]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/i386-tdep.c
gdb/
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "value.h"
43 #include "dis-asm.h"
44 #include "disasm.h"
45 #include "remote.h"
46 #include "exceptions.h"
47 #include "gdb_assert.h"
48 #include "gdb_string.h"
49
50 #include "i386-tdep.h"
51 #include "i387-tdep.h"
52 #include "i386-xstate.h"
53
54 #include "record.h"
55 #include <stdint.h>
56
57 #include "features/i386/i386.c"
58 #include "features/i386/i386-avx.c"
59 #include "features/i386/i386-mmx.c"
60
61 #include "ax.h"
62 #include "ax-gdb.h"
63
64 #include "stap-probe.h"
65 #include "user-regs.h"
66 #include "cli/cli-utils.h"
67 #include "expression.h"
68 #include "parser-defs.h"
69 #include <ctype.h>
70
71 /* Register names. */
72
73 static const char *i386_register_names[] =
74 {
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86 };
87
88 static const char *i386_ymm_names[] =
89 {
90 "ymm0", "ymm1", "ymm2", "ymm3",
91 "ymm4", "ymm5", "ymm6", "ymm7",
92 };
93
94 static const char *i386_ymmh_names[] =
95 {
96 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
97 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
98 };
99
100 /* Register names for MMX pseudo-registers. */
101
102 static const char *i386_mmx_names[] =
103 {
104 "mm0", "mm1", "mm2", "mm3",
105 "mm4", "mm5", "mm6", "mm7"
106 };
107
108 /* Register names for byte pseudo-registers. */
109
110 static const char *i386_byte_names[] =
111 {
112 "al", "cl", "dl", "bl",
113 "ah", "ch", "dh", "bh"
114 };
115
116 /* Register names for word pseudo-registers. */
117
118 static const char *i386_word_names[] =
119 {
120 "ax", "cx", "dx", "bx",
121 "", "bp", "si", "di"
122 };
123
124 /* MMX register? */
125
126 static int
127 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
128 {
129 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
130 int mm0_regnum = tdep->mm0_regnum;
131
132 if (mm0_regnum < 0)
133 return 0;
134
135 regnum -= mm0_regnum;
136 return regnum >= 0 && regnum < tdep->num_mmx_regs;
137 }
138
139 /* Byte register? */
140
141 int
142 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
143 {
144 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
145
146 regnum -= tdep->al_regnum;
147 return regnum >= 0 && regnum < tdep->num_byte_regs;
148 }
149
150 /* Word register? */
151
152 int
153 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
154 {
155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156
157 regnum -= tdep->ax_regnum;
158 return regnum >= 0 && regnum < tdep->num_word_regs;
159 }
160
161 /* Dword register? */
162
163 int
164 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
165 {
166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
167 int eax_regnum = tdep->eax_regnum;
168
169 if (eax_regnum < 0)
170 return 0;
171
172 regnum -= eax_regnum;
173 return regnum >= 0 && regnum < tdep->num_dword_regs;
174 }
175
176 static int
177 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
178 {
179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
180 int ymm0h_regnum = tdep->ymm0h_regnum;
181
182 if (ymm0h_regnum < 0)
183 return 0;
184
185 regnum -= ymm0h_regnum;
186 return regnum >= 0 && regnum < tdep->num_ymm_regs;
187 }
188
189 /* AVX register? */
190
191 int
192 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
193 {
194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
195 int ymm0_regnum = tdep->ymm0_regnum;
196
197 if (ymm0_regnum < 0)
198 return 0;
199
200 regnum -= ymm0_regnum;
201 return regnum >= 0 && regnum < tdep->num_ymm_regs;
202 }
203
204 /* SSE register? */
205
206 int
207 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
208 {
209 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
210 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
211
212 if (num_xmm_regs == 0)
213 return 0;
214
215 regnum -= I387_XMM0_REGNUM (tdep);
216 return regnum >= 0 && regnum < num_xmm_regs;
217 }
218
219 static int
220 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
221 {
222 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
223
224 if (I387_NUM_XMM_REGS (tdep) == 0)
225 return 0;
226
227 return (regnum == I387_MXCSR_REGNUM (tdep));
228 }
229
230 /* FP register? */
231
232 int
233 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
234 {
235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236
237 if (I387_ST0_REGNUM (tdep) < 0)
238 return 0;
239
240 return (I387_ST0_REGNUM (tdep) <= regnum
241 && regnum < I387_FCTRL_REGNUM (tdep));
242 }
243
244 int
245 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
246 {
247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
248
249 if (I387_ST0_REGNUM (tdep) < 0)
250 return 0;
251
252 return (I387_FCTRL_REGNUM (tdep) <= regnum
253 && regnum < I387_XMM0_REGNUM (tdep));
254 }
255
256 /* Return the name of register REGNUM, or the empty string if it is
257 an anonymous register. */
258
259 static const char *
260 i386_register_name (struct gdbarch *gdbarch, int regnum)
261 {
262 /* Hide the upper YMM registers. */
263 if (i386_ymmh_regnum_p (gdbarch, regnum))
264 return "";
265
266 return tdesc_register_name (gdbarch, regnum);
267 }
268
269 /* Return the name of register REGNUM. */
270
271 const char *
272 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
273 {
274 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
275 if (i386_mmx_regnum_p (gdbarch, regnum))
276 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
277 else if (i386_ymm_regnum_p (gdbarch, regnum))
278 return i386_ymm_names[regnum - tdep->ymm0_regnum];
279 else if (i386_byte_regnum_p (gdbarch, regnum))
280 return i386_byte_names[regnum - tdep->al_regnum];
281 else if (i386_word_regnum_p (gdbarch, regnum))
282 return i386_word_names[regnum - tdep->ax_regnum];
283
284 internal_error (__FILE__, __LINE__, _("invalid regnum"));
285 }
286
287 /* Convert a dbx register number REG to the appropriate register
288 number used by GDB. */
289
290 static int
291 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
292 {
293 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
294
295 /* This implements what GCC calls the "default" register map
296 (dbx_register_map[]). */
297
298 if (reg >= 0 && reg <= 7)
299 {
300 /* General-purpose registers. The debug info calls %ebp
301 register 4, and %esp register 5. */
302 if (reg == 4)
303 return 5;
304 else if (reg == 5)
305 return 4;
306 else return reg;
307 }
308 else if (reg >= 12 && reg <= 19)
309 {
310 /* Floating-point registers. */
311 return reg - 12 + I387_ST0_REGNUM (tdep);
312 }
313 else if (reg >= 21 && reg <= 28)
314 {
315 /* SSE registers. */
316 int ymm0_regnum = tdep->ymm0_regnum;
317
318 if (ymm0_regnum >= 0
319 && i386_xmm_regnum_p (gdbarch, reg))
320 return reg - 21 + ymm0_regnum;
321 else
322 return reg - 21 + I387_XMM0_REGNUM (tdep);
323 }
324 else if (reg >= 29 && reg <= 36)
325 {
326 /* MMX registers. */
327 return reg - 29 + I387_MM0_REGNUM (tdep);
328 }
329
330 /* This will hopefully provoke a warning. */
331 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
332 }
333
334 /* Convert SVR4 register number REG to the appropriate register number
335 used by GDB. */
336
337 static int
338 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
339 {
340 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
341
342 /* This implements the GCC register map that tries to be compatible
343 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
344
345 /* The SVR4 register numbering includes %eip and %eflags, and
346 numbers the floating point registers differently. */
347 if (reg >= 0 && reg <= 9)
348 {
349 /* General-purpose registers. */
350 return reg;
351 }
352 else if (reg >= 11 && reg <= 18)
353 {
354 /* Floating-point registers. */
355 return reg - 11 + I387_ST0_REGNUM (tdep);
356 }
357 else if (reg >= 21 && reg <= 36)
358 {
359 /* The SSE and MMX registers have the same numbers as with dbx. */
360 return i386_dbx_reg_to_regnum (gdbarch, reg);
361 }
362
363 switch (reg)
364 {
365 case 37: return I387_FCTRL_REGNUM (tdep);
366 case 38: return I387_FSTAT_REGNUM (tdep);
367 case 39: return I387_MXCSR_REGNUM (tdep);
368 case 40: return I386_ES_REGNUM;
369 case 41: return I386_CS_REGNUM;
370 case 42: return I386_SS_REGNUM;
371 case 43: return I386_DS_REGNUM;
372 case 44: return I386_FS_REGNUM;
373 case 45: return I386_GS_REGNUM;
374 }
375
376 /* This will hopefully provoke a warning. */
377 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
378 }
379
380 \f
381
382 /* This is the variable that is set with "set disassembly-flavor", and
383 its legitimate values. */
384 static const char att_flavor[] = "att";
385 static const char intel_flavor[] = "intel";
386 static const char *const valid_flavors[] =
387 {
388 att_flavor,
389 intel_flavor,
390 NULL
391 };
392 static const char *disassembly_flavor = att_flavor;
393 \f
394
395 /* Use the program counter to determine the contents and size of a
396 breakpoint instruction. Return a pointer to a string of bytes that
397 encode a breakpoint instruction, store the length of the string in
398 *LEN and optionally adjust *PC to point to the correct memory
399 location for inserting the breakpoint.
400
401 On the i386 we have a single breakpoint that fits in a single byte
402 and can be inserted anywhere.
403
404 This function is 64-bit safe. */
405
406 static const gdb_byte *
407 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
408 {
409 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
410
411 *len = sizeof (break_insn);
412 return break_insn;
413 }
414 \f
415 /* Displaced instruction handling. */
416
417 /* Skip the legacy instruction prefixes in INSN.
418 Not all prefixes are valid for any particular insn
419 but we needn't care, the insn will fault if it's invalid.
420 The result is a pointer to the first opcode byte,
421 or NULL if we run off the end of the buffer. */
422
423 static gdb_byte *
424 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
425 {
426 gdb_byte *end = insn + max_len;
427
428 while (insn < end)
429 {
430 switch (*insn)
431 {
432 case DATA_PREFIX_OPCODE:
433 case ADDR_PREFIX_OPCODE:
434 case CS_PREFIX_OPCODE:
435 case DS_PREFIX_OPCODE:
436 case ES_PREFIX_OPCODE:
437 case FS_PREFIX_OPCODE:
438 case GS_PREFIX_OPCODE:
439 case SS_PREFIX_OPCODE:
440 case LOCK_PREFIX_OPCODE:
441 case REPE_PREFIX_OPCODE:
442 case REPNE_PREFIX_OPCODE:
443 ++insn;
444 continue;
445 default:
446 return insn;
447 }
448 }
449
450 return NULL;
451 }
452
453 static int
454 i386_absolute_jmp_p (const gdb_byte *insn)
455 {
456 /* jmp far (absolute address in operand). */
457 if (insn[0] == 0xea)
458 return 1;
459
460 if (insn[0] == 0xff)
461 {
462 /* jump near, absolute indirect (/4). */
463 if ((insn[1] & 0x38) == 0x20)
464 return 1;
465
466 /* jump far, absolute indirect (/5). */
467 if ((insn[1] & 0x38) == 0x28)
468 return 1;
469 }
470
471 return 0;
472 }
473
474 static int
475 i386_absolute_call_p (const gdb_byte *insn)
476 {
477 /* call far, absolute. */
478 if (insn[0] == 0x9a)
479 return 1;
480
481 if (insn[0] == 0xff)
482 {
483 /* Call near, absolute indirect (/2). */
484 if ((insn[1] & 0x38) == 0x10)
485 return 1;
486
487 /* Call far, absolute indirect (/3). */
488 if ((insn[1] & 0x38) == 0x18)
489 return 1;
490 }
491
492 return 0;
493 }
494
495 static int
496 i386_ret_p (const gdb_byte *insn)
497 {
498 switch (insn[0])
499 {
500 case 0xc2: /* ret near, pop N bytes. */
501 case 0xc3: /* ret near */
502 case 0xca: /* ret far, pop N bytes. */
503 case 0xcb: /* ret far */
504 case 0xcf: /* iret */
505 return 1;
506
507 default:
508 return 0;
509 }
510 }
511
512 static int
513 i386_call_p (const gdb_byte *insn)
514 {
515 if (i386_absolute_call_p (insn))
516 return 1;
517
518 /* call near, relative. */
519 if (insn[0] == 0xe8)
520 return 1;
521
522 return 0;
523 }
524
525 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
526 length in bytes. Otherwise, return zero. */
527
528 static int
529 i386_syscall_p (const gdb_byte *insn, int *lengthp)
530 {
531 /* Is it 'int $0x80'? */
532 if ((insn[0] == 0xcd && insn[1] == 0x80)
533 /* Or is it 'sysenter'? */
534 || (insn[0] == 0x0f && insn[1] == 0x34)
535 /* Or is it 'syscall'? */
536 || (insn[0] == 0x0f && insn[1] == 0x05))
537 {
538 *lengthp = 2;
539 return 1;
540 }
541
542 return 0;
543 }
544
545 /* Some kernels may run one past a syscall insn, so we have to cope.
546 Otherwise this is just simple_displaced_step_copy_insn. */
547
548 struct displaced_step_closure *
549 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
550 CORE_ADDR from, CORE_ADDR to,
551 struct regcache *regs)
552 {
553 size_t len = gdbarch_max_insn_length (gdbarch);
554 gdb_byte *buf = xmalloc (len);
555
556 read_memory (from, buf, len);
557
558 /* GDB may get control back after the insn after the syscall.
559 Presumably this is a kernel bug.
560 If this is a syscall, make sure there's a nop afterwards. */
561 {
562 int syscall_length;
563 gdb_byte *insn;
564
565 insn = i386_skip_prefixes (buf, len);
566 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
567 insn[syscall_length] = NOP_OPCODE;
568 }
569
570 write_memory (to, buf, len);
571
572 if (debug_displaced)
573 {
574 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
575 paddress (gdbarch, from), paddress (gdbarch, to));
576 displaced_step_dump_bytes (gdb_stdlog, buf, len);
577 }
578
579 return (struct displaced_step_closure *) buf;
580 }
581
582 /* Fix up the state of registers and memory after having single-stepped
583 a displaced instruction. */
584
585 void
586 i386_displaced_step_fixup (struct gdbarch *gdbarch,
587 struct displaced_step_closure *closure,
588 CORE_ADDR from, CORE_ADDR to,
589 struct regcache *regs)
590 {
591 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
592
593 /* The offset we applied to the instruction's address.
594 This could well be negative (when viewed as a signed 32-bit
595 value), but ULONGEST won't reflect that, so take care when
596 applying it. */
597 ULONGEST insn_offset = to - from;
598
599 /* Since we use simple_displaced_step_copy_insn, our closure is a
600 copy of the instruction. */
601 gdb_byte *insn = (gdb_byte *) closure;
602 /* The start of the insn, needed in case we see some prefixes. */
603 gdb_byte *insn_start = insn;
604
605 if (debug_displaced)
606 fprintf_unfiltered (gdb_stdlog,
607 "displaced: fixup (%s, %s), "
608 "insn = 0x%02x 0x%02x ...\n",
609 paddress (gdbarch, from), paddress (gdbarch, to),
610 insn[0], insn[1]);
611
612 /* The list of issues to contend with here is taken from
613 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
614 Yay for Free Software! */
615
616 /* Relocate the %eip, if necessary. */
617
618 /* The instruction recognizers we use assume any leading prefixes
619 have been skipped. */
620 {
621 /* This is the size of the buffer in closure. */
622 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
623 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
624 /* If there are too many prefixes, just ignore the insn.
625 It will fault when run. */
626 if (opcode != NULL)
627 insn = opcode;
628 }
629
630 /* Except in the case of absolute or indirect jump or call
631 instructions, or a return instruction, the new eip is relative to
632 the displaced instruction; make it relative. Well, signal
633 handler returns don't need relocation either, but we use the
634 value of %eip to recognize those; see below. */
635 if (! i386_absolute_jmp_p (insn)
636 && ! i386_absolute_call_p (insn)
637 && ! i386_ret_p (insn))
638 {
639 ULONGEST orig_eip;
640 int insn_len;
641
642 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
643
644 /* A signal trampoline system call changes the %eip, resuming
645 execution of the main program after the signal handler has
646 returned. That makes them like 'return' instructions; we
647 shouldn't relocate %eip.
648
649 But most system calls don't, and we do need to relocate %eip.
650
651 Our heuristic for distinguishing these cases: if stepping
652 over the system call instruction left control directly after
653 the instruction, the we relocate --- control almost certainly
654 doesn't belong in the displaced copy. Otherwise, we assume
655 the instruction has put control where it belongs, and leave
656 it unrelocated. Goodness help us if there are PC-relative
657 system calls. */
658 if (i386_syscall_p (insn, &insn_len)
659 && orig_eip != to + (insn - insn_start) + insn_len
660 /* GDB can get control back after the insn after the syscall.
661 Presumably this is a kernel bug.
662 i386_displaced_step_copy_insn ensures its a nop,
663 we add one to the length for it. */
664 && orig_eip != to + (insn - insn_start) + insn_len + 1)
665 {
666 if (debug_displaced)
667 fprintf_unfiltered (gdb_stdlog,
668 "displaced: syscall changed %%eip; "
669 "not relocating\n");
670 }
671 else
672 {
673 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
674
675 /* If we just stepped over a breakpoint insn, we don't backup
676 the pc on purpose; this is to match behaviour without
677 stepping. */
678
679 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
680
681 if (debug_displaced)
682 fprintf_unfiltered (gdb_stdlog,
683 "displaced: "
684 "relocated %%eip from %s to %s\n",
685 paddress (gdbarch, orig_eip),
686 paddress (gdbarch, eip));
687 }
688 }
689
690 /* If the instruction was PUSHFL, then the TF bit will be set in the
691 pushed value, and should be cleared. We'll leave this for later,
692 since GDB already messes up the TF flag when stepping over a
693 pushfl. */
694
695 /* If the instruction was a call, the return address now atop the
696 stack is the address following the copied instruction. We need
697 to make it the address following the original instruction. */
698 if (i386_call_p (insn))
699 {
700 ULONGEST esp;
701 ULONGEST retaddr;
702 const ULONGEST retaddr_len = 4;
703
704 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
705 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
706 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
707 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
708
709 if (debug_displaced)
710 fprintf_unfiltered (gdb_stdlog,
711 "displaced: relocated return addr at %s to %s\n",
712 paddress (gdbarch, esp),
713 paddress (gdbarch, retaddr));
714 }
715 }
716
717 static void
718 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
719 {
720 target_write_memory (*to, buf, len);
721 *to += len;
722 }
723
724 static void
725 i386_relocate_instruction (struct gdbarch *gdbarch,
726 CORE_ADDR *to, CORE_ADDR oldloc)
727 {
728 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
729 gdb_byte buf[I386_MAX_INSN_LEN];
730 int offset = 0, rel32, newrel;
731 int insn_length;
732 gdb_byte *insn = buf;
733
734 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
735
736 insn_length = gdb_buffered_insn_length (gdbarch, insn,
737 I386_MAX_INSN_LEN, oldloc);
738
739 /* Get past the prefixes. */
740 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
741
742 /* Adjust calls with 32-bit relative addresses as push/jump, with
743 the address pushed being the location where the original call in
744 the user program would return to. */
745 if (insn[0] == 0xe8)
746 {
747 gdb_byte push_buf[16];
748 unsigned int ret_addr;
749
750 /* Where "ret" in the original code will return to. */
751 ret_addr = oldloc + insn_length;
752 push_buf[0] = 0x68; /* pushq $... */
753 memcpy (&push_buf[1], &ret_addr, 4);
754 /* Push the push. */
755 append_insns (to, 5, push_buf);
756
757 /* Convert the relative call to a relative jump. */
758 insn[0] = 0xe9;
759
760 /* Adjust the destination offset. */
761 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
762 newrel = (oldloc - *to) + rel32;
763 store_signed_integer (insn + 1, 4, byte_order, newrel);
764
765 if (debug_displaced)
766 fprintf_unfiltered (gdb_stdlog,
767 "Adjusted insn rel32=%s at %s to"
768 " rel32=%s at %s\n",
769 hex_string (rel32), paddress (gdbarch, oldloc),
770 hex_string (newrel), paddress (gdbarch, *to));
771
772 /* Write the adjusted jump into its displaced location. */
773 append_insns (to, 5, insn);
774 return;
775 }
776
777 /* Adjust jumps with 32-bit relative addresses. Calls are already
778 handled above. */
779 if (insn[0] == 0xe9)
780 offset = 1;
781 /* Adjust conditional jumps. */
782 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
783 offset = 2;
784
785 if (offset)
786 {
787 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
788 newrel = (oldloc - *to) + rel32;
789 store_signed_integer (insn + offset, 4, byte_order, newrel);
790 if (debug_displaced)
791 fprintf_unfiltered (gdb_stdlog,
792 "Adjusted insn rel32=%s at %s to"
793 " rel32=%s at %s\n",
794 hex_string (rel32), paddress (gdbarch, oldloc),
795 hex_string (newrel), paddress (gdbarch, *to));
796 }
797
798 /* Write the adjusted instructions into their displaced
799 location. */
800 append_insns (to, insn_length, buf);
801 }
802
803 \f
804 #ifdef I386_REGNO_TO_SYMMETRY
805 #error "The Sequent Symmetry is no longer supported."
806 #endif
807
808 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
809 and %esp "belong" to the calling function. Therefore these
810 registers should be saved if they're going to be modified. */
811
812 /* The maximum number of saved registers. This should include all
813 registers mentioned above, and %eip. */
814 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
815
816 struct i386_frame_cache
817 {
818 /* Base address. */
819 CORE_ADDR base;
820 int base_p;
821 LONGEST sp_offset;
822 CORE_ADDR pc;
823
824 /* Saved registers. */
825 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
826 CORE_ADDR saved_sp;
827 int saved_sp_reg;
828 int pc_in_eax;
829
830 /* Stack space reserved for local variables. */
831 long locals;
832 };
833
834 /* Allocate and initialize a frame cache. */
835
836 static struct i386_frame_cache *
837 i386_alloc_frame_cache (void)
838 {
839 struct i386_frame_cache *cache;
840 int i;
841
842 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
843
844 /* Base address. */
845 cache->base_p = 0;
846 cache->base = 0;
847 cache->sp_offset = -4;
848 cache->pc = 0;
849
850 /* Saved registers. We initialize these to -1 since zero is a valid
851 offset (that's where %ebp is supposed to be stored). */
852 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
853 cache->saved_regs[i] = -1;
854 cache->saved_sp = 0;
855 cache->saved_sp_reg = -1;
856 cache->pc_in_eax = 0;
857
858 /* Frameless until proven otherwise. */
859 cache->locals = -1;
860
861 return cache;
862 }
863
864 /* If the instruction at PC is a jump, return the address of its
865 target. Otherwise, return PC. */
866
867 static CORE_ADDR
868 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
869 {
870 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
871 gdb_byte op;
872 long delta = 0;
873 int data16 = 0;
874
875 if (target_read_memory (pc, &op, 1))
876 return pc;
877
878 if (op == 0x66)
879 {
880 data16 = 1;
881 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
882 }
883
884 switch (op)
885 {
886 case 0xe9:
887 /* Relative jump: if data16 == 0, disp32, else disp16. */
888 if (data16)
889 {
890 delta = read_memory_integer (pc + 2, 2, byte_order);
891
892 /* Include the size of the jmp instruction (including the
893 0x66 prefix). */
894 delta += 4;
895 }
896 else
897 {
898 delta = read_memory_integer (pc + 1, 4, byte_order);
899
900 /* Include the size of the jmp instruction. */
901 delta += 5;
902 }
903 break;
904 case 0xeb:
905 /* Relative jump, disp8 (ignore data16). */
906 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
907
908 delta += data16 + 2;
909 break;
910 }
911
912 return pc + delta;
913 }
914
915 /* Check whether PC points at a prologue for a function returning a
916 structure or union. If so, it updates CACHE and returns the
917 address of the first instruction after the code sequence that
918 removes the "hidden" argument from the stack or CURRENT_PC,
919 whichever is smaller. Otherwise, return PC. */
920
921 static CORE_ADDR
922 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
923 struct i386_frame_cache *cache)
924 {
925 /* Functions that return a structure or union start with:
926
927 popl %eax 0x58
928 xchgl %eax, (%esp) 0x87 0x04 0x24
929 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
930
931 (the System V compiler puts out the second `xchg' instruction,
932 and the assembler doesn't try to optimize it, so the 'sib' form
933 gets generated). This sequence is used to get the address of the
934 return buffer for a function that returns a structure. */
935 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
936 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
937 gdb_byte buf[4];
938 gdb_byte op;
939
940 if (current_pc <= pc)
941 return pc;
942
943 if (target_read_memory (pc, &op, 1))
944 return pc;
945
946 if (op != 0x58) /* popl %eax */
947 return pc;
948
949 if (target_read_memory (pc + 1, buf, 4))
950 return pc;
951
952 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
953 return pc;
954
955 if (current_pc == pc)
956 {
957 cache->sp_offset += 4;
958 return current_pc;
959 }
960
961 if (current_pc == pc + 1)
962 {
963 cache->pc_in_eax = 1;
964 return current_pc;
965 }
966
967 if (buf[1] == proto1[1])
968 return pc + 4;
969 else
970 return pc + 5;
971 }
972
973 static CORE_ADDR
974 i386_skip_probe (CORE_ADDR pc)
975 {
976 /* A function may start with
977
978 pushl constant
979 call _probe
980 addl $4, %esp
981
982 followed by
983
984 pushl %ebp
985
986 etc. */
987 gdb_byte buf[8];
988 gdb_byte op;
989
990 if (target_read_memory (pc, &op, 1))
991 return pc;
992
993 if (op == 0x68 || op == 0x6a)
994 {
995 int delta;
996
997 /* Skip past the `pushl' instruction; it has either a one-byte or a
998 four-byte operand, depending on the opcode. */
999 if (op == 0x68)
1000 delta = 5;
1001 else
1002 delta = 2;
1003
1004 /* Read the following 8 bytes, which should be `call _probe' (6
1005 bytes) followed by `addl $4,%esp' (2 bytes). */
1006 read_memory (pc + delta, buf, sizeof (buf));
1007 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1008 pc += delta + sizeof (buf);
1009 }
1010
1011 return pc;
1012 }
1013
1014 /* GCC 4.1 and later, can put code in the prologue to realign the
1015 stack pointer. Check whether PC points to such code, and update
1016 CACHE accordingly. Return the first instruction after the code
1017 sequence or CURRENT_PC, whichever is smaller. If we don't
1018 recognize the code, return PC. */
1019
1020 static CORE_ADDR
1021 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1022 struct i386_frame_cache *cache)
1023 {
1024 /* There are 2 code sequences to re-align stack before the frame
1025 gets set up:
1026
1027 1. Use a caller-saved saved register:
1028
1029 leal 4(%esp), %reg
1030 andl $-XXX, %esp
1031 pushl -4(%reg)
1032
1033 2. Use a callee-saved saved register:
1034
1035 pushl %reg
1036 leal 8(%esp), %reg
1037 andl $-XXX, %esp
1038 pushl -4(%reg)
1039
1040 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1041
1042 0x83 0xe4 0xf0 andl $-16, %esp
1043 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1044 */
1045
1046 gdb_byte buf[14];
1047 int reg;
1048 int offset, offset_and;
1049 static int regnums[8] = {
1050 I386_EAX_REGNUM, /* %eax */
1051 I386_ECX_REGNUM, /* %ecx */
1052 I386_EDX_REGNUM, /* %edx */
1053 I386_EBX_REGNUM, /* %ebx */
1054 I386_ESP_REGNUM, /* %esp */
1055 I386_EBP_REGNUM, /* %ebp */
1056 I386_ESI_REGNUM, /* %esi */
1057 I386_EDI_REGNUM /* %edi */
1058 };
1059
1060 if (target_read_memory (pc, buf, sizeof buf))
1061 return pc;
1062
1063 /* Check caller-saved saved register. The first instruction has
1064 to be "leal 4(%esp), %reg". */
1065 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1066 {
1067 /* MOD must be binary 10 and R/M must be binary 100. */
1068 if ((buf[1] & 0xc7) != 0x44)
1069 return pc;
1070
1071 /* REG has register number. */
1072 reg = (buf[1] >> 3) & 7;
1073 offset = 4;
1074 }
1075 else
1076 {
1077 /* Check callee-saved saved register. The first instruction
1078 has to be "pushl %reg". */
1079 if ((buf[0] & 0xf8) != 0x50)
1080 return pc;
1081
1082 /* Get register. */
1083 reg = buf[0] & 0x7;
1084
1085 /* The next instruction has to be "leal 8(%esp), %reg". */
1086 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1087 return pc;
1088
1089 /* MOD must be binary 10 and R/M must be binary 100. */
1090 if ((buf[2] & 0xc7) != 0x44)
1091 return pc;
1092
1093 /* REG has register number. Registers in pushl and leal have to
1094 be the same. */
1095 if (reg != ((buf[2] >> 3) & 7))
1096 return pc;
1097
1098 offset = 5;
1099 }
1100
1101 /* Rigister can't be %esp nor %ebp. */
1102 if (reg == 4 || reg == 5)
1103 return pc;
1104
1105 /* The next instruction has to be "andl $-XXX, %esp". */
1106 if (buf[offset + 1] != 0xe4
1107 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1108 return pc;
1109
1110 offset_and = offset;
1111 offset += buf[offset] == 0x81 ? 6 : 3;
1112
1113 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1114 0xfc. REG must be binary 110 and MOD must be binary 01. */
1115 if (buf[offset] != 0xff
1116 || buf[offset + 2] != 0xfc
1117 || (buf[offset + 1] & 0xf8) != 0x70)
1118 return pc;
1119
1120 /* R/M has register. Registers in leal and pushl have to be the
1121 same. */
1122 if (reg != (buf[offset + 1] & 7))
1123 return pc;
1124
1125 if (current_pc > pc + offset_and)
1126 cache->saved_sp_reg = regnums[reg];
1127
1128 return min (pc + offset + 3, current_pc);
1129 }
1130
1131 /* Maximum instruction length we need to handle. */
1132 #define I386_MAX_MATCHED_INSN_LEN 6
1133
1134 /* Instruction description. */
1135 struct i386_insn
1136 {
1137 size_t len;
1138 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1139 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1140 };
1141
1142 /* Return whether instruction at PC matches PATTERN. */
1143
1144 static int
1145 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1146 {
1147 gdb_byte op;
1148
1149 if (target_read_memory (pc, &op, 1))
1150 return 0;
1151
1152 if ((op & pattern.mask[0]) == pattern.insn[0])
1153 {
1154 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1155 int insn_matched = 1;
1156 size_t i;
1157
1158 gdb_assert (pattern.len > 1);
1159 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1160
1161 if (target_read_memory (pc + 1, buf, pattern.len - 1))
1162 return 0;
1163
1164 for (i = 1; i < pattern.len; i++)
1165 {
1166 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1167 insn_matched = 0;
1168 }
1169 return insn_matched;
1170 }
1171 return 0;
1172 }
1173
1174 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1175 the first instruction description that matches. Otherwise, return
1176 NULL. */
1177
1178 static struct i386_insn *
1179 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1180 {
1181 struct i386_insn *pattern;
1182
1183 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1184 {
1185 if (i386_match_pattern (pc, *pattern))
1186 return pattern;
1187 }
1188
1189 return NULL;
1190 }
1191
1192 /* Return whether PC points inside a sequence of instructions that
1193 matches INSN_PATTERNS. */
1194
1195 static int
1196 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1197 {
1198 CORE_ADDR current_pc;
1199 int ix, i;
1200 struct i386_insn *insn;
1201
1202 insn = i386_match_insn (pc, insn_patterns);
1203 if (insn == NULL)
1204 return 0;
1205
1206 current_pc = pc;
1207 ix = insn - insn_patterns;
1208 for (i = ix - 1; i >= 0; i--)
1209 {
1210 current_pc -= insn_patterns[i].len;
1211
1212 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1213 return 0;
1214 }
1215
1216 current_pc = pc + insn->len;
1217 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1218 {
1219 if (!i386_match_pattern (current_pc, *insn))
1220 return 0;
1221
1222 current_pc += insn->len;
1223 }
1224
1225 return 1;
1226 }
1227
1228 /* Some special instructions that might be migrated by GCC into the
1229 part of the prologue that sets up the new stack frame. Because the
1230 stack frame hasn't been setup yet, no registers have been saved
1231 yet, and only the scratch registers %eax, %ecx and %edx can be
1232 touched. */
1233
1234 struct i386_insn i386_frame_setup_skip_insns[] =
1235 {
1236 /* Check for `movb imm8, r' and `movl imm32, r'.
