]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/i386-tdep.c
Update Copyright year range in all files maintained by GDB.
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "value.h"
43 #include "dis-asm.h"
44 #include "disasm.h"
45 #include "remote.h"
46 #include "exceptions.h"
47 #include "gdb_assert.h"
48 #include <string.h>
49
50 #include "i386-tdep.h"
51 #include "i387-tdep.h"
52 #include "i386-xstate.h"
53
54 #include "record.h"
55 #include "record-full.h"
56 #include <stdint.h>
57
58 #include "features/i386/i386.c"
59 #include "features/i386/i386-avx.c"
60 #include "features/i386/i386-mpx.c"
61 #include "features/i386/i386-mmx.c"
62
63 #include "ax.h"
64 #include "ax-gdb.h"
65
66 #include "stap-probe.h"
67 #include "user-regs.h"
68 #include "cli/cli-utils.h"
69 #include "expression.h"
70 #include "parser-defs.h"
71 #include <ctype.h>
72
73 /* Register names. */
74
75 static const char *i386_register_names[] =
76 {
77 "eax", "ecx", "edx", "ebx",
78 "esp", "ebp", "esi", "edi",
79 "eip", "eflags", "cs", "ss",
80 "ds", "es", "fs", "gs",
81 "st0", "st1", "st2", "st3",
82 "st4", "st5", "st6", "st7",
83 "fctrl", "fstat", "ftag", "fiseg",
84 "fioff", "foseg", "fooff", "fop",
85 "xmm0", "xmm1", "xmm2", "xmm3",
86 "xmm4", "xmm5", "xmm6", "xmm7",
87 "mxcsr"
88 };
89
90 static const char *i386_ymm_names[] =
91 {
92 "ymm0", "ymm1", "ymm2", "ymm3",
93 "ymm4", "ymm5", "ymm6", "ymm7",
94 };
95
96 static const char *i386_ymmh_names[] =
97 {
98 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
99 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
100 };
101
102 static const char *i386_mpx_names[] =
103 {
104 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
105 };
106
107 /* Register names for MPX pseudo-registers. */
108
109 static const char *i386_bnd_names[] =
110 {
111 "bnd0", "bnd1", "bnd2", "bnd3"
112 };
113
114 /* Register names for MMX pseudo-registers. */
115
116 static const char *i386_mmx_names[] =
117 {
118 "mm0", "mm1", "mm2", "mm3",
119 "mm4", "mm5", "mm6", "mm7"
120 };
121
122 /* Register names for byte pseudo-registers. */
123
124 static const char *i386_byte_names[] =
125 {
126 "al", "cl", "dl", "bl",
127 "ah", "ch", "dh", "bh"
128 };
129
130 /* Register names for word pseudo-registers. */
131
132 static const char *i386_word_names[] =
133 {
134 "ax", "cx", "dx", "bx",
135 "", "bp", "si", "di"
136 };
137
138 /* MMX register? */
139
140 static int
141 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
142 {
143 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
144 int mm0_regnum = tdep->mm0_regnum;
145
146 if (mm0_regnum < 0)
147 return 0;
148
149 regnum -= mm0_regnum;
150 return regnum >= 0 && regnum < tdep->num_mmx_regs;
151 }
152
153 /* Byte register? */
154
155 int
156 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
157 {
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159
160 regnum -= tdep->al_regnum;
161 return regnum >= 0 && regnum < tdep->num_byte_regs;
162 }
163
164 /* Word register? */
165
166 int
167 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
168 {
169 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
170
171 regnum -= tdep->ax_regnum;
172 return regnum >= 0 && regnum < tdep->num_word_regs;
173 }
174
175 /* Dword register? */
176
177 int
178 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181 int eax_regnum = tdep->eax_regnum;
182
183 if (eax_regnum < 0)
184 return 0;
185
186 regnum -= eax_regnum;
187 return regnum >= 0 && regnum < tdep->num_dword_regs;
188 }
189
190 static int
191 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
192 {
193 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
194 int ymm0h_regnum = tdep->ymm0h_regnum;
195
196 if (ymm0h_regnum < 0)
197 return 0;
198
199 regnum -= ymm0h_regnum;
200 return regnum >= 0 && regnum < tdep->num_ymm_regs;
201 }
202
203 /* AVX register? */
204
205 int
206 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
207 {
208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
209 int ymm0_regnum = tdep->ymm0_regnum;
210
211 if (ymm0_regnum < 0)
212 return 0;
213
214 regnum -= ymm0_regnum;
215 return regnum >= 0 && regnum < tdep->num_ymm_regs;
216 }
217
218 /* BND register? */
219
220 int
221 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
222 {
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224 int bnd0_regnum = tdep->bnd0_regnum;
225
226 if (bnd0_regnum < 0)
227 return 0;
228
229 regnum -= bnd0_regnum;
230 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
231 }
232
233 /* SSE register? */
234
235 int
236 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
237 {
238 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
239 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
240
241 if (num_xmm_regs == 0)
242 return 0;
243
244 regnum -= I387_XMM0_REGNUM (tdep);
245 return regnum >= 0 && regnum < num_xmm_regs;
246 }
247
248 static int
249 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
250 {
251 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
252
253 if (I387_NUM_XMM_REGS (tdep) == 0)
254 return 0;
255
256 return (regnum == I387_MXCSR_REGNUM (tdep));
257 }
258
259 /* FP register? */
260
261 int
262 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
263 {
264 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
265
266 if (I387_ST0_REGNUM (tdep) < 0)
267 return 0;
268
269 return (I387_ST0_REGNUM (tdep) <= regnum
270 && regnum < I387_FCTRL_REGNUM (tdep));
271 }
272
273 int
274 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
275 {
276 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
277
278 if (I387_ST0_REGNUM (tdep) < 0)
279 return 0;
280
281 return (I387_FCTRL_REGNUM (tdep) <= regnum
282 && regnum < I387_XMM0_REGNUM (tdep));
283 }
284
285 /* BNDr (raw) register? */
286
287 static int
288 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
289 {
290 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
291
292 if (I387_BND0R_REGNUM (tdep) < 0)
293 return 0;
294
295 regnum -= tdep->bnd0r_regnum;
296 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
297 }
298
299 /* BND control register? */
300
301 static int
302 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
303 {
304 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
305
306 if (I387_BNDCFGU_REGNUM (tdep) < 0)
307 return 0;
308
309 regnum -= I387_BNDCFGU_REGNUM (tdep);
310 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
311 }
312
313 /* Return the name of register REGNUM, or the empty string if it is
314 an anonymous register. */
315
316 static const char *
317 i386_register_name (struct gdbarch *gdbarch, int regnum)
318 {
319 /* Hide the upper YMM registers. */
320 if (i386_ymmh_regnum_p (gdbarch, regnum))
321 return "";
322
323 return tdesc_register_name (gdbarch, regnum);
324 }
325
326 /* Return the name of register REGNUM. */
327
328 const char *
329 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
330 {
331 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
332 if (i386_bnd_regnum_p (gdbarch, regnum))
333 return i386_bnd_names[regnum - tdep->bnd0_regnum];
334 if (i386_mmx_regnum_p (gdbarch, regnum))
335 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
336 else if (i386_ymm_regnum_p (gdbarch, regnum))
337 return i386_ymm_names[regnum - tdep->ymm0_regnum];
338 else if (i386_byte_regnum_p (gdbarch, regnum))
339 return i386_byte_names[regnum - tdep->al_regnum];
340 else if (i386_word_regnum_p (gdbarch, regnum))
341 return i386_word_names[regnum - tdep->ax_regnum];
342
343 internal_error (__FILE__, __LINE__, _("invalid regnum"));
344 }
345
346 /* Convert a dbx register number REG to the appropriate register
347 number used by GDB. */
348
349 static int
350 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
351 {
352 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
353
354 /* This implements what GCC calls the "default" register map
355 (dbx_register_map[]). */
356
357 if (reg >= 0 && reg <= 7)
358 {
359 /* General-purpose registers. The debug info calls %ebp
360 register 4, and %esp register 5. */
361 if (reg == 4)
362 return 5;
363 else if (reg == 5)
364 return 4;
365 else return reg;
366 }
367 else if (reg >= 12 && reg <= 19)
368 {
369 /* Floating-point registers. */
370 return reg - 12 + I387_ST0_REGNUM (tdep);
371 }
372 else if (reg >= 21 && reg <= 28)
373 {
374 /* SSE registers. */
375 int ymm0_regnum = tdep->ymm0_regnum;
376
377 if (ymm0_regnum >= 0
378 && i386_xmm_regnum_p (gdbarch, reg))
379 return reg - 21 + ymm0_regnum;
380 else
381 return reg - 21 + I387_XMM0_REGNUM (tdep);
382 }
383 else if (reg >= 29 && reg <= 36)
384 {
385 /* MMX registers. */
386 return reg - 29 + I387_MM0_REGNUM (tdep);
387 }
388
389 /* This will hopefully provoke a warning. */
390 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
391 }
392
393 /* Convert SVR4 register number REG to the appropriate register number
394 used by GDB. */
395
396 static int
397 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
398 {
399 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
400
401 /* This implements the GCC register map that tries to be compatible
402 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
403
404 /* The SVR4 register numbering includes %eip and %eflags, and
405 numbers the floating point registers differently. */
406 if (reg >= 0 && reg <= 9)
407 {
408 /* General-purpose registers. */
409 return reg;
410 }
411 else if (reg >= 11 && reg <= 18)
412 {
413 /* Floating-point registers. */
414 return reg - 11 + I387_ST0_REGNUM (tdep);
415 }
416 else if (reg >= 21 && reg <= 36)
417 {
418 /* The SSE and MMX registers have the same numbers as with dbx. */
419 return i386_dbx_reg_to_regnum (gdbarch, reg);
420 }
421
422 switch (reg)
423 {
424 case 37: return I387_FCTRL_REGNUM (tdep);
425 case 38: return I387_FSTAT_REGNUM (tdep);
426 case 39: return I387_MXCSR_REGNUM (tdep);
427 case 40: return I386_ES_REGNUM;
428 case 41: return I386_CS_REGNUM;
429 case 42: return I386_SS_REGNUM;
430 case 43: return I386_DS_REGNUM;
431 case 44: return I386_FS_REGNUM;
432 case 45: return I386_GS_REGNUM;
433 }
434
435 /* This will hopefully provoke a warning. */
436 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
437 }
438
439 \f
440
441 /* This is the variable that is set with "set disassembly-flavor", and
442 its legitimate values. */
443 static const char att_flavor[] = "att";
444 static const char intel_flavor[] = "intel";
445 static const char *const valid_flavors[] =
446 {
447 att_flavor,
448 intel_flavor,
449 NULL
450 };
451 static const char *disassembly_flavor = att_flavor;
452 \f
453
454 /* Use the program counter to determine the contents and size of a
455 breakpoint instruction. Return a pointer to a string of bytes that
456 encode a breakpoint instruction, store the length of the string in
457 *LEN and optionally adjust *PC to point to the correct memory
458 location for inserting the breakpoint.
459
460 On the i386 we have a single breakpoint that fits in a single byte
461 and can be inserted anywhere.
462
463 This function is 64-bit safe. */
464
465 static const gdb_byte *
466 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
467 {
468 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
469
470 *len = sizeof (break_insn);
471 return break_insn;
472 }
473 \f
474 /* Displaced instruction handling. */
475
476 /* Skip the legacy instruction prefixes in INSN.
477 Not all prefixes are valid for any particular insn
478 but we needn't care, the insn will fault if it's invalid.
479 The result is a pointer to the first opcode byte,
480 or NULL if we run off the end of the buffer. */
481
482 static gdb_byte *
483 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
484 {
485 gdb_byte *end = insn + max_len;
486
487 while (insn < end)
488 {
489 switch (*insn)
490 {
491 case DATA_PREFIX_OPCODE:
492 case ADDR_PREFIX_OPCODE:
493 case CS_PREFIX_OPCODE:
494 case DS_PREFIX_OPCODE:
495 case ES_PREFIX_OPCODE:
496 case FS_PREFIX_OPCODE:
497 case GS_PREFIX_OPCODE:
498 case SS_PREFIX_OPCODE:
499 case LOCK_PREFIX_OPCODE:
500 case REPE_PREFIX_OPCODE:
501 case REPNE_PREFIX_OPCODE:
502 ++insn;
503 continue;
504 default:
505 return insn;
506 }
507 }
508
509 return NULL;
510 }
511
512 static int
513 i386_absolute_jmp_p (const gdb_byte *insn)
514 {
515 /* jmp far (absolute address in operand). */
516 if (insn[0] == 0xea)
517 return 1;
518
519 if (insn[0] == 0xff)
520 {
521 /* jump near, absolute indirect (/4). */
522 if ((insn[1] & 0x38) == 0x20)
523 return 1;
524
525 /* jump far, absolute indirect (/5). */
526 if ((insn[1] & 0x38) == 0x28)
527 return 1;
528 }
529
530 return 0;
531 }
532
533 static int
534 i386_absolute_call_p (const gdb_byte *insn)
535 {
536 /* call far, absolute. */
537 if (insn[0] == 0x9a)
538 return 1;
539
540 if (insn[0] == 0xff)
541 {
542 /* Call near, absolute indirect (/2). */
543 if ((insn[1] & 0x38) == 0x10)
544 return 1;
545
546 /* Call far, absolute indirect (/3). */
547 if ((insn[1] & 0x38) == 0x18)
548 return 1;
549 }
550
551 return 0;
552 }
553
554 static int
555 i386_ret_p (const gdb_byte *insn)
556 {
557 switch (insn[0])
558 {
559 case 0xc2: /* ret near, pop N bytes. */
560 case 0xc3: /* ret near */
561 case 0xca: /* ret far, pop N bytes. */
562 case 0xcb: /* ret far */
563 case 0xcf: /* iret */
564 return 1;
565
566 default:
567 return 0;
568 }
569 }
570
571 static int
572 i386_call_p (const gdb_byte *insn)
573 {
574 if (i386_absolute_call_p (insn))
575 return 1;
576
577 /* call near, relative. */
578 if (insn[0] == 0xe8)
579 return 1;
580
581 return 0;
582 }
583
584 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
585 length in bytes. Otherwise, return zero. */
586
587 static int
588 i386_syscall_p (const gdb_byte *insn, int *lengthp)
589 {
590 /* Is it 'int $0x80'? */
591 if ((insn[0] == 0xcd && insn[1] == 0x80)
592 /* Or is it 'sysenter'? */
593 || (insn[0] == 0x0f && insn[1] == 0x34)
594 /* Or is it 'syscall'? */
595 || (insn[0] == 0x0f && insn[1] == 0x05))
596 {
597 *lengthp = 2;
598 return 1;
599 }
600
601 return 0;
602 }
603
604 /* Some kernels may run one past a syscall insn, so we have to cope.
605 Otherwise this is just simple_displaced_step_copy_insn. */
606
607 struct displaced_step_closure *
608 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
609 CORE_ADDR from, CORE_ADDR to,
610 struct regcache *regs)
611 {
612 size_t len = gdbarch_max_insn_length (gdbarch);
613 gdb_byte *buf = xmalloc (len);
614
615 read_memory (from, buf, len);
616
617 /* GDB may get control back after the insn after the syscall.
618 Presumably this is a kernel bug.
619 If this is a syscall, make sure there's a nop afterwards. */
620 {
621 int syscall_length;
622 gdb_byte *insn;
623
624 insn = i386_skip_prefixes (buf, len);
625 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
626 insn[syscall_length] = NOP_OPCODE;
627 }
628
629 write_memory (to, buf, len);
630
631 if (debug_displaced)
632 {
633 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
634 paddress (gdbarch, from), paddress (gdbarch, to));
635 displaced_step_dump_bytes (gdb_stdlog, buf, len);
636 }
637
638 return (struct displaced_step_closure *) buf;
639 }
640
641 /* Fix up the state of registers and memory after having single-stepped
642 a displaced instruction. */
643
644 void
645 i386_displaced_step_fixup (struct gdbarch *gdbarch,
646 struct displaced_step_closure *closure,
647 CORE_ADDR from, CORE_ADDR to,
648 struct regcache *regs)
649 {
650 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
651
652 /* The offset we applied to the instruction's address.
653 This could well be negative (when viewed as a signed 32-bit
654 value), but ULONGEST won't reflect that, so take care when
655 applying it. */
656 ULONGEST insn_offset = to - from;
657
658 /* Since we use simple_displaced_step_copy_insn, our closure is a
659 copy of the instruction. */
660 gdb_byte *insn = (gdb_byte *) closure;
661 /* The start of the insn, needed in case we see some prefixes. */
662 gdb_byte *insn_start = insn;
663
664 if (debug_displaced)
665 fprintf_unfiltered (gdb_stdlog,
666 "displaced: fixup (%s, %s), "
667 "insn = 0x%02x 0x%02x ...\n",
668 paddress (gdbarch, from), paddress (gdbarch, to),
669 insn[0], insn[1]);
670
671 /* The list of issues to contend with here is taken from
672 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
673 Yay for Free Software! */
674
675 /* Relocate the %eip, if necessary. */
676
677 /* The instruction recognizers we use assume any leading prefixes
678 have been skipped. */
679 {
680 /* This is the size of the buffer in closure. */
681 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
682 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
683 /* If there are too many prefixes, just ignore the insn.
684 It will fault when run. */
685 if (opcode != NULL)
686 insn = opcode;
687 }
688
689 /* Except in the case of absolute or indirect jump or call
690 instructions, or a return instruction, the new eip is relative to
691 the displaced instruction; make it relative. Well, signal
692 handler returns don't need relocation either, but we use the
693 value of %eip to recognize those; see below. */
694 if (! i386_absolute_jmp_p (insn)
695 && ! i386_absolute_call_p (insn)
696 && ! i386_ret_p (insn))
697 {
698 ULONGEST orig_eip;
699 int insn_len;
700
701 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
702
703 /* A signal trampoline system call changes the %eip, resuming
704 execution of the main program after the signal handler has
705 returned. That makes them like 'return' instructions; we
706 shouldn't relocate %eip.
707
708 But most system calls don't, and we do need to relocate %eip.
709
710 Our heuristic for distinguishing these cases: if stepping
711 over the system call instruction left control directly after
712 the instruction, the we relocate --- control almost certainly
713 doesn't belong in the displaced copy. Otherwise, we assume
714 the instruction has put control where it belongs, and leave
715 it unrelocated. Goodness help us if there are PC-relative
716 system calls. */
717 if (i386_syscall_p (insn, &insn_len)
718 && orig_eip != to + (insn - insn_start) + insn_len
719 /* GDB can get control back after the insn after the syscall.
720 Presumably this is a kernel bug.
721 i386_displaced_step_copy_insn ensures its a nop,
722 we add one to the length for it. */
723 && orig_eip != to + (insn - insn_start) + insn_len + 1)
724 {
725 if (debug_displaced)
726 fprintf_unfiltered (gdb_stdlog,
727 "displaced: syscall changed %%eip; "
728 "not relocating\n");
729 }
730 else
731 {
732 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
733
734 /* If we just stepped over a breakpoint insn, we don't backup
735 the pc on purpose; this is to match behaviour without
736 stepping. */
737
738 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
739
740 if (debug_displaced)
741 fprintf_unfiltered (gdb_stdlog,
742 "displaced: "
743 "relocated %%eip from %s to %s\n",
744 paddress (gdbarch, orig_eip),
745 paddress (gdbarch, eip));
746 }
747 }
748
749 /* If the instruction was PUSHFL, then the TF bit will be set in the
750 pushed value, and should be cleared. We'll leave this for later,
751 since GDB already messes up the TF flag when stepping over a
752 pushfl. */
753
754 /* If the instruction was a call, the return address now atop the
755 stack is the address following the copied instruction. We need
756 to make it the address following the original instruction. */
757 if (i386_call_p (insn))
758 {
759 ULONGEST esp;
760 ULONGEST retaddr;
761 const ULONGEST retaddr_len = 4;
762
763 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
764 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
765 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
766 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
767
768 if (debug_displaced)
769 fprintf_unfiltered (gdb_stdlog,
770 "displaced: relocated return addr at %s to %s\n",
771 paddress (gdbarch, esp),
772 paddress (gdbarch, retaddr));
773 }
774 }
775
776 static void
777 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
778 {
779 target_write_memory (*to, buf, len);
780 *to += len;
781 }
782
783 static void
784 i386_relocate_instruction (struct gdbarch *gdbarch,
785 CORE_ADDR *to, CORE_ADDR oldloc)
786 {
787 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
788 gdb_byte buf[I386_MAX_INSN_LEN];
789 int offset = 0, rel32, newrel;
790 int insn_length;
791 gdb_byte *insn = buf;
792
793 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
794
795 insn_length = gdb_buffered_insn_length (gdbarch, insn,
796 I386_MAX_INSN_LEN, oldloc);
797
798 /* Get past the prefixes. */
799 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
800
801 /* Adjust calls with 32-bit relative addresses as push/jump, with
802 the address pushed being the location where the original call in
803 the user program would return to. */
804 if (insn[0] == 0xe8)
805 {
806 gdb_byte push_buf[16];
807 unsigned int ret_addr;
808
809 /* Where "ret" in the original code will return to. */
810 ret_addr = oldloc + insn_length;
811 push_buf[0] = 0x68; /* pushq $... */
812 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
813 /* Push the push. */
814 append_insns (to, 5, push_buf);
815
816 /* Convert the relative call to a relative jump. */
817 insn[0] = 0xe9;
818
819 /* Adjust the destination offset. */
820 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
821 newrel = (oldloc - *to) + rel32;
822 store_signed_integer (insn + 1, 4, byte_order, newrel);
823
824 if (debug_displaced)
825 fprintf_unfiltered (gdb_stdlog,
826 "Adjusted insn rel32=%s at %s to"
827 " rel32=%s at %s\n",
828 hex_string (rel32), paddress (gdbarch, oldloc),
829 hex_string (newrel), paddress (gdbarch, *to));
830
831 /* Write the adjusted jump into its displaced location. */
832 append_insns (to, 5, insn);
833 return;
834 }
835
836 /* Adjust jumps with 32-bit relative addresses. Calls are already
837 handled above. */
838 if (insn[0] == 0xe9)
839 offset = 1;
840 /* Adjust conditional jumps. */
841 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
842 offset = 2;
843
844 if (offset)
845 {
846 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
847 newrel = (oldloc - *to) + rel32;
848 store_signed_integer (insn + offset, 4, byte_order, newrel);
849 if (debug_displaced)
850 fprintf_unfiltered (gdb_stdlog,
851 "Adjusted insn rel32=%s at %s to"
852 " rel32=%s at %s\n",
853 hex_string (rel32), paddress (gdbarch, oldloc),
854 hex_string (newrel), paddress (gdbarch, *to));
855 }
856
857 /* Write the adjusted instructions into their displaced
858 location. */
859 append_insns (to, insn_length, buf);
860 }
861
862 \f
863 #ifdef I386_REGNO_TO_SYMMETRY
864 #error "The Sequent Symmetry is no longer supported."
865 #endif
866
867 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
868 and %esp "belong" to the calling function. Therefore these
869 registers should be saved if they're going to be modified. */
870
871 /* The maximum number of saved registers. This should include all
872 registers mentioned above, and %eip. */
873 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
874
875 struct i386_frame_cache
876 {
877 /* Base address. */
878 CORE_ADDR base;
879 int base_p;
880 LONGEST sp_offset;
881 CORE_ADDR pc;
882
883 /* Saved registers. */
884 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
885 CORE_ADDR saved_sp;
886 int saved_sp_reg;
887 int pc_in_eax;
888
889 /* Stack space reserved for local variables. */
890 long locals;
891 };
892
893 /* Allocate and initialize a frame cache. */
894
895 static struct i386_frame_cache *
896 i386_alloc_frame_cache (void)
897 {
898 struct i386_frame_cache *cache;
899 int i;
900
901 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
902
903 /* Base address. */
904 cache->base_p = 0;
905 cache->base = 0;
906 cache->sp_offset = -4;
907 cache->pc = 0;
908
909 /* Saved registers. We initialize these to -1 since zero is a valid
910 offset (that's where %ebp is supposed to be stored). */
911 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
912 cache->saved_regs[i] = -1;
913 cache->saved_sp = 0;
914 cache->saved_sp_reg = -1;
915 cache->pc_in_eax = 0;
916
917 /* Frameless until proven otherwise. */
918 cache->locals = -1;
919
920 return cache;
921 }
922
923 /* If the instruction at PC is a jump, return the address of its
924 target. Otherwise, return PC. */
925
926 static CORE_ADDR
927 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
928 {
929 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
930 gdb_byte op;
931 long delta = 0;
932 int data16 = 0;
933
934 if (target_read_code (pc, &op, 1))
935 return pc;
936
937 if (op == 0x66)
938 {
939 data16 = 1;
940
941 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
942 }
943
944 switch (op)
945 {
946 case 0xe9:
947 /* Relative jump: if data16 == 0, disp32, else disp16. */
948 if (data16)
949 {
950 delta = read_memory_integer (pc + 2, 2, byte_order);
951
952 /* Include the size of the jmp instruction (including the
953 0x66 prefix). */
954 delta += 4;
955 }
956 else
957 {
958 delta = read_memory_integer (pc + 1, 4, byte_order);
959
960 /* Include the size of the jmp instruction. */
961 delta += 5;
962 }
963 break;
964 case 0xeb:
965 /* Relative jump, disp8 (ignore data16). */
966 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
967
968 delta += data16 + 2;
969 break;
970 }
971
972 return pc + delta;
973 }
974
975 /* Check whether PC points at a prologue for a function returning a
976 structure or union. If so, it updates CACHE and returns the
977 address of the first instruction after the code sequence that
978 removes the "hidden" argument from the stack or CURRENT_PC,
979 whichever is smaller. Otherwise, return PC. */
980
981 static CORE_ADDR
982 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
983 struct i386_frame_cache *cache)
984 {
985 /* Functions that return a structure or union start with:
986
987 popl %eax 0x58
988 xchgl %eax, (%esp) 0x87 0x04 0x24
989 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
990
991 (the System V compiler puts out the second `xchg' instruction,
992 and the assembler doesn't try to optimize it, so the 'sib' form
993 gets generated). This sequence is used to get the address of the
994 return buffer for a function that returns a structure. */
995 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
996 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
997 gdb_byte buf[4];
998 gdb_byte op;
999
1000 if (current_pc <= pc)
1001 return pc;
1002
1003 if (target_read_code (pc, &op, 1))
1004 return pc;
1005
1006 if (op != 0x58) /* popl %eax */
1007 return pc;
1008
1009 if (target_read_code (pc + 1, buf, 4))
1010 return pc;
1011
1012 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1013 return pc;
1014
1015 if (current_pc == pc)
1016 {
1017 cache->sp_offset += 4;
1018 return current_pc;
1019 }
1020
1021 if (current_pc == pc + 1)
1022 {
1023 cache->pc_in_eax = 1;
1024 return current_pc;
1025 }
1026
1027 if (buf[1] == proto1[1])
1028 return pc + 4;
1029 else
1030 return pc + 5;
1031 }
1032
1033 static CORE_ADDR
1034 i386_skip_probe (CORE_ADDR pc)
1035 {
1036 /* A function may start with
1037
1038 pushl constant
1039 call _probe
1040 addl $4, %esp
1041
1042 followed by
1043
1044 pushl %ebp
1045
1046 etc. */
1047 gdb_byte buf[8];
1048 gdb_byte op;
1049
1050 if (target_read_code (pc, &op, 1))
1051 return pc;
1052
1053 if (op == 0x68 || op == 0x6a)
1054 {
1055 int delta;
1056
1057 /* Skip past the `pushl' instruction; it has either a one-byte or a
1058 four-byte operand, depending on the opcode. */
1059 if (op == 0x68)
1060 delta = 5;
1061 else
1062 delta = 2;
1063
1064 /* Read the following 8 bytes, which should be `call _probe' (6
1065 bytes) followed by `addl $4,%esp' (2 bytes). */
1066 read_memory (pc + delta, buf, sizeof (buf));
1067 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1068 pc += delta + sizeof (buf);
1069 }
1070
1071 return pc;
1072 }
1073
1074 /* GCC 4.1 and later, can put code in the prologue to realign the
1075 stack pointer. Check whether PC points to such code, and update
1076 CACHE accordingly. Return the first instruction after the code
1077 sequence or CURRENT_PC, whichever is smaller. If we don't
1078 recognize the code, return PC. */
1079
1080 static CORE_ADDR
1081 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1082 struct i386_frame_cache *cache)
1083 {
1084 /* There are 2 code sequences to re-align stack before the frame
1085 gets set up:
1086
1087 1. Use a caller-saved saved register:
1088
1089 leal 4(%esp), %reg
1090 andl $-XXX, %esp
1091 pushl -4(%reg)
1092
1093 2. Use a callee-saved saved register:
1094
1095 pushl %reg
1096 leal 8(%esp), %reg
1097 andl $-XXX, %esp
1098 pushl -4(%reg)
1099
1100 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1101
1102 0x83 0xe4 0xf0 andl $-16, %esp
1103 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1104 */
1105
1106 gdb_byte buf[14];
1107 int reg;
1108 int offset, offset_and;
1109 static int regnums[8] = {
1110 I386_EAX_REGNUM, /* %eax */
1111 I386_ECX_REGNUM, /* %ecx */
1112 I386_EDX_REGNUM, /* %edx */
1113 I386_EBX_REGNUM, /* %ebx */
1114 I386_ESP_REGNUM, /* %esp */
1115 I386_EBP_REGNUM, /* %ebp */
1116 I386_ESI_REGNUM, /* %esi */
1117 I386_EDI_REGNUM /* %edi */
1118 };
1119
1120 if (target_read_code (pc, buf, sizeof buf))
1121 return pc;
1122
1123 /* Check caller-saved saved register. The first instruction has
1124 to be "leal 4(%esp), %reg". */
1125 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1126 {
1127 /* MOD must be binary 10 and R/M must be binary 100. */
1128 if ((buf[1] & 0xc7) != 0x44)
1129 return pc;
1130
1131 /* REG has register number. */
1132 reg = (buf[1] >> 3) & 7;
1133 offset = 4;
1134 }
1135 else
1136 {
1137 /* Check callee-saved saved register. The first instruction
1138 has to be "pushl %reg". */
1139 if ((buf[0] & 0xf8) != 0x50)
1140 return pc;
1141
1142 /* Get register. */
1143 reg = buf[0] & 0x7;
1144
1145 /* The next instruction has to be "leal 8(%esp), %reg". */
1146 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1147 return pc;
1148
1149 /* MOD must be binary 10 and R/M must be binary 100. */
1150 if ((buf[2] & 0xc7) != 0x44)
1151 return pc;
1152
1153 /* REG has register number. Registers in pushl and leal have to
1154 be the same. */
1155 if (reg != ((buf[2] >> 3) & 7))
1156 return pc;
1157
1158 offset = 5;
1159 }
1160
1161 /* Rigister can't be %esp nor %ebp. */
1162 if (reg == 4 || reg == 5)
1163 return pc;
1164
1165 /* The next instruction has to be "andl $-XXX, %esp". */
1166 if (buf[offset + 1] != 0xe4
1167 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1168 return pc;
1169
1170 offset_and = offset;
1171 offset += buf[offset] == 0x81 ? 6 : 3;
1172
1173 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1174 0xfc. REG must be binary 110 and MOD must be binary 01. */
1175 if (buf[offset] != 0xff
1176 || buf[offset + 2] != 0xfc
1177 || (buf[offset + 1] & 0xf8) != 0x70)
1178 return pc;
1179
1180 /* R/M has register. Registers in leal and pushl have to be the
1181 same. */
1182 if (reg != (buf[offset + 1] & 7))
1183 return pc;
1184
1185 if (current_pc > pc + offset_and)
1186 cache->saved_sp_reg = regnums[reg];
1187
1188 return min (pc + offset + 3, current_pc);
1189 }
1190
1191 /* Maximum instruction length we need to handle. */
1192 #define I386_MAX_MATCHED_INSN_LEN 6
1193
1194 /* Instruction description. */
1195 struct i386_insn
1196 {
1197 size_t len;
1198 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1199 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1200 };
1201
1202 /* Return whether instruction at PC matches PATTERN. */
1203
1204 static int
1205 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1206 {
1207 gdb_byte op;
1208
1209 if (target_read_code (pc, &op, 1))
1210 return 0;
1211
1212 if ((op & pattern.mask[0]) == pattern.insn[0])
1213 {
1214 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1215 int insn_matched = 1;
1216 size_t i;
1217
1218 gdb_assert (pattern.len > 1);
1219 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1220
1221 if (target_read_code (pc + 1, buf, pattern.len - 1))
1222 return 0;
1223
1224 for (i = 1; i < pattern.len; i++)
1225 {
1226 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1227 insn_matched = 0;
1228 }
1229 return insn_matched;
1230 }
1231 return 0;
1232 }
1233
1234 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1235 the first instruction description that matches. Otherwise, return
1236 NULL. */
1237
1238 static struct i386_insn *
1239 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1240 {
1241 struct i386_insn *pattern;
1242
1243 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1244 {
1245 if (i386_match_pattern (pc, *pattern))
1246 return pattern;
1247 }
1248
1249 return NULL;
1250 }
1251
1252 /* Return whether PC points inside a sequence of instructions that
1253 matches INSN_PATTERNS. */
1254
1255 static int
1256 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1257 {
1258 CORE_ADDR current_pc;
1259 int ix, i;
1260 struct i386_insn *insn;
1261
1262 insn = i386_match_insn (pc, insn_patterns);
1263 if (insn == NULL)
1264 return 0;
1265
1266 current_pc = pc;
1267 ix = insn - insn_patterns;
1268 for (i = ix - 1; i >= 0; i--)
1269 {
1270 current_pc -= insn_patterns[i].len;
1271
1272 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1273 return 0;
1274 }
1275
1276 current_pc = pc + insn->len;
1277 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1278 {
1279 if (!i386_match_pattern (current_pc, *insn))
1280 return 0;
1281
1282 current_pc += insn->len;
1283 }
1284
1285 return 1;
1286 }
1287
1288 /* Some special instructions that might be migrated by GCC into the
1289 part of the prologue that sets up the new stack frame. Because the
1290 stack frame hasn't been setup yet, no registers have been saved
1291 yet, and only the scratch registers %eax, %ecx and %edx can be
1292 touched. */
1293
1294 struct i386_insn i386_frame_setup_skip_insns[] =
1295 {
1296 /* Check for `movb imm8, r' and `movl imm32, r'.
