]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/i386-tdep.c
Support the fs_base and gs_base registers on i386.
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "target-float.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "common/x86-xstate.h"
50 #include "x86-tdep.h"
51
52 #include "record.h"
53 #include "record-full.h"
54 #include "target-descriptions.h"
55 #include "arch/i386.h"
56
57 #include "ax.h"
58 #include "ax-gdb.h"
59
60 #include "stap-probe.h"
61 #include "user-regs.h"
62 #include "cli/cli-utils.h"
63 #include "expression.h"
64 #include "parser-defs.h"
65 #include <ctype.h>
66 #include <algorithm>
67
68 /* Register names. */
69
70 static const char *i386_register_names[] =
71 {
72 "eax", "ecx", "edx", "ebx",
73 "esp", "ebp", "esi", "edi",
74 "eip", "eflags", "cs", "ss",
75 "ds", "es", "fs", "gs",
76 "st0", "st1", "st2", "st3",
77 "st4", "st5", "st6", "st7",
78 "fctrl", "fstat", "ftag", "fiseg",
79 "fioff", "foseg", "fooff", "fop",
80 "xmm0", "xmm1", "xmm2", "xmm3",
81 "xmm4", "xmm5", "xmm6", "xmm7",
82 "mxcsr"
83 };
84
85 static const char *i386_zmm_names[] =
86 {
87 "zmm0", "zmm1", "zmm2", "zmm3",
88 "zmm4", "zmm5", "zmm6", "zmm7"
89 };
90
91 static const char *i386_zmmh_names[] =
92 {
93 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
94 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
95 };
96
97 static const char *i386_k_names[] =
98 {
99 "k0", "k1", "k2", "k3",
100 "k4", "k5", "k6", "k7"
101 };
102
103 static const char *i386_ymm_names[] =
104 {
105 "ymm0", "ymm1", "ymm2", "ymm3",
106 "ymm4", "ymm5", "ymm6", "ymm7",
107 };
108
109 static const char *i386_ymmh_names[] =
110 {
111 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
112 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
113 };
114
115 static const char *i386_mpx_names[] =
116 {
117 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
118 };
119
120 static const char* i386_pkeys_names[] =
121 {
122 "pkru"
123 };
124
125 /* Register names for MPX pseudo-registers. */
126
127 static const char *i386_bnd_names[] =
128 {
129 "bnd0", "bnd1", "bnd2", "bnd3"
130 };
131
132 /* Register names for MMX pseudo-registers. */
133
134 static const char *i386_mmx_names[] =
135 {
136 "mm0", "mm1", "mm2", "mm3",
137 "mm4", "mm5", "mm6", "mm7"
138 };
139
140 /* Register names for byte pseudo-registers. */
141
142 static const char *i386_byte_names[] =
143 {
144 "al", "cl", "dl", "bl",
145 "ah", "ch", "dh", "bh"
146 };
147
148 /* Register names for word pseudo-registers. */
149
150 static const char *i386_word_names[] =
151 {
152 "ax", "cx", "dx", "bx",
153 "", "bp", "si", "di"
154 };
155
156 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
157 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
158 we have 16 upper ZMM regs that have to be handled differently. */
159
160 const int num_lower_zmm_regs = 16;
161
162 /* MMX register? */
163
164 static int
165 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
166 {
167 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
168 int mm0_regnum = tdep->mm0_regnum;
169
170 if (mm0_regnum < 0)
171 return 0;
172
173 regnum -= mm0_regnum;
174 return regnum >= 0 && regnum < tdep->num_mmx_regs;
175 }
176
177 /* Byte register? */
178
179 int
180 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
181 {
182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
183
184 regnum -= tdep->al_regnum;
185 return regnum >= 0 && regnum < tdep->num_byte_regs;
186 }
187
188 /* Word register? */
189
190 int
191 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
192 {
193 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
194
195 regnum -= tdep->ax_regnum;
196 return regnum >= 0 && regnum < tdep->num_word_regs;
197 }
198
199 /* Dword register? */
200
201 int
202 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
203 {
204 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
205 int eax_regnum = tdep->eax_regnum;
206
207 if (eax_regnum < 0)
208 return 0;
209
210 regnum -= eax_regnum;
211 return regnum >= 0 && regnum < tdep->num_dword_regs;
212 }
213
214 /* AVX512 register? */
215
216 int
217 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
218 {
219 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
220 int zmm0h_regnum = tdep->zmm0h_regnum;
221
222 if (zmm0h_regnum < 0)
223 return 0;
224
225 regnum -= zmm0h_regnum;
226 return regnum >= 0 && regnum < tdep->num_zmm_regs;
227 }
228
229 int
230 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
231 {
232 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
233 int zmm0_regnum = tdep->zmm0_regnum;
234
235 if (zmm0_regnum < 0)
236 return 0;
237
238 regnum -= zmm0_regnum;
239 return regnum >= 0 && regnum < tdep->num_zmm_regs;
240 }
241
242 int
243 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
244 {
245 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
246 int k0_regnum = tdep->k0_regnum;
247
248 if (k0_regnum < 0)
249 return 0;
250
251 regnum -= k0_regnum;
252 return regnum >= 0 && regnum < I387_NUM_K_REGS;
253 }
254
255 static int
256 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
257 {
258 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
259 int ymm0h_regnum = tdep->ymm0h_regnum;
260
261 if (ymm0h_regnum < 0)
262 return 0;
263
264 regnum -= ymm0h_regnum;
265 return regnum >= 0 && regnum < tdep->num_ymm_regs;
266 }
267
268 /* AVX register? */
269
270 int
271 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
272 {
273 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
274 int ymm0_regnum = tdep->ymm0_regnum;
275
276 if (ymm0_regnum < 0)
277 return 0;
278
279 regnum -= ymm0_regnum;
280 return regnum >= 0 && regnum < tdep->num_ymm_regs;
281 }
282
283 static int
284 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
285 {
286 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
287 int ymm16h_regnum = tdep->ymm16h_regnum;
288
289 if (ymm16h_regnum < 0)
290 return 0;
291
292 regnum -= ymm16h_regnum;
293 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
294 }
295
296 int
297 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
298 {
299 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
300 int ymm16_regnum = tdep->ymm16_regnum;
301
302 if (ymm16_regnum < 0)
303 return 0;
304
305 regnum -= ymm16_regnum;
306 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
307 }
308
309 /* BND register? */
310
311 int
312 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
313 {
314 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
315 int bnd0_regnum = tdep->bnd0_regnum;
316
317 if (bnd0_regnum < 0)
318 return 0;
319
320 regnum -= bnd0_regnum;
321 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
322 }
323
324 /* SSE register? */
325
326 int
327 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
328 {
329 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
330 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
331
332 if (num_xmm_regs == 0)
333 return 0;
334
335 regnum -= I387_XMM0_REGNUM (tdep);
336 return regnum >= 0 && regnum < num_xmm_regs;
337 }
338
339 /* XMM_512 register? */
340
341 int
342 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
343 {
344 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
345 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
346
347 if (num_xmm_avx512_regs == 0)
348 return 0;
349
350 regnum -= I387_XMM16_REGNUM (tdep);
351 return regnum >= 0 && regnum < num_xmm_avx512_regs;
352 }
353
354 static int
355 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
356 {
357 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
358
359 if (I387_NUM_XMM_REGS (tdep) == 0)
360 return 0;
361
362 return (regnum == I387_MXCSR_REGNUM (tdep));
363 }
364
365 /* FP register? */
366
367 int
368 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
369 {
370 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
371
372 if (I387_ST0_REGNUM (tdep) < 0)
373 return 0;
374
375 return (I387_ST0_REGNUM (tdep) <= regnum
376 && regnum < I387_FCTRL_REGNUM (tdep));
377 }
378
379 int
380 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
381 {
382 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
383
384 if (I387_ST0_REGNUM (tdep) < 0)
385 return 0;
386
387 return (I387_FCTRL_REGNUM (tdep) <= regnum
388 && regnum < I387_XMM0_REGNUM (tdep));
389 }
390
391 /* BNDr (raw) register? */
392
393 static int
394 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
395 {
396 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
397
398 if (I387_BND0R_REGNUM (tdep) < 0)
399 return 0;
400
401 regnum -= tdep->bnd0r_regnum;
402 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
403 }
404
405 /* BND control register? */
406
407 static int
408 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
409 {
410 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
411
412 if (I387_BNDCFGU_REGNUM (tdep) < 0)
413 return 0;
414
415 regnum -= I387_BNDCFGU_REGNUM (tdep);
416 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
417 }
418
419 /* PKRU register? */
420
421 bool
422 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
423 {
424 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
425 int pkru_regnum = tdep->pkru_regnum;
426
427 if (pkru_regnum < 0)
428 return false;
429
430 regnum -= pkru_regnum;
431 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
432 }
433
434 /* Return the name of register REGNUM, or the empty string if it is
435 an anonymous register. */
436
437 static const char *
438 i386_register_name (struct gdbarch *gdbarch, int regnum)
439 {
440 /* Hide the upper YMM registers. */
441 if (i386_ymmh_regnum_p (gdbarch, regnum))
442 return "";
443
444 /* Hide the upper YMM16-31 registers. */
445 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
446 return "";
447
448 /* Hide the upper ZMM registers. */
449 if (i386_zmmh_regnum_p (gdbarch, regnum))
450 return "";
451
452 return tdesc_register_name (gdbarch, regnum);
453 }
454
455 /* Return the name of register REGNUM. */
456
457 const char *
458 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
459 {
460 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
461 if (i386_bnd_regnum_p (gdbarch, regnum))
462 return i386_bnd_names[regnum - tdep->bnd0_regnum];
463 if (i386_mmx_regnum_p (gdbarch, regnum))
464 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
465 else if (i386_ymm_regnum_p (gdbarch, regnum))
466 return i386_ymm_names[regnum - tdep->ymm0_regnum];
467 else if (i386_zmm_regnum_p (gdbarch, regnum))
468 return i386_zmm_names[regnum - tdep->zmm0_regnum];
469 else if (i386_byte_regnum_p (gdbarch, regnum))
470 return i386_byte_names[regnum - tdep->al_regnum];
471 else if (i386_word_regnum_p (gdbarch, regnum))
472 return i386_word_names[regnum - tdep->ax_regnum];
473
474 internal_error (__FILE__, __LINE__, _("invalid regnum"));
475 }
476
477 /* Convert a dbx register number REG to the appropriate register
478 number used by GDB. */
479
480 static int
481 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
482 {
483 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
484
485 /* This implements what GCC calls the "default" register map
486 (dbx_register_map[]). */
487
488 if (reg >= 0 && reg <= 7)
489 {
490 /* General-purpose registers. The debug info calls %ebp
491 register 4, and %esp register 5. */
492 if (reg == 4)
493 return 5;
494 else if (reg == 5)
495 return 4;
496 else return reg;
497 }
498 else if (reg >= 12 && reg <= 19)
499 {
500 /* Floating-point registers. */
501 return reg - 12 + I387_ST0_REGNUM (tdep);
502 }
503 else if (reg >= 21 && reg <= 28)
504 {
505 /* SSE registers. */
506 int ymm0_regnum = tdep->ymm0_regnum;
507
508 if (ymm0_regnum >= 0
509 && i386_xmm_regnum_p (gdbarch, reg))
510 return reg - 21 + ymm0_regnum;
511 else
512 return reg - 21 + I387_XMM0_REGNUM (tdep);
513 }
514 else if (reg >= 29 && reg <= 36)
515 {
516 /* MMX registers. */
517 return reg - 29 + I387_MM0_REGNUM (tdep);
518 }
519
520 /* This will hopefully provoke a warning. */
521 return gdbarch_num_cooked_regs (gdbarch);
522 }
523
524 /* Convert SVR4 DWARF register number REG to the appropriate register number
525 used by GDB. */
526
527 static int
528 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
529 {
530 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
531
532 /* This implements the GCC register map that tries to be compatible
533 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
534
535 /* The SVR4 register numbering includes %eip and %eflags, and
536 numbers the floating point registers differently. */
537 if (reg >= 0 && reg <= 9)
538 {
539 /* General-purpose registers. */
540 return reg;
541 }
542 else if (reg >= 11 && reg <= 18)
543 {
544 /* Floating-point registers. */
545 return reg - 11 + I387_ST0_REGNUM (tdep);
546 }
547 else if (reg >= 21 && reg <= 36)
548 {
549 /* The SSE and MMX registers have the same numbers as with dbx. */
550 return i386_dbx_reg_to_regnum (gdbarch, reg);
551 }
552
553 switch (reg)
554 {
555 case 37: return I387_FCTRL_REGNUM (tdep);
556 case 38: return I387_FSTAT_REGNUM (tdep);
557 case 39: return I387_MXCSR_REGNUM (tdep);
558 case 40: return I386_ES_REGNUM;
559 case 41: return I386_CS_REGNUM;
560 case 42: return I386_SS_REGNUM;
561 case 43: return I386_DS_REGNUM;
562 case 44: return I386_FS_REGNUM;
563 case 45: return I386_GS_REGNUM;
564 }
565
566 return -1;
567 }
568
569 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
570 num_regs + num_pseudo_regs for other debug formats. */
571
572 int
573 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
574 {
575 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
576
577 if (regnum == -1)
578 return gdbarch_num_cooked_regs (gdbarch);
579 return regnum;
580 }
581
582 \f
583
584 /* This is the variable that is set with "set disassembly-flavor", and
585 its legitimate values. */
586 static const char att_flavor[] = "att";
587 static const char intel_flavor[] = "intel";
588 static const char *const valid_flavors[] =
589 {
590 att_flavor,
591 intel_flavor,
592 NULL
593 };
594 static const char *disassembly_flavor = att_flavor;
595 \f
596
597 /* Use the program counter to determine the contents and size of a
598 breakpoint instruction. Return a pointer to a string of bytes that
599 encode a breakpoint instruction, store the length of the string in
600 *LEN and optionally adjust *PC to point to the correct memory
601 location for inserting the breakpoint.
602
603 On the i386 we have a single breakpoint that fits in a single byte
604 and can be inserted anywhere.