1237
1238 ??? Should we handle 16-bit operand-sizes here? */
1239
1240 /* `movb imm8, %al' and `movb imm8, %ah' */
1241 /* `movb imm8, %cl' and `movb imm8, %ch' */
1242 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1243 /* `movb imm8, %dl' and `movb imm8, %dh' */
1244 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1245 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1246 { 5, { 0xb8 }, { 0xfe } },
1247 /* `movl imm32, %edx' */
1248 { 5, { 0xba }, { 0xff } },
1249
1250 /* Check for `mov imm32, r32'. Note that there is an alternative
1251 encoding for `mov m32, %eax'.
1252
1253 ??? Should we handle SIB adressing here?
1254 ??? Should we handle 16-bit operand-sizes here? */
1255
1256 /* `movl m32, %eax' */
1257 { 5, { 0xa1 }, { 0xff } },
1258 /* `movl m32, %eax' and `mov; m32, %ecx' */
1259 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1260 /* `movl m32, %edx' */
1261 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1262
1263 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1264 Because of the symmetry, there are actually two ways to encode
1265 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1266 opcode bytes 0x31 and 0x33 for `xorl'. */
1267
1268 /* `subl %eax, %eax' */
1269 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1270 /* `subl %ecx, %ecx' */
1271 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1272 /* `subl %edx, %edx' */
1273 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1274 /* `xorl %eax, %eax' */
1275 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1276 /* `xorl %ecx, %ecx' */
1277 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1278 /* `xorl %edx, %edx' */
1279 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1280 { 0 }
1281 };
1282
1283
1284 /* Check whether PC points to a no-op instruction. */
1285 static CORE_ADDR
1286 i386_skip_noop (CORE_ADDR pc)
1287 {
1288 gdb_byte op;
1289 int check = 1;
1290
1291 if (target_read_memory (pc, &op, 1))
1292 return pc;
1293
1294 while (check)
1295 {
1296 check = 0;
1297 /* Ignore `nop' instruction. */
1298 if (op == 0x90)
1299 {
1300 pc += 1;
1301 if (target_read_memory (pc, &op, 1))
1302 return pc;
1303 check = 1;
1304 }
1305 /* Ignore no-op instruction `mov %edi, %edi'.
1306 Microsoft system dlls often start with
1307 a `mov %edi,%edi' instruction.
1308 The 5 bytes before the function start are
1309 filled with `nop' instructions.
1310 This pattern can be used for hot-patching:
1311 The `mov %edi, %edi' instruction can be replaced by a
1312 near jump to the location of the 5 `nop' instructions
1313 which can be replaced by a 32-bit jump to anywhere
1314 in the 32-bit address space. */
1315
1316 else if (op == 0x8b)
1317 {
1318 if (target_read_memory (pc + 1, &op, 1))
1319 return pc;
1320
1321 if (op == 0xff)
1322 {
1323 pc += 2;
1324 if (target_read_memory (pc, &op, 1))
1325 return pc;
1326
1327 check = 1;
1328 }
1329 }
1330 }
1331 return pc;
1332 }
1333
1334 /* Check whether PC points at a code that sets up a new stack frame.
1335 If so, it updates CACHE and returns the address of the first
1336 instruction after the sequence that sets up the frame or LIMIT,
1337 whichever is smaller. If we don't recognize the code, return PC. */
1338
1339 static CORE_ADDR
1340 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1341 CORE_ADDR pc, CORE_ADDR limit,
1342 struct i386_frame_cache *cache)
1343 {
1344 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1345 struct i386_insn *insn;
1346 gdb_byte op;
1347 int skip = 0;
1348
1349 if (limit <= pc)
1350 return limit;
1351
1352 if (target_read_memory (pc, &op, 1))
1353 return pc;
1354
1355 if (op == 0x55) /* pushl %ebp */
1356 {
1357 /* Take into account that we've executed the `pushl %ebp' that
1358 starts this instruction sequence. */
1359 cache->saved_regs[I386_EBP_REGNUM] = 0;
1360 cache->sp_offset += 4;
1361 pc++;
1362
1363 /* If that's all, return now. */
1364 if (limit <= pc)
1365 return limit;
1366
1367 /* Check for some special instructions that might be migrated by
1368 GCC into the prologue and skip them. At this point in the
1369 prologue, code should only touch the scratch registers %eax,
1370 %ecx and %edx, so while the number of posibilities is sheer,
1371 it is limited.
1372
1373 Make sure we only skip these instructions if we later see the
1374 `movl %esp, %ebp' that actually sets up the frame. */
1375 while (pc + skip < limit)
1376 {
1377 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1378 if (insn == NULL)
1379 break;
1380
1381 skip += insn->len;
1382 }
1383
1384 /* If that's all, return now. */
1385 if (limit <= pc + skip)
1386 return limit;
1387
1388 if (target_read_memory (pc + skip, &op, 1))
1389 return pc + skip;
1390
1391 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1392 switch (op)
1393 {
1394 case 0x8b:
1395 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1396 != 0xec)
1397 return pc;
1398 break;
1399 case 0x89:
1400 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1401 != 0xe5)
1402 return pc;
1403 break;
1404 default:
1405 return pc;
1406 }
1407
1408 /* OK, we actually have a frame. We just don't know how large
1409 it is yet. Set its size to zero. We'll adjust it if
1410 necessary. We also now commit to skipping the special
1411 instructions mentioned before. */
1412 cache->locals = 0;
1413 pc += (skip + 2);
1414
1415 /* If that's all, return now. */
1416 if (limit <= pc)
1417 return limit;
1418
1419 /* Check for stack adjustment
1420
1421 subl $XXX, %esp
1422
1423 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1424 reg, so we don't have to worry about a data16 prefix. */
1425 if (target_read_memory (pc, &op, 1))
1426 return pc;
1427 if (op == 0x83)
1428 {
1429 /* `subl' with 8-bit immediate. */
1430 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1431 /* Some instruction starting with 0x83 other than `subl'. */
1432 return pc;
1433
1434 /* `subl' with signed 8-bit immediate (though it wouldn't
1435 make sense to be negative). */
1436 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
1437 return pc + 3;
1438 }
1439 else if (op == 0x81)
1440 {
1441 /* Maybe it is `subl' with a 32-bit immediate. */
1442 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1443 /* Some instruction starting with 0x81 other than `subl'. */
1444 return pc;
1445
1446 /* It is `subl' with a 32-bit immediate. */
1447 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
1448 return pc + 6;
1449 }
1450 else
1451 {
1452 /* Some instruction other than `subl'. */
1453 return pc;
1454 }
1455 }
1456 else if (op == 0xc8) /* enter */
1457 {
1458 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
1459 return pc + 4;
1460 }
1461
1462 return pc;
1463 }
1464
1465 /* Check whether PC points at code that saves registers on the stack.
1466 If so, it updates CACHE and returns the address of the first
1467 instruction after the register saves or CURRENT_PC, whichever is
1468 smaller. Otherwise, return PC. */
1469
1470 static CORE_ADDR
1471 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1472 struct i386_frame_cache *cache)
1473 {
1474 CORE_ADDR offset = 0;
1475 gdb_byte op;
1476 int i;
1477
1478 if (cache->locals > 0)
1479 offset -= cache->locals;
1480 for (i = 0; i < 8 && pc < current_pc; i++)
1481 {
1482 if (target_read_memory (pc, &op, 1))
1483 return pc;
1484 if (op < 0x50 || op > 0x57)
1485 break;
1486
1487 offset -= 4;
1488 cache->saved_regs[op - 0x50] = offset;
1489 cache->sp_offset += 4;
1490 pc++;
1491 }
1492
1493 return pc;
1494 }
1495
1496 /* Do a full analysis of the prologue at PC and update CACHE
1497 accordingly. Bail out early if CURRENT_PC is reached. Return the
1498 address where the analysis stopped.
1499
1500 We handle these cases:
1501
1502 The startup sequence can be at the start of the function, or the
1503 function can start with a branch to startup code at the end.
1504
1505 %ebp can be set up with either the 'enter' instruction, or "pushl
1506 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1507 once used in the System V compiler).
1508
1509 Local space is allocated just below the saved %ebp by either the
1510 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1511 16-bit unsigned argument for space to allocate, and the 'addl'
1512 instruction could have either a signed byte, or 32-bit immediate.
1513
1514 Next, the registers used by this function are pushed. With the
1515 System V compiler they will always be in the order: %edi, %esi,
1516 %ebx (and sometimes a harmless bug causes it to also save but not
1517 restore %eax); however, the code below is willing to see the pushes
1518 in any order, and will handle up to 8 of them.
1519
1520 If the setup sequence is at the end of the function, then the next
1521 instruction will be a branch back to the start. */
1522
1523 static CORE_ADDR
1524 i386_analyze_prologue (struct gdbarch *gdbarch,
1525 CORE_ADDR pc, CORE_ADDR current_pc,
1526 struct i386_frame_cache *cache)
1527 {
1528 pc = i386_skip_noop (pc);
1529 pc = i386_follow_jump (gdbarch, pc);
1530 pc = i386_analyze_struct_return (pc, current_pc, cache);
1531 pc = i386_skip_probe (pc);
1532 pc = i386_analyze_stack_align (pc, current_pc, cache);
1533 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1534 return i386_analyze_register_saves (pc, current_pc, cache);
1535 }
1536
1537 /* Return PC of first real instruction. */
1538
1539 static CORE_ADDR
1540 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1541 {
1542 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1543
1544 static gdb_byte pic_pat[6] =
1545 {
1546 0xe8, 0, 0, 0, 0, /* call 0x0 */
1547 0x5b, /* popl %ebx */
1548 };
1549 struct i386_frame_cache cache;
1550 CORE_ADDR pc;
1551 gdb_byte op;
1552 int i;
1553
1554 cache.locals = -1;
1555 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1556 if (cache.locals < 0)
1557 return start_pc;
1558
1559 /* Found valid frame setup. */
1560
1561 /* The native cc on SVR4 in -K PIC mode inserts the following code
1562 to get the address of the global offset table (GOT) into register
1563 %ebx:
1564
1565 call 0x0
1566 popl %ebx
1567 movl %ebx,x(%ebp) (optional)
1568 addl y,%ebx
1569
1570 This code is with the rest of the prologue (at the end of the
1571 function), so we have to skip it to get to the first real
1572 instruction at the start of the function. */
1573
1574 for (i = 0; i < 6; i++)
1575 {
1576 if (target_read_memory (pc + i, &op, 1))
1577 return pc;
1578
1579 if (pic_pat[i] != op)
1580 break;
1581 }
1582 if (i == 6)
1583 {
1584 int delta = 6;
1585
1586 if (target_read_memory (pc + delta, &op, 1))
1587 return pc;
1588
1589 if (op == 0x89) /* movl %ebx, x(%ebp) */
1590 {
1591 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
1592
1593 if (op == 0x5d) /* One byte offset from %ebp. */
1594 delta += 3;
1595 else if (op == 0x9d) /* Four byte offset from %ebp. */
1596 delta += 6;
1597 else /* Unexpected instruction. */
1598 delta = 0;
1599
1600 if (target_read_memory (pc + delta, &op, 1))
1601 return pc;
1602 }
1603
1604 /* addl y,%ebx */
1605 if (delta > 0 && op == 0x81
1606 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1607 == 0xc3)
1608 {
1609 pc += delta + 6;
1610 }
1611 }
1612
1613 /* If the function starts with a branch (to startup code at the end)
1614 the last instruction should bring us back to the first
1615 instruction of the real code. */
1616 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1617 pc = i386_follow_jump (gdbarch, pc);
1618
1619 return pc;
1620 }
1621
1622 /* Check that the code pointed to by PC corresponds to a call to
1623 __main, skip it if so. Return PC otherwise. */
1624
1625 CORE_ADDR
1626 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1627 {
1628 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1629 gdb_byte op;
1630
1631 if (target_read_memory (pc, &op, 1))
1632 return pc;
1633 if (op == 0xe8)
1634 {
1635 gdb_byte buf[4];
1636
1637 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1638 {
1639 /* Make sure address is computed correctly as a 32bit
1640 integer even if CORE_ADDR is 64 bit wide. */
1641 struct minimal_symbol *s;
1642 CORE_ADDR call_dest;
1643
1644 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1645 call_dest = call_dest & 0xffffffffU;
1646 s = lookup_minimal_symbol_by_pc (call_dest);
1647 if (s != NULL
1648 && SYMBOL_LINKAGE_NAME (s) != NULL
1649 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1650 pc += 5;
1651 }
1652 }
1653
1654 return pc;
1655 }
1656
1657 /* This function is 64-bit safe. */
1658
1659 static CORE_ADDR
1660 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1661 {
1662 gdb_byte buf[8];
1663
1664 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1665 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1666 }
1667 \f
1668
1669 /* Normal frames. */
1670
1671 static void
1672 i386_frame_cache_1 (struct frame_info *this_frame,
1673 struct i386_frame_cache *cache)
1674 {
1675 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1676 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1677 gdb_byte buf[4];
1678 int i;
1679
1680 cache->pc = get_frame_func (this_frame);
1681
1682 /* In principle, for normal frames, %ebp holds the frame pointer,
1683 which holds the base address for the current stack frame.
1684 However, for functions that don't need it, the frame pointer is
1685 optional. For these "frameless" functions the frame pointer is
1686 actually the frame pointer of the calling frame. Signal
1687 trampolines are just a special case of a "frameless" function.
1688 They (usually) share their frame pointer with the frame that was
1689 in progress when the signal occurred. */
1690
1691 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1692 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1693 if (cache->base == 0)
1694 {
1695 cache->base_p = 1;
1696 return;
1697 }
1698
1699 /* For normal frames, %eip is stored at 4(%ebp). */
1700 cache->saved_regs[I386_EIP_REGNUM] = 4;
1701
1702 if (cache->pc != 0)
1703 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1704 cache);
1705
1706 if (cache->locals < 0)
1707 {
1708 /* We didn't find a valid frame, which means that CACHE->base
1709 currently holds the frame pointer for our calling frame. If
1710 we're at the start of a function, or somewhere half-way its
1711 prologue, the function's frame probably hasn't been fully
1712 setup yet. Try to reconstruct the base address for the stack
1713 frame by looking at the stack pointer. For truly "frameless"
1714 functions this might work too. */
1715
1716 if (cache->saved_sp_reg != -1)
1717 {
1718 /* Saved stack pointer has been saved. */
1719 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1720 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1721
1722 /* We're halfway aligning the stack. */
1723 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1724 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1725
1726 /* This will be added back below. */
1727 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1728 }
1729 else if (cache->pc != 0
1730 || target_read_memory (get_frame_pc (this_frame), buf, 1))
1731 {
1732 /* We're in a known function, but did not find a frame
1733 setup. Assume that the function does not use %ebp.
1734 Alternatively, we may have jumped to an invalid
1735 address; in that case there is definitely no new
1736 frame in %ebp. */
1737 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1738 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1739 + cache->sp_offset;
1740 }
1741 else
1742 /* We're in an unknown function. We could not find the start
1743 of the function to analyze the prologue; our best option is
1744 to assume a typical frame layout with the caller's %ebp
1745 saved. */
1746 cache->saved_regs[I386_EBP_REGNUM] = 0;
1747 }
1748
1749 if (cache->saved_sp_reg != -1)
1750 {
1751 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1752 register may be unavailable). */
1753 if (cache->saved_sp == 0
1754 && frame_register_read (this_frame, cache->saved_sp_reg, buf))
1755 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1756 }
1757 /* Now that we have the base address for the stack frame we can
1758 calculate the value of %esp in the calling frame. */
1759 else if (cache->saved_sp == 0)
1760 cache->saved_sp = cache->base + 8;
1761
1762 /* Adjust all the saved registers such that they contain addresses
1763 instead of offsets. */
1764 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1765 if (cache->saved_regs[i] != -1)
1766 cache->saved_regs[i] += cache->base;
1767
1768 cache->base_p = 1;
1769 }
1770
1771 static struct i386_frame_cache *
1772 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1773 {
1774 volatile struct gdb_exception ex;
1775 struct i386_frame_cache *cache;
1776
1777 if (*this_cache)
1778 return *this_cache;
1779
1780 cache = i386_alloc_frame_cache ();
1781 *this_cache = cache;
1782
1783 TRY_CATCH (ex, RETURN_MASK_ERROR)
1784 {
1785 i386_frame_cache_1 (this_frame, cache);
1786 }
1787 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1788 throw_exception (ex);
1789
1790 return cache;
1791 }
1792
1793 static void
1794 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1795 struct frame_id *this_id)
1796 {
1797 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1798
1799 /* This marks the outermost frame. */
1800 if (cache->base == 0)
1801 return;
1802
1803 /* See the end of i386_push_dummy_call. */
1804 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1805 }
1806
1807 static enum unwind_stop_reason
1808 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1809 void **this_cache)
1810 {
1811 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1812
1813 if (!cache->base_p)
1814 return UNWIND_UNAVAILABLE;
1815
1816 /* This marks the outermost frame. */
1817 if (cache->base == 0)
1818 return UNWIND_OUTERMOST;
1819
1820 return UNWIND_NO_REASON;
1821 }
1822
1823 static struct value *
1824 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1825 int regnum)
1826 {
1827 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1828
1829 gdb_assert (regnum >= 0);
1830
1831 /* The System V ABI says that:
1832
1833 "The flags register contains the system flags, such as the
1834 direction flag and the carry flag. The direction flag must be
1835 set to the forward (that is, zero) direction before entry and
1836 upon exit from a function. Other user flags have no specified
1837 role in the standard calling sequence and are not preserved."
1838
1839 To guarantee the "upon exit" part of that statement we fake a
1840 saved flags register that has its direction flag cleared.
1841
1842 Note that GCC doesn't seem to rely on the fact that the direction
1843 flag is cleared after a function return; it always explicitly
1844 clears the flag before operations where it matters.
1845
1846 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1847 right thing to do. The way we fake the flags register here makes
1848 it impossible to change it. */
1849
1850 if (regnum == I386_EFLAGS_REGNUM)
1851 {
1852 ULONGEST val;
1853
1854 val = get_frame_register_unsigned (this_frame, regnum);
1855 val &= ~(1 << 10);
1856 return frame_unwind_got_constant (this_frame, regnum, val);
1857 }
1858
1859 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1860 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1861
1862 if (regnum == I386_ESP_REGNUM
1863 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
1864 {
1865 /* If the SP has been saved, but we don't know where, then this
1866 means that SAVED_SP_REG register was found unavailable back
1867 when we built the cache. */
1868 if (cache->saved_sp == 0)
1869 return frame_unwind_got_register (this_frame, regnum,
1870 cache->saved_sp_reg);
1871 else
1872 return frame_unwind_got_constant (this_frame, regnum,
1873 cache->saved_sp);
1874 }
1875
1876 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1877 return frame_unwind_got_memory (this_frame, regnum,
1878 cache->saved_regs[regnum]);
1879
1880 return frame_unwind_got_register (this_frame, regnum, regnum);
1881 }
1882
1883 static const struct frame_unwind i386_frame_unwind =
1884 {
1885 NORMAL_FRAME,
1886 i386_frame_unwind_stop_reason,
1887 i386_frame_this_id,
1888 i386_frame_prev_register,
1889 NULL,
1890 default_frame_sniffer
1891 };
1892
1893 /* Normal frames, but in a function epilogue. */
1894
1895 /* The epilogue is defined here as the 'ret' instruction, which will
1896 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1897 the function's stack frame. */
1898
1899 static int
1900 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1901 {
1902 gdb_byte insn;
1903 struct symtab *symtab;
1904
1905 symtab = find_pc_symtab (pc);
1906 if (symtab && symtab->epilogue_unwind_valid)
1907 return 0;
1908
1909 if (target_read_memory (pc, &insn, 1))
1910 return 0; /* Can't read memory at pc. */
1911
1912 if (insn != 0xc3) /* 'ret' instruction. */
1913 return 0;
1914
1915 return 1;
1916 }
1917
1918 static int
1919 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1920 struct frame_info *this_frame,
1921 void **this_prologue_cache)
1922 {
1923 if (frame_relative_level (this_frame) == 0)
1924 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1925 get_frame_pc (this_frame));
1926 else
1927 return 0;
1928 }
1929
1930 static struct i386_frame_cache *
1931 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1932 {
1933 volatile struct gdb_exception ex;
1934 struct i386_frame_cache *cache;
1935 CORE_ADDR sp;
1936
1937 if (*this_cache)
1938 return *this_cache;
1939
1940 cache = i386_alloc_frame_cache ();
1941 *this_cache = cache;
1942
1943 TRY_CATCH (ex, RETURN_MASK_ERROR)
1944 {
1945 cache->pc = get_frame_func (this_frame);
1946
1947 /* At this point the stack looks as if we just entered the
1948 function, with the return address at the top of the
1949 stack. */
1950 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
1951 cache->base = sp + cache->sp_offset;
1952 cache->saved_sp = cache->base + 8;
1953 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
1954
1955 cache->base_p = 1;
1956 }
1957 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1958 throw_exception (ex);
1959
1960 return cache;
1961 }
1962
1963 static enum unwind_stop_reason
1964 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
1965 void **this_cache)
1966 {
1967 struct i386_frame_cache *cache =
1968 i386_epilogue_frame_cache (this_frame, this_cache);
1969
1970 if (!cache->base_p)
1971 return UNWIND_UNAVAILABLE;
1972
1973 return UNWIND_NO_REASON;
1974 }
1975
1976 static void
1977 i386_epilogue_frame_this_id (struct frame_info *this_frame,
1978 void **this_cache,
1979 struct frame_id *this_id)
1980 {
1981 struct i386_frame_cache *cache =
1982 i386_epilogue_frame_cache (this_frame, this_cache);
1983
1984 if (!cache->base_p)
1985 return;
1986
1987 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1988 }
1989
1990 static struct value *
1991 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
1992 void **this_cache, int regnum)
1993 {
1994 /* Make sure we've initialized the cache. */
1995 i386_epilogue_frame_cache (this_frame, this_cache);
1996
1997 return i386_frame_prev_register (this_frame, this_cache, regnum);
1998 }
1999
2000 static const struct frame_unwind i386_epilogue_frame_unwind =
2001 {
2002 NORMAL_FRAME,
2003 i386_epilogue_frame_unwind_stop_reason,
2004 i386_epilogue_frame_this_id,
2005 i386_epilogue_frame_prev_register,
2006 NULL,
2007 i386_epilogue_frame_sniffer
2008 };
2009 \f
2010
2011 /* Stack-based trampolines. */
2012
2013 /* These trampolines are used on cross x86 targets, when taking the
2014 address of a nested function. When executing these trampolines,
2015 no stack frame is set up, so we are in a similar situation as in
2016 epilogues and i386_epilogue_frame_this_id can be re-used. */
2017
2018 /* Static chain passed in register. */
2019
2020 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2021 {
2022 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2023 { 5, { 0xb8 }, { 0xfe } },
2024
2025 /* `jmp imm32' */
2026 { 5, { 0xe9 }, { 0xff } },
2027
2028 {0}
2029 };
2030
2031 /* Static chain passed on stack (when regparm=3). */
2032
2033 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2034 {
2035 /* `push imm32' */
2036 { 5, { 0x68 }, { 0xff } },
2037
2038 /* `jmp imm32' */
2039 { 5, { 0xe9 }, { 0xff } },
2040
2041 {0}
2042 };
2043
2044 /* Return whether PC points inside a stack trampoline. */
2045
2046 static int
2047 i386_in_stack_tramp_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2048 {
2049 gdb_byte insn;
2050 const char *name;
2051
2052 /* A stack trampoline is detected if no name is associated
2053 to the current pc and if it points inside a trampoline
2054 sequence. */
2055
2056 find_pc_partial_function (pc, &name, NULL, NULL);
2057 if (name)
2058 return 0;
2059
2060 if (target_read_memory (pc, &insn, 1))
2061 return 0;
2062
2063 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2064 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2065 return 0;
2066
2067 return 1;
2068 }
2069
2070 static int
2071 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2072 struct frame_info *this_frame,
2073 void **this_cache)
2074 {
2075 if (frame_relative_level (this_frame) == 0)
2076 return i386_in_stack_tramp_p (get_frame_arch (this_frame),
2077 get_frame_pc (this_frame));
2078 else
2079 return 0;
2080 }
2081
2082 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2083 {
2084 NORMAL_FRAME,
2085 i386_epilogue_frame_unwind_stop_reason,
2086 i386_epilogue_frame_this_id,
2087 i386_epilogue_frame_prev_register,
2088 NULL,
2089 i386_stack_tramp_frame_sniffer
2090 };
2091 \f
2092 /* Generate a bytecode expression to get the value of the saved PC. */
2093
2094 static void
2095 i386_gen_return_address (struct gdbarch *gdbarch,
2096 struct agent_expr *ax, struct axs_value *value,
2097 CORE_ADDR scope)
2098 {
2099 /* The following sequence assumes the traditional use of the base
2100 register. */
2101 ax_reg (ax, I386_EBP_REGNUM);
2102 ax_const_l (ax, 4);
2103 ax_simple (ax, aop_add);
2104 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2105 value->kind = axs_lvalue_memory;
2106 }
2107 \f
2108
2109 /* Signal trampolines. */
2110
2111 static struct i386_frame_cache *
2112 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2113 {
2114 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2115 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2116 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2117 volatile struct gdb_exception ex;
2118 struct i386_frame_cache *cache;
2119 CORE_ADDR addr;
2120 gdb_byte buf[4];
2121
2122 if (*this_cache)
2123 return *this_cache;
2124
2125 cache = i386_alloc_frame_cache ();
2126
2127 TRY_CATCH (ex, RETURN_MASK_ERROR)
2128 {
2129 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2130 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2131
2132 addr = tdep->sigcontext_addr (this_frame);
2133 if (tdep->sc_reg_offset)
2134 {
2135 int i;
2136
2137 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2138
2139 for (i = 0; i < tdep->sc_num_regs; i++)
2140 if (tdep->sc_reg_offset[i] != -1)
2141 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2142 }
2143 else
2144 {
2145 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2146 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2147 }
2148
2149 cache->base_p = 1;
2150 }
2151 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2152 throw_exception (ex);
2153
2154 *this_cache = cache;
2155 return cache;
2156 }
2157
2158 static enum unwind_stop_reason
2159 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2160 void **this_cache)
2161 {
2162 struct i386_frame_cache *cache =
2163 i386_sigtramp_frame_cache (this_frame, this_cache);
2164
2165 if (!cache->base_p)
2166 return UNWIND_UNAVAILABLE;
2167
2168 return UNWIND_NO_REASON;
2169 }
2170
2171 static void
2172 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2173 struct frame_id *this_id)
2174 {
2175 struct i386_frame_cache *cache =
2176 i386_sigtramp_frame_cache (this_frame, this_cache);
2177
2178 if (!cache->base_p)
2179 return;
2180
2181 /* See the end of i386_push_dummy_call. */
2182 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2183 }
2184
2185 static struct value *
2186 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2187 void **this_cache, int regnum)
2188 {
2189 /* Make sure we've initialized the cache. */
2190 i386_sigtramp_frame_cache (this_frame, this_cache);
2191
2192 return i386_frame_prev_register (this_frame, this_cache, regnum);
2193 }
2194
2195 static int
2196 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2197 struct frame_info *this_frame,
2198 void **this_prologue_cache)
2199 {
2200 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2201
2202 /* We shouldn't even bother if we don't have a sigcontext_addr
2203 handler. */
2204 if (tdep->sigcontext_addr == NULL)
2205 return 0;
2206
2207 if (tdep->sigtramp_p != NULL)
2208 {
2209 if (tdep->sigtramp_p (this_frame))
2210 return 1;
2211 }
2212
2213 if (tdep->sigtramp_start != 0)
2214 {
2215 CORE_ADDR pc = get_frame_pc (this_frame);
2216
2217 gdb_assert (tdep->sigtramp_end != 0);
2218 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2219 return 1;
2220 }
2221
2222 return 0;
2223 }
2224
2225 static const struct frame_unwind i386_sigtramp_frame_unwind =
2226 {
2227 SIGTRAMP_FRAME,
2228 i386_sigtramp_frame_unwind_stop_reason,
2229 i386_sigtramp_frame_this_id,
2230 i386_sigtramp_frame_prev_register,
2231 NULL,
2232 i386_sigtramp_frame_sniffer
2233 };
2234 \f
2235
2236 static CORE_ADDR
2237 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2238 {
2239 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2240
2241 return cache->base;
2242 }
2243
2244 static const struct frame_base i386_frame_base =
2245 {
2246 &i386_frame_unwind,
2247 i386_frame_base_address,
2248 i386_frame_base_address,
2249 i386_frame_base_address
2250 };
2251
2252 static struct frame_id
2253 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2254 {
2255 CORE_ADDR fp;
2256
2257 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2258
2259 /* See the end of i386_push_dummy_call. */
2260 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2261 }
2262
2263 /* _Decimal128 function return values need 16-byte alignment on the
2264 stack. */
2265
2266 static CORE_ADDR
2267 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2268 {
2269 return sp & -(CORE_ADDR)16;
2270 }
2271 \f
2272
2273 /* Figure out where the longjmp will land. Slurp the args out of the
2274 stack. We expect the first arg to be a pointer to the jmp_buf
2275 structure from which we extract the address that we will land at.