1297
1298 ??? Should we handle 16-bit operand-sizes here? */
1299
1300 /* `movb imm8, %al' and `movb imm8, %ah' */
1301 /* `movb imm8, %cl' and `movb imm8, %ch' */
1302 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1303 /* `movb imm8, %dl' and `movb imm8, %dh' */
1304 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1305 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1306 { 5, { 0xb8 }, { 0xfe } },
1307 /* `movl imm32, %edx' */
1308 { 5, { 0xba }, { 0xff } },
1309
1310 /* Check for `mov imm32, r32'. Note that there is an alternative
1311 encoding for `mov m32, %eax'.
1312
1313 ??? Should we handle SIB adressing here?
1314 ??? Should we handle 16-bit operand-sizes here? */
1315
1316 /* `movl m32, %eax' */
1317 { 5, { 0xa1 }, { 0xff } },
1318 /* `movl m32, %eax' and `mov; m32, %ecx' */
1319 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1320 /* `movl m32, %edx' */
1321 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1322
1323 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1324 Because of the symmetry, there are actually two ways to encode
1325 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1326 opcode bytes 0x31 and 0x33 for `xorl'. */
1327
1328 /* `subl %eax, %eax' */
1329 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1330 /* `subl %ecx, %ecx' */
1331 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1332 /* `subl %edx, %edx' */
1333 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1334 /* `xorl %eax, %eax' */
1335 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1336 /* `xorl %ecx, %ecx' */
1337 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1338 /* `xorl %edx, %edx' */
1339 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1340 { 0 }
1341 };
1342
1343
1344 /* Check whether PC points to a no-op instruction. */
1345 static CORE_ADDR
1346 i386_skip_noop (CORE_ADDR pc)
1347 {
1348 gdb_byte op;
1349 int check = 1;
1350
1351 if (target_read_code (pc, &op, 1))
1352 return pc;
1353
1354 while (check)
1355 {
1356 check = 0;
1357 /* Ignore `nop' instruction. */
1358 if (op == 0x90)
1359 {
1360 pc += 1;
1361 if (target_read_code (pc, &op, 1))
1362 return pc;
1363 check = 1;
1364 }
1365 /* Ignore no-op instruction `mov %edi, %edi'.
1366 Microsoft system dlls often start with
1367 a `mov %edi,%edi' instruction.
1368 The 5 bytes before the function start are
1369 filled with `nop' instructions.
1370 This pattern can be used for hot-patching:
1371 The `mov %edi, %edi' instruction can be replaced by a
1372 near jump to the location of the 5 `nop' instructions
1373 which can be replaced by a 32-bit jump to anywhere
1374 in the 32-bit address space. */
1375
1376 else if (op == 0x8b)
1377 {
1378 if (target_read_code (pc + 1, &op, 1))
1379 return pc;
1380
1381 if (op == 0xff)
1382 {
1383 pc += 2;
1384 if (target_read_code (pc, &op, 1))
1385 return pc;
1386
1387 check = 1;
1388 }
1389 }
1390 }
1391 return pc;
1392 }
1393
1394 /* Check whether PC points at a code that sets up a new stack frame.
1395 If so, it updates CACHE and returns the address of the first
1396 instruction after the sequence that sets up the frame or LIMIT,
1397 whichever is smaller. If we don't recognize the code, return PC. */
1398
1399 static CORE_ADDR
1400 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1401 CORE_ADDR pc, CORE_ADDR limit,
1402 struct i386_frame_cache *cache)
1403 {
1404 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1405 struct i386_insn *insn;
1406 gdb_byte op;
1407 int skip = 0;
1408
1409 if (limit <= pc)
1410 return limit;
1411
1412 if (target_read_code (pc, &op, 1))
1413 return pc;
1414
1415 if (op == 0x55) /* pushl %ebp */
1416 {
1417 /* Take into account that we've executed the `pushl %ebp' that
1418 starts this instruction sequence. */
1419 cache->saved_regs[I386_EBP_REGNUM] = 0;
1420 cache->sp_offset += 4;
1421 pc++;
1422
1423 /* If that's all, return now. */
1424 if (limit <= pc)
1425 return limit;
1426
1427 /* Check for some special instructions that might be migrated by
1428 GCC into the prologue and skip them. At this point in the
1429 prologue, code should only touch the scratch registers %eax,
1430 %ecx and %edx, so while the number of posibilities is sheer,
1431 it is limited.
1432
1433 Make sure we only skip these instructions if we later see the
1434 `movl %esp, %ebp' that actually sets up the frame. */
1435 while (pc + skip < limit)
1436 {
1437 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1438 if (insn == NULL)
1439 break;
1440
1441 skip += insn->len;
1442 }
1443
1444 /* If that's all, return now. */
1445 if (limit <= pc + skip)
1446 return limit;
1447
1448 if (target_read_code (pc + skip, &op, 1))
1449 return pc + skip;
1450
1451 /* The i386 prologue looks like
1452
1453 push %ebp
1454 mov %esp,%ebp
1455 sub $0x10,%esp
1456
1457 and a different prologue can be generated for atom.
1458
1459 push %ebp
1460 lea (%esp),%ebp
1461 lea -0x10(%esp),%esp
1462
1463 We handle both of them here. */
1464
1465 switch (op)
1466 {
1467 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1468 case 0x8b:
1469 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1470 != 0xec)
1471 return pc;
1472 pc += (skip + 2);
1473 break;
1474 case 0x89:
1475 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1476 != 0xe5)
1477 return pc;
1478 pc += (skip + 2);
1479 break;
1480 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1481 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1482 != 0x242c)
1483 return pc;
1484 pc += (skip + 3);
1485 break;
1486 default:
1487 return pc;
1488 }
1489
1490 /* OK, we actually have a frame. We just don't know how large
1491 it is yet. Set its size to zero. We'll adjust it if
1492 necessary. We also now commit to skipping the special
1493 instructions mentioned before. */
1494 cache->locals = 0;
1495
1496 /* If that's all, return now. */
1497 if (limit <= pc)
1498 return limit;
1499
1500 /* Check for stack adjustment
1501
1502 subl $XXX, %esp
1503 or
1504 lea -XXX(%esp),%esp
1505
1506 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1507 reg, so we don't have to worry about a data16 prefix. */
1508 if (target_read_code (pc, &op, 1))
1509 return pc;
1510 if (op == 0x83)
1511 {
1512 /* `subl' with 8-bit immediate. */
1513 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1514 /* Some instruction starting with 0x83 other than `subl'. */
1515 return pc;
1516
1517 /* `subl' with signed 8-bit immediate (though it wouldn't
1518 make sense to be negative). */
1519 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1520 return pc + 3;
1521 }
1522 else if (op == 0x81)
1523 {
1524 /* Maybe it is `subl' with a 32-bit immediate. */
1525 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1526 /* Some instruction starting with 0x81 other than `subl'. */
1527 return pc;
1528
1529 /* It is `subl' with a 32-bit immediate. */
1530 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1531 return pc + 6;
1532 }
1533 else if (op == 0x8d)
1534 {
1535 /* The ModR/M byte is 0x64. */
1536 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1537 return pc;
1538 /* 'lea' with 8-bit displacement. */
1539 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1540 return pc + 4;
1541 }
1542 else
1543 {
1544 /* Some instruction other than `subl' nor 'lea'. */
1545 return pc;
1546 }
1547 }
1548 else if (op == 0xc8) /* enter */
1549 {
1550 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1551 return pc + 4;
1552 }
1553
1554 return pc;
1555 }
1556
1557 /* Check whether PC points at code that saves registers on the stack.
1558 If so, it updates CACHE and returns the address of the first
1559 instruction after the register saves or CURRENT_PC, whichever is
1560 smaller. Otherwise, return PC. */
1561
1562 static CORE_ADDR
1563 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1564 struct i386_frame_cache *cache)
1565 {
1566 CORE_ADDR offset = 0;
1567 gdb_byte op;
1568 int i;
1569
1570 if (cache->locals > 0)
1571 offset -= cache->locals;
1572 for (i = 0; i < 8 && pc < current_pc; i++)
1573 {
1574 if (target_read_code (pc, &op, 1))
1575 return pc;
1576 if (op < 0x50 || op > 0x57)
1577 break;
1578
1579 offset -= 4;
1580 cache->saved_regs[op - 0x50] = offset;
1581 cache->sp_offset += 4;
1582 pc++;
1583 }
1584
1585 return pc;
1586 }
1587
1588 /* Do a full analysis of the prologue at PC and update CACHE
1589 accordingly. Bail out early if CURRENT_PC is reached. Return the
1590 address where the analysis stopped.
1591
1592 We handle these cases:
1593
1594 The startup sequence can be at the start of the function, or the
1595 function can start with a branch to startup code at the end.
1596
1597 %ebp can be set up with either the 'enter' instruction, or "pushl
1598 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1599 once used in the System V compiler).
1600
1601 Local space is allocated just below the saved %ebp by either the
1602 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1603 16-bit unsigned argument for space to allocate, and the 'addl'
1604 instruction could have either a signed byte, or 32-bit immediate.
1605
1606 Next, the registers used by this function are pushed. With the
1607 System V compiler they will always be in the order: %edi, %esi,
1608 %ebx (and sometimes a harmless bug causes it to also save but not
1609 restore %eax); however, the code below is willing to see the pushes
1610 in any order, and will handle up to 8 of them.
1611
1612 If the setup sequence is at the end of the function, then the next
1613 instruction will be a branch back to the start. */
1614
1615 static CORE_ADDR
1616 i386_analyze_prologue (struct gdbarch *gdbarch,
1617 CORE_ADDR pc, CORE_ADDR current_pc,
1618 struct i386_frame_cache *cache)
1619 {
1620 pc = i386_skip_noop (pc);
1621 pc = i386_follow_jump (gdbarch, pc);
1622 pc = i386_analyze_struct_return (pc, current_pc, cache);
1623 pc = i386_skip_probe (pc);
1624 pc = i386_analyze_stack_align (pc, current_pc, cache);
1625 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1626 return i386_analyze_register_saves (pc, current_pc, cache);
1627 }
1628
1629 /* Return PC of first real instruction. */
1630
1631 static CORE_ADDR
1632 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1633 {
1634 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1635
1636 static gdb_byte pic_pat[6] =
1637 {
1638 0xe8, 0, 0, 0, 0, /* call 0x0 */
1639 0x5b, /* popl %ebx */
1640 };
1641 struct i386_frame_cache cache;
1642 CORE_ADDR pc;
1643 gdb_byte op;
1644 int i;
1645 CORE_ADDR func_addr;
1646
1647 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1648 {
1649 CORE_ADDR post_prologue_pc
1650 = skip_prologue_using_sal (gdbarch, func_addr);
1651 struct symtab *s = find_pc_symtab (func_addr);
1652
1653 /* Clang always emits a line note before the prologue and another
1654 one after. We trust clang to emit usable line notes. */
1655 if (post_prologue_pc
1656 && (s != NULL
1657 && s->producer != NULL
1658 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
1659 return max (start_pc, post_prologue_pc);
1660 }
1661
1662 cache.locals = -1;
1663 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1664 if (cache.locals < 0)
1665 return start_pc;
1666
1667 /* Found valid frame setup. */
1668
1669 /* The native cc on SVR4 in -K PIC mode inserts the following code
1670 to get the address of the global offset table (GOT) into register
1671 %ebx:
1672
1673 call 0x0
1674 popl %ebx
1675 movl %ebx,x(%ebp) (optional)
1676 addl y,%ebx
1677
1678 This code is with the rest of the prologue (at the end of the
1679 function), so we have to skip it to get to the first real
1680 instruction at the start of the function. */
1681
1682 for (i = 0; i < 6; i++)
1683 {
1684 if (target_read_code (pc + i, &op, 1))
1685 return pc;
1686
1687 if (pic_pat[i] != op)
1688 break;
1689 }
1690 if (i == 6)
1691 {
1692 int delta = 6;
1693
1694 if (target_read_code (pc + delta, &op, 1))
1695 return pc;
1696
1697 if (op == 0x89) /* movl %ebx, x(%ebp) */
1698 {
1699 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1700
1701 if (op == 0x5d) /* One byte offset from %ebp. */
1702 delta += 3;
1703 else if (op == 0x9d) /* Four byte offset from %ebp. */
1704 delta += 6;
1705 else /* Unexpected instruction. */
1706 delta = 0;
1707
1708 if (target_read_code (pc + delta, &op, 1))
1709 return pc;
1710 }
1711
1712 /* addl y,%ebx */
1713 if (delta > 0 && op == 0x81
1714 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1715 == 0xc3)
1716 {
1717 pc += delta + 6;
1718 }
1719 }
1720
1721 /* If the function starts with a branch (to startup code at the end)
1722 the last instruction should bring us back to the first
1723 instruction of the real code. */
1724 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1725 pc = i386_follow_jump (gdbarch, pc);
1726
1727 return pc;
1728 }
1729
1730 /* Check that the code pointed to by PC corresponds to a call to
1731 __main, skip it if so. Return PC otherwise. */
1732
1733 CORE_ADDR
1734 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1735 {
1736 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1737 gdb_byte op;
1738
1739 if (target_read_code (pc, &op, 1))
1740 return pc;
1741 if (op == 0xe8)
1742 {
1743 gdb_byte buf[4];
1744
1745 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1746 {
1747 /* Make sure address is computed correctly as a 32bit
1748 integer even if CORE_ADDR is 64 bit wide. */
1749 struct bound_minimal_symbol s;
1750 CORE_ADDR call_dest;
1751
1752 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1753 call_dest = call_dest & 0xffffffffU;
1754 s = lookup_minimal_symbol_by_pc (call_dest);
1755 if (s.minsym != NULL
1756 && SYMBOL_LINKAGE_NAME (s.minsym) != NULL
1757 && strcmp (SYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1758 pc += 5;
1759 }
1760 }
1761
1762 return pc;
1763 }
1764
1765 /* This function is 64-bit safe. */
1766
1767 static CORE_ADDR
1768 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1769 {
1770 gdb_byte buf[8];
1771
1772 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1773 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1774 }
1775 \f
1776
1777 /* Normal frames. */
1778
1779 static void
1780 i386_frame_cache_1 (struct frame_info *this_frame,
1781 struct i386_frame_cache *cache)
1782 {
1783 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1784 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1785 gdb_byte buf[4];
1786 int i;
1787
1788 cache->pc = get_frame_func (this_frame);
1789
1790 /* In principle, for normal frames, %ebp holds the frame pointer,
1791 which holds the base address for the current stack frame.
1792 However, for functions that don't need it, the frame pointer is
1793 optional. For these "frameless" functions the frame pointer is
1794 actually the frame pointer of the calling frame. Signal
1795 trampolines are just a special case of a "frameless" function.
1796 They (usually) share their frame pointer with the frame that was
1797 in progress when the signal occurred. */
1798
1799 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1800 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1801 if (cache->base == 0)
1802 {
1803 cache->base_p = 1;
1804 return;
1805 }
1806
1807 /* For normal frames, %eip is stored at 4(%ebp). */
1808 cache->saved_regs[I386_EIP_REGNUM] = 4;
1809
1810 if (cache->pc != 0)
1811 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1812 cache);
1813
1814 if (cache->locals < 0)
1815 {
1816 /* We didn't find a valid frame, which means that CACHE->base
1817 currently holds the frame pointer for our calling frame. If
1818 we're at the start of a function, or somewhere half-way its
1819 prologue, the function's frame probably hasn't been fully
1820 setup yet. Try to reconstruct the base address for the stack
1821 frame by looking at the stack pointer. For truly "frameless"
1822 functions this might work too. */
1823
1824 if (cache->saved_sp_reg != -1)
1825 {
1826 /* Saved stack pointer has been saved. */
1827 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1828 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1829
1830 /* We're halfway aligning the stack. */
1831 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1832 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1833
1834 /* This will be added back below. */
1835 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1836 }
1837 else if (cache->pc != 0
1838 || target_read_code (get_frame_pc (this_frame), buf, 1))
1839 {
1840 /* We're in a known function, but did not find a frame
1841 setup. Assume that the function does not use %ebp.
1842 Alternatively, we may have jumped to an invalid
1843 address; in that case there is definitely no new
1844 frame in %ebp. */
1845 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1846 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1847 + cache->sp_offset;
1848 }
1849 else
1850 /* We're in an unknown function. We could not find the start
1851 of the function to analyze the prologue; our best option is
1852 to assume a typical frame layout with the caller's %ebp
1853 saved. */
1854 cache->saved_regs[I386_EBP_REGNUM] = 0;
1855 }
1856
1857 if (cache->saved_sp_reg != -1)
1858 {
1859 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1860 register may be unavailable). */
1861 if (cache->saved_sp == 0
1862 && deprecated_frame_register_read (this_frame,
1863 cache->saved_sp_reg, buf))
1864 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1865 }
1866 /* Now that we have the base address for the stack frame we can
1867 calculate the value of %esp in the calling frame. */
1868 else if (cache->saved_sp == 0)
1869 cache->saved_sp = cache->base + 8;
1870
1871 /* Adjust all the saved registers such that they contain addresses
1872 instead of offsets. */
1873 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1874 if (cache->saved_regs[i] != -1)
1875 cache->saved_regs[i] += cache->base;
1876
1877 cache->base_p = 1;
1878 }
1879
1880 static struct i386_frame_cache *
1881 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1882 {
1883 volatile struct gdb_exception ex;
1884 struct i386_frame_cache *cache;
1885
1886 if (*this_cache)
1887 return *this_cache;
1888
1889 cache = i386_alloc_frame_cache ();
1890 *this_cache = cache;
1891
1892 TRY_CATCH (ex, RETURN_MASK_ERROR)
1893 {
1894 i386_frame_cache_1 (this_frame, cache);
1895 }
1896 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1897 throw_exception (ex);
1898
1899 return cache;
1900 }
1901
1902 static void
1903 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1904 struct frame_id *this_id)
1905 {
1906 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1907
1908 if (!cache->base_p)
1909 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
1910 else if (cache->base == 0)
1911 {
1912 /* This marks the outermost frame. */
1913 }
1914 else
1915 {
1916 /* See the end of i386_push_dummy_call. */
1917 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1918 }
1919 }
1920
1921 static enum unwind_stop_reason
1922 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1923 void **this_cache)
1924 {
1925 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1926
1927 if (!cache->base_p)
1928 return UNWIND_UNAVAILABLE;
1929
1930 /* This marks the outermost frame. */
1931 if (cache->base == 0)
1932 return UNWIND_OUTERMOST;
1933
1934 return UNWIND_NO_REASON;
1935 }
1936
1937 static struct value *
1938 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1939 int regnum)
1940 {
1941 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1942
1943 gdb_assert (regnum >= 0);
1944
1945 /* The System V ABI says that:
1946
1947 "The flags register contains the system flags, such as the
1948 direction flag and the carry flag. The direction flag must be
1949 set to the forward (that is, zero) direction before entry and
1950 upon exit from a function. Other user flags have no specified
1951 role in the standard calling sequence and are not preserved."
1952
1953 To guarantee the "upon exit" part of that statement we fake a
1954 saved flags register that has its direction flag cleared.
1955
1956 Note that GCC doesn't seem to rely on the fact that the direction
1957 flag is cleared after a function return; it always explicitly
1958 clears the flag before operations where it matters.