605
606 This function is 64-bit safe. */
607
608 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
609
610 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
611
612 \f
613 /* Displaced instruction handling. */
614
615 /* Skip the legacy instruction prefixes in INSN.
616 Not all prefixes are valid for any particular insn
617 but we needn't care, the insn will fault if it's invalid.
618 The result is a pointer to the first opcode byte,
619 or NULL if we run off the end of the buffer. */
620
621 static gdb_byte *
622 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
623 {
624 gdb_byte *end = insn + max_len;
625
626 while (insn < end)
627 {
628 switch (*insn)
629 {
630 case DATA_PREFIX_OPCODE:
631 case ADDR_PREFIX_OPCODE:
632 case CS_PREFIX_OPCODE:
633 case DS_PREFIX_OPCODE:
634 case ES_PREFIX_OPCODE:
635 case FS_PREFIX_OPCODE:
636 case GS_PREFIX_OPCODE:
637 case SS_PREFIX_OPCODE:
638 case LOCK_PREFIX_OPCODE:
639 case REPE_PREFIX_OPCODE:
640 case REPNE_PREFIX_OPCODE:
641 ++insn;
642 continue;
643 default:
644 return insn;
645 }
646 }
647
648 return NULL;
649 }
650
651 static int
652 i386_absolute_jmp_p (const gdb_byte *insn)
653 {
654 /* jmp far (absolute address in operand). */
655 if (insn[0] == 0xea)
656 return 1;
657
658 if (insn[0] == 0xff)
659 {
660 /* jump near, absolute indirect (/4). */
661 if ((insn[1] & 0x38) == 0x20)
662 return 1;
663
664 /* jump far, absolute indirect (/5). */
665 if ((insn[1] & 0x38) == 0x28)
666 return 1;
667 }
668
669 return 0;
670 }
671
672 /* Return non-zero if INSN is a jump, zero otherwise. */
673
674 static int
675 i386_jmp_p (const gdb_byte *insn)
676 {
677 /* jump short, relative. */
678 if (insn[0] == 0xeb)
679 return 1;
680
681 /* jump near, relative. */
682 if (insn[0] == 0xe9)
683 return 1;
684
685 return i386_absolute_jmp_p (insn);
686 }
687
688 static int
689 i386_absolute_call_p (const gdb_byte *insn)
690 {
691 /* call far, absolute. */
692 if (insn[0] == 0x9a)
693 return 1;
694
695 if (insn[0] == 0xff)
696 {
697 /* Call near, absolute indirect (/2). */
698 if ((insn[1] & 0x38) == 0x10)
699 return 1;
700
701 /* Call far, absolute indirect (/3). */
702 if ((insn[1] & 0x38) == 0x18)
703 return 1;
704 }
705
706 return 0;
707 }
708
709 static int
710 i386_ret_p (const gdb_byte *insn)
711 {
712 switch (insn[0])
713 {
714 case 0xc2: /* ret near, pop N bytes. */
715 case 0xc3: /* ret near */
716 case 0xca: /* ret far, pop N bytes. */
717 case 0xcb: /* ret far */
718 case 0xcf: /* iret */
719 return 1;
720
721 default:
722 return 0;
723 }
724 }
725
726 static int
727 i386_call_p (const gdb_byte *insn)
728 {
729 if (i386_absolute_call_p (insn))
730 return 1;
731
732 /* call near, relative. */
733 if (insn[0] == 0xe8)
734 return 1;
735
736 return 0;
737 }
738
739 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
740 length in bytes. Otherwise, return zero. */
741
742 static int
743 i386_syscall_p (const gdb_byte *insn, int *lengthp)
744 {
745 /* Is it 'int $0x80'? */
746 if ((insn[0] == 0xcd && insn[1] == 0x80)
747 /* Or is it 'sysenter'? */
748 || (insn[0] == 0x0f && insn[1] == 0x34)
749 /* Or is it 'syscall'? */
750 || (insn[0] == 0x0f && insn[1] == 0x05))
751 {
752 *lengthp = 2;
753 return 1;
754 }
755
756 return 0;
757 }
758
759 /* The gdbarch insn_is_call method. */
760
761 static int
762 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
763 {
764 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
765
766 read_code (addr, buf, I386_MAX_INSN_LEN);
767 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
768
769 return i386_call_p (insn);
770 }
771
772 /* The gdbarch insn_is_ret method. */
773
774 static int
775 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
776 {
777 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
778
779 read_code (addr, buf, I386_MAX_INSN_LEN);
780 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
781
782 return i386_ret_p (insn);
783 }
784
785 /* The gdbarch insn_is_jump method. */
786
787 static int
788 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
789 {
790 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
791
792 read_code (addr, buf, I386_MAX_INSN_LEN);
793 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
794
795 return i386_jmp_p (insn);
796 }
797
798 /* Some kernels may run one past a syscall insn, so we have to cope. */
799
800 struct displaced_step_closure *
801 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
802 CORE_ADDR from, CORE_ADDR to,
803 struct regcache *regs)
804 {
805 size_t len = gdbarch_max_insn_length (gdbarch);
806 i386_displaced_step_closure *closure = new i386_displaced_step_closure (len);
807 gdb_byte *buf = closure->buf.data ();
808
809 read_memory (from, buf, len);
810
811 /* GDB may get control back after the insn after the syscall.
812 Presumably this is a kernel bug.
813 If this is a syscall, make sure there's a nop afterwards. */
814 {
815 int syscall_length;
816 gdb_byte *insn;
817
818 insn = i386_skip_prefixes (buf, len);
819 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
820 insn[syscall_length] = NOP_OPCODE;
821 }
822
823 write_memory (to, buf, len);
824
825 if (debug_displaced)
826 {
827 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
828 paddress (gdbarch, from), paddress (gdbarch, to));
829 displaced_step_dump_bytes (gdb_stdlog, buf, len);
830 }
831
832 return closure;
833 }
834
835 /* Fix up the state of registers and memory after having single-stepped
836 a displaced instruction. */
837
838 void
839 i386_displaced_step_fixup (struct gdbarch *gdbarch,
840 struct displaced_step_closure *closure_,
841 CORE_ADDR from, CORE_ADDR to,
842 struct regcache *regs)
843 {
844 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
845
846 /* The offset we applied to the instruction's address.
847 This could well be negative (when viewed as a signed 32-bit
848 value), but ULONGEST won't reflect that, so take care when
849 applying it. */
850 ULONGEST insn_offset = to - from;
851
852 i386_displaced_step_closure *closure
853 = (i386_displaced_step_closure *) closure_;
854 gdb_byte *insn = closure->buf.data ();
855 /* The start of the insn, needed in case we see some prefixes. */
856 gdb_byte *insn_start = insn;
857
858 if (debug_displaced)
859 fprintf_unfiltered (gdb_stdlog,
860 "displaced: fixup (%s, %s), "
861 "insn = 0x%02x 0x%02x ...\n",
862 paddress (gdbarch, from), paddress (gdbarch, to),
863 insn[0], insn[1]);
864
865 /* The list of issues to contend with here is taken from
866 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
867 Yay for Free Software! */
868
869 /* Relocate the %eip, if necessary. */
870
871 /* The instruction recognizers we use assume any leading prefixes
872 have been skipped. */
873 {
874 /* This is the size of the buffer in closure. */
875 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
876 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
877 /* If there are too many prefixes, just ignore the insn.
878 It will fault when run. */
879 if (opcode != NULL)
880 insn = opcode;
881 }
882
883 /* Except in the case of absolute or indirect jump or call
884 instructions, or a return instruction, the new eip is relative to
885 the displaced instruction; make it relative. Well, signal
886 handler returns don't need relocation either, but we use the
887 value of %eip to recognize those; see below. */
888 if (! i386_absolute_jmp_p (insn)
889 && ! i386_absolute_call_p (insn)
890 && ! i386_ret_p (insn))
891 {
892 ULONGEST orig_eip;
893 int insn_len;
894
895 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
896
897 /* A signal trampoline system call changes the %eip, resuming
898 execution of the main program after the signal handler has
899 returned. That makes them like 'return' instructions; we
900 shouldn't relocate %eip.
901
902 But most system calls don't, and we do need to relocate %eip.
903
904 Our heuristic for distinguishing these cases: if stepping
905 over the system call instruction left control directly after
906 the instruction, the we relocate --- control almost certainly
907 doesn't belong in the displaced copy. Otherwise, we assume
908 the instruction has put control where it belongs, and leave
909 it unrelocated. Goodness help us if there are PC-relative
910 system calls. */
911 if (i386_syscall_p (insn, &insn_len)
912 && orig_eip != to + (insn - insn_start) + insn_len
913 /* GDB can get control back after the insn after the syscall.
914 Presumably this is a kernel bug.
915 i386_displaced_step_copy_insn ensures its a nop,
916 we add one to the length for it. */
917 && orig_eip != to + (insn - insn_start) + insn_len + 1)
918 {
919 if (debug_displaced)
920 fprintf_unfiltered (gdb_stdlog,
921 "displaced: syscall changed %%eip; "
922 "not relocating\n");
923 }
924 else
925 {
926 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
927
928 /* If we just stepped over a breakpoint insn, we don't backup
929 the pc on purpose; this is to match behaviour without
930 stepping. */
931
932 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
933
934 if (debug_displaced)
935 fprintf_unfiltered (gdb_stdlog,
936 "displaced: "
937 "relocated %%eip from %s to %s\n",
938 paddress (gdbarch, orig_eip),
939 paddress (gdbarch, eip));
940 }
941 }
942
943 /* If the instruction was PUSHFL, then the TF bit will be set in the
944 pushed value, and should be cleared. We'll leave this for later,
945 since GDB already messes up the TF flag when stepping over a
946 pushfl. */
947
948 /* If the instruction was a call, the return address now atop the
949 stack is the address following the copied instruction. We need
950 to make it the address following the original instruction. */
951 if (i386_call_p (insn))
952 {
953 ULONGEST esp;
954 ULONGEST retaddr;
955 const ULONGEST retaddr_len = 4;
956
957 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
958 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
959 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
960 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
961
962 if (debug_displaced)
963 fprintf_unfiltered (gdb_stdlog,
964 "displaced: relocated return addr at %s to %s\n",
965 paddress (gdbarch, esp),
966 paddress (gdbarch, retaddr));
967 }
968 }
969
970 static void
971 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
972 {
973 target_write_memory (*to, buf, len);
974 *to += len;
975 }
976
977 static void
978 i386_relocate_instruction (struct gdbarch *gdbarch,
979 CORE_ADDR *to, CORE_ADDR oldloc)
980 {
981 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
982 gdb_byte buf[I386_MAX_INSN_LEN];
983 int offset = 0, rel32, newrel;
984 int insn_length;
985 gdb_byte *insn = buf;
986
987 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
988
989 insn_length = gdb_buffered_insn_length (gdbarch, insn,
990 I386_MAX_INSN_LEN, oldloc);
991
992 /* Get past the prefixes. */
993 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
994
995 /* Adjust calls with 32-bit relative addresses as push/jump, with
996 the address pushed being the location where the original call in
997 the user program would return to. */
998 if (insn[0] == 0xe8)
999 {
1000 gdb_byte push_buf[16];
1001 unsigned int ret_addr;
1002
1003 /* Where "ret" in the original code will return to. */
1004 ret_addr = oldloc + insn_length;
1005 push_buf[0] = 0x68; /* pushq $... */
1006 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1007 /* Push the push. */
1008 append_insns (to, 5, push_buf);
1009
1010 /* Convert the relative call to a relative jump. */
1011 insn[0] = 0xe9;
1012
1013 /* Adjust the destination offset. */
1014 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1015 newrel = (oldloc - *to) + rel32;
1016 store_signed_integer (insn + 1, 4, byte_order, newrel);
1017
1018 if (debug_displaced)
1019 fprintf_unfiltered (gdb_stdlog,
1020 "Adjusted insn rel32=%s at %s to"
1021 " rel32=%s at %s\n",
1022 hex_string (rel32), paddress (gdbarch, oldloc),
1023 hex_string (newrel), paddress (gdbarch, *to));
1024
1025 /* Write the adjusted jump into its displaced location. */
1026 append_insns (to, 5, insn);
1027 return;
1028 }
1029
1030 /* Adjust jumps with 32-bit relative addresses. Calls are already
1031 handled above. */
1032 if (insn[0] == 0xe9)
1033 offset = 1;
1034 /* Adjust conditional jumps. */
1035 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1036 offset = 2;
1037
1038 if (offset)
1039 {
1040 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1041 newrel = (oldloc - *to) + rel32;
1042 store_signed_integer (insn + offset, 4, byte_order, newrel);
1043 if (debug_displaced)
1044 fprintf_unfiltered (gdb_stdlog,
1045 "Adjusted insn rel32=%s at %s to"
1046 " rel32=%s at %s\n",
1047 hex_string (rel32), paddress (gdbarch, oldloc),
1048 hex_string (newrel), paddress (gdbarch, *to));
1049 }
1050
1051 /* Write the adjusted instructions into their displaced
1052 location. */
1053 append_insns (to, insn_length, buf);
1054 }
1055
1056 \f
1057 #ifdef I386_REGNO_TO_SYMMETRY
1058 #error "The Sequent Symmetry is no longer supported."