2276 This address is copied into PC. This routine returns non-zero on
2277 success. */
2278
2279 static int
2280 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2281 {
2282 gdb_byte buf[4];
2283 CORE_ADDR sp, jb_addr;
2284 struct gdbarch *gdbarch = get_frame_arch (frame);
2285 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2286 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2287
2288 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2289 longjmp will land. */
2290 if (jb_pc_offset == -1)
2291 return 0;
2292
2293 get_frame_register (frame, I386_ESP_REGNUM, buf);
2294 sp = extract_unsigned_integer (buf, 4, byte_order);
2295 if (target_read_memory (sp + 4, buf, 4))
2296 return 0;
2297
2298 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2299 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2300 return 0;
2301
2302 *pc = extract_unsigned_integer (buf, 4, byte_order);
2303 return 1;
2304 }
2305 \f
2306
2307 /* Check whether TYPE must be 16-byte-aligned when passed as a
2308 function argument. 16-byte vectors, _Decimal128 and structures or
2309 unions containing such types must be 16-byte-aligned; other
2310 arguments are 4-byte-aligned. */
2311
2312 static int
2313 i386_16_byte_align_p (struct type *type)
2314 {
2315 type = check_typedef (type);
2316 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2317 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2318 && TYPE_LENGTH (type) == 16)
2319 return 1;
2320 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2321 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2322 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2323 || TYPE_CODE (type) == TYPE_CODE_UNION)
2324 {
2325 int i;
2326 for (i = 0; i < TYPE_NFIELDS (type); i++)
2327 {
2328 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2329 return 1;
2330 }
2331 }
2332 return 0;
2333 }
2334
2335 /* Implementation for set_gdbarch_push_dummy_code. */
2336
2337 static CORE_ADDR
2338 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2339 struct value **args, int nargs, struct type *value_type,
2340 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2341 struct regcache *regcache)
2342 {
2343 /* Use 0xcc breakpoint - 1 byte. */
2344 *bp_addr = sp - 1;
2345 *real_pc = funaddr;
2346
2347 /* Keep the stack aligned. */
2348 return sp - 16;
2349 }
2350
2351 static CORE_ADDR
2352 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2353 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2354 struct value **args, CORE_ADDR sp, int struct_return,
2355 CORE_ADDR struct_addr)
2356 {
2357 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2358 gdb_byte buf[4];
2359 int i;
2360 int write_pass;
2361 int args_space = 0;
2362
2363 /* Determine the total space required for arguments and struct
2364 return address in a first pass (allowing for 16-byte-aligned
2365 arguments), then push arguments in a second pass. */
2366
2367 for (write_pass = 0; write_pass < 2; write_pass++)
2368 {
2369 int args_space_used = 0;
2370
2371 if (struct_return)
2372 {
2373 if (write_pass)
2374 {
2375 /* Push value address. */
2376 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2377 write_memory (sp, buf, 4);
2378 args_space_used += 4;
2379 }
2380 else
2381 args_space += 4;
2382 }
2383
2384 for (i = 0; i < nargs; i++)
2385 {
2386 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2387
2388 if (write_pass)
2389 {
2390 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2391 args_space_used = align_up (args_space_used, 16);
2392
2393 write_memory (sp + args_space_used,
2394 value_contents_all (args[i]), len);
2395 /* The System V ABI says that:
2396
2397 "An argument's size is increased, if necessary, to make it a
2398 multiple of [32-bit] words. This may require tail padding,
2399 depending on the size of the argument."
2400
2401 This makes sure the stack stays word-aligned. */
2402 args_space_used += align_up (len, 4);
2403 }
2404 else
2405 {
2406 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2407 args_space = align_up (args_space, 16);
2408 args_space += align_up (len, 4);
2409 }
2410 }
2411
2412 if (!write_pass)
2413 {
2414 sp -= args_space;
2415
2416 /* The original System V ABI only requires word alignment,
2417 but modern incarnations need 16-byte alignment in order
2418 to support SSE. Since wasting a few bytes here isn't
2419 harmful we unconditionally enforce 16-byte alignment. */
2420 sp &= ~0xf;
2421 }
2422 }
2423
2424 /* Store return address. */
2425 sp -= 4;
2426 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2427 write_memory (sp, buf, 4);
2428
2429 /* Finally, update the stack pointer... */
2430 store_unsigned_integer (buf, 4, byte_order, sp);
2431 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2432
2433 /* ...and fake a frame pointer. */
2434 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2435
2436 /* MarkK wrote: This "+ 8" is all over the place:
2437 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2438 i386_dummy_id). It's there, since all frame unwinders for
2439 a given target have to agree (within a certain margin) on the
2440 definition of the stack address of a frame. Otherwise frame id
2441 comparison might not work correctly. Since DWARF2/GCC uses the
2442 stack address *before* the function call as a frame's CFA. On
2443 the i386, when %ebp is used as a frame pointer, the offset
2444 between the contents %ebp and the CFA as defined by GCC. */
2445 return sp + 8;
2446 }
2447
2448 /* These registers are used for returning integers (and on some
2449 targets also for returning `struct' and `union' values when their
2450 size and alignment match an integer type). */
2451 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2452 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2453
2454 /* Read, for architecture GDBARCH, a function return value of TYPE
2455 from REGCACHE, and copy that into VALBUF. */
2456
2457 static void
2458 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2459 struct regcache *regcache, gdb_byte *valbuf)
2460 {
2461 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2462 int len = TYPE_LENGTH (type);
2463 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2464
2465 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2466 {
2467 if (tdep->st0_regnum < 0)
2468 {
2469 warning (_("Cannot find floating-point return value."));
2470 memset (valbuf, 0, len);
2471 return;
2472 }
2473
2474 /* Floating-point return values can be found in %st(0). Convert
2475 its contents to the desired type. This is probably not
2476 exactly how it would happen on the target itself, but it is
2477 the best we can do. */
2478 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2479 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2480 }
2481 else
2482 {
2483 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2484 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2485
2486 if (len <= low_size)
2487 {
2488 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2489 memcpy (valbuf, buf, len);
2490 }
2491 else if (len <= (low_size + high_size))
2492 {
2493 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2494 memcpy (valbuf, buf, low_size);
2495 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2496 memcpy (valbuf + low_size, buf, len - low_size);
2497 }
2498 else
2499 internal_error (__FILE__, __LINE__,
2500 _("Cannot extract return value of %d bytes long."),
2501 len);
2502 }
2503 }
2504
2505 /* Write, for architecture GDBARCH, a function return value of TYPE
2506 from VALBUF into REGCACHE. */
2507
2508 static void
2509 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2510 struct regcache *regcache, const gdb_byte *valbuf)
2511 {
2512 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2513 int len = TYPE_LENGTH (type);
2514
2515 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2516 {
2517 ULONGEST fstat;
2518 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2519
2520 if (tdep->st0_regnum < 0)
2521 {
2522 warning (_("Cannot set floating-point return value."));
2523 return;
2524 }
2525
2526 /* Returning floating-point values is a bit tricky. Apart from
2527 storing the return value in %st(0), we have to simulate the
2528 state of the FPU at function return point. */
2529
2530 /* Convert the value found in VALBUF to the extended
2531 floating-point format used by the FPU. This is probably
2532 not exactly how it would happen on the target itself, but
2533 it is the best we can do. */
2534 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2535 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2536
2537 /* Set the top of the floating-point register stack to 7. The
2538 actual value doesn't really matter, but 7 is what a normal
2539 function return would end up with if the program started out
2540 with a freshly initialized FPU. */
2541 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2542 fstat |= (7 << 11);
2543 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2544
2545 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2546 the floating-point register stack to 7, the appropriate value
2547 for the tag word is 0x3fff. */
2548 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2549 }
2550 else
2551 {
2552 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2553 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2554
2555 if (len <= low_size)
2556 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2557 else if (len <= (low_size + high_size))
2558 {
2559 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2560 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2561 len - low_size, valbuf + low_size);
2562 }
2563 else
2564 internal_error (__FILE__, __LINE__,
2565 _("Cannot store return value of %d bytes long."), len);
2566 }
2567 }
2568 \f
2569
2570 /* This is the variable that is set with "set struct-convention", and
2571 its legitimate values. */
2572 static const char default_struct_convention[] = "default";
2573 static const char pcc_struct_convention[] = "pcc";
2574 static const char reg_struct_convention[] = "reg";
2575 static const char *const valid_conventions[] =
2576 {
2577 default_struct_convention,
2578 pcc_struct_convention,
2579 reg_struct_convention,
2580 NULL
2581 };
2582 static const char *struct_convention = default_struct_convention;
2583
2584 /* Return non-zero if TYPE, which is assumed to be a structure,
2585 a union type, or an array type, should be returned in registers
2586 for architecture GDBARCH. */
2587
2588 static int
2589 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2590 {
2591 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2592 enum type_code code = TYPE_CODE (type);
2593 int len = TYPE_LENGTH (type);
2594
2595 gdb_assert (code == TYPE_CODE_STRUCT
2596 || code == TYPE_CODE_UNION
2597 || code == TYPE_CODE_ARRAY);
2598
2599 if (struct_convention == pcc_struct_convention
2600 || (struct_convention == default_struct_convention
2601 && tdep->struct_return == pcc_struct_return))
2602 return 0;
2603
2604 /* Structures consisting of a single `float', `double' or 'long
2605 double' member are returned in %st(0). */
2606 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2607 {
2608 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2609 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2610 return (len == 4 || len == 8 || len == 12);
2611 }
2612
2613 return (len == 1 || len == 2 || len == 4 || len == 8);
2614 }
2615
2616 /* Determine, for architecture GDBARCH, how a return value of TYPE
2617 should be returned. If it is supposed to be returned in registers,
2618 and READBUF is non-zero, read the appropriate value from REGCACHE,
2619 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2620 from WRITEBUF into REGCACHE. */
2621
2622 static enum return_value_convention
2623 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2624 struct type *type, struct regcache *regcache,
2625 gdb_byte *readbuf, const gdb_byte *writebuf)
2626 {
2627 enum type_code code = TYPE_CODE (type);
2628
2629 if (((code == TYPE_CODE_STRUCT
2630 || code == TYPE_CODE_UNION
2631 || code == TYPE_CODE_ARRAY)
2632 && !i386_reg_struct_return_p (gdbarch, type))
2633 /* 128-bit decimal float uses the struct return convention. */
2634 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2635 {
2636 /* The System V ABI says that:
2637
2638 "A function that returns a structure or union also sets %eax
2639 to the value of the original address of the caller's area
2640 before it returns. Thus when the caller receives control
2641 again, the address of the returned object resides in register
2642 %eax and can be used to access the object."
2643
2644 So the ABI guarantees that we can always find the return
2645 value just after the function has returned. */
2646
2647 /* Note that the ABI doesn't mention functions returning arrays,
2648 which is something possible in certain languages such as Ada.
2649 In this case, the value is returned as if it was wrapped in
2650 a record, so the convention applied to records also applies
2651 to arrays. */
2652
2653 if (readbuf)
2654 {
2655 ULONGEST addr;
2656
2657 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2658 read_memory (addr, readbuf, TYPE_LENGTH (type));
2659 }
2660
2661 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2662 }
2663
2664 /* This special case is for structures consisting of a single
2665 `float', `double' or 'long double' member. These structures are
2666 returned in %st(0). For these structures, we call ourselves
2667 recursively, changing TYPE into the type of the first member of
2668 the structure. Since that should work for all structures that
2669 have only one member, we don't bother to check the member's type
2670 here. */
2671 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2672 {
2673 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2674 return i386_return_value (gdbarch, function, type, regcache,
2675 readbuf, writebuf);
2676 }
2677
2678 if (readbuf)
2679 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2680 if (writebuf)
2681 i386_store_return_value (gdbarch, type, regcache, writebuf);
2682
2683 return RETURN_VALUE_REGISTER_CONVENTION;
2684 }
2685 \f
2686
2687 struct type *
2688 i387_ext_type (struct gdbarch *gdbarch)
2689 {
2690 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2691
2692 if (!tdep->i387_ext_type)
2693 {
2694 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2695 gdb_assert (tdep->i387_ext_type != NULL);
2696 }
2697
2698 return tdep->i387_ext_type;
2699 }
2700
2701 /* Construct vector type for pseudo YMM registers. We can't use
2702 tdesc_find_type since YMM isn't described in target description. */
2703
2704 static struct type *
2705 i386_ymm_type (struct gdbarch *gdbarch)
2706 {
2707 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2708
2709 if (!tdep->i386_ymm_type)
2710 {
2711 const struct builtin_type *bt = builtin_type (gdbarch);
2712
2713 /* The type we're building is this: */
2714 #if 0
2715 union __gdb_builtin_type_vec256i
2716 {
2717 int128_t uint128[2];
2718 int64_t v2_int64[4];
2719 int32_t v4_int32[8];
2720 int16_t v8_int16[16];
2721 int8_t v16_int8[32];
2722 double v2_double[4];
2723 float v4_float[8];
2724 };
2725 #endif
2726
2727 struct type *t;
2728
2729 t = arch_composite_type (gdbarch,
2730 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2731 append_composite_type_field (t, "v8_float",
2732 init_vector_type (bt->builtin_float, 8));
2733 append_composite_type_field (t, "v4_double",
2734 init_vector_type (bt->builtin_double, 4));
2735 append_composite_type_field (t, "v32_int8",
2736 init_vector_type (bt->builtin_int8, 32));
2737 append_composite_type_field (t, "v16_int16",
2738 init_vector_type (bt->builtin_int16, 16));
2739 append_composite_type_field (t, "v8_int32",
2740 init_vector_type (bt->builtin_int32, 8));
2741 append_composite_type_field (t, "v4_int64",
2742 init_vector_type (bt->builtin_int64, 4));
2743 append_composite_type_field (t, "v2_int128",
2744 init_vector_type (bt->builtin_int128, 2));
2745
2746 TYPE_VECTOR (t) = 1;
2747 TYPE_NAME (t) = "builtin_type_vec256i";
2748 tdep->i386_ymm_type = t;
2749 }
2750
2751 return tdep->i386_ymm_type;
2752 }
2753
2754 /* Construct vector type for MMX registers. */
2755 static struct type *
2756 i386_mmx_type (struct gdbarch *gdbarch)
2757 {
2758 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2759
2760 if (!tdep->i386_mmx_type)
2761 {
2762 const struct builtin_type *bt = builtin_type (gdbarch);
2763
2764 /* The type we're building is this: */
2765 #if 0
2766 union __gdb_builtin_type_vec64i
2767 {
2768 int64_t uint64;
2769 int32_t v2_int32[2];
2770 int16_t v4_int16[4];
2771 int8_t v8_int8[8];
2772 };
2773 #endif
2774
2775 struct type *t;
2776
2777 t = arch_composite_type (gdbarch,
2778 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2779
2780 append_composite_type_field (t, "uint64", bt->builtin_int64);
2781 append_composite_type_field (t, "v2_int32",
2782 init_vector_type (bt->builtin_int32, 2));
2783 append_composite_type_field (t, "v4_int16",
2784 init_vector_type (bt->builtin_int16, 4));
2785 append_composite_type_field (t, "v8_int8",
2786 init_vector_type (bt->builtin_int8, 8));
2787
2788 TYPE_VECTOR (t) = 1;
2789 TYPE_NAME (t) = "builtin_type_vec64i";
2790 tdep->i386_mmx_type = t;
2791 }
2792
2793 return tdep->i386_mmx_type;
2794 }
2795
2796 /* Return the GDB type object for the "standard" data type of data in
2797 register REGNUM. */
2798
2799 struct type *
2800 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2801 {
2802 if (i386_mmx_regnum_p (gdbarch, regnum))
2803 return i386_mmx_type (gdbarch);
2804 else if (i386_ymm_regnum_p (gdbarch, regnum))
2805 return i386_ymm_type (gdbarch);
2806 else
2807 {
2808 const struct builtin_type *bt = builtin_type (gdbarch);
2809 if (i386_byte_regnum_p (gdbarch, regnum))
2810 return bt->builtin_int8;
2811 else if (i386_word_regnum_p (gdbarch, regnum))
2812 return bt->builtin_int16;
2813 else if (i386_dword_regnum_p (gdbarch, regnum))
2814 return bt->builtin_int32;
2815 }
2816
2817 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2818 }
2819
2820 /* Map a cooked register onto a raw register or memory. For the i386,
2821 the MMX registers need to be mapped onto floating point registers. */
2822
2823 static int
2824 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2825 {
2826 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2827 int mmxreg, fpreg;
2828 ULONGEST fstat;
2829 int tos;
2830
2831 mmxreg = regnum - tdep->mm0_regnum;
2832 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2833 tos = (fstat >> 11) & 0x7;
2834 fpreg = (mmxreg + tos) % 8;
2835
2836 return (I387_ST0_REGNUM (tdep) + fpreg);
2837 }
2838
2839 /* A helper function for us by i386_pseudo_register_read_value and
2840 amd64_pseudo_register_read_value. It does all the work but reads
2841 the data into an already-allocated value. */
2842
2843 void
2844 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
2845 struct regcache *regcache,
2846 int regnum,
2847 struct value *result_value)
2848 {
2849 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2850 enum register_status status;
2851 gdb_byte *buf = value_contents_raw (result_value);
2852
2853 if (i386_mmx_regnum_p (gdbarch, regnum))
2854 {
2855 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2856
2857 /* Extract (always little endian). */
2858 status = regcache_raw_read (regcache, fpnum, raw_buf);
2859 if (status != REG_VALID)
2860 mark_value_bytes_unavailable (result_value, 0,
2861 TYPE_LENGTH (value_type (result_value)));
2862 else
2863 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
2864 }
2865 else
2866 {
2867 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2868
2869 if (i386_ymm_regnum_p (gdbarch, regnum))
2870 {
2871 regnum -= tdep->ymm0_regnum;
2872
2873 /* Extract (always little endian). Read lower 128bits. */
2874 status = regcache_raw_read (regcache,
2875 I387_XMM0_REGNUM (tdep) + regnum,
2876 raw_buf);
2877 if (status != REG_VALID)
2878 mark_value_bytes_unavailable (result_value, 0, 16);
2879 else
2880 memcpy (buf, raw_buf, 16);
2881 /* Read upper 128bits. */
2882 status = regcache_raw_read (regcache,
2883 tdep->ymm0h_regnum + regnum,
2884 raw_buf);
2885 if (status != REG_VALID)
2886 mark_value_bytes_unavailable (result_value, 16, 32);
2887 else
2888 memcpy (buf + 16, raw_buf, 16);
2889 }
2890 else if (i386_word_regnum_p (gdbarch, regnum))
2891 {
2892 int gpnum = regnum - tdep->ax_regnum;
2893
2894 /* Extract (always little endian). */
2895 status = regcache_raw_read (regcache, gpnum, raw_buf);
2896 if (status != REG_VALID)
2897 mark_value_bytes_unavailable (result_value, 0,
2898 TYPE_LENGTH (value_type (result_value)));
2899 else
2900 memcpy (buf, raw_buf, 2);
2901 }
2902 else if (i386_byte_regnum_p (gdbarch, regnum))
2903 {
2904 /* Check byte pseudo registers last since this function will
2905 be called from amd64_pseudo_register_read, which handles
2906 byte pseudo registers differently. */
2907 int gpnum = regnum - tdep->al_regnum;
2908
2909 /* Extract (always little endian). We read both lower and
2910 upper registers. */
2911 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
2912 if (status != REG_VALID)
2913 mark_value_bytes_unavailable (result_value, 0,
2914 TYPE_LENGTH (value_type (result_value)));
2915 else if (gpnum >= 4)
2916 memcpy (buf, raw_buf + 1, 1);
2917 else
2918 memcpy (buf, raw_buf, 1);
2919 }
2920 else
2921 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2922 }
2923 }
2924
2925 static struct value *
2926 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
2927 struct regcache *regcache,
2928 int regnum)
2929 {
2930 struct value *result;
2931
2932 result = allocate_value (register_type (gdbarch, regnum));
2933 VALUE_LVAL (result) = lval_register;
2934 VALUE_REGNUM (result) = regnum;
2935
2936 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
2937
2938 return result;
2939 }
2940
2941 void
2942 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2943 int regnum, const gdb_byte *buf)
2944 {
2945 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2946
2947 if (i386_mmx_regnum_p (gdbarch, regnum))
2948 {
2949 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2950
2951 /* Read ... */
2952 regcache_raw_read (regcache, fpnum, raw_buf);
2953 /* ... Modify ... (always little endian). */
2954 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
2955 /* ... Write. */
2956 regcache_raw_write (regcache, fpnum, raw_buf);
2957 }
2958 else
2959 {
2960 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2961
2962 if (i386_ymm_regnum_p (gdbarch, regnum))
2963 {
2964 regnum -= tdep->ymm0_regnum;
2965
2966 /* ... Write lower 128bits. */
2967 regcache_raw_write (regcache,
2968 I387_XMM0_REGNUM (tdep) + regnum,
2969 buf);
2970 /* ... Write upper 128bits. */
2971 regcache_raw_write (regcache,
2972 tdep->ymm0h_regnum + regnum,
2973 buf + 16);
2974 }
2975 else if (i386_word_regnum_p (gdbarch, regnum))
2976 {
2977 int gpnum = regnum - tdep->ax_regnum;
2978
2979 /* Read ... */
2980 regcache_raw_read (regcache, gpnum, raw_buf);
2981 /* ... Modify ... (always little endian). */
2982 memcpy (raw_buf, buf, 2);
2983 /* ... Write. */
2984 regcache_raw_write (regcache, gpnum, raw_buf);
2985 }
2986 else if (i386_byte_regnum_p (gdbarch, regnum))
2987 {
2988 /* Check byte pseudo registers last since this function will
2989 be called from amd64_pseudo_register_read, which handles
2990 byte pseudo registers differently. */
2991 int gpnum = regnum - tdep->al_regnum;
2992
2993 /* Read ... We read both lower and upper registers. */
2994 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2995 /* ... Modify ... (always little endian). */
2996 if (gpnum >= 4)
2997 memcpy (raw_buf + 1, buf, 1);
2998 else
2999 memcpy (raw_buf, buf, 1);
3000 /* ... Write. */
3001 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3002 }
3003 else
3004 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3005 }
3006 }
3007 \f
3008
3009 /* Return the register number of the register allocated by GCC after
3010 REGNUM, or -1 if there is no such register. */
3011
3012 static int
3013 i386_next_regnum (int regnum)
3014 {
3015 /* GCC allocates the registers in the order:
3016
3017 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3018
3019 Since storing a variable in %esp doesn't make any sense we return
3020 -1 for %ebp and for %esp itself. */
3021 static int next_regnum[] =
3022 {
3023 I386_EDX_REGNUM, /* Slot for %eax. */
3024 I386_EBX_REGNUM, /* Slot for %ecx. */
3025 I386_ECX_REGNUM, /* Slot for %edx. */
3026 I386_ESI_REGNUM, /* Slot for %ebx. */
3027 -1, -1, /* Slots for %esp and %ebp. */
3028 I386_EDI_REGNUM, /* Slot for %esi. */
3029 I386_EBP_REGNUM /* Slot for %edi. */
3030 };
3031
3032 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3033 return next_regnum[regnum];
3034
3035 return -1;
3036 }
3037
3038 /* Return nonzero if a value of type TYPE stored in register REGNUM
3039 needs any special handling. */
3040
3041 static int
3042 i386_convert_register_p (struct gdbarch *gdbarch,
3043 int regnum, struct type *type)
3044 {
3045 int len = TYPE_LENGTH (type);
3046
3047 /* Values may be spread across multiple registers. Most debugging
3048 formats aren't expressive enough to specify the locations, so
3049 some heuristics is involved. Right now we only handle types that
3050 have a length that is a multiple of the word size, since GCC
3051 doesn't seem to put any other types into registers. */
3052 if (len > 4 && len % 4 == 0)
3053 {
3054 int last_regnum = regnum;
3055
3056 while (len > 4)
3057 {
3058 last_regnum = i386_next_regnum (last_regnum);
3059 len -= 4;
3060 }
3061
3062 if (last_regnum != -1)
3063 return 1;
3064 }
3065
3066 return i387_convert_register_p (gdbarch, regnum, type);
3067 }
3068
3069 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3070 return its contents in TO. */
3071
3072 static int
3073 i386_register_to_value (struct frame_info *frame, int regnum,
3074 struct type *type, gdb_byte *to,
3075 int *optimizedp, int *unavailablep)
3076 {
3077 struct gdbarch *gdbarch = get_frame_arch (frame);
3078 int len = TYPE_LENGTH (type);
3079
3080 if (i386_fp_regnum_p (gdbarch, regnum))
3081 return i387_register_to_value (frame, regnum, type, to,
3082 optimizedp, unavailablep);
3083
3084 /* Read a value spread across multiple registers. */
3085
3086 gdb_assert (len > 4 && len % 4 == 0);
3087
3088 while (len > 0)
3089 {
3090 gdb_assert (regnum != -1);
3091 gdb_assert (register_size (gdbarch, regnum) == 4);
3092
3093 if (!get_frame_register_bytes (frame, regnum, 0,
3094 register_size (gdbarch, regnum),
3095 to, optimizedp, unavailablep))
3096 return 0;
3097
3098 regnum = i386_next_regnum (regnum);
3099 len -= 4;
3100 to += 4;
3101 }
3102
3103 *optimizedp = *unavailablep = 0;
3104 return 1;
3105 }
3106
3107 /* Write the contents FROM of a value of type TYPE into register
3108 REGNUM in frame FRAME. */
3109
3110 static void
3111 i386_value_to_register (struct frame_info *frame, int regnum,
3112 struct type *type, const gdb_byte *from)
3113 {
3114 int len = TYPE_LENGTH (type);
3115
3116 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3117 {
3118 i387_value_to_register (frame, regnum, type, from);
3119 return;
3120 }
3121
3122 /* Write a value spread across multiple registers. */
3123
3124 gdb_assert (len > 4 && len % 4 == 0);
3125
3126 while (len > 0)
3127 {
3128 gdb_assert (regnum != -1);
3129 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3130
3131 put_frame_register (frame, regnum, from);
3132 regnum = i386_next_regnum (regnum);
3133 len -= 4;
3134 from += 4;
3135 }
3136 }
3137 \f
3138 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3139 in the general-purpose register set REGSET to register cache
3140 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3141
3142 void
3143 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3144 int regnum, const void *gregs, size_t len)