1959
1960 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1961 right thing to do. The way we fake the flags register here makes
1962 it impossible to change it. */
1963
1964 if (regnum == I386_EFLAGS_REGNUM)
1965 {
1966 ULONGEST val;
1967
1968 val = get_frame_register_unsigned (this_frame, regnum);
1969 val &= ~(1 << 10);
1970 return frame_unwind_got_constant (this_frame, regnum, val);
1971 }
1972
1973 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1974 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1975
1976 if (regnum == I386_ESP_REGNUM
1977 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
1978 {
1979 /* If the SP has been saved, but we don't know where, then this
1980 means that SAVED_SP_REG register was found unavailable back
1981 when we built the cache. */
1982 if (cache->saved_sp == 0)
1983 return frame_unwind_got_register (this_frame, regnum,
1984 cache->saved_sp_reg);
1985 else
1986 return frame_unwind_got_constant (this_frame, regnum,
1987 cache->saved_sp);
1988 }
1989
1990 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1991 return frame_unwind_got_memory (this_frame, regnum,
1992 cache->saved_regs[regnum]);
1993
1994 return frame_unwind_got_register (this_frame, regnum, regnum);
1995 }
1996
1997 static const struct frame_unwind i386_frame_unwind =
1998 {
1999 NORMAL_FRAME,
2000 i386_frame_unwind_stop_reason,
2001 i386_frame_this_id,
2002 i386_frame_prev_register,
2003 NULL,
2004 default_frame_sniffer
2005 };
2006
2007 /* Normal frames, but in a function epilogue. */
2008
2009 /* The epilogue is defined here as the 'ret' instruction, which will
2010 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2011 the function's stack frame. */
2012
2013 static int
2014 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2015 {
2016 gdb_byte insn;
2017 struct symtab *symtab;
2018
2019 symtab = find_pc_symtab (pc);
2020 if (symtab && symtab->epilogue_unwind_valid)
2021 return 0;
2022
2023 if (target_read_memory (pc, &insn, 1))
2024 return 0; /* Can't read memory at pc. */
2025
2026 if (insn != 0xc3) /* 'ret' instruction. */
2027 return 0;
2028
2029 return 1;
2030 }
2031
2032 static int
2033 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2034 struct frame_info *this_frame,
2035 void **this_prologue_cache)
2036 {
2037 if (frame_relative_level (this_frame) == 0)
2038 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
2039 get_frame_pc (this_frame));
2040 else
2041 return 0;
2042 }
2043
2044 static struct i386_frame_cache *
2045 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2046 {
2047 volatile struct gdb_exception ex;
2048 struct i386_frame_cache *cache;
2049 CORE_ADDR sp;
2050
2051 if (*this_cache)
2052 return *this_cache;
2053
2054 cache = i386_alloc_frame_cache ();
2055 *this_cache = cache;
2056
2057 TRY_CATCH (ex, RETURN_MASK_ERROR)
2058 {
2059 cache->pc = get_frame_func (this_frame);
2060
2061 /* At this point the stack looks as if we just entered the
2062 function, with the return address at the top of the
2063 stack. */
2064 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2065 cache->base = sp + cache->sp_offset;
2066 cache->saved_sp = cache->base + 8;
2067 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2068
2069 cache->base_p = 1;
2070 }
2071 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2072 throw_exception (ex);
2073
2074 return cache;
2075 }
2076
2077 static enum unwind_stop_reason
2078 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2079 void **this_cache)
2080 {
2081 struct i386_frame_cache *cache =
2082 i386_epilogue_frame_cache (this_frame, this_cache);
2083
2084 if (!cache->base_p)
2085 return UNWIND_UNAVAILABLE;
2086
2087 return UNWIND_NO_REASON;
2088 }
2089
2090 static void
2091 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2092 void **this_cache,
2093 struct frame_id *this_id)
2094 {
2095 struct i386_frame_cache *cache =
2096 i386_epilogue_frame_cache (this_frame, this_cache);
2097
2098 if (!cache->base_p)
2099 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2100 else
2101 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2102 }
2103
2104 static struct value *
2105 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2106 void **this_cache, int regnum)
2107 {
2108 /* Make sure we've initialized the cache. */
2109 i386_epilogue_frame_cache (this_frame, this_cache);
2110
2111 return i386_frame_prev_register (this_frame, this_cache, regnum);
2112 }
2113
2114 static const struct frame_unwind i386_epilogue_frame_unwind =
2115 {
2116 NORMAL_FRAME,
2117 i386_epilogue_frame_unwind_stop_reason,
2118 i386_epilogue_frame_this_id,
2119 i386_epilogue_frame_prev_register,
2120 NULL,
2121 i386_epilogue_frame_sniffer
2122 };
2123 \f
2124
2125 /* Stack-based trampolines. */
2126
2127 /* These trampolines are used on cross x86 targets, when taking the
2128 address of a nested function. When executing these trampolines,
2129 no stack frame is set up, so we are in a similar situation as in
2130 epilogues and i386_epilogue_frame_this_id can be re-used. */
2131
2132 /* Static chain passed in register. */
2133
2134 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2135 {
2136 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2137 { 5, { 0xb8 }, { 0xfe } },
2138
2139 /* `jmp imm32' */
2140 { 5, { 0xe9 }, { 0xff } },
2141
2142 {0}
2143 };
2144
2145 /* Static chain passed on stack (when regparm=3). */
2146
2147 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2148 {
2149 /* `push imm32' */
2150 { 5, { 0x68 }, { 0xff } },
2151
2152 /* `jmp imm32' */
2153 { 5, { 0xe9 }, { 0xff } },
2154
2155 {0}
2156 };
2157
2158 /* Return whether PC points inside a stack trampoline. */
2159
2160 static int
2161 i386_in_stack_tramp_p (CORE_ADDR pc)
2162 {
2163 gdb_byte insn;
2164 const char *name;
2165
2166 /* A stack trampoline is detected if no name is associated
2167 to the current pc and if it points inside a trampoline
2168 sequence. */
2169
2170 find_pc_partial_function (pc, &name, NULL, NULL);
2171 if (name)
2172 return 0;
2173
2174 if (target_read_memory (pc, &insn, 1))
2175 return 0;
2176
2177 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2178 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2179 return 0;
2180
2181 return 1;
2182 }
2183
2184 static int
2185 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2186 struct frame_info *this_frame,
2187 void **this_cache)
2188 {
2189 if (frame_relative_level (this_frame) == 0)
2190 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2191 else
2192 return 0;
2193 }
2194
2195 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2196 {
2197 NORMAL_FRAME,
2198 i386_epilogue_frame_unwind_stop_reason,
2199 i386_epilogue_frame_this_id,
2200 i386_epilogue_frame_prev_register,
2201 NULL,
2202 i386_stack_tramp_frame_sniffer
2203 };
2204 \f
2205 /* Generate a bytecode expression to get the value of the saved PC. */
2206
2207 static void
2208 i386_gen_return_address (struct gdbarch *gdbarch,
2209 struct agent_expr *ax, struct axs_value *value,
2210 CORE_ADDR scope)
2211 {
2212 /* The following sequence assumes the traditional use of the base
2213 register. */
2214 ax_reg (ax, I386_EBP_REGNUM);
2215 ax_const_l (ax, 4);
2216 ax_simple (ax, aop_add);
2217 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2218 value->kind = axs_lvalue_memory;
2219 }
2220 \f
2221
2222 /* Signal trampolines. */
2223
2224 static struct i386_frame_cache *
2225 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2226 {
2227 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2228 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2229 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2230 volatile struct gdb_exception ex;
2231 struct i386_frame_cache *cache;
2232 CORE_ADDR addr;
2233 gdb_byte buf[4];
2234
2235 if (*this_cache)
2236 return *this_cache;
2237
2238 cache = i386_alloc_frame_cache ();
2239
2240 TRY_CATCH (ex, RETURN_MASK_ERROR)
2241 {
2242 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2243 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2244
2245 addr = tdep->sigcontext_addr (this_frame);
2246 if (tdep->sc_reg_offset)
2247 {
2248 int i;
2249
2250 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2251
2252 for (i = 0; i < tdep->sc_num_regs; i++)
2253 if (tdep->sc_reg_offset[i] != -1)
2254 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2255 }
2256 else
2257 {
2258 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2259 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2260 }
2261
2262 cache->base_p = 1;
2263 }
2264 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2265 throw_exception (ex);
2266
2267 *this_cache = cache;
2268 return cache;
2269 }
2270
2271 static enum unwind_stop_reason
2272 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2273 void **this_cache)
2274 {
2275 struct i386_frame_cache *cache =
2276 i386_sigtramp_frame_cache (this_frame, this_cache);
2277
2278 if (!cache->base_p)
2279 return UNWIND_UNAVAILABLE;
2280
2281 return UNWIND_NO_REASON;
2282 }
2283
2284 static void
2285 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2286 struct frame_id *this_id)
2287 {
2288 struct i386_frame_cache *cache =
2289 i386_sigtramp_frame_cache (this_frame, this_cache);
2290
2291 if (!cache->base_p)
2292 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2293 else
2294 {
2295 /* See the end of i386_push_dummy_call. */
2296 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2297 }
2298 }
2299
2300 static struct value *
2301 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2302 void **this_cache, int regnum)
2303 {
2304 /* Make sure we've initialized the cache. */
2305 i386_sigtramp_frame_cache (this_frame, this_cache);
2306
2307 return i386_frame_prev_register (this_frame, this_cache, regnum);
2308 }
2309
2310 static int
2311 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2312 struct frame_info *this_frame,
2313 void **this_prologue_cache)
2314 {
2315 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2316
2317 /* We shouldn't even bother if we don't have a sigcontext_addr
2318 handler. */
2319 if (tdep->sigcontext_addr == NULL)
2320 return 0;
2321
2322 if (tdep->sigtramp_p != NULL)
2323 {
2324 if (tdep->sigtramp_p (this_frame))
2325 return 1;
2326 }
2327
2328 if (tdep->sigtramp_start != 0)
2329 {
2330 CORE_ADDR pc = get_frame_pc (this_frame);
2331
2332 gdb_assert (tdep->sigtramp_end != 0);
2333 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2334 return 1;
2335 }
2336
2337 return 0;
2338 }
2339
2340 static const struct frame_unwind i386_sigtramp_frame_unwind =
2341 {
2342 SIGTRAMP_FRAME,
2343 i386_sigtramp_frame_unwind_stop_reason,
2344 i386_sigtramp_frame_this_id,
2345 i386_sigtramp_frame_prev_register,
2346 NULL,
2347 i386_sigtramp_frame_sniffer
2348 };
2349 \f
2350
2351 static CORE_ADDR
2352 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2353 {
2354 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2355
2356 return cache->base;
2357 }
2358
2359 static const struct frame_base i386_frame_base =
2360 {
2361 &i386_frame_unwind,
2362 i386_frame_base_address,
2363 i386_frame_base_address,
2364 i386_frame_base_address
2365 };
2366
2367 static struct frame_id
2368 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2369 {
2370 CORE_ADDR fp;
2371
2372 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2373
2374 /* See the end of i386_push_dummy_call. */
2375 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2376 }
2377
2378 /* _Decimal128 function return values need 16-byte alignment on the
2379 stack. */
2380
2381 static CORE_ADDR
2382 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2383 {
2384 return sp & -(CORE_ADDR)16;
2385 }
2386 \f
2387
2388 /* Figure out where the longjmp will land. Slurp the args out of the
2389 stack. We expect the first arg to be a pointer to the jmp_buf
2390 structure from which we extract the address that we will land at.
2391 This address is copied into PC. This routine returns non-zero on
2392 success. */
2393
2394 static int
2395 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2396 {
2397 gdb_byte buf[4];
2398 CORE_ADDR sp, jb_addr;
2399 struct gdbarch *gdbarch = get_frame_arch (frame);
2400 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2401 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2402
2403 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2404 longjmp will land. */
2405 if (jb_pc_offset == -1)
2406 return 0;
2407
2408 get_frame_register (frame, I386_ESP_REGNUM, buf);
2409 sp = extract_unsigned_integer (buf, 4, byte_order);
2410 if (target_read_memory (sp + 4, buf, 4))
2411 return 0;
2412
2413 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2414 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2415 return 0;
2416
2417 *pc = extract_unsigned_integer (buf, 4, byte_order);
2418 return 1;
2419 }
2420 \f
2421
2422 /* Check whether TYPE must be 16-byte-aligned when passed as a
2423 function argument. 16-byte vectors, _Decimal128 and structures or
2424 unions containing such types must be 16-byte-aligned; other
2425 arguments are 4-byte-aligned. */
2426
2427 static int
2428 i386_16_byte_align_p (struct type *type)
2429 {
2430 type = check_typedef (type);
2431 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2432 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2433 && TYPE_LENGTH (type) == 16)
2434 return 1;
2435 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2436 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2437 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2438 || TYPE_CODE (type) == TYPE_CODE_UNION)
2439 {
2440 int i;
2441 for (i = 0; i < TYPE_NFIELDS (type); i++)
2442 {
2443 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2444 return 1;
2445 }
2446 }
2447 return 0;
2448 }
2449
2450 /* Implementation for set_gdbarch_push_dummy_code. */
2451
2452 static CORE_ADDR
2453 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2454 struct value **args, int nargs, struct type *value_type,
2455 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2456 struct regcache *regcache)
2457 {
2458 /* Use 0xcc breakpoint - 1 byte. */
2459 *bp_addr = sp - 1;
2460 *real_pc = funaddr;
2461
2462 /* Keep the stack aligned. */
2463 return sp - 16;
2464 }
2465
2466 static CORE_ADDR
2467 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2468 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2469 struct value **args, CORE_ADDR sp, int struct_return,
2470 CORE_ADDR struct_addr)
2471 {
2472 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2473 gdb_byte buf[4];
2474 int i;
2475 int write_pass;
2476 int args_space = 0;
2477
2478 /* Determine the total space required for arguments and struct
2479 return address in a first pass (allowing for 16-byte-aligned
2480 arguments), then push arguments in a second pass. */
2481
2482 for (write_pass = 0; write_pass < 2; write_pass++)
2483 {
2484 int args_space_used = 0;
2485
2486 if (struct_return)
2487 {
2488 if (write_pass)
2489 {
2490 /* Push value address. */
2491 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2492 write_memory (sp, buf, 4);
2493 args_space_used += 4;
2494 }
2495 else
2496 args_space += 4;
2497 }
2498
2499 for (i = 0; i < nargs; i++)
2500 {
2501 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2502
2503 if (write_pass)
2504 {
2505 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2506 args_space_used = align_up (args_space_used, 16);
2507
2508 write_memory (sp + args_space_used,
2509 value_contents_all (args[i]), len);
2510 /* The System V ABI says that:
2511
2512 "An argument's size is increased, if necessary, to make it a
2513 multiple of [32-bit] words. This may require tail padding,
2514 depending on the size of the argument."
2515
2516 This makes sure the stack stays word-aligned. */
2517 args_space_used += align_up (len, 4);
2518 }
2519 else
2520 {
2521 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2522 args_space = align_up (args_space, 16);
2523 args_space += align_up (len, 4);
2524 }
2525 }
2526
2527 if (!write_pass)
2528 {
2529 sp -= args_space;
2530
2531 /* The original System V ABI only requires word alignment,
2532 but modern incarnations need 16-byte alignment in order
2533 to support SSE. Since wasting a few bytes here isn't
2534 harmful we unconditionally enforce 16-byte alignment. */
2535 sp &= ~0xf;
2536 }
2537 }
2538
2539 /* Store return address. */
2540 sp -= 4;
2541 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2542 write_memory (sp, buf, 4);
2543
2544 /* Finally, update the stack pointer... */
2545 store_unsigned_integer (buf, 4, byte_order, sp);
2546 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2547
2548 /* ...and fake a frame pointer. */
2549 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2550
2551 /* MarkK wrote: This "+ 8" is all over the place:
2552 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2553 i386_dummy_id). It's there, since all frame unwinders for
2554 a given target have to agree (within a certain margin) on the
2555 definition of the stack address of a frame. Otherwise frame id
2556 comparison might not work correctly. Since DWARF2/GCC uses the
2557 stack address *before* the function call as a frame's CFA. On
2558 the i386, when %ebp is used as a frame pointer, the offset
2559 between the contents %ebp and the CFA as defined by GCC. */
2560 return sp + 8;
2561 }
2562
2563 /* These registers are used for returning integers (and on some
2564 targets also for returning `struct' and `union' values when their
2565 size and alignment match an integer type). */
2566 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2567 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2568
2569 /* Read, for architecture GDBARCH, a function return value of TYPE
2570 from REGCACHE, and copy that into VALBUF. */
2571
2572 static void
2573 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2574 struct regcache *regcache, gdb_byte *valbuf)
2575 {
2576 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2577 int len = TYPE_LENGTH (type);
2578 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2579
2580 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2581 {
2582 if (tdep->st0_regnum < 0)
2583 {
2584 warning (_("Cannot find floating-point return value."));
2585 memset (valbuf, 0, len);
2586 return;
2587 }
2588
2589 /* Floating-point return values can be found in %st(0). Convert
2590 its contents to the desired type. This is probably not
2591 exactly how it would happen on the target itself, but it is
2592 the best we can do. */
2593 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2594 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2595 }
2596 else
2597 {
2598 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2599 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2600
2601 if (len <= low_size)
2602 {
2603 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2604 memcpy (valbuf, buf, len);
2605 }
2606 else if (len <= (low_size + high_size))
2607 {
2608 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2609 memcpy (valbuf, buf, low_size);
2610 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2611 memcpy (valbuf + low_size, buf, len - low_size);
2612 }
2613 else
2614 internal_error (__FILE__, __LINE__,
2615 _("Cannot extract return value of %d bytes long."),
2616 len);
2617 }
2618 }
2619
2620 /* Write, for architecture GDBARCH, a function return value of TYPE
2621 from VALBUF into REGCACHE. */
2622
2623 static void
2624 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2625 struct regcache *regcache, const gdb_byte *valbuf)
2626 {
2627 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2628 int len = TYPE_LENGTH (type);
2629
2630 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2631 {
2632 ULONGEST fstat;
2633 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2634
2635 if (tdep->st0_regnum < 0)
2636 {
2637 warning (_("Cannot set floating-point return value."));
2638 return;
2639 }
2640
2641 /* Returning floating-point values is a bit tricky. Apart from
2642 storing the return value in %st(0), we have to simulate the
2643 state of the FPU at function return point. */
2644
2645 /* Convert the value found in VALBUF to the extended
2646 floating-point format used by the FPU. This is probably
2647 not exactly how it would happen on the target itself, but
2648 it is the best we can do. */
2649 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2650 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2651
2652 /* Set the top of the floating-point register stack to 7. The
2653 actual value doesn't really matter, but 7 is what a normal
2654 function return would end up with if the program started out
2655 with a freshly initialized FPU. */
2656 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2657 fstat |= (7 << 11);
2658 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2659
2660 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2661 the floating-point register stack to 7, the appropriate value
2662 for the tag word is 0x3fff. */
2663 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2664 }
2665 else
2666 {
2667 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2668 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2669
2670 if (len <= low_size)
2671 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2672 else if (len <= (low_size + high_size))
2673 {
2674 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2675 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2676 len - low_size, valbuf + low_size);
2677 }
2678 else
2679 internal_error (__FILE__, __LINE__,
2680 _("Cannot store return value of %d bytes long."), len);
2681 }
2682 }
2683 \f
2684
2685 /* This is the variable that is set with "set struct-convention", and
2686 its legitimate values. */
2687 static const char default_struct_convention[] = "default";
2688 static const char pcc_struct_convention[] = "pcc";
2689 static const char reg_struct_convention[] = "reg";
2690 static const char *const valid_conventions[] =
2691 {
2692 default_struct_convention,
2693 pcc_struct_convention,
2694 reg_struct_convention,
2695 NULL
2696 };
2697 static const char *struct_convention = default_struct_convention;
2698
2699 /* Return non-zero if TYPE, which is assumed to be a structure,
2700 a union type, or an array type, should be returned in registers
2701 for architecture GDBARCH. */
2702
2703 static int
2704 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2705 {
2706 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2707 enum type_code code = TYPE_CODE (type);
2708 int len = TYPE_LENGTH (type);
2709
2710 gdb_assert (code == TYPE_CODE_STRUCT
2711 || code == TYPE_CODE_UNION
2712 || code == TYPE_CODE_ARRAY);
2713
2714 if (struct_convention == pcc_struct_convention
2715 || (struct_convention == default_struct_convention
2716 && tdep->struct_return == pcc_struct_return))
2717 return 0;
2718
2719 /* Structures consisting of a single `float', `double' or 'long
2720 double' member are returned in %st(0). */
2721 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2722 {
2723 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2724 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2725 return (len == 4 || len == 8 || len == 12);
2726 }
2727
2728 return (len == 1 || len == 2 || len == 4 || len == 8);
2729 }
2730
2731 /* Determine, for architecture GDBARCH, how a return value of TYPE
2732 should be returned. If it is supposed to be returned in registers,
2733 and READBUF is non-zero, read the appropriate value from REGCACHE,
2734 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2735 from WRITEBUF into REGCACHE. */
2736
2737 static enum return_value_convention
2738 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2739 struct type *type, struct regcache *regcache,
2740 gdb_byte *readbuf, const gdb_byte *writebuf)
2741 {
2742 enum type_code code = TYPE_CODE (type);
2743
2744 if (((code == TYPE_CODE_STRUCT
2745 || code == TYPE_CODE_UNION
2746 || code == TYPE_CODE_ARRAY)
2747 && !i386_reg_struct_return_p (gdbarch, type))
2748 /* Complex double and long double uses the struct return covention. */
2749 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2750 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2751 /* 128-bit decimal float uses the struct return convention. */
2752 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2753 {
2754 /* The System V ABI says that:
2755
2756 "A function that returns a structure or union also sets %eax
2757 to the value of the original address of the caller's area
2758 before it returns. Thus when the caller receives control
2759 again, the address of the returned object resides in register
2760 %eax and can be used to access the object."
2761
2762 So the ABI guarantees that we can always find the return
2763 value just after the function has returned. */
2764
2765 /* Note that the ABI doesn't mention functions returning arrays,
2766 which is something possible in certain languages such as Ada.
2767 In this case, the value is returned as if it was wrapped in
2768 a record, so the convention applied to records also applies
2769 to arrays. */
2770
2771 if (readbuf)
2772 {
2773 ULONGEST addr;
2774
2775 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2776 read_memory (addr, readbuf, TYPE_LENGTH (type));
2777 }
2778
2779 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2780 }
2781
2782 /* This special case is for structures consisting of a single
2783 `float', `double' or 'long double' member. These structures are
2784 returned in %st(0). For these structures, we call ourselves
2785 recursively, changing TYPE into the type of the first member of
2786 the structure. Since that should work for all structures that
2787 have only one member, we don't bother to check the member's type
2788 here. */
2789 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2790 {
2791 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2792 return i386_return_value (gdbarch, function, type, regcache,
2793 readbuf, writebuf);
2794 }
2795
2796 if (readbuf)
2797 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2798 if (writebuf)
2799 i386_store_return_value (gdbarch, type, regcache, writebuf);
2800
2801 return RETURN_VALUE_REGISTER_CONVENTION;
2802 }
2803 \f
2804
2805 struct type *
2806 i387_ext_type (struct gdbarch *gdbarch)
2807 {
2808 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2809
2810 if (!tdep->i387_ext_type)
2811 {
2812 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2813 gdb_assert (tdep->i387_ext_type != NULL);
2814 }
2815
2816 return tdep->i387_ext_type;
2817 }
2818
2819 /* Construct type for pseudo BND registers. We can't use
2820 tdesc_find_type since a complement of one value has to be used
2821 to describe the upper bound. */
2822
2823 static struct type *
2824 i386_bnd_type (struct gdbarch *gdbarch)
2825 {
2826 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2827
2828
2829 if (!tdep->i386_bnd_type)
2830 {
2831 struct type *t, *bound_t;
2832 const struct builtin_type *bt = builtin_type (gdbarch);
2833
2834 /* The type we're building is described bellow: */
2835 #if 0
2836 struct __bound128
2837 {
2838 void *lbound;
2839 void *ubound; /* One complement of raw ubound field. */
2840 };
2841 #endif
2842
2843 t = arch_composite_type (gdbarch,
2844 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
2845
2846 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
2847 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
2848
2849 TYPE_NAME (t) = "builtin_type_bound128";
2850 tdep->i386_bnd_type = t;
2851 }
2852
2853 return tdep->i386_bnd_type;
2854 }
2855
2856 /* Construct vector type for pseudo YMM registers. We can't use
2857 tdesc_find_type since YMM isn't described in target description. */
2858
2859 static struct type *
2860 i386_ymm_type (struct gdbarch *gdbarch)
2861 {
2862 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2863
2864 if (!tdep->i386_ymm_type)
2865 {
2866 const struct builtin_type *bt = builtin_type (gdbarch);
2867
2868 /* The type we're building is this: */
2869 #if 0
2870 union __gdb_builtin_type_vec256i
2871 {
2872 int128_t uint128[2];
2873 int64_t v2_int64[4];
2874 int32_t v4_int32[8];
2875 int16_t v8_int16[16];
2876 int8_t v16_int8[32];
2877 double v2_double[4];
2878 float v4_float[8];
2879 };
2880 #endif
2881
2882 struct type *t;
2883
2884 t = arch_composite_type (gdbarch,
2885 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2886 append_composite_type_field (t, "v8_float",
2887 init_vector_type (bt->builtin_float, 8));
2888 append_composite_type_field (t, "v4_double",
2889 init_vector_type (bt->builtin_double, 4));
2890 append_composite_type_field (t, "v32_int8",
2891 init_vector_type (bt->builtin_int8, 32));
2892 append_composite_type_field (t, "v16_int16",
2893 init_vector_type (bt->builtin_int16, 16));
2894 append_composite_type_field (t, "v8_int32",
2895 init_vector_type (bt->builtin_int32, 8));
2896 append_composite_type_field (t, "v4_int64",
2897 init_vector_type (bt->builtin_int64, 4));
2898 append_composite_type_field (t, "v2_int128",
2899 init_vector_type (bt->builtin_int128, 2));
2900
2901 TYPE_VECTOR (t) = 1;
2902 TYPE_NAME (t) = "builtin_type_vec256i";
2903 tdep->i386_ymm_type = t;
2904 }
2905
2906 return tdep->i386_ymm_type;
2907 }
2908
2909 /* Construct vector type for MMX registers. */
2910 static struct type *
2911 i386_mmx_type (struct gdbarch *gdbarch)
2912 {
2913 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2914
2915 if (!tdep->i386_mmx_type)
2916 {
2917 const struct builtin_type *bt = builtin_type (gdbarch);
2918
2919 /* The type we're building is this: */
2920 #if 0
2921 union __gdb_builtin_type_vec64i
2922 {
2923 int64_t uint64;
2924 int32_t v2_int32[2];
2925 int16_t v4_int16[4];
2926 int8_t v8_int8[8];
2927 };
2928 #endif
2929
2930 struct type *t;
2931
2932 t = arch_composite_type (gdbarch,
2933 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2934
2935 append_composite_type_field (t, "uint64", bt->builtin_int64);
2936 append_composite_type_field (t, "v2_int32",
2937 init_vector_type (bt->builtin_int32, 2));
2938 append_composite_type_field (t, "v4_int16",
2939 init_vector_type (bt->builtin_int16, 4));
2940 append_composite_type_field (t, "v8_int8",
2941 init_vector_type (bt->builtin_int8, 8));
2942
2943 TYPE_VECTOR (t) = 1;
2944 TYPE_NAME (t) = "builtin_type_vec64i";
2945 tdep->i386_mmx_type = t;
2946 }
2947
2948 return tdep->i386_mmx_type;
2949 }
2950
2951 /* Return the GDB type object for the "standard" data type of data in
2952 register REGNUM. */
2953
2954 struct type *
2955 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2956 {
2957 if (i386_bnd_regnum_p (gdbarch, regnum))
2958 return i386_bnd_type (gdbarch);
2959 if (i386_mmx_regnum_p (gdbarch, regnum))
2960 return i386_mmx_type (gdbarch);
2961 else if (i386_ymm_regnum_p (gdbarch, regnum))
2962 return i386_ymm_type (gdbarch);
2963 else
2964 {
2965 const struct builtin_type *bt = builtin_type (gdbarch);
2966 if (i386_byte_regnum_p (gdbarch, regnum))
2967 return bt->builtin_int8;
2968 else if (i386_word_regnum_p (gdbarch, regnum))
2969 return bt->builtin_int16;
2970 else if (i386_dword_regnum_p (gdbarch, regnum))
2971 return bt->builtin_int32;
2972 }
2973
2974 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2975 }
2976
2977 /* Map a cooked register onto a raw register or memory. For the i386,
2978 the MMX registers need to be mapped onto floating point registers. */
2979
2980 static int
2981 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2982 {
2983 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2984 int mmxreg, fpreg;
2985 ULONGEST fstat;
2986 int tos;
2987
2988 mmxreg = regnum - tdep->mm0_regnum;
2989 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2990 tos = (fstat >> 11) & 0x7;
2991 fpreg = (mmxreg + tos) % 8;
2992
2993 return (I387_ST0_REGNUM (tdep) + fpreg);
2994 }
2995
2996 /* A helper function for us by i386_pseudo_register_read_value and
2997 amd64_pseudo_register_read_value. It does all the work but reads
2998 the data into an already-allocated value. */
2999
3000 void
3001 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3002 struct regcache *regcache,
3003 int regnum,
3004 struct value *result_value)
3005 {
3006 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3007 enum register_status status;
3008 gdb_byte *buf = value_contents_raw (result_value);
3009
3010 if (i386_mmx_regnum_p (gdbarch, regnum))