1059 #endif
1060
1061 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1062 and %esp "belong" to the calling function. Therefore these
1063 registers should be saved if they're going to be modified. */
1064
1065 /* The maximum number of saved registers. This should include all
1066 registers mentioned above, and %eip. */
1067 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1068
1069 struct i386_frame_cache
1070 {
1071 /* Base address. */
1072 CORE_ADDR base;
1073 int base_p;
1074 LONGEST sp_offset;
1075 CORE_ADDR pc;
1076
1077 /* Saved registers. */
1078 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1079 CORE_ADDR saved_sp;
1080 int saved_sp_reg;
1081 int pc_in_eax;
1082
1083 /* Stack space reserved for local variables. */
1084 long locals;
1085 };
1086
1087 /* Allocate and initialize a frame cache. */
1088
1089 static struct i386_frame_cache *
1090 i386_alloc_frame_cache (void)
1091 {
1092 struct i386_frame_cache *cache;
1093 int i;
1094
1095 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1096
1097 /* Base address. */
1098 cache->base_p = 0;
1099 cache->base = 0;
1100 cache->sp_offset = -4;
1101 cache->pc = 0;
1102
1103 /* Saved registers. We initialize these to -1 since zero is a valid
1104 offset (that's where %ebp is supposed to be stored). */
1105 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1106 cache->saved_regs[i] = -1;
1107 cache->saved_sp = 0;
1108 cache->saved_sp_reg = -1;
1109 cache->pc_in_eax = 0;
1110
1111 /* Frameless until proven otherwise. */
1112 cache->locals = -1;
1113
1114 return cache;
1115 }
1116
1117 /* If the instruction at PC is a jump, return the address of its
1118 target. Otherwise, return PC. */
1119
1120 static CORE_ADDR
1121 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1122 {
1123 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1124 gdb_byte op;
1125 long delta = 0;
1126 int data16 = 0;
1127
1128 if (target_read_code (pc, &op, 1))
1129 return pc;
1130
1131 if (op == 0x66)
1132 {
1133 data16 = 1;
1134
1135 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1136 }
1137
1138 switch (op)
1139 {
1140 case 0xe9:
1141 /* Relative jump: if data16 == 0, disp32, else disp16. */
1142 if (data16)
1143 {
1144 delta = read_memory_integer (pc + 2, 2, byte_order);
1145
1146 /* Include the size of the jmp instruction (including the
1147 0x66 prefix). */
1148 delta += 4;
1149 }
1150 else
1151 {
1152 delta = read_memory_integer (pc + 1, 4, byte_order);
1153
1154 /* Include the size of the jmp instruction. */
1155 delta += 5;
1156 }
1157 break;
1158 case 0xeb:
1159 /* Relative jump, disp8 (ignore data16). */
1160 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1161
1162 delta += data16 + 2;
1163 break;
1164 }
1165
1166 return pc + delta;
1167 }
1168
1169 /* Check whether PC points at a prologue for a function returning a
1170 structure or union. If so, it updates CACHE and returns the
1171 address of the first instruction after the code sequence that
1172 removes the "hidden" argument from the stack or CURRENT_PC,
1173 whichever is smaller. Otherwise, return PC. */
1174
1175 static CORE_ADDR
1176 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1177 struct i386_frame_cache *cache)
1178 {
1179 /* Functions that return a structure or union start with:
1180
1181 popl %eax 0x58
1182 xchgl %eax, (%esp) 0x87 0x04 0x24
1183 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1184
1185 (the System V compiler puts out the second `xchg' instruction,
1186 and the assembler doesn't try to optimize it, so the 'sib' form
1187 gets generated). This sequence is used to get the address of the
1188 return buffer for a function that returns a structure. */
1189 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1190 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1191 gdb_byte buf[4];
1192 gdb_byte op;
1193
1194 if (current_pc <= pc)
1195 return pc;
1196
1197 if (target_read_code (pc, &op, 1))
1198 return pc;
1199
1200 if (op != 0x58) /* popl %eax */
1201 return pc;
1202
1203 if (target_read_code (pc + 1, buf, 4))
1204 return pc;
1205
1206 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1207 return pc;
1208
1209 if (current_pc == pc)
1210 {
1211 cache->sp_offset += 4;
1212 return current_pc;
1213 }
1214
1215 if (current_pc == pc + 1)
1216 {
1217 cache->pc_in_eax = 1;
1218 return current_pc;
1219 }
1220
1221 if (buf[1] == proto1[1])
1222 return pc + 4;
1223 else
1224 return pc + 5;
1225 }
1226
1227 static CORE_ADDR
1228 i386_skip_probe (CORE_ADDR pc)
1229 {
1230 /* A function may start with
1231
1232 pushl constant
1233 call _probe
1234 addl $4, %esp
1235
1236 followed by
1237
1238 pushl %ebp
1239
1240 etc. */
1241 gdb_byte buf[8];
1242 gdb_byte op;
1243
1244 if (target_read_code (pc, &op, 1))
1245 return pc;
1246
1247 if (op == 0x68 || op == 0x6a)
1248 {
1249 int delta;
1250
1251 /* Skip past the `pushl' instruction; it has either a one-byte or a
1252 four-byte operand, depending on the opcode. */
1253 if (op == 0x68)
1254 delta = 5;
1255 else
1256 delta = 2;
1257
1258 /* Read the following 8 bytes, which should be `call _probe' (6
1259 bytes) followed by `addl $4,%esp' (2 bytes). */
1260 read_memory (pc + delta, buf, sizeof (buf));
1261 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1262 pc += delta + sizeof (buf);
1263 }
1264
1265 return pc;
1266 }
1267
1268 /* GCC 4.1 and later, can put code in the prologue to realign the
1269 stack pointer. Check whether PC points to such code, and update
1270 CACHE accordingly. Return the first instruction after the code
1271 sequence or CURRENT_PC, whichever is smaller. If we don't
1272 recognize the code, return PC. */
1273
1274 static CORE_ADDR
1275 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1276 struct i386_frame_cache *cache)
1277 {
1278 /* There are 2 code sequences to re-align stack before the frame
1279 gets set up:
1280
1281 1. Use a caller-saved saved register:
1282
1283 leal 4(%esp), %reg
1284 andl $-XXX, %esp
1285 pushl -4(%reg)
1286
1287 2. Use a callee-saved saved register:
1288
1289 pushl %reg
1290 leal 8(%esp), %reg
1291 andl $-XXX, %esp
1292 pushl -4(%reg)
1293
1294 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1295
1296 0x83 0xe4 0xf0 andl $-16, %esp
1297 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1298 */
1299
1300 gdb_byte buf[14];
1301 int reg;
1302 int offset, offset_and;
1303 static int regnums[8] = {
1304 I386_EAX_REGNUM, /* %eax */
1305 I386_ECX_REGNUM, /* %ecx */
1306 I386_EDX_REGNUM, /* %edx */
1307 I386_EBX_REGNUM, /* %ebx */
1308 I386_ESP_REGNUM, /* %esp */
1309 I386_EBP_REGNUM, /* %ebp */
1310 I386_ESI_REGNUM, /* %esi */
1311 I386_EDI_REGNUM /* %edi */
1312 };
1313
1314 if (target_read_code (pc, buf, sizeof buf))
1315 return pc;
1316
1317 /* Check caller-saved saved register. The first instruction has
1318 to be "leal 4(%esp), %reg". */
1319 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1320 {
1321 /* MOD must be binary 10 and R/M must be binary 100. */
1322 if ((buf[1] & 0xc7) != 0x44)
1323 return pc;
1324
1325 /* REG has register number. */
1326 reg = (buf[1] >> 3) & 7;
1327 offset = 4;
1328 }
1329 else
1330 {
1331 /* Check callee-saved saved register. The first instruction
1332 has to be "pushl %reg". */
1333 if ((buf[0] & 0xf8) != 0x50)
1334 return pc;
1335
1336 /* Get register. */
1337 reg = buf[0] & 0x7;
1338
1339 /* The next instruction has to be "leal 8(%esp), %reg". */
1340 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1341 return pc;
1342
1343 /* MOD must be binary 10 and R/M must be binary 100. */
1344 if ((buf[2] & 0xc7) != 0x44)
1345 return pc;
1346
1347 /* REG has register number. Registers in pushl and leal have to
1348 be the same. */
1349 if (reg != ((buf[2] >> 3) & 7))
1350 return pc;
1351
1352 offset = 5;
1353 }
1354
1355 /* Rigister can't be %esp nor %ebp. */
1356 if (reg == 4 || reg == 5)
1357 return pc;
1358
1359 /* The next instruction has to be "andl $-XXX, %esp". */
1360 if (buf[offset + 1] != 0xe4
1361 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1362 return pc;
1363
1364 offset_and = offset;
1365 offset += buf[offset] == 0x81 ? 6 : 3;
1366
1367 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1368 0xfc. REG must be binary 110 and MOD must be binary 01. */
1369 if (buf[offset] != 0xff
1370 || buf[offset + 2] != 0xfc
1371 || (buf[offset + 1] & 0xf8) != 0x70)
1372 return pc;
1373
1374 /* R/M has register. Registers in leal and pushl have to be the
1375 same. */
1376 if (reg != (buf[offset + 1] & 7))
1377 return pc;
1378
1379 if (current_pc > pc + offset_and)
1380 cache->saved_sp_reg = regnums[reg];
1381
1382 return std::min (pc + offset + 3, current_pc);
1383 }
1384
1385 /* Maximum instruction length we need to handle. */
1386 #define I386_MAX_MATCHED_INSN_LEN 6
1387
1388 /* Instruction description. */
1389 struct i386_insn
1390 {
1391 size_t len;
1392 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1393 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1394 };
1395
1396 /* Return whether instruction at PC matches PATTERN. */
1397
1398 static int
1399 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1400 {
1401 gdb_byte op;
1402
1403 if (target_read_code (pc, &op, 1))
1404 return 0;
1405
1406 if ((op & pattern.mask[0]) == pattern.insn[0])
1407 {
1408 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1409 int insn_matched = 1;
1410 size_t i;
1411
1412 gdb_assert (pattern.len > 1);
1413 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1414
1415 if (target_read_code (pc + 1, buf, pattern.len - 1))
1416 return 0;
1417
1418 for (i = 1; i < pattern.len; i++)
1419 {
1420 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1421 insn_matched = 0;
1422 }
1423 return insn_matched;
1424 }
1425 return 0;
1426 }
1427
1428 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1429 the first instruction description that matches. Otherwise, return
1430 NULL. */
1431
1432 static struct i386_insn *
1433 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1434 {
1435 struct i386_insn *pattern;
1436
1437 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1438 {
1439 if (i386_match_pattern (pc, *pattern))
1440 return pattern;
1441 }
1442
1443 return NULL;
1444 }
1445
1446 /* Return whether PC points inside a sequence of instructions that
1447 matches INSN_PATTERNS. */
1448
1449 static int
1450 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1451 {
1452 CORE_ADDR current_pc;
1453 int ix, i;
1454 struct i386_insn *insn;
1455
1456 insn = i386_match_insn (pc, insn_patterns);
1457 if (insn == NULL)
1458 return 0;
1459
1460 current_pc = pc;
1461 ix = insn - insn_patterns;
1462 for (i = ix - 1; i >= 0; i--)
1463 {
1464 current_pc -= insn_patterns[i].len;
1465
1466 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1467 return 0;
1468 }
1469
1470 current_pc = pc + insn->len;
1471 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1472 {
1473 if (!i386_match_pattern (current_pc, *insn))
1474 return 0;
1475
1476 current_pc += insn->len;
1477 }
1478
1479 return 1;
1480 }
1481
1482 /* Some special instructions that might be migrated by GCC into the
1483 part of the prologue that sets up the new stack frame. Because the
1484 stack frame hasn't been setup yet, no registers have been saved
1485 yet, and only the scratch registers %eax, %ecx and %edx can be
1486 touched. */
1487
1488 struct i386_insn i386_frame_setup_skip_insns[] =
1489 {
1490 /* Check for `movb imm8, r' and `movl imm32, r'.
1491
1492 ??? Should we handle 16-bit operand-sizes here? */
1493
1494 /* `movb imm8, %al' and `movb imm8, %ah' */
1495 /* `movb imm8, %cl' and `movb imm8, %ch' */
1496 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1497 /* `movb imm8, %dl' and `movb imm8, %dh' */
1498 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1499 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1500 { 5, { 0xb8 }, { 0xfe } },
1501 /* `movl imm32, %edx' */
1502 { 5, { 0xba }, { 0xff } },
1503
1504 /* Check for `mov imm32, r32'. Note that there is an alternative
1505 encoding for `mov m32, %eax'.
1506
1507 ??? Should we handle SIB adressing here?
1508 ??? Should we handle 16-bit operand-sizes here? */
1509
1510 /* `movl m32, %eax' */
1511 { 5, { 0xa1 }, { 0xff } },
1512 /* `movl m32, %eax' and `mov; m32, %ecx' */
1513 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1514 /* `movl m32, %edx' */
1515 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1516
1517 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1518 Because of the symmetry, there are actually two ways to encode
1519 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1520 opcode bytes 0x31 and 0x33 for `xorl'. */
1521
1522 /* `subl %eax, %eax' */
1523 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1524 /* `subl %ecx, %ecx' */
1525 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1526 /* `subl %edx, %edx' */
1527 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1528 /* `xorl %eax, %eax' */
1529 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1530 /* `xorl %ecx, %ecx' */
1531 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1532 /* `xorl %edx, %edx' */
1533 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1534 { 0 }
1535 };
1536
1537
1538 /* Check whether PC points to a no-op instruction. */
1539 static CORE_ADDR
1540 i386_skip_noop (CORE_ADDR pc)
1541 {
1542 gdb_byte op;
1543 int check = 1;
1544
1545 if (target_read_code (pc, &op, 1))
1546 return pc;
1547
1548 while (check)
1549 {
1550 check = 0;
1551 /* Ignore `nop' instruction. */
1552 if (op == 0x90)
1553 {
1554 pc += 1;
1555 if (target_read_code (pc, &op, 1))
1556 return pc;
1557 check = 1;
1558 }
1559 /* Ignore no-op instruction `mov %edi, %edi'.
1560 Microsoft system dlls often start with
1561 a `mov %edi,%edi' instruction.
1562 The 5 bytes before the function start are
1563 filled with `nop' instructions.
1564 This pattern can be used for hot-patching:
1565 The `mov %edi, %edi' instruction can be replaced by a
1566 near jump to the location of the 5 `nop' instructions
1567 which can be replaced by a 32-bit jump to anywhere
1568 in the 32-bit address space. */
1569
1570 else if (op == 0x8b)
1571 {
1572 if (target_read_code (pc + 1, &op, 1))
1573 return pc;
1574
1575 if (op == 0xff)
1576 {
1577 pc += 2;
1578 if (target_read_code (pc, &op, 1))
1579 return pc;
1580
1581 check = 1;
1582 }
1583 }
1584 }
1585 return pc;
1586 }
1587
1588 /* Check whether PC points at a code that sets up a new stack frame.
