */
3212
3213 static struct type *
3214 i386_ymm_type (struct gdbarch *gdbarch)
3215 {
3216 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3217
3218 if (!tdep->i386_ymm_type)
3219 {
3220 const struct builtin_type *bt = builtin_type (gdbarch);
3221
3222 /* The type we're building is this: */
3223 #if 0
3224 union __gdb_builtin_type_vec256i
3225 {
3226 int128_t v2_int128[2];
3227 int64_t v4_int64[4];
3228 int32_t v8_int32[8];
3229 int16_t v16_int16[16];
3230 int8_t v32_int8[32];
3231 double v4_double[4];
3232 float v8_float[8];
3233 float16_t v16_half[16];
3234 bfloat16_t v16_bfloat16[16];
3235 };
3236 #endif
3237
3238 struct type *t;
3239
3240 t = arch_composite_type (gdbarch,
3241 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3242 append_composite_type_field (t, "v16_bfloat16",
3243 init_vector_type (bt->builtin_bfloat16, 16));
3244 append_composite_type_field (t, "v16_half",
3245 init_vector_type (bt->builtin_half, 16));
3246 append_composite_type_field (t, "v8_float",
3247 init_vector_type (bt->builtin_float, 8));
3248 append_composite_type_field (t, "v4_double",
3249 init_vector_type (bt->builtin_double, 4));
3250 append_composite_type_field (t, "v32_int8",
3251 init_vector_type (bt->builtin_int8, 32));
3252 append_composite_type_field (t, "v16_int16",
3253 init_vector_type (bt->builtin_int16, 16));
3254 append_composite_type_field (t, "v8_int32",
3255 init_vector_type (bt->builtin_int32, 8));
3256 append_composite_type_field (t, "v4_int64",
3257 init_vector_type (bt->builtin_int64, 4));
3258 append_composite_type_field (t, "v2_int128",
3259 init_vector_type (bt->builtin_int128, 2));
3260
3261 t->set_is_vector (true);
3262 t->set_name ("builtin_type_vec256i");
3263 tdep->i386_ymm_type = t;
3264 }
3265
3266 return tdep->i386_ymm_type;
3267 }
3268
3269 /* Construct vector type for MMX registers. */
3270 static struct type *
3271 i386_mmx_type (struct gdbarch *gdbarch)
3272 {
3273 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3274
3275 if (!tdep->i386_mmx_type)
3276 {
3277 const struct builtin_type *bt = builtin_type (gdbarch);
3278
3279 /* The type we're building is this: */
3280 #if 0
3281 union __gdb_builtin_type_vec64i
3282 {
3283 int64_t uint64;
3284 int32_t v2_int32[2];
3285 int16_t v4_int16[4];
3286 int8_t v8_int8[8];
3287 };
3288 #endif
3289
3290 struct type *t;
3291
3292 t = arch_composite_type (gdbarch,
3293 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3294
3295 append_composite_type_field (t, "uint64", bt->builtin_int64);
3296 append_composite_type_field (t, "v2_int32",
3297 init_vector_type (bt->builtin_int32, 2));
3298 append_composite_type_field (t, "v4_int16",
3299 init_vector_type (bt->builtin_int16, 4));
3300 append_composite_type_field (t, "v8_int8",
3301 init_vector_type (bt->builtin_int8, 8));
3302
3303 t->set_is_vector (true);
3304 t->set_name ("builtin_type_vec64i");
3305 tdep->i386_mmx_type = t;
3306 }
3307
3308 return tdep->i386_mmx_type;
3309 }
3310
3311 /* Return the GDB type object for the "standard" data type of data in
3312 register REGNUM. */
3313
3314 struct type *
3315 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3316 {
3317 if (i386_bnd_regnum_p (gdbarch, regnum))
3318 return i386_bnd_type (gdbarch);
3319 if (i386_mmx_regnum_p (gdbarch, regnum))
3320 return i386_mmx_type (gdbarch);
3321 else if (i386_ymm_regnum_p (gdbarch, regnum))
3322 return i386_ymm_type (gdbarch);
3323 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3324 return i386_ymm_type (gdbarch);
3325 else if (i386_zmm_regnum_p (gdbarch, regnum))
3326 return i386_zmm_type (gdbarch);
3327 else
3328 {
3329 const struct builtin_type *bt = builtin_type (gdbarch);
3330 if (i386_byte_regnum_p (gdbarch, regnum))
3331 return bt->builtin_int8;
3332 else if (i386_word_regnum_p (gdbarch, regnum))
3333 return bt->builtin_int16;
3334 else if (i386_dword_regnum_p (gdbarch, regnum))
3335 return bt->builtin_int32;
3336 else if (i386_k_regnum_p (gdbarch, regnum))
3337 return bt->builtin_int64;
3338 }
3339
3340 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3341 }
3342
3343 /* Map a cooked register onto a raw register or memory. For the i386,
3344 the MMX registers need to be mapped onto floating point registers. */
3345
3346 static int
3347 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3348 {
3349 gdbarch *arch = regcache->arch ();
3350 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
3351 int mmxreg, fpreg;
3352 ULONGEST fstat;
3353 int tos;
3354
3355 mmxreg = regnum - tdep->mm0_regnum;
3356 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3357 tos = (fstat >> 11) & 0x7;
3358 fpreg = (mmxreg + tos) % 8;
3359
3360 return (I387_ST0_REGNUM (tdep) + fpreg);
3361 }
3362
3363 /* A helper function for us by i386_pseudo_register_read_value and
3364 amd64_pseudo_register_read_value. It does all the work but reads
3365 the data into an already-allocated value. */
3366
3367 void
3368 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3369 readable_regcache *regcache,
3370 int regnum,
3371 struct value *result_value)
3372 {
3373 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3374 enum register_status status;
3375 gdb_byte *buf = value_contents_raw (result_value).data ();
3376
3377 if (i386_mmx_regnum_p (gdbarch, regnum))
3378 {
3379 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3380
3381 /* Extract (always little endian). */
3382 status = regcache->raw_read (fpnum, raw_buf);
3383 if (status != REG_VALID)
3384 mark_value_bytes_unavailable (result_value, 0,
3385 value_type (result_value)->length ());
3386 else
3387 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3388 }
3389 else
3390 {
3391 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3392 if (i386_bnd_regnum_p (gdbarch, regnum))
3393 {
3394 regnum -= tdep->bnd0_regnum;
3395
3396 /* Extract (always little endian). Read lower 128bits. */
3397 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3398 raw_buf);
3399 if (status != REG_VALID)
3400 mark_value_bytes_unavailable (result_value, 0, 16);
3401 else
3402 {
3403 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3404 LONGEST upper, lower;
3405 int size = builtin_type (gdbarch)->builtin_data_ptr->length ();
3406
3407 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3408 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3409 upper = ~upper;
3410
3411 memcpy (buf, &lower, size);
3412 memcpy (buf + size, &upper, size);
3413 }
3414 }
3415 else if (i386_k_regnum_p (gdbarch, regnum))
3416 {
3417 regnum -= tdep->k0_regnum;
3418
3419 /* Extract (always little endian). */
3420 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3421 if (status != REG_VALID)
3422 mark_value_bytes_unavailable (result_value, 0, 8);
3423 else
3424 memcpy (buf, raw_buf, 8);
3425 }
3426 else if (i386_zmm_regnum_p (gdbarch, regnum))
3427 {
3428 regnum -= tdep->zmm0_regnum;
3429
3430 if (regnum < num_lower_zmm_regs)
3431 {
3432 /* Extract (always little endian). Read lower 128bits. */
3433 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3434 raw_buf);
3435 if (status != REG_VALID)
3436 mark_value_bytes_unavailable (result_value, 0, 16);
3437 else
3438 memcpy (buf, raw_buf, 16);
3439
3440 /* Extract (always little endian). Read upper 128bits. */
3441 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3442 raw_buf);
3443 if (status != REG_VALID)
3444 mark_value_bytes_unavailable (result_value, 16, 16);
3445 else
3446 memcpy (buf + 16, raw_buf, 16);
3447 }
3448 else
3449 {
3450 /* Extract (always little endian). Read lower 128bits. */
3451 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3452 - num_lower_zmm_regs,
3453 raw_buf);
3454 if (status != REG_VALID)
3455 mark_value_bytes_unavailable (result_value, 0, 16);
3456 else
3457 memcpy (buf, raw_buf, 16);
3458
3459 /* Extract (always little endian). Read upper 128bits. */
3460 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3461 - num_lower_zmm_regs,
3462 raw_buf);
3463 if (status != REG_VALID)
3464 mark_value_bytes_unavailable (result_value, 16, 16);
3465 else
3466 memcpy (buf + 16, raw_buf, 16);
3467 }
3468
3469 /* Read upper 256bits. */
3470 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3471 raw_buf);
3472 if (status != REG_VALID)
3473 mark_value_bytes_unavailable (result_value, 32, 32);
3474 else
3475 memcpy (buf + 32, raw_buf, 32);
3476 }
3477 else if (i386_ymm_regnum_p (gdbarch, regnum))
3478 {
3479 regnum -= tdep->ymm0_regnum;
3480
3481 /* Extract (always little endian). Read lower 128bits. */
3482 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3483 raw_buf);
3484 if (status != REG_VALID)
3485 mark_value_bytes_unavailable (result_value, 0, 16);
3486 else
3487 memcpy (buf, raw_buf, 16);
3488 /* Read upper 128bits. */
3489 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3490 raw_buf);
3491 if (status != REG_VALID)
3492 mark_value_bytes_unavailable (result_value, 16, 32);
3493 else
3494 memcpy (buf + 16, raw_buf, 16);
3495 }
3496 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3497 {
3498 regnum -= tdep->ymm16_regnum;
3499 /* Extract (always little endian). Read lower 128bits. */
3500 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3501 raw_buf);
3502 if (status != REG_VALID)
3503 mark_value_bytes_unavailable (result_value, 0, 16);
3504 else
3505 memcpy (buf, raw_buf, 16);
3506 /* Read upper 128bits. */
3507 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3508 raw_buf);
3509 if (status != REG_VALID)
3510 mark_value_bytes_unavailable (result_value, 16, 16);
3511 else
3512 memcpy (buf + 16, raw_buf, 16);
3513 }
3514 else if (i386_word_regnum_p (gdbarch, regnum))
3515 {
3516 int gpnum = regnum - tdep->ax_regnum;
3517
3518 /* Extract (always little endian). */
3519 status = regcache->raw_read (gpnum, raw_buf);
3520 if (status != REG_VALID)
3521 mark_value_bytes_unavailable (result_value, 0,
3522 value_type (result_value)->length ());
3523 else
3524 memcpy (buf, raw_buf, 2);
3525 }
3526 else if (i386_byte_regnum_p (gdbarch, regnum))
3527 {
3528 int gpnum = regnum - tdep->al_regnum;
3529
3530 /* Extract (always little endian). We read both lower and
3531 upper registers. */
3532 status = regcache->raw_read (gpnum % 4, raw_buf);
3533 if (status != REG_VALID)
3534 mark_value_bytes_unavailable (result_value, 0,
3535 value_type (result_value)->length ());
3536 else if (gpnum >= 4)
3537 memcpy (buf, raw_buf + 1, 1);
3538 else
3539 memcpy (buf, raw_buf, 1);
3540 }
3541 else
3542 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3543 }
3544 }
3545
3546 static struct value *
3547 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3548 readable_regcache *regcache,
3549 int regnum)
3550 {
3551 struct value *result;
3552
3553 result = allocate_value (register_type (gdbarch, regnum));
3554 VALUE_LVAL (result) = lval_register;
3555 VALUE_REGNUM (result) = regnum;
3556
3557 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3558
3559 return result;
3560 }
3561
3562 void
3563 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3564 int regnum, const gdb_byte *buf)
3565 {
3566 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3567
3568 if (i386_mmx_regnum_p (gdbarch, regnum))
3569 {
3570 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3571
3572 /* Read ... */
3573 regcache->raw_read (fpnum, raw_buf);
3574 /* ... Modify ... (always little endian). */
3575 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3576 /* ... Write. */
3577 regcache->raw_write (fpnum, raw_buf);
3578 }
3579 else
3580 {
3581 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3582
3583 if (i386_bnd_regnum_p (gdbarch, regnum))
3584 {
3585 ULONGEST upper, lower;
3586 int size = builtin_type (gdbarch)->builtin_data_ptr->length ();
3587 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3588
3589 /* New values from input value. */
3590 regnum -= tdep->bnd0_regnum;
3591 lower = extract_unsigned_integer (buf, size, byte_order);
3592 upper = extract_unsigned_integer (buf + size, size, byte_order);
3593
3594 /* Fetching register buffer. */
3595 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3596 raw_buf);
3597
3598 upper = ~upper;
3599
3600 /* Set register bits. */
3601 memcpy (raw_buf, &lower, 8);
3602 memcpy (raw_buf + 8, &upper, 8);
3603
3604 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
3605 }
3606 else if (i386_k_regnum_p (gdbarch, regnum))
3607 {
3608 regnum -= tdep->k0_regnum;
3609
3610 regcache->raw_write (tdep->k0_regnum + regnum, buf);
3611 }
3612 else if (i386_zmm_regnum_p (gdbarch, regnum))
3613 {
3614 regnum -= tdep->zmm0_regnum;
3615
3616 if (regnum < num_lower_zmm_regs)
3617 {
3618 /* Write lower 128bits. */
3619 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3620 /* Write upper 128bits. */
3621 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
3622 }
3623 else
3624 {
3625 /* Write lower 128bits. */
3626 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3627 - num_lower_zmm_regs, buf);
3628 /* Write upper 128bits. */
3629 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3630 - num_lower_zmm_regs, buf + 16);
3631 }
3632 /* Write upper 256bits. */
3633 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
3634 }
3635 else if (i386_ymm_regnum_p (gdbarch, regnum))
3636 {
3637 regnum -= tdep->ymm0_regnum;
3638
3639 /* ... Write lower 128bits. */
3640 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3641 /* ... Write upper 128bits. */
3642 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
3643 }
3644 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3645 {
3646 regnum -= tdep->ymm16_regnum;
3647
3648 /* ... Write lower 128bits. */
3649 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
3650 /* ... Write upper 128bits. */
3651 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
3652 }
3653 else if (i386_word_regnum_p (gdbarch, regnum))
3654 {
3655 int gpnum = regnum - tdep->ax_regnum;
3656
3657 /* Read ... */
3658 regcache->raw_read (gpnum, raw_buf);
3659 /* ... Modify ... (always little endian). */
3660 memcpy (raw_buf, buf, 2);
3661 /* ... Write. */
3662 regcache->raw_write (gpnum, raw_buf);
3663 }
3664 else if (i386_byte_regnum_p (gdbarch, regnum))
3665 {
3666 int gpnum = regnum - tdep->al_regnum;
3667
3668 /* Read ... We read both lower and upper registers. */
3669 regcache->raw_read (gpnum % 4, raw_buf);
3670 /* ... Modify ... (always little endian). */
3671 if (gpnum >= 4)
3672 memcpy (raw_buf + 1, buf, 1);
3673 else
3674 memcpy (raw_buf, buf, 1);
3675 /* ... Write. */
3676 regcache->raw_write (gpnum % 4, raw_buf);
3677 }
3678 else
3679 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3680 }
3681 }
3682
3683 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3684
3685 int
3686 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3687 struct agent_expr *ax, int regnum)
3688 {
3689 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3690
3691 if (i386_mmx_regnum_p (gdbarch, regnum))
3692 {
3693 /* MMX to FPU register mapping depends on current TOS. Let's just
3694 not care and collect everything... */
3695 int i;
3696
3697 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3698 for (i = 0; i < 8; i++)
3699 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3700 return 0;
3701 }
3702 else if (i386_bnd_regnum_p (gdbarch, regnum))
3703 {
3704 regnum -= tdep->bnd0_regnum;
3705 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3706 return 0;
3707 }
3708 else if (i386_k_regnum_p (gdbarch, regnum))
3709 {
3710 regnum -= tdep->k0_regnum;
3711 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3712 return 0;
3713 }
3714 else if (i386_zmm_regnum_p (gdbarch, regnum))
3715 {
3716 regnum -= tdep->zmm0_regnum;
3717 if (regnum < num_lower_zmm_regs)
3718 {
3719 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3720 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3721 }
3722 else
3723 {
3724 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3725 - num_lower_zmm_regs);
3726 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3727 - num_lower_zmm_regs);
3728 }
3729 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3730 return 0;
3731 }
3732 else if (i386_ymm_regnum_p (gdbarch, regnum))
3733 {
3734 regnum -= tdep->ymm0_regnum;
3735 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3736 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3737 return 0;
3738 }
3739 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3740 {
3741 regnum -= tdep->ymm16_regnum;
3742 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3743 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3744 return 0;
3745 }
3746 else if (i386_word_regnum_p (gdbarch, regnum))
3747 {
3748 int gpnum = regnum - tdep->ax_regnum;
3749
3750 ax_reg_mask (ax, gpnum);
3751 return 0;
3752 }
3753 else if (i386_byte_regnum_p (gdbarch, regnum))
3754 {
3755 int gpnum = regnum - tdep->al_regnum;
3756
3757 ax_reg_mask (ax, gpnum % 4);
3758 return 0;
3759 }
3760 else
3761 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3762 return 1;
3763 }
3764 \f
3765
3766 /* Return the register number of the register allocated by GCC after
3767 REGNUM, or -1 if there is no such register. */
3768
3769 static int
3770 i386_next_regnum (int regnum)
3771 {
3772 /* GCC allocates the registers in the order:
3773
3774 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3775
3776 Since storing a variable in %esp doesn't make any sense we return
3777 -1 for %ebp and for %esp itself. */
3778 static int next_regnum[] =
3779 {
3780 I386_EDX_REGNUM, /* Slot for %eax. */
3781 I386_EBX_REGNUM, /* Slot for %ecx. */
3782 I386_ECX_REGNUM, /* Slot for %edx. */
3783 I386_ESI_REGNUM, /* Slot for %ebx. */
3784 -1, -1, /* Slots for %esp and %ebp. */
3785 I386_EDI_REGNUM, /* Slot for %esi. */
3786 I386_EBP_REGNUM /* Slot for %edi. */
3787 };
3788
3789 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3790 return next_regnum[regnum];
3791
3792 return -1;
3793 }
3794
3795 /* Return nonzero if a value of type TYPE stored in register REGNUM
3796 needs any special handling. */
3797
3798 static int
3799 i386_convert_register_p (struct gdbarch *gdbarch,
3800 int regnum, struct type *type)
3801 {
3802 int len = type->length ();
3803
3804 /* Values may be spread across multiple registers. Most debugging
3805 formats aren't expressive enough to specify the locations, so
3806 some heuristics is involved. Right now we only handle types that
3807 have a length that is a multiple of the word size, since GCC
3808 doesn't seem to put any other types into registers. */
3809 if (len > 4 && len % 4 == 0)
3810 {
3811 int last_regnum = regnum;
3812
3813 while (len > 4)
3814 {
3815 last_regnum = i386_next_regnum (last_regnum);
3816 len -= 4;
3817 }
3818
3819 if (last_regnum != -1)
3820 return 1;
3821 }
3822
3823 return i387_convert_register_p (gdbarch, regnum, type);
3824 }
3825
3826 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3827 return its contents in TO. */
3828
3829 static int
3830 i386_register_to_value (struct frame_info *frame, int regnum,
3831 struct type *type, gdb_byte *to,
3832 int *optimizedp, int *unavailablep)
3833 {
3834 struct gdbarch *gdbarch = get_frame_arch (frame);
3835 int len = type->length ();
3836
3837 if (i386_fp_regnum_p (gdbarch, regnum))
3838 return i387_register_to_value (frame, regnum, type, to,
3839 optimizedp, unavailablep);
3840
3841 /* Read a value spread across multiple registers. */
3842
3843 gdb_assert (len > 4 && len % 4 == 0);
3844
3845 while (len > 0)
3846 {
3847 gdb_assert (regnum != -1);
3848 gdb_assert (register_size (gdbarch, regnum) == 4);
3849
3850 if (!get_frame_register_bytes (frame, regnum, 0,
3851 gdb::make_array_view (to,
3852 register_size (gdbarch,
3853 regnum)),
3854 optimizedp, unavailablep))
3855 return 0;
3856
3857 regnum = i386_next_regnum (regnum);
3858 len -= 4;
3859 to += 4;
3860 }
3861
3862 *optimizedp = *unavailablep = 0;
3863 return 1;
3864 }
3865
3866 /* Write the contents FROM of a value of type TYPE into register
3867 REGNUM in frame FRAME. */
3868
3869 static void
3870 i386_value_to_register (struct frame_info *frame, int regnum,
3871 struct type *type, const gdb_byte *from)
3872 {
3873 int len = type->length ();
3874
3875 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3876 {
3877 i387_value_to_register (frame, regnum, type, from);
3878 return;
3879 }
3880
3881 /* Write a value spread across multiple registers. */
3882
3883 gdb_assert (len > 4 && len % 4 == 0);
3884
3885 while (len > 0)
3886 {
3887 gdb_assert (regnum != -1);
3888 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3889
3890 put_frame_register (frame, regnum, from);
3891 regnum = i386_next_regnum (regnum);
3892 len -= 4;
3893 from += 4;
3894 }
3895 }
3896 \f
3897 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3898 in the general-purpose register set REGSET to register cache
3899 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3900
3901 void
3902 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3903 int regnum, const void *gregs, size_t len)
3904 {
3905 struct gdbarch *gdbarch = regcache->arch ();
3906 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3907 const gdb_byte *regs = (const gdb_byte *) gregs;
3908 int i;
3909
3910 gdb_assert (len >= tdep->sizeof_gregset);
3911
3912 for (i = 0; i < tdep->gregset_num_regs; i++)
3913 {
3914 if ((regnum == i || regnum == -1)
3915 && tdep->gregset_reg_offset[i] != -1)
3916 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
3917 }
3918 }
3919
3920 /* Collect register REGNUM from the register cache REGCACHE and store
3921 it in the buffer specified by GREGS and LEN as described by the
3922 general-purpose register set REGSET. If REGNUM is -1, do this for
3923 all registers in REGSET. */
3924
3925 static void
3926 i386_collect_gregset (const struct regset *regset,
3927 const struct regcache *regcache,
3928 int regnum, void *gregs, size_t len)
3929 {
3930 struct gdbarch *gdbarch = regcache->arch ();
3931 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3932 gdb_byte *regs = (gdb_byte *) gregs;
3933 int i;
3934
3935 gdb_assert (len >= tdep->sizeof_gregset);
3936
3937 for (i = 0; i < tdep->gregset_num_regs; i++)
3938 {
3939 if ((regnum == i || regnum == -1)
3940 && tdep->gregset_reg_offset[i] != -1)
3941 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
3942 }
3943 }
3944
3945 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3946 in the floating-point register set REGSET to register cache
3947 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3948
3949 static void
3950 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3951 int regnum, const void *fpregs, size_t len)
3952 {
3953 struct gdbarch *gdbarch = regcache->arch ();
3954 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3955
3956 if (len == I387_SIZEOF_FXSAVE)
3957 {
3958 i387_supply_fxsave (regcache, regnum, fpregs);
3959 return;
3960 }
3961
3962 gdb_assert (len >= tdep->sizeof_fpregset);
3963 i387_supply_fsave (regcache, regnum, fpregs);
3964 }
3965
3966 /* Collect register REGNUM from the register cache REGCACHE and store
3967 it in the buffer specified by FPREGS and LEN as described by the
3968 floating-point register set REGSET. If REGNUM is -1, do this for
3969 all registers in REGSET. */
3970
3971 static void
3972 i386_collect_fpregset (const struct regset *regset,
3973 const struct regcache *regcache,
3974 int regnum, void *fpregs, size_t len)
3975 {
3976 struct gdbarch *gdbarch = regcache->arch ();
3977 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3978
3979 if (len == I387_SIZEOF_FXSAVE)
3980 {
3981 i387_collect_fxsave (regcache, regnum, fpregs);
3982 return;
3983 }
3984
3985 gdb_assert (len >= tdep->sizeof_fpregset);
3986 i387_collect_fsave (regcache, regnum, fpregs);
3987 }
3988
3989 /* Register set definitions. */
3990
3991 const struct regset i386_gregset =
3992 {
3993 NULL, i386_supply_gregset, i386_collect_gregset
3994 };
3995
3996 const struct regset i386_fpregset =
3997 {
3998 NULL, i386_supply_fpregset, i386_collect_fpregset
3999 };
4000
4001 /* Default iterator over core file register note sections. */
4002
4003 void
4004 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
4005 iterate_over_regset_sections_cb *cb,
4006 void *cb_data,
4007 const struct regcache *regcache)
4008 {
4009 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
4010
4011 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
4012 cb_data);
4013 if (tdep->sizeof_fpregset)
4014 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
4015 NULL, cb_data);
4016 }
4017 \f
4018
4019 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
4020
4021 CORE_ADDR
4022 i386_pe_skip_trampoline_code (struct frame_info *frame,
4023 CORE_ADDR pc, char *name)
4024 {
4025 struct gdbarch *gdbarch = get_frame_arch (frame);
4026 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4027
4028 /* jmp *(dest) */
4029 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
4030 {
4031 unsigned long indirect =
4032 read_memory_unsigned_integer (pc + 2, 4, byte_order);
4033 struct minimal_symbol *indsym =
4034 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
4035 const char *symname = indsym ? indsym->linkage_name () : 0;
4036
4037 if (symname)
4038 {
4039 if (startswith (symname, "__imp_")
4040 || startswith (symname, "_imp_"))
4041 return name ? 1 :
4042 read_memory_unsigned_integer (indirect, 4, byte_order);
4043 }
4044 }
4045 return 0; /* Not a trampoline. */
4046 }
4047 \f
4048
4049 /* Return whether the THIS_FRAME corresponds to a sigtramp
4050 routine. */
4051
4052 int
4053 i386_sigtramp_p (struct frame_info *this_frame)
4054 {
4055 CORE_ADDR pc = get_frame_pc (this_frame);
4056 const char *name;
4057
4058 find_pc_partial_function (pc, &name, NULL, NULL);
4059 return (name && strcmp ("_sigtramp", name) == 0);
4060 }
4061 \f
4062
4063 /* We have two flavours of disassembly. The machinery on this page
4064 deals with switching between those. */
4065
4066 static int
4067 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
4068 {
4069 gdb_assert (disassembly_flavor == att_flavor
4070 || disassembly_flavor == intel_flavor);
4071
4072 info->disassembler_options = disassembly_flavor;
4073
4074 return default_print_insn (pc, info);
4075 }
4076 \f
4077
4078 /* There are a few i386 architecture variants that differ only
4079 slightly from the generic i386 target. For now, we don't give them
4080 their own source file, but include them here. As a consequence,
4081 they'll always be included. */
4082
4083 /* System V Release 4 (SVR4). */
4084
4085 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4086 routine. */
4087
4088 static int
4089 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4090 {
4091 CORE_ADDR pc = get_frame_pc (this_frame);
4092 const char *name;
4093
4094 /* The origin of these symbols is currently unknown. */
4095 find_pc_partial_function (pc, &name, NULL, NULL);
4096 return (name && (strcmp ("_sigreturn", name) == 0
4097 || strcmp ("sigvechandler", name) == 0));
4098 }
4099
4100 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4101 address of the associated sigcontext (ucontext) structure. */
4102
4103 static CORE_ADDR
4104 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4105 {
4106 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4107 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4108 gdb_byte buf[4];
4109 CORE_ADDR sp;
4110
4111 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4112 sp = extract_unsigned_integer (buf, 4, byte_order);
4113
4114 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4115 }
4116
4117 \f
4118
4119 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4120 gdbarch.h. */
4121
4122 int
4123 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4124 {
4125 return (*s == '$' /* Literal number. */
4126 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4127 || (*s == '(' && s[1] == '%') /* Register indirection. */
4128 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4129 }
4130
4131 /* Helper function for i386_stap_parse_special_token.