3011 {
3012 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3013
3014 /* Extract (always little endian). */
3015 status = regcache_raw_read (regcache, fpnum, raw_buf);
3016 if (status != REG_VALID)
3017 mark_value_bytes_unavailable (result_value, 0,
3018 TYPE_LENGTH (value_type (result_value)));
3019 else
3020 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3021 }
3022 else
3023 {
3024 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3025 if (i386_bnd_regnum_p (gdbarch, regnum))
3026 {
3027 regnum -= tdep->bnd0_regnum;
3028
3029 /* Extract (always little endian). Read lower 128bits. */
3030 status = regcache_raw_read (regcache,
3031 I387_BND0R_REGNUM (tdep) + regnum,
3032 raw_buf);
3033 if (status != REG_VALID)
3034 mark_value_bytes_unavailable (result_value, 0, 16);
3035 else
3036 {
3037 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3038 LONGEST upper, lower;
3039 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3040
3041 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3042 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3043 upper = ~upper;
3044
3045 memcpy (buf, &lower, size);
3046 memcpy (buf + size, &upper, size);
3047 }
3048 }
3049 else if (i386_ymm_regnum_p (gdbarch, regnum))
3050 {
3051 regnum -= tdep->ymm0_regnum;
3052
3053 /* Extract (always little endian). Read lower 128bits. */
3054 status = regcache_raw_read (regcache,
3055 I387_XMM0_REGNUM (tdep) + regnum,
3056 raw_buf);
3057 if (status != REG_VALID)
3058 mark_value_bytes_unavailable (result_value, 0, 16);
3059 else
3060 memcpy (buf, raw_buf, 16);
3061 /* Read upper 128bits. */
3062 status = regcache_raw_read (regcache,
3063 tdep->ymm0h_regnum + regnum,
3064 raw_buf);
3065 if (status != REG_VALID)
3066 mark_value_bytes_unavailable (result_value, 16, 32);
3067 else
3068 memcpy (buf + 16, raw_buf, 16);
3069 }
3070 else if (i386_word_regnum_p (gdbarch, regnum))
3071 {
3072 int gpnum = regnum - tdep->ax_regnum;
3073
3074 /* Extract (always little endian). */
3075 status = regcache_raw_read (regcache, gpnum, raw_buf);
3076 if (status != REG_VALID)
3077 mark_value_bytes_unavailable (result_value, 0,
3078 TYPE_LENGTH (value_type (result_value)));
3079 else
3080 memcpy (buf, raw_buf, 2);
3081 }
3082 else if (i386_byte_regnum_p (gdbarch, regnum))
3083 {
3084 /* Check byte pseudo registers last since this function will
3085 be called from amd64_pseudo_register_read, which handles
3086 byte pseudo registers differently. */
3087 int gpnum = regnum - tdep->al_regnum;
3088
3089 /* Extract (always little endian). We read both lower and
3090 upper registers. */
3091 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3092 if (status != REG_VALID)
3093 mark_value_bytes_unavailable (result_value, 0,
3094 TYPE_LENGTH (value_type (result_value)));
3095 else if (gpnum >= 4)
3096 memcpy (buf, raw_buf + 1, 1);
3097 else
3098 memcpy (buf, raw_buf, 1);
3099 }
3100 else
3101 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3102 }
3103 }
3104
3105 static struct value *
3106 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3107 struct regcache *regcache,
3108 int regnum)
3109 {
3110 struct value *result;
3111
3112 result = allocate_value (register_type (gdbarch, regnum));
3113 VALUE_LVAL (result) = lval_register;
3114 VALUE_REGNUM (result) = regnum;
3115
3116 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3117
3118 return result;
3119 }
3120
3121 void
3122 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3123 int regnum, const gdb_byte *buf)
3124 {
3125 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3126
3127 if (i386_mmx_regnum_p (gdbarch, regnum))
3128 {
3129 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3130
3131 /* Read ... */
3132 regcache_raw_read (regcache, fpnum, raw_buf);
3133 /* ... Modify ... (always little endian). */
3134 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3135 /* ... Write. */
3136 regcache_raw_write (regcache, fpnum, raw_buf);
3137 }
3138 else
3139 {
3140 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3141
3142 if (i386_bnd_regnum_p (gdbarch, regnum))
3143 {
3144 ULONGEST upper, lower;
3145 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3146 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3147
3148 /* New values from input value. */
3149 regnum -= tdep->bnd0_regnum;
3150 lower = extract_unsigned_integer (buf, size, byte_order);
3151 upper = extract_unsigned_integer (buf + size, size, byte_order);
3152
3153 /* Fetching register buffer. */
3154 regcache_raw_read (regcache,
3155 I387_BND0R_REGNUM (tdep) + regnum,
3156 raw_buf);
3157
3158 upper = ~upper;
3159
3160 /* Set register bits. */
3161 memcpy (raw_buf, &lower, 8);
3162 memcpy (raw_buf + 8, &upper, 8);
3163
3164
3165 regcache_raw_write (regcache,
3166 I387_BND0R_REGNUM (tdep) + regnum,
3167 raw_buf);
3168 }
3169 else if (i386_ymm_regnum_p (gdbarch, regnum))
3170 {
3171 regnum -= tdep->ymm0_regnum;
3172
3173 /* ... Write lower 128bits. */
3174 regcache_raw_write (regcache,
3175 I387_XMM0_REGNUM (tdep) + regnum,
3176 buf);
3177 /* ... Write upper 128bits. */
3178 regcache_raw_write (regcache,
3179 tdep->ymm0h_regnum + regnum,
3180 buf + 16);
3181 }
3182 else if (i386_word_regnum_p (gdbarch, regnum))
3183 {
3184 int gpnum = regnum - tdep->ax_regnum;
3185
3186 /* Read ... */
3187 regcache_raw_read (regcache, gpnum, raw_buf);
3188 /* ... Modify ... (always little endian). */
3189 memcpy (raw_buf, buf, 2);
3190 /* ... Write. */
3191 regcache_raw_write (regcache, gpnum, raw_buf);
3192 }
3193 else if (i386_byte_regnum_p (gdbarch, regnum))
3194 {
3195 /* Check byte pseudo registers last since this function will
3196 be called from amd64_pseudo_register_read, which handles
3197 byte pseudo registers differently. */
3198 int gpnum = regnum - tdep->al_regnum;
3199
3200 /* Read ... We read both lower and upper registers. */
3201 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3202 /* ... Modify ... (always little endian). */
3203 if (gpnum >= 4)
3204 memcpy (raw_buf + 1, buf, 1);
3205 else
3206 memcpy (raw_buf, buf, 1);
3207 /* ... Write. */
3208 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3209 }
3210 else
3211 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3212 }
3213 }
3214 \f
3215
3216 /* Return the register number of the register allocated by GCC after
3217 REGNUM, or -1 if there is no such register. */
3218
3219 static int
3220 i386_next_regnum (int regnum)
3221 {
3222 /* GCC allocates the registers in the order:
3223
3224 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3225
3226 Since storing a variable in %esp doesn't make any sense we return
3227 -1 for %ebp and for %esp itself. */
3228 static int next_regnum[] =
3229 {
3230 I386_EDX_REGNUM, /* Slot for %eax. */
3231 I386_EBX_REGNUM, /* Slot for %ecx. */
3232 I386_ECX_REGNUM, /* Slot for %edx. */
3233 I386_ESI_REGNUM, /* Slot for %ebx. */
3234 -1, -1, /* Slots for %esp and %ebp. */
3235 I386_EDI_REGNUM, /* Slot for %esi. */
3236 I386_EBP_REGNUM /* Slot for %edi. */
3237 };
3238
3239 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3240 return next_regnum[regnum];
3241
3242 return -1;
3243 }
3244
3245 /* Return nonzero if a value of type TYPE stored in register REGNUM
3246 needs any special handling. */
3247
3248 static int
3249 i386_convert_register_p (struct gdbarch *gdbarch,
3250 int regnum, struct type *type)
3251 {
3252 int len = TYPE_LENGTH (type);
3253
3254 /* Values may be spread across multiple registers. Most debugging
3255 formats aren't expressive enough to specify the locations, so
3256 some heuristics is involved. Right now we only handle types that
3257 have a length that is a multiple of the word size, since GCC
3258 doesn't seem to put any other types into registers. */
3259 if (len > 4 && len % 4 == 0)
3260 {
3261 int last_regnum = regnum;
3262
3263 while (len > 4)
3264 {
3265 last_regnum = i386_next_regnum (last_regnum);
3266 len -= 4;
3267 }
3268
3269 if (last_regnum != -1)
3270 return 1;
3271 }
3272
3273 return i387_convert_register_p (gdbarch, regnum, type);
3274 }
3275
3276 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3277 return its contents in TO. */
3278
3279 static int
3280 i386_register_to_value (struct frame_info *frame, int regnum,
3281 struct type *type, gdb_byte *to,
3282 int *optimizedp, int *unavailablep)
3283 {
3284 struct gdbarch *gdbarch = get_frame_arch (frame);
3285 int len = TYPE_LENGTH (type);
3286
3287 if (i386_fp_regnum_p (gdbarch, regnum))
3288 return i387_register_to_value (frame, regnum, type, to,
3289 optimizedp, unavailablep);
3290
3291 /* Read a value spread across multiple registers. */
3292
3293 gdb_assert (len > 4 && len % 4 == 0);
3294
3295 while (len > 0)
3296 {
3297 gdb_assert (regnum != -1);
3298 gdb_assert (register_size (gdbarch, regnum) == 4);
3299
3300 if (!get_frame_register_bytes (frame, regnum, 0,
3301 register_size (gdbarch, regnum),
3302 to, optimizedp, unavailablep))
3303 return 0;
3304
3305 regnum = i386_next_regnum (regnum);
3306 len -= 4;
3307 to += 4;
3308 }
3309
3310 *optimizedp = *unavailablep = 0;
3311 return 1;
3312 }
3313
3314 /* Write the contents FROM of a value of type TYPE into register
3315 REGNUM in frame FRAME. */
3316
3317 static void
3318 i386_value_to_register (struct frame_info *frame, int regnum,
3319 struct type *type, const gdb_byte *from)
3320 {
3321 int len = TYPE_LENGTH (type);
3322
3323 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3324 {
3325 i387_value_to_register (frame, regnum, type, from);
3326 return;
3327 }
3328
3329 /* Write a value spread across multiple registers. */
3330
3331 gdb_assert (len > 4 && len % 4 == 0);
3332
3333 while (len > 0)
3334 {
3335 gdb_assert (regnum != -1);
3336 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3337
3338 put_frame_register (frame, regnum, from);
3339 regnum = i386_next_regnum (regnum);
3340 len -= 4;
3341 from += 4;
3342 }
3343 }
3344 \f
3345 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3346 in the general-purpose register set REGSET to register cache
3347 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3348
3349 void
3350 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3351 int regnum, const void *gregs, size_t len)
3352 {
3353 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3354 const gdb_byte *regs = gregs;
3355 int i;
3356
3357 gdb_assert (len == tdep->sizeof_gregset);
3358
3359 for (i = 0; i < tdep->gregset_num_regs; i++)
3360 {
3361 if ((regnum == i || regnum == -1)
3362 && tdep->gregset_reg_offset[i] != -1)
3363 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3364 }
3365 }
3366
3367 /* Collect register REGNUM from the register cache REGCACHE and store
3368 it in the buffer specified by GREGS and LEN as described by the
3369 general-purpose register set REGSET. If REGNUM is -1, do this for
3370 all registers in REGSET. */
3371
3372 void
3373 i386_collect_gregset (const struct regset *regset,
3374 const struct regcache *regcache,
3375 int regnum, void *gregs, size_t len)
3376 {
3377 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3378 gdb_byte *regs = gregs;
3379 int i;
3380
3381 gdb_assert (len == tdep->sizeof_gregset);
3382
3383 for (i = 0; i < tdep->gregset_num_regs; i++)
3384 {
3385 if ((regnum == i || regnum == -1)
3386 && tdep->gregset_reg_offset[i] != -1)
3387 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3388 }
3389 }
3390
3391 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3392 in the floating-point register set REGSET to register cache
3393 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3394
3395 static void
3396 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3397 int regnum, const void *fpregs, size_t len)
3398 {
3399 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3400
3401 if (len == I387_SIZEOF_FXSAVE)
3402 {
3403 i387_supply_fxsave (regcache, regnum, fpregs);
3404 return;
3405 }
3406
3407 gdb_assert (len == tdep->sizeof_fpregset);
3408 i387_supply_fsave (regcache, regnum, fpregs);
3409 }
3410
3411 /* Collect register REGNUM from the register cache REGCACHE and store
3412 it in the buffer specified by FPREGS and LEN as described by the
3413 floating-point register set REGSET. If REGNUM is -1, do this for
3414 all registers in REGSET. */
3415
3416 static void
3417 i386_collect_fpregset (const struct regset *regset,
3418 const struct regcache *regcache,
3419 int regnum, void *fpregs, size_t len)
3420 {
3421 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3422
3423 if (len == I387_SIZEOF_FXSAVE)
3424 {
3425 i387_collect_fxsave (regcache, regnum, fpregs);
3426 return;
3427 }
3428
3429 gdb_assert (len == tdep->sizeof_fpregset);
3430 i387_collect_fsave (regcache, regnum, fpregs);
3431 }
3432
3433 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3434
3435 static void
3436 i386_supply_xstateregset (const struct regset *regset,
3437 struct regcache *regcache, int regnum,
3438 const void *xstateregs, size_t len)
3439 {
3440 i387_supply_xsave (regcache, regnum, xstateregs);
3441 }
3442
3443 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3444
3445 static void
3446 i386_collect_xstateregset (const struct regset *regset,
3447 const struct regcache *regcache,
3448 int regnum, void *xstateregs, size_t len)
3449 {
3450 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3451 }
3452
3453 /* Return the appropriate register set for the core section identified
3454 by SECT_NAME and SECT_SIZE. */
3455
3456 const struct regset *
3457 i386_regset_from_core_section (struct gdbarch *gdbarch,
3458 const char *sect_name, size_t sect_size)
3459 {
3460 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3461
3462 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3463 {
3464 if (tdep->gregset == NULL)
3465 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3466 i386_collect_gregset);
3467 return tdep->gregset;
3468 }
3469
3470 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3471 || (strcmp (sect_name, ".reg-xfp") == 0
3472 && sect_size == I387_SIZEOF_FXSAVE))
3473 {
3474 if (tdep->fpregset == NULL)
3475 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3476 i386_collect_fpregset);
3477 return tdep->fpregset;
3478 }
3479
3480 if (strcmp (sect_name, ".reg-xstate") == 0)
3481 {
3482 if (tdep->xstateregset == NULL)
3483 tdep->xstateregset = regset_alloc (gdbarch,
3484 i386_supply_xstateregset,
3485 i386_collect_xstateregset);
3486
3487 return tdep->xstateregset;
3488 }
3489
3490 return NULL;
3491 }
3492 \f
3493
3494 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3495
3496 CORE_ADDR
3497 i386_pe_skip_trampoline_code (struct frame_info *frame,
3498 CORE_ADDR pc, char *name)
3499 {
3500 struct gdbarch *gdbarch = get_frame_arch (frame);
3501 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3502
3503 /* jmp *(dest) */
3504 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3505 {
3506 unsigned long indirect =
3507 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3508 struct minimal_symbol *indsym =
3509 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3510 const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
3511
3512 if (symname)
3513 {
3514 if (strncmp (symname, "__imp_", 6) == 0
3515 || strncmp (symname, "_imp_", 5) == 0)
3516 return name ? 1 :
3517 read_memory_unsigned_integer (indirect, 4, byte_order);
3518 }
3519 }
3520 return 0; /* Not a trampoline. */
3521 }
3522 \f
3523
3524 /* Return whether the THIS_FRAME corresponds to a sigtramp
3525 routine. */
3526
3527 int
3528 i386_sigtramp_p (struct frame_info *this_frame)
3529 {
3530 CORE_ADDR pc = get_frame_pc (this_frame);
3531 const char *name;
3532
3533 find_pc_partial_function (pc, &name, NULL, NULL);
3534 return (name && strcmp ("_sigtramp", name) == 0);
3535 }
3536 \f
3537
3538 /* We have two flavours of disassembly. The machinery on this page
3539 deals with switching between those. */
3540
3541 static int
3542 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3543 {
3544 gdb_assert (disassembly_flavor == att_flavor
3545 || disassembly_flavor == intel_flavor);
3546
3547 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3548 constified, cast to prevent a compiler warning. */
3549 info->disassembler_options = (char *) disassembly_flavor;
3550
3551 return print_insn_i386 (pc, info);
3552 }
3553 \f
3554
3555 /* There are a few i386 architecture variants that differ only
3556 slightly from the generic i386 target. For now, we don't give them
3557 their own source file, but include them here. As a consequence,
3558 they'll always be included. */
3559
3560 /* System V Release 4 (SVR4). */
3561
3562 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3563 routine. */
3564
3565 static int
3566 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3567 {
3568 CORE_ADDR pc = get_frame_pc (this_frame);
3569 const char *name;
3570
3571 /* The origin of these symbols is currently unknown. */
3572 find_pc_partial_function (pc, &name, NULL, NULL);
3573 return (name && (strcmp ("_sigreturn", name) == 0
3574 || strcmp ("sigvechandler", name) == 0));
3575 }
3576
3577 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3578 address of the associated sigcontext (ucontext) structure. */
3579
3580 static CORE_ADDR
3581 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3582 {
3583 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3584 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3585 gdb_byte buf[4];
3586 CORE_ADDR sp;
3587
3588 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3589 sp = extract_unsigned_integer (buf, 4, byte_order);
3590
3591 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3592 }
3593
3594 \f
3595
3596 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3597 gdbarch.h. */
3598
3599 int
3600 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3601 {
3602 return (*s == '$' /* Literal number. */
3603 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3604 || (*s == '(' && s[1] == '%') /* Register indirection. */
3605 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3606 }
3607
3608 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
3609 gdbarch.h. */
3610
3611 int
3612 i386_stap_parse_special_token (struct gdbarch *gdbarch,
3613 struct stap_parse_info *p)
3614 {
3615 /* In order to parse special tokens, we use a state-machine that go
3616 through every known token and try to get a match. */
3617 enum
3618 {
3619 TRIPLET,
3620 THREE_ARG_DISPLACEMENT,
3621 DONE
3622 } current_state;
3623
3624 current_state = TRIPLET;
3625
3626 /* The special tokens to be parsed here are:
3627
3628 - `register base + (register index * size) + offset', as represented
3629 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3630
3631 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
3632 `*(-8 + 3 - 1 + (void *) $eax)'. */
3633
3634 while (current_state != DONE)
3635 {
3636 const char *s = p->arg;
3637
3638 switch (current_state)
3639 {
3640 case TRIPLET:
3641 {
3642 if (isdigit (*s) || *s == '-' || *s == '+')
3643 {
3644 int got_minus[3];
3645 int i;
3646 long displacements[3];
3647 const char *start;
3648 char *regname;
3649 int len;
3650 struct stoken str;
3651 char *endp;
3652
3653 got_minus[0] = 0;
3654 if (*s == '+')
3655 ++s;
3656 else if (*s == '-')
3657 {
3658 ++s;
3659 got_minus[0] = 1;
3660 }
3661
3662 displacements[0] = strtol (s, &endp, 10);
3663 s = endp;
3664
3665 if (*s != '+' && *s != '-')
3666 {
3667 /* We are not dealing with a triplet. */
3668 break;
3669 }
3670
3671 got_minus[1] = 0;
3672 if (*s == '+')
3673 ++s;
3674 else
3675 {
3676 ++s;
3677 got_minus[1] = 1;
3678 }
3679
3680 displacements[1] = strtol (s, &endp, 10);
3681 s = endp;
3682
3683 if (*s != '+' && *s != '-')
3684 {
3685 /* We are not dealing with a triplet. */
3686 break;
3687 }
3688
3689 got_minus[2] = 0;
3690 if (*s == '+')
3691 ++s;
3692 else
3693 {
3694 ++s;
3695 got_minus[2] = 1;
3696 }
3697
3698 displacements[2] = strtol (s, &endp, 10);
3699 s = endp;
3700
3701 if (*s != '(' || s[1] != '%')
3702 break;
3703
3704 s += 2;
3705 start = s;
3706
3707 while (isalnum (*s))
3708 ++s;
3709
3710 if (*s++ != ')')
3711 break;
3712
3713 len = s - start;
3714 regname = alloca (len + 1);
3715
3716 strncpy (regname, start, len);
3717 regname[len] = '\0';
3718
3719 if (user_reg_map_name_to_regnum (gdbarch,
3720 regname, len) == -1)
3721 error (_("Invalid register name `%s' "
3722 "on expression `%s'."),
3723 regname, p->saved_arg);
3724
3725 for (i = 0; i < 3; i++)
3726 {
3727 write_exp_elt_opcode (OP_LONG);
3728 write_exp_elt_type
3729 (builtin_type (gdbarch)->builtin_long);
3730 write_exp_elt_longcst (displacements[i]);
3731 write_exp_elt_opcode (OP_LONG);
3732 if (got_minus[i])
3733 write_exp_elt_opcode (UNOP_NEG);
3734 }
3735
3736 write_exp_elt_opcode (OP_REGISTER);
3737 str.ptr = regname;
3738 str.length = len;
3739 write_exp_string (str);
3740 write_exp_elt_opcode (OP_REGISTER);
3741
3742 write_exp_elt_opcode (UNOP_CAST);
3743 write_exp_elt_type (builtin_type (gdbarch)->builtin_data_ptr);
3744 write_exp_elt_opcode (UNOP_CAST);
3745
3746 write_exp_elt_opcode (BINOP_ADD);
3747 write_exp_elt_opcode (BINOP_ADD);
3748 write_exp_elt_opcode (BINOP_ADD);
3749
3750 write_exp_elt_opcode (UNOP_CAST);
3751 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3752 write_exp_elt_opcode (UNOP_CAST);
3753
3754 write_exp_elt_opcode (UNOP_IND);
3755
3756 p->arg = s;
3757
3758 return 1;
3759 }
3760 break;
3761 }
3762 case THREE_ARG_DISPLACEMENT:
3763 {
3764 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
3765 {
3766 int offset_minus = 0;
3767 long offset = 0;
3768 int size_minus = 0;
3769 long size = 0;
3770 const char *start;
3771 char *base;
3772 int len_base;
3773 char *index;
3774 int len_index;
3775 struct stoken base_token, index_token;
3776
3777 if (*s == '+')
3778 ++s;
3779 else if (*s == '-')
3780 {
3781 ++s;
3782 offset_minus = 1;
3783 }
3784
3785 if (offset_minus && !isdigit (*s))
3786 break;
3787
3788 if (isdigit (*s))
3789 {
3790 char *endp;
3791
3792 offset = strtol (s, &endp, 10);
3793 s = endp;
3794 }
3795
3796 if (*s != '(' || s[1] != '%')
3797 break;
3798
3799 s += 2;
3800 start = s;
3801
3802 while (isalnum (*s))
3803 ++s;
3804
3805 if (*s != ',' || s[1] != '%')
3806 break;
3807
3808 len_base = s - start;
3809 base = alloca (len_base + 1);
3810 strncpy (base, start, len_base);
3811 base[len_base] = '\0';
3812
3813 if (user_reg_map_name_to_regnum (gdbarch,
3814 base, len_base) == -1)
3815 error (_("Invalid register name `%s' "
3816 "on expression `%s'."),
3817 base, p->saved_arg);
3818
3819 s += 2;
3820 start = s;
3821
3822 while (isalnum (*s))
3823 ++s;
3824
3825 len_index = s - start;
3826 index = alloca (len_index + 1);
3827 strncpy (index, start, len_index);
3828 index[len_index] = '\0';
3829
3830 if (user_reg_map_name_to_regnum (gdbarch,
3831 index, len_index) == -1)
3832 error (_("Invalid register name `%s' "
3833 "on expression `%s'."),
3834 index, p->saved_arg);
3835
3836 if (*s != ',' && *s != ')')
3837 break;
3838
3839 if (*s == ',')
3840 {
3841 char *endp;
3842
3843 ++s;
3844 if (*s == '+')
3845 ++s;
3846 else if (*s == '-')
3847 {
3848 ++s;
3849 size_minus = 1;
3850 }
3851
3852 size = strtol (s, &endp, 10);
3853 s = endp;
3854
3855 if (*s != ')')
3856 break;
3857 }
3858
3859 ++s;
3860
3861 if (offset)
3862 {
3863 write_exp_elt_opcode (OP_LONG);
3864 write_exp_elt_type
3865 (builtin_type (gdbarch)->builtin_long);
3866 write_exp_elt_longcst (offset);
3867 write_exp_elt_opcode (OP_LONG);
3868 if (offset_minus)
3869 write_exp_elt_opcode (UNOP_NEG);
3870 }
3871
3872 write_exp_elt_opcode (OP_REGISTER);
3873 base_token.ptr = base;
3874 base_token.length = len_base;
3875 write_exp_string (base_token);
3876 write_exp_elt_opcode (OP_REGISTER);
3877
3878 if (offset)
3879 write_exp_elt_opcode (BINOP_ADD);
3880
3881 write_exp_elt_opcode (OP_REGISTER);
3882 index_token.ptr = index;
3883 index_token.length = len_index;
3884 write_exp_string (index_token);
3885 write_exp_elt_opcode (OP_REGISTER);
3886
3887 if (size)
3888 {
3889 write_exp_elt_opcode (OP_LONG);
3890 write_exp_elt_type
3891 (builtin_type (gdbarch)->builtin_long);
3892 write_exp_elt_longcst (size);
3893 write_exp_elt_opcode (OP_LONG);
3894 if (size_minus)
3895 write_exp_elt_opcode (UNOP_NEG);
3896 write_exp_elt_opcode (BINOP_MUL);
3897 }
3898
3899 write_exp_elt_opcode (BINOP_ADD);
3900
3901 write_exp_elt_opcode (UNOP_CAST);
3902 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3903 write_exp_elt_opcode (UNOP_CAST);
3904
3905 write_exp_elt_opcode (UNOP_IND);
3906
3907 p->arg = s;
3908
3909 return 1;
3910 }
3911 break;
3912 }
3913 }
3914
3915 /* Advancing to the next state. */
3916 ++current_state;
3917 }
3918
3919 return 0;
3920 }
3921
3922 \f
3923
3924 /* Generic ELF. */
3925
3926 void
3927 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3928 {
3929 static const char *const stap_integer_prefixes[] = { "$", NULL };
3930 static const char *const stap_register_prefixes[] = { "%", NULL };
3931 static const char *const stap_register_indirection_prefixes[] = { "(",
3932 NULL };
3933 static const char *const stap_register_indirection_suffixes[] = { ")",
3934 NULL };
3935
3936 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3937 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3938
3939 /* Registering SystemTap handlers. */
3940 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3941 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3942 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3943 stap_register_indirection_prefixes);
3944 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3945 stap_register_indirection_suffixes);
3946 set_gdbarch_stap_is_single_operand (gdbarch,
3947 i386_stap_is_single_operand);
3948 set_gdbarch_stap_parse_special_token (gdbarch,
3949 i386_stap_parse_special_token);
3950 }
3951
3952 /* System V Release 4 (SVR4). */
3953
3954 void
3955 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3956 {
3957 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3958
3959 /* System V Release 4 uses ELF. */
3960 i386_elf_init_abi (info, gdbarch);
3961
3962 /* System V Release 4 has shared libraries. */
3963 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3964
3965 tdep->sigtramp_p = i386_svr4_sigtramp_p;
3966 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3967 tdep->sc_pc_offset = 36 + 14 * 4;
3968 tdep->sc_sp_offset = 36 + 17 * 4;
3969
3970 tdep->jb_pc_offset = 20;
3971 }
3972
3973 /* DJGPP. */
3974
3975 static void
3976 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3977 {
3978 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3979
3980 /* DJGPP doesn't have any special frames for signal handlers. */
3981 tdep->sigtramp_p = NULL;
3982
3983 tdep->jb_pc_offset = 36;
3984
3985 /* DJGPP does not support the SSE registers. */
3986 if (! tdesc_has_registers (info.target_desc))
3987 tdep->tdesc = tdesc_i386_mmx;
3988
3989 /* Native compiler is GCC, which uses the SVR4 register numbering
3990 even in COFF and STABS. See the comment in i386_gdbarch_init,
3991 before the calls to set_gdbarch_stab_reg_to_regnum and
3992 set_gdbarch_sdb_reg_to_regnum. */
3993 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3994 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3995
3996 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3997 }
3998 \f
3999
4000 /* i386 register groups. In addition to the normal groups, add "mmx"
4001 and "sse". */
4002
4003 static struct reggroup *i386_sse_reggroup;
4004 static struct reggroup *i386_mmx_reggroup;
4005
4006 static void
4007 i386_init_reggroups (void)
4008 {
4009 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4010 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4011 }
4012
4013 static void
4014 i386_add_reggroups (struct gdbarch *gdbarch)
4015 {
4016 reggroup_add (gdbarch, i386_sse_reggroup);
4017 reggroup_add (gdbarch, i386_mmx_reggroup);
4018 reggroup_add (gdbarch, general_reggroup);
4019 reggroup_add (gdbarch, float_reggroup);
4020 reggroup_add (gdbarch, all_reggroup);
4021 reggroup_add (gdbarch, save_reggroup);
4022 reggroup_add (gdbarch, restore_reggroup);
4023 reggroup_add (gdbarch, vector_reggroup);
4024 reggroup_add (gdbarch, system_reggroup);
4025 }
4026
4027 int
4028 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4029 struct reggroup *group)
4030 {
4031 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4032 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4033 ymm_regnum_p, ymmh_regnum_p, bndr_regnum_p, bnd_regnum_p,
4034 mpx_ctrl_regnum_p;
4035
4036 /* Don't include pseudo registers, except for MMX, in any register
4037 groups. */
4038 if (i386_byte_regnum_p (gdbarch, regnum))
4039 return 0;
4040
4041 if (i386_word_regnum_p (gdbarch, regnum))
4042 return 0;
4043
4044 if (i386_dword_regnum_p (gdbarch, regnum))
4045 return 0;
4046
4047 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4048 if (group == i386_mmx_reggroup)
4049 return mmx_regnum_p;
4050
4051 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4052 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4053 if (group == i386_sse_reggroup)
4054 return xmm_regnum_p || mxcsr_regnum_p;
4055
4056 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4057 if (group == vector_reggroup)
4058 return (mmx_regnum_p
4059 || ymm_regnum_p
4060 || mxcsr_regnum_p
4061 || (xmm_regnum_p
4062 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
4063 == I386_XSTATE_SSE_MASK)));
4064
4065 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4066 || i386_fpc_regnum_p (gdbarch, regnum));
4067 if (group == float_reggroup)
4068 return fp_regnum_p;
4069
4070 /* For "info reg all", don't include upper YMM registers nor XMM
4071 registers when AVX is supported. */
4072 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4073 if (group == all_reggroup
4074 && ((xmm_regnum_p
4075 && (tdep->xcr0 & I386_XSTATE_AVX))
4076 || ymmh_regnum_p))
4077 return 0;
4078
4079 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4080 if (group == all_reggroup
4081 && ((bnd_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4082 return bnd_regnum_p;
4083
4084 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4085 if (group == all_reggroup
4086 && ((bndr_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4087 return 0;
4088
4089 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4090 if (group == all_reggroup
4091 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4092 return mpx_ctrl_regnum_p;
4093
4094 if (group == general_reggroup)
4095 return (!fp_regnum_p
4096 && !mmx_regnum_p
4097 && !mxcsr_regnum_p
4098 && !xmm_regnum_p
4099 && !ymm_regnum_p
4100 && !ymmh_regnum_p
4101 && !bndr_regnum_p
4102 && !bnd_regnum_p
4103 && !mpx_ctrl_regnum_p);
4104
4105 return default_register_reggroup_p (gdbarch, regnum, group);
4106 }
4107 \f
4108
4109 /* Get the ARGIth function argument for the current function. */
4110
4111 static CORE_ADDR
4112 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4113 struct type *type)
4114 {
4115 struct gdbarch *gdbarch = get_frame_arch (frame);
4116 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4117 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4118 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4119 }
4120
4121 static void
4122 i386_skip_permanent_breakpoint (struct regcache *regcache)
4123 {
4124 CORE_ADDR current_pc = regcache_read_pc (regcache);
4125
4126 /* On i386, breakpoint is exactly 1 byte long, so we just
4127 adjust the PC in the regcache. */
4128 current_pc += 1;
4129 regcache_write_pc (regcache, current_pc);
4130 }
4131
4132
4133 #define PREFIX_REPZ 0x01
4134 #define PREFIX_REPNZ 0x02
4135 #define PREFIX_LOCK 0x04
4136 #define PREFIX_DATA 0x08
4137 #define PREFIX_ADDR 0x10
4138
4139 /* operand size */
4140 enum
4141 {
4142 OT_BYTE = 0,
4143 OT_WORD,
4144 OT_LONG,
4145 OT_QUAD,
4146 OT_DQUAD,
4147 };
4148
4149 /* i386 arith/logic operations */
4150 enum
4151 {
4152 OP_ADDL,
4153 OP_ORL,
4154 OP_ADCL,
4155 OP_SBBL,
4156 OP_ANDL,
4157 OP_SUBL,
4158 OP_XORL,
4159 OP_CMPL,
4160 };
4161
4162 struct i386_record_s
4163 {
4164 struct gdbarch *gdbarch;
4165 struct regcache *regcache;
4166 CORE_ADDR orig_addr;
4167 CORE_ADDR addr;
4168 int aflag;
4169 int dflag;
4170 int override;
4171 uint8_t modrm;
4172 uint8_t mod, reg, rm;
4173 int ot;
4174 uint8_t rex_x;
4175 uint8_t rex_b;
4176 int rip_offset;
4177 int popl_esp_hack;
4178 const int *regmap;
4179 };
4180
4181 /* Parse the "modrm" part of the memory address irp->addr points at.