1589 If so, it updates CACHE and returns the address of the first
1590 instruction after the sequence that sets up the frame or LIMIT,
1591 whichever is smaller. If we don't recognize the code, return PC. */
1592
1593 static CORE_ADDR
1594 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1595 CORE_ADDR pc, CORE_ADDR limit,
1596 struct i386_frame_cache *cache)
1597 {
1598 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1599 struct i386_insn *insn;
1600 gdb_byte op;
1601 int skip = 0;
1602
1603 if (limit <= pc)
1604 return limit;
1605
1606 if (target_read_code (pc, &op, 1))
1607 return pc;
1608
1609 if (op == 0x55) /* pushl %ebp */
1610 {
1611 /* Take into account that we've executed the `pushl %ebp' that
1612 starts this instruction sequence. */
1613 cache->saved_regs[I386_EBP_REGNUM] = 0;
1614 cache->sp_offset += 4;
1615 pc++;
1616
1617 /* If that's all, return now. */
1618 if (limit <= pc)
1619 return limit;
1620
1621 /* Check for some special instructions that might be migrated by
1622 GCC into the prologue and skip them. At this point in the
1623 prologue, code should only touch the scratch registers %eax,
1624 %ecx and %edx, so while the number of posibilities is sheer,
1625 it is limited.
1626
1627 Make sure we only skip these instructions if we later see the
1628 `movl %esp, %ebp' that actually sets up the frame. */
1629 while (pc + skip < limit)
1630 {
1631 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1632 if (insn == NULL)
1633 break;
1634
1635 skip += insn->len;
1636 }
1637
1638 /* If that's all, return now. */
1639 if (limit <= pc + skip)
1640 return limit;
1641
1642 if (target_read_code (pc + skip, &op, 1))
1643 return pc + skip;
1644
1645 /* The i386 prologue looks like
1646
1647 push %ebp
1648 mov %esp,%ebp
1649 sub $0x10,%esp
1650
1651 and a different prologue can be generated for atom.
1652
1653 push %ebp
1654 lea (%esp),%ebp
1655 lea -0x10(%esp),%esp
1656
1657 We handle both of them here. */
1658
1659 switch (op)
1660 {
1661 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1662 case 0x8b:
1663 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1664 != 0xec)
1665 return pc;
1666 pc += (skip + 2);
1667 break;
1668 case 0x89:
1669 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1670 != 0xe5)
1671 return pc;
1672 pc += (skip + 2);
1673 break;
1674 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1675 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1676 != 0x242c)
1677 return pc;
1678 pc += (skip + 3);
1679 break;
1680 default:
1681 return pc;
1682 }
1683
1684 /* OK, we actually have a frame. We just don't know how large
1685 it is yet. Set its size to zero. We'll adjust it if
1686 necessary. We also now commit to skipping the special
1687 instructions mentioned before. */
1688 cache->locals = 0;
1689
1690 /* If that's all, return now. */
1691 if (limit <= pc)
1692 return limit;
1693
1694 /* Check for stack adjustment
1695
1696 subl $XXX, %esp
1697 or
1698 lea -XXX(%esp),%esp
1699
1700 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1701 reg, so we don't have to worry about a data16 prefix. */
1702 if (target_read_code (pc, &op, 1))
1703 return pc;
1704 if (op == 0x83)
1705 {
1706 /* `subl' with 8-bit immediate. */
1707 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1708 /* Some instruction starting with 0x83 other than `subl'. */
1709 return pc;
1710
1711 /* `subl' with signed 8-bit immediate (though it wouldn't
1712 make sense to be negative). */
1713 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1714 return pc + 3;
1715 }
1716 else if (op == 0x81)
1717 {
1718 /* Maybe it is `subl' with a 32-bit immediate. */
1719 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1720 /* Some instruction starting with 0x81 other than `subl'. */
1721 return pc;
1722
1723 /* It is `subl' with a 32-bit immediate. */
1724 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1725 return pc + 6;
1726 }
1727 else if (op == 0x8d)
1728 {
1729 /* The ModR/M byte is 0x64. */
1730 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1731 return pc;
1732 /* 'lea' with 8-bit displacement. */
1733 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1734 return pc + 4;
1735 }
1736 else
1737 {
1738 /* Some instruction other than `subl' nor 'lea'. */
1739 return pc;
1740 }
1741 }
1742 else if (op == 0xc8) /* enter */
1743 {
1744 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1745 return pc + 4;
1746 }
1747
1748 return pc;
1749 }
1750
1751 /* Check whether PC points at code that saves registers on the stack.
1752 If so, it updates CACHE and returns the address of the first
1753 instruction after the register saves or CURRENT_PC, whichever is
1754 smaller. Otherwise, return PC. */
1755
1756 static CORE_ADDR
1757 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1758 struct i386_frame_cache *cache)
1759 {
1760 CORE_ADDR offset = 0;
1761 gdb_byte op;
1762 int i;
1763
1764 if (cache->locals > 0)
1765 offset -= cache->locals;
1766 for (i = 0; i < 8 && pc < current_pc; i++)
1767 {
1768 if (target_read_code (pc, &op, 1))
1769 return pc;
1770 if (op < 0x50 || op > 0x57)
1771 break;
1772
1773 offset -= 4;
1774 cache->saved_regs[op - 0x50] = offset;
1775 cache->sp_offset += 4;
1776 pc++;
1777 }
1778
1779 return pc;
1780 }
1781
1782 /* Do a full analysis of the prologue at PC and update CACHE
1783 accordingly. Bail out early if CURRENT_PC is reached. Return the
1784 address where the analysis stopped.
1785
1786 We handle these cases:
1787
1788 The startup sequence can be at the start of the function, or the
1789 function can start with a branch to startup code at the end.
1790
1791 %ebp can be set up with either the 'enter' instruction, or "pushl
1792 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1793 once used in the System V compiler).
1794
1795 Local space is allocated just below the saved %ebp by either the
1796 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1797 16-bit unsigned argument for space to allocate, and the 'addl'
1798 instruction could have either a signed byte, or 32-bit immediate.
1799
1800 Next, the registers used by this function are pushed. With the
1801 System V compiler they will always be in the order: %edi, %esi,
1802 %ebx (and sometimes a harmless bug causes it to also save but not
1803 restore %eax); however, the code below is willing to see the pushes
1804 in any order, and will handle up to 8 of them.
1805
1806 If the setup sequence is at the end of the function, then the next
1807 instruction will be a branch back to the start. */
1808
1809 static CORE_ADDR
1810 i386_analyze_prologue (struct gdbarch *gdbarch,
1811 CORE_ADDR pc, CORE_ADDR current_pc,
1812 struct i386_frame_cache *cache)
1813 {
1814 pc = i386_skip_noop (pc);
1815 pc = i386_follow_jump (gdbarch, pc);
1816 pc = i386_analyze_struct_return (pc, current_pc, cache);
1817 pc = i386_skip_probe (pc);
1818 pc = i386_analyze_stack_align (pc, current_pc, cache);
1819 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1820 return i386_analyze_register_saves (pc, current_pc, cache);
1821 }
1822
1823 /* Return PC of first real instruction. */
1824
1825 static CORE_ADDR
1826 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1827 {
1828 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1829
1830 static gdb_byte pic_pat[6] =
1831 {
1832 0xe8, 0, 0, 0, 0, /* call 0x0 */
1833 0x5b, /* popl %ebx */
1834 };
1835 struct i386_frame_cache cache;
1836 CORE_ADDR pc;
1837 gdb_byte op;
1838 int i;
1839 CORE_ADDR func_addr;
1840
1841 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1842 {
1843 CORE_ADDR post_prologue_pc
1844 = skip_prologue_using_sal (gdbarch, func_addr);
1845 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1846
1847 /* Clang always emits a line note before the prologue and another
1848 one after. We trust clang to emit usable line notes. */
1849 if (post_prologue_pc
1850 && (cust != NULL
1851 && COMPUNIT_PRODUCER (cust) != NULL
1852 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1853 return std::max (start_pc, post_prologue_pc);
1854 }
1855
1856 cache.locals = -1;
1857 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1858 if (cache.locals < 0)
1859 return start_pc;
1860
1861 /* Found valid frame setup. */
1862
1863 /* The native cc on SVR4 in -K PIC mode inserts the following code
1864 to get the address of the global offset table (GOT) into register
1865 %ebx:
1866
1867 call 0x0
1868 popl %ebx
1869 movl %ebx,x(%ebp) (optional)
1870 addl y,%ebx
1871
1872 This code is with the rest of the prologue (at the end of the
1873 function), so we have to skip it to get to the first real
1874 instruction at the start of the function. */
1875
1876 for (i = 0; i < 6; i++)
1877 {
1878 if (target_read_code (pc + i, &op, 1))
1879 return pc;
1880
1881 if (pic_pat[i] != op)
1882 break;
1883 }
1884 if (i == 6)
1885 {
1886 int delta = 6;
1887
1888 if (target_read_code (pc + delta, &op, 1))
1889 return pc;
1890
1891 if (op == 0x89) /* movl %ebx, x(%ebp) */
1892 {
1893 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1894
1895 if (op == 0x5d) /* One byte offset from %ebp. */
1896 delta += 3;
1897 else if (op == 0x9d) /* Four byte offset from %ebp. */
1898 delta += 6;
1899 else /* Unexpected instruction. */
1900 delta = 0;
1901
1902 if (target_read_code (pc + delta, &op, 1))
1903 return pc;
1904 }
1905
1906 /* addl y,%ebx */
1907 if (delta > 0 && op == 0x81
1908 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1909 == 0xc3)
1910 {
1911 pc += delta + 6;
1912 }
1913 }
1914
1915 /* If the function starts with a branch (to startup code at the end)
1916 the last instruction should bring us back to the first
1917 instruction of the real code. */
1918 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1919 pc = i386_follow_jump (gdbarch, pc);
1920
1921 return pc;
1922 }
1923
1924 /* Check that the code pointed to by PC corresponds to a call to
1925 __main, skip it if so. Return PC otherwise. */
1926
1927 CORE_ADDR
1928 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1929 {
1930 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1931 gdb_byte op;
1932
1933 if (target_read_code (pc, &op, 1))
1934 return pc;
1935 if (op == 0xe8)
1936 {
1937 gdb_byte buf[4];
1938
1939 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1940 {
1941 /* Make sure address is computed correctly as a 32bit
1942 integer even if CORE_ADDR is 64 bit wide. */
1943 struct bound_minimal_symbol s;
1944 CORE_ADDR call_dest;
1945
1946 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1947 call_dest = call_dest & 0xffffffffU;
1948 s = lookup_minimal_symbol_by_pc (call_dest);
1949 if (s.minsym != NULL
1950 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1951 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1952 pc += 5;
1953 }
1954 }
1955
1956 return pc;
1957 }
1958
1959 /* This function is 64-bit safe. */
1960
1961 static CORE_ADDR
1962 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1963 {
1964 gdb_byte buf[8];
1965
1966 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1967 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1968 }
1969 \f
1970
1971 /* Normal frames. */
1972
1973 static void
1974 i386_frame_cache_1 (struct frame_info *this_frame,
1975 struct i386_frame_cache *cache)
1976 {
1977 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1978 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1979 gdb_byte buf[4];
1980 int i;
1981
1982 cache->pc = get_frame_func (this_frame);
1983
1984 /* In principle, for normal frames, %ebp holds the frame pointer,
1985 which holds the base address for the current stack frame.
1986 However, for functions that don't need it, the frame pointer is
1987 optional. For these "frameless" functions the frame pointer is
1988 actually the frame pointer of the calling frame. Signal
1989 trampolines are just a special case of a "frameless" function.
1990 They (usually) share their frame pointer with the frame that was
1991 in progress when the signal occurred. */
1992
1993 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1994 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1995 if (cache->base == 0)
1996 {
1997 cache->base_p = 1;
1998 return;
1999 }
2000
2001 /* For normal frames, %eip is stored at 4(%ebp). */
2002 cache->saved_regs[I386_EIP_REGNUM] = 4;
2003
2004 if (cache->pc != 0)
2005 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2006 cache);
2007
2008 if (cache->locals < 0)
2009 {
2010 /* We didn't find a valid frame, which means that CACHE->base
2011 currently holds the frame pointer for our calling frame. If
2012 we're at the start of a function, or somewhere half-way its
2013 prologue, the function's frame probably hasn't been fully
2014 setup yet. Try to reconstruct the base address for the stack
2015 frame by looking at the stack pointer. For truly "frameless"
2016 functions this might work too. */
2017
2018 if (cache->saved_sp_reg != -1)
2019 {
2020 /* Saved stack pointer has been saved. */
2021 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2022 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2023
2024 /* We're halfway aligning the stack. */
2025 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2026 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2027
2028 /* This will be added back below. */
2029 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2030 }
2031 else if (cache->pc != 0
2032 || target_read_code (get_frame_pc (this_frame), buf, 1))
2033 {
2034 /* We're in a known function, but did not find a frame
2035 setup. Assume that the function does not use %ebp.