3145 {
3146 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3147 const gdb_byte *regs = gregs;
3148 int i;
3149
3150 gdb_assert (len == tdep->sizeof_gregset);
3151
3152 for (i = 0; i < tdep->gregset_num_regs; i++)
3153 {
3154 if ((regnum == i || regnum == -1)
3155 && tdep->gregset_reg_offset[i] != -1)
3156 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3157 }
3158 }
3159
3160 /* Collect register REGNUM from the register cache REGCACHE and store
3161 it in the buffer specified by GREGS and LEN as described by the
3162 general-purpose register set REGSET. If REGNUM is -1, do this for
3163 all registers in REGSET. */
3164
3165 void
3166 i386_collect_gregset (const struct regset *regset,
3167 const struct regcache *regcache,
3168 int regnum, void *gregs, size_t len)
3169 {
3170 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3171 gdb_byte *regs = gregs;
3172 int i;
3173
3174 gdb_assert (len == tdep->sizeof_gregset);
3175
3176 for (i = 0; i < tdep->gregset_num_regs; i++)
3177 {
3178 if ((regnum == i || regnum == -1)
3179 && tdep->gregset_reg_offset[i] != -1)
3180 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3181 }
3182 }
3183
3184 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3185 in the floating-point register set REGSET to register cache
3186 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3187
3188 static void
3189 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3190 int regnum, const void *fpregs, size_t len)
3191 {
3192 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3193
3194 if (len == I387_SIZEOF_FXSAVE)
3195 {
3196 i387_supply_fxsave (regcache, regnum, fpregs);
3197 return;
3198 }
3199
3200 gdb_assert (len == tdep->sizeof_fpregset);
3201 i387_supply_fsave (regcache, regnum, fpregs);
3202 }
3203
3204 /* Collect register REGNUM from the register cache REGCACHE and store
3205 it in the buffer specified by FPREGS and LEN as described by the
3206 floating-point register set REGSET. If REGNUM is -1, do this for
3207 all registers in REGSET. */
3208
3209 static void
3210 i386_collect_fpregset (const struct regset *regset,
3211 const struct regcache *regcache,
3212 int regnum, void *fpregs, size_t len)
3213 {
3214 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3215
3216 if (len == I387_SIZEOF_FXSAVE)
3217 {
3218 i387_collect_fxsave (regcache, regnum, fpregs);
3219 return;
3220 }
3221
3222 gdb_assert (len == tdep->sizeof_fpregset);
3223 i387_collect_fsave (regcache, regnum, fpregs);
3224 }
3225
3226 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3227
3228 static void
3229 i386_supply_xstateregset (const struct regset *regset,
3230 struct regcache *regcache, int regnum,
3231 const void *xstateregs, size_t len)
3232 {
3233 i387_supply_xsave (regcache, regnum, xstateregs);
3234 }
3235
3236 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3237
3238 static void
3239 i386_collect_xstateregset (const struct regset *regset,
3240 const struct regcache *regcache,
3241 int regnum, void *xstateregs, size_t len)
3242 {
3243 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3244 }
3245
3246 /* Return the appropriate register set for the core section identified
3247 by SECT_NAME and SECT_SIZE. */
3248
3249 const struct regset *
3250 i386_regset_from_core_section (struct gdbarch *gdbarch,
3251 const char *sect_name, size_t sect_size)
3252 {
3253 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3254
3255 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3256 {
3257 if (tdep->gregset == NULL)
3258 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3259 i386_collect_gregset);
3260 return tdep->gregset;
3261 }
3262
3263 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3264 || (strcmp (sect_name, ".reg-xfp") == 0
3265 && sect_size == I387_SIZEOF_FXSAVE))
3266 {
3267 if (tdep->fpregset == NULL)
3268 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3269 i386_collect_fpregset);
3270 return tdep->fpregset;
3271 }
3272
3273 if (strcmp (sect_name, ".reg-xstate") == 0)
3274 {
3275 if (tdep->xstateregset == NULL)
3276 tdep->xstateregset = regset_alloc (gdbarch,
3277 i386_supply_xstateregset,
3278 i386_collect_xstateregset);
3279
3280 return tdep->xstateregset;
3281 }
3282
3283 return NULL;
3284 }
3285 \f
3286
3287 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3288
3289 CORE_ADDR
3290 i386_pe_skip_trampoline_code (struct frame_info *frame,
3291 CORE_ADDR pc, char *name)
3292 {
3293 struct gdbarch *gdbarch = get_frame_arch (frame);
3294 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3295
3296 /* jmp *(dest) */
3297 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3298 {
3299 unsigned long indirect =
3300 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3301 struct minimal_symbol *indsym =
3302 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
3303 const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
3304
3305 if (symname)
3306 {
3307 if (strncmp (symname, "__imp_", 6) == 0
3308 || strncmp (symname, "_imp_", 5) == 0)
3309 return name ? 1 :
3310 read_memory_unsigned_integer (indirect, 4, byte_order);
3311 }
3312 }
3313 return 0; /* Not a trampoline. */
3314 }
3315 \f
3316
3317 /* Return whether the THIS_FRAME corresponds to a sigtramp
3318 routine. */
3319
3320 int
3321 i386_sigtramp_p (struct frame_info *this_frame)
3322 {
3323 CORE_ADDR pc = get_frame_pc (this_frame);
3324 const char *name;
3325
3326 find_pc_partial_function (pc, &name, NULL, NULL);
3327 return (name && strcmp ("_sigtramp", name) == 0);
3328 }
3329 \f
3330
3331 /* We have two flavours of disassembly. The machinery on this page
3332 deals with switching between those. */
3333
3334 static int
3335 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3336 {
3337 gdb_assert (disassembly_flavor == att_flavor
3338 || disassembly_flavor == intel_flavor);
3339
3340 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3341 constified, cast to prevent a compiler warning. */
3342 info->disassembler_options = (char *) disassembly_flavor;
3343
3344 return print_insn_i386 (pc, info);
3345 }
3346 \f
3347
3348 /* There are a few i386 architecture variants that differ only
3349 slightly from the generic i386 target. For now, we don't give them
3350 their own source file, but include them here. As a consequence,
3351 they'll always be included. */
3352
3353 /* System V Release 4 (SVR4). */
3354
3355 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3356 routine. */
3357
3358 static int
3359 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3360 {
3361 CORE_ADDR pc = get_frame_pc (this_frame);
3362 const char *name;
3363
3364 /* UnixWare uses _sigacthandler. The origin of the other symbols is
3365 currently unknown. */
3366 find_pc_partial_function (pc, &name, NULL, NULL);
3367 return (name && (strcmp ("_sigreturn", name) == 0
3368 || strcmp ("_sigacthandler", name) == 0
3369 || strcmp ("sigvechandler", name) == 0));
3370 }
3371
3372 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3373 address of the associated sigcontext (ucontext) structure. */
3374
3375 static CORE_ADDR
3376 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3377 {
3378 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3379 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3380 gdb_byte buf[4];
3381 CORE_ADDR sp;
3382
3383 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3384 sp = extract_unsigned_integer (buf, 4, byte_order);
3385
3386 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3387 }
3388
3389 \f
3390
3391 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3392 gdbarch.h. */
3393
3394 int
3395 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3396 {
3397 return (*s == '$' /* Literal number. */
3398 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3399 || (*s == '(' && s[1] == '%') /* Register indirection. */
3400 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3401 }
3402
3403 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
3404 gdbarch.h. */
3405
3406 int
3407 i386_stap_parse_special_token (struct gdbarch *gdbarch,
3408 struct stap_parse_info *p)
3409 {
3410 /* In order to parse special tokens, we use a state-machine that go
3411 through every known token and try to get a match. */
3412 enum
3413 {
3414 TRIPLET,
3415 THREE_ARG_DISPLACEMENT,
3416 DONE
3417 } current_state;
3418
3419 current_state = TRIPLET;
3420
3421 /* The special tokens to be parsed here are:
3422
3423 - `register base + (register index * size) + offset', as represented
3424 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3425
3426 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
3427 `*(-8 + 3 - 1 + (void *) $eax)'. */
3428
3429 while (current_state != DONE)
3430 {
3431 const char *s = p->arg;
3432
3433 switch (current_state)
3434 {
3435 case TRIPLET:
3436 {
3437 if (isdigit (*s) || *s == '-' || *s == '+')
3438 {
3439 int got_minus[3];
3440 int i;
3441 long displacements[3];
3442 const char *start;
3443 char *regname;
3444 int len;
3445 struct stoken str;
3446
3447 got_minus[0] = 0;
3448 if (*s == '+')
3449 ++s;
3450 else if (*s == '-')
3451 {
3452 ++s;
3453 got_minus[0] = 1;
3454 }
3455
3456 displacements[0] = strtol (s, (char **) &s, 10);
3457
3458 if (*s != '+' && *s != '-')
3459 {
3460 /* We are not dealing with a triplet. */
3461 break;
3462 }
3463
3464 got_minus[1] = 0;
3465 if (*s == '+')
3466 ++s;
3467 else
3468 {
3469 ++s;
3470 got_minus[1] = 1;
3471 }
3472
3473 displacements[1] = strtol (s, (char **) &s, 10);
3474
3475 if (*s != '+' && *s != '-')
3476 {
3477 /* We are not dealing with a triplet. */
3478 break;
3479 }
3480
3481 got_minus[2] = 0;
3482 if (*s == '+')
3483 ++s;
3484 else
3485 {
3486 ++s;
3487 got_minus[2] = 1;
3488 }
3489
3490 displacements[2] = strtol (s, (char **) &s, 10);
3491
3492 if (*s != '(' || s[1] != '%')
3493 break;
3494
3495 s += 2;
3496 start = s;
3497
3498 while (isalnum (*s))
3499 ++s;
3500
3501 if (*s++ != ')')
3502 break;
3503
3504 len = s - start;
3505 regname = alloca (len + 1);
3506
3507 strncpy (regname, start, len);
3508 regname[len] = '\0';
3509
3510 if (user_reg_map_name_to_regnum (gdbarch,
3511 regname, len) == -1)
3512 error (_("Invalid register name `%s' "
3513 "on expression `%s'."),
3514 regname, p->saved_arg);
3515
3516 for (i = 0; i < 3; i++)
3517 {
3518 write_exp_elt_opcode (OP_LONG);
3519 write_exp_elt_type
3520 (builtin_type (gdbarch)->builtin_long);
3521 write_exp_elt_longcst (displacements[i]);
3522 write_exp_elt_opcode (OP_LONG);
3523 if (got_minus[i])
3524 write_exp_elt_opcode (UNOP_NEG);
3525 }
3526
3527 write_exp_elt_opcode (OP_REGISTER);
3528 str.ptr = regname;
3529 str.length = len;
3530 write_exp_string (str);
3531 write_exp_elt_opcode (OP_REGISTER);
3532
3533 write_exp_elt_opcode (UNOP_CAST);
3534 write_exp_elt_type (builtin_type (gdbarch)->builtin_data_ptr);
3535 write_exp_elt_opcode (UNOP_CAST);
3536
3537 write_exp_elt_opcode (BINOP_ADD);
3538 write_exp_elt_opcode (BINOP_ADD);
3539 write_exp_elt_opcode (BINOP_ADD);
3540
3541 write_exp_elt_opcode (UNOP_CAST);
3542 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3543 write_exp_elt_opcode (UNOP_CAST);
3544
3545 write_exp_elt_opcode (UNOP_IND);
3546
3547 p->arg = s;
3548
3549 return 1;
3550 }
3551 break;
3552 }
3553 case THREE_ARG_DISPLACEMENT:
3554 {
3555 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
3556 {
3557 int offset_minus = 0;
3558 long offset = 0;
3559 int size_minus = 0;
3560 long size = 0;
3561 const char *start;
3562 char *base;
3563 int len_base;
3564 char *index;
3565 int len_index;
3566 struct stoken base_token, index_token;
3567
3568 if (*s == '+')
3569 ++s;
3570 else if (*s == '-')
3571 {
3572 ++s;
3573 offset_minus = 1;
3574 }
3575
3576 if (offset_minus && !isdigit (*s))
3577 break;
3578
3579 if (isdigit (*s))
3580 offset = strtol (s, (char **) &s, 10);
3581
3582 if (*s != '(' || s[1] != '%')
3583 break;
3584
3585 s += 2;
3586 start = s;
3587
3588 while (isalnum (*s))
3589 ++s;
3590
3591 if (*s != ',' || s[1] != '%')
3592 break;
3593
3594 len_base = s - start;
3595 base = alloca (len_base + 1);
3596 strncpy (base, start, len_base);
3597 base[len_base] = '\0';
3598
3599 if (user_reg_map_name_to_regnum (gdbarch,
3600 base, len_base) == -1)
3601 error (_("Invalid register name `%s' "
3602 "on expression `%s'."),
3603 base, p->saved_arg);
3604
3605 s += 2;
3606 start = s;
3607
3608 while (isalnum (*s))
3609 ++s;
3610
3611 len_index = s - start;
3612 index = alloca (len_index + 1);
3613 strncpy (index, start, len_index);
3614 index[len_index] = '\0';
3615
3616 if (user_reg_map_name_to_regnum (gdbarch,
3617 index, len_index) == -1)
3618 error (_("Invalid register name `%s' "
3619 "on expression `%s'."),
3620 index, p->saved_arg);
3621
3622 if (*s != ',' && *s != ')')
3623 break;
3624
3625 if (*s == ',')
3626 {
3627 ++s;
3628 if (*s == '+')
3629 ++s;
3630 else if (*s == '-')
3631 {
3632 ++s;
3633 size_minus = 1;
3634 }
3635
3636 size = strtol (s, (char **) &s, 10);
3637
3638 if (*s != ')')
3639 break;
3640 }
3641
3642 ++s;
3643
3644 if (offset)
3645 {
3646 write_exp_elt_opcode (OP_LONG);
3647 write_exp_elt_type
3648 (builtin_type (gdbarch)->builtin_long);
3649 write_exp_elt_longcst (offset);
3650 write_exp_elt_opcode (OP_LONG);
3651 if (offset_minus)
3652 write_exp_elt_opcode (UNOP_NEG);
3653 }
3654
3655 write_exp_elt_opcode (OP_REGISTER);
3656 base_token.ptr = base;
3657 base_token.length = len_base;
3658 write_exp_string (base_token);
3659 write_exp_elt_opcode (OP_REGISTER);
3660
3661 if (offset)
3662 write_exp_elt_opcode (BINOP_ADD);
3663
3664 write_exp_elt_opcode (OP_REGISTER);
3665 index_token.ptr = index;
3666 index_token.length = len_index;
3667 write_exp_string (index_token);
3668 write_exp_elt_opcode (OP_REGISTER);
3669
3670 if (size)
3671 {
3672 write_exp_elt_opcode (OP_LONG);
3673 write_exp_elt_type
3674 (builtin_type (gdbarch)->builtin_long);
3675 write_exp_elt_longcst (size);
3676 write_exp_elt_opcode (OP_LONG);
3677 if (size_minus)
3678 write_exp_elt_opcode (UNOP_NEG);
3679 write_exp_elt_opcode (BINOP_MUL);
3680 }
3681
3682 write_exp_elt_opcode (BINOP_ADD);
3683
3684 write_exp_elt_opcode (UNOP_CAST);
3685 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3686 write_exp_elt_opcode (UNOP_CAST);
3687
3688 write_exp_elt_opcode (UNOP_IND);
3689
3690 p->arg = s;
3691
3692 return 1;
3693 }
3694 break;
3695 }
3696 }
3697
3698 /* Advancing to the next state. */
3699 ++current_state;
3700 }
3701
3702 return 0;
3703 }
3704
3705 \f
3706
3707 /* Generic ELF. */
3708
3709 void
3710 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3711 {
3712 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3713 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3714
3715 /* Registering SystemTap handlers. */
3716 set_gdbarch_stap_integer_prefix (gdbarch, "$");
3717 set_gdbarch_stap_register_prefix (gdbarch, "%");
3718 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
3719 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
3720 set_gdbarch_stap_is_single_operand (gdbarch,
3721 i386_stap_is_single_operand);
3722 set_gdbarch_stap_parse_special_token (gdbarch,
3723 i386_stap_parse_special_token);
3724 }
3725
3726 /* System V Release 4 (SVR4). */
3727
3728 void
3729 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3730 {
3731 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3732
3733 /* System V Release 4 uses ELF. */
3734 i386_elf_init_abi (info, gdbarch);
3735
3736 /* System V Release 4 has shared libraries. */
3737 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3738
3739 tdep->sigtramp_p = i386_svr4_sigtramp_p;
3740 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3741 tdep->sc_pc_offset = 36 + 14 * 4;
3742 tdep->sc_sp_offset = 36 + 17 * 4;
3743
3744 tdep->jb_pc_offset = 20;
3745 }
3746
3747 /* DJGPP. */
3748
3749 static void
3750 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3751 {
3752 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3753
3754 /* DJGPP doesn't have any special frames for signal handlers. */
3755 tdep->sigtramp_p = NULL;
3756
3757 tdep->jb_pc_offset = 36;
3758
3759 /* DJGPP does not support the SSE registers. */
3760 if (! tdesc_has_registers (info.target_desc))
3761 tdep->tdesc = tdesc_i386_mmx;
3762
3763 /* Native compiler is GCC, which uses the SVR4 register numbering
3764 even in COFF and STABS. See the comment in i386_gdbarch_init,
3765 before the calls to set_gdbarch_stab_reg_to_regnum and
3766 set_gdbarch_sdb_reg_to_regnum. */
3767 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3768 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3769
3770 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3771 }
3772 \f
3773
3774 /* i386 register groups. In addition to the normal groups, add "mmx"
3775 and "sse". */
3776
3777 static struct reggroup *i386_sse_reggroup;
3778 static struct reggroup *i386_mmx_reggroup;
3779
3780 static void
3781 i386_init_reggroups (void)
3782 {
3783 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3784 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3785 }
3786
3787 static void
3788 i386_add_reggroups (struct gdbarch *gdbarch)
3789 {
3790 reggroup_add (gdbarch, i386_sse_reggroup);
3791 reggroup_add (gdbarch, i386_mmx_reggroup);
3792 reggroup_add (gdbarch, general_reggroup);
3793 reggroup_add (gdbarch, float_reggroup);
3794 reggroup_add (gdbarch, all_reggroup);
3795 reggroup_add (gdbarch, save_reggroup);
3796 reggroup_add (gdbarch, restore_reggroup);
3797 reggroup_add (gdbarch, vector_reggroup);
3798 reggroup_add (gdbarch, system_reggroup);
3799 }
3800
3801 int
3802 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3803 struct reggroup *group)
3804 {
3805 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3806 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3807 ymm_regnum_p, ymmh_regnum_p;
3808
3809 /* Don't include pseudo registers, except for MMX, in any register
3810 groups. */
3811 if (i386_byte_regnum_p (gdbarch, regnum))
3812 return 0;
3813
3814 if (i386_word_regnum_p (gdbarch, regnum))
3815 return 0;
3816
3817 if (i386_dword_regnum_p (gdbarch, regnum))
3818 return 0;
3819
3820 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
3821 if (group == i386_mmx_reggroup)
3822 return mmx_regnum_p;
3823
3824 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3825 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
3826 if (group == i386_sse_reggroup)
3827 return xmm_regnum_p || mxcsr_regnum_p;
3828
3829 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
3830 if (group == vector_reggroup)
3831 return (mmx_regnum_p
3832 || ymm_regnum_p
3833 || mxcsr_regnum_p
3834 || (xmm_regnum_p
3835 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3836 == I386_XSTATE_SSE_MASK)));
3837
3838 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3839 || i386_fpc_regnum_p (gdbarch, regnum));
3840 if (group == float_reggroup)
3841 return fp_regnum_p;
3842
3843 /* For "info reg all", don't include upper YMM registers nor XMM
3844 registers when AVX is supported. */
3845 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3846 if (group == all_reggroup
3847 && ((xmm_regnum_p
3848 && (tdep->xcr0 & I386_XSTATE_AVX))
3849 || ymmh_regnum_p))
3850 return 0;
3851
3852 if (group == general_reggroup)
3853 return (!fp_regnum_p
3854 && !mmx_regnum_p
3855 && !mxcsr_regnum_p
3856 && !xmm_regnum_p
3857 && !ymm_regnum_p
3858 && !ymmh_regnum_p);
3859
3860 return default_register_reggroup_p (gdbarch, regnum, group);
3861 }
3862 \f
3863
3864 /* Get the ARGIth function argument for the current function. */
3865
3866 static CORE_ADDR
3867 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3868 struct type *type)
3869 {
3870 struct gdbarch *gdbarch = get_frame_arch (frame);
3871 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3872 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
3873 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
3874 }
3875
3876 static void
3877 i386_skip_permanent_breakpoint (struct regcache *regcache)
3878 {
3879 CORE_ADDR current_pc = regcache_read_pc (regcache);
3880
3881 /* On i386, breakpoint is exactly 1 byte long, so we just
3882 adjust the PC in the regcache. */
3883 current_pc += 1;
3884 regcache_write_pc (regcache, current_pc);
3885 }
3886
3887
3888 #define PREFIX_REPZ 0x01
3889 #define PREFIX_REPNZ 0x02
3890 #define PREFIX_LOCK 0x04
3891 #define PREFIX_DATA 0x08
3892 #define PREFIX_ADDR 0x10
3893
3894 /* operand size */
3895 enum
3896 {
3897 OT_BYTE = 0,
3898 OT_WORD,
3899 OT_LONG,
3900 OT_QUAD,
3901 OT_DQUAD,
3902 };
3903
3904 /* i386 arith/logic operations */
3905 enum
3906 {
3907 OP_ADDL,
3908 OP_ORL,
3909 OP_ADCL,
3910 OP_SBBL,
3911 OP_ANDL,
3912 OP_SUBL,
3913 OP_XORL,
3914 OP_CMPL,
3915 };
3916
3917 struct i386_record_s
3918 {
3919 struct gdbarch *gdbarch;
3920 struct regcache *regcache;
3921 CORE_ADDR orig_addr;
3922 CORE_ADDR addr;
3923 int aflag;
3924 int dflag;
3925 int override;
3926 uint8_t modrm;
3927 uint8_t mod, reg, rm;
3928 int ot;
3929 uint8_t rex_x;
3930 uint8_t rex_b;
3931 int rip_offset;
3932 int popl_esp_hack;
3933 const int *regmap;
3934 };
3935
3936 /* Parse "modrm" part in current memory address that irp->addr point to
3937 Return -1 if something wrong. */
3938
3939 static int
3940 i386_record_modrm (struct i386_record_s *irp)
3941 {
3942 struct gdbarch *gdbarch = irp->gdbarch;
3943
3944 if (target_read_memory (irp->addr, &irp->modrm, 1))
3945 {
3946 if (record_debug)
3947 printf_unfiltered (_("Process record: error reading memory at "
3948 "addr %s len = 1.\n"),
3949 paddress (gdbarch, irp->addr));
3950 return -1;
3951 }
3952 irp->addr++;
3953 irp->mod = (irp->modrm >> 6) & 3;
3954 irp->reg = (irp->modrm >> 3) & 7;
3955 irp->rm = irp->modrm & 7;
3956
3957 return 0;
3958 }
3959
3960 /* Get the memory address that current instruction write to and set it to
3961 the argument "addr".
3962 Return -1 if something wrong. */
3963
3964 static int
3965 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
3966 {
3967 struct gdbarch *gdbarch = irp->gdbarch;
3968 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3969 gdb_byte buf[4];
3970 ULONGEST offset64;
3971
3972 *addr = 0;
3973 if (irp->aflag)
3974 {
3975 /* 32 bits */
3976 int havesib = 0;
3977 uint8_t scale = 0;
3978 uint8_t byte;
3979 uint8_t index = 0;
3980 uint8_t base = irp->rm;
3981
3982 if (base == 4)
3983 {
3984 havesib = 1;
3985 if (target_read_memory (irp->addr, &byte, 1))
3986 {
3987 if (record_debug)
3988 printf_unfiltered (_("Process record: error reading memory "
3989 "at addr %s len = 1.\n"),
3990 paddress (gdbarch, irp->addr));
3991 return -1;
3992 }
3993 irp->addr++;
3994 scale = (byte >> 6) & 3;
3995 index = ((byte >> 3) & 7) | irp->rex_x;
3996 base = (byte & 7);
3997 }
3998 base |= irp->rex_b;
3999
4000 switch (irp->mod)
4001 {
4002 case 0:
4003 if ((base & 7) == 5)
4004 {
4005 base = 0xff;
4006 if (target_read_memory (irp->addr, buf, 4))
4007 {
4008 if (record_debug)
4009 printf_unfiltered (_("Process record: error reading "
4010 "memory at addr %s len = 4.\n"),
4011 paddress (gdbarch, irp->addr));
4012 return -1;
4013 }
4014 irp->addr += 4;
4015 *addr = extract_signed_integer (buf, 4, byte_order);
4016 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4017 *addr += irp->addr + irp->rip_offset;
4018 }
4019 break;
4020 case 1:
4021 if (target_read_memory (irp->addr, buf, 1))
4022 {
4023 if (record_debug)
4024 printf_unfiltered (_("Process record: error reading memory "
4025 "at addr %s len = 1.\n"),
4026 paddress (gdbarch, irp->addr));
4027 return -1;
4028 }
4029 irp->addr++;
4030 *addr = (int8_t) buf[0];
4031 break;
4032 case 2:
4033 if (target_read_memory (irp->addr, buf, 4))
4034 {
4035 if (record_debug)
4036 printf_unfiltered (_("Process record: error reading memory "
4037 "at addr %s len = 4.\n"),
4038 paddress (gdbarch, irp->addr));
4039 return -1;
4040 }
4041 *addr = extract_signed_integer (buf, 4, byte_order);
4042 irp->addr += 4;
4043 break;
4044 }
4045
4046 offset64 = 0;
4047 if (base != 0xff)
4048 {
4049 if (base == 4 && irp->popl_esp_hack)
4050 *addr += irp->popl_esp_hack;
4051 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4052 &offset64);
4053 }
4054 if (irp->aflag == 2)
4055 {
4056 *addr += offset64;
4057 }
4058 else
4059 *addr = (uint32_t) (offset64 + *addr);
4060
4061 if (havesib && (index != 4 || scale != 0))
4062 {
4063 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4064 &offset64);
4065 if (irp->aflag == 2)
4066 *addr += offset64 << scale;
4067 else
4068 *addr = (uint32_t) (*addr + (offset64 << scale));
4069 }
4070 }
4071 else
4072 {
4073 /* 16 bits */
4074 switch (irp->mod)
4075 {
4076 case 0:
4077 if (irp->rm == 6)
4078 {
4079 if (target_read_memory (irp->addr, buf, 2))
4080 {
4081 if (record_debug)
4082 printf_unfiltered (_("Process record: error reading "
4083 "memory at addr %s len = 2.\n"),
4084 paddress (gdbarch, irp->addr));
4085 return -1;
4086 }
4087 irp->addr += 2;
4088 *addr = extract_signed_integer (buf, 2, byte_order);
4089 irp->rm = 0;
4090 goto no_rm;
4091 }
4092 break;
4093 case 1:
4094 if (target_read_memory (irp->addr, buf, 1))
4095 {
4096 if (record_debug)
4097 printf_unfiltered (_("Process record: error reading memory "
4098 "at addr %s len = 1.\n"),
4099 paddress (gdbarch, irp->addr));
4100 return -1;
4101 }
4102 irp->addr++;
4103 *addr = (int8_t) buf[0];
4104 break;
4105 case 2:
4106 if (target_read_memory (irp->addr, buf, 2))
4107 {
4108 if (record_debug)
4109 printf_unfiltered (_("Process record: error reading memory "
4110 "at addr %s len = 2.\n"),
4111 paddress (gdbarch, irp->addr));
4112 return -1;
4113 }
4114 irp->addr += 2;
4115 *addr = extract_signed_integer (buf, 2, byte_order);
4116 break;
4117 }
4118
4119 switch (irp->rm)
4120 {
4121 case 0:
4122 regcache_raw_read_unsigned (irp->regcache,
4123 irp->regmap[X86_RECORD_REBX_REGNUM],
4124 &offset64);
4125 *addr = (uint32_t) (*addr + offset64);
4126 regcache_raw_read_unsigned (irp->regcache,
4127 irp->regmap[X86_RECORD_RESI_REGNUM],
4128 &offset64);
4129 *addr = (uint32_t) (*addr + offset64);
4130 break;
4131 case 1:
4132 regcache_raw_read_unsigned (irp->regcache,
4133 irp->regmap[X86_RECORD_REBX_REGNUM],
4134 &offset64);
4135 *addr = (uint32_t) (*addr + offset64);
4136 regcache_raw_read_unsigned (irp->regcache,
4137 irp->regmap[X86_RECORD_REDI_REGNUM],
4138 &offset64);
4139 *addr = (uint32_t) (*addr + offset64);
4140 break;
4141 case 2:
4142 regcache_raw_read_unsigned (irp->regcache,
4143 irp->regmap[X86_RECORD_REBP_REGNUM],
4144 &offset64);
4145 *addr = (uint32_t) (*addr + offset64);
4146 regcache_raw_read_unsigned (irp->regcache,
4147 irp->regmap[X86_RECORD_RESI_REGNUM],
4148 &offset64);
4149 *addr = (uint32_t) (*addr + offset64);
4150 break;
4151 case 3:
4152 regcache_raw_read_unsigned (irp->regcache,
4153 irp->regmap[X86_RECORD_REBP_REGNUM],
4154 &offset64);
4155 *addr = (uint32_t) (*addr + offset64);
4156 regcache_raw_read_unsigned (irp->regcache,
4157 irp->regmap[X86_RECORD_REDI_REGNUM],
4158 &offset64);
4159 *addr = (uint32_t) (*addr + offset64);
4160 break;
4161 case 4:
4162 regcache_raw_read_unsigned (irp->regcache,
4163 irp->regmap[X86_RECORD_RESI_REGNUM],
4164 &offset64);
4165 *addr = (uint32_t) (*addr + offset64);
4166 break;
4167 case 5:
4168 regcache_raw_read_unsigned (irp->regcache,
4169 irp->regmap[X86_RECORD_REDI_REGNUM],
4170 &offset64);
4171 *addr = (uint32_t) (*addr + offset64);
4172 break;
4173 case 6:
4174 regcache_raw_read_unsigned (irp->regcache,
4175 irp->regmap[X86_RECORD_REBP_REGNUM],
4176 &offset64);
4177 *addr = (uint32_t) (*addr + offset64);
4178 break;
4179 case 7:
4180 regcache_raw_read_unsigned (irp->regcache,
4181 irp->regmap[X86_RECORD_REBX_REGNUM],
4182 &offset64);
4183 *addr = (uint32_t) (*addr + offset64);
4184 break;
4185 }
4186 *addr &= 0xffff;
4187 }
4188
4189 no_rm:
4190 return 0;
4191 }
4192
4193 /* Record the value of the memory that willbe changed in current instruction
4194 to "record_arch_list".