4132
4133 This function parses operands of the form `-8+3+1(%rbp)', which
4134 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4135
4136 Return true if the operand was parsed successfully, false
4137 otherwise. */
4138
4139 static expr::operation_up
4140 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4141 struct stap_parse_info *p)
4142 {
4143 const char *s = p->arg;
4144
4145 if (isdigit (*s) || *s == '-' || *s == '+')
4146 {
4147 bool got_minus[3];
4148 int i;
4149 long displacements[3];
4150 const char *start;
4151 int len;
4152 char *endp;
4153
4154 got_minus[0] = false;
4155 if (*s == '+')
4156 ++s;
4157 else if (*s == '-')
4158 {
4159 ++s;
4160 got_minus[0] = true;
4161 }
4162
4163 if (!isdigit ((unsigned char) *s))
4164 return {};
4165
4166 displacements[0] = strtol (s, &endp, 10);
4167 s = endp;
4168
4169 if (*s != '+' && *s != '-')
4170 {
4171 /* We are not dealing with a triplet. */
4172 return {};
4173 }
4174
4175 got_minus[1] = false;
4176 if (*s == '+')
4177 ++s;
4178 else
4179 {
4180 ++s;
4181 got_minus[1] = true;
4182 }
4183
4184 if (!isdigit ((unsigned char) *s))
4185 return {};
4186
4187 displacements[1] = strtol (s, &endp, 10);
4188 s = endp;
4189
4190 if (*s != '+' && *s != '-')
4191 {
4192 /* We are not dealing with a triplet. */
4193 return {};
4194 }
4195
4196 got_minus[2] = false;
4197 if (*s == '+')
4198 ++s;
4199 else
4200 {
4201 ++s;
4202 got_minus[2] = true;
4203 }
4204
4205 if (!isdigit ((unsigned char) *s))
4206 return {};
4207
4208 displacements[2] = strtol (s, &endp, 10);
4209 s = endp;
4210
4211 if (*s != '(' || s[1] != '%')
4212 return {};
4213
4214 s += 2;
4215 start = s;
4216
4217 while (isalnum (*s))
4218 ++s;
4219
4220 if (*s++ != ')')
4221 return {};
4222
4223 len = s - start - 1;
4224 std::string regname (start, len);
4225
4226 if (user_reg_map_name_to_regnum (gdbarch, regname.c_str (), len) == -1)
4227 error (_("Invalid register name `%s' on expression `%s'."),
4228 regname.c_str (), p->saved_arg);
4229
4230 LONGEST value = 0;
4231 for (i = 0; i < 3; i++)
4232 {
4233 LONGEST this_val = displacements[i];
4234 if (got_minus[i])
4235 this_val = -this_val;
4236 value += this_val;
4237 }
4238
4239 p->arg = s;
4240
4241 using namespace expr;
4242
4243 struct type *long_type = builtin_type (gdbarch)->builtin_long;
4244 operation_up offset
4245 = make_operation<long_const_operation> (long_type, value);
4246
4247 operation_up reg
4248 = make_operation<register_operation> (std::move (regname));
4249 struct type *void_ptr = builtin_type (gdbarch)->builtin_data_ptr;
4250 reg = make_operation<unop_cast_operation> (std::move (reg), void_ptr);
4251
4252 operation_up sum
4253 = make_operation<add_operation> (std::move (reg), std::move (offset));
4254 struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
4255 sum = make_operation<unop_cast_operation> (std::move (sum),
4256 arg_ptr_type);
4257 return make_operation<unop_ind_operation> (std::move (sum));
4258 }
4259
4260 return {};
4261 }
4262
4263 /* Helper function for i386_stap_parse_special_token.
4264
4265 This function parses operands of the form `register base +
4266 (register index * size) + offset', as represented in
4267 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4268
4269 Return true if the operand was parsed successfully, false
4270 otherwise. */
4271
4272 static expr::operation_up
4273 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4274 struct stap_parse_info *p)
4275 {
4276 const char *s = p->arg;
4277
4278 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4279 {
4280 bool offset_minus = false;
4281 long offset = 0;
4282 bool size_minus = false;
4283 long size = 0;
4284 const char *start;
4285 int len_base;
4286 int len_index;
4287
4288 if (*s == '+')
4289 ++s;
4290 else if (*s == '-')
4291 {
4292 ++s;
4293 offset_minus = true;
4294 }
4295
4296 if (offset_minus && !isdigit (*s))
4297 return {};
4298
4299 if (isdigit (*s))
4300 {
4301 char *endp;
4302
4303 offset = strtol (s, &endp, 10);
4304 s = endp;
4305 }
4306
4307 if (*s != '(' || s[1] != '%')
4308 return {};
4309
4310 s += 2;
4311 start = s;
4312
4313 while (isalnum (*s))
4314 ++s;
4315
4316 if (*s != ',' || s[1] != '%')
4317 return {};
4318
4319 len_base = s - start;
4320 std::string base (start, len_base);
4321
4322 if (user_reg_map_name_to_regnum (gdbarch, base.c_str (), len_base) == -1)
4323 error (_("Invalid register name `%s' on expression `%s'."),
4324 base.c_str (), p->saved_arg);
4325
4326 s += 2;
4327 start = s;
4328
4329 while (isalnum (*s))
4330 ++s;
4331
4332 len_index = s - start;
4333 std::string index (start, len_index);
4334
4335 if (user_reg_map_name_to_regnum (gdbarch, index.c_str (),
4336 len_index) == -1)
4337 error (_("Invalid register name `%s' on expression `%s'."),
4338 index.c_str (), p->saved_arg);
4339
4340 if (*s != ',' && *s != ')')
4341 return {};
4342
4343 if (*s == ',')
4344 {
4345 char *endp;
4346
4347 ++s;
4348 if (*s == '+')
4349 ++s;
4350 else if (*s == '-')
4351 {
4352 ++s;
4353 size_minus = true;
4354 }
4355
4356 size = strtol (s, &endp, 10);
4357 s = endp;
4358
4359 if (*s != ')')
4360 return {};
4361 }
4362
4363 ++s;
4364 p->arg = s;
4365
4366 using namespace expr;
4367
4368 struct type *long_type = builtin_type (gdbarch)->builtin_long;
4369 operation_up reg = make_operation<register_operation> (std::move (base));
4370
4371 if (offset != 0)
4372 {
4373 if (offset_minus)
4374 offset = -offset;
4375 operation_up value
4376 = make_operation<long_const_operation> (long_type, offset);
4377 reg = make_operation<add_operation> (std::move (reg),
4378 std::move (value));
4379 }
4380
4381 operation_up ind_reg
4382 = make_operation<register_operation> (std::move (index));
4383
4384 if (size != 0)
4385 {
4386 if (size_minus)
4387 size = -size;
4388 operation_up value
4389 = make_operation<long_const_operation> (long_type, size);
4390 ind_reg = make_operation<mul_operation> (std::move (ind_reg),
4391 std::move (value));
4392 }
4393
4394 operation_up sum
4395 = make_operation<add_operation> (std::move (reg),
4396 std::move (ind_reg));
4397
4398 struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
4399 sum = make_operation<unop_cast_operation> (std::move (sum),
4400 arg_ptr_type);
4401 return make_operation<unop_ind_operation> (std::move (sum));
4402 }
4403
4404 return {};
4405 }
4406
4407 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4408 gdbarch.h. */
4409
4410 expr::operation_up
4411 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4412 struct stap_parse_info *p)
4413 {
4414 /* The special tokens to be parsed here are:
4415
4416 - `register base + (register index * size) + offset', as represented
4417 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4418
4419 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4420 `*(-8 + 3 - 1 + (void *) $eax)'. */
4421
4422 expr::operation_up result
4423 = i386_stap_parse_special_token_triplet (gdbarch, p);
4424
4425 if (result == nullptr)
4426 result = i386_stap_parse_special_token_three_arg_disp (gdbarch, p);
4427
4428 return result;
4429 }
4430
4431 /* Implementation of 'gdbarch_stap_adjust_register', as defined in
4432 gdbarch.h. */
4433
4434 static std::string
4435 i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
4436 const std::string &regname, int regnum)
4437 {
4438 static const std::unordered_set<std::string> reg_assoc
4439 = { "ax", "bx", "cx", "dx",
4440 "si", "di", "bp", "sp" };
4441
4442 /* If we are dealing with a register whose size is less than the size
4443 specified by the "[-]N@" prefix, and it is one of the registers that
4444 we know has an extended variant available, then use the extended
4445 version of the register instead. */
4446 if (register_size (gdbarch, regnum) < p->arg_type->length ()
4447 && reg_assoc.find (regname) != reg_assoc.end ())
4448 return "e" + regname;
4449
4450 /* Otherwise, just use the requested register. */
4451 return regname;
4452 }
4453
4454 \f
4455
4456 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4457 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4458
4459 static const char *
4460 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4461 {
4462 return "(x86_64|i.86)";
4463 }
4464
4465 \f
4466
4467 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4468
4469 static bool
4470 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4471 {
4472 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4473 I386_EAX_REGNUM, I386_EIP_REGNUM);
4474 }
4475
4476 /* Generic ELF. */
4477
4478 void
4479 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4480 {
4481 static const char *const stap_integer_prefixes[] = { "$", NULL };
4482 static const char *const stap_register_prefixes[] = { "%", NULL };
4483 static const char *const stap_register_indirection_prefixes[] = { "(",
4484 NULL };
4485 static const char *const stap_register_indirection_suffixes[] = { ")",
4486 NULL };
4487
4488 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4489 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4490
4491 /* Registering SystemTap handlers. */
4492 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4493 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4494 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4495 stap_register_indirection_prefixes);
4496 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4497 stap_register_indirection_suffixes);
4498 set_gdbarch_stap_is_single_operand (gdbarch,
4499 i386_stap_is_single_operand);
4500 set_gdbarch_stap_parse_special_token (gdbarch,
4501 i386_stap_parse_special_token);
4502 set_gdbarch_stap_adjust_register (gdbarch,
4503 i386_stap_adjust_register);
4504
4505 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4506 i386_in_indirect_branch_thunk);
4507 }
4508
4509 /* System V Release 4 (SVR4). */
4510
4511 void
4512 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4513 {
4514 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
4515
4516 /* System V Release 4 uses ELF. */
4517 i386_elf_init_abi (info, gdbarch);
4518
4519 /* System V Release 4 has shared libraries. */
4520 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4521
4522 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4523 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4524 tdep->sc_pc_offset = 36 + 14 * 4;
4525 tdep->sc_sp_offset = 36 + 17 * 4;
4526
4527 tdep->jb_pc_offset = 20;
4528 }
4529
4530 \f
4531
4532 /* i386 register groups. In addition to the normal groups, add "mmx"
4533 and "sse". */
4534
4535 static const reggroup *i386_sse_reggroup;
4536 static const reggroup *i386_mmx_reggroup;
4537
4538 static void
4539 i386_init_reggroups (void)
4540 {
4541 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4542 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4543 }
4544
4545 static void
4546 i386_add_reggroups (struct gdbarch *gdbarch)
4547 {
4548 reggroup_add (gdbarch, i386_sse_reggroup);
4549 reggroup_add (gdbarch, i386_mmx_reggroup);
4550 }
4551
4552 int
4553 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4554 const struct reggroup *group)
4555 {
4556 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
4557 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4558 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4559 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4560 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4561 avx512_p, avx_p, sse_p, pkru_regnum_p;
4562
4563 /* Don't include pseudo registers, except for MMX, in any register
4564 groups. */
4565 if (i386_byte_regnum_p (gdbarch, regnum))
4566 return 0;
4567
4568 if (i386_word_regnum_p (gdbarch, regnum))
4569 return 0;
4570
4571 if (i386_dword_regnum_p (gdbarch, regnum))
4572 return 0;
4573
4574 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4575 if (group == i386_mmx_reggroup)
4576 return mmx_regnum_p;
4577
4578 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4579 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4580 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4581 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4582 if (group == i386_sse_reggroup)
4583 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4584
4585 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4586 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4587 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4588
4589 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4590 == X86_XSTATE_AVX_AVX512_MASK);
4591 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4592 == X86_XSTATE_AVX_MASK) && !avx512_p;
4593 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4594 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4595
4596 if (group == vector_reggroup)
4597 return (mmx_regnum_p
4598 || (zmm_regnum_p && avx512_p)
4599 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4600 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4601 || mxcsr_regnum_p);
4602
4603 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4604 || i386_fpc_regnum_p (gdbarch, regnum));
4605 if (group == float_reggroup)
4606 return fp_regnum_p;
4607
4608 /* For "info reg all", don't include upper YMM registers nor XMM
4609 registers when AVX is supported. */
4610 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4611 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4612 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4613 if (group == all_reggroup
4614 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4615 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4616 || ymmh_regnum_p
4617 || ymmh_avx512_regnum_p
4618 || zmmh_regnum_p))
4619 return 0;
4620
4621 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4622 if (group == all_reggroup
4623 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4624 return bnd_regnum_p;
4625
4626 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4627 if (group == all_reggroup
4628 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4629 return 0;
4630
4631 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4632 if (group == all_reggroup
4633 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4634 return mpx_ctrl_regnum_p;
4635
4636 if (group == general_reggroup)
4637 return (!fp_regnum_p
4638 && !mmx_regnum_p
4639 && !mxcsr_regnum_p
4640 && !xmm_regnum_p
4641 && !xmm_avx512_regnum_p
4642 && !ymm_regnum_p
4643 && !ymmh_regnum_p
4644 && !ymm_avx512_regnum_p
4645 && !ymmh_avx512_regnum_p
4646 && !bndr_regnum_p
4647 && !bnd_regnum_p
4648 && !mpx_ctrl_regnum_p
4649 && !zmm_regnum_p
4650 && !zmmh_regnum_p
4651 && !pkru_regnum_p);
4652
4653 return default_register_reggroup_p (gdbarch, regnum, group);
4654 }
4655 \f
4656
4657 /* Get the ARGIth function argument for the current function. */
4658
4659 static CORE_ADDR
4660 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4661 struct type *type)
4662 {
4663 struct gdbarch *gdbarch = get_frame_arch (frame);
4664 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4665 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4666 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4667 }
4668
4669 #define PREFIX_REPZ 0x01
4670 #define PREFIX_REPNZ 0x02
4671 #define PREFIX_LOCK 0x04
4672 #define PREFIX_DATA 0x08
4673 #define PREFIX_ADDR 0x10
4674
4675 /* operand size */
4676 enum
4677 {
4678 OT_BYTE = 0,
4679 OT_WORD,
4680 OT_LONG,
4681 OT_QUAD,
4682 OT_DQUAD,
4683 };
4684
4685 /* i386 arith/logic operations */
4686 enum
4687 {
4688 OP_ADDL,
4689 OP_ORL,
4690 OP_ADCL,
4691 OP_SBBL,
4692 OP_ANDL,
4693 OP_SUBL,
4694 OP_XORL,
4695 OP_CMPL,
4696 };
4697
4698 struct i386_record_s
4699 {
4700 struct gdbarch *gdbarch;
4701 struct regcache *regcache;
4702 CORE_ADDR orig_addr;
4703 CORE_ADDR addr;
4704 int aflag;
4705 int dflag;
4706 int override;
4707 uint8_t modrm;
4708 uint8_t mod, reg, rm;
4709 int ot;
4710 uint8_t rex_x;
4711 uint8_t rex_b;
4712 int rip_offset;
4713 int popl_esp_hack;
4714 const int *regmap;
4715 };
4716
4717 /* Parse the "modrm" part of the memory address irp->addr points at.