2036 Alternatively, we may have jumped to an invalid
2037 address; in that case there is definitely no new
2038 frame in %ebp. */
2039 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2040 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2041 + cache->sp_offset;
2042 }
2043 else
2044 /* We're in an unknown function. We could not find the start
2045 of the function to analyze the prologue; our best option is
2046 to assume a typical frame layout with the caller's %ebp
2047 saved. */
2048 cache->saved_regs[I386_EBP_REGNUM] = 0;
2049 }
2050
2051 if (cache->saved_sp_reg != -1)
2052 {
2053 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2054 register may be unavailable). */
2055 if (cache->saved_sp == 0
2056 && deprecated_frame_register_read (this_frame,
2057 cache->saved_sp_reg, buf))
2058 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2059 }
2060 /* Now that we have the base address for the stack frame we can
2061 calculate the value of %esp in the calling frame. */
2062 else if (cache->saved_sp == 0)
2063 cache->saved_sp = cache->base + 8;
2064
2065 /* Adjust all the saved registers such that they contain addresses
2066 instead of offsets. */
2067 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2068 if (cache->saved_regs[i] != -1)
2069 cache->saved_regs[i] += cache->base;
2070
2071 cache->base_p = 1;
2072 }
2073
2074 static struct i386_frame_cache *
2075 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2076 {
2077 struct i386_frame_cache *cache;
2078
2079 if (*this_cache)
2080 return (struct i386_frame_cache *) *this_cache;
2081
2082 cache = i386_alloc_frame_cache ();
2083 *this_cache = cache;
2084
2085 TRY
2086 {
2087 i386_frame_cache_1 (this_frame, cache);
2088 }
2089 CATCH (ex, RETURN_MASK_ERROR)
2090 {
2091 if (ex.error != NOT_AVAILABLE_ERROR)
2092 throw_exception (ex);
2093 }
2094 END_CATCH
2095
2096 return cache;
2097 }
2098
2099 static void
2100 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2101 struct frame_id *this_id)
2102 {
2103 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2104
2105 if (!cache->base_p)
2106 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2107 else if (cache->base == 0)
2108 {
2109 /* This marks the outermost frame. */
2110 }
2111 else
2112 {
2113 /* See the end of i386_push_dummy_call. */
2114 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2115 }
2116 }
2117
2118 static enum unwind_stop_reason
2119 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2120 void **this_cache)
2121 {
2122 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2123
2124 if (!cache->base_p)
2125 return UNWIND_UNAVAILABLE;
2126
2127 /* This marks the outermost frame. */
2128 if (cache->base == 0)
2129 return UNWIND_OUTERMOST;
2130
2131 return UNWIND_NO_REASON;
2132 }
2133
2134 static struct value *
2135 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2136 int regnum)
2137 {
2138 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2139
2140 gdb_assert (regnum >= 0);
2141
2142 /* The System V ABI says that:
2143
2144 "The flags register contains the system flags, such as the
2145 direction flag and the carry flag. The direction flag must be
2146 set to the forward (that is, zero) direction before entry and
2147 upon exit from a function. Other user flags have no specified
2148 role in the standard calling sequence and are not preserved."
2149
2150 To guarantee the "upon exit" part of that statement we fake a
2151 saved flags register that has its direction flag cleared.
2152
2153 Note that GCC doesn't seem to rely on the fact that the direction
2154 flag is cleared after a function return; it always explicitly
2155 clears the flag before operations where it matters.
2156
2157 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2158 right thing to do. The way we fake the flags register here makes
2159 it impossible to change it. */
2160
2161 if (regnum == I386_EFLAGS_REGNUM)
2162 {
2163 ULONGEST val;
2164
2165 val = get_frame_register_unsigned (this_frame, regnum);
2166 val &= ~(1 << 10);
2167 return frame_unwind_got_constant (this_frame, regnum, val);
2168 }
2169
2170 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2171 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2172
2173 if (regnum == I386_ESP_REGNUM
2174 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2175 {
2176 /* If the SP has been saved, but we don't know where, then this
2177 means that SAVED_SP_REG register was found unavailable back
2178 when we built the cache. */
2179 if (cache->saved_sp == 0)
2180 return frame_unwind_got_register (this_frame, regnum,
2181 cache->saved_sp_reg);
2182 else
2183 return frame_unwind_got_constant (this_frame, regnum,
2184 cache->saved_sp);
2185 }
2186
2187 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2188 return frame_unwind_got_memory (this_frame, regnum,
2189 cache->saved_regs[regnum]);
2190
2191 return frame_unwind_got_register (this_frame, regnum, regnum);
2192 }
2193
2194 static const struct frame_unwind i386_frame_unwind =
2195 {
2196 NORMAL_FRAME,
2197 i386_frame_unwind_stop_reason,
2198 i386_frame_this_id,
2199 i386_frame_prev_register,
2200 NULL,
2201 default_frame_sniffer
2202 };
2203
2204 /* Normal frames, but in a function epilogue. */
2205
2206 /* Implement the stack_frame_destroyed_p gdbarch method.
2207
2208 The epilogue is defined here as the 'ret' instruction, which will
2209 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2210 the function's stack frame. */
2211
2212 static int
2213 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2214 {
2215 gdb_byte insn;
2216 struct compunit_symtab *cust;
2217
2218 cust = find_pc_compunit_symtab (pc);
2219 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2220 return 0;
2221
2222 if (target_read_memory (pc, &insn, 1))
2223 return 0; /* Can't read memory at pc. */
2224
2225 if (insn != 0xc3) /* 'ret' instruction. */
2226 return 0;
2227
2228 return 1;
2229 }
2230
2231 static int
2232 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2233 struct frame_info *this_frame,
2234 void **this_prologue_cache)
2235 {
2236 if (frame_relative_level (this_frame) == 0)
2237 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2238 get_frame_pc (this_frame));
2239 else
2240 return 0;
2241 }
2242
2243 static struct i386_frame_cache *
2244 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2245 {
2246 struct i386_frame_cache *cache;
2247 CORE_ADDR sp;
2248
2249 if (*this_cache)
2250 return (struct i386_frame_cache *) *this_cache;
2251
2252 cache = i386_alloc_frame_cache ();
2253 *this_cache = cache;
2254
2255 TRY
2256 {
2257 cache->pc = get_frame_func (this_frame);
2258
2259 /* At this point the stack looks as if we just entered the
2260 function, with the return address at the top of the
2261 stack. */
2262 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2263 cache->base = sp + cache->sp_offset;
2264 cache->saved_sp = cache->base + 8;
2265 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2266
2267 cache->base_p = 1;
2268 }
2269 CATCH (ex, RETURN_MASK_ERROR)
2270 {
2271 if (ex.error != NOT_AVAILABLE_ERROR)
2272 throw_exception (ex);
2273 }
2274 END_CATCH
2275
2276 return cache;
2277 }
2278
2279 static enum unwind_stop_reason
2280 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2281 void **this_cache)
2282 {
2283 struct i386_frame_cache *cache =
2284 i386_epilogue_frame_cache (this_frame, this_cache);
2285
2286 if (!cache->base_p)
2287 return UNWIND_UNAVAILABLE;
2288
2289 return UNWIND_NO_REASON;
2290 }
2291
2292 static void
2293 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2294 void **this_cache,
2295 struct frame_id *this_id)
2296 {
2297 struct i386_frame_cache *cache =
2298 i386_epilogue_frame_cache (this_frame, this_cache);
2299
2300 if (!cache->base_p)
2301 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2302 else
2303 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2304 }
2305
2306 static struct value *
2307 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2308 void **this_cache, int regnum)
2309 {
2310 /* Make sure we've initialized the cache. */
2311 i386_epilogue_frame_cache (this_frame, this_cache);
2312
2313 return i386_frame_prev_register (this_frame, this_cache, regnum);
2314 }
2315
2316 static const struct frame_unwind i386_epilogue_frame_unwind =
2317 {
2318 NORMAL_FRAME,
2319 i386_epilogue_frame_unwind_stop_reason,
2320 i386_epilogue_frame_this_id,
2321 i386_epilogue_frame_prev_register,
2322 NULL,
2323 i386_epilogue_frame_sniffer
2324 };
2325 \f
2326
2327 /* Stack-based trampolines. */
2328
2329 /* These trampolines are used on cross x86 targets, when taking the
2330 address of a nested function. When executing these trampolines,
2331 no stack frame is set up, so we are in a similar situation as in
2332 epilogues and i386_epilogue_frame_this_id can be re-used. */
2333
2334 /* Static chain passed in register. */
2335
2336 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2337 {
2338 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2339 { 5, { 0xb8 }, { 0xfe } },
2340
2341 /* `jmp imm32' */
2342 { 5, { 0xe9 }, { 0xff } },
2343
2344 {0}
2345 };
2346
2347 /* Static chain passed on stack (when regparm=3). */
2348
2349 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2350 {
2351 /* `push imm32' */
2352 { 5, { 0x68 }, { 0xff } },
2353
2354 /* `jmp imm32' */
2355 { 5, { 0xe9 }, { 0xff } },
2356
2357 {0}
2358 };
2359
2360 /* Return whether PC points inside a stack trampoline. */
2361
2362 static int
2363 i386_in_stack_tramp_p (CORE_ADDR pc)
2364 {
2365 gdb_byte insn;
2366 const char *name;
2367
2368 /* A stack trampoline is detected if no name is associated
2369 to the current pc and if it points inside a trampoline
2370 sequence. */
2371
2372 find_pc_partial_function (pc, &name, NULL, NULL);
2373 if (name)
2374 return 0;
2375
2376 if (target_read_memory (pc, &insn, 1))
2377 return 0;
2378
2379 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2380 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2381 return 0;
2382
2383 return 1;
2384 }
2385
2386 static int
2387 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2388 struct frame_info *this_frame,
2389 void **this_cache)
2390 {
2391 if (frame_relative_level (this_frame) == 0)
2392 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2393 else
2394 return 0;
2395 }
2396
2397 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2398 {
2399 NORMAL_FRAME,
2400 i386_epilogue_frame_unwind_stop_reason,
2401 i386_epilogue_frame_this_id,
2402 i386_epilogue_frame_prev_register,
2403 NULL,
2404 i386_stack_tramp_frame_sniffer
2405 };
2406 \f
2407 /* Generate a bytecode expression to get the value of the saved PC. */
2408
2409 static void
2410 i386_gen_return_address (struct gdbarch *gdbarch,
2411 struct agent_expr *ax, struct axs_value *value,
2412 CORE_ADDR scope)
2413 {
2414 /* The following sequence assumes the traditional use of the base
2415 register. */
2416 ax_reg (ax, I386_EBP_REGNUM);
2417 ax_const_l (ax, 4);
2418 ax_simple (ax, aop_add);
2419 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2420 value->kind = axs_lvalue_memory;
2421 }
2422 \f
2423
2424 /* Signal trampolines. */
2425
2426 static struct i386_frame_cache *
2427 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2428 {
2429 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2430 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2431 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2432 struct i386_frame_cache *cache;
2433 CORE_ADDR addr;
2434 gdb_byte buf[4];
2435
2436 if (*this_cache)
2437 return (struct i386_frame_cache *) *this_cache;
2438
2439 cache = i386_alloc_frame_cache ();
2440
2441 TRY
2442 {
2443 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2444 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2445
2446 addr = tdep->sigcontext_addr (this_frame);
2447 if (tdep->sc_reg_offset)
2448 {
2449 int i;
2450
2451 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2452
2453 for (i = 0; i < tdep->sc_num_regs; i++)
2454 if (tdep->sc_reg_offset[i] != -1)
2455 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2456 }
2457 else
2458 {
2459 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2460 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2461 }
2462
2463 cache->base_p = 1;
2464 }
2465 CATCH (ex, RETURN_MASK_ERROR)
2466 {
2467 if (ex.error != NOT_AVAILABLE_ERROR)
2468 throw_exception (ex);
2469 }
2470 END_CATCH
2471
2472 *this_cache = cache;
2473 return cache;
2474 }
2475
2476 static enum unwind_stop_reason
2477 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2478 void **this_cache)
2479 {
2480 struct i386_frame_cache *cache =
2481 i386_sigtramp_frame_cache (this_frame, this_cache);
2482
2483 if (!cache->base_p)
2484 return UNWIND_UNAVAILABLE;
2485
2486 return UNWIND_NO_REASON;
2487 }
2488
2489 static void
2490 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2491 struct frame_id *this_id)
2492 {
2493 struct i386_frame_cache *cache =
2494 i386_sigtramp_frame_cache (this_frame, this_cache);
2495
2496 if (!cache->base_p)
2497 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2498 else
2499 {
2500 /* See the end of i386_push_dummy_call. */
2501 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2502 }
2503 }
2504
2505 static struct value *
2506 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2507 void **this_cache, int regnum)
2508 {
2509 /* Make sure we've initialized the cache. */
2510 i386_sigtramp_frame_cache (this_frame, this_cache);
2511
2512 return i386_frame_prev_register (this_frame, this_cache, regnum);
2513 }
2514
2515 static int
2516 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2517 struct frame_info *this_frame,
2518 void **this_prologue_cache)
2519 {
2520 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2521
2522 /* We shouldn't even bother if we don't have a sigcontext_addr
2523 handler. */
2524 if (tdep->sigcontext_addr == NULL)
2525 return 0;
2526
2527 if (tdep->sigtramp_p != NULL)
2528 {
2529 if (tdep->sigtramp_p (this_frame))
2530 return 1;
2531 }
2532
2533 if (tdep->sigtramp_start != 0)
2534 {
2535 CORE_ADDR pc = get_frame_pc (this_frame);
2536
2537 gdb_assert (tdep->sigtramp_end != 0);
2538 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2539 return 1;
2540 }
2541
2542 return 0;
2543 }
2544
2545 static const struct frame_unwind i386_sigtramp_frame_unwind =
2546 {
2547 SIGTRAMP_FRAME,
2548 i386_sigtramp_frame_unwind_stop_reason,
2549 i386_sigtramp_frame_this_id,
2550 i386_sigtramp_frame_prev_register,
2551 NULL,
2552 i386_sigtramp_frame_sniffer
2553 };
2554 \f
2555
2556 static CORE_ADDR
2557 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2558 {
2559 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2560
2561 return cache->base;
2562 }
2563
2564 static const struct frame_base i386_frame_base =
2565 {
2566 &i386_frame_unwind,
2567 i386_frame_base_address,
2568 i386_frame_base_address,
2569 i386_frame_base_address
2570 };
2571
2572 static struct frame_id
2573 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2574 {
2575 CORE_ADDR fp;
2576
2577 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2578
2579 /* See the end of i386_push_dummy_call. */
2580 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2581 }
2582
2583 /* _Decimal128 function return values need 16-byte alignment on the
2584 stack. */
2585
2586 static CORE_ADDR
2587 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2588 {
2589 return sp & -(CORE_ADDR)16;
2590 }
2591 \f
2592
2593 /* Figure out where the longjmp will land. Slurp the args out of the
2594 stack. We expect the first arg to be a pointer to the jmp_buf
2595 structure from which we extract the address that we will land at.