4195 Return -1 if something wrong. */
4196
4197 static int
4198 i386_record_lea_modrm (struct i386_record_s *irp)
4199 {
4200 struct gdbarch *gdbarch = irp->gdbarch;
4201 uint64_t addr;
4202
4203 if (irp->override >= 0)
4204 {
4205 if (record_memory_query)
4206 {
4207 int q;
4208
4209 target_terminal_ours ();
4210 q = yquery (_("\
4211 Process record ignores the memory change of instruction at address %s\n\
4212 because it can't get the value of the segment register.\n\
4213 Do you want to stop the program?"),
4214 paddress (gdbarch, irp->orig_addr));
4215 target_terminal_inferior ();
4216 if (q)
4217 return -1;
4218 }
4219
4220 return 0;
4221 }
4222
4223 if (i386_record_lea_modrm_addr (irp, &addr))
4224 return -1;
4225
4226 if (record_arch_list_add_mem (addr, 1 << irp->ot))
4227 return -1;
4228
4229 return 0;
4230 }
4231
4232 /* Record the push operation to "record_arch_list".
4233 Return -1 if something wrong. */
4234
4235 static int
4236 i386_record_push (struct i386_record_s *irp, int size)
4237 {
4238 ULONGEST addr;
4239
4240 if (record_arch_list_add_reg (irp->regcache,
4241 irp->regmap[X86_RECORD_RESP_REGNUM]))
4242 return -1;
4243 regcache_raw_read_unsigned (irp->regcache,
4244 irp->regmap[X86_RECORD_RESP_REGNUM],
4245 &addr);
4246 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4247 return -1;
4248
4249 return 0;
4250 }
4251
4252
4253 /* Defines contents to record. */
4254 #define I386_SAVE_FPU_REGS 0xfffd
4255 #define I386_SAVE_FPU_ENV 0xfffe
4256 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4257
4258 /* Record the value of floating point registers which will be changed
4259 by the current instruction to "record_arch_list". Return -1 if
4260 something is wrong. */
4261
4262 static int i386_record_floats (struct gdbarch *gdbarch,
4263 struct i386_record_s *ir,
4264 uint32_t iregnum)
4265 {
4266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4267 int i;
4268
4269 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4270 happen. Currently we store st0-st7 registers, but we need not store all
4271 registers all the time, in future we use ftag register and record only
4272 those who are not marked as an empty. */
4273
4274 if (I386_SAVE_FPU_REGS == iregnum)
4275 {
4276 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4277 {
4278 if (record_arch_list_add_reg (ir->regcache, i))
4279 return -1;
4280 }
4281 }
4282 else if (I386_SAVE_FPU_ENV == iregnum)
4283 {
4284 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4285 {
4286 if (record_arch_list_add_reg (ir->regcache, i))
4287 return -1;
4288 }
4289 }
4290 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4291 {
4292 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4293 {
4294 if (record_arch_list_add_reg (ir->regcache, i))
4295 return -1;
4296 }
4297 }
4298 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4299 (iregnum <= I387_FOP_REGNUM (tdep)))
4300 {
4301 if (record_arch_list_add_reg (ir->regcache,iregnum))
4302 return -1;
4303 }
4304 else
4305 {
4306 /* Parameter error. */
4307 return -1;
4308 }
4309 if(I386_SAVE_FPU_ENV != iregnum)
4310 {
4311 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4312 {
4313 if (record_arch_list_add_reg (ir->regcache, i))
4314 return -1;
4315 }
4316 }
4317 return 0;
4318 }
4319
4320 /* Parse the current instruction and record the values of the registers and
4321 memory that will be changed in current instruction to "record_arch_list".
4322 Return -1 if something wrong. */
4323
4324 #define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
4325 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4326
4327 int
4328 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4329 CORE_ADDR input_addr)
4330 {
4331 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4332 int prefixes = 0;
4333 int regnum = 0;
4334 uint32_t opcode;
4335 uint8_t opcode8;
4336 ULONGEST addr;
4337 gdb_byte buf[MAX_REGISTER_SIZE];
4338 struct i386_record_s ir;
4339 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4340 int rex = 0;
4341 uint8_t rex_w = -1;
4342 uint8_t rex_r = 0;
4343
4344 memset (&ir, 0, sizeof (struct i386_record_s));
4345 ir.regcache = regcache;
4346 ir.addr = input_addr;
4347 ir.orig_addr = input_addr;
4348 ir.aflag = 1;
4349 ir.dflag = 1;
4350 ir.override = -1;
4351 ir.popl_esp_hack = 0;
4352 ir.regmap = tdep->record_regmap;
4353 ir.gdbarch = gdbarch;
4354
4355 if (record_debug > 1)
4356 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
4357 "addr = %s\n",
4358 paddress (gdbarch, ir.addr));
4359
4360 /* prefixes */
4361 while (1)
4362 {
4363 if (target_read_memory (ir.addr, &opcode8, 1))
4364 {
4365 if (record_debug)
4366 printf_unfiltered (_("Process record: error reading memory at "
4367 "addr %s len = 1.\n"),
4368 paddress (gdbarch, ir.addr));
4369 return -1;
4370 }
4371 ir.addr++;
4372 switch (opcode8) /* Instruction prefixes */
4373 {
4374 case REPE_PREFIX_OPCODE:
4375 prefixes |= PREFIX_REPZ;
4376 break;
4377 case REPNE_PREFIX_OPCODE:
4378 prefixes |= PREFIX_REPNZ;
4379 break;
4380 case LOCK_PREFIX_OPCODE:
4381 prefixes |= PREFIX_LOCK;
4382 break;
4383 case CS_PREFIX_OPCODE:
4384 ir.override = X86_RECORD_CS_REGNUM;
4385 break;
4386 case SS_PREFIX_OPCODE:
4387 ir.override = X86_RECORD_SS_REGNUM;
4388 break;
4389 case DS_PREFIX_OPCODE:
4390 ir.override = X86_RECORD_DS_REGNUM;
4391 break;
4392 case ES_PREFIX_OPCODE:
4393 ir.override = X86_RECORD_ES_REGNUM;
4394 break;
4395 case FS_PREFIX_OPCODE:
4396 ir.override = X86_RECORD_FS_REGNUM;
4397 break;
4398 case GS_PREFIX_OPCODE:
4399 ir.override = X86_RECORD_GS_REGNUM;
4400 break;
4401 case DATA_PREFIX_OPCODE:
4402 prefixes |= PREFIX_DATA;
4403 break;
4404 case ADDR_PREFIX_OPCODE:
4405 prefixes |= PREFIX_ADDR;
4406 break;
4407 case 0x40: /* i386 inc %eax */
4408 case 0x41: /* i386 inc %ecx */
4409 case 0x42: /* i386 inc %edx */
4410 case 0x43: /* i386 inc %ebx */
4411 case 0x44: /* i386 inc %esp */
4412 case 0x45: /* i386 inc %ebp */
4413 case 0x46: /* i386 inc %esi */
4414 case 0x47: /* i386 inc %edi */
4415 case 0x48: /* i386 dec %eax */
4416 case 0x49: /* i386 dec %ecx */
4417 case 0x4a: /* i386 dec %edx */
4418 case 0x4b: /* i386 dec %ebx */
4419 case 0x4c: /* i386 dec %esp */
4420 case 0x4d: /* i386 dec %ebp */
4421 case 0x4e: /* i386 dec %esi */
4422 case 0x4f: /* i386 dec %edi */
4423 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
4424 {
4425 /* REX */
4426 rex = 1;
4427 rex_w = (opcode8 >> 3) & 1;
4428 rex_r = (opcode8 & 0x4) << 1;
4429 ir.rex_x = (opcode8 & 0x2) << 2;
4430 ir.rex_b = (opcode8 & 0x1) << 3;
4431 }
4432 else /* 32 bit target */
4433 goto out_prefixes;
4434 break;
4435 default:
4436 goto out_prefixes;
4437 break;
4438 }
4439 }
4440 out_prefixes:
4441 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4442 {
4443 ir.dflag = 2;
4444 }
4445 else
4446 {
4447 if (prefixes & PREFIX_DATA)
4448 ir.dflag ^= 1;
4449 }
4450 if (prefixes & PREFIX_ADDR)
4451 ir.aflag ^= 1;
4452 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4453 ir.aflag = 2;
4454
4455 /* Now check op code. */
4456 opcode = (uint32_t) opcode8;
4457 reswitch:
4458 switch (opcode)
4459 {
4460 case 0x0f:
4461 if (target_read_memory (ir.addr, &opcode8, 1))
4462 {
4463 if (record_debug)
4464 printf_unfiltered (_("Process record: error reading memory at "
4465 "addr %s len = 1.\n"),
4466 paddress (gdbarch, ir.addr));
4467 return -1;
4468 }
4469 ir.addr++;
4470 opcode = (uint32_t) opcode8 | 0x0f00;
4471 goto reswitch;
4472 break;
4473
4474 case 0x00: /* arith & logic */
4475 case 0x01:
4476 case 0x02:
4477 case 0x03:
4478 case 0x04:
4479 case 0x05:
4480 case 0x08:
4481 case 0x09:
4482 case 0x0a:
4483 case 0x0b:
4484 case 0x0c:
4485 case 0x0d:
4486 case 0x10:
4487 case 0x11:
4488 case 0x12:
4489 case 0x13:
4490 case 0x14:
4491 case 0x15:
4492 case 0x18:
4493 case 0x19:
4494 case 0x1a:
4495 case 0x1b:
4496 case 0x1c:
4497 case 0x1d:
4498 case 0x20:
4499 case 0x21:
4500 case 0x22:
4501 case 0x23:
4502 case 0x24:
4503 case 0x25:
4504 case 0x28:
4505 case 0x29:
4506 case 0x2a:
4507 case 0x2b:
4508 case 0x2c:
4509 case 0x2d:
4510 case 0x30:
4511 case 0x31:
4512 case 0x32:
4513 case 0x33:
4514 case 0x34:
4515 case 0x35:
4516 case 0x38:
4517 case 0x39:
4518 case 0x3a:
4519 case 0x3b:
4520 case 0x3c:
4521 case 0x3d:
4522 if (((opcode >> 3) & 7) != OP_CMPL)
4523 {
4524 if ((opcode & 1) == 0)
4525 ir.ot = OT_BYTE;
4526 else
4527 ir.ot = ir.dflag + OT_WORD;
4528
4529 switch ((opcode >> 1) & 3)
4530 {
4531 case 0: /* OP Ev, Gv */
4532 if (i386_record_modrm (&ir))
4533 return -1;
4534 if (ir.mod != 3)
4535 {
4536 if (i386_record_lea_modrm (&ir))
4537 return -1;
4538 }
4539 else
4540 {
4541 ir.rm |= ir.rex_b;
4542 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4543 ir.rm &= 0x3;
4544 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4545 }
4546 break;
4547 case 1: /* OP Gv, Ev */
4548 if (i386_record_modrm (&ir))
4549 return -1;
4550 ir.reg |= rex_r;
4551 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4552 ir.reg &= 0x3;
4553 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4554 break;
4555 case 2: /* OP A, Iv */
4556 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4557 break;
4558 }
4559 }
4560 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4561 break;
4562
4563 case 0x80: /* GRP1 */
4564 case 0x81:
4565 case 0x82:
4566 case 0x83:
4567 if (i386_record_modrm (&ir))
4568 return -1;
4569
4570 if (ir.reg != OP_CMPL)
4571 {
4572 if ((opcode & 1) == 0)
4573 ir.ot = OT_BYTE;
4574 else
4575 ir.ot = ir.dflag + OT_WORD;
4576
4577 if (ir.mod != 3)
4578 {
4579 if (opcode == 0x83)
4580 ir.rip_offset = 1;
4581 else
4582 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4583 if (i386_record_lea_modrm (&ir))
4584 return -1;
4585 }
4586 else
4587 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4588 }
4589 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4590 break;
4591
4592 case 0x40: /* inc */
4593 case 0x41:
4594 case 0x42:
4595 case 0x43:
4596 case 0x44:
4597 case 0x45:
4598 case 0x46:
4599 case 0x47:
4600
4601 case 0x48: /* dec */
4602 case 0x49:
4603 case 0x4a:
4604 case 0x4b:
4605 case 0x4c:
4606 case 0x4d:
4607 case 0x4e:
4608 case 0x4f:
4609
4610 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
4611 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4612 break;
4613
4614 case 0xf6: /* GRP3 */
4615 case 0xf7:
4616 if ((opcode & 1) == 0)
4617 ir.ot = OT_BYTE;
4618 else
4619 ir.ot = ir.dflag + OT_WORD;
4620 if (i386_record_modrm (&ir))
4621 return -1;
4622
4623 if (ir.mod != 3 && ir.reg == 0)
4624 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4625
4626 switch (ir.reg)
4627 {
4628 case 0: /* test */
4629 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4630 break;
4631 case 2: /* not */
4632 case 3: /* neg */
4633 if (ir.mod != 3)
4634 {
4635 if (i386_record_lea_modrm (&ir))
4636 return -1;
4637 }
4638 else
4639 {
4640 ir.rm |= ir.rex_b;
4641 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4642 ir.rm &= 0x3;
4643 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4644 }
4645 if (ir.reg == 3) /* neg */
4646 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4647 break;
4648 case 4: /* mul */
4649 case 5: /* imul */
4650 case 6: /* div */
4651 case 7: /* idiv */
4652 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4653 if (ir.ot != OT_BYTE)
4654 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4655 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4656 break;
4657 default:
4658 ir.addr -= 2;
4659 opcode = opcode << 8 | ir.modrm;
4660 goto no_support;
4661 break;
4662 }
4663 break;
4664
4665 case 0xfe: /* GRP4 */
4666 case 0xff: /* GRP5 */
4667 if (i386_record_modrm (&ir))
4668 return -1;
4669 if (ir.reg >= 2 && opcode == 0xfe)
4670 {
4671 ir.addr -= 2;
4672 opcode = opcode << 8 | ir.modrm;
4673 goto no_support;
4674 }
4675 switch (ir.reg)
4676 {
4677 case 0: /* inc */
4678 case 1: /* dec */
4679 if ((opcode & 1) == 0)
4680 ir.ot = OT_BYTE;
4681 else
4682 ir.ot = ir.dflag + OT_WORD;
4683 if (ir.mod != 3)
4684 {
4685 if (i386_record_lea_modrm (&ir))
4686 return -1;
4687 }
4688 else
4689 {
4690 ir.rm |= ir.rex_b;
4691 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4692 ir.rm &= 0x3;
4693 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4694 }
4695 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4696 break;
4697 case 2: /* call */
4698 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4699 ir.dflag = 2;
4700 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4701 return -1;
4702 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4703 break;
4704 case 3: /* lcall */
4705 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4706 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4707 return -1;
4708 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4709 break;
4710 case 4: /* jmp */
4711 case 5: /* ljmp */
4712 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4713 break;
4714 case 6: /* push */
4715 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4716 ir.dflag = 2;
4717 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4718 return -1;
4719 break;
4720 default:
4721 ir.addr -= 2;
4722 opcode = opcode << 8 | ir.modrm;
4723 goto no_support;
4724 break;
4725 }
4726 break;
4727
4728 case 0x84: /* test */
4729 case 0x85:
4730 case 0xa8:
4731 case 0xa9:
4732 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4733 break;
4734
4735 case 0x98: /* CWDE/CBW */
4736 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4737 break;
4738
4739 case 0x99: /* CDQ/CWD */
4740 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4741 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4742 break;
4743
4744 case 0x0faf: /* imul */
4745 case 0x69:
4746 case 0x6b:
4747 ir.ot = ir.dflag + OT_WORD;
4748 if (i386_record_modrm (&ir))
4749 return -1;
4750 if (opcode == 0x69)
4751 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4752 else if (opcode == 0x6b)
4753 ir.rip_offset = 1;
4754 ir.reg |= rex_r;
4755 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4756 ir.reg &= 0x3;
4757 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4758 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4759 break;
4760
4761 case 0x0fc0: /* xadd */
4762 case 0x0fc1:
4763 if ((opcode & 1) == 0)
4764 ir.ot = OT_BYTE;
4765 else
4766 ir.ot = ir.dflag + OT_WORD;
4767 if (i386_record_modrm (&ir))
4768 return -1;
4769 ir.reg |= rex_r;
4770 if (ir.mod == 3)
4771 {
4772 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4773 ir.reg &= 0x3;
4774 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4775 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4776 ir.rm &= 0x3;
4777 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4778 }
4779 else
4780 {
4781 if (i386_record_lea_modrm (&ir))
4782 return -1;
4783 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4784 ir.reg &= 0x3;
4785 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4786 }
4787 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4788 break;
4789
4790 case 0x0fb0: /* cmpxchg */
4791 case 0x0fb1:
4792 if ((opcode & 1) == 0)
4793 ir.ot = OT_BYTE;
4794 else
4795 ir.ot = ir.dflag + OT_WORD;
4796 if (i386_record_modrm (&ir))
4797 return -1;
4798 if (ir.mod == 3)
4799 {
4800 ir.reg |= rex_r;
4801 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4802 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4803 ir.reg &= 0x3;
4804 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4805 }
4806 else
4807 {
4808 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4809 if (i386_record_lea_modrm (&ir))
4810 return -1;
4811 }
4812 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4813 break;
4814
4815 case 0x0fc7: /* cmpxchg8b */
4816 if (i386_record_modrm (&ir))
4817 return -1;
4818 if (ir.mod == 3)
4819 {
4820 ir.addr -= 2;
4821 opcode = opcode << 8 | ir.modrm;
4822 goto no_support;
4823 }
4824 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4825 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4826 if (i386_record_lea_modrm (&ir))
4827 return -1;
4828 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4829 break;
4830
4831 case 0x50: /* push */
4832 case 0x51:
4833 case 0x52:
4834 case 0x53:
4835 case 0x54:
4836 case 0x55:
4837 case 0x56:
4838 case 0x57:
4839 case 0x68:
4840 case 0x6a:
4841 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4842 ir.dflag = 2;
4843 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4844 return -1;
4845 break;
4846
4847 case 0x06: /* push es */
4848 case 0x0e: /* push cs */
4849 case 0x16: /* push ss */
4850 case 0x1e: /* push ds */
4851 if (ir.regmap[X86_RECORD_R8_REGNUM])
4852 {
4853 ir.addr -= 1;
4854 goto no_support;
4855 }
4856 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4857 return -1;
4858 break;
4859
4860 case 0x0fa0: /* push fs */
4861 case 0x0fa8: /* push gs */
4862 if (ir.regmap[X86_RECORD_R8_REGNUM])
4863 {
4864 ir.addr -= 2;
4865 goto no_support;
4866 }
4867 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4868 return -1;
4869 break;
4870
4871 case 0x60: /* pusha */
4872 if (ir.regmap[X86_RECORD_R8_REGNUM])
4873 {
4874 ir.addr -= 1;
4875 goto no_support;
4876 }
4877 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
4878 return -1;
4879 break;
4880
4881 case 0x58: /* pop */
4882 case 0x59:
4883 case 0x5a:
4884 case 0x5b:
4885 case 0x5c:
4886 case 0x5d:
4887 case 0x5e:
4888 case 0x5f:
4889 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4890 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4891 break;
4892
4893 case 0x61: /* popa */
4894 if (ir.regmap[X86_RECORD_R8_REGNUM])
4895 {
4896 ir.addr -= 1;
4897 goto no_support;
4898 }
4899 for (regnum = X86_RECORD_REAX_REGNUM;
4900 regnum <= X86_RECORD_REDI_REGNUM;
4901 regnum++)
4902 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4903 break;
4904
4905 case 0x8f: /* pop */
4906 if (ir.regmap[X86_RECORD_R8_REGNUM])
4907 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4908 else
4909 ir.ot = ir.dflag + OT_WORD;
4910 if (i386_record_modrm (&ir))
4911 return -1;
4912 if (ir.mod == 3)
4913 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4914 else
4915 {
4916 ir.popl_esp_hack = 1 << ir.ot;
4917 if (i386_record_lea_modrm (&ir))
4918 return -1;
4919 }
4920 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4921 break;
4922
4923 case 0xc8: /* enter */
4924 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4925 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4926 ir.dflag = 2;
4927 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4928 return -1;
4929 break;
4930
4931 case 0xc9: /* leave */
4932 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4933 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4934 break;
4935
4936 case 0x07: /* pop es */
4937 if (ir.regmap[X86_RECORD_R8_REGNUM])
4938 {
4939 ir.addr -= 1;
4940 goto no_support;
4941 }
4942 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4943 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4944 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4945 break;
4946
4947 case 0x17: /* pop ss */
4948 if (ir.regmap[X86_RECORD_R8_REGNUM])
4949 {
4950 ir.addr -= 1;
4951 goto no_support;
4952 }
4953 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4954 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4955 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4956 break;
4957
4958 case 0x1f: /* pop ds */
4959 if (ir.regmap[X86_RECORD_R8_REGNUM])
4960 {
4961 ir.addr -= 1;
4962 goto no_support;
4963 }
4964 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4965 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4966 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4967 break;
4968
4969 case 0x0fa1: /* pop fs */
4970 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4971 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4972 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4973 break;
4974
4975 case 0x0fa9: /* pop gs */
4976 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4977 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4978 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4979 break;
4980
4981 case 0x88: /* mov */
4982 case 0x89:
4983 case 0xc6:
4984 case 0xc7:
4985 if ((opcode & 1) == 0)
4986 ir.ot = OT_BYTE;
4987 else
4988 ir.ot = ir.dflag + OT_WORD;
4989
4990 if (i386_record_modrm (&ir))
4991 return -1;
4992
4993 if (ir.mod != 3)
4994 {
4995 if (opcode == 0xc6 || opcode == 0xc7)
4996 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4997 if (i386_record_lea_modrm (&ir))
4998 return -1;
4999 }
5000 else
5001 {
5002 if (opcode == 0xc6 || opcode == 0xc7)
5003 ir.rm |= ir.rex_b;
5004 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5005 ir.rm &= 0x3;
5006 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5007 }
5008 break;
5009
5010 case 0x8a: /* mov */
5011 case 0x8b:
5012 if ((opcode & 1) == 0)
5013 ir.ot = OT_BYTE;
5014 else
5015 ir.ot = ir.dflag + OT_WORD;
5016 if (i386_record_modrm (&ir))
5017 return -1;
5018 ir.reg |= rex_r;
5019 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5020 ir.reg &= 0x3;
5021 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5022 break;
5023
5024 case 0x8c: /* mov seg */
5025 if (i386_record_modrm (&ir))
5026 return -1;
5027 if (ir.reg > 5)
5028 {
5029 ir.addr -= 2;
5030 opcode = opcode << 8 | ir.modrm;
5031 goto no_support;
5032 }
5033
5034 if (ir.mod == 3)
5035 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5036 else
5037 {
5038 ir.ot = OT_WORD;
5039 if (i386_record_lea_modrm (&ir))
5040 return -1;
5041 }
5042 break;
5043
5044 case 0x8e: /* mov seg */
5045 if (i386_record_modrm (&ir))
5046 return -1;
5047 switch (ir.reg)
5048 {
5049 case 0:
5050 regnum = X86_RECORD_ES_REGNUM;
5051 break;
5052 case 2:
5053 regnum = X86_RECORD_SS_REGNUM;
5054 break;
5055 case 3:
5056 regnum = X86_RECORD_DS_REGNUM;
5057 break;
5058 case 4:
5059 regnum = X86_RECORD_FS_REGNUM;
5060 break;
5061 case 5:
5062 regnum = X86_RECORD_GS_REGNUM;
5063 break;
5064 default:
5065 ir.addr -= 2;
5066 opcode = opcode << 8 | ir.modrm;
5067 goto no_support;
5068 break;
5069 }
5070 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
5071 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5072 break;
5073
5074 case 0x0fb6: /* movzbS */
5075 case 0x0fb7: /* movzwS */
5076 case 0x0fbe: /* movsbS */
5077 case 0x0fbf: /* movswS */
5078 if (i386_record_modrm (&ir))
5079 return -1;
5080 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5081 break;
5082
5083 case 0x8d: /* lea */
5084 if (i386_record_modrm (&ir))
5085 return -1;
5086 if (ir.mod == 3)
5087 {
5088 ir.addr -= 2;
5089 opcode = opcode << 8 | ir.modrm;
5090 goto no_support;
5091 }
5092 ir.ot = ir.dflag;
5093 ir.reg |= rex_r;
5094 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5095 ir.reg &= 0x3;
5096 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5097 break;
5098
5099 case 0xa0: /* mov EAX */
5100 case 0xa1:
5101
5102 case 0xd7: /* xlat */
5103 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5104 break;
5105
5106 case 0xa2: /* mov EAX */
5107 case 0xa3:
5108 if (ir.override >= 0)
5109 {
5110 if (record_memory_query)
5111 {
5112 int q;
5113
5114 target_terminal_ours ();
5115 q = yquery (_("\
5116 Process record ignores the memory change of instruction at address %s\n\
5117 because it can't get the value of the segment register.\n\
5118 Do you want to stop the program?"),
5119 paddress (gdbarch, ir.orig_addr));
5120 target_terminal_inferior ();
5121 if (q)
5122 return -1;
5123 }
5124 }
5125 else
5126 {
5127 if ((opcode & 1) == 0)
5128 ir.ot = OT_BYTE;
5129 else
5130 ir.ot = ir.dflag + OT_WORD;
5131 if (ir.aflag == 2)
5132 {
5133 if (target_read_memory (ir.addr, buf, 8))
5134 {
5135 if (record_debug)
5136 printf_unfiltered (_("Process record: error reading "
5137 "memory at addr 0x%s len = 8.\n"),
5138 paddress (gdbarch, ir.addr));
5139 return -1;
5140 }
5141 ir.addr += 8;
5142 addr = extract_unsigned_integer (buf, 8, byte_order);
5143 }
5144 else if (ir.aflag)
5145 {
5146 if (target_read_memory (ir.addr, buf, 4))
5147 {
5148 if (record_debug)
5149 printf_unfiltered (_("Process record: error reading "
5150 "memory at addr 0x%s len = 4.\n"),
5151 paddress (gdbarch, ir.addr));
5152 return -1;
5153 }
5154 ir.addr += 4;
5155 addr = extract_unsigned_integer (buf, 4, byte_order);
5156 }
5157 else
5158 {
5159 if (target_read_memory (ir.addr, buf, 2))
5160 {
5161 if (record_debug)
5162 printf_unfiltered (_("Process record: error reading "
5163 "memory at addr 0x%s len = 2.\n"),
5164 paddress (gdbarch, ir.addr));
5165 return -1;
5166 }
5167 ir.addr += 2;
5168 addr = extract_unsigned_integer (buf, 2, byte_order);
5169 }
5170 if (record_arch_list_add_mem (addr, 1 << ir.ot))
5171 return -1;
5172 }
5173 break;
5174
5175 case 0xb0: /* mov R, Ib */
5176 case 0xb1:
5177 case 0xb2:
5178 case 0xb3:
5179 case 0xb4:
5180 case 0xb5:
5181 case 0xb6:
5182 case 0xb7:
5183 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5184 ? ((opcode & 0x7) | ir.rex_b)
5185 : ((opcode & 0x7) & 0x3));
5186 break;
5187
5188 case 0xb8: /* mov R, Iv */
5189 case 0xb9:
5190 case 0xba:
5191 case 0xbb:
5192 case 0xbc:
5193 case 0xbd:
5194 case 0xbe:
5195 case 0xbf:
5196 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5197 break;
5198
5199 case 0x91: /* xchg R, EAX */
5200 case 0x92:
5201 case 0x93:
5202 case 0x94:
5203 case 0x95:
5204 case 0x96:
5205 case 0x97:
5206 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5207 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
5208 break;
5209
5210 case 0x86: /* xchg Ev, Gv */
5211 case 0x87:
5212 if ((opcode & 1) == 0)
5213 ir.ot = OT_BYTE;
5214 else
5215 ir.ot = ir.dflag + OT_WORD;
5216 if (i386_record_modrm (&ir))
5217 return -1;
5218 if (ir.mod == 3)
5219 {
5220 ir.rm |= ir.rex_b;
5221 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5222 ir.rm &= 0x3;
5223 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5224 }
5225 else
5226 {
5227 if (i386_record_lea_modrm (&ir))
5228 return -1;
5229 }
5230 ir.reg |= rex_r;
5231 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5232 ir.reg &= 0x3;
5233 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5234 break;
5235
5236 case 0xc4: /* les Gv */
5237 case 0xc5: /* lds Gv */
5238 if (ir.regmap[X86_RECORD_R8_REGNUM])
5239 {
5240 ir.addr -= 1;
5241 goto no_support;
5242 }
5243 /* FALLTHROUGH */
5244 case 0x0fb2: /* lss Gv */
5245 case 0x0fb4: /* lfs Gv */
5246 case 0x0fb5: /* lgs Gv */
5247 if (i386_record_modrm (&ir))
5248 return -1;
5249 if (ir.mod == 3)
5250 {
5251 if (opcode > 0xff)
5252 ir.addr -= 3;
5253 else
5254 ir.addr -= 2;
5255 opcode = opcode << 8 | ir.modrm;
5256 goto no_support;
5257 }
5258 switch (opcode)
5259 {
5260 case 0xc4: /* les Gv */
5261 regnum = X86_RECORD_ES_REGNUM;
5262 break;
5263 case 0xc5: /* lds Gv */
5264 regnum = X86_RECORD_DS_REGNUM;
5265 break;
5266 case 0x0fb2: /* lss Gv */
5267 regnum = X86_RECORD_SS_REGNUM;
5268 break;
5269 case 0x0fb4: /* lfs Gv */
5270 regnum = X86_RECORD_FS_REGNUM;
5271 break;
5272 case 0x0fb5: /* lgs Gv */
5273 regnum = X86_RECORD_GS_REGNUM;
5274 break;
5275 }
5276 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
5277 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5278 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5279 break;
5280
5281 case 0xc0: /* shifts */
5282 case 0xc1:
5283 case 0xd0:
5284 case 0xd1:
5285 case 0xd2:
5286 case 0xd3:
5287 if ((opcode & 1) == 0)
5288 ir.ot = OT_BYTE;
5289 else
5290 ir.ot = ir.dflag + OT_WORD;
5291 if (i386_record_modrm (&ir))
5292 return -1;
5293 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5294 {
5295 if (i386_record_lea_modrm (&ir))
5296 return -1;
5297 }
5298 else
5299 {
5300 ir.rm |= ir.rex_b;
5301 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5302 ir.rm &= 0x3;
5303 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5304 }
5305 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5306 break;
5307
5308 case 0x0fa4:
5309 case 0x0fa5:
5310 case 0x0fac:
5311 case 0x0fad:
5312 if (i386_record_modrm (&ir))
5313 return -1;
5314 if (ir.mod == 3)
5315 {
5316 if (record_arch_list_add_reg (ir.regcache, ir.rm))
5317 return -1;
5318 }
5319 else
5320 {
5321 if (i386_record_lea_modrm (&ir))
5322 return -1;
5323 }
5324 break;
5325
5326 case 0xd8: /* Floats. */
5327 case 0xd9:
5328 case 0xda:
5329 case 0xdb:
5330 case 0xdc:
5331 case 0xdd:
5332 case 0xde:
5333 case 0xdf:
5334 if (i386_record_modrm (&ir))
5335 return -1;
5336 ir.reg |= ((opcode & 7) << 3);
5337 if (ir.mod != 3)
5338 {
5339 /* Memory. */
5340 uint64_t addr64;
5341
5342 if (i386_record_lea_modrm_addr (&ir, &addr64))
5343 return -1;
5344 switch (ir.reg)
5345 {
5346 case 0x02:
5347 case 0x12:
5348 case 0x22:
5349 case 0x32:
5350 /* For fcom, ficom nothing to do. */
5351 break;
5352 case 0x03:
5353 case 0x13:
5354 case 0x23:
5355 case 0x33:
5356 /* For fcomp, ficomp pop FPU stack, store all. */
5357 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5358 return -1;
5359 break;
5360 case 0x00:
5361 case 0x01:
5362 case 0x04:
5363 case 0x05:
5364 case 0x06:
5365 case 0x07:
5366 case 0x10:
5367 case 0x11:
5368 case 0x14:
5369 case 0x15:
5370 case 0x16:
5371 case 0x17:
5372 case 0x20:
5373 case 0x21:
5374 case 0x24:
5375 case 0x25:
5376 case 0x26:
5377 case 0x27:
5378 case 0x30:
5379 case 0x31:
5380 case 0x34:
5381 case 0x35:
5382 case 0x36:
5383 case 0x37:
5384 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5385 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5386 of code, always affects st(0) register. */
5387 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5388 return -1;
5389 break;
5390 case 0x08:
5391 case 0x0a:
5392 case 0x0b:
5393 case 0x18:
5394 case 0x19:
5395 case 0x1a:
5396 case 0x1b:
5397 case 0x1d:
5398 case 0x28:
5399 case 0x29:
5400 case 0x2a:
5401 case 0x2b:
5402 case 0x38:
5403 case 0x39:
5404 case 0x3a:
5405 case 0x3b:
5406 case 0x3c:
5407 case 0x3d:
5408 switch (ir.reg & 7)
5409 {
5410 case 0:
5411 /* Handling fld, fild. */
5412 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5413 return -1;
5414 break;
5415 case 1:
5416 switch (ir.reg >> 4)
5417 {
5418 case 0:
5419 if (record_arch_list_add_mem (addr64, 4))
5420 return -1;
5421 break;
5422 case 2:
5423 if (record_arch_list_add_mem (addr64, 8))
5424 return -1;
5425 break;
5426 case 3:
5427 break;
5428 default:
5429 if (record_arch_list_add_mem (addr64, 2))
5430 return -1;
5431 break;
5432 }
5433 break;
5434 default:
5435 switch (ir.reg >> 4)
5436 {
5437 case 0:
5438 if (record_arch_list_add_mem (addr64, 4))
5439 return -1;
5440 if (3 == (ir.reg & 7))
5441 {
5442 /* For fstp m32fp. */
5443 if (i386_record_floats (gdbarch, &ir,
5444 I386_SAVE_FPU_REGS))
5445 return -1;
5446 }
5447 break;
5448 case 1:
5449 if (record_arch_list_add_mem (addr64, 4))
5450 return -1;
5451 if ((3 == (ir.reg & 7))
5452 || (5 == (ir.reg & 7))
5453 || (7 == (ir.reg & 7)))
5454 {
5455 /* For fstp insn. */
5456 if (i386_record_floats (gdbarch, &ir,
5457 I386_SAVE_FPU_REGS))
5458 return -1;
5459 }
5460 break;
5461 case 2:
5462 if (record_arch_list_add_mem (addr64, 8))
5463 return -1;
5464 if (3 == (ir.reg & 7))
5465 {
5466 /* For fstp m64fp. */
5467 if (i386_record_floats (gdbarch, &ir,
5468 I386_SAVE_FPU_REGS))
5469 return -1;
5470 }
5471 break;
5472 case 3:
5473 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5474 {
5475 /* For fistp, fbld, fild, fbstp. */
5476 if (i386_record_floats (gdbarch, &ir,
5477 I386_SAVE_FPU_REGS))
5478 return -1;
5479 }
5480 /* Fall through */
5481 default:
5482 if (record_arch_list_add_mem (addr64, 2))
5483 return -1;
5484 break;
5485 }
5486 break;
5487 }
5488 break;
5489 case 0x0c:
5490 /* Insn fldenv. */
5491 if (i386_record_floats (gdbarch, &ir,
5492 I386_SAVE_FPU_ENV_REG_STACK))
5493 return -1;
5494 break;
5495 case 0x0d:
5496 /* Insn fldcw. */
5497 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5498 return -1;
5499 break;
5500 case 0x2c:
5501 /* Insn frstor. */
5502 if (i386_record_floats (gdbarch, &ir,
5503 I386_SAVE_FPU_ENV_REG_STACK))
5504 return -1;
5505 break;
5506 case 0x0e:
5507 if (ir.dflag)
5508 {
5509 if (record_arch_list_add_mem (addr64, 28))
5510 return -1;
5511 }
5512 else
5513 {
5514 if (record_arch_list_add_mem (addr64, 14))
5515 return -1;
5516 }
5517 break;
5518 case 0x0f:
5519 case 0x2f:
5520 if (record_arch_list_add_mem (addr64, 2))
5521 return -1;
5522 /* Insn fstp, fbstp. */
5523 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5524 return -1;
5525 break;
5526 case 0x1f:
5527 case 0x3e:
5528 if (record_arch_list_add_mem (addr64, 10))
5529 return -1;
5530 break;
5531 case 0x2e:
5532 if (ir.dflag)
5533 {
5534 if (record_arch_list_add_mem (addr64, 28))
5535 return -1;
5536 addr64 += 28;
5537 }
5538 else
5539 {
5540 if (record_arch_list_add_mem (addr64, 14))
5541 return -1;
5542 addr64 += 14;
5543 }
5544 if (record_arch_list_add_mem (addr64, 80))
5545 return -1;
5546 /* Insn fsave. */
5547 if (i386_record_floats (gdbarch, &ir,
5548 I386_SAVE_FPU_ENV_REG_STACK))
5549 return -1;
5550 break;
5551 case 0x3f:
5552 if (record_arch_list_add_mem (addr64, 8))
5553 return -1;
5554 /* Insn fistp. */
5555 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5556 return -1;
5557 break;
5558 default:
5559 ir.addr -= 2;
5560 opcode = opcode << 8 | ir.modrm;
5561 goto no_support;
5562 break;
5563 }
5564 }
5565 /* Opcode is an extension of modR/M byte. */
5566 else
5567 {
5568 switch (opcode)
5569 {
5570 case 0xd8:
5571 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5572 return -1;
5573 break;
5574 case 0xd9:
5575 if (0x0c == (ir.modrm >> 4))
5576 {
5577 if ((ir.modrm & 0x0f) <= 7)
5578 {
5579 if (i386_record_floats (gdbarch, &ir,
5580 I386_SAVE_FPU_REGS))
5581 return -1;
5582 }
5583 else
5584 {
5585 if (i386_record_floats (gdbarch, &ir,
5586 I387_ST0_REGNUM (tdep)))
5587 return -1;
5588 /* If only st(0) is changing, then we have already
5589 recorded. */
5590 if ((ir.modrm & 0x0f) - 0x08)
5591 {
5592 if (i386_record_floats (gdbarch, &ir,
5593 I387_ST0_REGNUM (tdep) +
5594 ((ir.modrm & 0x0f) - 0x08)))
5595 return -1;
5596 }
5597 }
5598 }
5599 else
5600 {
5601 switch (ir.modrm)
5602 {
5603 case 0xe0:
5604 case 0xe1:
5605 case 0xf0:
5606 case 0xf5:
5607 case 0xf8:
5608 case 0xfa:
5609 case 0xfc:
5610 case 0xfe:
5611 case 0xff:
5612 if (i386_record_floats (gdbarch, &ir,
5613 I387_ST0_REGNUM (tdep)))
5614 return -1;
5615 break;
5616 case 0xf1:
5617 case 0xf2:
5618 case 0xf3:
5619 case 0xf4:
5620 case 0xf6:
5621 case 0xf7:
5622 case 0xe8:
5623 case 0xe9:
5624 case 0xea:
5625 case 0xeb:
5626 case 0xec:
5627 case 0xed:
5628 case 0xee:
5629 case 0xf9:
5630 case 0xfb:
5631 if (i386_record_floats (gdbarch, &ir,
5632 I386_SAVE_FPU_REGS))
5633 return -1;
5634 break;
5635 case 0xfd:
5636 if (i386_record_floats (gdbarch, &ir,
5637 I387_ST0_REGNUM (tdep)))
5638 return -1;
5639 if (i386_record_floats (gdbarch, &ir,
5640 I387_ST0_REGNUM (tdep) + 1))
5641 return -1;
5642 break;
5643 }
5644 }
5645 break;
5646 case 0xda:
5647 if (0xe9 == ir.modrm)
5648 {
5649 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5650 return -1;
5651 }
5652 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5653 {
5654 if (i386_record_floats (gdbarch, &ir,
5655 I387_ST0_REGNUM (tdep)))
5656 return -1;
5657 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5658 {
5659 if (i386_record_floats (gdbarch, &ir,
5660 I387_ST0_REGNUM (tdep) +
5661 (ir.modrm & 0x0f)))
5662 return -1;
5663 }
5664 else if ((ir.modrm & 0x0f) - 0x08)
5665 {
5666 if (i386_record_floats (gdbarch, &ir,
5667 I387_ST0_REGNUM (tdep) +
5668 ((ir.modrm & 0x0f) - 0x08)))
5669 return -1;
5670 }
5671 }
5672 break;
5673 case 0xdb:
5674 if (0xe3 == ir.modrm)
5675 {
5676 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5677 return -1;
5678 }
5679 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5680 {
5681 if (i386_record_floats (gdbarch, &ir,
5682 I387_ST0_REGNUM (tdep)))
5683 return -1;
5684 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5685 {
5686 if (i386_record_floats (gdbarch, &ir,
5687 I387_ST0_REGNUM (tdep) +
5688 (ir.modrm & 0x0f)))
5689 return -1;
5690 }
5691 else if ((ir.modrm & 0x0f) - 0x08)
5692 {
5693 if (i386_record_floats (gdbarch, &ir,
5694 I387_ST0_REGNUM (tdep) +
5695 ((ir.modrm & 0x0f) - 0x08)))
5696 return -1;
5697 }
5698 }
5699 break;
5700 case 0xdc:
5701 if ((0x0c == ir.modrm >> 4)
5702 || (0x0d == ir.modrm >> 4)
5703 || (0x0f == ir.modrm >> 4))
5704 {
5705 if ((ir.modrm & 0x0f) <= 7)
5706 {
5707 if (i386_record_floats (gdbarch, &ir,
5708 I387_ST0_REGNUM (tdep) +
5709 (ir.modrm & 0x0f)))
5710 return -1;
5711 }
5712 else
5713 {
5714 if (i386_record_floats (gdbarch, &ir,
5715 I387_ST0_REGNUM (tdep) +
5716 ((ir.modrm & 0x0f) - 0x08)))
5717 return -1;
5718 }
5719 }
5720 break;
5721 case 0xdd:
5722 if (0x0c == ir.modrm >> 4)
5723 {
5724 if (i386_record_floats (gdbarch, &ir,
5725 I387_FTAG_REGNUM (tdep)))
5726 return -1;
5727 }
5728 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5729 {
5730 if ((ir.modrm & 0x0f) <= 7)
5731 {
5732 if (i386_record_floats (gdbarch, &ir,
5733 I387_ST0_REGNUM (tdep) +
5734 (ir.modrm & 0x0f)))
5735 return -1;
5736 }
5737 else
5738 {
5739 if (i386_record_floats (gdbarch, &ir,
5740 I386_SAVE_FPU_REGS))
5741 return -1;
5742 }
5743 }
5744 break;
5745 case 0xde:
5746 if ((0x0c == ir.modrm >> 4)
5747 || (0x0e == ir.modrm >> 4)
5748 || (0x0f == ir.modrm >> 4)
5749 || (0xd9 == ir.modrm))
5750 {
5751 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5752 return -1;
5753 }
5754 break;
5755 case 0xdf:
5756 if (0xe0 == ir.modrm)
5757 {
5758 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5759 return -1;
5760 }
5761 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5762 {
5763 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5764 return -1;
5765 }
5766 break;
5767 }
5768 }
5769 break;
5770 /* string ops */
5771 case 0xa4: /* movsS */
5772 case 0xa5:
5773 case 0xaa: /* stosS */
5774 case 0xab:
5775 case 0x6c: /* insS */
5776 case 0x6d:
5777 regcache_raw_read_unsigned (ir.regcache,
5778 ir.regmap[X86_RECORD_RECX_REGNUM],
5779 &addr);
5780 if (addr)
5781 {
5782 ULONGEST es, ds;
5783
5784 if ((opcode & 1) == 0)
5785 ir.ot = OT_BYTE;
5786 else
5787 ir.ot = ir.dflag + OT_WORD;
5788 regcache_raw_read_unsigned (ir.regcache,
5789 ir.regmap[X86_RECORD_REDI_REGNUM],
5790 &addr);
5791
5792 regcache_raw_read_unsigned (ir.regcache,
5793 ir.regmap[X86_RECORD_ES_REGNUM],
5794 &es);
5795 regcache_raw_read_unsigned (ir.regcache,
5796 ir.regmap[X86_RECORD_DS_REGNUM],
5797 &ds);
5798 if (ir.aflag && (es != ds))
5799 {
5800 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5801 if (record_memory_query)
5802 {
5803 int q;
5804
5805 target_terminal_ours ();
5806 q = yquery (_("\
5807 Process record ignores the memory change of instruction at address %s\n\
5808 because it can't get the value of the segment register.\n\
5809 Do you want to stop the program?"),
5810 paddress (gdbarch, ir.orig_addr));
5811 target_terminal_inferior ();
5812 if (q)
5813 return -1;
5814 }
5815 }
5816 else
5817 {
5818 if (record_arch_list_add_mem (addr, 1 << ir.ot))
5819 return -1;
5820 }
5821
5822 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5823 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5824 if (opcode == 0xa4 || opcode == 0xa5)
5825 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5826 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5827 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5828 }
5829 break;
5830
5831 case 0xa6: /* cmpsS */
5832 case 0xa7:
5833 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5834 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5835 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5836 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5837 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5838 break;
5839
5840 case 0xac: /* lodsS */
5841 case 0xad:
5842 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5843 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5844 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5845 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5846 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5847 break;
5848
5849 case 0xae: /* scasS */
5850 case 0xaf:
5851 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5852 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5853 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5854 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5855 break;
5856
5857 case 0x6e: /* outsS */
5858 case 0x6f:
5859 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5860 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5861 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5862 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5863 break;
5864
5865 case 0xe4: /* port I/O */
5866 case 0xe5:
5867 case 0xec:
5868 case 0xed:
5869 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5870 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5871 break;
5872
5873 case 0xe6:
5874 case 0xe7:
5875 case 0xee:
5876 case 0xef:
5877 break;
5878
5879 /* control */
5880 case 0xc2: /* ret im */
5881 case 0xc3: /* ret */
5882 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5883 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5884 break;
5885
5886 case 0xca: /* lret im */
5887 case 0xcb: /* lret */
5888 case 0xcf: /* iret */
5889 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5890 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5891 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5892 break;
5893
5894 case 0xe8: /* call im */
5895 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5896 ir.dflag = 2;
5897 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5898 return -1;
5899 break;
5900
5901 case 0x9a: /* lcall im */
5902 if (ir.regmap[X86_RECORD_R8_REGNUM])
5903 {
5904 ir.addr -= 1;
5905 goto no_support;
5906 }
5907 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5908 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5909 return -1;
5910 break;
5911
5912 case 0xe9: /* jmp im */
5913 case 0xea: /* ljmp im */
5914 case 0xeb: /* jmp Jb */
5915 case 0x70: /* jcc Jb */
5916 case 0x71:
5917 case 0x72:
5918 case 0x73:
5919 case 0x74:
5920 case 0x75:
5921 case 0x76:
5922 case 0x77:
5923 case 0x78:
5924 case 0x79:
5925 case 0x7a:
5926 case 0x7b:
5927 case 0x7c:
5928 case 0x7d:
5929 case 0x7e:
5930 case 0x7f:
5931 case 0x0f80: /* jcc Jv */
5932 case 0x0f81:
5933 case 0x0f82:
5934 case 0x0f83:
5935 case 0x0f84:
5936 case 0x0f85:
5937 case 0x0f86:
5938 case 0x0f87:
5939 case 0x0f88:
5940 case 0x0f89:
5941 case 0x0f8a:
5942 case 0x0f8b:
5943 case 0x0f8c:
5944 case 0x0f8d:
5945 case 0x0f8e:
5946 case 0x0f8f:
5947 break;
5948
5949 case 0x0f90: /* setcc Gv */
5950 case 0x0f91:
5951 case 0x0f92:
5952 case 0x0f93:
5953 case 0x0f94:
5954 case 0x0f95:
5955 case 0x0f96:
5956 case 0x0f97:
5957 case 0x0f98:
5958 case 0x0f99:
5959 case 0x0f9a:
5960 case 0x0f9b:
5961 case 0x0f9c:
5962 case 0x0f9d:
5963 case 0x0f9e:
5964 case 0x0f9f:
5965 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5966 ir.ot = OT_BYTE;
5967 if (i386_record_modrm (&ir))
5968 return -1;
5969 if (ir.mod == 3)
5970 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5971 : (ir.rm & 0x3));
5972 else
5973 {
5974 if (i386_record_lea_modrm (&ir))
5975 return -1;
5976 }
5977 break;
5978
5979 case 0x0f40: /* cmov Gv, Ev */
5980 case 0x0f41:
5981 case 0x0f42:
5982 case 0x0f43:
5983 case 0x0f44:
5984 case 0x0f45:
5985 case 0x0f46:
5986 case 0x0f47:
5987 case 0x0f48:
5988 case 0x0f49:
5989 case 0x0f4a:
5990 case 0x0f4b:
5991 case 0x0f4c:
5992 case 0x0f4d:
5993 case 0x0f4e:
5994 case 0x0f4f:
5995 if (i386_record_modrm (&ir))
5996 return -1;
5997 ir.reg |= rex_r;
5998 if (ir.dflag == OT_BYTE)
5999 ir.reg &= 0x3;
6000 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
6001 break;
6002
6003 /* flags */
6004 case 0x9c: /* pushf */
6005 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6006 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6007 ir.dflag = 2;
6008 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6009 return -1;
6010 break;
6011
6012 case 0x9d: /* popf */
6013 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6014 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6015 break;
6016
6017 case 0x9e: /* sahf */
6018 if (ir.regmap[X86_RECORD_R8_REGNUM])
6019 {
6020 ir.addr -= 1;
6021 goto no_support;
6022 }
6023 /* FALLTHROUGH */
6024 case 0xf5: /* cmc */
6025 case 0xf8: /* clc */
6026 case 0xf9: /* stc */
6027 case 0xfc: /* cld */
6028 case 0xfd: /* std */
6029 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6030 break;
6031
6032 case 0x9f: /* lahf */
6033 if (ir.regmap[X86_RECORD_R8_REGNUM])
6034 {
6035 ir.addr -= 1;
6036 goto no_support;
6037 }
6038 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6039 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6040 break;
6041
6042 /* bit operations */
6043 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6044 ir.ot = ir.dflag + OT_WORD;
6045 if (i386_record_modrm (&ir))
6046 return -1;
6047 if (ir.reg < 4)
6048 {
6049 ir.addr -= 2;
6050 opcode = opcode << 8 | ir.modrm;
6051 goto no_support;
6052 }
6053 if (ir.reg != 4)
6054 {
6055 if (ir.mod == 3)
6056 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6057 else
6058 {
6059 if (i386_record_lea_modrm (&ir))
6060 return -1;
6061 }
6062 }
6063 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6064 break;
6065
6066 case 0x0fa3: /* bt Gv, Ev */
6067 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6068 break;
6069
6070 case 0x0fab: /* bts */
6071 case 0x0fb3: /* btr */
6072 case 0x0fbb: /* btc */
6073 ir.ot = ir.dflag + OT_WORD;
6074 if (i386_record_modrm (&ir))
6075 return -1;
6076 if (ir.mod == 3)
6077 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6078 else
6079 {
6080 uint64_t addr64;
6081 if (i386_record_lea_modrm_addr (&ir, &addr64))
6082 return -1;
6083 regcache_raw_read_unsigned (ir.regcache,
6084 ir.regmap[ir.reg | rex_r],
6085 &addr);
6086 switch (ir.dflag)
6087 {
6088 case 0:
6089 addr64 += ((int16_t) addr >> 4) << 4;
6090 break;
6091 case 1:
6092 addr64 += ((int32_t) addr >> 5) << 5;
6093 break;
6094 case 2:
6095 addr64 += ((int64_t) addr >> 6) << 6;
6096 break;
6097 }
6098 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
6099 return -1;
6100 if (i386_record_lea_modrm (&ir))
6101 return -1;
6102 }
6103 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6104 break;
6105
6106 case 0x0fbc: /* bsf */
6107 case 0x0fbd: /* bsr */
6108 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6109 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6110 break;
6111
6112 /* bcd */
6113 case 0x27: /* daa */
6114 case 0x2f: /* das */
6115 case 0x37: /* aaa */
6116 case 0x3f: /* aas */
6117 case 0xd4: /* aam */
6118 case 0xd5: /* aad */
6119 if (ir.regmap[X86_RECORD_R8_REGNUM])
6120 {
6121 ir.addr -= 1;
6122 goto no_support;
6123 }
6124 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6125 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6126 break;
6127
6128 /* misc */
6129 case 0x90: /* nop */
6130 if (prefixes & PREFIX_LOCK)
6131 {
6132 ir.addr -= 1;
6133 goto no_support;
6134 }
6135 break;
6136
6137 case 0x9b: /* fwait */
6138 if (target_read_memory (ir.addr, &opcode8, 1))
6139 {
6140 if (record_debug)
6141 printf_unfiltered (_("Process record: error reading memory at "
6142 "addr 0x%s len = 1.\n"),
6143 paddress (gdbarch, ir.addr));
6144 return -1;
6145 }
6146 opcode = (uint32_t) opcode8;
6147 ir.addr++;
6148 goto reswitch;
6149 break;
6150
6151 /* XXX */
6152 case 0xcc: /* int3 */
6153 printf_unfiltered (_("Process record does not support instruction "
6154 "int3.\n"));
6155 ir.addr -= 1;
6156 goto no_support;
6157 break;
6158
6159 /* XXX */
6160 case 0xcd: /* int */
6161 {
6162 int ret;
6163 uint8_t interrupt;
6164 if (target_read_memory (ir.addr, &interrupt, 1))
6165 {
6166 if (record_debug)
6167 printf_unfiltered (_("Process record: error reading memory "
6168 "at addr %s len = 1.\n"),
6169 paddress (gdbarch, ir.addr));
6170 return -1;
6171 }
6172 ir.addr++;
6173 if (interrupt != 0x80
6174 || tdep->i386_intx80_record == NULL)
6175 {
6176 printf_unfiltered (_("Process record does not support "
6177 "instruction int 0x%02x.\n"),
6178 interrupt);
6179 ir.addr -= 2;
6180 goto no_support;
6181 }
6182 ret = tdep->i386_intx80_record (ir.regcache);
6183 if (ret)
6184 return ret;
6185 }
6186 break;
6187
6188 /* XXX */
6189 case 0xce: /* into */
6190 printf_unfiltered (_("Process record does not support "
6191 "instruction into.\n"));
6192 ir.addr -= 1;
6193 goto no_support;
6194 break;
6195
6196 case 0xfa: /* cli */
6197 case 0xfb: /* sti */
6198 break;
6199
6200 case 0x62: /* bound */
6201 printf_unfiltered (_("Process record does not support "
6202 "instruction bound.\n"));
6203 ir.addr -= 1;
6204 goto no_support;
6205 break;
6206
6207 case 0x0fc8: /* bswap reg */
6208 case 0x0fc9:
6209 case 0x0fca:
6210 case 0x0fcb:
6211 case 0x0fcc:
6212 case 0x0fcd:
6213 case 0x0fce:
6214 case 0x0fcf:
6215 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6216 break;
6217
6218 case 0xd6: /* salc */
6219 if (ir.regmap[X86_RECORD_R8_REGNUM])
6220 {
6221 ir.addr -= 1;
6222 goto no_support;
6223 }
6224 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6225 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6226 break;
6227
6228 case 0xe0: /* loopnz */
6229 case 0xe1: /* loopz */
6230 case 0xe2: /* loop */
6231 case 0xe3: /* jecxz */
6232 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6233 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6234 break;