4718 Returns -1 if something goes wrong, 0 otherwise. */
4719
4720 static int
4721 i386_record_modrm (struct i386_record_s *irp)
4722 {
4723 struct gdbarch *gdbarch = irp->gdbarch;
4724
4725 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4726 return -1;
4727
4728 irp->addr++;
4729 irp->mod = (irp->modrm >> 6) & 3;
4730 irp->reg = (irp->modrm >> 3) & 7;
4731 irp->rm = irp->modrm & 7;
4732
4733 return 0;
4734 }
4735
4736 /* Extract the memory address that the current instruction writes to,
4737 and return it in *ADDR. Return -1 if something goes wrong. */
4738
4739 static int
4740 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4741 {
4742 struct gdbarch *gdbarch = irp->gdbarch;
4743 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4744 gdb_byte buf[4];
4745 ULONGEST offset64;
4746
4747 *addr = 0;
4748 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4749 {
4750 /* 32/64 bits */
4751 int havesib = 0;
4752 uint8_t scale = 0;
4753 uint8_t byte;
4754 uint8_t index = 0;
4755 uint8_t base = irp->rm;
4756
4757 if (base == 4)
4758 {
4759 havesib = 1;
4760 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4761 return -1;
4762 irp->addr++;
4763 scale = (byte >> 6) & 3;
4764 index = ((byte >> 3) & 7) | irp->rex_x;
4765 base = (byte & 7);
4766 }
4767 base |= irp->rex_b;
4768
4769 switch (irp->mod)
4770 {
4771 case 0:
4772 if ((base & 7) == 5)
4773 {
4774 base = 0xff;
4775 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4776 return -1;
4777 irp->addr += 4;
4778 *addr = extract_signed_integer (buf, 4, byte_order);
4779 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4780 *addr += irp->addr + irp->rip_offset;
4781 }
4782 break;
4783 case 1:
4784 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4785 return -1;
4786 irp->addr++;
4787 *addr = (int8_t) buf[0];
4788 break;
4789 case 2:
4790 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4791 return -1;
4792 *addr = extract_signed_integer (buf, 4, byte_order);
4793 irp->addr += 4;
4794 break;
4795 }
4796
4797 offset64 = 0;
4798 if (base != 0xff)
4799 {
4800 if (base == 4 && irp->popl_esp_hack)
4801 *addr += irp->popl_esp_hack;
4802 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4803 &offset64);
4804 }
4805 if (irp->aflag == 2)
4806 {
4807 *addr += offset64;
4808 }
4809 else
4810 *addr = (uint32_t) (offset64 + *addr);
4811
4812 if (havesib && (index != 4 || scale != 0))
4813 {
4814 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4815 &offset64);
4816 if (irp->aflag == 2)
4817 *addr += offset64 << scale;
4818 else
4819 *addr = (uint32_t) (*addr + (offset64 << scale));
4820 }
4821
4822 if (!irp->aflag)
4823 {
4824 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4825 address from 32-bit to 64-bit. */
4826 *addr = (uint32_t) *addr;
4827 }
4828 }
4829 else
4830 {
4831 /* 16 bits */
4832 switch (irp->mod)
4833 {
4834 case 0:
4835 if (irp->rm == 6)
4836 {
4837 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4838 return -1;
4839 irp->addr += 2;
4840 *addr = extract_signed_integer (buf, 2, byte_order);
4841 irp->rm = 0;
4842 goto no_rm;
4843 }
4844 break;
4845 case 1:
4846 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4847 return -1;
4848 irp->addr++;
4849 *addr = (int8_t) buf[0];
4850 break;
4851 case 2:
4852 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4853 return -1;
4854 irp->addr += 2;
4855 *addr = extract_signed_integer (buf, 2, byte_order);
4856 break;
4857 }
4858
4859 switch (irp->rm)
4860 {
4861 case 0:
4862 regcache_raw_read_unsigned (irp->regcache,
4863 irp->regmap[X86_RECORD_REBX_REGNUM],
4864 &offset64);
4865 *addr = (uint32_t) (*addr + offset64);
4866 regcache_raw_read_unsigned (irp->regcache,
4867 irp->regmap[X86_RECORD_RESI_REGNUM],
4868 &offset64);
4869 *addr = (uint32_t) (*addr + offset64);
4870 break;
4871 case 1:
4872 regcache_raw_read_unsigned (irp->regcache,
4873 irp->regmap[X86_RECORD_REBX_REGNUM],
4874 &offset64);
4875 *addr = (uint32_t) (*addr + offset64);
4876 regcache_raw_read_unsigned (irp->regcache,
4877 irp->regmap[X86_RECORD_REDI_REGNUM],
4878 &offset64);
4879 *addr = (uint32_t) (*addr + offset64);
4880 break;
4881 case 2:
4882 regcache_raw_read_unsigned (irp->regcache,
4883 irp->regmap[X86_RECORD_REBP_REGNUM],
4884 &offset64);
4885 *addr = (uint32_t) (*addr + offset64);
4886 regcache_raw_read_unsigned (irp->regcache,
4887 irp->regmap[X86_RECORD_RESI_REGNUM],
4888 &offset64);
4889 *addr = (uint32_t) (*addr + offset64);
4890 break;
4891 case 3:
4892 regcache_raw_read_unsigned (irp->regcache,
4893 irp->regmap[X86_RECORD_REBP_REGNUM],
4894 &offset64);
4895 *addr = (uint32_t) (*addr + offset64);
4896 regcache_raw_read_unsigned (irp->regcache,
4897 irp->regmap[X86_RECORD_REDI_REGNUM],
4898 &offset64);
4899 *addr = (uint32_t) (*addr + offset64);
4900 break;
4901 case 4:
4902 regcache_raw_read_unsigned (irp->regcache,
4903 irp->regmap[X86_RECORD_RESI_REGNUM],
4904 &offset64);
4905 *addr = (uint32_t) (*addr + offset64);
4906 break;
4907 case 5:
4908 regcache_raw_read_unsigned (irp->regcache,
4909 irp->regmap[X86_RECORD_REDI_REGNUM],
4910 &offset64);
4911 *addr = (uint32_t) (*addr + offset64);
4912 break;
4913 case 6:
4914 regcache_raw_read_unsigned (irp->regcache,
4915 irp->regmap[X86_RECORD_REBP_REGNUM],
4916 &offset64);
4917 *addr = (uint32_t) (*addr + offset64);
4918 break;
4919 case 7:
4920 regcache_raw_read_unsigned (irp->regcache,
4921 irp->regmap[X86_RECORD_REBX_REGNUM],
4922 &offset64);
4923 *addr = (uint32_t) (*addr + offset64);
4924 break;
4925 }
4926 *addr &= 0xffff;
4927 }
4928
4929 no_rm:
4930 return 0;
4931 }
4932
4933 /* Record the address and contents of the memory that will be changed
4934 by the current instruction. Return -1 if something goes wrong, 0
4935 otherwise. */
4936
4937 static int
4938 i386_record_lea_modrm (struct i386_record_s *irp)
4939 {
4940 struct gdbarch *gdbarch = irp->gdbarch;
4941 uint64_t addr;
4942
4943 if (irp->override >= 0)
4944 {
4945 if (record_full_memory_query)
4946 {
4947 if (yquery (_("\
4948 Process record ignores the memory change of instruction at address %s\n\
4949 because it can't get the value of the segment register.\n\
4950 Do you want to stop the program?"),
4951 paddress (gdbarch, irp->orig_addr)))
4952 return -1;
4953 }
4954
4955 return 0;
4956 }
4957
4958 if (i386_record_lea_modrm_addr (irp, &addr))
4959 return -1;
4960
4961 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4962 return -1;
4963
4964 return 0;
4965 }
4966
4967 /* Record the effects of a push operation. Return -1 if something
4968 goes wrong, 0 otherwise. */
4969
4970 static int
4971 i386_record_push (struct i386_record_s *irp, int size)
4972 {
4973 ULONGEST addr;
4974
4975 if (record_full_arch_list_add_reg (irp->regcache,
4976 irp->regmap[X86_RECORD_RESP_REGNUM]))
4977 return -1;
4978 regcache_raw_read_unsigned (irp->regcache,
4979 irp->regmap[X86_RECORD_RESP_REGNUM],
4980 &addr);
4981 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4982 return -1;
4983
4984 return 0;
4985 }
4986
4987
4988 /* Defines contents to record. */
4989 #define I386_SAVE_FPU_REGS 0xfffd
4990 #define I386_SAVE_FPU_ENV 0xfffe
4991 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4992
4993 /* Record the values of the floating point registers which will be
4994 changed by the current instruction. Returns -1 if something is
4995 wrong, 0 otherwise. */
4996
4997 static int i386_record_floats (struct gdbarch *gdbarch,
4998 struct i386_record_s *ir,
4999 uint32_t iregnum)
5000 {
5001 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
5002 int i;
5003
5004 /* Oza: Because of floating point insn push/pop of fpu stack is going to
5005 happen. Currently we store st0-st7 registers, but we need not store all
5006 registers all the time, in future we use ftag register and record only
5007 those who are not marked as an empty. */
5008
5009 if (I386_SAVE_FPU_REGS == iregnum)
5010 {
5011 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
5012 {
5013 if (record_full_arch_list_add_reg (ir->regcache, i))
5014 return -1;
5015 }
5016 }
5017 else if (I386_SAVE_FPU_ENV == iregnum)
5018 {
5019 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5020 {
5021 if (record_full_arch_list_add_reg (ir->regcache, i))
5022 return -1;
5023 }
5024 }
5025 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
5026 {
5027 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5028 if (record_full_arch_list_add_reg (ir->regcache, i))
5029 return -1;
5030 }
5031 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5032 (iregnum <= I387_FOP_REGNUM (tdep)))
5033 {
5034 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5035 return -1;
5036 }
5037 else
5038 {
5039 /* Parameter error. */
5040 return -1;
5041 }
5042 if(I386_SAVE_FPU_ENV != iregnum)
5043 {
5044 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5045 {
5046 if (record_full_arch_list_add_reg (ir->regcache, i))
5047 return -1;
5048 }
5049 }
5050 return 0;
5051 }
5052
5053 /* Parse the current instruction, and record the values of the
5054 registers and memory that will be changed by the current
5055 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5056
5057 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5058 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5059
5060 int
5061 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5062 CORE_ADDR input_addr)
5063 {
5064 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5065 int prefixes = 0;
5066 int regnum = 0;
5067 uint32_t opcode;
5068 uint8_t opcode8;
5069 ULONGEST addr;
5070 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5071 struct i386_record_s ir;
5072 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
5073 uint8_t rex_w = -1;
5074 uint8_t rex_r = 0;
5075
5076 memset (&ir, 0, sizeof (struct i386_record_s));
5077 ir.regcache = regcache;
5078 ir.addr = input_addr;
5079 ir.orig_addr = input_addr;
5080 ir.aflag = 1;
5081 ir.dflag = 1;
5082 ir.override = -1;
5083 ir.popl_esp_hack = 0;
5084 ir.regmap = tdep->record_regmap;
5085 ir.gdbarch = gdbarch;
5086
5087 if (record_debug > 1)
5088 gdb_printf (gdb_stdlog, "Process record: i386_process_record "
5089 "addr = %s\n",
5090 paddress (gdbarch, ir.addr));
5091
5092 /* prefixes */
5093 while (1)
5094 {
5095 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5096 return -1;
5097 ir.addr++;
5098 switch (opcode8) /* Instruction prefixes */
5099 {
5100 case REPE_PREFIX_OPCODE:
5101 prefixes |= PREFIX_REPZ;
5102 break;
5103 case REPNE_PREFIX_OPCODE:
5104 prefixes |= PREFIX_REPNZ;
5105 break;
5106 case LOCK_PREFIX_OPCODE:
5107 prefixes |= PREFIX_LOCK;
5108 break;
5109 case CS_PREFIX_OPCODE:
5110 ir.override = X86_RECORD_CS_REGNUM;
5111 break;
5112 case SS_PREFIX_OPCODE:
5113 ir.override = X86_RECORD_SS_REGNUM;
5114 break;
5115 case DS_PREFIX_OPCODE:
5116 ir.override = X86_RECORD_DS_REGNUM;
5117 break;
5118 case ES_PREFIX_OPCODE:
5119 ir.override = X86_RECORD_ES_REGNUM;
5120 break;
5121 case FS_PREFIX_OPCODE:
5122 ir.override = X86_RECORD_FS_REGNUM;
5123 break;
5124 case GS_PREFIX_OPCODE:
5125 ir.override = X86_RECORD_GS_REGNUM;
5126 break;
5127 case DATA_PREFIX_OPCODE:
5128 prefixes |= PREFIX_DATA;
5129 break;
5130 case ADDR_PREFIX_OPCODE:
5131 prefixes |= PREFIX_ADDR;
5132 break;
5133 case 0x40: /* i386 inc %eax */
5134 case 0x41: /* i386 inc %ecx */
5135 case 0x42: /* i386 inc %edx */
5136 case 0x43: /* i386 inc %ebx */
5137 case 0x44: /* i386 inc %esp */
5138 case 0x45: /* i386 inc %ebp */
5139 case 0x46: /* i386 inc %esi */
5140 case 0x47: /* i386 inc %edi */
5141 case 0x48: /* i386 dec %eax */
5142 case 0x49: /* i386 dec %ecx */
5143 case 0x4a: /* i386 dec %edx */
5144 case 0x4b: /* i386 dec %ebx */
5145 case 0x4c: /* i386 dec %esp */
5146 case 0x4d: /* i386 dec %ebp */
5147 case 0x4e: /* i386 dec %esi */
5148 case 0x4f: /* i386 dec %edi */
5149 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5150 {
5151 /* REX */
5152 rex_w = (opcode8 >> 3) & 1;
5153 rex_r = (opcode8 & 0x4) << 1;
5154 ir.rex_x = (opcode8 & 0x2) << 2;
5155 ir.rex_b = (opcode8 & 0x1) << 3;
5156 }
5157 else /* 32 bit target */
5158 goto out_prefixes;
5159 break;
5160 default:
5161 goto out_prefixes;
5162 break;
5163 }
5164 }
5165 out_prefixes:
5166 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5167 {
5168 ir.dflag = 2;
5169 }
5170 else
5171 {
5172 if (prefixes & PREFIX_DATA)
5173 ir.dflag ^= 1;
5174 }
5175 if (prefixes & PREFIX_ADDR)
5176 ir.aflag ^= 1;
5177 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5178 ir.aflag = 2;
5179
5180 /* Now check op code. */
5181 opcode = (uint32_t) opcode8;
5182 reswitch:
5183 switch (opcode)
5184 {
5185 case 0x0f:
5186 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5187 return -1;
5188 ir.addr++;
5189 opcode = (uint32_t) opcode8 | 0x0f00;
5190 goto reswitch;
5191 break;
5192
5193 case 0x00: /* arith & logic */
5194 case 0x01:
5195 case 0x02:
5196 case 0x03:
5197 case 0x04:
5198 case 0x05:
5199 case 0x08:
5200 case 0x09:
5201 case 0x0a:
5202 case 0x0b:
5203 case 0x0c:
5204 case 0x0d:
5205 case 0x10:
5206 case 0x11:
5207 case 0x12:
5208 case 0x13:
5209 case 0x14:
5210 case 0x15:
5211 case 0x18:
5212 case 0x19:
5213 case 0x1a:
5214 case 0x1b:
5215 case 0x1c:
5216 case 0x1d:
5217 case 0x20:
5218 case 0x21:
5219 case 0x22:
5220 case 0x23:
5221 case 0x24:
5222 case 0x25:
5223 case 0x28:
5224 case 0x29:
5225 case 0x2a:
5226 case 0x2b:
5227 case 0x2c:
5228 case 0x2d:
5229 case 0x30:
5230 case 0x31:
5231 case 0x32:
5232 case 0x33:
5233 case 0x34:
5234 case 0x35:
5235 case 0x38:
5236 case 0x39:
5237 case 0x3a:
5238 case 0x3b:
5239 case 0x3c:
5240 case 0x3d:
5241 if (((opcode >> 3) & 7) != OP_CMPL)
5242 {
5243 if ((opcode & 1) == 0)
5244 ir.ot = OT_BYTE;
5245 else
5246 ir.ot = ir.dflag + OT_WORD;
5247
5248 switch ((opcode >> 1) & 3)
5249 {
5250 case 0: /* OP Ev, Gv */
5251 if (i386_record_modrm (&ir))
5252 return -1;
5253 if (ir.mod != 3)
5254 {
5255 if (i386_record_lea_modrm (&ir))
5256 return -1;
5257 }
5258 else
5259 {
5260 ir.rm |= ir.rex_b;
5261 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5262 ir.rm &= 0x3;
5263 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5264 }
5265 break;
5266 case 1: /* OP Gv, Ev */
5267 if (i386_record_modrm (&ir))
5268 return -1;
5269 ir.reg |= rex_r;
5270 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5271 ir.reg &= 0x3;
5272 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5273 break;
5274 case 2: /* OP A, Iv */
5275 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5276 break;
5277 }
5278 }
5279 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5280 break;
5281
5282 case 0x80: /* GRP1 */
5283 case 0x81:
5284 case 0x82:
5285 case 0x83:
5286 if (i386_record_modrm (&ir))
5287 return -1;
5288
5289 if (ir.reg != OP_CMPL)
5290 {
5291 if ((opcode & 1) == 0)
5292 ir.ot = OT_BYTE;
5293 else
5294 ir.ot = ir.dflag + OT_WORD;
5295
5296 if (ir.mod != 3)
5297 {
5298 if (opcode == 0x83)
5299 ir.rip_offset = 1;
5300 else
5301 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5302 if (i386_record_lea_modrm (&ir))
5303 return -1;
5304 }
5305 else
5306 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5307 }
5308 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5309 break;
5310
5311 case 0x40: /* inc */
5312 case 0x41:
5313 case 0x42:
5314 case 0x43:
5315 case 0x44:
5316 case 0x45:
5317 case 0x46:
5318 case 0x47:
5319
5320 case 0x48: /* dec */
5321 case 0x49:
5322 case 0x4a:
5323 case 0x4b:
5324 case 0x4c:
5325 case 0x4d:
5326 case 0x4e:
5327 case 0x4f:
5328
5329 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5330 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5331 break;
5332
5333 case 0xf6: /* GRP3 */
5334 case 0xf7:
5335 if ((opcode & 1) == 0)
5336 ir.ot = OT_BYTE;
5337 else
5338 ir.ot = ir.dflag + OT_WORD;
5339 if (i386_record_modrm (&ir))
5340 return -1;
5341
5342 if (ir.mod != 3 && ir.reg == 0)
5343 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5344
5345 switch (ir.reg)
5346 {
5347 case 0: /* test */
5348 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5349 break;
5350 case 2: /* not */
5351 case 3: /* neg */
5352 if (ir.mod != 3)
5353 {
5354 if (i386_record_lea_modrm (&ir))
5355 return -1;
5356 }
5357 else
5358 {
5359 ir.rm |= ir.rex_b;
5360 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5361 ir.rm &= 0x3;
5362 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5363 }
5364 if (ir.reg == 3) /* neg */
5365 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5366 break;
5367 case 4: /* mul */
5368 case 5: /* imul */
5369 case 6: /* div */
5370 case 7: /* idiv */
5371 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5372 if (ir.ot != OT_BYTE)
5373 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5374 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5375 break;
5376 default:
5377 ir.addr -= 2;
5378 opcode = opcode << 8 | ir.modrm;
5379 goto no_support;
5380 break;
5381 }
5382 break;
5383
5384 case 0xfe: /* GRP4 */
5385 case 0xff: /* GRP5 */
5386 if (i386_record_modrm (&ir))
5387 return -1;
5388 if (ir.reg >= 2 && opcode == 0xfe)
5389 {
5390 ir.addr -= 2;
5391 opcode = opcode << 8 | ir.modrm;
5392 goto no_support;
5393 }
5394 switch (ir.reg)
5395 {
5396 case 0: /* inc */
5397 case 1: /* dec */
5398 if ((opcode & 1) == 0)
5399 ir.ot = OT_BYTE;
5400 else
5401 ir.ot = ir.dflag + OT_WORD;
5402 if (ir.mod != 3)
5403 {
5404 if (i386_record_lea_modrm (&ir))
5405 return -1;
5406 }
5407 else
5408 {
5409 ir.rm |= ir.rex_b;
5410 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5411 ir.rm &= 0x3;
5412 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5413 }
5414 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5415 break;
5416 case 2: /* call */
5417 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5418 ir.dflag = 2;
5419 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5420 return -1;
5421 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5422 break;
5423 case 3: /* lcall */
5424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5425 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5426 return -1;
5427 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5428 break;
5429 case 4: /* jmp */
5430 case 5: /* ljmp */
5431 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5432 break;
5433 case 6: /* push */
5434 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5435 ir.dflag = 2;
5436 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5437 return -1;
5438 break;
5439 default:
5440 ir.addr -= 2;
5441 opcode = opcode << 8 | ir.modrm;
5442 goto no_support;
5443 break;
5444 }
5445 break;
5446
5447 case 0x84: /* test */
5448 case 0x85:
5449 case 0xa8:
5450 case 0xa9:
5451 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5452 break;
5453
5454 case 0x98: /* CWDE/CBW */
5455 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5456 break;
5457
5458 case 0x99: /* CDQ/CWD */
5459 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5460 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5461 break;
5462
5463 case 0x0faf: /* imul */
5464 case 0x69:
5465 case 0x6b:
5466 ir.ot = ir.dflag + OT_WORD;
5467 if (i386_record_modrm (&ir))
5468 return -1;
5469 if (opcode == 0x69)
5470 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5471 else if (opcode == 0x6b)
5472 ir.rip_offset = 1;
5473 ir.reg |= rex_r;
5474 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5475 ir.reg &= 0x3;
5476 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5477 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5478 break;
5479
5480 case 0x0fc0: /* xadd */
5481 case 0x0fc1:
5482 if ((opcode & 1) == 0)
5483 ir.ot = OT_BYTE;
5484 else
5485 ir.ot = ir.dflag + OT_WORD;
5486 if (i386_record_modrm (&ir))
5487 return -1;
5488 ir.reg |= rex_r;
5489 if (ir.mod == 3)
5490 {
5491 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5492 ir.reg &= 0x3;
5493 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5494 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5495 ir.rm &= 0x3;
5496 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5497 }
5498 else
5499 {
5500 if (i386_record_lea_modrm (&ir))
5501 return -1;
5502 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5503 ir.reg &= 0x3;
5504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5505 }
5506 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5507 break;
5508
5509 case 0x0fb0: /* cmpxchg */
5510 case 0x0fb1:
5511 if ((opcode & 1) == 0)
5512 ir.ot = OT_BYTE;
5513 else
5514 ir.ot = ir.dflag + OT_WORD;
5515 if (i386_record_modrm (&ir))
5516 return -1;
5517 if (ir.mod == 3)
5518 {
5519 ir.reg |= rex_r;
5520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5521 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5522 ir.reg &= 0x3;
5523 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5524 }
5525 else
5526 {
5527 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5528 if (i386_record_lea_modrm (&ir))
5529 return -1;
5530 }
5531 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5532 break;
5533
5534 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5535 if (i386_record_modrm (&ir))
5536 return -1;
5537 if (ir.mod == 3)
5538 {
5539 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5540 an extended opcode. rdrand has bits 110 (/6) and rdseed
5541 has bits 111 (/7). */
5542 if (ir.reg == 6 || ir.reg == 7)
5543 {
5544 /* The storage register is described by the 3 R/M bits, but the
5545 REX.B prefix may be used to give access to registers
5546 R8~R15. In this case ir.rex_b + R/M will give us the register
5547 in the range R8~R15.