2596 This address is copied into PC. This routine returns non-zero on
2597 success. */
2598
2599 static int
2600 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2601 {
2602 gdb_byte buf[4];
2603 CORE_ADDR sp, jb_addr;
2604 struct gdbarch *gdbarch = get_frame_arch (frame);
2605 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2606 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2607
2608 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2609 longjmp will land. */
2610 if (jb_pc_offset == -1)
2611 return 0;
2612
2613 get_frame_register (frame, I386_ESP_REGNUM, buf);
2614 sp = extract_unsigned_integer (buf, 4, byte_order);
2615 if (target_read_memory (sp + 4, buf, 4))
2616 return 0;
2617
2618 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2619 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2620 return 0;
2621
2622 *pc = extract_unsigned_integer (buf, 4, byte_order);
2623 return 1;
2624 }
2625 \f
2626
2627 /* Check whether TYPE must be 16-byte-aligned when passed as a
2628 function argument. 16-byte vectors, _Decimal128 and structures or
2629 unions containing such types must be 16-byte-aligned; other
2630 arguments are 4-byte-aligned. */
2631
2632 static int
2633 i386_16_byte_align_p (struct type *type)
2634 {
2635 type = check_typedef (type);
2636 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2637 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2638 && TYPE_LENGTH (type) == 16)
2639 return 1;
2640 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2641 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2642 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2643 || TYPE_CODE (type) == TYPE_CODE_UNION)
2644 {
2645 int i;
2646 for (i = 0; i < TYPE_NFIELDS (type); i++)
2647 {
2648 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2649 return 1;
2650 }
2651 }
2652 return 0;
2653 }
2654
2655 /* Implementation for set_gdbarch_push_dummy_code. */
2656
2657 static CORE_ADDR
2658 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2659 struct value **args, int nargs, struct type *value_type,
2660 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2661 struct regcache *regcache)
2662 {
2663 /* Use 0xcc breakpoint - 1 byte. */
2664 *bp_addr = sp - 1;
2665 *real_pc = funaddr;
2666
2667 /* Keep the stack aligned. */
2668 return sp - 16;
2669 }
2670
2671 static CORE_ADDR
2672 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2673 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2674 struct value **args, CORE_ADDR sp,
2675 function_call_return_method return_method,
2676 CORE_ADDR struct_addr)
2677 {
2678 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2679 gdb_byte buf[4];
2680 int i;
2681 int write_pass;
2682 int args_space = 0;
2683
2684 /* BND registers can be in arbitrary values at the moment of the
2685 inferior call. This can cause boundary violations that are not
2686 due to a real bug or even desired by the user. The best to be done
2687 is set the BND registers to allow access to the whole memory, INIT
2688 state, before pushing the inferior call. */
2689 i387_reset_bnd_regs (gdbarch, regcache);
2690
2691 /* Determine the total space required for arguments and struct
2692 return address in a first pass (allowing for 16-byte-aligned
2693 arguments), then push arguments in a second pass. */
2694
2695 for (write_pass = 0; write_pass < 2; write_pass++)
2696 {
2697 int args_space_used = 0;
2698
2699 if (return_method == return_method_struct)
2700 {
2701 if (write_pass)
2702 {
2703 /* Push value address. */
2704 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2705 write_memory (sp, buf, 4);
2706 args_space_used += 4;
2707 }
2708 else
2709 args_space += 4;
2710 }
2711
2712 for (i = 0; i < nargs; i++)
2713 {
2714 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2715
2716 if (write_pass)
2717 {
2718 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2719 args_space_used = align_up (args_space_used, 16);
2720
2721 write_memory (sp + args_space_used,
2722 value_contents_all (args[i]), len);
2723 /* The System V ABI says that:
2724
2725 "An argument's size is increased, if necessary, to make it a
2726 multiple of [32-bit] words. This may require tail padding,
2727 depending on the size of the argument."
2728
2729 This makes sure the stack stays word-aligned. */
2730 args_space_used += align_up (len, 4);
2731 }
2732 else
2733 {
2734 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2735 args_space = align_up (args_space, 16);
2736 args_space += align_up (len, 4);
2737 }
2738 }
2739
2740 if (!write_pass)
2741 {
2742 sp -= args_space;
2743
2744 /* The original System V ABI only requires word alignment,
2745 but modern incarnations need 16-byte alignment in order
2746 to support SSE. Since wasting a few bytes here isn't
2747 harmful we unconditionally enforce 16-byte alignment. */
2748 sp &= ~0xf;
2749 }
2750 }
2751
2752 /* Store return address. */
2753 sp -= 4;
2754 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2755 write_memory (sp, buf, 4);
2756
2757 /* Finally, update the stack pointer... */
2758 store_unsigned_integer (buf, 4, byte_order, sp);
2759 regcache->cooked_write (I386_ESP_REGNUM, buf);
2760
2761 /* ...and fake a frame pointer. */
2762 regcache->cooked_write (I386_EBP_REGNUM, buf);
2763
2764 /* MarkK wrote: This "+ 8" is all over the place:
2765 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2766 i386_dummy_id). It's there, since all frame unwinders for
2767 a given target have to agree (within a certain margin) on the
2768 definition of the stack address of a frame. Otherwise frame id
2769 comparison might not work correctly. Since DWARF2/GCC uses the
2770 stack address *before* the function call as a frame's CFA. On
2771 the i386, when %ebp is used as a frame pointer, the offset
2772 between the contents %ebp and the CFA as defined by GCC. */
2773 return sp + 8;
2774 }
2775
2776 /* These registers are used for returning integers (and on some
2777 targets also for returning `struct' and `union' values when their
2778 size and alignment match an integer type). */
2779 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2780 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2781
2782 /* Read, for architecture GDBARCH, a function return value of TYPE
2783 from REGCACHE, and copy that into VALBUF. */
2784
2785 static void
2786 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2787 struct regcache *regcache, gdb_byte *valbuf)
2788 {
2789 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2790 int len = TYPE_LENGTH (type);
2791 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2792
2793 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2794 {
2795 if (tdep->st0_regnum < 0)
2796 {
2797 warning (_("Cannot find floating-point return value."));
2798 memset (valbuf, 0, len);
2799 return;
2800 }
2801
2802 /* Floating-point return values can be found in %st(0). Convert
2803 its contents to the desired type. This is probably not
2804 exactly how it would happen on the target itself, but it is
2805 the best we can do. */
2806 regcache->raw_read (I386_ST0_REGNUM, buf);
2807 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2808 }
2809 else
2810 {
2811 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2812 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2813
2814 if (len <= low_size)
2815 {
2816 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2817 memcpy (valbuf, buf, len);
2818 }
2819 else if (len <= (low_size + high_size))
2820 {
2821 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2822 memcpy (valbuf, buf, low_size);
2823 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
2824 memcpy (valbuf + low_size, buf, len - low_size);
2825 }
2826 else
2827 internal_error (__FILE__, __LINE__,
2828 _("Cannot extract return value of %d bytes long."),
2829 len);
2830 }
2831 }
2832
2833 /* Write, for architecture GDBARCH, a function return value of TYPE
2834 from VALBUF into REGCACHE. */
2835
2836 static void
2837 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2838 struct regcache *regcache, const gdb_byte *valbuf)
2839 {
2840 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2841 int len = TYPE_LENGTH (type);
2842
2843 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2844 {
2845 ULONGEST fstat;
2846 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2847
2848 if (tdep->st0_regnum < 0)
2849 {
2850 warning (_("Cannot set floating-point return value."));
2851 return;
2852 }
2853
2854 /* Returning floating-point values is a bit tricky. Apart from
2855 storing the return value in %st(0), we have to simulate the
2856 state of the FPU at function return point. */
2857
2858 /* Convert the value found in VALBUF to the extended
2859 floating-point format used by the FPU. This is probably
2860 not exactly how it would happen on the target itself, but
2861 it is the best we can do. */
2862 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2863 regcache->raw_write (I386_ST0_REGNUM, buf);
2864
2865 /* Set the top of the floating-point register stack to 7. The
2866 actual value doesn't really matter, but 7 is what a normal
2867 function return would end up with if the program started out
2868 with a freshly initialized FPU. */
2869 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2870 fstat |= (7 << 11);
2871 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2872
2873 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2874 the floating-point register stack to 7, the appropriate value
2875 for the tag word is 0x3fff. */
2876 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2877 }
2878 else
2879 {
2880 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2881 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2882
2883 if (len <= low_size)
2884 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
2885 else if (len <= (low_size + high_size))
2886 {
2887 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
2888 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2889 valbuf + low_size);
2890 }
2891 else
2892 internal_error (__FILE__, __LINE__,
2893 _("Cannot store return value of %d bytes long."), len);
2894 }
2895 }
2896 \f
2897
2898 /* This is the variable that is set with "set struct-convention", and
2899 its legitimate values. */
2900 static const char default_struct_convention[] = "default";
2901 static const char pcc_struct_convention[] = "pcc";
2902 static const char reg_struct_convention[] = "reg";
2903 static const char *const valid_conventions[] =
2904 {
2905 default_struct_convention,
2906 pcc_struct_convention,
2907 reg_struct_convention,
2908 NULL
2909 };
2910 static const char *struct_convention = default_struct_convention;
2911
2912 /* Return non-zero if TYPE, which is assumed to be a structure,
2913 a union type, or an array type, should be returned in registers
2914 for architecture GDBARCH. */
2915
2916 static int
2917 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2918 {
2919 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2920 enum type_code code = TYPE_CODE (type);
2921 int len = TYPE_LENGTH (type);
2922
2923 gdb_assert (code == TYPE_CODE_STRUCT
2924 || code == TYPE_CODE_UNION
2925 || code == TYPE_CODE_ARRAY);
2926
2927 if (struct_convention == pcc_struct_convention
2928 || (struct_convention == default_struct_convention
2929 && tdep->struct_return == pcc_struct_return))
2930 return 0;
2931
2932 /* Structures consisting of a single `float', `double' or 'long
2933 double' member are returned in %st(0). */
2934 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2935 {
2936 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2937 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2938 return (len == 4 || len == 8 || len == 12);
2939 }
2940
2941 return (len == 1 || len == 2 || len == 4 || len == 8);
2942 }
2943
2944 /* Determine, for architecture GDBARCH, how a return value of TYPE
2945 should be returned. If it is supposed to be returned in registers,
2946 and READBUF is non-zero, read the appropriate value from REGCACHE,
2947 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2948 from WRITEBUF into REGCACHE. */
2949
2950 static enum return_value_convention
2951 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2952 struct type *type, struct regcache *regcache,
2953 gdb_byte *readbuf, const gdb_byte *writebuf)
2954 {
2955 enum type_code code = TYPE_CODE (type);
2956
2957 if (((code == TYPE_CODE_STRUCT
2958 || code == TYPE_CODE_UNION
2959 || code == TYPE_CODE_ARRAY)
2960 && !i386_reg_struct_return_p (gdbarch, type))
2961 /* Complex double and long double uses the struct return covention. */
2962 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2963 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2964 /* 128-bit decimal float uses the struct return convention. */
2965 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2966 {
2967 /* The System V ABI says that:
2968
2969 "A function that returns a structure or union also sets %eax
2970 to the value of the original address of the caller's area
2971 before it returns. Thus when the caller receives control
2972 again, the address of the returned object resides in register
2973 %eax and can be used to access the object."
2974
2975 So the ABI guarantees that we can always find the return
2976 value just after the function has returned. */
2977
2978 /* Note that the ABI doesn't mention functions returning arrays,
2979 which is something possible in certain languages such as Ada.