6235
6236 case 0x0f30: /* wrmsr */
6237 printf_unfiltered (_("Process record does not support "
6238 "instruction wrmsr.\n"));
6239 ir.addr -= 2;
6240 goto no_support;
6241 break;
6242
6243 case 0x0f32: /* rdmsr */
6244 printf_unfiltered (_("Process record does not support "
6245 "instruction rdmsr.\n"));
6246 ir.addr -= 2;
6247 goto no_support;
6248 break;
6249
6250 case 0x0f31: /* rdtsc */
6251 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6252 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6253 break;
6254
6255 case 0x0f34: /* sysenter */
6256 {
6257 int ret;
6258 if (ir.regmap[X86_RECORD_R8_REGNUM])
6259 {
6260 ir.addr -= 2;
6261 goto no_support;
6262 }
6263 if (tdep->i386_sysenter_record == NULL)
6264 {
6265 printf_unfiltered (_("Process record does not support "
6266 "instruction sysenter.\n"));
6267 ir.addr -= 2;
6268 goto no_support;
6269 }
6270 ret = tdep->i386_sysenter_record (ir.regcache);
6271 if (ret)
6272 return ret;
6273 }
6274 break;
6275
6276 case 0x0f35: /* sysexit */
6277 printf_unfiltered (_("Process record does not support "
6278 "instruction sysexit.\n"));
6279 ir.addr -= 2;
6280 goto no_support;
6281 break;
6282
6283 case 0x0f05: /* syscall */
6284 {
6285 int ret;
6286 if (tdep->i386_syscall_record == NULL)
6287 {
6288 printf_unfiltered (_("Process record does not support "
6289 "instruction syscall.\n"));
6290 ir.addr -= 2;
6291 goto no_support;
6292 }
6293 ret = tdep->i386_syscall_record (ir.regcache);
6294 if (ret)
6295 return ret;
6296 }
6297 break;
6298
6299 case 0x0f07: /* sysret */
6300 printf_unfiltered (_("Process record does not support "
6301 "instruction sysret.\n"));
6302 ir.addr -= 2;
6303 goto no_support;
6304 break;
6305
6306 case 0x0fa2: /* cpuid */
6307 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6308 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6309 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6310 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6311 break;
6312
6313 case 0xf4: /* hlt */
6314 printf_unfiltered (_("Process record does not support "
6315 "instruction hlt.\n"));
6316 ir.addr -= 1;
6317 goto no_support;
6318 break;
6319
6320 case 0x0f00:
6321 if (i386_record_modrm (&ir))
6322 return -1;
6323 switch (ir.reg)
6324 {
6325 case 0: /* sldt */
6326 case 1: /* str */
6327 if (ir.mod == 3)
6328 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6329 else
6330 {
6331 ir.ot = OT_WORD;
6332 if (i386_record_lea_modrm (&ir))
6333 return -1;
6334 }
6335 break;
6336 case 2: /* lldt */
6337 case 3: /* ltr */
6338 break;
6339 case 4: /* verr */
6340 case 5: /* verw */
6341 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6342 break;
6343 default:
6344 ir.addr -= 3;
6345 opcode = opcode << 8 | ir.modrm;
6346 goto no_support;
6347 break;
6348 }
6349 break;
6350
6351 case 0x0f01:
6352 if (i386_record_modrm (&ir))
6353 return -1;
6354 switch (ir.reg)
6355 {
6356 case 0: /* sgdt */
6357 {
6358 uint64_t addr64;
6359
6360 if (ir.mod == 3)
6361 {
6362 ir.addr -= 3;
6363 opcode = opcode << 8 | ir.modrm;
6364 goto no_support;
6365 }
6366 if (ir.override >= 0)
6367 {
6368 if (record_memory_query)
6369 {
6370 int q;
6371
6372 target_terminal_ours ();
6373 q = yquery (_("\
6374 Process record ignores the memory change of instruction at address %s\n\
6375 because it can't get the value of the segment register.\n\
6376 Do you want to stop the program?"),
6377 paddress (gdbarch, ir.orig_addr));
6378 target_terminal_inferior ();
6379 if (q)
6380 return -1;
6381 }
6382 }
6383 else
6384 {
6385 if (i386_record_lea_modrm_addr (&ir, &addr64))
6386 return -1;
6387 if (record_arch_list_add_mem (addr64, 2))
6388 return -1;
6389 addr64 += 2;
6390 if (ir.regmap[X86_RECORD_R8_REGNUM])
6391 {
6392 if (record_arch_list_add_mem (addr64, 8))
6393 return -1;
6394 }
6395 else
6396 {
6397 if (record_arch_list_add_mem (addr64, 4))
6398 return -1;
6399 }
6400 }
6401 }
6402 break;
6403 case 1:
6404 if (ir.mod == 3)
6405 {
6406 switch (ir.rm)
6407 {
6408 case 0: /* monitor */
6409 break;
6410 case 1: /* mwait */
6411 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6412 break;
6413 default:
6414 ir.addr -= 3;
6415 opcode = opcode << 8 | ir.modrm;
6416 goto no_support;
6417 break;
6418 }
6419 }
6420 else
6421 {
6422 /* sidt */
6423 if (ir.override >= 0)
6424 {
6425 if (record_memory_query)
6426 {
6427 int q;
6428
6429 target_terminal_ours ();
6430 q = yquery (_("\
6431 Process record ignores the memory change of instruction at address %s\n\
6432 because it can't get the value of the segment register.\n\
6433 Do you want to stop the program?"),
6434 paddress (gdbarch, ir.orig_addr));
6435 target_terminal_inferior ();
6436 if (q)
6437 return -1;
6438 }
6439 }
6440 else
6441 {
6442 uint64_t addr64;
6443
6444 if (i386_record_lea_modrm_addr (&ir, &addr64))
6445 return -1;
6446 if (record_arch_list_add_mem (addr64, 2))
6447 return -1;
6448 addr64 += 2;
6449 if (ir.regmap[X86_RECORD_R8_REGNUM])
6450 {
6451 if (record_arch_list_add_mem (addr64, 8))
6452 return -1;
6453 }
6454 else
6455 {
6456 if (record_arch_list_add_mem (addr64, 4))
6457 return -1;
6458 }
6459 }
6460 }
6461 break;
6462 case 2: /* lgdt */
6463 if (ir.mod == 3)
6464 {
6465 /* xgetbv */
6466 if (ir.rm == 0)
6467 {
6468 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6469 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6470 break;
6471 }
6472 /* xsetbv */
6473 else if (ir.rm == 1)
6474 break;
6475 }
6476 case 3: /* lidt */
6477 if (ir.mod == 3)
6478 {
6479 ir.addr -= 3;
6480 opcode = opcode << 8 | ir.modrm;
6481 goto no_support;
6482 }
6483 break;
6484 case 4: /* smsw */
6485 if (ir.mod == 3)
6486 {
6487 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
6488 return -1;
6489 }
6490 else
6491 {
6492 ir.ot = OT_WORD;
6493 if (i386_record_lea_modrm (&ir))
6494 return -1;
6495 }
6496 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6497 break;
6498 case 6: /* lmsw */
6499 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6500 break;
6501 case 7: /* invlpg */
6502 if (ir.mod == 3)
6503 {
6504 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6505 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6506 else
6507 {
6508 ir.addr -= 3;
6509 opcode = opcode << 8 | ir.modrm;
6510 goto no_support;
6511 }
6512 }
6513 else
6514 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6515 break;
6516 default:
6517 ir.addr -= 3;
6518 opcode = opcode << 8 | ir.modrm;
6519 goto no_support;
6520 break;
6521 }
6522 break;
6523
6524 case 0x0f08: /* invd */
6525 case 0x0f09: /* wbinvd */
6526 break;
6527
6528 case 0x63: /* arpl */
6529 if (i386_record_modrm (&ir))
6530 return -1;
6531 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6532 {
6533 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6534 ? (ir.reg | rex_r) : ir.rm);
6535 }
6536 else
6537 {
6538 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6539 if (i386_record_lea_modrm (&ir))
6540 return -1;
6541 }
6542 if (!ir.regmap[X86_RECORD_R8_REGNUM])
6543 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6544 break;
6545
6546 case 0x0f02: /* lar */
6547 case 0x0f03: /* lsl */
6548 if (i386_record_modrm (&ir))
6549 return -1;
6550 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6551 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6552 break;
6553
6554 case 0x0f18:
6555 if (i386_record_modrm (&ir))
6556 return -1;
6557 if (ir.mod == 3 && ir.reg == 3)
6558 {
6559 ir.addr -= 3;
6560 opcode = opcode << 8 | ir.modrm;
6561 goto no_support;
6562 }
6563 break;
6564
6565 case 0x0f19:
6566 case 0x0f1a:
6567 case 0x0f1b:
6568 case 0x0f1c:
6569 case 0x0f1d:
6570 case 0x0f1e:
6571 case 0x0f1f:
6572 /* nop (multi byte) */
6573 break;
6574
6575 case 0x0f20: /* mov reg, crN */
6576 case 0x0f22: /* mov crN, reg */
6577 if (i386_record_modrm (&ir))
6578 return -1;
6579 if ((ir.modrm & 0xc0) != 0xc0)
6580 {
6581 ir.addr -= 3;
6582 opcode = opcode << 8 | ir.modrm;
6583 goto no_support;
6584 }
6585 switch (ir.reg)
6586 {
6587 case 0:
6588 case 2:
6589 case 3:
6590 case 4:
6591 case 8:
6592 if (opcode & 2)
6593 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6594 else
6595 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6596 break;
6597 default:
6598 ir.addr -= 3;
6599 opcode = opcode << 8 | ir.modrm;
6600 goto no_support;
6601 break;
6602 }
6603 break;
6604
6605 case 0x0f21: /* mov reg, drN */
6606 case 0x0f23: /* mov drN, reg */
6607 if (i386_record_modrm (&ir))
6608 return -1;
6609 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6610 || ir.reg == 5 || ir.reg >= 8)
6611 {
6612 ir.addr -= 3;
6613 opcode = opcode << 8 | ir.modrm;
6614 goto no_support;
6615 }
6616 if (opcode & 2)
6617 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6618 else
6619 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6620 break;
6621
6622 case 0x0f06: /* clts */
6623 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6624 break;
6625
6626 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6627
6628 case 0x0f0d: /* 3DNow! prefetch */
6629 break;
6630
6631 case 0x0f0e: /* 3DNow! femms */
6632 case 0x0f77: /* emms */
6633 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6634 goto no_support;
6635 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6636 break;
6637
6638 case 0x0f0f: /* 3DNow! data */
6639 if (i386_record_modrm (&ir))
6640 return -1;
6641 if (target_read_memory (ir.addr, &opcode8, 1))
6642 {
6643 printf_unfiltered (_("Process record: error reading memory at "
6644 "addr %s len = 1.\n"),
6645 paddress (gdbarch, ir.addr));
6646 return -1;
6647 }
6648 ir.addr++;
6649 switch (opcode8)
6650 {
6651 case 0x0c: /* 3DNow! pi2fw */
6652 case 0x0d: /* 3DNow! pi2fd */
6653 case 0x1c: /* 3DNow! pf2iw */
6654 case 0x1d: /* 3DNow! pf2id */
6655 case 0x8a: /* 3DNow! pfnacc */
6656 case 0x8e: /* 3DNow! pfpnacc */
6657 case 0x90: /* 3DNow! pfcmpge */
6658 case 0x94: /* 3DNow! pfmin */
6659 case 0x96: /* 3DNow! pfrcp */
6660 case 0x97: /* 3DNow! pfrsqrt */
6661 case 0x9a: /* 3DNow! pfsub */
6662 case 0x9e: /* 3DNow! pfadd */
6663 case 0xa0: /* 3DNow! pfcmpgt */
6664 case 0xa4: /* 3DNow! pfmax */
6665 case 0xa6: /* 3DNow! pfrcpit1 */
6666 case 0xa7: /* 3DNow! pfrsqit1 */
6667 case 0xaa: /* 3DNow! pfsubr */
6668 case 0xae: /* 3DNow! pfacc */
6669 case 0xb0: /* 3DNow! pfcmpeq */
6670 case 0xb4: /* 3DNow! pfmul */
6671 case 0xb6: /* 3DNow! pfrcpit2 */
6672 case 0xb7: /* 3DNow! pmulhrw */
6673 case 0xbb: /* 3DNow! pswapd */
6674 case 0xbf: /* 3DNow! pavgusb */
6675 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6676 goto no_support_3dnow_data;
6677 record_arch_list_add_reg (ir.regcache, ir.reg);
6678 break;
6679
6680 default:
6681 no_support_3dnow_data:
6682 opcode = (opcode << 8) | opcode8;
6683 goto no_support;
6684 break;
6685 }
6686 break;
6687
6688 case 0x0faa: /* rsm */
6689 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6690 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6691 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6692 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6693 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6694 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6695 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6696 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6697 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6698 break;
6699
6700 case 0x0fae:
6701 if (i386_record_modrm (&ir))
6702 return -1;
6703 switch(ir.reg)
6704 {
6705 case 0: /* fxsave */
6706 {
6707 uint64_t tmpu64;
6708
6709 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6710 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6711 return -1;
6712 if (record_arch_list_add_mem (tmpu64, 512))
6713 return -1;
6714 }
6715 break;
6716
6717 case 1: /* fxrstor */
6718 {
6719 int i;
6720
6721 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6722
6723 for (i = I387_MM0_REGNUM (tdep);
6724 i386_mmx_regnum_p (gdbarch, i); i++)
6725 record_arch_list_add_reg (ir.regcache, i);
6726
6727 for (i = I387_XMM0_REGNUM (tdep);
6728 i386_xmm_regnum_p (gdbarch, i); i++)
6729 record_arch_list_add_reg (ir.regcache, i);
6730
6731 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6732 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6733
6734 for (i = I387_ST0_REGNUM (tdep);
6735 i386_fp_regnum_p (gdbarch, i); i++)
6736 record_arch_list_add_reg (ir.regcache, i);
6737
6738 for (i = I387_FCTRL_REGNUM (tdep);
6739 i386_fpc_regnum_p (gdbarch, i); i++)
6740 record_arch_list_add_reg (ir.regcache, i);
6741 }
6742 break;
6743
6744 case 2: /* ldmxcsr */
6745 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6746 goto no_support;
6747 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6748 break;
6749
6750 case 3: /* stmxcsr */
6751 ir.ot = OT_LONG;
6752 if (i386_record_lea_modrm (&ir))
6753 return -1;
6754 break;
6755
6756 case 5: /* lfence */
6757 case 6: /* mfence */
6758 case 7: /* sfence clflush */
6759 break;
6760
6761 default:
6762 opcode = (opcode << 8) | ir.modrm;
6763 goto no_support;
6764 break;
6765 }
6766 break;
6767
6768 case 0x0fc3: /* movnti */
6769 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6770 if (i386_record_modrm (&ir))
6771 return -1;
6772 if (ir.mod == 3)
6773 goto no_support;
6774 ir.reg |= rex_r;
6775 if (i386_record_lea_modrm (&ir))
6776 return -1;
6777 break;
6778
6779 /* Add prefix to opcode. */
6780 case 0x0f10:
6781 case 0x0f11:
6782 case 0x0f12:
6783 case 0x0f13:
6784 case 0x0f14:
6785 case 0x0f15:
6786 case 0x0f16:
6787 case 0x0f17:
6788 case 0x0f28:
6789 case 0x0f29:
6790 case 0x0f2a:
6791 case 0x0f2b:
6792 case 0x0f2c:
6793 case 0x0f2d:
6794 case 0x0f2e:
6795 case 0x0f2f:
6796 case 0x0f38:
6797 case 0x0f39:
6798 case 0x0f3a:
6799 case 0x0f50:
6800 case 0x0f51:
6801 case 0x0f52:
6802 case 0x0f53:
6803 case 0x0f54:
6804 case 0x0f55:
6805 case 0x0f56:
6806 case 0x0f57:
6807 case 0x0f58:
6808 case 0x0f59:
6809 case 0x0f5a:
6810 case 0x0f5b:
6811 case 0x0f5c:
6812 case 0x0f5d:
6813 case 0x0f5e:
6814 case 0x0f5f:
6815 case 0x0f60:
6816 case 0x0f61:
6817 case 0x0f62:
6818 case 0x0f63:
6819 case 0x0f64:
6820 case 0x0f65:
6821 case 0x0f66:
6822 case 0x0f67:
6823 case 0x0f68:
6824 case 0x0f69:
6825 case 0x0f6a:
6826 case 0x0f6b:
6827 case 0x0f6c:
6828 case 0x0f6d:
6829 case 0x0f6e:
6830 case 0x0f6f:
6831 case 0x0f70:
6832 case 0x0f71:
6833 case 0x0f72:
6834 case 0x0f73:
6835 case 0x0f74:
6836 case 0x0f75:
6837 case 0x0f76:
6838 case 0x0f7c:
6839 case 0x0f7d:
6840 case 0x0f7e:
6841 case 0x0f7f:
6842 case 0x0fb8:
6843 case 0x0fc2:
6844 case 0x0fc4:
6845 case 0x0fc5:
6846 case 0x0fc6:
6847 case 0x0fd0:
6848 case 0x0fd1:
6849 case 0x0fd2:
6850 case 0x0fd3:
6851 case 0x0fd4:
6852 case 0x0fd5:
6853 case 0x0fd6:
6854 case 0x0fd7:
6855 case 0x0fd8:
6856 case 0x0fd9:
6857 case 0x0fda:
6858 case 0x0fdb:
6859 case 0x0fdc:
6860 case 0x0fdd:
6861 case 0x0fde:
6862 case 0x0fdf:
6863 case 0x0fe0:
6864 case 0x0fe1:
6865 case 0x0fe2:
6866 case 0x0fe3:
6867 case 0x0fe4:
6868 case 0x0fe5:
6869 case 0x0fe6:
6870 case 0x0fe7:
6871 case 0x0fe8:
6872 case 0x0fe9:
6873 case 0x0fea:
6874 case 0x0feb:
6875 case 0x0fec:
6876 case 0x0fed:
6877 case 0x0fee:
6878 case 0x0fef:
6879 case 0x0ff0:
6880 case 0x0ff1:
6881 case 0x0ff2:
6882 case 0x0ff3:
6883 case 0x0ff4:
6884 case 0x0ff5:
6885 case 0x0ff6:
6886 case 0x0ff7:
6887 case 0x0ff8:
6888 case 0x0ff9:
6889 case 0x0ffa:
6890 case 0x0ffb:
6891 case 0x0ffc:
6892 case 0x0ffd:
6893 case 0x0ffe:
6894 switch (prefixes)
6895 {
6896 case PREFIX_REPNZ:
6897 opcode |= 0xf20000;
6898 break;
6899 case PREFIX_DATA:
6900 opcode |= 0x660000;
6901 break;
6902 case PREFIX_REPZ:
6903 opcode |= 0xf30000;
6904 break;
6905 }
6906 reswitch_prefix_add:
6907 switch (opcode)
6908 {
6909 case 0x0f38:
6910 case 0x660f38:
6911 case 0xf20f38:
6912 case 0x0f3a:
6913 case 0x660f3a:
6914 if (target_read_memory (ir.addr, &opcode8, 1))
6915 {
6916 printf_unfiltered (_("Process record: error reading memory at "
6917 "addr %s len = 1.\n"),
6918 paddress (gdbarch, ir.addr));
6919 return -1;
6920 }
6921 ir.addr++;
6922 opcode = (uint32_t) opcode8 | opcode << 8;
6923 goto reswitch_prefix_add;
6924 break;
6925
6926 case 0x0f10: /* movups */
6927 case 0x660f10: /* movupd */
6928 case 0xf30f10: /* movss */
6929 case 0xf20f10: /* movsd */
6930 case 0x0f12: /* movlps */
6931 case 0x660f12: /* movlpd */
6932 case 0xf30f12: /* movsldup */
6933 case 0xf20f12: /* movddup */
6934 case 0x0f14: /* unpcklps */
6935 case 0x660f14: /* unpcklpd */
6936 case 0x0f15: /* unpckhps */
6937 case 0x660f15: /* unpckhpd */
6938 case 0x0f16: /* movhps */
6939 case 0x660f16: /* movhpd */
6940 case 0xf30f16: /* movshdup */
6941 case 0x0f28: /* movaps */
6942 case 0x660f28: /* movapd */
6943 case 0x0f2a: /* cvtpi2ps */
6944 case 0x660f2a: /* cvtpi2pd */
6945 case 0xf30f2a: /* cvtsi2ss */
6946 case 0xf20f2a: /* cvtsi2sd */
6947 case 0x0f2c: /* cvttps2pi */
6948 case 0x660f2c: /* cvttpd2pi */
6949 case 0x0f2d: /* cvtps2pi */
6950 case 0x660f2d: /* cvtpd2pi */
6951 case 0x660f3800: /* pshufb */
6952 case 0x660f3801: /* phaddw */
6953 case 0x660f3802: /* phaddd */
6954 case 0x660f3803: /* phaddsw */
6955 case 0x660f3804: /* pmaddubsw */
6956 case 0x660f3805: /* phsubw */
6957 case 0x660f3806: /* phsubd */
6958 case 0x660f3807: /* phsubsw */
6959 case 0x660f3808: /* psignb */
6960 case 0x660f3809: /* psignw */
6961 case 0x660f380a: /* psignd */
6962 case 0x660f380b: /* pmulhrsw */
6963 case 0x660f3810: /* pblendvb */
6964 case 0x660f3814: /* blendvps */
6965 case 0x660f3815: /* blendvpd */
6966 case 0x660f381c: /* pabsb */
6967 case 0x660f381d: /* pabsw */
6968 case 0x660f381e: /* pabsd */
6969 case 0x660f3820: /* pmovsxbw */
6970 case 0x660f3821: /* pmovsxbd */
6971 case 0x660f3822: /* pmovsxbq */
6972 case 0x660f3823: /* pmovsxwd */
6973 case 0x660f3824: /* pmovsxwq */
6974 case 0x660f3825: /* pmovsxdq */
6975 case 0x660f3828: /* pmuldq */
6976 case 0x660f3829: /* pcmpeqq */
6977 case 0x660f382a: /* movntdqa */
6978 case 0x660f3a08: /* roundps */
6979 case 0x660f3a09: /* roundpd */
6980 case 0x660f3a0a: /* roundss */
6981 case 0x660f3a0b: /* roundsd */
6982 case 0x660f3a0c: /* blendps */
6983 case 0x660f3a0d: /* blendpd */
6984 case 0x660f3a0e: /* pblendw */
6985 case 0x660f3a0f: /* palignr */
6986 case 0x660f3a20: /* pinsrb */
6987 case 0x660f3a21: /* insertps */
6988 case 0x660f3a22: /* pinsrd pinsrq */
6989 case 0x660f3a40: /* dpps */
6990 case 0x660f3a41: /* dppd */
6991 case 0x660f3a42: /* mpsadbw */
6992 case 0x660f3a60: /* pcmpestrm */
6993 case 0x660f3a61: /* pcmpestri */
6994 case 0x660f3a62: /* pcmpistrm */
6995 case 0x660f3a63: /* pcmpistri */
6996 case 0x0f51: /* sqrtps */
6997 case 0x660f51: /* sqrtpd */
6998 case 0xf20f51: /* sqrtsd */
6999 case 0xf30f51: /* sqrtss */
7000 case 0x0f52: /* rsqrtps */
7001 case 0xf30f52: /* rsqrtss */
7002 case 0x0f53: /* rcpps */
7003 case 0xf30f53: /* rcpss */
7004 case 0x0f54: /* andps */
7005 case 0x660f54: /* andpd */
7006 case 0x0f55: /* andnps */
7007 case 0x660f55: /* andnpd */
7008 case 0x0f56: /* orps */
7009 case 0x660f56: /* orpd */
7010 case 0x0f57: /* xorps */
7011 case 0x660f57: /* xorpd */
7012 case 0x0f58: /* addps */
7013 case 0x660f58: /* addpd */
7014 case 0xf20f58: /* addsd */
7015 case 0xf30f58: /* addss */
7016 case 0x0f59: /* mulps */
7017 case 0x660f59: /* mulpd */
7018 case 0xf20f59: /* mulsd */
7019 case 0xf30f59: /* mulss */
7020 case 0x0f5a: /* cvtps2pd */
7021 case 0x660f5a: /* cvtpd2ps */
7022 case 0xf20f5a: /* cvtsd2ss */
7023 case 0xf30f5a: /* cvtss2sd */
7024 case 0x0f5b: /* cvtdq2ps */
7025 case 0x660f5b: /* cvtps2dq */
7026 case 0xf30f5b: /* cvttps2dq */
7027 case 0x0f5c: /* subps */
7028 case 0x660f5c: /* subpd */
7029 case 0xf20f5c: /* subsd */
7030 case 0xf30f5c: /* subss */
7031 case 0x0f5d: /* minps */
7032 case 0x660f5d: /* minpd */
7033 case 0xf20f5d: /* minsd */
7034 case 0xf30f5d: /* minss */
7035 case 0x0f5e: /* divps */
7036 case 0x660f5e: /* divpd */
7037 case 0xf20f5e: /* divsd */
7038 case 0xf30f5e: /* divss */
7039 case 0x0f5f: /* maxps */
7040 case 0x660f5f: /* maxpd */
7041 case 0xf20f5f: /* maxsd */
7042 case 0xf30f5f: /* maxss */
7043 case 0x660f60: /* punpcklbw */
7044 case 0x660f61: /* punpcklwd */
7045 case 0x660f62: /* punpckldq */
7046 case 0x660f63: /* packsswb */
7047 case 0x660f64: /* pcmpgtb */
7048 case 0x660f65: /* pcmpgtw */
7049 case 0x660f66: /* pcmpgtd */
7050 case 0x660f67: /* packuswb */
7051 case 0x660f68: /* punpckhbw */
7052 case 0x660f69: /* punpckhwd */
7053 case 0x660f6a: /* punpckhdq */
7054 case 0x660f6b: /* packssdw */
7055 case 0x660f6c: /* punpcklqdq */
7056 case 0x660f6d: /* punpckhqdq */
7057 case 0x660f6e: /* movd */
7058 case 0x660f6f: /* movdqa */
7059 case 0xf30f6f: /* movdqu */
7060 case 0x660f70: /* pshufd */
7061 case 0xf20f70: /* pshuflw */
7062 case 0xf30f70: /* pshufhw */
7063 case 0x660f74: /* pcmpeqb */
7064 case 0x660f75: /* pcmpeqw */
7065 case 0x660f76: /* pcmpeqd */
7066 case 0x660f7c: /* haddpd */
7067 case 0xf20f7c: /* haddps */
7068 case 0x660f7d: /* hsubpd */
7069 case 0xf20f7d: /* hsubps */
7070 case 0xf30f7e: /* movq */
7071 case 0x0fc2: /* cmpps */
7072 case 0x660fc2: /* cmppd */
7073 case 0xf20fc2: /* cmpsd */
7074 case 0xf30fc2: /* cmpss */
7075 case 0x660fc4: /* pinsrw */
7076 case 0x0fc6: /* shufps */
7077 case 0x660fc6: /* shufpd */
7078 case 0x660fd0: /* addsubpd */
7079 case 0xf20fd0: /* addsubps */
7080 case 0x660fd1: /* psrlw */
7081 case 0x660fd2: /* psrld */
7082 case 0x660fd3: /* psrlq */
7083 case 0x660fd4: /* paddq */
7084 case 0x660fd5: /* pmullw */
7085 case 0xf30fd6: /* movq2dq */
7086 case 0x660fd8: /* psubusb */
7087 case 0x660fd9: /* psubusw */
7088 case 0x660fda: /* pminub */
7089 case 0x660fdb: /* pand */
7090 case 0x660fdc: /* paddusb */
7091 case 0x660fdd: /* paddusw */
7092 case 0x660fde: /* pmaxub */
7093 case 0x660fdf: /* pandn */
7094 case 0x660fe0: /* pavgb */
7095 case 0x660fe1: /* psraw */
7096 case 0x660fe2: /* psrad */
7097 case 0x660fe3: /* pavgw */
7098 case 0x660fe4: /* pmulhuw */
7099 case 0x660fe5: /* pmulhw */
7100 case 0x660fe6: /* cvttpd2dq */
7101 case 0xf20fe6: /* cvtpd2dq */
7102 case 0xf30fe6: /* cvtdq2pd */
7103 case 0x660fe8: /* psubsb */
7104 case 0x660fe9: /* psubsw */
7105 case 0x660fea: /* pminsw */
7106 case 0x660feb: /* por */
7107 case 0x660fec: /* paddsb */
7108 case 0x660fed: /* paddsw */
7109 case 0x660fee: /* pmaxsw */
7110 case 0x660fef: /* pxor */
7111 case 0xf20ff0: /* lddqu */
7112 case 0x660ff1: /* psllw */
7113 case 0x660ff2: /* pslld */
7114 case 0x660ff3: /* psllq */
7115 case 0x660ff4: /* pmuludq */
7116 case 0x660ff5: /* pmaddwd */
7117 case 0x660ff6: /* psadbw */
7118 case 0x660ff8: /* psubb */
7119 case 0x660ff9: /* psubw */
7120 case 0x660ffa: /* psubd */
7121 case 0x660ffb: /* psubq */
7122 case 0x660ffc: /* paddb */
7123 case 0x660ffd: /* paddw */
7124 case 0x660ffe: /* paddd */
7125 if (i386_record_modrm (&ir))
7126 return -1;
7127 ir.reg |= rex_r;
7128 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7129 goto no_support;
7130 record_arch_list_add_reg (ir.regcache,
7131 I387_XMM0_REGNUM (tdep) + ir.reg);
7132 if ((opcode & 0xfffffffc) == 0x660f3a60)
7133 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7134 break;
7135
7136 case 0x0f11: /* movups */
7137 case 0x660f11: /* movupd */
7138 case 0xf30f11: /* movss */
7139 case 0xf20f11: /* movsd */
7140 case 0x0f13: /* movlps */
7141 case 0x660f13: /* movlpd */
7142 case 0x0f17: /* movhps */
7143 case 0x660f17: /* movhpd */
7144 case 0x0f29: /* movaps */
7145 case 0x660f29: /* movapd */
7146 case 0x660f3a14: /* pextrb */
7147 case 0x660f3a15: /* pextrw */
7148 case 0x660f3a16: /* pextrd pextrq */
7149 case 0x660f3a17: /* extractps */
7150 case 0x660f7f: /* movdqa */
7151 case 0xf30f7f: /* movdqu */
7152 if (i386_record_modrm (&ir))
7153 return -1;
7154 if (ir.mod == 3)
7155 {
7156 if (opcode == 0x0f13 || opcode == 0x660f13
7157 || opcode == 0x0f17 || opcode == 0x660f17)
7158 goto no_support;
7159 ir.rm |= ir.rex_b;
7160 if (!i386_xmm_regnum_p (gdbarch,
7161 I387_XMM0_REGNUM (tdep) + ir.rm))
7162 goto no_support;
7163 record_arch_list_add_reg (ir.regcache,
7164 I387_XMM0_REGNUM (tdep) + ir.rm);
7165 }
7166 else
7167 {
7168 switch (opcode)
7169 {
7170 case 0x660f3a14:
7171 ir.ot = OT_BYTE;
7172 break;
7173 case 0x660f3a15:
7174 ir.ot = OT_WORD;
7175 break;
7176 case 0x660f3a16:
7177 ir.ot = OT_LONG;
7178 break;
7179 case 0x660f3a17:
7180 ir.ot = OT_QUAD;
7181 break;
7182 default:
7183 ir.ot = OT_DQUAD;
7184 break;
7185 }
7186 if (i386_record_lea_modrm (&ir))
7187 return -1;
7188 }
7189 break;
7190
7191 case 0x0f2b: /* movntps */
7192 case 0x660f2b: /* movntpd */
7193 case 0x0fe7: /* movntq */
7194 case 0x660fe7: /* movntdq */
7195 if (ir.mod == 3)
7196 goto no_support;