5548
5549 REX.W may also be used to access 64-bit registers, but we
5550 already record entire registers and not just partial bits
5551 of them. */
5552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5553 /* These instructions also set conditional bits. */
5554 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5555 break;
5556 }
5557 else
5558 {
5559 /* We don't handle this particular instruction yet. */
5560 ir.addr -= 2;
5561 opcode = opcode << 8 | ir.modrm;
5562 goto no_support;
5563 }
5564 }
5565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5567 if (i386_record_lea_modrm (&ir))
5568 return -1;
5569 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5570 break;
5571
5572 case 0x50: /* push */
5573 case 0x51:
5574 case 0x52:
5575 case 0x53:
5576 case 0x54:
5577 case 0x55:
5578 case 0x56:
5579 case 0x57:
5580 case 0x68:
5581 case 0x6a:
5582 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5583 ir.dflag = 2;
5584 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5585 return -1;
5586 break;
5587
5588 case 0x06: /* push es */
5589 case 0x0e: /* push cs */
5590 case 0x16: /* push ss */
5591 case 0x1e: /* push ds */
5592 if (ir.regmap[X86_RECORD_R8_REGNUM])
5593 {
5594 ir.addr -= 1;
5595 goto no_support;
5596 }
5597 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5598 return -1;
5599 break;
5600
5601 case 0x0fa0: /* push fs */
5602 case 0x0fa8: /* push gs */
5603 if (ir.regmap[X86_RECORD_R8_REGNUM])
5604 {
5605 ir.addr -= 2;
5606 goto no_support;
5607 }
5608 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5609 return -1;
5610 break;
5611
5612 case 0x60: /* pusha */
5613 if (ir.regmap[X86_RECORD_R8_REGNUM])
5614 {
5615 ir.addr -= 1;
5616 goto no_support;
5617 }
5618 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5619 return -1;
5620 break;
5621
5622 case 0x58: /* pop */
5623 case 0x59:
5624 case 0x5a:
5625 case 0x5b:
5626 case 0x5c:
5627 case 0x5d:
5628 case 0x5e:
5629 case 0x5f:
5630 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5631 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5632 break;
5633
5634 case 0x61: /* popa */
5635 if (ir.regmap[X86_RECORD_R8_REGNUM])
5636 {
5637 ir.addr -= 1;
5638 goto no_support;
5639 }
5640 for (regnum = X86_RECORD_REAX_REGNUM;
5641 regnum <= X86_RECORD_REDI_REGNUM;
5642 regnum++)
5643 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5644 break;
5645
5646 case 0x8f: /* pop */
5647 if (ir.regmap[X86_RECORD_R8_REGNUM])
5648 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5649 else
5650 ir.ot = ir.dflag + OT_WORD;
5651 if (i386_record_modrm (&ir))
5652 return -1;
5653 if (ir.mod == 3)
5654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5655 else
5656 {
5657 ir.popl_esp_hack = 1 << ir.ot;
5658 if (i386_record_lea_modrm (&ir))
5659 return -1;
5660 }
5661 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5662 break;
5663
5664 case 0xc8: /* enter */
5665 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5666 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5667 ir.dflag = 2;
5668 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5669 return -1;
5670 break;
5671
5672 case 0xc9: /* leave */
5673 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5674 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5675 break;
5676
5677 case 0x07: /* pop es */
5678 if (ir.regmap[X86_RECORD_R8_REGNUM])
5679 {
5680 ir.addr -= 1;
5681 goto no_support;
5682 }
5683 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5685 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5686 break;
5687
5688 case 0x17: /* pop ss */
5689 if (ir.regmap[X86_RECORD_R8_REGNUM])
5690 {
5691 ir.addr -= 1;
5692 goto no_support;
5693 }
5694 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5696 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5697 break;
5698
5699 case 0x1f: /* pop ds */
5700 if (ir.regmap[X86_RECORD_R8_REGNUM])
5701 {
5702 ir.addr -= 1;
5703 goto no_support;
5704 }
5705 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5706 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5707 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5708 break;
5709
5710 case 0x0fa1: /* pop fs */
5711 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5713 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5714 break;
5715
5716 case 0x0fa9: /* pop gs */
5717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5718 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5719 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5720 break;
5721
5722 case 0x88: /* mov */
5723 case 0x89:
5724 case 0xc6:
5725 case 0xc7:
5726 if ((opcode & 1) == 0)
5727 ir.ot = OT_BYTE;
5728 else
5729 ir.ot = ir.dflag + OT_WORD;
5730
5731 if (i386_record_modrm (&ir))
5732 return -1;
5733
5734 if (ir.mod != 3)
5735 {
5736 if (opcode == 0xc6 || opcode == 0xc7)
5737 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5738 if (i386_record_lea_modrm (&ir))
5739 return -1;
5740 }
5741 else
5742 {
5743 if (opcode == 0xc6 || opcode == 0xc7)
5744 ir.rm |= ir.rex_b;
5745 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5746 ir.rm &= 0x3;
5747 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5748 }
5749 break;
5750
5751 case 0x8a: /* mov */
5752 case 0x8b:
5753 if ((opcode & 1) == 0)
5754 ir.ot = OT_BYTE;
5755 else
5756 ir.ot = ir.dflag + OT_WORD;
5757 if (i386_record_modrm (&ir))
5758 return -1;
5759 ir.reg |= rex_r;
5760 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5761 ir.reg &= 0x3;
5762 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5763 break;
5764
5765 case 0x8c: /* mov seg */
5766 if (i386_record_modrm (&ir))
5767 return -1;
5768 if (ir.reg > 5)
5769 {
5770 ir.addr -= 2;
5771 opcode = opcode << 8 | ir.modrm;
5772 goto no_support;
5773 }
5774
5775 if (ir.mod == 3)
5776 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5777 else
5778 {
5779 ir.ot = OT_WORD;
5780 if (i386_record_lea_modrm (&ir))
5781 return -1;
5782 }
5783 break;
5784
5785 case 0x8e: /* mov seg */
5786 if (i386_record_modrm (&ir))
5787 return -1;
5788 switch (ir.reg)
5789 {
5790 case 0:
5791 regnum = X86_RECORD_ES_REGNUM;
5792 break;
5793 case 2:
5794 regnum = X86_RECORD_SS_REGNUM;
5795 break;
5796 case 3:
5797 regnum = X86_RECORD_DS_REGNUM;
5798 break;
5799 case 4:
5800 regnum = X86_RECORD_FS_REGNUM;
5801 break;
5802 case 5:
5803 regnum = X86_RECORD_GS_REGNUM;
5804 break;
5805 default:
5806 ir.addr -= 2;
5807 opcode = opcode << 8 | ir.modrm;
5808 goto no_support;
5809 break;
5810 }
5811 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5812 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5813 break;
5814
5815 case 0x0fb6: /* movzbS */
5816 case 0x0fb7: /* movzwS */
5817 case 0x0fbe: /* movsbS */
5818 case 0x0fbf: /* movswS */
5819 if (i386_record_modrm (&ir))
5820 return -1;
5821 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5822 break;
5823
5824 case 0x8d: /* lea */
5825 if (i386_record_modrm (&ir))
5826 return -1;
5827 if (ir.mod == 3)
5828 {
5829 ir.addr -= 2;
5830 opcode = opcode << 8 | ir.modrm;
5831 goto no_support;
5832 }
5833 ir.ot = ir.dflag;
5834 ir.reg |= rex_r;
5835 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5836 ir.reg &= 0x3;
5837 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5838 break;
5839
5840 case 0xa0: /* mov EAX */
5841 case 0xa1:
5842
5843 case 0xd7: /* xlat */
5844 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5845 break;
5846
5847 case 0xa2: /* mov EAX */
5848 case 0xa3:
5849 if (ir.override >= 0)
5850 {
5851 if (record_full_memory_query)
5852 {
5853 if (yquery (_("\
5854 Process record ignores the memory change of instruction at address %s\n\
5855 because it can't get the value of the segment register.\n\
5856 Do you want to stop the program?"),
5857 paddress (gdbarch, ir.orig_addr)))
5858 return -1;
5859 }
5860 }
5861 else
5862 {
5863 if ((opcode & 1) == 0)
5864 ir.ot = OT_BYTE;
5865 else
5866 ir.ot = ir.dflag + OT_WORD;
5867 if (ir.aflag == 2)
5868 {
5869 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5870 return -1;
5871 ir.addr += 8;
5872 addr = extract_unsigned_integer (buf, 8, byte_order);
5873 }
5874 else if (ir.aflag)
5875 {
5876 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5877 return -1;
5878 ir.addr += 4;
5879 addr = extract_unsigned_integer (buf, 4, byte_order);
5880 }
5881 else
5882 {
5883 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5884 return -1;
5885 ir.addr += 2;
5886 addr = extract_unsigned_integer (buf, 2, byte_order);
5887 }
5888 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5889 return -1;
5890 }
5891 break;
5892
5893 case 0xb0: /* mov R, Ib */
5894 case 0xb1:
5895 case 0xb2:
5896 case 0xb3:
5897 case 0xb4:
5898 case 0xb5:
5899 case 0xb6:
5900 case 0xb7:
5901 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5902 ? ((opcode & 0x7) | ir.rex_b)
5903 : ((opcode & 0x7) & 0x3));
5904 break;
5905
5906 case 0xb8: /* mov R, Iv */
5907 case 0xb9:
5908 case 0xba:
5909 case 0xbb:
5910 case 0xbc:
5911 case 0xbd:
5912 case 0xbe:
5913 case 0xbf:
5914 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5915 break;
5916
5917 case 0x91: /* xchg R, EAX */
5918 case 0x92:
5919 case 0x93:
5920 case 0x94:
5921 case 0x95:
5922 case 0x96:
5923 case 0x97:
5924 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5925 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5926 break;
5927
5928 case 0x86: /* xchg Ev, Gv */
5929 case 0x87:
5930 if ((opcode & 1) == 0)
5931 ir.ot = OT_BYTE;
5932 else
5933 ir.ot = ir.dflag + OT_WORD;
5934 if (i386_record_modrm (&ir))
5935 return -1;
5936 if (ir.mod == 3)
5937 {
5938 ir.rm |= ir.rex_b;
5939 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5940 ir.rm &= 0x3;
5941 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5942 }
5943 else
5944 {
5945 if (i386_record_lea_modrm (&ir))
5946 return -1;
5947 }
5948 ir.reg |= rex_r;
5949 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5950 ir.reg &= 0x3;
5951 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5952 break;
5953
5954 case 0xc4: /* les Gv */
5955 case 0xc5: /* lds Gv */
5956 if (ir.regmap[X86_RECORD_R8_REGNUM])
5957 {
5958 ir.addr -= 1;
5959 goto no_support;
5960 }
5961 /* FALLTHROUGH */
5962 case 0x0fb2: /* lss Gv */
5963 case 0x0fb4: /* lfs Gv */
5964 case 0x0fb5: /* lgs Gv */
5965 if (i386_record_modrm (&ir))
5966 return -1;
5967 if (ir.mod == 3)
5968 {
5969 if (opcode > 0xff)
5970 ir.addr -= 3;
5971 else
5972 ir.addr -= 2;
5973 opcode = opcode << 8 | ir.modrm;
5974 goto no_support;
5975 }
5976 switch (opcode)
5977 {
5978 case 0xc4: /* les Gv */
5979 regnum = X86_RECORD_ES_REGNUM;
5980 break;
5981 case 0xc5: /* lds Gv */
5982 regnum = X86_RECORD_DS_REGNUM;
5983 break;
5984 case 0x0fb2: /* lss Gv */
5985 regnum = X86_RECORD_SS_REGNUM;
5986 break;
5987 case 0x0fb4: /* lfs Gv */
5988 regnum = X86_RECORD_FS_REGNUM;
5989 break;
5990 case 0x0fb5: /* lgs Gv */
5991 regnum = X86_RECORD_GS_REGNUM;
5992 break;
5993 }
5994 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5995 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5996 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5997 break;
5998
5999 case 0xc0: /* shifts */
6000 case 0xc1:
6001 case 0xd0:
6002 case 0xd1:
6003 case 0xd2:
6004 case 0xd3:
6005 if ((opcode & 1) == 0)
6006 ir.ot = OT_BYTE;
6007 else
6008 ir.ot = ir.dflag + OT_WORD;
6009 if (i386_record_modrm (&ir))
6010 return -1;
6011 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
6012 {
6013 if (i386_record_lea_modrm (&ir))
6014 return -1;
6015 }
6016 else
6017 {
6018 ir.rm |= ir.rex_b;
6019 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
6020 ir.rm &= 0x3;
6021 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
6022 }
6023 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6024 break;
6025
6026 case 0x0fa4:
6027 case 0x0fa5:
6028 case 0x0fac:
6029 case 0x0fad:
6030 if (i386_record_modrm (&ir))
6031 return -1;
6032 if (ir.mod == 3)
6033 {
6034 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
6035 return -1;
6036 }
6037 else
6038 {
6039 if (i386_record_lea_modrm (&ir))
6040 return -1;
6041 }
6042 break;
6043
6044 case 0xd8: /* Floats. */
6045 case 0xd9:
6046 case 0xda:
6047 case 0xdb:
6048 case 0xdc:
6049 case 0xdd:
6050 case 0xde:
6051 case 0xdf:
6052 if (i386_record_modrm (&ir))
6053 return -1;
6054 ir.reg |= ((opcode & 7) << 3);
6055 if (ir.mod != 3)
6056 {
6057 /* Memory. */
6058 uint64_t addr64;
6059
6060 if (i386_record_lea_modrm_addr (&ir, &addr64))
6061 return -1;
6062 switch (ir.reg)
6063 {
6064 case 0x02:
6065 case 0x12:
6066 case 0x22:
6067 case 0x32:
6068 /* For fcom, ficom nothing to do. */
6069 break;
6070 case 0x03:
6071 case 0x13:
6072 case 0x23:
6073 case 0x33:
6074 /* For fcomp, ficomp pop FPU stack, store all. */
6075 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6076 return -1;
6077 break;
6078 case 0x00:
6079 case 0x01:
6080 case 0x04:
6081 case 0x05:
6082 case 0x06:
6083 case 0x07:
6084 case 0x10:
6085 case 0x11:
6086 case 0x14:
6087 case 0x15:
6088 case 0x16:
6089 case 0x17:
6090 case 0x20:
6091 case 0x21:
6092 case 0x24:
6093 case 0x25:
6094 case 0x26:
6095 case 0x27:
6096 case 0x30:
6097 case 0x31:
6098 case 0x34:
6099 case 0x35:
6100 case 0x36:
6101 case 0x37:
6102 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6103 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6104 of code, always affects st(0) register. */
6105 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6106 return -1;
6107 break;
6108 case 0x08:
6109 case 0x0a:
6110 case 0x0b:
6111 case 0x18:
6112 case 0x19:
6113 case 0x1a:
6114 case 0x1b:
6115 case 0x1d:
6116 case 0x28:
6117 case 0x29:
6118 case 0x2a:
6119 case 0x2b:
6120 case 0x38:
6121 case 0x39:
6122 case 0x3a:
6123 case 0x3b:
6124 case 0x3c:
6125 case 0x3d:
6126 switch (ir.reg & 7)
6127 {
6128 case 0:
6129 /* Handling fld, fild. */
6130 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6131 return -1;
6132 break;
6133 case 1:
6134 switch (ir.reg >> 4)
6135 {
6136 case 0:
6137 if (record_full_arch_list_add_mem (addr64, 4))
6138 return -1;
6139 break;
6140 case 2:
6141 if (record_full_arch_list_add_mem (addr64, 8))
6142 return -1;
6143 break;
6144 case 3:
6145 break;
6146 default:
6147 if (record_full_arch_list_add_mem (addr64, 2))
6148 return -1;
6149 break;
6150 }
6151 break;
6152 default:
6153 switch (ir.reg >> 4)
6154 {
6155 case 0:
6156 if (record_full_arch_list_add_mem (addr64, 4))
6157 return -1;
6158 if (3 == (ir.reg & 7))
6159 {
6160 /* For fstp m32fp. */
6161 if (i386_record_floats (gdbarch, &ir,
6162 I386_SAVE_FPU_REGS))
6163 return -1;
6164 }
6165 break;
6166 case 1:
6167 if (record_full_arch_list_add_mem (addr64, 4))
6168 return -1;
6169 if ((3 == (ir.reg & 7))
6170 || (5 == (ir.reg & 7))
6171 || (7 == (ir.reg & 7)))
6172 {
6173 /* For fstp insn. */
6174 if (i386_record_floats (gdbarch, &ir,
6175 I386_SAVE_FPU_REGS))
6176 return -1;
6177 }
6178 break;
6179 case 2:
6180 if (record_full_arch_list_add_mem (addr64, 8))
6181 return -1;
6182 if (3 == (ir.reg & 7))
6183 {
6184 /* For fstp m64fp. */
6185 if (i386_record_floats (gdbarch, &ir,
6186 I386_SAVE_FPU_REGS))
6187 return -1;
6188 }
6189 break;
6190 case 3:
6191 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6192 {
6193 /* For fistp, fbld, fild, fbstp. */
6194 if (i386_record_floats (gdbarch, &ir,
6195 I386_SAVE_FPU_REGS))
6196 return -1;
6197 }
6198 /* Fall through */
6199 default:
6200 if (record_full_arch_list_add_mem (addr64, 2))
6201 return -1;
6202 break;
6203 }
6204 break;
6205 }
6206 break;
6207 case 0x0c:
6208 /* Insn fldenv. */
6209 if (i386_record_floats (gdbarch, &ir,
6210 I386_SAVE_FPU_ENV_REG_STACK))
6211 return -1;
6212 break;
6213 case 0x0d:
6214 /* Insn fldcw. */
6215 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6216 return -1;
6217 break;
6218 case 0x2c:
6219 /* Insn frstor. */
6220 if (i386_record_floats (gdbarch, &ir,
6221 I386_SAVE_FPU_ENV_REG_STACK))
6222 return -1;
6223 break;
6224 case 0x0e:
6225 if (ir.dflag)
6226 {
6227 if (record_full_arch_list_add_mem (addr64, 28))
6228 return -1;
6229 }
6230 else
6231 {
6232 if (record_full_arch_list_add_mem (addr64, 14))
6233 return -1;
6234 }
6235 break;
6236 case 0x0f:
6237 case 0x2f:
6238 if (record_full_arch_list_add_mem (addr64, 2))
6239 return -1;
6240 /* Insn fstp, fbstp. */
6241 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6242 return -1;
6243 break;
6244 case 0x1f:
6245 case 0x3e:
6246 if (record_full_arch_list_add_mem (addr64, 10))
6247 return -1;
6248 break;
6249 case 0x2e:
6250 if (ir.dflag)
6251 {
6252 if (record_full_arch_list_add_mem (addr64, 28))
6253 return -1;
6254 addr64 += 28;
6255 }
6256 else
6257 {
6258 if (record_full_arch_list_add_mem (addr64, 14))
6259 return -1;
6260 addr64 += 14;
6261 }
6262 if (record_full_arch_list_add_mem (addr64, 80))
6263 return -1;
6264 /* Insn fsave. */
6265 if (i386_record_floats (gdbarch, &ir,
6266 I386_SAVE_FPU_ENV_REG_STACK))
6267 return -1;
6268 break;
6269 case 0x3f:
6270 if (record_full_arch_list_add_mem (addr64, 8))
6271 return -1;
6272 /* Insn fistp. */
6273 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6274 return -1;
6275 break;
6276 default:
6277 ir.addr -= 2;
6278 opcode = opcode << 8 | ir.modrm;
6279 goto no_support;
6280 break;
6281 }
6282 }
6283 /* Opcode is an extension of modR/M byte. */
6284 else
6285 {
6286 switch (opcode)
6287 {
6288 case 0xd8:
6289 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6290 return -1;
6291 break;
6292 case 0xd9:
6293 if (0x0c == (ir.modrm >> 4))
6294 {
6295 if ((ir.modrm & 0x0f) <= 7)
6296 {
6297 if (i386_record_floats (gdbarch, &ir,
6298 I386_SAVE_FPU_REGS))
6299 return -1;
6300 }
6301 else
6302 {
6303 if (i386_record_floats (gdbarch, &ir,
6304 I387_ST0_REGNUM (tdep)))
6305 return -1;
6306 /* If only st(0) is changing, then we have already
6307 recorded. */
6308 if ((ir.modrm & 0x0f) - 0x08)
6309 {
6310 if (i386_record_floats (gdbarch, &ir,
6311 I387_ST0_REGNUM (tdep) +
6312 ((ir.modrm & 0x0f) - 0x08)))
6313 return -1;
6314 }
6315 }
6316 }
6317 else
6318 {
6319 switch (ir.modrm)
6320 {
6321 case 0xe0:
6322 case 0xe1:
6323 case 0xf0:
6324 case 0xf5:
6325 case 0xf8:
6326 case 0xfa:
6327 case 0xfc:
6328 case 0xfe:
6329 case 0xff:
6330 if (i386_record_floats (gdbarch, &ir,
6331 I387_ST0_REGNUM (tdep)))
6332 return -1;
6333 break;
6334 case 0xf1:
6335 case 0xf2:
6336 case 0xf3:
6337 case 0xf4:
6338 case 0xf6:
6339 case 0xf7:
6340 case 0xe8:
6341 case 0xe9:
6342 case 0xea:
6343 case 0xeb:
6344 case 0xec:
6345 case 0xed:
6346 case 0xee:
6347 case 0xf9:
6348 case 0xfb:
6349 if (i386_record_floats (gdbarch, &ir,
6350 I386_SAVE_FPU_REGS))
6351 return -1;
6352 break;
6353 case 0xfd:
6354 if (i386_record_floats (gdbarch, &ir,
6355 I387_ST0_REGNUM (tdep)))
6356 return -1;
6357 if (i386_record_floats (gdbarch, &ir,
6358 I387_ST0_REGNUM (tdep) + 1))
6359 return -1;
6360 break;
6361 }
6362 }
6363 break;
6364 case 0xda:
6365 if (0xe9 == ir.modrm)
6366 {
6367 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6368 return -1;
6369 }
6370 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6371 {
6372 if (i386_record_floats (gdbarch, &ir,
6373 I387_ST0_REGNUM (tdep)))
6374 return -1;
6375 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6376 {
6377 if (i386_record_floats (gdbarch, &ir,
6378 I387_ST0_REGNUM (tdep) +
6379 (ir.modrm & 0x0f)))
6380 return -1;
6381 }