4182 Returns -1 if something goes wrong, 0 otherwise. */
4183
4184 static int
4185 i386_record_modrm (struct i386_record_s *irp)
4186 {
4187 struct gdbarch *gdbarch = irp->gdbarch;
4188
4189 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4190 return -1;
4191
4192 irp->addr++;
4193 irp->mod = (irp->modrm >> 6) & 3;
4194 irp->reg = (irp->modrm >> 3) & 7;
4195 irp->rm = irp->modrm & 7;
4196
4197 return 0;
4198 }
4199
4200 /* Extract the memory address that the current instruction writes to,
4201 and return it in *ADDR. Return -1 if something goes wrong. */
4202
4203 static int
4204 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4205 {
4206 struct gdbarch *gdbarch = irp->gdbarch;
4207 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4208 gdb_byte buf[4];
4209 ULONGEST offset64;
4210
4211 *addr = 0;
4212 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4213 {
4214 /* 32/64 bits */
4215 int havesib = 0;
4216 uint8_t scale = 0;
4217 uint8_t byte;
4218 uint8_t index = 0;
4219 uint8_t base = irp->rm;
4220
4221 if (base == 4)
4222 {
4223 havesib = 1;
4224 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4225 return -1;
4226 irp->addr++;
4227 scale = (byte >> 6) & 3;
4228 index = ((byte >> 3) & 7) | irp->rex_x;
4229 base = (byte & 7);
4230 }
4231 base |= irp->rex_b;
4232
4233 switch (irp->mod)
4234 {
4235 case 0:
4236 if ((base & 7) == 5)
4237 {
4238 base = 0xff;
4239 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4240 return -1;
4241 irp->addr += 4;
4242 *addr = extract_signed_integer (buf, 4, byte_order);
4243 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4244 *addr += irp->addr + irp->rip_offset;
4245 }
4246 break;
4247 case 1:
4248 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4249 return -1;
4250 irp->addr++;
4251 *addr = (int8_t) buf[0];
4252 break;
4253 case 2:
4254 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4255 return -1;
4256 *addr = extract_signed_integer (buf, 4, byte_order);
4257 irp->addr += 4;
4258 break;
4259 }
4260
4261 offset64 = 0;
4262 if (base != 0xff)
4263 {
4264 if (base == 4 && irp->popl_esp_hack)
4265 *addr += irp->popl_esp_hack;
4266 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4267 &offset64);
4268 }
4269 if (irp->aflag == 2)
4270 {
4271 *addr += offset64;
4272 }
4273 else
4274 *addr = (uint32_t) (offset64 + *addr);
4275
4276 if (havesib && (index != 4 || scale != 0))
4277 {
4278 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4279 &offset64);
4280 if (irp->aflag == 2)
4281 *addr += offset64 << scale;
4282 else
4283 *addr = (uint32_t) (*addr + (offset64 << scale));
4284 }
4285
4286 if (!irp->aflag)
4287 {
4288 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4289 address from 32-bit to 64-bit. */
4290 *addr = (uint32_t) *addr;
4291 }
4292 }
4293 else
4294 {
4295 /* 16 bits */
4296 switch (irp->mod)
4297 {
4298 case 0:
4299 if (irp->rm == 6)
4300 {
4301 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4302 return -1;
4303 irp->addr += 2;
4304 *addr = extract_signed_integer (buf, 2, byte_order);
4305 irp->rm = 0;
4306 goto no_rm;
4307 }
4308 break;
4309 case 1:
4310 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4311 return -1;
4312 irp->addr++;
4313 *addr = (int8_t) buf[0];
4314 break;
4315 case 2:
4316 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4317 return -1;
4318 irp->addr += 2;
4319 *addr = extract_signed_integer (buf, 2, byte_order);
4320 break;
4321 }
4322
4323 switch (irp->rm)
4324 {
4325 case 0:
4326 regcache_raw_read_unsigned (irp->regcache,
4327 irp->regmap[X86_RECORD_REBX_REGNUM],
4328 &offset64);
4329 *addr = (uint32_t) (*addr + offset64);
4330 regcache_raw_read_unsigned (irp->regcache,
4331 irp->regmap[X86_RECORD_RESI_REGNUM],
4332 &offset64);
4333 *addr = (uint32_t) (*addr + offset64);
4334 break;
4335 case 1:
4336 regcache_raw_read_unsigned (irp->regcache,
4337 irp->regmap[X86_RECORD_REBX_REGNUM],
4338 &offset64);
4339 *addr = (uint32_t) (*addr + offset64);
4340 regcache_raw_read_unsigned (irp->regcache,
4341 irp->regmap[X86_RECORD_REDI_REGNUM],
4342 &offset64);
4343 *addr = (uint32_t) (*addr + offset64);
4344 break;
4345 case 2:
4346 regcache_raw_read_unsigned (irp->regcache,
4347 irp->regmap[X86_RECORD_REBP_REGNUM],
4348 &offset64);
4349 *addr = (uint32_t) (*addr + offset64);
4350 regcache_raw_read_unsigned (irp->regcache,
4351 irp->regmap[X86_RECORD_RESI_REGNUM],
4352 &offset64);
4353 *addr = (uint32_t) (*addr + offset64);
4354 break;
4355 case 3:
4356 regcache_raw_read_unsigned (irp->regcache,
4357 irp->regmap[X86_RECORD_REBP_REGNUM],
4358 &offset64);
4359 *addr = (uint32_t) (*addr + offset64);
4360 regcache_raw_read_unsigned (irp->regcache,
4361 irp->regmap[X86_RECORD_REDI_REGNUM],
4362 &offset64);
4363 *addr = (uint32_t) (*addr + offset64);
4364 break;
4365 case 4:
4366 regcache_raw_read_unsigned (irp->regcache,
4367 irp->regmap[X86_RECORD_RESI_REGNUM],
4368 &offset64);
4369 *addr = (uint32_t) (*addr + offset64);
4370 break;
4371 case 5:
4372 regcache_raw_read_unsigned (irp->regcache,
4373 irp->regmap[X86_RECORD_REDI_REGNUM],
4374 &offset64);
4375 *addr = (uint32_t) (*addr + offset64);
4376 break;
4377 case 6:
4378 regcache_raw_read_unsigned (irp->regcache,
4379 irp->regmap[X86_RECORD_REBP_REGNUM],
4380 &offset64);
4381 *addr = (uint32_t) (*addr + offset64);
4382 break;
4383 case 7:
4384 regcache_raw_read_unsigned (irp->regcache,
4385 irp->regmap[X86_RECORD_REBX_REGNUM],
4386 &offset64);
4387 *addr = (uint32_t) (*addr + offset64);
4388 break;
4389 }
4390 *addr &= 0xffff;
4391 }
4392
4393 no_rm:
4394 return 0;
4395 }
4396
4397 /* Record the address and contents of the memory that will be changed
4398 by the current instruction. Return -1 if something goes wrong, 0
4399 otherwise. */
4400
4401 static int
4402 i386_record_lea_modrm (struct i386_record_s *irp)
4403 {
4404 struct gdbarch *gdbarch = irp->gdbarch;
4405 uint64_t addr;
4406
4407 if (irp->override >= 0)
4408 {
4409 if (record_full_memory_query)
4410 {
4411 int q;
4412
4413 target_terminal_ours ();
4414 q = yquery (_("\
4415 Process record ignores the memory change of instruction at address %s\n\
4416 because it can't get the value of the segment register.\n\
4417 Do you want to stop the program?"),
4418 paddress (gdbarch, irp->orig_addr));
4419 target_terminal_inferior ();
4420 if (q)
4421 return -1;
4422 }
4423
4424 return 0;
4425 }
4426
4427 if (i386_record_lea_modrm_addr (irp, &addr))
4428 return -1;
4429
4430 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4431 return -1;
4432
4433 return 0;
4434 }
4435
4436 /* Record the effects of a push operation. Return -1 if something
4437 goes wrong, 0 otherwise. */
4438
4439 static int
4440 i386_record_push (struct i386_record_s *irp, int size)
4441 {
4442 ULONGEST addr;
4443
4444 if (record_full_arch_list_add_reg (irp->regcache,
4445 irp->regmap[X86_RECORD_RESP_REGNUM]))
4446 return -1;
4447 regcache_raw_read_unsigned (irp->regcache,
4448 irp->regmap[X86_RECORD_RESP_REGNUM],
4449 &addr);
4450 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4451 return -1;
4452
4453 return 0;
4454 }
4455
4456
4457 /* Defines contents to record. */
4458 #define I386_SAVE_FPU_REGS 0xfffd
4459 #define I386_SAVE_FPU_ENV 0xfffe
4460 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4461
4462 /* Record the values of the floating point registers which will be
4463 changed by the current instruction. Returns -1 if something is
4464 wrong, 0 otherwise. */
4465
4466 static int i386_record_floats (struct gdbarch *gdbarch,
4467 struct i386_record_s *ir,
4468 uint32_t iregnum)
4469 {
4470 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4471 int i;
4472
4473 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4474 happen. Currently we store st0-st7 registers, but we need not store all
4475 registers all the time, in future we use ftag register and record only
4476 those who are not marked as an empty. */
4477
4478 if (I386_SAVE_FPU_REGS == iregnum)
4479 {
4480 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4481 {
4482 if (record_full_arch_list_add_reg (ir->regcache, i))
4483 return -1;
4484 }
4485 }
4486 else if (I386_SAVE_FPU_ENV == iregnum)
4487 {
4488 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4489 {
4490 if (record_full_arch_list_add_reg (ir->regcache, i))
4491 return -1;
4492 }
4493 }
4494 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4495 {
4496 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4497 {
4498 if (record_full_arch_list_add_reg (ir->regcache, i))
4499 return -1;
4500 }
4501 }
4502 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4503 (iregnum <= I387_FOP_REGNUM (tdep)))
4504 {
4505 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4506 return -1;
4507 }
4508 else
4509 {
4510 /* Parameter error. */
4511 return -1;
4512 }
4513 if(I386_SAVE_FPU_ENV != iregnum)
4514 {
4515 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4516 {
4517 if (record_full_arch_list_add_reg (ir->regcache, i))
4518 return -1;
4519 }
4520 }
4521 return 0;
4522 }
4523
4524 /* Parse the current instruction, and record the values of the
4525 registers and memory that will be changed by the current
4526 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4527
4528 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4529 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4530
4531 int
4532 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4533 CORE_ADDR input_addr)
4534 {
4535 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4536 int prefixes = 0;
4537 int regnum = 0;
4538 uint32_t opcode;
4539 uint8_t opcode8;
4540 ULONGEST addr;
4541 gdb_byte buf[MAX_REGISTER_SIZE];
4542 struct i386_record_s ir;
4543 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4544 uint8_t rex_w = -1;
4545 uint8_t rex_r = 0;
4546
4547 memset (&ir, 0, sizeof (struct i386_record_s));
4548 ir.regcache = regcache;
4549 ir.addr = input_addr;
4550 ir.orig_addr = input_addr;
4551 ir.aflag = 1;
4552 ir.dflag = 1;
4553 ir.override = -1;
4554 ir.popl_esp_hack = 0;
4555 ir.regmap = tdep->record_regmap;
4556 ir.gdbarch = gdbarch;
4557
4558 if (record_debug > 1)
4559 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
4560 "addr = %s\n",
4561 paddress (gdbarch, ir.addr));
4562
4563 /* prefixes */
4564 while (1)
4565 {
4566 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4567 return -1;
4568 ir.addr++;
4569 switch (opcode8) /* Instruction prefixes */
4570 {
4571 case REPE_PREFIX_OPCODE:
4572 prefixes |= PREFIX_REPZ;
4573 break;
4574 case REPNE_PREFIX_OPCODE:
4575 prefixes |= PREFIX_REPNZ;
4576 break;
4577 case LOCK_PREFIX_OPCODE:
4578 prefixes |= PREFIX_LOCK;
4579 break;
4580 case CS_PREFIX_OPCODE:
4581 ir.override = X86_RECORD_CS_REGNUM;
4582 break;
4583 case SS_PREFIX_OPCODE:
4584 ir.override = X86_RECORD_SS_REGNUM;
4585 break;
4586 case DS_PREFIX_OPCODE:
4587 ir.override = X86_RECORD_DS_REGNUM;
4588 break;
4589 case ES_PREFIX_OPCODE:
4590 ir.override = X86_RECORD_ES_REGNUM;
4591 break;
4592 case FS_PREFIX_OPCODE:
4593 ir.override = X86_RECORD_FS_REGNUM;
4594 break;
4595 case GS_PREFIX_OPCODE:
4596 ir.override = X86_RECORD_GS_REGNUM;
4597 break;
4598 case DATA_PREFIX_OPCODE:
4599 prefixes |= PREFIX_DATA;
4600 break;
4601 case ADDR_PREFIX_OPCODE:
4602 prefixes |= PREFIX_ADDR;
4603 break;
4604 case 0x40: /* i386 inc %eax */
4605 case 0x41: /* i386 inc %ecx */
4606 case 0x42: /* i386 inc %edx */
4607 case 0x43: /* i386 inc %ebx */
4608 case 0x44: /* i386 inc %esp */
4609 case 0x45: /* i386 inc %ebp */
4610 case 0x46: /* i386 inc %esi */
4611 case 0x47: /* i386 inc %edi */
4612 case 0x48: /* i386 dec %eax */
4613 case 0x49: /* i386 dec %ecx */
4614 case 0x4a: /* i386 dec %edx */
4615 case 0x4b: /* i386 dec %ebx */
4616 case 0x4c: /* i386 dec %esp */
4617 case 0x4d: /* i386 dec %ebp */
4618 case 0x4e: /* i386 dec %esi */
4619 case 0x4f: /* i386 dec %edi */
4620 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
4621 {
4622 /* REX */
4623 rex_w = (opcode8 >> 3) & 1;
4624 rex_r = (opcode8 & 0x4) << 1;
4625 ir.rex_x = (opcode8 & 0x2) << 2;
4626 ir.rex_b = (opcode8 & 0x1) << 3;
4627 }
4628 else /* 32 bit target */
4629 goto out_prefixes;
4630 break;
4631 default:
4632 goto out_prefixes;
4633 break;
4634 }
4635 }
4636 out_prefixes:
4637 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4638 {
4639 ir.dflag = 2;
4640 }
4641 else
4642 {
4643 if (prefixes & PREFIX_DATA)
4644 ir.dflag ^= 1;
4645 }
4646 if (prefixes & PREFIX_ADDR)
4647 ir.aflag ^= 1;
4648 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4649 ir.aflag = 2;
4650
4651 /* Now check op code. */
4652 opcode = (uint32_t) opcode8;
4653 reswitch:
4654 switch (opcode)
4655 {
4656 case 0x0f:
4657 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4658 return -1;
4659 ir.addr++;
4660 opcode = (uint32_t) opcode8 | 0x0f00;
4661 goto reswitch;
4662 break;
4663
4664 case 0x00: /* arith & logic */
4665 case 0x01:
4666 case 0x02:
4667 case 0x03:
4668 case 0x04:
4669 case 0x05:
4670 case 0x08:
4671 case 0x09:
4672 case 0x0a:
4673 case 0x0b:
4674 case 0x0c:
4675 case 0x0d:
4676 case 0x10:
4677 case 0x11:
4678 case 0x12:
4679 case 0x13:
4680 case 0x14:
4681 case 0x15:
4682 case 0x18:
4683 case 0x19:
4684 case 0x1a:
4685 case 0x1b:
4686 case 0x1c:
4687 case 0x1d:
4688 case 0x20:
4689 case 0x21:
4690 case 0x22:
4691 case 0x23:
4692 case 0x24:
4693 case 0x25:
4694 case 0x28:
4695 case 0x29:
4696 case 0x2a:
4697 case 0x2b:
4698 case 0x2c:
4699 case 0x2d:
4700 case 0x30:
4701 case 0x31:
4702 case 0x32:
4703 case 0x33:
4704 case 0x34:
4705 case 0x35:
4706 case 0x38:
4707 case 0x39:
4708 case 0x3a:
4709 case 0x3b:
4710 case 0x3c:
4711 case 0x3d:
4712 if (((opcode >> 3) & 7) != OP_CMPL)
4713 {
4714 if ((opcode & 1) == 0)
4715 ir.ot = OT_BYTE;
4716 else
4717 ir.ot = ir.dflag + OT_WORD;
4718
4719 switch ((opcode >> 1) & 3)
4720 {
4721 case 0: /* OP Ev, Gv */
4722 if (i386_record_modrm (&ir))
4723 return -1;
4724 if (ir.mod != 3)
4725 {
4726 if (i386_record_lea_modrm (&ir))
4727 return -1;
4728 }
4729 else
4730 {
4731 ir.rm |= ir.rex_b;
4732 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4733 ir.rm &= 0x3;
4734 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4735 }
4736 break;
4737 case 1: /* OP Gv, Ev */
4738 if (i386_record_modrm (&ir))
4739 return -1;
4740 ir.reg |= rex_r;
4741 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4742 ir.reg &= 0x3;
4743 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4744 break;
4745 case 2: /* OP A, Iv */
4746 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4747 break;
4748 }
4749 }
4750 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4751 break;
4752
4753 case 0x80: /* GRP1 */
4754 case 0x81:
4755 case 0x82:
4756 case 0x83:
4757 if (i386_record_modrm (&ir))
4758 return -1;
4759
4760 if (ir.reg != OP_CMPL)
4761 {
4762 if ((opcode & 1) == 0)
4763 ir.ot = OT_BYTE;
4764 else
4765 ir.ot = ir.dflag + OT_WORD;
4766
4767 if (ir.mod != 3)
4768 {
4769 if (opcode == 0x83)
4770 ir.rip_offset = 1;
4771 else
4772 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4773 if (i386_record_lea_modrm (&ir))
4774 return -1;
4775 }
4776 else
4777 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4778 }
4779 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4780 break;
4781
4782 case 0x40: /* inc */
4783 case 0x41:
4784 case 0x42:
4785 case 0x43:
4786 case 0x44:
4787 case 0x45:
4788 case 0x46:
4789 case 0x47:
4790
4791 case 0x48: /* dec */
4792 case 0x49:
4793 case 0x4a:
4794 case 0x4b:
4795 case 0x4c:
4796 case 0x4d:
4797 case 0x4e:
4798 case 0x4f:
4799
4800 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
4801 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4802 break;
4803
4804 case 0xf6: /* GRP3 */
4805 case 0xf7:
4806 if ((opcode & 1) == 0)
4807 ir.ot = OT_BYTE;
4808 else
4809 ir.ot = ir.dflag + OT_WORD;
4810 if (i386_record_modrm (&ir))
4811 return -1;
4812
4813 if (ir.mod != 3 && ir.reg == 0)
4814 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4815
4816 switch (ir.reg)
4817 {
4818 case 0: /* test */
4819 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4820 break;
4821 case 2: /* not */
4822 case 3: /* neg */
4823 if (ir.mod != 3)
4824 {
4825 if (i386_record_lea_modrm (&ir))
4826 return -1;
4827 }
4828 else
4829 {
4830 ir.rm |= ir.rex_b;
4831 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4832 ir.rm &= 0x3;
4833 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4834 }
4835 if (ir.reg == 3) /* neg */
4836 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4837 break;
4838 case 4: /* mul */
4839 case 5: /* imul */
4840 case 6: /* div */
4841 case 7: /* idiv */
4842 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4843 if (ir.ot != OT_BYTE)
4844 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4845 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4846 break;
4847 default:
4848 ir.addr -= 2;
4849 opcode = opcode << 8 | ir.modrm;
4850 goto no_support;
4851 break;
4852 }
4853 break;
4854
4855 case 0xfe: /* GRP4 */
4856 case 0xff: /* GRP5 */
4857 if (i386_record_modrm (&ir))
4858 return -1;
4859 if (ir.reg >= 2 && opcode == 0xfe)
4860 {
4861 ir.addr -= 2;
4862 opcode = opcode << 8 | ir.modrm;
4863 goto no_support;
4864 }
4865 switch (ir.reg)
4866 {
4867 case 0: /* inc */
4868 case 1: /* dec */
4869 if ((opcode & 1) == 0)
4870 ir.ot = OT_BYTE;
4871 else
4872 ir.ot = ir.dflag + OT_WORD;
4873 if (ir.mod != 3)
4874 {
4875 if (i386_record_lea_modrm (&ir))
4876 return -1;
4877 }
4878 else
4879 {
4880 ir.rm |= ir.rex_b;
4881 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4882 ir.rm &= 0x3;
4883 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4884 }
4885 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4886 break;
4887 case 2: /* call */
4888 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4889 ir.dflag = 2;
4890 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4891 return -1;
4892 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4893 break;
4894 case 3: /* lcall */
4895 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4896 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4897 return -1;
4898 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4899 break;
4900 case 4: /* jmp */
4901 case 5: /* ljmp */
4902 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4903 break;
4904 case 6: /* push */
4905 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4906 ir.dflag = 2;
4907 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4908 return -1;
4909 break;
4910 default:
4911 ir.addr -= 2;
4912 opcode = opcode << 8 | ir.modrm;
4913 goto no_support;
4914 break;
4915 }
4916 break;
4917
4918 case 0x84: /* test */
4919 case 0x85:
4920 case 0xa8:
4921 case 0xa9:
4922 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4923 break;
4924
4925 case 0x98: /* CWDE/CBW */
4926 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4927 break;
4928
4929 case 0x99: /* CDQ/CWD */
4930 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4931 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4932 break;
4933
4934 case 0x0faf: /* imul */
4935 case 0x69:
4936 case 0x6b:
4937 ir.ot = ir.dflag + OT_WORD;
4938 if (i386_record_modrm (&ir))
4939 return -1;
4940 if (opcode == 0x69)
4941 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4942 else if (opcode == 0x6b)
4943 ir.rip_offset = 1;
4944 ir.reg |= rex_r;
4945 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4946 ir.reg &= 0x3;
4947 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4948 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4949 break;
4950
4951 case 0x0fc0: /* xadd */
4952 case 0x0fc1:
4953 if ((opcode & 1) == 0)
4954 ir.ot = OT_BYTE;
4955 else
4956 ir.ot = ir.dflag + OT_WORD;
4957 if (i386_record_modrm (&ir))
4958 return -1;
4959 ir.reg |= rex_r;
4960 if (ir.mod == 3)
4961 {
4962 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4963 ir.reg &= 0x3;
4964 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4965 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4966 ir.rm &= 0x3;
4967 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4968 }
4969 else
4970 {
4971 if (i386_record_lea_modrm (&ir))
4972 return -1;
4973 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4974 ir.reg &= 0x3;
4975 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4976 }
4977 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4978 break;
4979
4980 case 0x0fb0: /* cmpxchg */
4981 case 0x0fb1:
4982 if ((opcode & 1) == 0)
4983 ir.ot = OT_BYTE;
4984 else
4985 ir.ot = ir.dflag + OT_WORD;
4986 if (i386_record_modrm (&ir))
4987 return -1;
4988 if (ir.mod == 3)
4989 {
4990 ir.reg |= rex_r;
4991 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4992 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4993 ir.reg &= 0x3;
4994 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4995 }
4996 else
4997 {
4998 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4999 if (i386_record_lea_modrm (&ir))
5000 return -1;
5001 }
5002 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5003 break;
5004
5005 case 0x0fc7: /* cmpxchg8b */
5006 if (i386_record_modrm (&ir))
5007 return -1;
5008 if (ir.mod == 3)
5009 {
5010 ir.addr -= 2;
5011 opcode = opcode << 8 | ir.modrm;
5012 goto no_support;
5013 }
5014 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5015 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5016 if (i386_record_lea_modrm (&ir))
5017 return -1;
5018 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5019 break;
5020
5021 case 0x50: /* push */
5022 case 0x51:
5023 case 0x52:
5024 case 0x53:
5025 case 0x54:
5026 case 0x55:
5027 case 0x56:
5028 case 0x57:
5029 case 0x68:
5030 case 0x6a:
5031 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5032 ir.dflag = 2;
5033 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5034 return -1;
5035 break;
5036
5037 case 0x06: /* push es */
5038 case 0x0e: /* push cs */
5039 case 0x16: /* push ss */
5040 case 0x1e: /* push ds */
5041 if (ir.regmap[X86_RECORD_R8_REGNUM])
5042 {
5043 ir.addr -= 1;
5044 goto no_support;
5045 }
5046 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5047 return -1;
5048 break;
5049
5050 case 0x0fa0: /* push fs */
5051 case 0x0fa8: /* push gs */
5052 if (ir.regmap[X86_RECORD_R8_REGNUM])
5053 {
5054 ir.addr -= 2;
5055 goto no_support;
5056 }
5057 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5058 return -1;
5059 break;
5060
5061 case 0x60: /* pusha */
5062 if (ir.regmap[X86_RECORD_R8_REGNUM])
5063 {
5064 ir.addr -= 1;
5065 goto no_support;
5066 }
5067 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5068 return -1;
5069 break;
5070
5071 case 0x58: /* pop */
5072 case 0x59:
5073 case 0x5a:
5074 case 0x5b:
5075 case 0x5c:
5076 case 0x5d:
5077 case 0x5e:
5078 case 0x5f:
5079 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5080 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5081 break;
5082
5083 case 0x61: /* popa */
5084 if (ir.regmap[X86_RECORD_R8_REGNUM])
5085 {
5086 ir.addr -= 1;
5087 goto no_support;
5088 }
5089 for (regnum = X86_RECORD_REAX_REGNUM;
5090 regnum <= X86_RECORD_REDI_REGNUM;
5091 regnum++)
5092 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5093 break;
5094
5095 case 0x8f: /* pop */
5096 if (ir.regmap[X86_RECORD_R8_REGNUM])
5097 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5098 else
5099 ir.ot = ir.dflag + OT_WORD;
5100 if (i386_record_modrm (&ir))
5101 return -1;
5102 if (ir.mod == 3)
5103 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5104 else
5105 {
5106 ir.popl_esp_hack = 1 << ir.ot;
5107 if (i386_record_lea_modrm (&ir))
5108 return -1;
5109 }
5110 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5111 break;
5112
5113 case 0xc8: /* enter */
5114 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5115 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5116 ir.dflag = 2;
5117 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5118 return -1;
5119 break;
5120
5121 case 0xc9: /* leave */
5122 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5123 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5124 break;
5125
5126 case 0x07: /* pop es */
5127 if (ir.regmap[X86_RECORD_R8_REGNUM])
5128 {
5129 ir.addr -= 1;
5130 goto no_support;
5131 }
5132 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5133 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5134 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5135 break;
5136
5137 case 0x17: /* pop ss */
5138 if (ir.regmap[X86_RECORD_R8_REGNUM])
5139 {
5140 ir.addr -= 1;
5141 goto no_support;
5142 }
5143 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5144 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5145 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5146 break;
5147
5148 case 0x1f: /* pop ds */
5149 if (ir.regmap[X86_RECORD_R8_REGNUM])
5150 {
5151 ir.addr -= 1;
5152 goto no_support;
5153 }
5154 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5155 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5156 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5157 break;
5158
5159 case 0x0fa1: /* pop fs */
5160 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5161 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5162 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5163 break;
5164
5165 case 0x0fa9: /* pop gs */
5166 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5167 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5168 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5169 break;
5170
5171 case 0x88: /* mov */
5172 case 0x89:
5173 case 0xc6:
5174 case 0xc7:
5175 if ((opcode & 1) == 0)
5176 ir.ot = OT_BYTE;
5177 else
5178 ir.ot = ir.dflag + OT_WORD;
5179
5180 if (i386_record_modrm (&ir))
5181 return -1;
5182
5183 if (ir.mod != 3)
5184 {
5185 if (opcode == 0xc6 || opcode == 0xc7)
5186 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5187 if (i386_record_lea_modrm (&ir))
5188 return -1;
5189 }
5190 else
5191 {
5192 if (opcode == 0xc6 || opcode == 0xc7)
5193 ir.rm |= ir.rex_b;
5194 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5195 ir.rm &= 0x3;
5196 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5197 }
5198 break;
5199