7197 if (opcode == 0x0fe7)
7198 ir.ot = OT_QUAD;
7199 else
7200 ir.ot = OT_DQUAD;
7201 if (i386_record_lea_modrm (&ir))
7202 return -1;
7203 break;
7204
7205 case 0xf30f2c: /* cvttss2si */
7206 case 0xf20f2c: /* cvttsd2si */
7207 case 0xf30f2d: /* cvtss2si */
7208 case 0xf20f2d: /* cvtsd2si */
7209 case 0xf20f38f0: /* crc32 */
7210 case 0xf20f38f1: /* crc32 */
7211 case 0x0f50: /* movmskps */
7212 case 0x660f50: /* movmskpd */
7213 case 0x0fc5: /* pextrw */
7214 case 0x660fc5: /* pextrw */
7215 case 0x0fd7: /* pmovmskb */
7216 case 0x660fd7: /* pmovmskb */
7217 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7218 break;
7219
7220 case 0x0f3800: /* pshufb */
7221 case 0x0f3801: /* phaddw */
7222 case 0x0f3802: /* phaddd */
7223 case 0x0f3803: /* phaddsw */
7224 case 0x0f3804: /* pmaddubsw */
7225 case 0x0f3805: /* phsubw */
7226 case 0x0f3806: /* phsubd */
7227 case 0x0f3807: /* phsubsw */
7228 case 0x0f3808: /* psignb */
7229 case 0x0f3809: /* psignw */
7230 case 0x0f380a: /* psignd */
7231 case 0x0f380b: /* pmulhrsw */
7232 case 0x0f381c: /* pabsb */
7233 case 0x0f381d: /* pabsw */
7234 case 0x0f381e: /* pabsd */
7235 case 0x0f382b: /* packusdw */
7236 case 0x0f3830: /* pmovzxbw */
7237 case 0x0f3831: /* pmovzxbd */
7238 case 0x0f3832: /* pmovzxbq */
7239 case 0x0f3833: /* pmovzxwd */
7240 case 0x0f3834: /* pmovzxwq */
7241 case 0x0f3835: /* pmovzxdq */
7242 case 0x0f3837: /* pcmpgtq */
7243 case 0x0f3838: /* pminsb */
7244 case 0x0f3839: /* pminsd */
7245 case 0x0f383a: /* pminuw */
7246 case 0x0f383b: /* pminud */
7247 case 0x0f383c: /* pmaxsb */
7248 case 0x0f383d: /* pmaxsd */
7249 case 0x0f383e: /* pmaxuw */
7250 case 0x0f383f: /* pmaxud */
7251 case 0x0f3840: /* pmulld */
7252 case 0x0f3841: /* phminposuw */
7253 case 0x0f3a0f: /* palignr */
7254 case 0x0f60: /* punpcklbw */
7255 case 0x0f61: /* punpcklwd */
7256 case 0x0f62: /* punpckldq */
7257 case 0x0f63: /* packsswb */
7258 case 0x0f64: /* pcmpgtb */
7259 case 0x0f65: /* pcmpgtw */
7260 case 0x0f66: /* pcmpgtd */
7261 case 0x0f67: /* packuswb */
7262 case 0x0f68: /* punpckhbw */
7263 case 0x0f69: /* punpckhwd */
7264 case 0x0f6a: /* punpckhdq */
7265 case 0x0f6b: /* packssdw */
7266 case 0x0f6e: /* movd */
7267 case 0x0f6f: /* movq */
7268 case 0x0f70: /* pshufw */
7269 case 0x0f74: /* pcmpeqb */
7270 case 0x0f75: /* pcmpeqw */
7271 case 0x0f76: /* pcmpeqd */
7272 case 0x0fc4: /* pinsrw */
7273 case 0x0fd1: /* psrlw */
7274 case 0x0fd2: /* psrld */
7275 case 0x0fd3: /* psrlq */
7276 case 0x0fd4: /* paddq */
7277 case 0x0fd5: /* pmullw */
7278 case 0xf20fd6: /* movdq2q */
7279 case 0x0fd8: /* psubusb */
7280 case 0x0fd9: /* psubusw */
7281 case 0x0fda: /* pminub */
7282 case 0x0fdb: /* pand */
7283 case 0x0fdc: /* paddusb */
7284 case 0x0fdd: /* paddusw */
7285 case 0x0fde: /* pmaxub */
7286 case 0x0fdf: /* pandn */
7287 case 0x0fe0: /* pavgb */
7288 case 0x0fe1: /* psraw */
7289 case 0x0fe2: /* psrad */
7290 case 0x0fe3: /* pavgw */
7291 case 0x0fe4: /* pmulhuw */
7292 case 0x0fe5: /* pmulhw */
7293 case 0x0fe8: /* psubsb */
7294 case 0x0fe9: /* psubsw */
7295 case 0x0fea: /* pminsw */
7296 case 0x0feb: /* por */
7297 case 0x0fec: /* paddsb */
7298 case 0x0fed: /* paddsw */
7299 case 0x0fee: /* pmaxsw */
7300 case 0x0fef: /* pxor */
7301 case 0x0ff1: /* psllw */
7302 case 0x0ff2: /* pslld */
7303 case 0x0ff3: /* psllq */
7304 case 0x0ff4: /* pmuludq */
7305 case 0x0ff5: /* pmaddwd */
7306 case 0x0ff6: /* psadbw */
7307 case 0x0ff8: /* psubb */
7308 case 0x0ff9: /* psubw */
7309 case 0x0ffa: /* psubd */
7310 case 0x0ffb: /* psubq */
7311 case 0x0ffc: /* paddb */
7312 case 0x0ffd: /* paddw */
7313 case 0x0ffe: /* paddd */
7314 if (i386_record_modrm (&ir))
7315 return -1;
7316 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7317 goto no_support;
7318 record_arch_list_add_reg (ir.regcache,
7319 I387_MM0_REGNUM (tdep) + ir.reg);
7320 break;
7321
7322 case 0x0f71: /* psllw */
7323 case 0x0f72: /* pslld */
7324 case 0x0f73: /* psllq */
7325 if (i386_record_modrm (&ir))
7326 return -1;
7327 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7328 goto no_support;
7329 record_arch_list_add_reg (ir.regcache,
7330 I387_MM0_REGNUM (tdep) + ir.rm);
7331 break;
7332
7333 case 0x660f71: /* psllw */
7334 case 0x660f72: /* pslld */
7335 case 0x660f73: /* psllq */
7336 if (i386_record_modrm (&ir))
7337 return -1;
7338 ir.rm |= ir.rex_b;
7339 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7340 goto no_support;
7341 record_arch_list_add_reg (ir.regcache,
7342 I387_XMM0_REGNUM (tdep) + ir.rm);
7343 break;
7344
7345 case 0x0f7e: /* movd */
7346 case 0x660f7e: /* movd */
7347 if (i386_record_modrm (&ir))
7348 return -1;
7349 if (ir.mod == 3)
7350 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7351 else
7352 {
7353 if (ir.dflag == 2)
7354 ir.ot = OT_QUAD;
7355 else
7356 ir.ot = OT_LONG;
7357 if (i386_record_lea_modrm (&ir))
7358 return -1;
7359 }
7360 break;
7361
7362 case 0x0f7f: /* movq */
7363 if (i386_record_modrm (&ir))
7364 return -1;
7365 if (ir.mod == 3)
7366 {
7367 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7368 goto no_support;
7369 record_arch_list_add_reg (ir.regcache,
7370 I387_MM0_REGNUM (tdep) + ir.rm);
7371 }
7372 else
7373 {
7374 ir.ot = OT_QUAD;
7375 if (i386_record_lea_modrm (&ir))
7376 return -1;
7377 }
7378 break;
7379
7380 case 0xf30fb8: /* popcnt */
7381 if (i386_record_modrm (&ir))
7382 return -1;
7383 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7384 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7385 break;
7386
7387 case 0x660fd6: /* movq */
7388 if (i386_record_modrm (&ir))
7389 return -1;
7390 if (ir.mod == 3)
7391 {
7392 ir.rm |= ir.rex_b;
7393 if (!i386_xmm_regnum_p (gdbarch,
7394 I387_XMM0_REGNUM (tdep) + ir.rm))
7395 goto no_support;
7396 record_arch_list_add_reg (ir.regcache,
7397 I387_XMM0_REGNUM (tdep) + ir.rm);
7398 }
7399 else
7400 {
7401 ir.ot = OT_QUAD;
7402 if (i386_record_lea_modrm (&ir))
7403 return -1;
7404 }
7405 break;
7406
7407 case 0x660f3817: /* ptest */
7408 case 0x0f2e: /* ucomiss */
7409 case 0x660f2e: /* ucomisd */
7410 case 0x0f2f: /* comiss */
7411 case 0x660f2f: /* comisd */
7412 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7413 break;
7414
7415 case 0x0ff7: /* maskmovq */
7416 regcache_raw_read_unsigned (ir.regcache,
7417 ir.regmap[X86_RECORD_REDI_REGNUM],
7418 &addr);
7419 if (record_arch_list_add_mem (addr, 64))
7420 return -1;
7421 break;
7422
7423 case 0x660ff7: /* maskmovdqu */
7424 regcache_raw_read_unsigned (ir.regcache,
7425 ir.regmap[X86_RECORD_REDI_REGNUM],
7426 &addr);
7427 if (record_arch_list_add_mem (addr, 128))
7428 return -1;
7429 break;
7430
7431 default:
7432 goto no_support;
7433 break;
7434 }
7435 break;
7436
7437 default:
7438 goto no_support;
7439 break;
7440 }
7441
7442 /* In the future, maybe still need to deal with need_dasm. */
7443 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7444 if (record_arch_list_add_end ())
7445 return -1;
7446
7447 return 0;
7448
7449 no_support:
7450 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7451 "at address %s.\n"),
7452 (unsigned int) (opcode),
7453 paddress (gdbarch, ir.orig_addr));
7454 return -1;
7455 }
7456
7457 static const int i386_record_regmap[] =
7458 {
7459 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7460 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7461 0, 0, 0, 0, 0, 0, 0, 0,
7462 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7463 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7464 };
7465
7466 /* Check that the given address appears suitable for a fast
7467 tracepoint, which on x86-64 means that we need an instruction of at
7468 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7469 jump and not have to worry about program jumps to an address in the
7470 middle of the tracepoint jump. On x86, it may be possible to use
7471 4-byte jumps with a 2-byte offset to a trampoline located in the
7472 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7473 of instruction to replace, and 0 if not, plus an explanatory
7474 string. */
7475
7476 static int
7477 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7478 CORE_ADDR addr, int *isize, char **msg)
7479 {
7480 int len, jumplen;
7481 static struct ui_file *gdb_null = NULL;
7482
7483 /* Ask the target for the minimum instruction length supported. */
7484 jumplen = target_get_min_fast_tracepoint_insn_len ();
7485
7486 if (jumplen < 0)
7487 {
7488 /* If the target does not support the get_min_fast_tracepoint_insn_len
7489 operation, assume that fast tracepoints will always be implemented
7490 using 4-byte relative jumps on both x86 and x86-64. */
7491 jumplen = 5;
7492 }
7493 else if (jumplen == 0)
7494 {
7495 /* If the target does support get_min_fast_tracepoint_insn_len but
7496 returns zero, then the IPA has not loaded yet. In this case,
7497 we optimistically assume that truncated 2-byte relative jumps
7498 will be available on x86, and compensate later if this assumption
7499 turns out to be incorrect. On x86-64 architectures, 4-byte relative
7500 jumps will always be used. */
7501 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
7502 }
7503
7504 /* Dummy file descriptor for the disassembler. */
7505 if (!gdb_null)
7506 gdb_null = ui_file_new ();
7507
7508 /* Check for fit. */
7509 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
7510 if (isize)
7511 *isize = len;
7512
7513 if (len < jumplen)
7514 {
7515 /* Return a bit of target-specific detail to add to the caller's
7516 generic failure message. */
7517 if (msg)
7518 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7519 "need at least %d bytes for the jump"),
7520 len, jumplen);
7521 return 0;
7522 }
7523 else
7524 {
7525 if (msg)
7526 *msg = NULL;
7527 return 1;
7528 }
7529 }
7530
7531 static int
7532 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7533 struct tdesc_arch_data *tdesc_data)
7534 {
7535 const struct target_desc *tdesc = tdep->tdesc;
7536 const struct tdesc_feature *feature_core;
7537 const struct tdesc_feature *feature_sse, *feature_avx;
7538 int i, num_regs, valid_p;
7539
7540 if (! tdesc_has_registers (tdesc))
7541 return 0;
7542
7543 /* Get core registers. */
7544 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
7545 if (feature_core == NULL)
7546 return 0;
7547
7548 /* Get SSE registers. */
7549 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
7550
7551 /* Try AVX registers. */
7552 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7553
7554 valid_p = 1;
7555
7556 /* The XCR0 bits. */
7557 if (feature_avx)
7558 {
7559 /* AVX register description requires SSE register description. */
7560 if (!feature_sse)
7561 return 0;
7562
7563 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7564
7565 /* It may have been set by OSABI initialization function. */
7566 if (tdep->num_ymm_regs == 0)
7567 {
7568 tdep->ymmh_register_names = i386_ymmh_names;
7569 tdep->num_ymm_regs = 8;
7570 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7571 }
7572
7573 for (i = 0; i < tdep->num_ymm_regs; i++)
7574 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7575 tdep->ymm0h_regnum + i,
7576 tdep->ymmh_register_names[i]);
7577 }
7578 else if (feature_sse)
7579 tdep->xcr0 = I386_XSTATE_SSE_MASK;
7580 else
7581 {
7582 tdep->xcr0 = I386_XSTATE_X87_MASK;
7583 tdep->num_xmm_regs = 0;
7584 }
7585
7586 num_regs = tdep->num_core_regs;
7587 for (i = 0; i < num_regs; i++)
7588 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7589 tdep->register_names[i]);
7590
7591 if (feature_sse)
7592 {
7593 /* Need to include %mxcsr, so add one. */
7594 num_regs += tdep->num_xmm_regs + 1;
7595 for (; i < num_regs; i++)
7596 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7597 tdep->register_names[i]);
7598 }
7599
7600 return valid_p;
7601 }
7602
7603 \f
7604 static struct gdbarch *
7605 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7606 {
7607 struct gdbarch_tdep *tdep;
7608 struct gdbarch *gdbarch;
7609 struct tdesc_arch_data *tdesc_data;
7610 const struct target_desc *tdesc;
7611 int mm0_regnum;
7612 int ymm0_regnum;
7613
7614 /* If there is already a candidate, use it. */
7615 arches = gdbarch_list_lookup_by_info (arches, &info);
7616 if (arches != NULL)
7617 return arches->gdbarch;
7618
7619 /* Allocate space for the new architecture. */
7620 tdep = XCALLOC (1, struct gdbarch_tdep);
7621 gdbarch = gdbarch_alloc (&info, tdep);
7622
7623 /* General-purpose registers. */
7624 tdep->gregset = NULL;
7625 tdep->gregset_reg_offset = NULL;
7626 tdep->gregset_num_regs = I386_NUM_GREGS;
7627 tdep->sizeof_gregset = 0;
7628
7629 /* Floating-point registers. */
7630 tdep->fpregset = NULL;
7631 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7632
7633 tdep->xstateregset = NULL;
7634
7635 /* The default settings include the FPU registers, the MMX registers
7636 and the SSE registers. This can be overridden for a specific ABI
7637 by adjusting the members `st0_regnum', `mm0_regnum' and
7638 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
7639 will show up in the output of "info all-registers". */
7640
7641 tdep->st0_regnum = I386_ST0_REGNUM;
7642
7643 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7644 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7645
7646 tdep->jb_pc_offset = -1;
7647 tdep->struct_return = pcc_struct_return;
7648 tdep->sigtramp_start = 0;
7649 tdep->sigtramp_end = 0;
7650 tdep->sigtramp_p = i386_sigtramp_p;
7651 tdep->sigcontext_addr = NULL;
7652 tdep->sc_reg_offset = NULL;
7653 tdep->sc_pc_offset = -1;
7654 tdep->sc_sp_offset = -1;
7655
7656 tdep->xsave_xcr0_offset = -1;
7657
7658 tdep->record_regmap = i386_record_regmap;
7659
7660 set_gdbarch_long_long_align_bit (gdbarch, 32);
7661
7662 /* The format used for `long double' on almost all i386 targets is
7663 the i387 extended floating-point format. In fact, of all targets
7664 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7665 on having a `long double' that's not `long' at all. */
7666 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7667
7668 /* Although the i387 extended floating-point has only 80 significant
7669 bits, a `long double' actually takes up 96, probably to enforce
7670 alignment. */
7671 set_gdbarch_long_double_bit (gdbarch, 96);
7672
7673 /* Register numbers of various important registers. */
7674 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7675 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7676 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7677 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7678
7679 /* NOTE: kettenis/20040418: GCC does have two possible register
7680 numbering schemes on the i386: dbx and SVR4. These schemes
7681 differ in how they number %ebp, %esp, %eflags, and the
7682 floating-point registers, and are implemented by the arrays
7683 dbx_register_map[] and svr4_dbx_register_map in
7684 gcc/config/i386.c. GCC also defines a third numbering scheme in
7685 gcc/config/i386.c, which it designates as the "default" register
7686 map used in 64bit mode. This last register numbering scheme is
7687 implemented in dbx64_register_map, and is used for AMD64; see
7688 amd64-tdep.c.
7689
7690 Currently, each GCC i386 target always uses the same register
7691 numbering scheme across all its supported debugging formats
7692 i.e. SDB (COFF), stabs and DWARF 2. This is because
7693 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7694 DBX_REGISTER_NUMBER macro which is defined by each target's
7695 respective config header in a manner independent of the requested
7696 output debugging format.
7697
7698 This does not match the arrangement below, which presumes that
7699 the SDB and stabs numbering schemes differ from the DWARF and
7700 DWARF 2 ones. The reason for this arrangement is that it is
7701 likely to get the numbering scheme for the target's
7702 default/native debug format right. For targets where GCC is the
7703 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7704 targets where the native toolchain uses a different numbering
7705 scheme for a particular debug format (stabs-in-ELF on Solaris)
7706 the defaults below will have to be overridden, like
7707 i386_elf_init_abi() does. */
7708
7709 /* Use the dbx register numbering scheme for stabs and COFF. */
7710 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7711 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7712
7713 /* Use the SVR4 register numbering scheme for DWARF 2. */
7714 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7715
7716 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7717 be in use on any of the supported i386 targets. */
7718
7719 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7720
7721 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7722
7723 /* Call dummy code. */
7724 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
7725 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7726 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7727 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7728
7729 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7730 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7731 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7732
7733 set_gdbarch_return_value (gdbarch, i386_return_value);
7734
7735 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7736
7737 /* Stack grows downward. */
7738 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7739
7740 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7741 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7742 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7743
7744 set_gdbarch_frame_args_skip (gdbarch, 8);
7745
7746 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7747
7748 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7749
7750 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7751
7752 /* Add the i386 register groups. */
7753 i386_add_reggroups (gdbarch);
7754 tdep->register_reggroup_p = i386_register_reggroup_p;
7755
7756 /* Helper for function argument information. */
7757 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7758
7759 /* Hook the function epilogue frame unwinder. This unwinder is
7760 appended to the list first, so that it supercedes the DWARF
7761 unwinder in function epilogues (where the DWARF unwinder
7762 currently fails). */
7763 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7764
7765 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7766 to the list before the prologue-based unwinders, so that DWARF
7767 CFI info will be used if it is available. */
7768 dwarf2_append_unwinders (gdbarch);
7769
7770 frame_base_set_default (gdbarch, &i386_frame_base);
7771
7772 /* Pseudo registers may be changed by amd64_init_abi. */
7773 set_gdbarch_pseudo_register_read_value (gdbarch,
7774 i386_pseudo_register_read_value);
7775 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7776
7777 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7778 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7779
7780 /* Override the normal target description method to make the AVX
7781 upper halves anonymous. */
7782 set_gdbarch_register_name (gdbarch, i386_register_name);
7783
7784 /* Even though the default ABI only includes general-purpose registers,
7785 floating-point registers and the SSE registers, we have to leave a
7786 gap for the upper AVX registers. */
7787 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
7788
7789 /* Get the x86 target description from INFO. */
7790 tdesc = info.target_desc;
7791 if (! tdesc_has_registers (tdesc))
7792 tdesc = tdesc_i386;
7793 tdep->tdesc = tdesc;
7794
7795 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7796 tdep->register_names = i386_register_names;
7797
7798 /* No upper YMM registers. */
7799 tdep->ymmh_register_names = NULL;
7800 tdep->ymm0h_regnum = -1;
7801
7802 tdep->num_byte_regs = 8;
7803 tdep->num_word_regs = 8;
7804 tdep->num_dword_regs = 0;
7805 tdep->num_mmx_regs = 8;
7806 tdep->num_ymm_regs = 0;
7807
7808 tdesc_data = tdesc_data_alloc ();
7809
7810 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7811
7812 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
7813
7814 /* Hook in ABI-specific overrides, if they have been registered. */
7815 info.tdep_info = (void *) tdesc_data;
7816 gdbarch_init_osabi (info, gdbarch);
7817
7818 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7819 {
7820 tdesc_data_cleanup (tdesc_data);
7821 xfree (tdep);
7822 gdbarch_free (gdbarch);
7823 return NULL;
7824 }
7825
7826 /* Wire in pseudo registers. Number of pseudo registers may be
7827 changed. */
7828 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7829 + tdep->num_word_regs
7830 + tdep->num_dword_regs
7831 + tdep->num_mmx_regs
7832 + tdep->num_ymm_regs));
7833
7834 /* Target description may be changed. */
7835 tdesc = tdep->tdesc;
7836
7837 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7838
7839 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7840 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7841
7842 /* Make %al the first pseudo-register. */
7843 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7844 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7845
7846 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
7847 if (tdep->num_dword_regs)
7848 {
7849 /* Support dword pseudo-register if it hasn't been disabled. */
7850 tdep->eax_regnum = ymm0_regnum;
7851 ymm0_regnum += tdep->num_dword_regs;
7852 }
7853 else
7854 tdep->eax_regnum = -1;
7855
7856 mm0_regnum = ymm0_regnum;
7857 if (tdep->num_ymm_regs)
7858 {
7859 /* Support YMM pseudo-register if it is available. */
7860 tdep->ymm0_regnum = ymm0_regnum;
7861 mm0_regnum += tdep->num_ymm_regs;
7862 }
7863 else
7864 tdep->ymm0_regnum = -1;
7865
7866 if (tdep->num_mmx_regs != 0)
7867 {
7868 /* Support MMX pseudo-register if MMX hasn't been disabled. */
7869 tdep->mm0_regnum = mm0_regnum;
7870 }
7871 else
7872 tdep->mm0_regnum = -1;
7873
7874 /* Hook in the legacy prologue-based unwinders last (fallback). */
7875 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
7876 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7877 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
7878
7879 /* If we have a register mapping, enable the generic core file
7880 support, unless it has already been enabled. */
7881 if (tdep->gregset_reg_offset
7882 && !gdbarch_regset_from_core_section_p (gdbarch))
7883 set_gdbarch_regset_from_core_section (gdbarch,
7884 i386_regset_from_core_section);
7885
7886 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7887 i386_skip_permanent_breakpoint);
7888
7889 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7890 i386_fast_tracepoint_valid_at);
7891
7892 return gdbarch;
7893 }
7894
7895 static enum gdb_osabi
7896 i386_coff_osabi_sniffer (bfd *abfd)
7897 {
7898 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7899 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
7900 return GDB_OSABI_GO32;
7901
7902 return GDB_OSABI_UNKNOWN;
7903 }
7904 \f
7905
7906 /* Provide a prototype to silence -Wmissing-prototypes. */
7907 void _initialize_i386_tdep (void);
7908
7909 void
7910 _initialize_i386_tdep (void)
7911 {
7912 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7913
7914 /* Add the variable that controls the disassembly flavor. */
7915 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7916 &disassembly_flavor, _("\
7917 Set the disassembly flavor."), _("\
7918 Show the disassembly flavor."), _("\
7919 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7920 NULL,
7921 NULL, /* FIXME: i18n: */
7922 &setlist, &showlist);
7923
7924 /* Add the variable that controls the convention for returning
7925 structs. */
7926 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7927 &struct_convention, _("\
7928 Set the convention for returning small structs."), _("\
7929 Show the convention for returning small structs."), _("\
7930 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7931 is \"default\"."),
7932 NULL,
7933 NULL, /* FIXME: i18n: */
7934 &setlist, &showlist);
7935
7936 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7937 i386_coff_osabi_sniffer);
7938
7939 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
7940 i386_svr4_init_abi);
7941 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
7942 i386_go32_init_abi);
7943
7944 /* Initialize the i386-specific register groups. */
7945 i386_init_reggroups ();
7946
7947 /* Initialize the standard target descriptions. */
7948 initialize_tdesc_i386 ();
7949 initialize_tdesc_i386_mmx ();
7950 initialize_tdesc_i386_avx ();
7951
7952 /* Tell remote stub that we support XML target description. */
7953 register_remote_support_xml ("i386");
7954 }