6382 else if ((ir.modrm & 0x0f) - 0x08)
6383 {
6384 if (i386_record_floats (gdbarch, &ir,
6385 I387_ST0_REGNUM (tdep) +
6386 ((ir.modrm & 0x0f) - 0x08)))
6387 return -1;
6388 }
6389 }
6390 break;
6391 case 0xdb:
6392 if (0xe3 == ir.modrm)
6393 {
6394 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6395 return -1;
6396 }
6397 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6398 {
6399 if (i386_record_floats (gdbarch, &ir,
6400 I387_ST0_REGNUM (tdep)))
6401 return -1;
6402 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6403 {
6404 if (i386_record_floats (gdbarch, &ir,
6405 I387_ST0_REGNUM (tdep) +
6406 (ir.modrm & 0x0f)))
6407 return -1;
6408 }
6409 else if ((ir.modrm & 0x0f) - 0x08)
6410 {
6411 if (i386_record_floats (gdbarch, &ir,
6412 I387_ST0_REGNUM (tdep) +
6413 ((ir.modrm & 0x0f) - 0x08)))
6414 return -1;
6415 }
6416 }
6417 break;
6418 case 0xdc:
6419 if ((0x0c == ir.modrm >> 4)
6420 || (0x0d == ir.modrm >> 4)
6421 || (0x0f == ir.modrm >> 4))
6422 {
6423 if ((ir.modrm & 0x0f) <= 7)
6424 {
6425 if (i386_record_floats (gdbarch, &ir,
6426 I387_ST0_REGNUM (tdep) +
6427 (ir.modrm & 0x0f)))
6428 return -1;
6429 }
6430 else
6431 {
6432 if (i386_record_floats (gdbarch, &ir,
6433 I387_ST0_REGNUM (tdep) +
6434 ((ir.modrm & 0x0f) - 0x08)))
6435 return -1;
6436 }
6437 }
6438 break;
6439 case 0xdd:
6440 if (0x0c == ir.modrm >> 4)
6441 {
6442 if (i386_record_floats (gdbarch, &ir,
6443 I387_FTAG_REGNUM (tdep)))
6444 return -1;
6445 }
6446 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6447 {
6448 if ((ir.modrm & 0x0f) <= 7)
6449 {
6450 if (i386_record_floats (gdbarch, &ir,
6451 I387_ST0_REGNUM (tdep) +
6452 (ir.modrm & 0x0f)))
6453 return -1;
6454 }
6455 else
6456 {
6457 if (i386_record_floats (gdbarch, &ir,
6458 I386_SAVE_FPU_REGS))
6459 return -1;
6460 }
6461 }
6462 break;
6463 case 0xde:
6464 if ((0x0c == ir.modrm >> 4)
6465 || (0x0e == ir.modrm >> 4)
6466 || (0x0f == ir.modrm >> 4)
6467 || (0xd9 == ir.modrm))
6468 {
6469 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6470 return -1;
6471 }
6472 break;
6473 case 0xdf:
6474 if (0xe0 == ir.modrm)
6475 {
6476 if (record_full_arch_list_add_reg (ir.regcache,
6477 I386_EAX_REGNUM))
6478 return -1;
6479 }
6480 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6481 {
6482 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6483 return -1;
6484 }
6485 break;
6486 }
6487 }
6488 break;
6489 /* string ops */
6490 case 0xa4: /* movsS */
6491 case 0xa5:
6492 case 0xaa: /* stosS */
6493 case 0xab:
6494 case 0x6c: /* insS */
6495 case 0x6d:
6496 regcache_raw_read_unsigned (ir.regcache,
6497 ir.regmap[X86_RECORD_RECX_REGNUM],
6498 &addr);
6499 if (addr)
6500 {
6501 ULONGEST es, ds;
6502
6503 if ((opcode & 1) == 0)
6504 ir.ot = OT_BYTE;
6505 else
6506 ir.ot = ir.dflag + OT_WORD;
6507 regcache_raw_read_unsigned (ir.regcache,
6508 ir.regmap[X86_RECORD_REDI_REGNUM],
6509 &addr);
6510
6511 regcache_raw_read_unsigned (ir.regcache,
6512 ir.regmap[X86_RECORD_ES_REGNUM],
6513 &es);
6514 regcache_raw_read_unsigned (ir.regcache,
6515 ir.regmap[X86_RECORD_DS_REGNUM],
6516 &ds);
6517 if (ir.aflag && (es != ds))
6518 {
6519 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6520 if (record_full_memory_query)
6521 {
6522 if (yquery (_("\
6523 Process record ignores the memory change of instruction at address %s\n\
6524 because it can't get the value of the segment register.\n\
6525 Do you want to stop the program?"),
6526 paddress (gdbarch, ir.orig_addr)))
6527 return -1;
6528 }
6529 }
6530 else
6531 {
6532 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6533 return -1;
6534 }
6535
6536 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6538 if (opcode == 0xa4 || opcode == 0xa5)
6539 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6541 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6542 }
6543 break;
6544
6545 case 0xa6: /* cmpsS */
6546 case 0xa7:
6547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6549 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6550 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6551 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6552 break;
6553
6554 case 0xac: /* lodsS */
6555 case 0xad:
6556 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6557 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6558 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6559 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6560 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6561 break;
6562
6563 case 0xae: /* scasS */
6564 case 0xaf:
6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6566 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6567 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6568 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6569 break;
6570
6571 case 0x6e: /* outsS */
6572 case 0x6f:
6573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6574 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6575 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6576 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6577 break;
6578
6579 case 0xe4: /* port I/O */
6580 case 0xe5:
6581 case 0xec:
6582 case 0xed:
6583 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6584 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6585 break;
6586
6587 case 0xe6:
6588 case 0xe7:
6589 case 0xee:
6590 case 0xef:
6591 break;
6592
6593 /* control */
6594 case 0xc2: /* ret im */
6595 case 0xc3: /* ret */
6596 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6597 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6598 break;
6599
6600 case 0xca: /* lret im */
6601 case 0xcb: /* lret */
6602 case 0xcf: /* iret */
6603 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6604 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6605 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6606 break;
6607
6608 case 0xe8: /* call im */
6609 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6610 ir.dflag = 2;
6611 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6612 return -1;
6613 break;
6614
6615 case 0x9a: /* lcall im */
6616 if (ir.regmap[X86_RECORD_R8_REGNUM])
6617 {
6618 ir.addr -= 1;
6619 goto no_support;
6620 }
6621 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6622 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6623 return -1;
6624 break;
6625
6626 case 0xe9: /* jmp im */
6627 case 0xea: /* ljmp im */
6628 case 0xeb: /* jmp Jb */
6629 case 0x70: /* jcc Jb */
6630 case 0x71:
6631 case 0x72:
6632 case 0x73:
6633 case 0x74:
6634 case 0x75:
6635 case 0x76:
6636 case 0x77:
6637 case 0x78:
6638 case 0x79:
6639 case 0x7a:
6640 case 0x7b:
6641 case 0x7c:
6642 case 0x7d:
6643 case 0x7e:
6644 case 0x7f:
6645 case 0x0f80: /* jcc Jv */
6646 case 0x0f81:
6647 case 0x0f82:
6648 case 0x0f83:
6649 case 0x0f84:
6650 case 0x0f85:
6651 case 0x0f86:
6652 case 0x0f87:
6653 case 0x0f88:
6654 case 0x0f89:
6655 case 0x0f8a:
6656 case 0x0f8b:
6657 case 0x0f8c:
6658 case 0x0f8d:
6659 case 0x0f8e:
6660 case 0x0f8f:
6661 break;
6662
6663 case 0x0f90: /* setcc Gv */
6664 case 0x0f91:
6665 case 0x0f92:
6666 case 0x0f93:
6667 case 0x0f94:
6668 case 0x0f95:
6669 case 0x0f96:
6670 case 0x0f97:
6671 case 0x0f98:
6672 case 0x0f99:
6673 case 0x0f9a:
6674 case 0x0f9b:
6675 case 0x0f9c:
6676 case 0x0f9d:
6677 case 0x0f9e:
6678 case 0x0f9f:
6679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6680 ir.ot = OT_BYTE;
6681 if (i386_record_modrm (&ir))
6682 return -1;
6683 if (ir.mod == 3)
6684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6685 : (ir.rm & 0x3));
6686 else
6687 {
6688 if (i386_record_lea_modrm (&ir))
6689 return -1;
6690 }
6691 break;
6692
6693 case 0x0f40: /* cmov Gv, Ev */
6694 case 0x0f41:
6695 case 0x0f42:
6696 case 0x0f43:
6697 case 0x0f44:
6698 case 0x0f45:
6699 case 0x0f46:
6700 case 0x0f47:
6701 case 0x0f48:
6702 case 0x0f49:
6703 case 0x0f4a:
6704 case 0x0f4b:
6705 case 0x0f4c:
6706 case 0x0f4d:
6707 case 0x0f4e:
6708 case 0x0f4f:
6709 if (i386_record_modrm (&ir))
6710 return -1;
6711 ir.reg |= rex_r;
6712 if (ir.dflag == OT_BYTE)
6713 ir.reg &= 0x3;
6714 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6715 break;
6716
6717 /* flags */
6718 case 0x9c: /* pushf */
6719 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6720 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6721 ir.dflag = 2;
6722 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6723 return -1;
6724 break;
6725
6726 case 0x9d: /* popf */
6727 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6728 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6729 break;
6730
6731 case 0x9e: /* sahf */
6732 if (ir.regmap[X86_RECORD_R8_REGNUM])
6733 {
6734 ir.addr -= 1;
6735 goto no_support;
6736 }
6737 /* FALLTHROUGH */
6738 case 0xf5: /* cmc */
6739 case 0xf8: /* clc */
6740 case 0xf9: /* stc */
6741 case 0xfc: /* cld */
6742 case 0xfd: /* std */
6743 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6744 break;
6745
6746 case 0x9f: /* lahf */
6747 if (ir.regmap[X86_RECORD_R8_REGNUM])
6748 {
6749 ir.addr -= 1;
6750 goto no_support;
6751 }
6752 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6753 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6754 break;
6755
6756 /* bit operations */
6757 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6758 ir.ot = ir.dflag + OT_WORD;
6759 if (i386_record_modrm (&ir))
6760 return -1;
6761 if (ir.reg < 4)
6762 {
6763 ir.addr -= 2;
6764 opcode = opcode << 8 | ir.modrm;
6765 goto no_support;
6766 }
6767 if (ir.reg != 4)
6768 {
6769 if (ir.mod == 3)
6770 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6771 else
6772 {
6773 if (i386_record_lea_modrm (&ir))
6774 return -1;
6775 }
6776 }
6777 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6778 break;
6779
6780 case 0x0fa3: /* bt Gv, Ev */
6781 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6782 break;
6783
6784 case 0x0fab: /* bts */
6785 case 0x0fb3: /* btr */
6786 case 0x0fbb: /* btc */
6787 ir.ot = ir.dflag + OT_WORD;
6788 if (i386_record_modrm (&ir))
6789 return -1;
6790 if (ir.mod == 3)
6791 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6792 else
6793 {
6794 uint64_t addr64;
6795 if (i386_record_lea_modrm_addr (&ir, &addr64))
6796 return -1;
6797 regcache_raw_read_unsigned (ir.regcache,
6798 ir.regmap[ir.reg | rex_r],
6799 &addr);
6800 switch (ir.dflag)
6801 {
6802 case 0:
6803 addr64 += ((int16_t) addr >> 4) << 4;
6804 break;
6805 case 1:
6806 addr64 += ((int32_t) addr >> 5) << 5;
6807 break;
6808 case 2:
6809 addr64 += ((int64_t) addr >> 6) << 6;
6810 break;
6811 }
6812 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6813 return -1;
6814 if (i386_record_lea_modrm (&ir))
6815 return -1;
6816 }
6817 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6818 break;
6819
6820 case 0x0fbc: /* bsf */
6821 case 0x0fbd: /* bsr */
6822 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6823 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6824 break;
6825
6826 /* bcd */
6827 case 0x27: /* daa */
6828 case 0x2f: /* das */
6829 case 0x37: /* aaa */
6830 case 0x3f: /* aas */
6831 case 0xd4: /* aam */
6832 case 0xd5: /* aad */
6833 if (ir.regmap[X86_RECORD_R8_REGNUM])
6834 {
6835 ir.addr -= 1;
6836 goto no_support;
6837 }
6838 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6839 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6840 break;
6841
6842 /* misc */
6843 case 0x90: /* nop */
6844 if (prefixes & PREFIX_LOCK)
6845 {
6846 ir.addr -= 1;
6847 goto no_support;
6848 }
6849 break;
6850
6851 case 0x9b: /* fwait */
6852 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6853 return -1;
6854 opcode = (uint32_t) opcode8;
6855 ir.addr++;
6856 goto reswitch;
6857 break;
6858
6859 /* XXX */
6860 case 0xcc: /* int3 */
6861 gdb_printf (gdb_stderr,
6862 _("Process record does not support instruction "
6863 "int3.\n"));
6864 ir.addr -= 1;
6865 goto no_support;
6866 break;
6867
6868 /* XXX */
6869 case 0xcd: /* int */
6870 {
6871 int ret;
6872 uint8_t interrupt;
6873 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6874 return -1;
6875 ir.addr++;
6876 if (interrupt != 0x80
6877 || tdep->i386_intx80_record == NULL)
6878 {
6879 gdb_printf (gdb_stderr,
6880 _("Process record does not support "
6881 "instruction int 0x%02x.\n"),
6882 interrupt);
6883 ir.addr -= 2;
6884 goto no_support;
6885 }
6886 ret = tdep->i386_intx80_record (ir.regcache);
6887 if (ret)
6888 return ret;
6889 }
6890 break;
6891
6892 /* XXX */
6893 case 0xce: /* into */
6894 gdb_printf (gdb_stderr,
6895 _("Process record does not support "
6896 "instruction into.\n"));
6897 ir.addr -= 1;
6898 goto no_support;
6899 break;
6900
6901 case 0xfa: /* cli */
6902 case 0xfb: /* sti */
6903 break;
6904
6905 case 0x62: /* bound */
6906 gdb_printf (gdb_stderr,
6907 _("Process record does not support "
6908 "instruction bound.\n"));
6909 ir.addr -= 1;
6910 goto no_support;
6911 break;
6912
6913 case 0x0fc8: /* bswap reg */
6914 case 0x0fc9:
6915 case 0x0fca:
6916 case 0x0fcb:
6917 case 0x0fcc:
6918 case 0x0fcd:
6919 case 0x0fce:
6920 case 0x0fcf:
6921 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6922 break;
6923
6924 case 0xd6: /* salc */
6925 if (ir.regmap[X86_RECORD_R8_REGNUM])
6926 {
6927 ir.addr -= 1;
6928 goto no_support;
6929 }
6930 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6931 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6932 break;
6933
6934 case 0xe0: /* loopnz */
6935 case 0xe1: /* loopz */
6936 case 0xe2: /* loop */
6937 case 0xe3: /* jecxz */
6938 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6939 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6940 break;
6941
6942 case 0x0f30: /* wrmsr */
6943 gdb_printf (gdb_stderr,
6944 _("Process record does not support "
6945 "instruction wrmsr.\n"));
6946 ir.addr -= 2;
6947 goto no_support;
6948 break;
6949
6950 case 0x0f32: /* rdmsr */
6951 gdb_printf (gdb_stderr,
6952 _("Process record does not support "
6953 "instruction rdmsr.\n"));
6954 ir.addr -= 2;
6955 goto no_support;
6956 break;
6957
6958 case 0x0f31: /* rdtsc */
6959 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6960 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6961 break;
6962
6963 case 0x0f34: /* sysenter */
6964 {
6965 int ret;
6966 if (ir.regmap[X86_RECORD_R8_REGNUM])
6967 {
6968 ir.addr -= 2;
6969 goto no_support;
6970 }
6971 if (tdep->i386_sysenter_record == NULL)
6972 {
6973 gdb_printf (gdb_stderr,
6974 _("Process record does not support "
6975 "instruction sysenter.\n"));
6976 ir.addr -= 2;
6977 goto no_support;
6978 }
6979 ret = tdep->i386_sysenter_record (ir.regcache);
6980 if (ret)
6981 return ret;
6982 }
6983 break;
6984
6985 case 0x0f35: /* sysexit */
6986 gdb_printf (gdb_stderr,
6987 _("Process record does not support "
6988 "instruction sysexit.\n"));
6989 ir.addr -= 2;
6990 goto no_support;
6991 break;
6992
6993 case 0x0f05: /* syscall */
6994 {
6995 int ret;
6996 if (tdep->i386_syscall_record == NULL)
6997 {
6998 gdb_printf (gdb_stderr,
6999 _("Process record does not support "
7000 "instruction syscall.\n"));
7001 ir.addr -= 2;
7002 goto no_support;
7003 }
7004 ret = tdep->i386_syscall_record (ir.regcache);
7005 if (ret)
7006 return ret;
7007 }
7008 break;
7009
7010 case 0x0f07: /* sysret */
7011 gdb_printf (gdb_stderr,
7012 _("Process record does not support "
7013 "instruction sysret.\n"));
7014 ir.addr -= 2;
7015 goto no_support;
7016 break;
7017
7018 case 0x0fa2: /* cpuid */
7019 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7020 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7021 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7022 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7023 break;
7024
7025 case 0xf4: /* hlt */
7026 gdb_printf (gdb_stderr,
7027 _("Process record does not support "
7028 "instruction hlt.\n"));
7029 ir.addr -= 1;
7030 goto no_support;
7031 break;
7032
7033 case 0x0f00:
7034 if (i386_record_modrm (&ir))
7035 return -1;
7036 switch (ir.reg)
7037 {
7038 case 0: /* sldt */
7039 case 1: /* str */
7040 if (ir.mod == 3)
7041 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7042 else
7043 {
7044 ir.ot = OT_WORD;
7045 if (i386_record_lea_modrm (&ir))
7046 return -1;
7047 }
7048 break;
7049 case 2: /* lldt */
7050 case 3: /* ltr */
7051 break;
7052 case 4: /* verr */
7053 case 5: /* verw */
7054 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7055 break;
7056 default:
7057 ir.addr -= 3;
7058 opcode = opcode << 8 | ir.modrm;
7059 goto no_support;
7060 break;
7061 }
7062 break;
7063
7064 case 0x0f01:
7065 if (i386_record_modrm (&ir))
7066 return -1;
7067 switch (ir.reg)
7068 {
7069 case 0: /* sgdt */
7070 {
7071 uint64_t addr64;
7072
7073 if (ir.mod == 3)
7074 {
7075 ir.addr -= 3;
7076 opcode = opcode << 8 | ir.modrm;
7077 goto no_support;
7078 }
7079 if (ir.override >= 0)
7080 {
7081 if (record_full_memory_query)
7082 {
7083 if (yquery (_("\
7084 Process record ignores the memory change of instruction at address %s\n\
7085 because it can't get the value of the segment register.\n\
7086 Do you want to stop the program?"),
7087 paddress (gdbarch, ir.orig_addr)))
7088 return -1;
7089 }
7090 }
7091 else
7092 {
7093 if (i386_record_lea_modrm_addr (&ir, &addr64))
7094 return -1;
7095 if (record_full_arch_list_add_mem (addr64, 2))
7096 return -1;
7097 addr64 += 2;
7098 if (ir.regmap[X86_RECORD_R8_REGNUM])
7099 {
7100 if (record_full_arch_list_add_mem (addr64, 8))
7101 return -1;
7102 }
7103 else
7104 {
7105 if (record_full_arch_list_add_mem (addr64, 4))
7106 return -1;
7107 }
7108 }
7109 }
7110 break;
7111 case 1:
7112 if (ir.mod == 3)
7113 {
7114 switch (ir.rm)
7115 {
7116 case 0: /* monitor */
7117 break;
7118 case 1: /* mwait */
7119 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7120 break;
7121 default:
7122 ir.addr -= 3;
7123 opcode = opcode << 8 | ir.modrm;
7124 goto no_support;
7125 break;
7126 }
7127 }
7128 else
7129 {
7130 /* sidt */
7131 if (ir.override >= 0)
7132 {
7133 if (record_full_memory_query)
7134 {
7135 if (yquery (_("\
7136 Process record ignores the memory change of instruction at address %s\n\
7137 because it can't get the value of the segment register.\n\
7138 Do you want to stop the program?"),
7139 paddress (gdbarch, ir.orig_addr)))
7140 return -1;
7141 }
7142 }
7143 else
7144 {
7145 uint64_t addr64;
7146
7147 if (i386_record_lea_modrm_addr (&ir, &addr64))
7148 return -1;
7149 if (record_full_arch_list_add_mem (addr64, 2))
7150 return -1;
7151 addr64 += 2;
7152 if (ir.regmap[X86_RECORD_R8_REGNUM])
7153 {
7154 if (record_full_arch_list_add_mem (addr64, 8))
7155 return -1;
7156 }
7157 else
7158 {
7159 if (record_full_arch_list_add_mem (addr64, 4))
7160 return -1;
7161 }
7162 }
7163 }
7164 break;
7165 case 2: /* lgdt */
7166 if (ir.mod == 3)
7167 {
7168 /* xgetbv */
7169 if (ir.rm == 0)
7170 {
7171 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7172 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7173 break;
7174 }
7175 /* xsetbv */
7176 else if (ir.rm == 1)
7177 break;
7178 }
7179 /* Fall through. */
7180 case 3: /* lidt */
7181 if (ir.mod == 3)
7182 {
7183 ir.addr -= 3;
7184 opcode = opcode << 8 | ir.modrm;
7185 goto no_support;
7186 }
7187 break;
7188 case 4: /* smsw */
7189 if (ir.mod == 3)
7190 {
7191 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7192 return -1;
7193 }
7194 else
7195 {