5200 case 0x8a: /* mov */
5201 case 0x8b:
5202 if ((opcode & 1) == 0)
5203 ir.ot = OT_BYTE;
5204 else
5205 ir.ot = ir.dflag + OT_WORD;
5206 if (i386_record_modrm (&ir))
5207 return -1;
5208 ir.reg |= rex_r;
5209 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5210 ir.reg &= 0x3;
5211 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5212 break;
5213
5214 case 0x8c: /* mov seg */
5215 if (i386_record_modrm (&ir))
5216 return -1;
5217 if (ir.reg > 5)
5218 {
5219 ir.addr -= 2;
5220 opcode = opcode << 8 | ir.modrm;
5221 goto no_support;
5222 }
5223
5224 if (ir.mod == 3)
5225 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5226 else
5227 {
5228 ir.ot = OT_WORD;
5229 if (i386_record_lea_modrm (&ir))
5230 return -1;
5231 }
5232 break;
5233
5234 case 0x8e: /* mov seg */
5235 if (i386_record_modrm (&ir))
5236 return -1;
5237 switch (ir.reg)
5238 {
5239 case 0:
5240 regnum = X86_RECORD_ES_REGNUM;
5241 break;
5242 case 2:
5243 regnum = X86_RECORD_SS_REGNUM;
5244 break;
5245 case 3:
5246 regnum = X86_RECORD_DS_REGNUM;
5247 break;
5248 case 4:
5249 regnum = X86_RECORD_FS_REGNUM;
5250 break;
5251 case 5:
5252 regnum = X86_RECORD_GS_REGNUM;
5253 break;
5254 default:
5255 ir.addr -= 2;
5256 opcode = opcode << 8 | ir.modrm;
5257 goto no_support;
5258 break;
5259 }
5260 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5261 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5262 break;
5263
5264 case 0x0fb6: /* movzbS */
5265 case 0x0fb7: /* movzwS */
5266 case 0x0fbe: /* movsbS */
5267 case 0x0fbf: /* movswS */
5268 if (i386_record_modrm (&ir))
5269 return -1;
5270 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5271 break;
5272
5273 case 0x8d: /* lea */
5274 if (i386_record_modrm (&ir))
5275 return -1;
5276 if (ir.mod == 3)
5277 {
5278 ir.addr -= 2;
5279 opcode = opcode << 8 | ir.modrm;
5280 goto no_support;
5281 }
5282 ir.ot = ir.dflag;
5283 ir.reg |= rex_r;
5284 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5285 ir.reg &= 0x3;
5286 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5287 break;
5288
5289 case 0xa0: /* mov EAX */
5290 case 0xa1:
5291
5292 case 0xd7: /* xlat */
5293 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5294 break;
5295
5296 case 0xa2: /* mov EAX */
5297 case 0xa3:
5298 if (ir.override >= 0)
5299 {
5300 if (record_full_memory_query)
5301 {
5302 int q;
5303
5304 target_terminal_ours ();
5305 q = yquery (_("\
5306 Process record ignores the memory change of instruction at address %s\n\
5307 because it can't get the value of the segment register.\n\
5308 Do you want to stop the program?"),
5309 paddress (gdbarch, ir.orig_addr));
5310 target_terminal_inferior ();
5311 if (q)
5312 return -1;
5313 }
5314 }
5315 else
5316 {
5317 if ((opcode & 1) == 0)
5318 ir.ot = OT_BYTE;
5319 else
5320 ir.ot = ir.dflag + OT_WORD;
5321 if (ir.aflag == 2)
5322 {
5323 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5324 return -1;
5325 ir.addr += 8;
5326 addr = extract_unsigned_integer (buf, 8, byte_order);
5327 }
5328 else if (ir.aflag)
5329 {
5330 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5331 return -1;
5332 ir.addr += 4;
5333 addr = extract_unsigned_integer (buf, 4, byte_order);
5334 }
5335 else
5336 {
5337 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5338 return -1;
5339 ir.addr += 2;
5340 addr = extract_unsigned_integer (buf, 2, byte_order);
5341 }
5342 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5343 return -1;
5344 }
5345 break;
5346
5347 case 0xb0: /* mov R, Ib */
5348 case 0xb1:
5349 case 0xb2:
5350 case 0xb3:
5351 case 0xb4:
5352 case 0xb5:
5353 case 0xb6:
5354 case 0xb7:
5355 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5356 ? ((opcode & 0x7) | ir.rex_b)
5357 : ((opcode & 0x7) & 0x3));
5358 break;
5359
5360 case 0xb8: /* mov R, Iv */
5361 case 0xb9:
5362 case 0xba:
5363 case 0xbb:
5364 case 0xbc:
5365 case 0xbd:
5366 case 0xbe:
5367 case 0xbf:
5368 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5369 break;
5370
5371 case 0x91: /* xchg R, EAX */
5372 case 0x92:
5373 case 0x93:
5374 case 0x94:
5375 case 0x95:
5376 case 0x96:
5377 case 0x97:
5378 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5379 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5380 break;
5381
5382 case 0x86: /* xchg Ev, Gv */
5383 case 0x87:
5384 if ((opcode & 1) == 0)
5385 ir.ot = OT_BYTE;
5386 else
5387 ir.ot = ir.dflag + OT_WORD;
5388 if (i386_record_modrm (&ir))
5389 return -1;
5390 if (ir.mod == 3)
5391 {
5392 ir.rm |= ir.rex_b;
5393 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5394 ir.rm &= 0x3;
5395 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5396 }
5397 else
5398 {
5399 if (i386_record_lea_modrm (&ir))
5400 return -1;
5401 }
5402 ir.reg |= rex_r;
5403 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5404 ir.reg &= 0x3;
5405 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5406 break;
5407
5408 case 0xc4: /* les Gv */
5409 case 0xc5: /* lds Gv */
5410 if (ir.regmap[X86_RECORD_R8_REGNUM])
5411 {
5412 ir.addr -= 1;
5413 goto no_support;
5414 }
5415 /* FALLTHROUGH */
5416 case 0x0fb2: /* lss Gv */
5417 case 0x0fb4: /* lfs Gv */
5418 case 0x0fb5: /* lgs Gv */
5419 if (i386_record_modrm (&ir))
5420 return -1;
5421 if (ir.mod == 3)
5422 {
5423 if (opcode > 0xff)
5424 ir.addr -= 3;
5425 else
5426 ir.addr -= 2;
5427 opcode = opcode << 8 | ir.modrm;
5428 goto no_support;
5429 }
5430 switch (opcode)
5431 {
5432 case 0xc4: /* les Gv */
5433 regnum = X86_RECORD_ES_REGNUM;
5434 break;
5435 case 0xc5: /* lds Gv */
5436 regnum = X86_RECORD_DS_REGNUM;
5437 break;
5438 case 0x0fb2: /* lss Gv */
5439 regnum = X86_RECORD_SS_REGNUM;
5440 break;
5441 case 0x0fb4: /* lfs Gv */
5442 regnum = X86_RECORD_FS_REGNUM;
5443 break;
5444 case 0x0fb5: /* lgs Gv */
5445 regnum = X86_RECORD_GS_REGNUM;
5446 break;
5447 }
5448 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5449 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5450 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5451 break;
5452
5453 case 0xc0: /* shifts */
5454 case 0xc1:
5455 case 0xd0:
5456 case 0xd1:
5457 case 0xd2:
5458 case 0xd3:
5459 if ((opcode & 1) == 0)
5460 ir.ot = OT_BYTE;
5461 else
5462 ir.ot = ir.dflag + OT_WORD;
5463 if (i386_record_modrm (&ir))
5464 return -1;
5465 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5466 {
5467 if (i386_record_lea_modrm (&ir))
5468 return -1;
5469 }
5470 else
5471 {
5472 ir.rm |= ir.rex_b;
5473 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5474 ir.rm &= 0x3;
5475 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5476 }
5477 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5478 break;
5479
5480 case 0x0fa4:
5481 case 0x0fa5:
5482 case 0x0fac:
5483 case 0x0fad:
5484 if (i386_record_modrm (&ir))
5485 return -1;
5486 if (ir.mod == 3)
5487 {
5488 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5489 return -1;
5490 }
5491 else
5492 {
5493 if (i386_record_lea_modrm (&ir))
5494 return -1;
5495 }
5496 break;
5497
5498 case 0xd8: /* Floats. */
5499 case 0xd9:
5500 case 0xda:
5501 case 0xdb:
5502 case 0xdc:
5503 case 0xdd:
5504 case 0xde:
5505 case 0xdf:
5506 if (i386_record_modrm (&ir))
5507 return -1;
5508 ir.reg |= ((opcode & 7) << 3);
5509 if (ir.mod != 3)
5510 {
5511 /* Memory. */
5512 uint64_t addr64;
5513
5514 if (i386_record_lea_modrm_addr (&ir, &addr64))
5515 return -1;
5516 switch (ir.reg)
5517 {
5518 case 0x02:
5519 case 0x12:
5520 case 0x22:
5521 case 0x32:
5522 /* For fcom, ficom nothing to do. */
5523 break;
5524 case 0x03:
5525 case 0x13:
5526 case 0x23:
5527 case 0x33:
5528 /* For fcomp, ficomp pop FPU stack, store all. */
5529 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5530 return -1;
5531 break;
5532 case 0x00:
5533 case 0x01:
5534 case 0x04:
5535 case 0x05:
5536 case 0x06:
5537 case 0x07:
5538 case 0x10:
5539 case 0x11:
5540 case 0x14:
5541 case 0x15:
5542 case 0x16:
5543 case 0x17:
5544 case 0x20:
5545 case 0x21:
5546 case 0x24:
5547 case 0x25:
5548 case 0x26:
5549 case 0x27:
5550 case 0x30:
5551 case 0x31:
5552 case 0x34:
5553 case 0x35:
5554 case 0x36:
5555 case 0x37:
5556 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5557 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5558 of code, always affects st(0) register. */
5559 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5560 return -1;
5561 break;
5562 case 0x08:
5563 case 0x0a:
5564 case 0x0b:
5565 case 0x18:
5566 case 0x19:
5567 case 0x1a:
5568 case 0x1b:
5569 case 0x1d:
5570 case 0x28:
5571 case 0x29:
5572 case 0x2a:
5573 case 0x2b:
5574 case 0x38:
5575 case 0x39:
5576 case 0x3a:
5577 case 0x3b:
5578 case 0x3c:
5579 case 0x3d:
5580 switch (ir.reg & 7)
5581 {
5582 case 0:
5583 /* Handling fld, fild. */
5584 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5585 return -1;
5586 break;
5587 case 1:
5588 switch (ir.reg >> 4)
5589 {
5590 case 0:
5591 if (record_full_arch_list_add_mem (addr64, 4))
5592 return -1;
5593 break;
5594 case 2:
5595 if (record_full_arch_list_add_mem (addr64, 8))
5596 return -1;
5597 break;
5598 case 3:
5599 break;
5600 default:
5601 if (record_full_arch_list_add_mem (addr64, 2))
5602 return -1;
5603 break;
5604 }
5605 break;
5606 default:
5607 switch (ir.reg >> 4)
5608 {
5609 case 0:
5610 if (record_full_arch_list_add_mem (addr64, 4))
5611 return -1;
5612 if (3 == (ir.reg & 7))
5613 {
5614 /* For fstp m32fp. */
5615 if (i386_record_floats (gdbarch, &ir,
5616 I386_SAVE_FPU_REGS))
5617 return -1;
5618 }
5619 break;
5620 case 1:
5621 if (record_full_arch_list_add_mem (addr64, 4))
5622 return -1;
5623 if ((3 == (ir.reg & 7))
5624 || (5 == (ir.reg & 7))
5625 || (7 == (ir.reg & 7)))
5626 {
5627 /* For fstp insn. */
5628 if (i386_record_floats (gdbarch, &ir,
5629 I386_SAVE_FPU_REGS))
5630 return -1;
5631 }
5632 break;
5633 case 2:
5634 if (record_full_arch_list_add_mem (addr64, 8))
5635 return -1;
5636 if (3 == (ir.reg & 7))
5637 {
5638 /* For fstp m64fp. */
5639 if (i386_record_floats (gdbarch, &ir,
5640 I386_SAVE_FPU_REGS))
5641 return -1;
5642 }
5643 break;
5644 case 3:
5645 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5646 {
5647 /* For fistp, fbld, fild, fbstp. */
5648 if (i386_record_floats (gdbarch, &ir,
5649 I386_SAVE_FPU_REGS))
5650 return -1;
5651 }
5652 /* Fall through */
5653 default:
5654 if (record_full_arch_list_add_mem (addr64, 2))
5655 return -1;
5656 break;
5657 }
5658 break;
5659 }
5660 break;
5661 case 0x0c:
5662 /* Insn fldenv. */
5663 if (i386_record_floats (gdbarch, &ir,
5664 I386_SAVE_FPU_ENV_REG_STACK))
5665 return -1;
5666 break;
5667 case 0x0d:
5668 /* Insn fldcw. */
5669 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5670 return -1;
5671 break;
5672 case 0x2c:
5673 /* Insn frstor. */
5674 if (i386_record_floats (gdbarch, &ir,
5675 I386_SAVE_FPU_ENV_REG_STACK))
5676 return -1;
5677 break;
5678 case 0x0e:
5679 if (ir.dflag)
5680 {
5681 if (record_full_arch_list_add_mem (addr64, 28))
5682 return -1;
5683 }
5684 else
5685 {
5686 if (record_full_arch_list_add_mem (addr64, 14))
5687 return -1;
5688 }
5689 break;
5690 case 0x0f:
5691 case 0x2f:
5692 if (record_full_arch_list_add_mem (addr64, 2))
5693 return -1;
5694 /* Insn fstp, fbstp. */
5695 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5696 return -1;
5697 break;
5698 case 0x1f:
5699 case 0x3e:
5700 if (record_full_arch_list_add_mem (addr64, 10))
5701 return -1;
5702 break;
5703 case 0x2e:
5704 if (ir.dflag)
5705 {
5706 if (record_full_arch_list_add_mem (addr64, 28))
5707 return -1;
5708 addr64 += 28;
5709 }
5710 else
5711 {
5712 if (record_full_arch_list_add_mem (addr64, 14))
5713 return -1;
5714 addr64 += 14;
5715 }
5716 if (record_full_arch_list_add_mem (addr64, 80))
5717 return -1;
5718 /* Insn fsave. */
5719 if (i386_record_floats (gdbarch, &ir,
5720 I386_SAVE_FPU_ENV_REG_STACK))
5721 return -1;
5722 break;
5723 case 0x3f:
5724 if (record_full_arch_list_add_mem (addr64, 8))
5725 return -1;
5726 /* Insn fistp. */
5727 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5728 return -1;
5729 break;
5730 default:
5731 ir.addr -= 2;
5732 opcode = opcode << 8 | ir.modrm;
5733 goto no_support;
5734 break;
5735 }
5736 }
5737 /* Opcode is an extension of modR/M byte. */
5738 else
5739 {
5740 switch (opcode)
5741 {
5742 case 0xd8:
5743 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5744 return -1;
5745 break;
5746 case 0xd9:
5747 if (0x0c == (ir.modrm >> 4))
5748 {
5749 if ((ir.modrm & 0x0f) <= 7)
5750 {
5751 if (i386_record_floats (gdbarch, &ir,
5752 I386_SAVE_FPU_REGS))
5753 return -1;
5754 }
5755 else
5756 {
5757 if (i386_record_floats (gdbarch, &ir,
5758 I387_ST0_REGNUM (tdep)))
5759 return -1;
5760 /* If only st(0) is changing, then we have already
5761 recorded. */
5762 if ((ir.modrm & 0x0f) - 0x08)
5763 {
5764 if (i386_record_floats (gdbarch, &ir,
5765 I387_ST0_REGNUM (tdep) +
5766 ((ir.modrm & 0x0f) - 0x08)))
5767 return -1;
5768 }
5769 }
5770 }
5771 else
5772 {
5773 switch (ir.modrm)
5774 {
5775 case 0xe0:
5776 case 0xe1:
5777 case 0xf0:
5778 case 0xf5:
5779 case 0xf8:
5780 case 0xfa:
5781 case 0xfc:
5782 case 0xfe:
5783 case 0xff:
5784 if (i386_record_floats (gdbarch, &ir,
5785 I387_ST0_REGNUM (tdep)))
5786 return -1;
5787 break;
5788 case 0xf1:
5789 case 0xf2:
5790 case 0xf3:
5791 case 0xf4:
5792 case 0xf6:
5793 case 0xf7:
5794 case 0xe8:
5795 case 0xe9:
5796 case 0xea:
5797 case 0xeb:
5798 case 0xec:
5799 case 0xed:
5800 case 0xee:
5801 case 0xf9:
5802 case 0xfb:
5803 if (i386_record_floats (gdbarch, &ir,
5804 I386_SAVE_FPU_REGS))
5805 return -1;
5806 break;
5807 case 0xfd:
5808 if (i386_record_floats (gdbarch, &ir,
5809 I387_ST0_REGNUM (tdep)))
5810 return -1;
5811 if (i386_record_floats (gdbarch, &ir,
5812 I387_ST0_REGNUM (tdep) + 1))
5813 return -1;
5814 break;
5815 }
5816 }
5817 break;
5818 case 0xda:
5819 if (0xe9 == ir.modrm)
5820 {
5821 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5822 return -1;
5823 }
5824 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5825 {
5826 if (i386_record_floats (gdbarch, &ir,
5827 I387_ST0_REGNUM (tdep)))
5828 return -1;
5829 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5830 {
5831 if (i386_record_floats (gdbarch, &ir,
5832 I387_ST0_REGNUM (tdep) +
5833 (ir.modrm & 0x0f)))
5834 return -1;
5835 }
5836 else if ((ir.modrm & 0x0f) - 0x08)
5837 {
5838 if (i386_record_floats (gdbarch, &ir,
5839 I387_ST0_REGNUM (tdep) +
5840 ((ir.modrm & 0x0f) - 0x08)))
5841 return -1;
5842 }
5843 }
5844 break;
5845 case 0xdb:
5846 if (0xe3 == ir.modrm)
5847 {
5848 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5849 return -1;
5850 }
5851 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5852 {
5853 if (i386_record_floats (gdbarch, &ir,
5854 I387_ST0_REGNUM (tdep)))
5855 return -1;
5856 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5857 {
5858 if (i386_record_floats (gdbarch, &ir,
5859 I387_ST0_REGNUM (tdep) +
5860 (ir.modrm & 0x0f)))
5861 return -1;
5862 }
5863 else if ((ir.modrm & 0x0f) - 0x08)
5864 {
5865 if (i386_record_floats (gdbarch, &ir,
5866 I387_ST0_REGNUM (tdep) +
5867 ((ir.modrm & 0x0f) - 0x08)))
5868 return -1;
5869 }
5870 }
5871 break;
5872 case 0xdc:
5873 if ((0x0c == ir.modrm >> 4)
5874 || (0x0d == ir.modrm >> 4)
5875 || (0x0f == ir.modrm >> 4))
5876 {
5877 if ((ir.modrm & 0x0f) <= 7)
5878 {
5879 if (i386_record_floats (gdbarch, &ir,
5880 I387_ST0_REGNUM (tdep) +
5881 (ir.modrm & 0x0f)))
5882 return -1;
5883 }
5884 else
5885 {
5886 if (i386_record_floats (gdbarch, &ir,
5887 I387_ST0_REGNUM (tdep) +
5888 ((ir.modrm & 0x0f) - 0x08)))
5889 return -1;
5890 }
5891 }
5892 break;
5893 case 0xdd:
5894 if (0x0c == ir.modrm >> 4)
5895 {
5896 if (i386_record_floats (gdbarch, &ir,
5897 I387_FTAG_REGNUM (tdep)))
5898 return -1;
5899 }
5900 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5901 {
5902 if ((ir.modrm & 0x0f) <= 7)
5903 {
5904 if (i386_record_floats (gdbarch, &ir,
5905 I387_ST0_REGNUM (tdep) +
5906 (ir.modrm & 0x0f)))
5907 return -1;
5908 }
5909 else
5910 {
5911 if (i386_record_floats (gdbarch, &ir,
5912 I386_SAVE_FPU_REGS))
5913 return -1;
5914 }
5915 }
5916 break;
5917 case 0xde:
5918 if ((0x0c == ir.modrm >> 4)
5919 || (0x0e == ir.modrm >> 4)
5920 || (0x0f == ir.modrm >> 4)
5921 || (0xd9 == ir.modrm))
5922 {
5923 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5924 return -1;
5925 }
5926 break;
5927 case 0xdf:
5928 if (0xe0 == ir.modrm)
5929 {
5930 if (record_full_arch_list_add_reg (ir.regcache,
5931 I386_EAX_REGNUM))
5932 return -1;
5933 }
5934 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5935 {
5936 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5937 return -1;
5938 }
5939 break;
5940 }
5941 }
5942 break;
5943 /* string ops */
5944 case 0xa4: /* movsS */
5945 case 0xa5:
5946 case 0xaa: /* stosS */
5947 case 0xab:
5948 case 0x6c: /* insS */
5949 case 0x6d:
5950 regcache_raw_read_unsigned (ir.regcache,
5951 ir.regmap[X86_RECORD_RECX_REGNUM],
5952 &addr);
5953 if (addr)
5954 {
5955 ULONGEST es, ds;
5956
5957 if ((opcode & 1) == 0)
5958 ir.ot = OT_BYTE;
5959 else
5960 ir.ot = ir.dflag + OT_WORD;
5961 regcache_raw_read_unsigned (ir.regcache,
5962 ir.regmap[X86_RECORD_REDI_REGNUM],
5963 &addr);
5964
5965 regcache_raw_read_unsigned (ir.regcache,
5966 ir.regmap[X86_RECORD_ES_REGNUM],
5967 &es);
5968 regcache_raw_read_unsigned (ir.regcache,
5969 ir.regmap[X86_RECORD_DS_REGNUM],
5970 &ds);
5971 if (ir.aflag && (es != ds))
5972 {
5973 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5974 if (record_full_memory_query)
5975 {
5976 int q;
5977
5978 target_terminal_ours ();
5979 q = yquery (_("\
5980 Process record ignores the memory change of instruction at address %s\n\
5981 because it can't get the value of the segment register.\n\
5982 Do you want to stop the program?"),
5983 paddress (gdbarch, ir.orig_addr));
5984 target_terminal_inferior ();
5985 if (q)
5986 return -1;
5987 }
5988 }
5989 else
5990 {
5991 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5992 return -1;
5993 }
5994
5995 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5996 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5997 if (opcode == 0xa4 || opcode == 0xa5)
5998 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5999 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6000 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6001 }
6002 break;
6003
6004 case 0xa6: /* cmpsS */
6005 case 0xa7:
6006 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6007 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6008 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6009 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6010 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6011 break;
6012
6013 case 0xac: /* lodsS */
6014 case 0xad:
6015 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6016 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6017 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6018 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6019 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6020 break;
6021
6022 case 0xae: /* scasS */
6023 case 0xaf:
6024 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6025 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6026 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6027 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6028 break;
6029
6030 case 0x6e: /* outsS */
6031 case 0x6f:
6032 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6033 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6034 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6035 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6036 break;
6037
6038 case 0xe4: /* port I/O */
6039 case 0xe5:
6040 case 0xec:
6041 case 0xed:
6042 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6043 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6044 break;
6045
6046 case 0xe6:
6047 case 0xe7:
6048 case 0xee:
6049 case 0xef:
6050 break;
6051
6052 /* control */
6053 case 0xc2: /* ret im */
6054 case 0xc3: /* ret */
6055 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6056 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6057 break;
6058
6059 case 0xca: /* lret im */
6060 case 0xcb: /* lret */
6061 case 0xcf: /* iret */
6062 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6063 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6064 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6065 break;
6066
6067 case 0xe8: /* call im */
6068 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6069 ir.dflag = 2;
6070 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6071 return -1;
6072 break;
6073
6074 case 0x9a: /* lcall im */
6075 if (ir.regmap[X86_RECORD_R8_REGNUM])
6076 {
6077 ir.addr -= 1;
6078 goto no_support;
6079 }
6080 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6081 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6082 return -1;
6083 break;
6084
6085 case 0xe9: /* jmp im */
6086 case 0xea: /* ljmp im */
6087 case 0xeb: /* jmp Jb */
6088 case 0x70: /* jcc Jb */
6089 case 0x71:
6090 case 0x72:
6091 case 0x73:
6092 case 0x74:
6093 case 0x75:
6094 case 0x76:
6095 case 0x77:
6096 case 0x78:
6097 case 0x79:
6098 case 0x7a:
6099 case 0x7b:
6100 case 0x7c:
6101 case 0x7d:
6102 case 0x7e:
6103 case 0x7f:
6104 case 0x0f80: /* jcc Jv */
6105 case 0x0f81:
6106 case 0x0f82:
6107 case 0x0f83:
6108 case 0x0f84:
6109 case 0x0f85:
6110 case 0x0f86:
6111 case 0x0f87:
6112 case 0x0f88:
6113 case 0x0f89:
6114 case 0x0f8a:
6115 case 0x0f8b:
6116 case 0x0f8c:
6117 case 0x0f8d:
6118 case 0x0f8e:
6119 case 0x0f8f:
6120 break;
6121
6122 case 0x0f90: /* setcc Gv */
6123 case 0x0f91:
6124 case 0x0f92:
6125 case 0x0f93:
6126 case 0x0f94:
6127 case 0x0f95:
6128 case 0x0f96:
6129 case 0x0f97:
6130 case 0x0f98:
6131 case 0x0f99:
6132 case 0x0f9a:
6133 case 0x0f9b:
6134 case 0x0f9c:
6135 case 0x0f9d:
6136 case 0x0f9e:
6137 case 0x0f9f:
6138 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6139 ir.ot = OT_BYTE;
6140 if (i386_record_modrm (&ir))
6141 return -1;
6142 if (ir.mod == 3)
6143 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6144 : (ir.rm & 0x3));
6145 else
6146 {
6147 if (i386_record_lea_modrm (&ir))
6148 return -1;
6149 }
6150 break;
6151
6152 case 0x0f40: /* cmov Gv, Ev */
6153 case 0x0f41:
6154 case 0x0f42:
6155 case 0x0f43:
6156 case 0x0f44:
6157 case 0x0f45:
6158 case 0x0f46:
6159 case 0x0f47:
6160 case 0x0f48:
6161 case 0x0f49:
6162 case 0x0f4a:
6163 case 0x0f4b:
6164 case 0x0f4c:
6165 case 0x0f4d:
6166 case 0x0f4e:
6167 case 0x0f4f:
6168 if (i386_record_modrm (&ir))
6169 return -1;
6170 ir.reg |= rex_r;
6171 if (ir.dflag == OT_BYTE)
6172 ir.reg &= 0x3;
6173 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6174 break;
6175
6176 /* flags */
6177 case 0x9c: /* pushf */
6178 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6179 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6180 ir.dflag = 2;
6181 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6182 return -1;
6183 break;
6184
6185 case 0x9d: /* popf */
6186 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6187 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6188 break;
6189
6190 case 0x9e: /* sahf */
6191 if (ir.regmap[X86_RECORD_R8_REGNUM])
6192 {
6193 ir.addr -= 1;
6194 goto no_support;
6195 }
6196 /* FALLTHROUGH */
6197 case 0xf5: /* cmc */
6198 case 0xf8: /* clc */
6199 case 0xf9: /* stc */
6200 case 0xfc: /* cld */
6201 case 0xfd: /* std */
6202 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6203 break;
6204
6205 case 0x9f: /* lahf */
6206 if (ir.regmap[X86_RECORD_R8_REGNUM])
6207 {
6208 ir.addr -= 1;
6209 goto no_support;
6210 }
6211 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6212 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6213 break;
6214
6215 /* bit operations */
6216 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6217 ir.ot = ir.dflag + OT_WORD;
6218 if (i386_record_modrm (&ir))
6219 return -1;
6220 if (ir.reg < 4)
6221 {
6222 ir.addr -= 2;
6223 opcode = opcode << 8 | ir.modrm;
6224 goto no_support;
6225 }
6226 if (ir.reg != 4)
6227 {
6228 if (ir.mod == 3)
6229 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6230 else
6231 {
6232 if (i386_record_lea_modrm (&ir))
6233 return -1;
6234 }
6235 }
6236 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6237 break;
6238
6239 case 0x0fa3: /* bt Gv, Ev */
6240 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6241 break;
6242
6243 case 0x0fab: /* bts */
6244 case 0x0fb3: /* btr */
6245 case 0x0fbb: /* btc */
6246 ir.ot = ir.dflag + OT_WORD;
6247 if (i386_record_modrm (&ir))
6248 return -1;
6249 if (ir.mod == 3)
6250 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6251 else
6252 {
6253 uint64_t addr64;
6254 if (i386_record_lea_modrm_addr (&ir, &addr64))
6255 return -1;
6256 regcache_raw_read_unsigned (ir.regcache,
6257 ir.regmap[ir.reg | rex_r],
6258 &addr);
6259 switch (ir.dflag)
6260 {
6261 case 0:
6262 addr64 += ((int16_t) addr >> 4) << 4;
6263 break;
6264 case 1:
6265 addr64 += ((int32_t) addr >> 5) << 5;
6266 break;
6267 case 2:
6268 addr64 += ((int64_t) addr >> 6) << 6;
6269 break;
6270 }
6271 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6272 return -1;
6273 if (i386_record_lea_modrm (&ir))
6274 return -1;
6275 }
6276 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6277 break;
6278
6279 case 0x0fbc: /* bsf */
6280 case 0x0fbd: /* bsr */
6281 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6282 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6283 break;
6284
6285 /* bcd */
6286 case 0x27: /* daa */
6287 case 0x2f: /* das */
6288 case 0x37: /* aaa */
6289 case 0x3f: /* aas */
6290 case 0xd4: /* aam */
6291 case 0xd5: /* aad */
6292 if (ir.regmap[X86_RECORD_R8_REGNUM])
6293 {
6294 ir.addr -= 1;
6295 goto no_support;
6296 }
6297 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6298 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6299 break;
6300
6301 /* misc */
6302 case 0x90: /* nop */
6303 if (prefixes & PREFIX_LOCK)
6304 {
6305 ir.addr -= 1;
6306 goto no_support;
6307 }
6308 break;
6309
6310 case 0x9b: /* fwait */
6311 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6312 return -1;
6313 opcode = (uint32_t) opcode8;