2980 In this case, the value is returned as if it was wrapped in
2981 a record, so the convention applied to records also applies
2982 to arrays. */
2983
2984 if (readbuf)
2985 {
2986 ULONGEST addr;
2987
2988 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2989 read_memory (addr, readbuf, TYPE_LENGTH (type));
2990 }
2991
2992 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2993 }
2994
2995 /* This special case is for structures consisting of a single
2996 `float', `double' or 'long double' member. These structures are
2997 returned in %st(0). For these structures, we call ourselves
2998 recursively, changing TYPE into the type of the first member of
2999 the structure. Since that should work for all structures that
3000 have only one member, we don't bother to check the member's type
3001 here. */
3002 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
3003 {
3004 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
3005 return i386_return_value (gdbarch, function, type, regcache,
3006 readbuf, writebuf);
3007 }
3008
3009 if (readbuf)
3010 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3011 if (writebuf)
3012 i386_store_return_value (gdbarch, type, regcache, writebuf);
3013
3014 return RETURN_VALUE_REGISTER_CONVENTION;
3015 }
3016 \f
3017
3018 struct type *
3019 i387_ext_type (struct gdbarch *gdbarch)
3020 {
3021 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3022
3023 if (!tdep->i387_ext_type)
3024 {
3025 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3026 gdb_assert (tdep->i387_ext_type != NULL);
3027 }
3028
3029 return tdep->i387_ext_type;
3030 }
3031
3032 /* Construct type for pseudo BND registers. We can't use
3033 tdesc_find_type since a complement of one value has to be used
3034 to describe the upper bound. */
3035
3036 static struct type *
3037 i386_bnd_type (struct gdbarch *gdbarch)
3038 {
3039 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3040
3041
3042 if (!tdep->i386_bnd_type)
3043 {
3044 struct type *t;
3045 const struct builtin_type *bt = builtin_type (gdbarch);
3046
3047 /* The type we're building is described bellow: */
3048 #if 0
3049 struct __bound128
3050 {
3051 void *lbound;
3052 void *ubound; /* One complement of raw ubound field. */
3053 };
3054 #endif
3055
3056 t = arch_composite_type (gdbarch,
3057 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3058
3059 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3060 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3061
3062 TYPE_NAME (t) = "builtin_type_bound128";
3063 tdep->i386_bnd_type = t;
3064 }
3065
3066 return tdep->i386_bnd_type;
3067 }
3068
3069 /* Construct vector type for pseudo ZMM registers. We can't use
3070 tdesc_find_type since ZMM isn't described in target description. */
3071
3072 static struct type *
3073 i386_zmm_type (struct gdbarch *gdbarch)
3074 {
3075 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3076
3077 if (!tdep->i386_zmm_type)
3078 {
3079 const struct builtin_type *bt = builtin_type (gdbarch);
3080
3081 /* The type we're building is this: */
3082 #if 0
3083 union __gdb_builtin_type_vec512i
3084 {
3085 int128_t uint128[4];
3086 int64_t v4_int64[8];
3087 int32_t v8_int32[16];
3088 int16_t v16_int16[32];
3089 int8_t v32_int8[64];
3090 double v4_double[8];
3091 float v8_float[16];
3092 };
3093 #endif
3094
3095 struct type *t;
3096
3097 t = arch_composite_type (gdbarch,
3098 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3099 append_composite_type_field (t, "v16_float",
3100 init_vector_type (bt->builtin_float, 16));
3101 append_composite_type_field (t, "v8_double",
3102 init_vector_type (bt->builtin_double, 8));
3103 append_composite_type_field (t, "v64_int8",
3104 init_vector_type (bt->builtin_int8, 64));
3105 append_composite_type_field (t, "v32_int16",
3106 init_vector_type (bt->builtin_int16, 32));
3107 append_composite_type_field (t, "v16_int32",
3108 init_vector_type (bt->builtin_int32, 16));
3109 append_composite_type_field (t, "v8_int64",
3110 init_vector_type (bt->builtin_int64, 8));
3111 append_composite_type_field (t, "v4_int128",
3112 init_vector_type (bt->builtin_int128, 4));
3113
3114 TYPE_VECTOR (t) = 1;
3115 TYPE_NAME (t) = "builtin_type_vec512i";
3116 tdep->i386_zmm_type = t;
3117 }
3118
3119 return tdep->i386_zmm_type;
3120 }
3121
3122 /* Construct vector type for pseudo YMM registers. We can't use
3123 tdesc_find_type since YMM isn't described in target description. */
3124
3125 static struct type *
3126 i386_ymm_type (struct gdbarch *gdbarch)
3127 {
3128 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3129
3130 if (!tdep->i386_ymm_type)
3131 {
3132 const struct builtin_type *bt = builtin_type (gdbarch);
3133
3134 /* The type we're building is this: */
3135 #if 0
3136 union __gdb_builtin_type_vec256i
3137 {
3138 int128_t uint128[2];
3139 int64_t v2_int64[4];
3140 int32_t v4_int32[8];
3141 int16_t v8_int16[16];
3142 int8_t v16_int8[32];
3143 double v2_double[4];
3144 float v4_float[8];
3145 };
3146 #endif
3147
3148 struct type *t;
3149
3150 t = arch_composite_type (gdbarch,
3151 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3152 append_composite_type_field (t, "v8_float",
3153 init_vector_type (bt->builtin_float, 8));
3154 append_composite_type_field (t, "v4_double",
3155 init_vector_type (bt->builtin_double, 4));
3156 append_composite_type_field (t, "v32_int8",
3157 init_vector_type (bt->builtin_int8, 32));
3158 append_composite_type_field (t, "v16_int16",
3159 init_vector_type (bt->builtin_int16, 16));
3160 append_composite_type_field (t, "v8_int32",
3161 init_vector_type (bt->builtin_int32, 8));
3162 append_composite_type_field (t, "v4_int64",
3163 init_vector_type (bt->builtin_int64, 4));
3164 append_composite_type_field (t, "v2_int128",
3165 init_vector_type (bt->builtin_int128, 2));
3166
3167 TYPE_VECTOR (t) = 1;
3168 TYPE_NAME (t) = "builtin_type_vec256i";
3169 tdep->i386_ymm_type = t;
3170 }
3171
3172 return tdep->i386_ymm_type;
3173 }
3174
3175 /* Construct vector type for MMX registers. */
3176 static struct type *
3177 i386_mmx_type (struct gdbarch *gdbarch)
3178 {
3179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3180
3181 if (!tdep->i386_mmx_type)
3182 {
3183 const struct builtin_type *bt = builtin_type (gdbarch);
3184
3185 /* The type we're building is this: */
3186 #if 0
3187 union __gdb_builtin_type_vec64i
3188 {
3189 int64_t uint64;
3190 int32_t v2_int32[2];
3191 int16_t v4_int16[4];
3192 int8_t v8_int8[8];
3193 };
3194 #endif
3195
3196 struct type *t;
3197
3198 t = arch_composite_type (gdbarch,
3199 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3200
3201 append_composite_type_field (t, "uint64", bt->builtin_int64);
3202 append_composite_type_field (t, "v2_int32",
3203 init_vector_type (bt->builtin_int32, 2));
3204 append_composite_type_field (t, "v4_int16",
3205 init_vector_type (bt->builtin_int16, 4));
3206 append_composite_type_field (t, "v8_int8",
3207 init_vector_type (bt->builtin_int8, 8));
3208
3209 TYPE_VECTOR (t) = 1;
3210 TYPE_NAME (t) = "builtin_type_vec64i";
3211 tdep->i386_mmx_type = t;
3212 }
3213
3214 return tdep->i386_mmx_type;
3215 }
3216
3217 /* Return the GDB type object for the "standard" data type of data in
3218 register REGNUM. */
3219
3220 struct type *
3221 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3222 {
3223 if (i386_bnd_regnum_p (gdbarch, regnum))
3224 return i386_bnd_type (gdbarch);
3225 if (i386_mmx_regnum_p (gdbarch, regnum))
3226 return i386_mmx_type (gdbarch);
3227 else if (i386_ymm_regnum_p (gdbarch, regnum))
3228 return i386_ymm_type (gdbarch);
3229 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3230 return i386_ymm_type (gdbarch);
3231 else if (i386_zmm_regnum_p (gdbarch, regnum))
3232 return i386_zmm_type (gdbarch);
3233 else
3234 {
3235 const struct builtin_type *bt = builtin_type (gdbarch);
3236 if (i386_byte_regnum_p (gdbarch, regnum))
3237 return bt->builtin_int8;
3238 else if (i386_word_regnum_p (gdbarch, regnum))
3239 return bt->builtin_int16;
3240 else if (i386_dword_regnum_p (gdbarch, regnum))
3241 return bt->builtin_int32;
3242 else if (i386_k_regnum_p (gdbarch, regnum))
3243 return bt->builtin_int64;
3244 }
3245
3246 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3247 }
3248
3249 /* Map a cooked register onto a raw register or memory. For the i386,
3250 the MMX registers need to be mapped onto floating point registers. */
3251
3252 static int
3253 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3254 {
3255 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
3256 int mmxreg, fpreg;
3257 ULONGEST fstat;
3258 int tos;
3259
3260 mmxreg = regnum - tdep->mm0_regnum;
3261 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3262 tos = (fstat >> 11) & 0x7;
3263 fpreg = (mmxreg + tos) % 8;
3264
3265 return (I387_ST0_REGNUM (tdep) + fpreg);
3266 }
3267
3268 /* A helper function for us by i386_pseudo_register_read_value and
3269 amd64_pseudo_register_read_value. It does all the work but reads
3270 the data into an already-allocated value. */
3271
3272 void
3273 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3274 readable_regcache *regcache,
3275 int regnum,
3276 struct value *result_value)
3277 {
3278 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3279 enum register_status status;
3280 gdb_byte *buf = value_contents_raw (result_value);
3281
3282 if (i386_mmx_regnum_p (gdbarch, regnum))
3283 {
3284 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3285
3286 /* Extract (always little endian). */
3287 status = regcache->raw_read (fpnum, raw_buf);
3288 if (status != REG_VALID)
3289 mark_value_bytes_unavailable (result_value, 0,
3290 TYPE_LENGTH (value_type (result_value)));
3291 else
3292 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3293 }
3294 else
3295 {
3296 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3297 if (i386_bnd_regnum_p (gdbarch, regnum))
3298 {
3299 regnum -= tdep->bnd0_regnum;
3300
3301 /* Extract (always little endian). Read lower 128bits. */
3302 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3303 raw_buf);
3304 if (status != REG_VALID)
3305 mark_value_bytes_unavailable (result_value, 0, 16);
3306 else
3307 {
3308 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3309 LONGEST upper, lower;
3310 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3311
3312 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3313 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3314 upper = ~upper;
3315
3316 memcpy (buf, &lower, size);
3317 memcpy (buf + size, &upper, size);
3318 }
3319 }
3320 else if (i386_k_regnum_p (gdbarch, regnum))
3321 {
3322 regnum -= tdep->k0_regnum;
3323
3324 /* Extract (always little endian). */
3325 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3326 if (status != REG_VALID)
3327 mark_value_bytes_unavailable (result_value, 0, 8);
3328 else
3329 memcpy (buf, raw_buf, 8);
3330 }
3331 else if (i386_zmm_regnum_p (gdbarch, regnum))
3332 {
3333 regnum -= tdep->zmm0_regnum;
3334
3335 if (regnum < num_lower_zmm_regs)
3336 {
3337 /* Extract (always little endian). Read lower 128bits. */
3338 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3339 raw_buf);
3340 if (status != REG_VALID)
3341 mark_value_bytes_unavailable (result_value, 0, 16);
3342 else
3343 memcpy (buf, raw_buf, 16);
3344
3345 /* Extract (always little endian). Read upper 128bits. */
3346 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3347 raw_buf);
3348 if (status != REG_VALID)
3349 mark_value_bytes_unavailable (result_value, 16, 16);
3350 else
3351 memcpy (buf + 16, raw_buf, 16);
3352 }
3353 else
3354 {
3355 /* Extract (always little endian). Read lower 128bits. */
3356 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3357 - num_lower_zmm_regs,
3358 raw_buf);
3359 if (status != REG_VALID)
3360 mark_value_bytes_unavailable (result_value, 0, 16);
3361 else
3362 memcpy (buf, raw_buf, 16);
3363
3364 /* Extract (always little endian). Read upper 128bits. */
3365 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3366 - num_lower_zmm_regs,
3367 raw_buf);
3368 if (status != REG_VALID)
3369 mark_value_bytes_unavailable (result_value, 16, 16);
3370 else
3371 memcpy (buf + 16, raw_buf, 16);
3372 }
3373
3374 /* Read upper 256bits. */
3375 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3376 raw_buf);
3377 if (status != REG_VALID)
3378 mark_value_bytes_unavailable (result_value, 32, 32);
3379 else
3380 memcpy (buf + 32, raw_buf, 32);
3381 }
3382 else if (i386_ymm_regnum_p (gdbarch, regnum))
3383 {
3384 regnum -= tdep->ymm0_regnum;
3385
3386 /* Extract (always little endian). Read lower 128bits. */
3387 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3388 raw_buf);
3389 if (status != REG_VALID)
3390 mark_value_bytes_unavailable (result_value, 0, 16);
3391 else
3392 memcpy (buf, raw_buf, 16);
3393 /* Read upper 128bits. */
3394 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3395 raw_buf);
3396 if (status != REG_VALID)
3397 mark_value_bytes_unavailable (result_value, 16, 32);
3398 else
3399 memcpy (buf + 16, raw_buf, 16);
3400 }
3401 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3402 {
3403 regnum -= tdep->ymm16_regnum;
3404 /* Extract (always little endian). Read lower 128bits. */
3405 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3406 raw_buf);
3407 if (status != REG_VALID)
3408 mark_value_bytes_unavailable (result_value, 0, 16);
3409 else
3410 memcpy (buf, raw_buf, 16);
3411 /* Read upper 128bits. */
3412 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3413 raw_buf);
3414 if (status != REG_VALID)
3415 mark_value_bytes_unavailable (result_value, 16, 16);
3416 else
3417 memcpy (buf + 16, raw_buf, 16);
3418 }
3419 else if (i386_word_regnum_p (gdbarch, regnum))
3420 {
3421 int gpnum = regnum - tdep->ax_regnum;
3422
3423 /* Extract (always little endian). */
3424 status = regcache->raw_read (gpnum, raw_buf);
3425 if (status != REG_VALID)
3426 mark_value_bytes_unavailable (result_value, 0,
3427 TYPE_LENGTH (value_type (result_value)));
3428 else
3429 memcpy (buf, raw_buf, 2);
3430 }
3431 else if (i386_byte_regnum_p (gdbarch, regnum))
3432 {
3433 int gpnum = regnum - tdep->al_regnum;
3434
3435 /* Extract (always little endian). We read both lower and
3436 upper registers. */
3437 status = regcache->raw_read (gpnum % 4, raw_buf);
3438 if (status != REG_VALID)
3439 mark_value_bytes_unavailable (result_value, 0,
3440 TYPE_LENGTH (value_type (result_value)));
3441 else if (gpnum >= 4)
3442 memcpy (buf, raw_buf + 1, 1);
3443 else
3444 memcpy (buf, raw_buf, 1);
3445 }
3446 else
3447 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3448 }
3449 }
3450
3451 static struct value *
3452 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3453 readable_regcache *regcache,
3454 int regnum)
3455 {
3456 struct value *result;
3457
3458 result = allocate_value (register_type (gdbarch, regnum));
3459 VALUE_LVAL (result) = lval_register;
3460 VALUE_REGNUM (result) = regnum;
3461
3462 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3463