7196 ir.ot = OT_WORD;
7197 if (i386_record_lea_modrm (&ir))
7198 return -1;
7199 }
7200 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7201 break;
7202 case 6: /* lmsw */
7203 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7204 break;
7205 case 7: /* invlpg */
7206 if (ir.mod == 3)
7207 {
7208 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7209 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7210 else
7211 {
7212 ir.addr -= 3;
7213 opcode = opcode << 8 | ir.modrm;
7214 goto no_support;
7215 }
7216 }
7217 else
7218 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7219 break;
7220 default:
7221 ir.addr -= 3;
7222 opcode = opcode << 8 | ir.modrm;
7223 goto no_support;
7224 break;
7225 }
7226 break;
7227
7228 case 0x0f08: /* invd */
7229 case 0x0f09: /* wbinvd */
7230 break;
7231
7232 case 0x63: /* arpl */
7233 if (i386_record_modrm (&ir))
7234 return -1;
7235 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7236 {
7237 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7238 ? (ir.reg | rex_r) : ir.rm);
7239 }
7240 else
7241 {
7242 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7243 if (i386_record_lea_modrm (&ir))
7244 return -1;
7245 }
7246 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7247 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7248 break;
7249
7250 case 0x0f02: /* lar */
7251 case 0x0f03: /* lsl */
7252 if (i386_record_modrm (&ir))
7253 return -1;
7254 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7255 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7256 break;
7257
7258 case 0x0f18:
7259 if (i386_record_modrm (&ir))
7260 return -1;
7261 if (ir.mod == 3 && ir.reg == 3)
7262 {
7263 ir.addr -= 3;
7264 opcode = opcode << 8 | ir.modrm;
7265 goto no_support;
7266 }
7267 break;
7268
7269 case 0x0f19:
7270 case 0x0f1a:
7271 case 0x0f1b:
7272 case 0x0f1c:
7273 case 0x0f1d:
7274 case 0x0f1e:
7275 case 0x0f1f:
7276 /* nop (multi byte) */
7277 break;
7278
7279 case 0x0f20: /* mov reg, crN */
7280 case 0x0f22: /* mov crN, reg */
7281 if (i386_record_modrm (&ir))
7282 return -1;
7283 if ((ir.modrm & 0xc0) != 0xc0)
7284 {
7285 ir.addr -= 3;
7286 opcode = opcode << 8 | ir.modrm;
7287 goto no_support;
7288 }
7289 switch (ir.reg)
7290 {
7291 case 0:
7292 case 2:
7293 case 3:
7294 case 4:
7295 case 8:
7296 if (opcode & 2)
7297 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7298 else
7299 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7300 break;
7301 default:
7302 ir.addr -= 3;
7303 opcode = opcode << 8 | ir.modrm;
7304 goto no_support;
7305 break;
7306 }
7307 break;
7308
7309 case 0x0f21: /* mov reg, drN */
7310 case 0x0f23: /* mov drN, reg */
7311 if (i386_record_modrm (&ir))
7312 return -1;
7313 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7314 || ir.reg == 5 || ir.reg >= 8)
7315 {
7316 ir.addr -= 3;
7317 opcode = opcode << 8 | ir.modrm;
7318 goto no_support;
7319 }
7320 if (opcode & 2)
7321 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7322 else
7323 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7324 break;
7325
7326 case 0x0f06: /* clts */
7327 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7328 break;
7329
7330 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7331
7332 case 0x0f0d: /* 3DNow! prefetch */
7333 break;
7334
7335 case 0x0f0e: /* 3DNow! femms */
7336 case 0x0f77: /* emms */
7337 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7338 goto no_support;
7339 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7340 break;
7341
7342 case 0x0f0f: /* 3DNow! data */
7343 if (i386_record_modrm (&ir))
7344 return -1;
7345 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7346 return -1;
7347 ir.addr++;
7348 switch (opcode8)
7349 {
7350 case 0x0c: /* 3DNow! pi2fw */
7351 case 0x0d: /* 3DNow! pi2fd */
7352 case 0x1c: /* 3DNow! pf2iw */
7353 case 0x1d: /* 3DNow! pf2id */
7354 case 0x8a: /* 3DNow! pfnacc */
7355 case 0x8e: /* 3DNow! pfpnacc */
7356 case 0x90: /* 3DNow! pfcmpge */
7357 case 0x94: /* 3DNow! pfmin */
7358 case 0x96: /* 3DNow! pfrcp */
7359 case 0x97: /* 3DNow! pfrsqrt */
7360 case 0x9a: /* 3DNow! pfsub */
7361 case 0x9e: /* 3DNow! pfadd */
7362 case 0xa0: /* 3DNow! pfcmpgt */
7363 case 0xa4: /* 3DNow! pfmax */
7364 case 0xa6: /* 3DNow! pfrcpit1 */
7365 case 0xa7: /* 3DNow! pfrsqit1 */
7366 case 0xaa: /* 3DNow! pfsubr */
7367 case 0xae: /* 3DNow! pfacc */
7368 case 0xb0: /* 3DNow! pfcmpeq */
7369 case 0xb4: /* 3DNow! pfmul */
7370 case 0xb6: /* 3DNow! pfrcpit2 */
7371 case 0xb7: /* 3DNow! pmulhrw */
7372 case 0xbb: /* 3DNow! pswapd */
7373 case 0xbf: /* 3DNow! pavgusb */
7374 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7375 goto no_support_3dnow_data;
7376 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7377 break;
7378
7379 default:
7380 no_support_3dnow_data:
7381 opcode = (opcode << 8) | opcode8;
7382 goto no_support;
7383 break;
7384 }
7385 break;
7386
7387 case 0x0faa: /* rsm */
7388 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7389 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7390 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7391 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7392 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7393 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7394 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7395 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7396 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7397 break;
7398
7399 case 0x0fae:
7400 if (i386_record_modrm (&ir))
7401 return -1;
7402 switch(ir.reg)
7403 {
7404 case 0: /* fxsave */
7405 {
7406 uint64_t tmpu64;
7407
7408 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7409 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7410 return -1;
7411 if (record_full_arch_list_add_mem (tmpu64, 512))
7412 return -1;
7413 }
7414 break;
7415
7416 case 1: /* fxrstor */
7417 {
7418 int i;
7419
7420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7421
7422 for (i = I387_MM0_REGNUM (tdep);
7423 i386_mmx_regnum_p (gdbarch, i); i++)
7424 record_full_arch_list_add_reg (ir.regcache, i);
7425
7426 for (i = I387_XMM0_REGNUM (tdep);
7427 i386_xmm_regnum_p (gdbarch, i); i++)
7428 record_full_arch_list_add_reg (ir.regcache, i);
7429
7430 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7431 record_full_arch_list_add_reg (ir.regcache,
7432 I387_MXCSR_REGNUM(tdep));
7433
7434 for (i = I387_ST0_REGNUM (tdep);
7435 i386_fp_regnum_p (gdbarch, i); i++)
7436 record_full_arch_list_add_reg (ir.regcache, i);
7437
7438 for (i = I387_FCTRL_REGNUM (tdep);
7439 i386_fpc_regnum_p (gdbarch, i); i++)
7440 record_full_arch_list_add_reg (ir.regcache, i);
7441 }
7442 break;
7443
7444 case 2: /* ldmxcsr */
7445 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7446 goto no_support;
7447 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7448 break;
7449
7450 case 3: /* stmxcsr */
7451 ir.ot = OT_LONG;
7452 if (i386_record_lea_modrm (&ir))
7453 return -1;
7454 break;
7455
7456 case 5: /* lfence */
7457 case 6: /* mfence */
7458 case 7: /* sfence clflush */
7459 break;
7460
7461 default:
7462 opcode = (opcode << 8) | ir.modrm;
7463 goto no_support;
7464 break;
7465 }
7466 break;
7467
7468 case 0x0fc3: /* movnti */
7469 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7470 if (i386_record_modrm (&ir))
7471 return -1;
7472 if (ir.mod == 3)
7473 goto no_support;
7474 ir.reg |= rex_r;
7475 if (i386_record_lea_modrm (&ir))
7476 return -1;
7477 break;
7478
7479 /* Add prefix to opcode. */
7480 case 0x0f10:
7481 case 0x0f11:
7482 case 0x0f12:
7483 case 0x0f13:
7484 case 0x0f14:
7485 case 0x0f15:
7486 case 0x0f16:
7487 case 0x0f17:
7488 case 0x0f28:
7489 case 0x0f29:
7490 case 0x0f2a:
7491 case 0x0f2b:
7492 case 0x0f2c:
7493 case 0x0f2d:
7494 case 0x0f2e:
7495 case 0x0f2f:
7496 case 0x0f38:
7497 case 0x0f39:
7498 case 0x0f3a:
7499 case 0x0f50:
7500 case 0x0f51:
7501 case 0x0f52:
7502 case 0x0f53:
7503 case 0x0f54:
7504 case 0x0f55:
7505 case 0x0f56:
7506 case 0x0f57:
7507 case 0x0f58:
7508 case 0x0f59:
7509 case 0x0f5a:
7510 case 0x0f5b:
7511 case 0x0f5c:
7512 case 0x0f5d:
7513 case 0x0f5e:
7514 case 0x0f5f:
7515 case 0x0f60:
7516 case 0x0f61:
7517 case 0x0f62:
7518 case 0x0f63:
7519 case 0x0f64:
7520 case 0x0f65:
7521 case 0x0f66:
7522 case 0x0f67:
7523 case 0x0f68:
7524 case 0x0f69:
7525 case 0x0f6a:
7526 case 0x0f6b:
7527 case 0x0f6c:
7528 case 0x0f6d:
7529 case 0x0f6e:
7530 case 0x0f6f:
7531 case 0x0f70:
7532 case 0x0f71:
7533 case 0x0f72:
7534 case 0x0f73:
7535 case 0x0f74:
7536 case 0x0f75:
7537 case 0x0f76:
7538 case 0x0f7c:
7539 case 0x0f7d:
7540 case 0x0f7e:
7541 case 0x0f7f:
7542 case 0x0fb8:
7543 case 0x0fc2:
7544 case 0x0fc4:
7545 case 0x0fc5:
7546 case 0x0fc6:
7547 case 0x0fd0:
7548 case 0x0fd1:
7549 case 0x0fd2:
7550 case 0x0fd3:
7551 case 0x0fd4:
7552 case 0x0fd5:
7553 case 0x0fd6:
7554 case 0x0fd7:
7555 case 0x0fd8:
7556 case 0x0fd9:
7557 case 0x0fda:
7558 case 0x0fdb:
7559 case 0x0fdc:
7560 case 0x0fdd:
7561 case 0x0fde:
7562 case 0x0fdf:
7563 case 0x0fe0:
7564 case 0x0fe1:
7565 case 0x0fe2:
7566 case 0x0fe3:
7567 case 0x0fe4:
7568 case 0x0fe5:
7569 case 0x0fe6:
7570 case 0x0fe7:
7571 case 0x0fe8:
7572 case 0x0fe9:
7573 case 0x0fea:
7574 case 0x0feb:
7575 case 0x0fec:
7576 case 0x0fed:
7577 case 0x0fee:
7578 case 0x0fef:
7579 case 0x0ff0:
7580 case 0x0ff1:
7581 case 0x0ff2:
7582 case 0x0ff3:
7583 case 0x0ff4:
7584 case 0x0ff5:
7585 case 0x0ff6:
7586 case 0x0ff7:
7587 case 0x0ff8:
7588 case 0x0ff9:
7589 case 0x0ffa:
7590 case 0x0ffb:
7591 case 0x0ffc:
7592 case 0x0ffd:
7593 case 0x0ffe:
7594 /* Mask out PREFIX_ADDR. */
7595 switch ((prefixes & ~PREFIX_ADDR))
7596 {
7597 case PREFIX_REPNZ:
7598 opcode |= 0xf20000;
7599 break;
7600 case PREFIX_DATA:
7601 opcode |= 0x660000;
7602 break;
7603 case PREFIX_REPZ:
7604 opcode |= 0xf30000;
7605 break;
7606 }
7607 reswitch_prefix_add:
7608 switch (opcode)
7609 {
7610 case 0x0f38:
7611 case 0x660f38:
7612 case 0xf20f38:
7613 case 0x0f3a:
7614 case 0x660f3a:
7615 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7616 return -1;
7617 ir.addr++;
7618 opcode = (uint32_t) opcode8 | opcode << 8;
7619 goto reswitch_prefix_add;
7620 break;
7621
7622 case 0x0f10: /* movups */
7623 case 0x660f10: /* movupd */
7624 case 0xf30f10: /* movss */
7625 case 0xf20f10: /* movsd */
7626 case 0x0f12: /* movlps */
7627 case 0x660f12: /* movlpd */
7628 case 0xf30f12: /* movsldup */
7629 case 0xf20f12: /* movddup */
7630 case 0x0f14: /* unpcklps */
7631 case 0x660f14: /* unpcklpd */
7632 case 0x0f15: /* unpckhps */
7633 case 0x660f15: /* unpckhpd */
7634 case 0x0f16: /* movhps */
7635 case 0x660f16: /* movhpd */
7636 case 0xf30f16: /* movshdup */
7637 case 0x0f28: /* movaps */
7638 case 0x660f28: /* movapd */
7639 case 0x0f2a: /* cvtpi2ps */
7640 case 0x660f2a: /* cvtpi2pd */
7641 case 0xf30f2a: /* cvtsi2ss */
7642 case 0xf20f2a: /* cvtsi2sd */
7643 case 0x0f2c: /* cvttps2pi */
7644 case 0x660f2c: /* cvttpd2pi */
7645 case 0x0f2d: /* cvtps2pi */
7646 case 0x660f2d: /* cvtpd2pi */
7647 case 0x660f3800: /* pshufb */
7648 case 0x660f3801: /* phaddw */
7649 case 0x660f3802: /* phaddd */
7650 case 0x660f3803: /* phaddsw */
7651 case 0x660f3804: /* pmaddubsw */
7652 case 0x660f3805: /* phsubw */
7653 case 0x660f3806: /* phsubd */
7654 case 0x660f3807: /* phsubsw */
7655 case 0x660f3808: /* psignb */
7656 case 0x660f3809: /* psignw */
7657 case 0x660f380a: /* psignd */
7658 case 0x660f380b: /* pmulhrsw */
7659 case 0x660f3810: /* pblendvb */
7660 case 0x660f3814: /* blendvps */
7661 case 0x660f3815: /* blendvpd */
7662 case 0x660f381c: /* pabsb */
7663 case 0x660f381d: /* pabsw */
7664 case 0x660f381e: /* pabsd */
7665 case 0x660f3820: /* pmovsxbw */
7666 case 0x660f3821: /* pmovsxbd */
7667 case 0x660f3822: /* pmovsxbq */
7668 case 0x660f3823: /* pmovsxwd */
7669 case 0x660f3824: /* pmovsxwq */
7670 case 0x660f3825: /* pmovsxdq */
7671 case 0x660f3828: /* pmuldq */
7672 case 0x660f3829: /* pcmpeqq */
7673 case 0x660f382a: /* movntdqa */
7674 case 0x660f3a08: /* roundps */
7675 case 0x660f3a09: /* roundpd */
7676 case 0x660f3a0a: /* roundss */
7677 case 0x660f3a0b: /* roundsd */
7678 case 0x660f3a0c: /* blendps */
7679 case 0x660f3a0d: /* blendpd */
7680 case 0x660f3a0e: /* pblendw */
7681 case 0x660f3a0f: /* palignr */
7682 case 0x660f3a20: /* pinsrb */
7683 case 0x660f3a21: /* insertps */
7684 case 0x660f3a22: /* pinsrd pinsrq */
7685 case 0x660f3a40: /* dpps */
7686 case 0x660f3a41: /* dppd */
7687 case 0x660f3a42: /* mpsadbw */
7688 case 0x660f3a60: /* pcmpestrm */
7689 case 0x660f3a61: /* pcmpestri */
7690 case 0x660f3a62: /* pcmpistrm */
7691 case 0x660f3a63: /* pcmpistri */
7692 case 0x0f51: /* sqrtps */
7693 case 0x660f51: /* sqrtpd */
7694 case 0xf20f51: /* sqrtsd */
7695 case 0xf30f51: /* sqrtss */
7696 case 0x0f52: /* rsqrtps */
7697 case 0xf30f52: /* rsqrtss */
7698 case 0x0f53: /* rcpps */
7699 case 0xf30f53: /* rcpss */
7700 case 0x0f54: /* andps */
7701 case 0x660f54: /* andpd */
7702 case 0x0f55: /* andnps */
7703 case 0x660f55: /* andnpd */
7704 case 0x0f56: /* orps */
7705 case 0x660f56: /* orpd */
7706 case 0x0f57: /* xorps */
7707 case 0x660f57: /* xorpd */
7708 case 0x0f58: /* addps */
7709 case 0x660f58: /* addpd */
7710 case 0xf20f58: /* addsd */
7711 case 0xf30f58: /* addss */
7712 case 0x0f59: /* mulps */
7713 case 0x660f59: /* mulpd */
7714 case 0xf20f59: /* mulsd */
7715 case 0xf30f59: /* mulss */
7716 case 0x0f5a: /* cvtps2pd */
7717 case 0x660f5a: /* cvtpd2ps */
7718 case 0xf20f5a: /* cvtsd2ss */
7719 case 0xf30f5a: /* cvtss2sd */
7720 case 0x0f5b: /* cvtdq2ps */
7721 case 0x660f5b: /* cvtps2dq */
7722 case 0xf30f5b: /* cvttps2dq */
7723 case 0x0f5c: /* subps */
7724 case 0x660f5c: /* subpd */
7725 case 0xf20f5c: /* subsd */
7726 case 0xf30f5c: /* subss */
7727 case 0x0f5d: /* minps */
7728 case 0x660f5d: /* minpd */
7729 case 0xf20f5d: /* minsd */
7730 case 0xf30f5d: /* minss */
7731 case 0x0f5e: /* divps */
7732 case 0x660f5e: /* divpd */
7733 case 0xf20f5e: /* divsd */
7734 case 0xf30f5e: /* divss */
7735 case 0x0f5f: /* maxps */
7736 case 0x660f5f: /* maxpd */
7737 case 0xf20f5f: /* maxsd */
7738 case 0xf30f5f: /* maxss */
7739 case 0x660f60: /* punpcklbw */
7740 case 0x660f61: /* punpcklwd */
7741 case 0x660f62: /* punpckldq */
7742 case 0x660f63: /* packsswb */
7743 case 0x660f64: /* pcmpgtb */
7744 case 0x660f65: /* pcmpgtw */
7745 case 0x660f66: /* pcmpgtd */
7746 case 0x660f67: /* packuswb */
7747 case 0x660f68: /* punpckhbw */
7748 case 0x660f69: /* punpckhwd */
7749 case 0x660f6a: /* punpckhdq */
7750 case 0x660f6b: /* packssdw */
7751 case 0x660f6c: /* punpcklqdq */
7752 case 0x660f6d: /* punpckhqdq */
7753 case 0x660f6e: /* movd */
7754 case 0x660f6f: /* movdqa */
7755 case 0xf30f6f: /* movdqu */
7756 case 0x660f70: /* pshufd */
7757 case 0xf20f70: /* pshuflw */
7758 case 0xf30f70: /* pshufhw */
7759 case 0x660f74: /* pcmpeqb */
7760 case 0x660f75: /* pcmpeqw */
7761 case 0x660f76: /* pcmpeqd */
7762 case 0x660f7c: /* haddpd */
7763 case 0xf20f7c: /* haddps */
7764 case 0x660f7d: /* hsubpd */
7765 case 0xf20f7d: /* hsubps */
7766 case 0xf30f7e: /* movq */
7767 case 0x0fc2: /* cmpps */
7768 case 0x660fc2: /* cmppd */
7769 case 0xf20fc2: /* cmpsd */
7770 case 0xf30fc2: /* cmpss */
7771 case 0x660fc4: /* pinsrw */
7772 case 0x0fc6: /* shufps */
7773 case 0x660fc6: /* shufpd */
7774 case 0x660fd0: /* addsubpd */
7775 case 0xf20fd0: /* addsubps */
7776 case 0x660fd1: /* psrlw */
7777 case 0x660fd2: /* psrld */
7778 case 0x660fd3: /* psrlq */
7779 case 0x660fd4: /* paddq */
7780 case 0x660fd5: /* pmullw */
7781 case 0xf30fd6: /* movq2dq */
7782 case 0x660fd8: /* psubusb */
7783 case 0x660fd9: /* psubusw */
7784 case 0x660fda: /* pminub */
7785 case 0x660fdb: /* pand */
7786 case 0x660fdc: /* paddusb */
7787 case 0x660fdd: /* paddusw */
7788 case 0x660fde: /* pmaxub */
7789 case 0x660fdf: /* pandn */
7790 case 0x660fe0: /* pavgb */
7791 case 0x660fe1: /* psraw */
7792 case 0x660fe2: /* psrad */
7793 case 0x660fe3: /* pavgw */
7794 case 0x660fe4: /* pmulhuw */
7795 case 0x660fe5: /* pmulhw */
7796 case 0x660fe6: /* cvttpd2dq */
7797 case 0xf20fe6: /* cvtpd2dq */
7798 case 0xf30fe6: /* cvtdq2pd */
7799 case 0x660fe8: /* psubsb */
7800 case 0x660fe9: /* psubsw */
7801 case 0x660fea: /* pminsw */
7802 case 0x660feb: /* por */
7803 case 0x660fec: /* paddsb */
7804 case 0x660fed: /* paddsw */
7805 case 0x660fee: /* pmaxsw */
7806 case 0x660fef: /* pxor */
7807 case 0xf20ff0: /* lddqu */
7808 case 0x660ff1: /* psllw */
7809 case 0x660ff2: /* pslld */
7810 case 0x660ff3: /* psllq */
7811 case 0x660ff4: /* pmuludq */
7812 case 0x660ff5: /* pmaddwd */
7813 case 0x660ff6: /* psadbw */
7814 case 0x660ff8: /* psubb */
7815 case 0x660ff9: /* psubw */
7816 case 0x660ffa: /* psubd */
7817 case 0x660ffb: /* psubq */
7818 case 0x660ffc: /* paddb */
7819 case 0x660ffd: /* paddw */
7820 case 0x660ffe: /* paddd */
7821 if (i386_record_modrm (&ir))
7822 return -1;
7823 ir.reg |= rex_r;
7824 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7825 goto no_support;
7826 record_full_arch_list_add_reg (ir.regcache,
7827 I387_XMM0_REGNUM (tdep) + ir.reg);
7828 if ((opcode & 0xfffffffc) == 0x660f3a60)
7829 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7830 break;
7831
7832 case 0x0f11: /* movups */
7833 case 0x660f11: /* movupd */
7834 case 0xf30f11: /* movss */
7835 case 0xf20f11: /* movsd */
7836 case 0x0f13: /* movlps */
7837 case 0x660f13: /* movlpd */
7838 case 0x0f17: /* movhps */
7839 case 0x660f17: /* movhpd */
7840 case 0x0f29: /* movaps */
7841 case 0x660f29: /* movapd */
7842 case 0x660f3a14: /* pextrb */
7843 case 0x660f3a15: /* pextrw */
7844 case 0x660f3a16: /* pextrd pextrq */
7845 case 0x660f3a17: /* extractps */
7846 case 0x660f7f: /* movdqa */
7847 case 0xf30f7f: /* movdqu */
7848 if (i386_record_modrm (&ir))
7849 return -1;
7850 if (ir.mod == 3)
7851 {
7852 if (opcode == 0x0f13 || opcode == 0x660f13
7853 || opcode == 0x0f17 || opcode == 0x660f17)
7854 goto no_support;
7855 ir.rm |= ir.rex_b;
7856 if (!i386_xmm_regnum_p (gdbarch,
7857 I387_XMM0_REGNUM (tdep) + ir.rm))
7858 goto no_support;
7859 record_full_arch_list_add_reg (ir.regcache,
7860 I387_XMM0_REGNUM (tdep) + ir.rm);
7861 }
7862 else
7863 {
7864 switch (opcode)
7865 {
7866 case 0x660f3a14:
7867 ir.ot = OT_BYTE;
7868 break;
7869 case 0x660f3a15:
7870 ir.ot = OT_WORD;
7871 break;
7872 case 0x660f3a16:
7873 ir.ot = OT_LONG;
7874 break;
7875 case 0x660f3a17:
7876 ir.ot = OT_QUAD;
7877 break;
7878 default:
7879 ir.ot = OT_DQUAD;
7880 break;
7881 }
7882 if (i386_record_lea_modrm (&ir))
7883 return -1;
7884 }
7885 break;
7886
7887 case 0x0f2b: /* movntps */
7888 case 0x660f2b: /* movntpd */
7889 case 0x0fe7: /* movntq */
7890 case 0x660fe7: /* movntdq */
7891 if (ir.mod == 3)
7892 goto no_support;
7893 if (opcode == 0x0fe7)
7894 ir.ot = OT_QUAD;
7895 else
7896 ir.ot = OT_DQUAD;
7897 if (i386_record_lea_modrm (&ir))
7898 return -1;
7899 break;
7900
7901 case 0xf30f2c: /* cvttss2si */
7902 case 0xf20f2c: /* cvttsd2si */
7903 case 0xf30f2d: /* cvtss2si */
7904 case 0xf20f2d: /* cvtsd2si */
7905 case 0xf20f38f0: /* crc32 */
7906 case 0xf20f38f1: /* crc32 */
7907 case 0x0f50: /* movmskps */
7908 case 0x660f50: /* movmskpd */
7909 case 0x0fc5: /* pextrw */
7910 case 0x660fc5: /* pextrw */
7911 case 0x0fd7: /* pmovmskb */