6314 ir.addr++;
6315 goto reswitch;
6316 break;
6317
6318 /* XXX */
6319 case 0xcc: /* int3 */
6320 printf_unfiltered (_("Process record does not support instruction "
6321 "int3.\n"));
6322 ir.addr -= 1;
6323 goto no_support;
6324 break;
6325
6326 /* XXX */
6327 case 0xcd: /* int */
6328 {
6329 int ret;
6330 uint8_t interrupt;
6331 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6332 return -1;
6333 ir.addr++;
6334 if (interrupt != 0x80
6335 || tdep->i386_intx80_record == NULL)
6336 {
6337 printf_unfiltered (_("Process record does not support "
6338 "instruction int 0x%02x.\n"),
6339 interrupt);
6340 ir.addr -= 2;
6341 goto no_support;
6342 }
6343 ret = tdep->i386_intx80_record (ir.regcache);
6344 if (ret)
6345 return ret;
6346 }
6347 break;
6348
6349 /* XXX */
6350 case 0xce: /* into */
6351 printf_unfiltered (_("Process record does not support "
6352 "instruction into.\n"));
6353 ir.addr -= 1;
6354 goto no_support;
6355 break;
6356
6357 case 0xfa: /* cli */
6358 case 0xfb: /* sti */
6359 break;
6360
6361 case 0x62: /* bound */
6362 printf_unfiltered (_("Process record does not support "
6363 "instruction bound.\n"));
6364 ir.addr -= 1;
6365 goto no_support;
6366 break;
6367
6368 case 0x0fc8: /* bswap reg */
6369 case 0x0fc9:
6370 case 0x0fca:
6371 case 0x0fcb:
6372 case 0x0fcc:
6373 case 0x0fcd:
6374 case 0x0fce:
6375 case 0x0fcf:
6376 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6377 break;
6378
6379 case 0xd6: /* salc */
6380 if (ir.regmap[X86_RECORD_R8_REGNUM])
6381 {
6382 ir.addr -= 1;
6383 goto no_support;
6384 }
6385 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6386 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6387 break;
6388
6389 case 0xe0: /* loopnz */
6390 case 0xe1: /* loopz */
6391 case 0xe2: /* loop */
6392 case 0xe3: /* jecxz */
6393 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6394 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6395 break;
6396
6397 case 0x0f30: /* wrmsr */
6398 printf_unfiltered (_("Process record does not support "
6399 "instruction wrmsr.\n"));
6400 ir.addr -= 2;
6401 goto no_support;
6402 break;
6403
6404 case 0x0f32: /* rdmsr */
6405 printf_unfiltered (_("Process record does not support "
6406 "instruction rdmsr.\n"));
6407 ir.addr -= 2;
6408 goto no_support;
6409 break;
6410
6411 case 0x0f31: /* rdtsc */
6412 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6413 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6414 break;
6415
6416 case 0x0f34: /* sysenter */
6417 {
6418 int ret;
6419 if (ir.regmap[X86_RECORD_R8_REGNUM])
6420 {
6421 ir.addr -= 2;
6422 goto no_support;
6423 }
6424 if (tdep->i386_sysenter_record == NULL)
6425 {
6426 printf_unfiltered (_("Process record does not support "
6427 "instruction sysenter.\n"));
6428 ir.addr -= 2;
6429 goto no_support;
6430 }
6431 ret = tdep->i386_sysenter_record (ir.regcache);
6432 if (ret)
6433 return ret;
6434 }
6435 break;
6436
6437 case 0x0f35: /* sysexit */
6438 printf_unfiltered (_("Process record does not support "
6439 "instruction sysexit.\n"));
6440 ir.addr -= 2;
6441 goto no_support;
6442 break;
6443
6444 case 0x0f05: /* syscall */
6445 {
6446 int ret;
6447 if (tdep->i386_syscall_record == NULL)
6448 {
6449 printf_unfiltered (_("Process record does not support "
6450 "instruction syscall.\n"));
6451 ir.addr -= 2;
6452 goto no_support;
6453 }
6454 ret = tdep->i386_syscall_record (ir.regcache);
6455 if (ret)
6456 return ret;
6457 }
6458 break;
6459
6460 case 0x0f07: /* sysret */
6461 printf_unfiltered (_("Process record does not support "
6462 "instruction sysret.\n"));
6463 ir.addr -= 2;
6464 goto no_support;
6465 break;
6466
6467 case 0x0fa2: /* cpuid */
6468 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6469 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6470 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6471 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6472 break;
6473
6474 case 0xf4: /* hlt */
6475 printf_unfiltered (_("Process record does not support "
6476 "instruction hlt.\n"));
6477 ir.addr -= 1;
6478 goto no_support;
6479 break;
6480
6481 case 0x0f00:
6482 if (i386_record_modrm (&ir))
6483 return -1;
6484 switch (ir.reg)
6485 {
6486 case 0: /* sldt */
6487 case 1: /* str */
6488 if (ir.mod == 3)
6489 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6490 else
6491 {
6492 ir.ot = OT_WORD;
6493 if (i386_record_lea_modrm (&ir))
6494 return -1;
6495 }
6496 break;
6497 case 2: /* lldt */
6498 case 3: /* ltr */
6499 break;
6500 case 4: /* verr */
6501 case 5: /* verw */
6502 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6503 break;
6504 default:
6505 ir.addr -= 3;
6506 opcode = opcode << 8 | ir.modrm;
6507 goto no_support;
6508 break;
6509 }
6510 break;
6511
6512 case 0x0f01:
6513 if (i386_record_modrm (&ir))
6514 return -1;
6515 switch (ir.reg)
6516 {
6517 case 0: /* sgdt */
6518 {
6519 uint64_t addr64;
6520
6521 if (ir.mod == 3)
6522 {
6523 ir.addr -= 3;
6524 opcode = opcode << 8 | ir.modrm;
6525 goto no_support;
6526 }
6527 if (ir.override >= 0)
6528 {
6529 if (record_full_memory_query)
6530 {
6531 int q;
6532
6533 target_terminal_ours ();
6534 q = yquery (_("\
6535 Process record ignores the memory change of instruction at address %s\n\
6536 because it can't get the value of the segment register.\n\
6537 Do you want to stop the program?"),
6538 paddress (gdbarch, ir.orig_addr));
6539 target_terminal_inferior ();
6540 if (q)
6541 return -1;
6542 }
6543 }
6544 else
6545 {
6546 if (i386_record_lea_modrm_addr (&ir, &addr64))
6547 return -1;
6548 if (record_full_arch_list_add_mem (addr64, 2))
6549 return -1;
6550 addr64 += 2;
6551 if (ir.regmap[X86_RECORD_R8_REGNUM])
6552 {
6553 if (record_full_arch_list_add_mem (addr64, 8))
6554 return -1;
6555 }
6556 else
6557 {
6558 if (record_full_arch_list_add_mem (addr64, 4))
6559 return -1;
6560 }
6561 }
6562 }
6563 break;
6564 case 1:
6565 if (ir.mod == 3)
6566 {
6567 switch (ir.rm)
6568 {
6569 case 0: /* monitor */
6570 break;
6571 case 1: /* mwait */
6572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6573 break;
6574 default:
6575 ir.addr -= 3;
6576 opcode = opcode << 8 | ir.modrm;
6577 goto no_support;
6578 break;
6579 }
6580 }
6581 else
6582 {
6583 /* sidt */
6584 if (ir.override >= 0)
6585 {
6586 if (record_full_memory_query)
6587 {
6588 int q;
6589
6590 target_terminal_ours ();
6591 q = yquery (_("\
6592 Process record ignores the memory change of instruction at address %s\n\
6593 because it can't get the value of the segment register.\n\
6594 Do you want to stop the program?"),
6595 paddress (gdbarch, ir.orig_addr));
6596 target_terminal_inferior ();
6597 if (q)
6598 return -1;
6599 }
6600 }
6601 else
6602 {
6603 uint64_t addr64;
6604
6605 if (i386_record_lea_modrm_addr (&ir, &addr64))
6606 return -1;
6607 if (record_full_arch_list_add_mem (addr64, 2))
6608 return -1;
6609 addr64 += 2;
6610 if (ir.regmap[X86_RECORD_R8_REGNUM])
6611 {
6612 if (record_full_arch_list_add_mem (addr64, 8))
6613 return -1;
6614 }
6615 else
6616 {
6617 if (record_full_arch_list_add_mem (addr64, 4))
6618 return -1;
6619 }
6620 }
6621 }
6622 break;
6623 case 2: /* lgdt */
6624 if (ir.mod == 3)
6625 {
6626 /* xgetbv */
6627 if (ir.rm == 0)
6628 {
6629 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6630 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6631 break;
6632 }
6633 /* xsetbv */
6634 else if (ir.rm == 1)
6635 break;
6636 }
6637 case 3: /* lidt */
6638 if (ir.mod == 3)
6639 {
6640 ir.addr -= 3;
6641 opcode = opcode << 8 | ir.modrm;
6642 goto no_support;
6643 }
6644 break;
6645 case 4: /* smsw */
6646 if (ir.mod == 3)
6647 {
6648 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
6649 return -1;
6650 }
6651 else
6652 {
6653 ir.ot = OT_WORD;
6654 if (i386_record_lea_modrm (&ir))
6655 return -1;
6656 }
6657 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6658 break;
6659 case 6: /* lmsw */
6660 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6661 break;
6662 case 7: /* invlpg */
6663 if (ir.mod == 3)
6664 {
6665 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6666 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6667 else
6668 {
6669 ir.addr -= 3;
6670 opcode = opcode << 8 | ir.modrm;
6671 goto no_support;
6672 }
6673 }
6674 else
6675 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6676 break;
6677 default:
6678 ir.addr -= 3;
6679 opcode = opcode << 8 | ir.modrm;
6680 goto no_support;
6681 break;
6682 }
6683 break;
6684
6685 case 0x0f08: /* invd */
6686 case 0x0f09: /* wbinvd */
6687 break;
6688
6689 case 0x63: /* arpl */
6690 if (i386_record_modrm (&ir))
6691 return -1;
6692 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6693 {
6694 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6695 ? (ir.reg | rex_r) : ir.rm);
6696 }
6697 else
6698 {
6699 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6700 if (i386_record_lea_modrm (&ir))
6701 return -1;
6702 }
6703 if (!ir.regmap[X86_RECORD_R8_REGNUM])
6704 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6705 break;
6706
6707 case 0x0f02: /* lar */
6708 case 0x0f03: /* lsl */
6709 if (i386_record_modrm (&ir))
6710 return -1;
6711 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6713 break;
6714
6715 case 0x0f18:
6716 if (i386_record_modrm (&ir))
6717 return -1;
6718 if (ir.mod == 3 && ir.reg == 3)
6719 {
6720 ir.addr -= 3;
6721 opcode = opcode << 8 | ir.modrm;
6722 goto no_support;
6723 }
6724 break;
6725
6726 case 0x0f19:
6727 case 0x0f1a:
6728 case 0x0f1b:
6729 case 0x0f1c:
6730 case 0x0f1d:
6731 case 0x0f1e:
6732 case 0x0f1f:
6733 /* nop (multi byte) */
6734 break;
6735
6736 case 0x0f20: /* mov reg, crN */
6737 case 0x0f22: /* mov crN, reg */
6738 if (i386_record_modrm (&ir))
6739 return -1;
6740 if ((ir.modrm & 0xc0) != 0xc0)
6741 {
6742 ir.addr -= 3;
6743 opcode = opcode << 8 | ir.modrm;
6744 goto no_support;
6745 }
6746 switch (ir.reg)
6747 {
6748 case 0:
6749 case 2:
6750 case 3:
6751 case 4:
6752 case 8:
6753 if (opcode & 2)
6754 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6755 else
6756 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6757 break;
6758 default:
6759 ir.addr -= 3;
6760 opcode = opcode << 8 | ir.modrm;
6761 goto no_support;
6762 break;
6763 }
6764 break;
6765
6766 case 0x0f21: /* mov reg, drN */
6767 case 0x0f23: /* mov drN, reg */
6768 if (i386_record_modrm (&ir))
6769 return -1;
6770 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6771 || ir.reg == 5 || ir.reg >= 8)
6772 {
6773 ir.addr -= 3;
6774 opcode = opcode << 8 | ir.modrm;
6775 goto no_support;
6776 }
6777 if (opcode & 2)
6778 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6779 else
6780 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6781 break;
6782
6783 case 0x0f06: /* clts */
6784 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6785 break;
6786
6787 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6788
6789 case 0x0f0d: /* 3DNow! prefetch */
6790 break;
6791
6792 case 0x0f0e: /* 3DNow! femms */
6793 case 0x0f77: /* emms */
6794 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6795 goto no_support;
6796 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6797 break;
6798
6799 case 0x0f0f: /* 3DNow! data */
6800 if (i386_record_modrm (&ir))
6801 return -1;
6802 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6803 return -1;
6804 ir.addr++;
6805 switch (opcode8)
6806 {
6807 case 0x0c: /* 3DNow! pi2fw */
6808 case 0x0d: /* 3DNow! pi2fd */
6809 case 0x1c: /* 3DNow! pf2iw */
6810 case 0x1d: /* 3DNow! pf2id */
6811 case 0x8a: /* 3DNow! pfnacc */
6812 case 0x8e: /* 3DNow! pfpnacc */
6813 case 0x90: /* 3DNow! pfcmpge */
6814 case 0x94: /* 3DNow! pfmin */
6815 case 0x96: /* 3DNow! pfrcp */
6816 case 0x97: /* 3DNow! pfrsqrt */
6817 case 0x9a: /* 3DNow! pfsub */
6818 case 0x9e: /* 3DNow! pfadd */
6819 case 0xa0: /* 3DNow! pfcmpgt */
6820 case 0xa4: /* 3DNow! pfmax */
6821 case 0xa6: /* 3DNow! pfrcpit1 */
6822 case 0xa7: /* 3DNow! pfrsqit1 */
6823 case 0xaa: /* 3DNow! pfsubr */
6824 case 0xae: /* 3DNow! pfacc */
6825 case 0xb0: /* 3DNow! pfcmpeq */
6826 case 0xb4: /* 3DNow! pfmul */
6827 case 0xb6: /* 3DNow! pfrcpit2 */
6828 case 0xb7: /* 3DNow! pmulhrw */
6829 case 0xbb: /* 3DNow! pswapd */
6830 case 0xbf: /* 3DNow! pavgusb */
6831 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6832 goto no_support_3dnow_data;
6833 record_full_arch_list_add_reg (ir.regcache, ir.reg);
6834 break;
6835
6836 default:
6837 no_support_3dnow_data:
6838 opcode = (opcode << 8) | opcode8;
6839 goto no_support;
6840 break;
6841 }
6842 break;
6843
6844 case 0x0faa: /* rsm */
6845 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6846 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6847 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6848 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6849 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6850 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6851 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6852 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6853 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6854 break;
6855
6856 case 0x0fae:
6857 if (i386_record_modrm (&ir))
6858 return -1;
6859 switch(ir.reg)
6860 {
6861 case 0: /* fxsave */
6862 {
6863 uint64_t tmpu64;
6864
6865 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6866 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6867 return -1;
6868 if (record_full_arch_list_add_mem (tmpu64, 512))
6869 return -1;
6870 }
6871 break;
6872
6873 case 1: /* fxrstor */
6874 {
6875 int i;
6876
6877 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6878
6879 for (i = I387_MM0_REGNUM (tdep);
6880 i386_mmx_regnum_p (gdbarch, i); i++)
6881 record_full_arch_list_add_reg (ir.regcache, i);
6882
6883 for (i = I387_XMM0_REGNUM (tdep);
6884 i386_xmm_regnum_p (gdbarch, i); i++)
6885 record_full_arch_list_add_reg (ir.regcache, i);
6886
6887 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6888 record_full_arch_list_add_reg (ir.regcache,
6889 I387_MXCSR_REGNUM(tdep));
6890
6891 for (i = I387_ST0_REGNUM (tdep);
6892 i386_fp_regnum_p (gdbarch, i); i++)
6893 record_full_arch_list_add_reg (ir.regcache, i);
6894
6895 for (i = I387_FCTRL_REGNUM (tdep);
6896 i386_fpc_regnum_p (gdbarch, i); i++)
6897 record_full_arch_list_add_reg (ir.regcache, i);
6898 }
6899 break;
6900
6901 case 2: /* ldmxcsr */
6902 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6903 goto no_support;
6904 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6905 break;
6906
6907 case 3: /* stmxcsr */
6908 ir.ot = OT_LONG;
6909 if (i386_record_lea_modrm (&ir))
6910 return -1;
6911 break;
6912
6913 case 5: /* lfence */
6914 case 6: /* mfence */
6915 case 7: /* sfence clflush */
6916 break;
6917
6918 default:
6919 opcode = (opcode << 8) | ir.modrm;
6920 goto no_support;
6921 break;
6922 }
6923 break;
6924
6925 case 0x0fc3: /* movnti */
6926 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6927 if (i386_record_modrm (&ir))
6928 return -1;
6929 if (ir.mod == 3)
6930 goto no_support;
6931 ir.reg |= rex_r;
6932 if (i386_record_lea_modrm (&ir))
6933 return -1;
6934 break;
6935
6936 /* Add prefix to opcode. */
6937 case 0x0f10:
6938 case 0x0f11:
6939 case 0x0f12:
6940 case 0x0f13:
6941 case 0x0f14:
6942 case 0x0f15:
6943 case 0x0f16:
6944 case 0x0f17:
6945 case 0x0f28:
6946 case 0x0f29:
6947 case 0x0f2a:
6948 case 0x0f2b:
6949 case 0x0f2c:
6950 case 0x0f2d:
6951 case 0x0f2e:
6952 case 0x0f2f:
6953 case 0x0f38:
6954 case 0x0f39:
6955 case 0x0f3a:
6956 case 0x0f50:
6957 case 0x0f51:
6958 case 0x0f52:
6959 case 0x0f53:
6960 case 0x0f54:
6961 case 0x0f55:
6962 case 0x0f56:
6963 case 0x0f57:
6964 case 0x0f58:
6965 case 0x0f59:
6966 case 0x0f5a:
6967 case 0x0f5b:
6968 case 0x0f5c:
6969 case 0x0f5d:
6970 case 0x0f5e:
6971 case 0x0f5f:
6972 case 0x0f60:
6973 case 0x0f61:
6974 case 0x0f62:
6975 case 0x0f63:
6976 case 0x0f64:
6977 case 0x0f65:
6978 case 0x0f66:
6979 case 0x0f67:
6980 case 0x0f68:
6981 case 0x0f69:
6982 case 0x0f6a:
6983 case 0x0f6b:
6984 case 0x0f6c:
6985 case 0x0f6d:
6986 case 0x0f6e:
6987 case 0x0f6f:
6988 case 0x0f70:
6989 case 0x0f71:
6990 case 0x0f72:
6991 case 0x0f73:
6992 case 0x0f74:
6993 case 0x0f75:
6994 case 0x0f76:
6995 case 0x0f7c:
6996 case 0x0f7d:
6997 case 0x0f7e:
6998 case 0x0f7f:
6999 case 0x0fb8:
7000 case 0x0fc2:
7001 case 0x0fc4:
7002 case 0x0fc5:
7003 case 0x0fc6:
7004 case 0x0fd0:
7005 case 0x0fd1:
7006 case 0x0fd2:
7007 case 0x0fd3:
7008 case 0x0fd4:
7009 case 0x0fd5:
7010 case 0x0fd6:
7011 case 0x0fd7:
7012 case 0x0fd8:
7013 case 0x0fd9:
7014 case 0x0fda:
7015 case 0x0fdb:
7016 case 0x0fdc:
7017 case 0x0fdd:
7018 case 0x0fde:
7019 case 0x0fdf:
7020 case 0x0fe0:
7021 case 0x0fe1:
7022 case 0x0fe2:
7023 case 0x0fe3:
7024 case 0x0fe4:
7025 case 0x0fe5:
7026 case 0x0fe6:
7027 case 0x0fe7:
7028 case 0x0fe8:
7029 case 0x0fe9:
7030 case 0x0fea:
7031 case 0x0feb:
7032 case 0x0fec:
7033 case 0x0fed:
7034 case 0x0fee:
7035 case 0x0fef:
7036 case 0x0ff0:
7037 case 0x0ff1:
7038 case 0x0ff2:
7039 case 0x0ff3:
7040 case 0x0ff4:
7041 case 0x0ff5:
7042 case 0x0ff6:
7043 case 0x0ff7:
7044 case 0x0ff8:
7045 case 0x0ff9:
7046 case 0x0ffa:
7047 case 0x0ffb:
7048 case 0x0ffc:
7049 case 0x0ffd:
7050 case 0x0ffe:
7051 /* Mask out PREFIX_ADDR. */
7052 switch ((prefixes & ~PREFIX_ADDR))
7053 {
7054 case PREFIX_REPNZ:
7055 opcode |= 0xf20000;
7056 break;
7057 case PREFIX_DATA:
7058 opcode |= 0x660000;
7059 break;
7060 case PREFIX_REPZ:
7061 opcode |= 0xf30000;
7062 break;
7063 }
7064 reswitch_prefix_add:
7065 switch (opcode)
7066 {
7067 case 0x0f38:
7068 case 0x660f38:
7069 case 0xf20f38:
7070 case 0x0f3a:
7071 case 0x660f3a:
7072 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7073 return -1;
7074 ir.addr++;
7075 opcode = (uint32_t) opcode8 | opcode << 8;
7076 goto reswitch_prefix_add;
7077 break;
7078
7079 case 0x0f10: /* movups */
7080 case 0x660f10: /* movupd */
7081 case 0xf30f10: /* movss */
7082 case 0xf20f10: /* movsd */
7083 case 0x0f12: /* movlps */
7084 case 0x660f12: /* movlpd */
7085 case 0xf30f12: /* movsldup */
7086 case 0xf20f12: /* movddup */
7087 case 0x0f14: /* unpcklps */
7088 case 0x660f14: /* unpcklpd */
7089 case 0x0f15: /* unpckhps */
7090 case 0x660f15: /* unpckhpd */
7091 case 0x0f16: /* movhps */
7092 case 0x660f16: /* movhpd */
7093 case 0xf30f16: /* movshdup */
7094 case 0x0f28: /* movaps */
7095 case 0x660f28: /* movapd */
7096 case 0x0f2a: /* cvtpi2ps */
7097 case 0x660f2a: /* cvtpi2pd */
7098 case 0xf30f2a: /* cvtsi2ss */
7099 case 0xf20f2a: /* cvtsi2sd */
7100 case 0x0f2c: /* cvttps2pi */
7101 case 0x660f2c: /* cvttpd2pi */
7102 case 0x0f2d: /* cvtps2pi */
7103 case 0x660f2d: /* cvtpd2pi */
7104 case 0x660f3800: /* pshufb */
7105 case 0x660f3801: /* phaddw */
7106 case 0x660f3802: /* phaddd */
7107 case 0x660f3803: /* phaddsw */
7108 case 0x660f3804: /* pmaddubsw */
7109 case 0x660f3805: /* phsubw */
7110 case 0x660f3806: /* phsubd */
7111 case 0x660f3807: /* phsubsw */
7112 case 0x660f3808: /* psignb */
7113 case 0x660f3809: /* psignw */
7114 case 0x660f380a: /* psignd */
7115 case 0x660f380b: /* pmulhrsw */
7116 case 0x660f3810: /* pblendvb */
7117 case 0x660f3814: /* blendvps */
7118 case 0x660f3815: /* blendvpd */
7119 case 0x660f381c: /* pabsb */
7120 case 0x660f381d: /* pabsw */
7121 case 0x660f381e: /* pabsd */
7122 case 0x660f3820: /* pmovsxbw */
7123 case 0x660f3821: /* pmovsxbd */
7124 case 0x660f3822: /* pmovsxbq */
7125 case 0x660f3823: /* pmovsxwd */
7126 case 0x660f3824: /* pmovsxwq */
7127 case 0x660f3825: /* pmovsxdq */
7128 case 0x660f3828: /* pmuldq */
7129 case 0x660f3829: /* pcmpeqq */
7130 case 0x660f382a: /* movntdqa */
7131 case 0x660f3a08: /* roundps */
7132 case 0x660f3a09: /* roundpd */
7133 case 0x660f3a0a: /* roundss */
7134 case 0x660f3a0b: /* roundsd */
7135 case 0x660f3a0c: /* blendps */
7136 case 0x660f3a0d: /* blendpd */
7137 case 0x660f3a0e: /* pblendw */
7138 case 0x660f3a0f: /* palignr */
7139 case 0x660f3a20: /* pinsrb */
7140 case 0x660f3a21: /* insertps */
7141 case 0x660f3a22: /* pinsrd pinsrq */
7142 case 0x660f3a40: /* dpps */
7143 case 0x660f3a41: /* dppd */
7144 case 0x660f3a42: /* mpsadbw */
7145 case 0x660f3a60: /* pcmpestrm */
7146 case 0x660f3a61: /* pcmpestri */
7147 case 0x660f3a62: /* pcmpistrm */
7148 case 0x660f3a63: /* pcmpistri */
7149 case 0x0f51: /* sqrtps */
7150 case 0x660f51: /* sqrtpd */
7151 case 0xf20f51: /* sqrtsd */
7152 case 0xf30f51: /* sqrtss */
7153 case 0x0f52: /* rsqrtps */
7154 case 0xf30f52: /* rsqrtss */
7155 case 0x0f53: /* rcpps */
7156 case 0xf30f53: /* rcpss */
7157 case 0x0f54: /* andps */
7158 case 0x660f54: /* andpd */
7159 case 0x0f55: /* andnps */
7160 case 0x660f55: /* andnpd */
7161 case 0x0f56: /* orps */
7162 case 0x660f56: /* orpd */
7163 case 0x0f57: /* xorps */
7164 case 0x660f57: /* xorpd */
7165 case 0x0f58: /* addps */
7166 case 0x660f58: /* addpd */
7167 case 0xf20f58: /* addsd */
7168 case 0xf30f58: /* addss */
7169 case 0x0f59: /* mulps */
7170 case 0x660f59: /* mulpd */
7171 case 0xf20f59: /* mulsd */
7172 case 0xf30f59: /* mulss */
7173 case 0x0f5a: /* cvtps2pd */
7174 case 0x660f5a: /* cvtpd2ps */
7175 case 0xf20f5a: /* cvtsd2ss */
7176 case 0xf30f5a: /* cvtss2sd */
7177 case 0x0f5b: /* cvtdq2ps */
7178 case 0x660f5b: /* cvtps2dq */
7179 case 0xf30f5b: /* cvttps2dq */
7180 case 0x0f5c: /* subps */
7181 case 0x660f5c: /* subpd */
7182 case 0xf20f5c: /* subsd */
7183 case 0xf30f5c: /* subss */
7184 case 0x0f5d: /* minps */
7185 case 0x660f5d: /* minpd */
7186 case 0xf20f5d: /* minsd */
7187 case 0xf30f5d: /* minss */
7188 case 0x0f5e: /* divps */
7189 case 0x660f5e: /* divpd */
7190 case 0xf20f5e: /* divsd */
7191 case 0xf30f5e: /* divss */
7192 case 0x0f5f: /* maxps */
7193 case 0x660f5f: /* maxpd */
7194 case 0xf20f5f: /* maxsd */
7195 case 0xf30f5f: /* maxss */
7196 case 0x660f60: /* punpcklbw */
7197 case 0x660f61: /* punpcklwd */
7198 case 0x660f62: /* punpckldq */
7199 case 0x660f63: /* packsswb */
7200 case 0x660f64: /* pcmpgtb */
7201 case 0x660f65: /* pcmpgtw */
7202 case 0x660f66: /* pcmpgtd */
7203 case 0x660f67: /* packuswb */
7204 case 0x660f68: /* punpckhbw */
7205 case 0x660f69: /* punpckhwd */
7206 case 0x660f6a: /* punpckhdq */
7207 case 0x660f6b: /* packssdw */
7208 case 0x660f6c: /* punpcklqdq */
7209 case 0x660f6d: /* punpckhqdq */
7210 case 0x660f6e: /* movd */
7211 case 0x660f6f: /* movdqa */
7212 case 0xf30f6f: /* movdqu */
7213 case 0x660f70: /* pshufd */
7214 case 0xf20f70: /* pshuflw */
7215 case 0xf30f70: /* pshufhw */
7216 case 0x660f74: /* pcmpeqb */
7217 case 0x660f75: /* pcmpeqw */
7218 case 0x660f76: /* pcmpeqd */
7219 case 0x660f7c: /* haddpd */
7220 case 0xf20f7c: /* haddps */
7221 case 0x660f7d: /* hsubpd */
7222 case 0xf20f7d: /* hsubps */
7223 case 0xf30f7e: /* movq */
7224 case 0x0fc2: /* cmpps */
7225 case 0x660fc2: /* cmppd */
7226 case 0xf20fc2: /* cmpsd */
7227 case 0xf30fc2: /* cmpss */
7228 case 0x660fc4: /* pinsrw */
7229 case 0x0fc6: /* shufps */
7230 case 0x660fc6: /* shufpd */
7231 case 0x660fd0: /* addsubpd */
7232 case 0xf20fd0: /* addsubps */
7233 case 0x660fd1: /* psrlw */
7234 case 0x660fd2: /* psrld */
7235 case 0x660fd3: /* psrlq */
7236 case 0x660fd4: /* paddq */
7237 case 0x660fd5: /* pmullw */
7238 case 0xf30fd6: /* movq2dq */
7239 case 0x660fd8: /* psubusb */
7240 case 0x660fd9: /* psubusw */
7241 case 0x660fda: /* pminub */
7242 case 0x660fdb: /* pand */
7243 case 0x660fdc: /* paddusb */
7244 case 0x660fdd: /* paddusw */
7245 case 0x660fde: /* pmaxub */
7246 case 0x660fdf: /* pandn */
7247 case 0x660fe0: /* pavgb */
7248 case 0x660fe1: /* psraw */
7249 case 0x660fe2: /* psrad */
7250 case 0x660fe3: /* pavgw */
7251 case 0x660fe4: /* pmulhuw */
7252 case 0x660fe5: /* pmulhw */
7253 case 0x660fe6: /* cvttpd2dq */
7254 case 0xf20fe6: /* cvtpd2dq */
7255 case 0xf30fe6: /* cvtdq2pd */
7256 case 0x660fe8: /* psubsb */
7257 case 0x660fe9: /* psubsw */
7258 case 0x660fea: /* pminsw */
7259 case 0x660feb: /* por */
7260 case 0x660fec: /* paddsb */
7261 case 0x660fed: /* paddsw */
7262 case 0x660fee: /* pmaxsw */
7263 case 0x660fef: /* pxor */
7264 case 0xf20ff0: /* lddqu */
7265 case 0x660ff1: /* psllw */
7266 case 0x660ff2: /* pslld */
7267 case 0x660ff3: /* psllq */
7268 case 0x660ff4: /* pmuludq */
7269 case 0x660ff5: /* pmaddwd */
7270 case 0x660ff6: /* psadbw */
7271 case 0x660ff8: /* psubb */
7272 case 0x660ff9: /* psubw */
7273 case 0x660ffa: /* psubd */
7274 case 0x660ffb: /* psubq */
7275 case 0x660ffc: /* paddb */
7276 case 0x660ffd: /* paddw */
7277 case 0x660ffe: /* paddd */
7278 if (i386_record_modrm (&ir))
7279 return -1;
7280 ir.reg |= rex_r;
7281 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7282 goto no_support;
7283 record_full_arch_list_add_reg (ir.regcache,
7284 I387_XMM0_REGNUM (tdep) + ir.reg);
7285 if ((opcode & 0xfffffffc) == 0x660f3a60)
7286 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7287 break;
7288
7289 case 0x0f11: /* movups */
7290 case 0x660f11: /* movupd */
7291 case 0xf30f11: /* movss */
7292 case 0xf20f11: /* movsd */
7293 case 0x0f13: /* movlps */
7294 case 0x660f13: /* movlpd */
7295 case 0x0f17: /* movhps */
7296 case 0x660f17: /* movhpd */
7297 case 0x0f29: /* movaps */
7298 case 0x660f29: /* movapd */
7299 case 0x660f3a14: /* pextrb */
7300 case 0x660f3a15: /* pextrw */
7301 case 0x660f3a16: /* pextrd pextrq */
7302 case 0x660f3a17: /* extractps */
7303 case 0x660f7f: /* movdqa */
7304 case 0xf30f7f: /* movdqu */
7305 if (i386_record_modrm (&ir))
7306 return -1;
7307 if (ir.mod == 3)
7308 {
7309 if (opcode == 0x0f13 || opcode == 0x660f13
7310 || opcode == 0x0f17 || opcode == 0x660f17)
7311 goto no_support;
7312 ir.rm |= ir.rex_b;
7313 if (!i386_xmm_regnum_p (gdbarch,
7314 I387_XMM0_REGNUM (tdep) + ir.rm))
7315 goto no_support;
7316 record_full_arch_list_add_reg (ir.regcache,
7317 I387_XMM0_REGNUM (tdep) + ir.rm);
7318 }
7319 else
7320 {
7321 switch (opcode)
7322 {
7323 case 0x660f3a14:
7324 ir.ot = OT_BYTE;
7325 break;
7326 case 0x660f3a15:
7327 ir.ot = OT_WORD;
7328 break;
7329 case 0x660f3a16:
7330 ir.ot = OT_LONG;
7331 break;