7912 case 0x660fd7: /* pmovmskb */
7913 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7914 break;
7915
7916 case 0x0f3800: /* pshufb */
7917 case 0x0f3801: /* phaddw */
7918 case 0x0f3802: /* phaddd */
7919 case 0x0f3803: /* phaddsw */
7920 case 0x0f3804: /* pmaddubsw */
7921 case 0x0f3805: /* phsubw */
7922 case 0x0f3806: /* phsubd */
7923 case 0x0f3807: /* phsubsw */
7924 case 0x0f3808: /* psignb */
7925 case 0x0f3809: /* psignw */
7926 case 0x0f380a: /* psignd */
7927 case 0x0f380b: /* pmulhrsw */
7928 case 0x0f381c: /* pabsb */
7929 case 0x0f381d: /* pabsw */
7930 case 0x0f381e: /* pabsd */
7931 case 0x0f382b: /* packusdw */
7932 case 0x0f3830: /* pmovzxbw */
7933 case 0x0f3831: /* pmovzxbd */
7934 case 0x0f3832: /* pmovzxbq */
7935 case 0x0f3833: /* pmovzxwd */
7936 case 0x0f3834: /* pmovzxwq */
7937 case 0x0f3835: /* pmovzxdq */
7938 case 0x0f3837: /* pcmpgtq */
7939 case 0x0f3838: /* pminsb */
7940 case 0x0f3839: /* pminsd */
7941 case 0x0f383a: /* pminuw */
7942 case 0x0f383b: /* pminud */
7943 case 0x0f383c: /* pmaxsb */
7944 case 0x0f383d: /* pmaxsd */
7945 case 0x0f383e: /* pmaxuw */
7946 case 0x0f383f: /* pmaxud */
7947 case 0x0f3840: /* pmulld */
7948 case 0x0f3841: /* phminposuw */
7949 case 0x0f3a0f: /* palignr */
7950 case 0x0f60: /* punpcklbw */
7951 case 0x0f61: /* punpcklwd */
7952 case 0x0f62: /* punpckldq */
7953 case 0x0f63: /* packsswb */
7954 case 0x0f64: /* pcmpgtb */
7955 case 0x0f65: /* pcmpgtw */
7956 case 0x0f66: /* pcmpgtd */
7957 case 0x0f67: /* packuswb */
7958 case 0x0f68: /* punpckhbw */
7959 case 0x0f69: /* punpckhwd */
7960 case 0x0f6a: /* punpckhdq */
7961 case 0x0f6b: /* packssdw */
7962 case 0x0f6e: /* movd */
7963 case 0x0f6f: /* movq */
7964 case 0x0f70: /* pshufw */
7965 case 0x0f74: /* pcmpeqb */
7966 case 0x0f75: /* pcmpeqw */
7967 case 0x0f76: /* pcmpeqd */
7968 case 0x0fc4: /* pinsrw */
7969 case 0x0fd1: /* psrlw */
7970 case 0x0fd2: /* psrld */
7971 case 0x0fd3: /* psrlq */
7972 case 0x0fd4: /* paddq */
7973 case 0x0fd5: /* pmullw */
7974 case 0xf20fd6: /* movdq2q */
7975 case 0x0fd8: /* psubusb */
7976 case 0x0fd9: /* psubusw */
7977 case 0x0fda: /* pminub */
7978 case 0x0fdb: /* pand */
7979 case 0x0fdc: /* paddusb */
7980 case 0x0fdd: /* paddusw */
7981 case 0x0fde: /* pmaxub */
7982 case 0x0fdf: /* pandn */
7983 case 0x0fe0: /* pavgb */
7984 case 0x0fe1: /* psraw */
7985 case 0x0fe2: /* psrad */
7986 case 0x0fe3: /* pavgw */
7987 case 0x0fe4: /* pmulhuw */
7988 case 0x0fe5: /* pmulhw */
7989 case 0x0fe8: /* psubsb */
7990 case 0x0fe9: /* psubsw */
7991 case 0x0fea: /* pminsw */
7992 case 0x0feb: /* por */
7993 case 0x0fec: /* paddsb */
7994 case 0x0fed: /* paddsw */
7995 case 0x0fee: /* pmaxsw */
7996 case 0x0fef: /* pxor */
7997 case 0x0ff1: /* psllw */
7998 case 0x0ff2: /* pslld */
7999 case 0x0ff3: /* psllq */
8000 case 0x0ff4: /* pmuludq */
8001 case 0x0ff5: /* pmaddwd */
8002 case 0x0ff6: /* psadbw */
8003 case 0x0ff8: /* psubb */
8004 case 0x0ff9: /* psubw */
8005 case 0x0ffa: /* psubd */
8006 case 0x0ffb: /* psubq */
8007 case 0x0ffc: /* paddb */
8008 case 0x0ffd: /* paddw */
8009 case 0x0ffe: /* paddd */
8010 if (i386_record_modrm (&ir))
8011 return -1;
8012 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
8013 goto no_support;
8014 record_full_arch_list_add_reg (ir.regcache,
8015 I387_MM0_REGNUM (tdep) + ir.reg);
8016 break;
8017
8018 case 0x0f71: /* psllw */
8019 case 0x0f72: /* pslld */
8020 case 0x0f73: /* psllq */
8021 if (i386_record_modrm (&ir))
8022 return -1;
8023 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8024 goto no_support;
8025 record_full_arch_list_add_reg (ir.regcache,
8026 I387_MM0_REGNUM (tdep) + ir.rm);
8027 break;
8028
8029 case 0x660f71: /* psllw */
8030 case 0x660f72: /* pslld */
8031 case 0x660f73: /* psllq */
8032 if (i386_record_modrm (&ir))
8033 return -1;
8034 ir.rm |= ir.rex_b;
8035 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
8036 goto no_support;
8037 record_full_arch_list_add_reg (ir.regcache,
8038 I387_XMM0_REGNUM (tdep) + ir.rm);
8039 break;
8040
8041 case 0x0f7e: /* movd */
8042 case 0x660f7e: /* movd */
8043 if (i386_record_modrm (&ir))
8044 return -1;
8045 if (ir.mod == 3)
8046 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8047 else
8048 {
8049 if (ir.dflag == 2)
8050 ir.ot = OT_QUAD;
8051 else
8052 ir.ot = OT_LONG;
8053 if (i386_record_lea_modrm (&ir))
8054 return -1;
8055 }
8056 break;
8057
8058 case 0x0f7f: /* movq */
8059 if (i386_record_modrm (&ir))
8060 return -1;
8061 if (ir.mod == 3)
8062 {
8063 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8064 goto no_support;
8065 record_full_arch_list_add_reg (ir.regcache,
8066 I387_MM0_REGNUM (tdep) + ir.rm);
8067 }
8068 else
8069 {
8070 ir.ot = OT_QUAD;
8071 if (i386_record_lea_modrm (&ir))
8072 return -1;
8073 }
8074 break;
8075
8076 case 0xf30fb8: /* popcnt */
8077 if (i386_record_modrm (&ir))
8078 return -1;
8079 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8080 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8081 break;
8082
8083 case 0x660fd6: /* movq */
8084 if (i386_record_modrm (&ir))
8085 return -1;
8086 if (ir.mod == 3)
8087 {
8088 ir.rm |= ir.rex_b;
8089 if (!i386_xmm_regnum_p (gdbarch,
8090 I387_XMM0_REGNUM (tdep) + ir.rm))
8091 goto no_support;
8092 record_full_arch_list_add_reg (ir.regcache,
8093 I387_XMM0_REGNUM (tdep) + ir.rm);
8094 }
8095 else
8096 {
8097 ir.ot = OT_QUAD;
8098 if (i386_record_lea_modrm (&ir))
8099 return -1;
8100 }
8101 break;
8102
8103 case 0x660f3817: /* ptest */
8104 case 0x0f2e: /* ucomiss */
8105 case 0x660f2e: /* ucomisd */
8106 case 0x0f2f: /* comiss */
8107 case 0x660f2f: /* comisd */
8108 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8109 break;
8110
8111 case 0x0ff7: /* maskmovq */
8112 regcache_raw_read_unsigned (ir.regcache,
8113 ir.regmap[X86_RECORD_REDI_REGNUM],
8114 &addr);
8115 if (record_full_arch_list_add_mem (addr, 64))
8116 return -1;
8117 break;
8118
8119 case 0x660ff7: /* maskmovdqu */
8120 regcache_raw_read_unsigned (ir.regcache,
8121 ir.regmap[X86_RECORD_REDI_REGNUM],
8122 &addr);
8123 if (record_full_arch_list_add_mem (addr, 128))
8124 return -1;
8125 break;
8126
8127 default:
8128 goto no_support;
8129 break;
8130 }
8131 break;
8132
8133 default:
8134 goto no_support;
8135 break;
8136 }
8137
8138 /* In the future, maybe still need to deal with need_dasm. */
8139 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8140 if (record_full_arch_list_add_end ())
8141 return -1;
8142
8143 return 0;
8144
8145 no_support:
8146 gdb_printf (gdb_stderr,
8147 _("Process record does not support instruction 0x%02x "
8148 "at address %s.\n"),
8149 (unsigned int) (opcode),
8150 paddress (gdbarch, ir.orig_addr));
8151 return -1;
8152 }
8153
8154 static const int i386_record_regmap[] =
8155 {
8156 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8157 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8158 0, 0, 0, 0, 0, 0, 0, 0,
8159 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8160 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8161 };
8162
8163 /* Check that the given address appears suitable for a fast
8164 tracepoint, which on x86-64 means that we need an instruction of at
8165 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8166 jump and not have to worry about program jumps to an address in the
8167 middle of the tracepoint jump. On x86, it may be possible to use
8168 4-byte jumps with a 2-byte offset to a trampoline located in the
8169 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8170 of instruction to replace, and 0 if not, plus an explanatory
8171 string. */
8172
8173 static int
8174 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8175 std::string *msg)
8176 {
8177 int len, jumplen;
8178
8179 /* Ask the target for the minimum instruction length supported. */
8180 jumplen = target_get_min_fast_tracepoint_insn_len ();
8181
8182 if (jumplen < 0)
8183 {
8184 /* If the target does not support the get_min_fast_tracepoint_insn_len
8185 operation, assume that fast tracepoints will always be implemented
8186 using 4-byte relative jumps on both x86 and x86-64. */
8187 jumplen = 5;
8188 }
8189 else if (jumplen == 0)
8190 {
8191 /* If the target does support get_min_fast_tracepoint_insn_len but
8192 returns zero, then the IPA has not loaded yet. In this case,
8193 we optimistically assume that truncated 2-byte relative jumps
8194 will be available on x86, and compensate later if this assumption
8195 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8196 jumps will always be used. */
8197 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8198 }
8199
8200 /* Check for fit. */
8201 len = gdb_insn_length (gdbarch, addr);
8202
8203 if (len < jumplen)
8204 {
8205 /* Return a bit of target-specific detail to add to the caller's
8206 generic failure message. */
8207 if (msg)
8208 *msg = string_printf (_("; instruction is only %d bytes long, "
8209 "need at least %d bytes for the jump"),
8210 len, jumplen);
8211 return 0;
8212 }
8213 else
8214 {
8215 if (msg)
8216 msg->clear ();
8217 return 1;
8218 }
8219 }
8220
8221 /* Return a floating-point format for a floating-point variable of
8222 length LEN in bits. If non-NULL, NAME is the name of its type.
8223 If no suitable type is found, return NULL. */
8224
8225 static const struct floatformat **
8226 i386_floatformat_for_type (struct gdbarch *gdbarch,
8227 const char *name, int len)
8228 {
8229 if (len == 128 && name)
8230 if (strcmp (name, "__float128") == 0
8231 || strcmp (name, "_Float128") == 0
8232 || strcmp (name, "complex _Float128") == 0
8233 || strcmp (name, "complex(kind=16)") == 0
8234 || strcmp (name, "complex*32") == 0
8235 || strcmp (name, "COMPLEX*32") == 0
8236 || strcmp (name, "quad complex") == 0
8237 || strcmp (name, "real(kind=16)") == 0
8238 || strcmp (name, "real*16") == 0
8239 || strcmp (name, "REAL*16") == 0)
8240 return floatformats_ieee_quad;
8241
8242 return default_floatformat_for_type (gdbarch, name, len);
8243 }
8244
8245 static int
8246 i386_validate_tdesc_p (i386_gdbarch_tdep *tdep,
8247 struct tdesc_arch_data *tdesc_data)
8248 {
8249 const struct target_desc *tdesc = tdep->tdesc;
8250 const struct tdesc_feature *feature_core;
8251
8252 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8253 *feature_avx512, *feature_pkeys, *feature_segments;
8254 int i, num_regs, valid_p;
8255
8256 if (! tdesc_has_registers (tdesc))
8257 return 0;
8258
8259 /* Get core registers. */
8260 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8261 if (feature_core == NULL)
8262 return 0;
8263
8264 /* Get SSE registers. */
8265 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8266
8267 /* Try AVX registers. */
8268 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8269
8270 /* Try MPX registers. */
8271 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8272
8273 /* Try AVX512 registers. */
8274 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8275
8276 /* Try segment base registers. */
8277 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8278
8279 /* Try PKEYS */
8280 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8281
8282 valid_p = 1;
8283
8284 /* The XCR0 bits. */
8285 if (feature_avx512)
8286 {
8287 /* AVX512 register description requires AVX register description. */
8288 if (!feature_avx)
8289 return 0;
8290
8291 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8292
8293 /* It may have been set by OSABI initialization function. */
8294 if (tdep->k0_regnum < 0)
8295 {
8296 tdep->k_register_names = i386_k_names;
8297 tdep->k0_regnum = I386_K0_REGNUM;
8298 }
8299
8300 for (i = 0; i < I387_NUM_K_REGS; i++)
8301 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8302 tdep->k0_regnum + i,
8303 i386_k_names[i]);
8304
8305 if (tdep->num_zmm_regs == 0)
8306 {
8307 tdep->zmmh_register_names = i386_zmmh_names;
8308 tdep->num_zmm_regs = 8;
8309 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8310 }
8311
8312 for (i = 0; i < tdep->num_zmm_regs; i++)
8313 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8314 tdep->zmm0h_regnum + i,
8315 tdep->zmmh_register_names[i]);
8316
8317 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8318 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8319 tdep->xmm16_regnum + i,
8320 tdep->xmm_avx512_register_names[i]);
8321
8322 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8323 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8324 tdep->ymm16h_regnum + i,
8325 tdep->ymm16h_register_names[i]);
8326 }
8327 if (feature_avx)
8328 {
8329 /* AVX register description requires SSE register description. */
8330 if (!feature_sse)
8331 return 0;
8332
8333 if (!feature_avx512)
8334 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8335
8336 /* It may have been set by OSABI initialization function. */
8337 if (tdep->num_ymm_regs == 0)
8338 {
8339 tdep->ymmh_register_names = i386_ymmh_names;
8340 tdep->num_ymm_regs = 8;
8341 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8342 }
8343
8344 for (i = 0; i < tdep->num_ymm_regs; i++)
8345 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8346 tdep->ymm0h_regnum + i,
8347 tdep->ymmh_register_names[i]);
8348 }
8349 else if (feature_sse)
8350 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8351 else
8352 {
8353 tdep->xcr0 = X86_XSTATE_X87_MASK;
8354 tdep->num_xmm_regs = 0;
8355 }
8356
8357 num_regs = tdep->num_core_regs;
8358 for (i = 0; i < num_regs; i++)
8359 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8360 tdep->register_names[i]);
8361
8362 if (feature_sse)
8363 {
8364 /* Need to include %mxcsr, so add one. */
8365 num_regs += tdep->num_xmm_regs + 1;
8366 for (; i < num_regs; i++)
8367 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8368 tdep->register_names[i]);
8369 }
8370
8371 if (feature_mpx)
8372 {
8373 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8374
8375 if (tdep->bnd0r_regnum < 0)
8376 {
8377 tdep->mpx_register_names = i386_mpx_names;
8378 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8379 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8380 }
8381
8382 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8383 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8384 I387_BND0R_REGNUM (tdep) + i,
8385 tdep->mpx_register_names[i]);
8386 }
8387
8388 if (feature_segments)
8389 {
8390 if (tdep->fsbase_regnum < 0)
8391 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8392 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8393 tdep->fsbase_regnum, "fs_base");
8394 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8395 tdep->fsbase_regnum + 1, "gs_base");
8396 }
8397
8398 if (feature_pkeys)
8399 {
8400 tdep->xcr0 |= X86_XSTATE_PKRU;
8401 if (tdep->pkru_regnum < 0)
8402 {
8403 tdep->pkeys_register_names = i386_pkeys_names;
8404 tdep->pkru_regnum = I386_PKRU_REGNUM;
8405 tdep->num_pkeys_regs = 1;
8406 }
8407
8408 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8409 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8410 I387_PKRU_REGNUM (tdep) + i,
8411 tdep->pkeys_register_names[i]);
8412 }
8413
8414 return valid_p;
8415 }
8416
8417 \f
8418
8419 /* Implement the type_align gdbarch function. */
8420
8421 static ULONGEST
8422 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8423 {
8424 type = check_typedef (type);
8425
8426 if (gdbarch_ptr_bit (gdbarch) == 32)
8427 {
8428 if ((type->code () == TYPE_CODE_INT
8429 || type->code () == TYPE_CODE_FLT)
8430 && type->length () > 4)
8431 return 4;
8432
8433 /* Handle x86's funny long double. */
8434 if (type->code () == TYPE_CODE_FLT
8435 && gdbarch_long_double_bit (gdbarch) == type->length () * 8)
8436 return 4;
8437 }
8438
8439 return 0;
8440 }
8441
8442 \f
8443 /* Note: This is called for both i386 and amd64. */
8444
8445 static struct gdbarch *
8446 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8447 {
8448 struct gdbarch *gdbarch;
8449 const struct target_desc *tdesc;
8450 int mm0_regnum;
8451 int ymm0_regnum;
8452 int bnd0_regnum;
8453 int num_bnd_cooked;
8454
8455 /* If there is already a candidate, use it. */
8456 arches = gdbarch_list_lookup_by_info (arches, &info);
8457 if (arches != NULL)
8458 return arches->gdbarch;
8459
8460 /* Allocate space for the new architecture. Assume i386 for now. */
8461 i386_gdbarch_tdep *tdep = new i386_gdbarch_tdep;
8462 gdbarch = gdbarch_alloc (&info, tdep);
8463
8464 /* General-purpose registers. */
8465 tdep->gregset_reg_offset = NULL;
8466 tdep->gregset_num_regs = I386_NUM_GREGS;
8467 tdep->sizeof_gregset = 0;
8468
8469 /* Floating-point registers. */
8470 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8471 tdep->fpregset = &i386_fpregset;
8472
8473 /* The default settings include the FPU registers, the MMX registers
8474 and the SSE registers. This can be overridden for a specific ABI
8475 by adjusting the members `st0_regnum', `mm0_regnum' and
8476 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8477 will show up in the output of "info all-registers". */
8478
8479 tdep->st0_regnum = I386_ST0_REGNUM;
8480
8481 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8482 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8483
8484 tdep->jb_pc_offset = -1;
8485 tdep->struct_return = pcc_struct_return;
8486 tdep->sigtramp_start = 0;
8487 tdep->sigtramp_end = 0;
8488 tdep->sigtramp_p = i386_sigtramp_p;
8489 tdep->sigcontext_addr = NULL;
8490 tdep->sc_reg_offset = NULL;
8491 tdep->sc_pc_offset = -1;
8492 tdep->sc_sp_offset = -1;
8493
8494 tdep->xsave_xcr0_offset = -1;
8495
8496 tdep->record_regmap = i386_record_regmap;
8497
8498 set_gdbarch_type_align (gdbarch, i386_type_align);
8499
8500 /* The format used for `long double' on almost all i386 targets is
8501 the i387 extended floating-point format. In fact, of all targets
8502 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8503 on having a `long double' that's not `long' at all. */
8504 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8505
8506 /* Although the i387 extended floating-point has only 80 significant
8507 bits, a `long double' actually takes up 96, probably to enforce
8508 alignment. */
8509 set_gdbarch_long_double_bit (gdbarch, 96);
8510
8511 /* Support of bfloat16 format. */
8512 set_gdbarch_bfloat16_format (gdbarch, floatformats_bfloat16);
8513
8514 /* Support for floating-point data type variants. */
8515 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8516
8517 /* Register numbers of various important registers. */
8518 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8519 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8520 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8521 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8522
8523 /* NOTE: kettenis/20040418: GCC does have two possible register
8524 numbering schemes on the i386: dbx and SVR4. These schemes
8525 differ in how they number %ebp, %esp, %eflags, and the
8526 floating-point registers, and are implemented by the arrays
8527 dbx_register_map[] and svr4_dbx_register_map in
8528 gcc/config/i386.c. GCC also defines a third numbering scheme in
8529 gcc/config/i386.c, which it designates as the "default" register
8530 map used in 64bit mode. This last register numbering scheme is
8531 implemented in dbx64_register_map, and is used for AMD64; see
8532 amd64-tdep.c.
8533
8534 Currently, each GCC i386 target always uses the same register
8535 numbering scheme across all its supported debugging formats
8536 i.e. SDB (COFF), stabs and DWARF 2. This is because
8537 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8538 DBX_REGISTER_NUMBER macro which is defined by each target's
8539 respective config header in a manner independent of the requested
8540 output debugging format.
8541
8542 This does not match the arrangement below, which presumes that
8543 the SDB and stabs numbering schemes differ from the DWARF and
8544 DWARF 2 ones. The reason for this arrangement is that it is
8545 likely to get the numbering scheme for the target's
8546 default/native debug format right. For targets where GCC is the
8547 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8548 targets where the native toolchain uses a different numbering
8549 scheme for a particular debug format (stabs-in-ELF on Solaris)
8550 the defaults below will have to be overridden, like
8551 i386_elf_init_abi() does. */
8552
8553 /* Use the dbx register numbering scheme for stabs and COFF. */
8554 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8555 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8556
8557 /* Use the SVR4 register numbering scheme for DWARF 2. */
8558 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8559
8560 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8561 be in use on any of the supported i386 targets. */
8562
8563 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8564
8565 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8566
8567 /* Call dummy code. */
8568 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8569 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8570 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8571 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8572
8573 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8574 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8575 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8576
8577 set_gdbarch_return_value (gdbarch, i386_return_value);
8578
8579 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8580
8581 /* Stack grows downward. */
8582 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8583
8584 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8585 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8586
8587 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8588 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8589
8590 set_gdbarch_frame_args_skip (gdbarch, 8);
8591
8592 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8593
8594 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8595
8596 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8597
8598 /* Add the i386 register groups. */
8599 i386_add_reggroups (gdbarch);
8600 tdep->register_reggroup_p = i386_register_reggroup_p;
8601
8602 /* Helper for function argument information. */
8603 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8604
8605 /* Hook the function epilogue frame unwinder. This unwinder is
8606 appended to the list first, so that it supercedes the DWARF
8607 unwinder in function epilogues (where the DWARF unwinder
8608 currently fails). */
8609 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8610
8611 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8612 to the list before the prologue-based unwinders, so that DWARF
8613 CFI info will be used if it is available. */
8614 dwarf2_append_unwinders (gdbarch);
8615
8616 frame_base_set_default (gdbarch, &i386_frame_base);
8617
8618 /* Pseudo registers may be changed by amd64_init_abi. */
8619 set_gdbarch_pseudo_register_read_value (gdbarch,
8620 i386_pseudo_register_read_value);
8621 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8622 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8623 i386_ax_pseudo_register_collect);
8624
8625 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8626 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8627
8628 /* Override the normal target description method to make the AVX
8629 upper halves anonymous. */
8630 set_gdbarch_register_name (gdbarch, i386_register_name);
8631
8632 /* Even though the default ABI only includes general-purpose registers,
8633 floating-point registers and the SSE registers, we have to leave a
8634 gap for the upper AVX, MPX and AVX512 registers. */
8635 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
8636
8637 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8638
8639 /* Get the x86 target description from INFO. */
8640 tdesc = info.target_desc;
8641 if (! tdesc_has_registers (tdesc))
8642 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
8643 tdep->tdesc = tdesc;
8644
8645 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8646 tdep->register_names = i386_register_names;
8647
8648 /* No upper YMM registers. */
8649 tdep->ymmh_register_names = NULL;
8650 tdep->ymm0h_regnum = -1;
8651
8652 /* No upper ZMM registers. */
8653 tdep->zmmh_register_names = NULL;
8654 tdep->zmm0h_regnum = -1;
8655
8656 /* No high XMM registers. */
8657 tdep->xmm_avx512_register_names = NULL;
8658 tdep->xmm16_regnum = -1;
8659
8660 /* No upper YMM16-31 registers. */
8661 tdep->ymm16h_register_names = NULL;
8662 tdep->ymm16h_regnum = -1;
8663
8664 tdep->num_byte_regs = 8;
8665 tdep->num_word_regs = 8;
8666 tdep->num_dword_regs = 0;
8667 tdep->num_mmx_regs = 8;
8668 tdep->num_ymm_regs = 0;
8669
8670 /* No MPX registers. */
8671 tdep->bnd0r_regnum = -1;
8672 tdep->bndcfgu_regnum = -1;
8673
8674 /* No AVX512 registers. */
8675 tdep->k0_regnum = -1;
8676 tdep->num_zmm_regs = 0;
8677 tdep->num_ymm_avx512_regs = 0;
8678 tdep->num_xmm_avx512_regs = 0;
8679
8680 /* No PKEYS registers */
8681 tdep->pkru_regnum = -1;
8682 tdep->num_pkeys_regs = 0;
8683
8684 /* No segment base registers. */
8685 tdep->fsbase_regnum = -1;
8686
8687 tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();
8688
8689 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8690
8691 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8692
8693 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8694 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8695 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8696
8697 /* Hook in ABI-specific overrides, if they have been registered.
8698 Note: If INFO specifies a 64 bit arch, this is where we turn
8699 a 32-bit i386 into a 64-bit amd64. */
8700 info.tdesc_data = tdesc_data.get ();
8701 gdbarch_init_osabi (info, gdbarch);
8702
8703 if (!i386_validate_tdesc_p (tdep, tdesc_data.get ()))
8704 {
8705 delete tdep;
8706 gdbarch_free (gdbarch);
8707 return NULL;
8708 }
8709
8710 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8711
8712 /* Wire in pseudo registers. Number of pseudo registers may be
8713 changed. */
8714 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8715 + tdep->num_word_regs
8716 + tdep->num_dword_regs
8717 + tdep->num_mmx_regs
8718 + tdep->num_ymm_regs
8719 + num_bnd_cooked
8720 + tdep->num_ymm_avx512_regs
8721 + tdep->num_zmm_regs));
8722
8723 /* Target description may be changed. */
8724 tdesc = tdep->tdesc;
8725
8726 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
8727
8728 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8729 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8730
8731 /* Make %al the first pseudo-register. */
8732 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8733 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8734
8735 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8736 if (tdep->num_dword_regs)
8737 {
8738 /* Support dword pseudo-register if it hasn't been disabled. */
8739 tdep->eax_regnum = ymm0_regnum;
8740 ymm0_regnum += tdep->num_dword_regs;
8741 }
8742 else
8743 tdep->eax_regnum = -1;
8744
8745 mm0_regnum = ymm0_regnum;
8746 if (tdep->num_ymm_regs)
8747 {
8748 /* Support YMM pseudo-register if it is available. */
8749 tdep->ymm0_regnum = ymm0_regnum;
8750 mm0_regnum += tdep->num_ymm_regs;
8751 }
8752 else
8753 tdep->ymm0_regnum = -1;
8754
8755 if (tdep->num_ymm_avx512_regs)
8756 {
8757 /* Support YMM16-31 pseudo registers if available. */
8758 tdep->ymm16_regnum = mm0_regnum;
8759 mm0_regnum += tdep->num_ymm_avx512_regs;
8760 }
8761 else
8762 tdep->ymm16_regnum = -1;
8763
8764 if (tdep->num_zmm_regs)
8765 {
8766 /* Support ZMM pseudo-register if it is available. */
8767 tdep->zmm0_regnum = mm0_regnum;
8768 mm0_regnum += tdep->num_zmm_regs;
8769 }
8770 else
8771 tdep->zmm0_regnum = -1;
8772
8773 bnd0_regnum = mm0_regnum;
8774 if (tdep->num_mmx_regs != 0)
8775 {
8776 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8777 tdep->mm0_regnum = mm0_regnum;
8778 bnd0_regnum += tdep->num_mmx_regs;
8779 }
8780 else
8781 tdep->mm0_regnum = -1;
8782
8783 if (tdep->bnd0r_regnum > 0)
8784 tdep->bnd0_regnum = bnd0_regnum;
8785 else
8786 tdep-> bnd0_regnum = -1;
8787
8788 /* Hook in the legacy prologue-based unwinders last (fallback). */
8789 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8790 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8791 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8792
8793 /* If we have a register mapping, enable the generic core file
8794 support, unless it has already been enabled. */
8795 if (tdep->gregset_reg_offset
8796 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8797 set_gdbarch_iterate_over_regset_sections
8798 (gdbarch, i386_iterate_over_regset_sections);
8799
8800 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8801 i386_fast_tracepoint_valid_at);
8802
8803 return gdbarch;
8804 }
8805
8806 \f
8807
8808 /* Return the target description for a specified XSAVE feature mask. */
8809
8810 const struct target_desc *
8811 i386_target_description (uint64_t xcr0, bool segments)
8812 {
8813 static target_desc *i386_tdescs \
8814 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8815 target_desc **tdesc;
8816
8817 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8818 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8819 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8820 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8821 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8822 [segments ? 1 : 0];
8823
8824 if (*tdesc == NULL)
8825 *tdesc = i386_create_target_description (xcr0, false, segments);
8826
8827 return *tdesc;
8828 }
8829
8830 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8831
8832 /* Find the bound directory base address. */
8833
8834 static unsigned long
8835 i386_mpx_bd_base (void)
8836 {
8837 struct regcache *rcache;
8838 ULONGEST ret;
8839 enum register_status regstatus;
8840
8841 rcache = get_current_regcache ();
8842 gdbarch *arch = rcache->arch ();
8843 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
8844
8845 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8846
8847 if (regstatus != REG_VALID)
8848 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8849
8850 return ret & MPX_BASE_MASK;
8851 }
8852
8853 int
8854 i386_mpx_enabled (void)
8855 {
8856 gdbarch *arch = get_current_arch ();
8857 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
8858 const struct target_desc *tdesc = tdep->tdesc;
8859
8860 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8861 }
8862
8863 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8864 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8865 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8866 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8867
8868 /* Find the bound table entry given the pointer location and the base
8869 address of the table. */
8870
8871 static CORE_ADDR
8872 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8873 {
8874 CORE_ADDR offset1;
8875 CORE_ADDR offset2;
8876 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8877 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8878 CORE_ADDR bd_entry_addr;
8879 CORE_ADDR bt_addr;
8880 CORE_ADDR bd_entry;
8881 struct gdbarch *gdbarch = get_current_arch ();
8882 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8883
8884
8885 if (gdbarch_ptr_bit (gdbarch) == 64)
8886 {
8887 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8888 bd_ptr_r_shift = 20;
8889 bd_ptr_l_shift = 3;
8890 bt_select_r_shift = 3;
8891 bt_select_l_shift = 5;
8892 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8893
8894 if ( sizeof (CORE_ADDR) == 4)
8895 error (_("bound table examination not supported\
8896 for 64-bit process with 32-bit GDB"));
8897 }
8898 else
8899 {
8900 mpx_bd_mask = MPX_BD_MASK_32;
8901 bd_ptr_r_shift = 12;
8902 bd_ptr_l_shift = 2;
8903 bt_select_r_shift = 2;
8904 bt_select_l_shift = 4;
8905 bt_mask = MPX_BT_MASK_32;
8906 }
8907
8908 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8909 bd_entry_addr = bd_base + offset1;
8910 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8911
8912 if ((bd_entry & 0x1) == 0)
8913 error (_("Invalid bounds directory entry at %s."),
8914 paddress (get_current_arch (), bd_entry_addr));
8915
8916 /* Clearing status bit. */
8917 bd_entry--;
8918 bt_addr = bd_entry & ~bt_select_r_shift;
8919 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8920
8921 return bt_addr + offset2;
8922 }
8923
8924 /* Print routine for the mpx bounds. */
8925
8926 static void
8927 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8928 {
8929 struct ui_out *uiout = current_uiout;
8930 LONGEST size;
8931 struct gdbarch *gdbarch = get_current_arch ();
8932 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8933 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8934
8935 if (bounds_in_map == 1)
8936 {
8937 uiout->text ("Null bounds on map:");
8938 uiout->text (" pointer value = ");
8939 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8940 uiout->text (".");
8941 uiout->text ("\n");
8942 }
8943 else
8944 {
8945 uiout->text ("{lbound = ");
8946 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8947 uiout->text (", ubound = ");
8948
8949 /* The upper bound is stored in 1's complement. */
8950 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8951 uiout->text ("}: pointer value = ");
8952 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8953
8954 if (gdbarch_ptr_bit (gdbarch) == 64)
8955 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8956 else
8957 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8958
8959 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8960 -1 represents in this sense full memory access, and there is no need
8961 one to the size. */
8962
8963 size = (size > -1 ? size + 1 : size);
8964 uiout->text (", size = ");
8965 uiout->field_string ("size", plongest (size));
8966
8967 uiout->text (", metadata = ");
8968 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8969 uiout->text ("\n");
8970 }
8971 }
8972
8973 /* Implement the command "show mpx bound". */
8974
8975 static void
8976 i386_mpx_info_bounds (const char *args, int from_tty)
8977 {
8978 CORE_ADDR bd_base = 0;
8979 CORE_ADDR addr;
8980 CORE_ADDR bt_entry_addr = 0;
8981 CORE_ADDR bt_entry[4];
8982 int i;
8983 struct gdbarch *gdbarch = get_current_arch ();
8984 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8985
8986 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8987 || !i386_mpx_enabled ())
8988 {
8989 gdb_printf (_("Intel Memory Protection Extensions not "
8990 "supported on this target.\n"));
8991 return;
8992 }
8993
8994 if (args == NULL)
8995 {
8996 gdb_printf (_("Address of pointer variable expected.\n"));
8997 return;
8998 }
8999
9000 addr = parse_and_eval_address (args);
9001
9002 bd_base = i386_mpx_bd_base ();
9003 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9004
9005 memset (bt_entry, 0, sizeof (bt_entry));
9006
9007 for (i = 0; i < 4; i++)
9008 bt_entry[i] = read_memory_typed_address (bt_entry_addr
9009 + i * data_ptr_type->length (),
9010 data_ptr_type);
9011
9012 i386_mpx_print_bounds (bt_entry);
9013 }
9014
9015 /* Implement the command "set mpx bound". */
9016
9017 static void
9018 i386_mpx_set_bounds (const char *args, int from_tty)
9019 {
9020 CORE_ADDR bd_base = 0;
9021 CORE_ADDR addr, lower, upper;
9022 CORE_ADDR bt_entry_addr = 0;
9023 CORE_ADDR bt_entry[2];
9024 const char *input = args;
9025 int i;
9026 struct gdbarch *gdbarch = get_current_arch ();
9027 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9028 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
9029
9030 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
9031 || !i386_mpx_enabled ())
9032 error (_("Intel Memory Protection Extensions not supported\
9033 on this target."));
9034
9035 if (args == NULL)
9036 error (_("Pointer value expected."));
9037
9038 addr = value_as_address (parse_to_comma_and_eval (&input));
9039
9040 if (input[0] == ',')
9041 ++input;
9042 if (input[0] == '\0')
9043 error (_("wrong number of arguments: missing lower and upper bound."));
9044 lower = value_as_address (parse_to_comma_and_eval (&input));
9045
9046 if (input[0] == ',')
9047 ++input;
9048 if (input[0] == '\0')
9049 error (_("Wrong number of arguments; Missing upper bound."));
9050 upper = value_as_address (parse_to_comma_and_eval (&input));
9051
9052 bd_base = i386_mpx_bd_base ();
9053 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9054 for (i = 0; i < 2; i++)
9055 bt_entry[i] = read_memory_typed_address (bt_entry_addr
9056 + i * data_ptr_type->length (),
9057 data_ptr_type);
9058 bt_entry[0] = (uint64_t) lower;
9059 bt_entry[1] = ~(uint64_t) upper;
9060
9061 for (i = 0; i < 2; i++)
9062 write_memory_unsigned_integer (bt_entry_addr
9063 + i * data_ptr_type->length (),
9064 data_ptr_type->length (), byte_order,
9065 bt_entry[i]);
9066 }
9067
9068 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9069
9070 void _initialize_i386_tdep ();
9071 void
9072 _initialize_i386_tdep ()
9073 {
9074 gdbarch_register (bfd_arch_i386, i386_gdbarch_init);
9075
9076 /* Add the variable that controls the disassembly flavor. */
9077 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9078 &disassembly_flavor, _("\
9079 Set the disassembly flavor."), _("\
9080 Show the disassembly flavor."), _("\
9081 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9082 NULL,
9083 NULL, /* FIXME: i18n: */
9084 &setlist, &showlist);
9085
9086 /* Add the variable that controls the convention for returning
9087 structs. */
9088 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9089 &struct_convention, _("\
9090 Set the convention for returning small structs."), _("\
9091 Show the convention for returning small structs."), _("\
9092 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9093 is \"default\"."),
9094 NULL,
9095 NULL, /* FIXME: i18n: */
9096 &setlist, &showlist);
9097
9098 /* Add "mpx" prefix for the set and show commands. */
9099
9100 add_setshow_prefix_cmd
9101 ("mpx", class_support,
9102 _("Set Intel Memory Protection Extensions specific variables."),
9103 _("Show Intel Memory Protection Extensions specific variables."),
9104 &mpx_set_cmdlist, &mpx_show_cmdlist, &setlist, &showlist);
9105
9106 /* Add "bound" command for the show mpx commands list. */
9107
9108 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9109 "Show the memory bounds for a given array/pointer storage\
9110 in the bound table.",
9111 &mpx_show_cmdlist);
9112
9113 /* Add "bound" command for the set mpx commands list. */
9114
9115 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9116 "Set the memory bounds for a given array/pointer storage\
9117 in the bound table.",
9118 &mpx_set_cmdlist);
9119
9120 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9121 i386_svr4_init_abi);
9122
9123 /* Initialize the i386-specific register groups. */
9124 i386_init_reggroups ();
9125
9126 /* Tell remote stub that we support XML target description. */
9127 register_remote_support_xml ("i386");
9128 }