7332 case 0x660f3a17:
7333 ir.ot = OT_QUAD;
7334 break;
7335 default:
7336 ir.ot = OT_DQUAD;
7337 break;
7338 }
7339 if (i386_record_lea_modrm (&ir))
7340 return -1;
7341 }
7342 break;
7343
7344 case 0x0f2b: /* movntps */
7345 case 0x660f2b: /* movntpd */
7346 case 0x0fe7: /* movntq */
7347 case 0x660fe7: /* movntdq */
7348 if (ir.mod == 3)
7349 goto no_support;
7350 if (opcode == 0x0fe7)
7351 ir.ot = OT_QUAD;
7352 else
7353 ir.ot = OT_DQUAD;
7354 if (i386_record_lea_modrm (&ir))
7355 return -1;
7356 break;
7357
7358 case 0xf30f2c: /* cvttss2si */
7359 case 0xf20f2c: /* cvttsd2si */
7360 case 0xf30f2d: /* cvtss2si */
7361 case 0xf20f2d: /* cvtsd2si */
7362 case 0xf20f38f0: /* crc32 */
7363 case 0xf20f38f1: /* crc32 */
7364 case 0x0f50: /* movmskps */
7365 case 0x660f50: /* movmskpd */
7366 case 0x0fc5: /* pextrw */
7367 case 0x660fc5: /* pextrw */
7368 case 0x0fd7: /* pmovmskb */
7369 case 0x660fd7: /* pmovmskb */
7370 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7371 break;
7372
7373 case 0x0f3800: /* pshufb */
7374 case 0x0f3801: /* phaddw */
7375 case 0x0f3802: /* phaddd */
7376 case 0x0f3803: /* phaddsw */
7377 case 0x0f3804: /* pmaddubsw */
7378 case 0x0f3805: /* phsubw */
7379 case 0x0f3806: /* phsubd */
7380 case 0x0f3807: /* phsubsw */
7381 case 0x0f3808: /* psignb */
7382 case 0x0f3809: /* psignw */
7383 case 0x0f380a: /* psignd */
7384 case 0x0f380b: /* pmulhrsw */
7385 case 0x0f381c: /* pabsb */
7386 case 0x0f381d: /* pabsw */
7387 case 0x0f381e: /* pabsd */
7388 case 0x0f382b: /* packusdw */
7389 case 0x0f3830: /* pmovzxbw */
7390 case 0x0f3831: /* pmovzxbd */
7391 case 0x0f3832: /* pmovzxbq */
7392 case 0x0f3833: /* pmovzxwd */
7393 case 0x0f3834: /* pmovzxwq */
7394 case 0x0f3835: /* pmovzxdq */
7395 case 0x0f3837: /* pcmpgtq */
7396 case 0x0f3838: /* pminsb */
7397 case 0x0f3839: /* pminsd */
7398 case 0x0f383a: /* pminuw */
7399 case 0x0f383b: /* pminud */
7400 case 0x0f383c: /* pmaxsb */
7401 case 0x0f383d: /* pmaxsd */
7402 case 0x0f383e: /* pmaxuw */
7403 case 0x0f383f: /* pmaxud */
7404 case 0x0f3840: /* pmulld */
7405 case 0x0f3841: /* phminposuw */
7406 case 0x0f3a0f: /* palignr */
7407 case 0x0f60: /* punpcklbw */
7408 case 0x0f61: /* punpcklwd */
7409 case 0x0f62: /* punpckldq */
7410 case 0x0f63: /* packsswb */
7411 case 0x0f64: /* pcmpgtb */
7412 case 0x0f65: /* pcmpgtw */
7413 case 0x0f66: /* pcmpgtd */
7414 case 0x0f67: /* packuswb */
7415 case 0x0f68: /* punpckhbw */
7416 case 0x0f69: /* punpckhwd */
7417 case 0x0f6a: /* punpckhdq */
7418 case 0x0f6b: /* packssdw */
7419 case 0x0f6e: /* movd */
7420 case 0x0f6f: /* movq */
7421 case 0x0f70: /* pshufw */
7422 case 0x0f74: /* pcmpeqb */
7423 case 0x0f75: /* pcmpeqw */
7424 case 0x0f76: /* pcmpeqd */
7425 case 0x0fc4: /* pinsrw */
7426 case 0x0fd1: /* psrlw */
7427 case 0x0fd2: /* psrld */
7428 case 0x0fd3: /* psrlq */
7429 case 0x0fd4: /* paddq */
7430 case 0x0fd5: /* pmullw */
7431 case 0xf20fd6: /* movdq2q */
7432 case 0x0fd8: /* psubusb */
7433 case 0x0fd9: /* psubusw */
7434 case 0x0fda: /* pminub */
7435 case 0x0fdb: /* pand */
7436 case 0x0fdc: /* paddusb */
7437 case 0x0fdd: /* paddusw */
7438 case 0x0fde: /* pmaxub */
7439 case 0x0fdf: /* pandn */
7440 case 0x0fe0: /* pavgb */
7441 case 0x0fe1: /* psraw */
7442 case 0x0fe2: /* psrad */
7443 case 0x0fe3: /* pavgw */
7444 case 0x0fe4: /* pmulhuw */
7445 case 0x0fe5: /* pmulhw */
7446 case 0x0fe8: /* psubsb */
7447 case 0x0fe9: /* psubsw */
7448 case 0x0fea: /* pminsw */
7449 case 0x0feb: /* por */
7450 case 0x0fec: /* paddsb */
7451 case 0x0fed: /* paddsw */
7452 case 0x0fee: /* pmaxsw */
7453 case 0x0fef: /* pxor */
7454 case 0x0ff1: /* psllw */
7455 case 0x0ff2: /* pslld */
7456 case 0x0ff3: /* psllq */
7457 case 0x0ff4: /* pmuludq */
7458 case 0x0ff5: /* pmaddwd */
7459 case 0x0ff6: /* psadbw */
7460 case 0x0ff8: /* psubb */
7461 case 0x0ff9: /* psubw */
7462 case 0x0ffa: /* psubd */
7463 case 0x0ffb: /* psubq */
7464 case 0x0ffc: /* paddb */
7465 case 0x0ffd: /* paddw */
7466 case 0x0ffe: /* paddd */
7467 if (i386_record_modrm (&ir))
7468 return -1;
7469 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7470 goto no_support;
7471 record_full_arch_list_add_reg (ir.regcache,
7472 I387_MM0_REGNUM (tdep) + ir.reg);
7473 break;
7474
7475 case 0x0f71: /* psllw */
7476 case 0x0f72: /* pslld */
7477 case 0x0f73: /* psllq */
7478 if (i386_record_modrm (&ir))
7479 return -1;
7480 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7481 goto no_support;
7482 record_full_arch_list_add_reg (ir.regcache,
7483 I387_MM0_REGNUM (tdep) + ir.rm);
7484 break;
7485
7486 case 0x660f71: /* psllw */
7487 case 0x660f72: /* pslld */
7488 case 0x660f73: /* psllq */
7489 if (i386_record_modrm (&ir))
7490 return -1;
7491 ir.rm |= ir.rex_b;
7492 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7493 goto no_support;
7494 record_full_arch_list_add_reg (ir.regcache,
7495 I387_XMM0_REGNUM (tdep) + ir.rm);
7496 break;
7497
7498 case 0x0f7e: /* movd */
7499 case 0x660f7e: /* movd */
7500 if (i386_record_modrm (&ir))
7501 return -1;
7502 if (ir.mod == 3)
7503 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7504 else
7505 {
7506 if (ir.dflag == 2)
7507 ir.ot = OT_QUAD;
7508 else
7509 ir.ot = OT_LONG;
7510 if (i386_record_lea_modrm (&ir))
7511 return -1;
7512 }
7513 break;
7514
7515 case 0x0f7f: /* movq */
7516 if (i386_record_modrm (&ir))
7517 return -1;
7518 if (ir.mod == 3)
7519 {
7520 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7521 goto no_support;
7522 record_full_arch_list_add_reg (ir.regcache,
7523 I387_MM0_REGNUM (tdep) + ir.rm);
7524 }
7525 else
7526 {
7527 ir.ot = OT_QUAD;
7528 if (i386_record_lea_modrm (&ir))
7529 return -1;
7530 }
7531 break;
7532
7533 case 0xf30fb8: /* popcnt */
7534 if (i386_record_modrm (&ir))
7535 return -1;
7536 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7538 break;
7539
7540 case 0x660fd6: /* movq */
7541 if (i386_record_modrm (&ir))
7542 return -1;
7543 if (ir.mod == 3)
7544 {
7545 ir.rm |= ir.rex_b;
7546 if (!i386_xmm_regnum_p (gdbarch,
7547 I387_XMM0_REGNUM (tdep) + ir.rm))
7548 goto no_support;
7549 record_full_arch_list_add_reg (ir.regcache,
7550 I387_XMM0_REGNUM (tdep) + ir.rm);
7551 }
7552 else
7553 {
7554 ir.ot = OT_QUAD;
7555 if (i386_record_lea_modrm (&ir))
7556 return -1;
7557 }
7558 break;
7559
7560 case 0x660f3817: /* ptest */
7561 case 0x0f2e: /* ucomiss */
7562 case 0x660f2e: /* ucomisd */
7563 case 0x0f2f: /* comiss */
7564 case 0x660f2f: /* comisd */
7565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7566 break;
7567
7568 case 0x0ff7: /* maskmovq */
7569 regcache_raw_read_unsigned (ir.regcache,
7570 ir.regmap[X86_RECORD_REDI_REGNUM],
7571 &addr);
7572 if (record_full_arch_list_add_mem (addr, 64))
7573 return -1;
7574 break;
7575
7576 case 0x660ff7: /* maskmovdqu */
7577 regcache_raw_read_unsigned (ir.regcache,
7578 ir.regmap[X86_RECORD_REDI_REGNUM],
7579 &addr);
7580 if (record_full_arch_list_add_mem (addr, 128))
7581 return -1;
7582 break;
7583
7584 default:
7585 goto no_support;
7586 break;
7587 }
7588 break;
7589
7590 default:
7591 goto no_support;
7592 break;
7593 }
7594
7595 /* In the future, maybe still need to deal with need_dasm. */
7596 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7597 if (record_full_arch_list_add_end ())
7598 return -1;
7599
7600 return 0;
7601
7602 no_support:
7603 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7604 "at address %s.\n"),
7605 (unsigned int) (opcode),
7606 paddress (gdbarch, ir.orig_addr));
7607 return -1;
7608 }
7609
7610 static const int i386_record_regmap[] =
7611 {
7612 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7613 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7614 0, 0, 0, 0, 0, 0, 0, 0,
7615 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7616 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7617 };
7618
7619 /* Check that the given address appears suitable for a fast
7620 tracepoint, which on x86-64 means that we need an instruction of at
7621 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7622 jump and not have to worry about program jumps to an address in the
7623 middle of the tracepoint jump. On x86, it may be possible to use
7624 4-byte jumps with a 2-byte offset to a trampoline located in the
7625 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7626 of instruction to replace, and 0 if not, plus an explanatory
7627 string. */
7628
7629 static int
7630 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7631 CORE_ADDR addr, int *isize, char **msg)
7632 {
7633 int len, jumplen;
7634 static struct ui_file *gdb_null = NULL;
7635
7636 /* Ask the target for the minimum instruction length supported. */
7637 jumplen = target_get_min_fast_tracepoint_insn_len ();
7638
7639 if (jumplen < 0)
7640 {
7641 /* If the target does not support the get_min_fast_tracepoint_insn_len
7642 operation, assume that fast tracepoints will always be implemented
7643 using 4-byte relative jumps on both x86 and x86-64. */
7644 jumplen = 5;
7645 }
7646 else if (jumplen == 0)
7647 {
7648 /* If the target does support get_min_fast_tracepoint_insn_len but
7649 returns zero, then the IPA has not loaded yet. In this case,
7650 we optimistically assume that truncated 2-byte relative jumps
7651 will be available on x86, and compensate later if this assumption
7652 turns out to be incorrect. On x86-64 architectures, 4-byte relative
7653 jumps will always be used. */
7654 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
7655 }
7656
7657 /* Dummy file descriptor for the disassembler. */
7658 if (!gdb_null)
7659 gdb_null = ui_file_new ();
7660
7661 /* Check for fit. */
7662 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
7663 if (isize)
7664 *isize = len;
7665
7666 if (len < jumplen)
7667 {
7668 /* Return a bit of target-specific detail to add to the caller's
7669 generic failure message. */
7670 if (msg)
7671 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7672 "need at least %d bytes for the jump"),
7673 len, jumplen);
7674 return 0;
7675 }
7676 else
7677 {
7678 if (msg)
7679 *msg = NULL;
7680 return 1;
7681 }
7682 }
7683
7684 static int
7685 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7686 struct tdesc_arch_data *tdesc_data)
7687 {
7688 const struct target_desc *tdesc = tdep->tdesc;
7689 const struct tdesc_feature *feature_core;
7690 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx;
7691 int i, num_regs, valid_p;
7692
7693 if (! tdesc_has_registers (tdesc))
7694 return 0;
7695
7696 /* Get core registers. */
7697 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
7698 if (feature_core == NULL)
7699 return 0;
7700
7701 /* Get SSE registers. */
7702 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
7703
7704 /* Try AVX registers. */
7705 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7706
7707 /* Try MPX registers. */
7708 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
7709
7710 valid_p = 1;
7711
7712 /* The XCR0 bits. */
7713 if (feature_avx)
7714 {
7715 /* AVX register description requires SSE register description. */
7716 if (!feature_sse)
7717 return 0;
7718
7719 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7720
7721 /* It may have been set by OSABI initialization function. */
7722 if (tdep->num_ymm_regs == 0)
7723 {
7724 tdep->ymmh_register_names = i386_ymmh_names;
7725 tdep->num_ymm_regs = 8;
7726 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7727 }
7728
7729 for (i = 0; i < tdep->num_ymm_regs; i++)
7730 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7731 tdep->ymm0h_regnum + i,
7732 tdep->ymmh_register_names[i]);
7733 }
7734 else if (feature_sse)
7735 tdep->xcr0 = I386_XSTATE_SSE_MASK;
7736 else
7737 {
7738 tdep->xcr0 = I386_XSTATE_X87_MASK;
7739 tdep->num_xmm_regs = 0;
7740 }
7741
7742 num_regs = tdep->num_core_regs;
7743 for (i = 0; i < num_regs; i++)
7744 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7745 tdep->register_names[i]);
7746
7747 if (feature_sse)
7748 {
7749 /* Need to include %mxcsr, so add one. */
7750 num_regs += tdep->num_xmm_regs + 1;
7751 for (; i < num_regs; i++)
7752 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7753 tdep->register_names[i]);
7754 }
7755
7756 if (feature_mpx)
7757 {
7758 tdep->xcr0 = I386_XSTATE_MPX_MASK;
7759
7760 if (tdep->bnd0r_regnum < 0)
7761 {
7762 tdep->mpx_register_names = i386_mpx_names;
7763 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
7764 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
7765 }
7766
7767 for (i = 0; i < I387_NUM_MPX_REGS; i++)
7768 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
7769 I387_BND0R_REGNUM (tdep) + i,
7770 tdep->mpx_register_names[i]);
7771 }
7772
7773 return valid_p;
7774 }
7775
7776 \f
7777 static struct gdbarch *
7778 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7779 {
7780 struct gdbarch_tdep *tdep;
7781 struct gdbarch *gdbarch;
7782 struct tdesc_arch_data *tdesc_data;
7783 const struct target_desc *tdesc;
7784 int mm0_regnum;
7785 int ymm0_regnum;
7786 int bnd0_regnum;
7787 int num_bnd_cooked;
7788
7789 /* If there is already a candidate, use it. */
7790 arches = gdbarch_list_lookup_by_info (arches, &info);
7791 if (arches != NULL)
7792 return arches->gdbarch;
7793
7794 /* Allocate space for the new architecture. */
7795 tdep = XCALLOC (1, struct gdbarch_tdep);
7796 gdbarch = gdbarch_alloc (&info, tdep);
7797
7798 /* General-purpose registers. */
7799 tdep->gregset = NULL;
7800 tdep->gregset_reg_offset = NULL;
7801 tdep->gregset_num_regs = I386_NUM_GREGS;
7802 tdep->sizeof_gregset = 0;
7803
7804 /* Floating-point registers. */
7805 tdep->fpregset = NULL;
7806 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7807
7808 tdep->xstateregset = NULL;
7809
7810 /* The default settings include the FPU registers, the MMX registers
7811 and the SSE registers. This can be overridden for a specific ABI
7812 by adjusting the members `st0_regnum', `mm0_regnum' and
7813 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
7814 will show up in the output of "info all-registers". */
7815
7816 tdep->st0_regnum = I386_ST0_REGNUM;
7817
7818 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7819 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7820
7821 tdep->jb_pc_offset = -1;
7822 tdep->struct_return = pcc_struct_return;
7823 tdep->sigtramp_start = 0;
7824 tdep->sigtramp_end = 0;
7825 tdep->sigtramp_p = i386_sigtramp_p;
7826 tdep->sigcontext_addr = NULL;
7827 tdep->sc_reg_offset = NULL;
7828 tdep->sc_pc_offset = -1;
7829 tdep->sc_sp_offset = -1;
7830
7831 tdep->xsave_xcr0_offset = -1;
7832
7833 tdep->record_regmap = i386_record_regmap;
7834
7835 set_gdbarch_long_long_align_bit (gdbarch, 32);
7836
7837 /* The format used for `long double' on almost all i386 targets is
7838 the i387 extended floating-point format. In fact, of all targets
7839 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7840 on having a `long double' that's not `long' at all. */
7841 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7842
7843 /* Although the i387 extended floating-point has only 80 significant
7844 bits, a `long double' actually takes up 96, probably to enforce
7845 alignment. */
7846 set_gdbarch_long_double_bit (gdbarch, 96);
7847
7848 /* Register numbers of various important registers. */
7849 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7850 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7851 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7852 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7853
7854 /* NOTE: kettenis/20040418: GCC does have two possible register
7855 numbering schemes on the i386: dbx and SVR4. These schemes
7856 differ in how they number %ebp, %esp, %eflags, and the
7857 floating-point registers, and are implemented by the arrays
7858 dbx_register_map[] and svr4_dbx_register_map in
7859 gcc/config/i386.c. GCC also defines a third numbering scheme in
7860 gcc/config/i386.c, which it designates as the "default" register
7861 map used in 64bit mode. This last register numbering scheme is
7862 implemented in dbx64_register_map, and is used for AMD64; see
7863 amd64-tdep.c.
7864
7865 Currently, each GCC i386 target always uses the same register
7866 numbering scheme across all its supported debugging formats
7867 i.e. SDB (COFF), stabs and DWARF 2. This is because
7868 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7869 DBX_REGISTER_NUMBER macro which is defined by each target's
7870 respective config header in a manner independent of the requested
7871 output debugging format.
7872
7873 This does not match the arrangement below, which presumes that
7874 the SDB and stabs numbering schemes differ from the DWARF and
7875 DWARF 2 ones. The reason for this arrangement is that it is
7876 likely to get the numbering scheme for the target's
7877 default/native debug format right. For targets where GCC is the
7878 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7879 targets where the native toolchain uses a different numbering
7880 scheme for a particular debug format (stabs-in-ELF on Solaris)
7881 the defaults below will have to be overridden, like
7882 i386_elf_init_abi() does. */
7883
7884 /* Use the dbx register numbering scheme for stabs and COFF. */
7885 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7886 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7887
7888 /* Use the SVR4 register numbering scheme for DWARF 2. */
7889 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7890
7891 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7892 be in use on any of the supported i386 targets. */
7893
7894 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7895
7896 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7897
7898 /* Call dummy code. */
7899 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
7900 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7901 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7902 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7903
7904 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7905 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7906 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7907
7908 set_gdbarch_return_value (gdbarch, i386_return_value);
7909
7910 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7911
7912 /* Stack grows downward. */
7913 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7914
7915 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7916 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7917 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7918
7919 set_gdbarch_frame_args_skip (gdbarch, 8);
7920
7921 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7922
7923 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7924
7925 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7926
7927 /* Add the i386 register groups. */
7928 i386_add_reggroups (gdbarch);
7929 tdep->register_reggroup_p = i386_register_reggroup_p;
7930
7931 /* Helper for function argument information. */
7932 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7933
7934 /* Hook the function epilogue frame unwinder. This unwinder is
7935 appended to the list first, so that it supercedes the DWARF
7936 unwinder in function epilogues (where the DWARF unwinder
7937 currently fails). */
7938 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7939
7940 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7941 to the list before the prologue-based unwinders, so that DWARF
7942 CFI info will be used if it is available. */
7943 dwarf2_append_unwinders (gdbarch);
7944
7945 frame_base_set_default (gdbarch, &i386_frame_base);
7946
7947 /* Pseudo registers may be changed by amd64_init_abi. */
7948 set_gdbarch_pseudo_register_read_value (gdbarch,
7949 i386_pseudo_register_read_value);
7950 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7951
7952 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7953 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7954
7955 /* Override the normal target description method to make the AVX
7956 upper halves anonymous. */
7957 set_gdbarch_register_name (gdbarch, i386_register_name);
7958
7959 /* Even though the default ABI only includes general-purpose registers,
7960 floating-point registers and the SSE registers, we have to leave a
7961 gap for the upper AVX registers and the MPX registers. */
7962 set_gdbarch_num_regs (gdbarch, I386_MPX_NUM_REGS);
7963
7964 /* Get the x86 target description from INFO. */
7965 tdesc = info.target_desc;
7966 if (! tdesc_has_registers (tdesc))
7967 tdesc = tdesc_i386;
7968 tdep->tdesc = tdesc;
7969
7970 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7971 tdep->register_names = i386_register_names;
7972
7973 /* No upper YMM registers. */
7974 tdep->ymmh_register_names = NULL;
7975 tdep->ymm0h_regnum = -1;
7976
7977 tdep->num_byte_regs = 8;
7978 tdep->num_word_regs = 8;
7979 tdep->num_dword_regs = 0;
7980 tdep->num_mmx_regs = 8;
7981 tdep->num_ymm_regs = 0;
7982
7983 /* No MPX registers. */
7984 tdep->bnd0r_regnum = -1;
7985 tdep->bndcfgu_regnum = -1;
7986
7987 tdesc_data = tdesc_data_alloc ();
7988
7989 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7990
7991 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
7992
7993 /* Hook in ABI-specific overrides, if they have been registered. */
7994 info.tdep_info = (void *) tdesc_data;
7995 gdbarch_init_osabi (info, gdbarch);
7996
7997 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7998 {
7999 tdesc_data_cleanup (tdesc_data);
8000 xfree (tdep);
8001 gdbarch_free (gdbarch);
8002 return NULL;
8003 }
8004
8005 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8006
8007 /* Wire in pseudo registers. Number of pseudo registers may be
8008 changed. */
8009 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8010 + tdep->num_word_regs
8011 + tdep->num_dword_regs
8012 + tdep->num_mmx_regs
8013 + tdep->num_ymm_regs
8014 + num_bnd_cooked));
8015
8016 /* Target description may be changed. */
8017 tdesc = tdep->tdesc;
8018
8019 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8020
8021 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8022 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8023
8024 /* Make %al the first pseudo-register. */
8025 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8026 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8027
8028 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8029 if (tdep->num_dword_regs)
8030 {
8031 /* Support dword pseudo-register if it hasn't been disabled. */
8032 tdep->eax_regnum = ymm0_regnum;
8033 ymm0_regnum += tdep->num_dword_regs;
8034 }
8035 else
8036 tdep->eax_regnum = -1;
8037
8038 mm0_regnum = ymm0_regnum;
8039 if (tdep->num_ymm_regs)
8040 {
8041 /* Support YMM pseudo-register if it is available. */
8042 tdep->ymm0_regnum = ymm0_regnum;
8043 mm0_regnum += tdep->num_ymm_regs;
8044 }
8045 else
8046 tdep->ymm0_regnum = -1;
8047
8048 bnd0_regnum = mm0_regnum;
8049 if (tdep->num_mmx_regs != 0)
8050 {
8051 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8052 tdep->mm0_regnum = mm0_regnum;
8053 bnd0_regnum += tdep->num_mmx_regs;
8054 }
8055 else
8056 tdep->mm0_regnum = -1;
8057
8058 if (tdep->bnd0r_regnum > 0)
8059 tdep->bnd0_regnum = bnd0_regnum;
8060 else
8061 tdep-> bnd0_regnum = -1;
8062
8063 /* Hook in the legacy prologue-based unwinders last (fallback). */
8064 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8065 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8066 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8067
8068 /* If we have a register mapping, enable the generic core file
8069 support, unless it has already been enabled. */
8070 if (tdep->gregset_reg_offset
8071 && !gdbarch_regset_from_core_section_p (gdbarch))
8072 set_gdbarch_regset_from_core_section (gdbarch,
8073 i386_regset_from_core_section);
8074
8075 set_gdbarch_skip_permanent_breakpoint (gdbarch,
8076 i386_skip_permanent_breakpoint);
8077
8078 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8079 i386_fast_tracepoint_valid_at);
8080
8081 return gdbarch;
8082 }
8083
8084 static enum gdb_osabi
8085 i386_coff_osabi_sniffer (bfd *abfd)
8086 {
8087 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8088 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8089 return GDB_OSABI_GO32;
8090
8091 return GDB_OSABI_UNKNOWN;
8092 }
8093 \f
8094
8095 /* Provide a prototype to silence -Wmissing-prototypes. */
8096 void _initialize_i386_tdep (void);
8097
8098 void
8099 _initialize_i386_tdep (void)
8100 {
8101 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8102
8103 /* Add the variable that controls the disassembly flavor. */
8104 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8105 &disassembly_flavor, _("\
8106 Set the disassembly flavor."), _("\
8107 Show the disassembly flavor."), _("\
8108 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8109 NULL,
8110 NULL, /* FIXME: i18n: */
8111 &setlist, &showlist);
8112
8113 /* Add the variable that controls the convention for returning
8114 structs. */
8115 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8116 &struct_convention, _("\
8117 Set the convention for returning small structs."), _("\
8118 Show the convention for returning small structs."), _("\
8119 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8120 is \"default\"."),
8121 NULL,
8122 NULL, /* FIXME: i18n: */
8123 &setlist, &showlist);
8124
8125 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
8126 i386_coff_osabi_sniffer);
8127
8128 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8129 i386_svr4_init_abi);
8130 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8131 i386_go32_init_abi);
8132
8133 /* Initialize the i386-specific register groups. */
8134 i386_init_reggroups ();
8135
8136 /* Initialize the standard target descriptions. */
8137 initialize_tdesc_i386 ();
8138 initialize_tdesc_i386_mmx ();
8139 initialize_tdesc_i386_avx ();
8140 initialize_tdesc_i386_mpx ();
8141
8142 /* Tell remote stub that we support XML target description. */
8143 register_remote_support_xml ("i386");
8144 }