3464 return result;
3465 }
3466
3467 void
3468 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3469 int regnum, const gdb_byte *buf)
3470 {
3471 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3472
3473 if (i386_mmx_regnum_p (gdbarch, regnum))
3474 {
3475 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3476
3477 /* Read ... */
3478 regcache->raw_read (fpnum, raw_buf);
3479 /* ... Modify ... (always little endian). */
3480 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3481 /* ... Write. */
3482 regcache->raw_write (fpnum, raw_buf);
3483 }
3484 else
3485 {
3486 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3487
3488 if (i386_bnd_regnum_p (gdbarch, regnum))
3489 {
3490 ULONGEST upper, lower;
3491 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3492 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3493
3494 /* New values from input value. */
3495 regnum -= tdep->bnd0_regnum;
3496 lower = extract_unsigned_integer (buf, size, byte_order);
3497 upper = extract_unsigned_integer (buf + size, size, byte_order);
3498
3499 /* Fetching register buffer. */
3500 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3501 raw_buf);
3502
3503 upper = ~upper;
3504
3505 /* Set register bits. */
3506 memcpy (raw_buf, &lower, 8);
3507 memcpy (raw_buf + 8, &upper, 8);
3508
3509 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
3510 }
3511 else if (i386_k_regnum_p (gdbarch, regnum))
3512 {
3513 regnum -= tdep->k0_regnum;
3514
3515 regcache->raw_write (tdep->k0_regnum + regnum, buf);
3516 }
3517 else if (i386_zmm_regnum_p (gdbarch, regnum))
3518 {
3519 regnum -= tdep->zmm0_regnum;
3520
3521 if (regnum < num_lower_zmm_regs)
3522 {
3523 /* Write lower 128bits. */
3524 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3525 /* Write upper 128bits. */
3526 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
3527 }
3528 else
3529 {
3530 /* Write lower 128bits. */
3531 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3532 - num_lower_zmm_regs, buf);
3533 /* Write upper 128bits. */
3534 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3535 - num_lower_zmm_regs, buf + 16);
3536 }
3537 /* Write upper 256bits. */
3538 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
3539 }
3540 else if (i386_ymm_regnum_p (gdbarch, regnum))
3541 {
3542 regnum -= tdep->ymm0_regnum;
3543
3544 /* ... Write lower 128bits. */
3545 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3546 /* ... Write upper 128bits. */
3547 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
3548 }
3549 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3550 {
3551 regnum -= tdep->ymm16_regnum;
3552
3553 /* ... Write lower 128bits. */
3554 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
3555 /* ... Write upper 128bits. */
3556 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
3557 }
3558 else if (i386_word_regnum_p (gdbarch, regnum))
3559 {
3560 int gpnum = regnum - tdep->ax_regnum;
3561
3562 /* Read ... */
3563 regcache->raw_read (gpnum, raw_buf);
3564 /* ... Modify ... (always little endian). */
3565 memcpy (raw_buf, buf, 2);
3566 /* ... Write. */
3567 regcache->raw_write (gpnum, raw_buf);
3568 }
3569 else if (i386_byte_regnum_p (gdbarch, regnum))
3570 {
3571 int gpnum = regnum - tdep->al_regnum;
3572
3573 /* Read ... We read both lower and upper registers. */
3574 regcache->raw_read (gpnum % 4, raw_buf);
3575 /* ... Modify ... (always little endian). */
3576 if (gpnum >= 4)
3577 memcpy (raw_buf + 1, buf, 1);
3578 else
3579 memcpy (raw_buf, buf, 1);
3580 /* ... Write. */
3581 regcache->raw_write (gpnum % 4, raw_buf);
3582 }
3583 else
3584 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3585 }
3586 }
3587
3588 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3589
3590 int
3591 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3592 struct agent_expr *ax, int regnum)
3593 {
3594 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3595
3596 if (i386_mmx_regnum_p (gdbarch, regnum))
3597 {
3598 /* MMX to FPU register mapping depends on current TOS. Let's just
3599 not care and collect everything... */
3600 int i;
3601
3602 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3603 for (i = 0; i < 8; i++)
3604 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3605 return 0;
3606 }
3607 else if (i386_bnd_regnum_p (gdbarch, regnum))
3608 {
3609 regnum -= tdep->bnd0_regnum;
3610 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3611 return 0;
3612 }
3613 else if (i386_k_regnum_p (gdbarch, regnum))
3614 {
3615 regnum -= tdep->k0_regnum;
3616 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3617 return 0;
3618 }
3619 else if (i386_zmm_regnum_p (gdbarch, regnum))
3620 {
3621 regnum -= tdep->zmm0_regnum;
3622 if (regnum < num_lower_zmm_regs)
3623 {
3624 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3625 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3626 }
3627 else
3628 {
3629 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3630 - num_lower_zmm_regs);
3631 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3632 - num_lower_zmm_regs);
3633 }
3634 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3635 return 0;
3636 }
3637 else if (i386_ymm_regnum_p (gdbarch, regnum))
3638 {
3639 regnum -= tdep->ymm0_regnum;
3640 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3641 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3642 return 0;
3643 }
3644 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3645 {
3646 regnum -= tdep->ymm16_regnum;
3647 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3648 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3649 return 0;
3650 }
3651 else if (i386_word_regnum_p (gdbarch, regnum))
3652 {
3653 int gpnum = regnum - tdep->ax_regnum;
3654
3655 ax_reg_mask (ax, gpnum);
3656 return 0;
3657 }
3658 else if (i386_byte_regnum_p (gdbarch, regnum))
3659 {
3660 int gpnum = regnum - tdep->al_regnum;
3661
3662 ax_reg_mask (ax, gpnum % 4);
3663 return 0;
3664 }
3665 else
3666 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3667 return 1;
3668 }
3669 \f
3670
3671 /* Return the register number of the register allocated by GCC after
3672 REGNUM, or -1 if there is no such register. */
3673
3674 static int
3675 i386_next_regnum (int regnum)
3676 {
3677 /* GCC allocates the registers in the order:
3678
3679 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3680
3681 Since storing a variable in %esp doesn't make any sense we return
3682 -1 for %ebp and for %esp itself. */
3683 static int next_regnum[] =
3684 {
3685 I386_EDX_REGNUM, /* Slot for %eax. */
3686 I386_EBX_REGNUM, /* Slot for %ecx. */
3687 I386_ECX_REGNUM, /* Slot for %edx. */
3688 I386_ESI_REGNUM, /* Slot for %ebx. */
3689 -1, -1, /* Slots for %esp and %ebp. */
3690 I386_EDI_REGNUM, /* Slot for %esi. */
3691 I386_EBP_REGNUM /* Slot for %edi. */
3692 };
3693
3694 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3695 return next_regnum[regnum];
3696
3697 return -1;
3698 }
3699
3700 /* Return nonzero if a value of type TYPE stored in register REGNUM
3701 needs any special handling. */
3702
3703 static int
3704 i386_convert_register_p (struct gdbarch *gdbarch,
3705 int regnum, struct type *type)
3706 {
3707 int len = TYPE_LENGTH (type);
3708
3709 /* Values may be spread across multiple registers. Most debugging
3710 formats aren't expressive enough to specify the locations, so
3711 some heuristics is involved. Right now we only handle types that
3712 have a length that is a multiple of the word size, since GCC
3713 doesn't seem to put any other types into registers. */
3714 if (len > 4 && len % 4 == 0)
3715 {
3716 int last_regnum = regnum;
3717
3718 while (len > 4)
3719 {
3720 last_regnum = i386_next_regnum (last_regnum);
3721 len -= 4;
3722 }
3723
3724 if (last_regnum != -1)
3725 return 1;
3726 }
3727
3728 return i387_convert_register_p (gdbarch, regnum, type);
3729 }
3730
3731 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3732 return its contents in TO. */
3733
3734 static int
3735 i386_register_to_value (struct frame_info *frame, int regnum,
3736 struct type *type, gdb_byte *to,
3737 int *optimizedp, int *unavailablep)
3738 {
3739 struct gdbarch *gdbarch = get_frame_arch (frame);
3740 int len = TYPE_LENGTH (type);
3741
3742 if (i386_fp_regnum_p (gdbarch, regnum))
3743 return i387_register_to_value (frame, regnum, type, to,
3744 optimizedp, unavailablep);
3745
3746 /* Read a value spread across multiple registers. */
3747
3748 gdb_assert (len > 4 && len % 4 == 0);
3749
3750 while (len > 0)
3751 {
3752 gdb_assert (regnum != -1);
3753 gdb_assert (register_size (gdbarch, regnum) == 4);
3754
3755 if (!get_frame_register_bytes (frame, regnum, 0,
3756 register_size (gdbarch, regnum),
3757 to, optimizedp, unavailablep))
3758 return 0;
3759
3760 regnum = i386_next_regnum (regnum);
3761 len -= 4;
3762 to += 4;
3763 }
3764
3765 *optimizedp = *unavailablep = 0;
3766 return 1;
3767 }
3768
3769 /* Write the contents FROM of a value of type TYPE into register
3770 REGNUM in frame FRAME. */
3771
3772 static void
3773 i386_value_to_register (struct frame_info *frame, int regnum,
3774 struct type *type, const gdb_byte *from)
3775 {
3776 int len = TYPE_LENGTH (type);
3777
3778 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3779 {
3780 i387_value_to_register (frame, regnum, type, from);
3781 return;
3782 }
3783
3784 /* Write a value spread across multiple registers. */
3785
3786 gdb_assert (len > 4 && len % 4 == 0);
3787
3788 while (len > 0)
3789 {
3790 gdb_assert (regnum != -1);
3791 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3792
3793 put_frame_register (frame, regnum, from);
3794 regnum = i386_next_regnum (regnum);
3795 len -= 4;
3796 from += 4;
3797 }
3798 }
3799 \f
3800 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3801 in the general-purpose register set REGSET to register cache
3802 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3803
3804 void
3805 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3806 int regnum, const void *gregs, size_t len)
3807 {
3808 struct gdbarch *gdbarch = regcache->arch ();
3809 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3810 const gdb_byte *regs = (const gdb_byte *) gregs;
3811 int i;
3812
3813 gdb_assert (len >= tdep->sizeof_gregset);
3814
3815 for (i = 0; i < tdep->gregset_num_regs; i++)
3816 {
3817 if ((regnum == i || regnum == -1)
3818 && tdep->gregset_reg_offset[i] != -1)
3819 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
3820 }
3821 }
3822
3823 /* Collect register REGNUM from the register cache REGCACHE and store
3824 it in the buffer specified by GREGS and LEN as described by the
3825 general-purpose register set REGSET. If REGNUM is -1, do this for
3826 all registers in REGSET. */
3827
3828 static void
3829 i386_collect_gregset (const struct regset *regset,
3830 const struct regcache *regcache,
3831 int regnum, void *gregs, size_t len)
3832 {
3833 struct gdbarch *gdbarch = regcache->arch ();
3834 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3835 gdb_byte *regs = (gdb_byte *) gregs;
3836 int i;
3837
3838 gdb_assert (len >= tdep->sizeof_gregset);
3839
3840 for (i = 0; i < tdep->gregset_num_regs; i++)
3841 {
3842 if ((regnum == i || regnum == -1)
3843 && tdep->gregset_reg_offset[i] != -1)
3844 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
3845 }
3846 }
3847
3848 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3849 in the floating-point register set REGSET to register cache
3850 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3851
3852 static void
3853 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3854 int regnum, const void *fpregs, size_t len)
3855 {
3856 struct gdbarch *gdbarch = regcache->arch ();
3857 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3858
3859 if (len == I387_SIZEOF_FXSAVE)
3860 {
3861 i387_supply_fxsave (regcache, regnum, fpregs);
3862 return;
3863 }
3864
3865 gdb_assert (len >= tdep->sizeof_fpregset);
3866 i387_supply_fsave (regcache, regnum, fpregs);
3867 }
3868
3869 /* Collect register REGNUM from the register cache REGCACHE and store
3870 it in the buffer specified by FPREGS and LEN as described by the
3871 floating-point register set REGSET. If REGNUM is -1, do this for
3872 all registers in REGSET. */
3873
3874 static void
3875 i386_collect_fpregset (const struct regset *regset,
3876 const struct regcache *regcache,
3877 int regnum, void *fpregs, size_t len)
3878 {
3879 struct gdbarch *gdbarch = regcache->arch ();
3880 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3881
3882 if (len == I387_SIZEOF_FXSAVE)
3883 {
3884 i387_collect_fxsave (regcache, regnum, fpregs);
3885 return;
3886 }
3887
3888 gdb_assert (len >= tdep->sizeof_fpregset);
3889 i387_collect_fsave (regcache, regnum, fpregs);
3890 }
3891
3892 /* Register set definitions. */
3893
3894 const struct regset i386_gregset =
3895 {
3896 NULL, i386_supply_gregset, i386_collect_gregset
3897 };
3898
3899 const struct regset i386_fpregset =
3900 {
3901 NULL, i386_supply_fpregset, i386_collect_fpregset
3902 };
3903
3904 /* Default iterator over core file register note sections. */
3905
3906 void
3907 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3908 iterate_over_regset_sections_cb *cb,
3909 void *cb_data,
3910 const struct regcache *regcache)
3911 {
3912 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3913
3914 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
3915 cb_data);
3916 if (tdep->sizeof_fpregset)
3917 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
3918 NULL, cb_data);
3919 }
3920 \f
3921
3922 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3923
3924 CORE_ADDR
3925 i386_pe_skip_trampoline_code (struct frame_info *frame,
3926 CORE_ADDR pc, char *name)
3927 {
3928 struct gdbarch *gdbarch = get_frame_arch (frame);
3929 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3930
3931 /* jmp *(dest) */
3932 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3933 {
3934 unsigned long indirect =
3935 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3936 struct minimal_symbol *indsym =
3937 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3938 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3939
3940 if (symname)
3941 {
3942 if (startswith (symname, "__imp_")
3943 || startswith (symname, "_imp_"))
3944 return name ? 1 :
3945 read_memory_unsigned_integer (indirect, 4, byte_order);
3946 }
3947 }
3948 return 0; /* Not a trampoline. */
3949 }
3950 \f
3951
3952 /* Return whether the THIS_FRAME corresponds to a sigtramp
3953 routine. */
3954
3955 int
3956 i386_sigtramp_p (struct frame_info *this_frame)
3957 {
3958 CORE_ADDR pc = get_frame_pc (this_frame);
3959 const char *name;
3960
3961 find_pc_partial_function (pc, &name, NULL, NULL);
3962 return (name && strcmp ("_sigtramp", name) == 0);
3963 }
3964 \f
3965
3966 /* We have two flavours of disassembly. The machinery on this page
3967 deals with switching between those. */
3968
3969 static int
3970 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3971 {
3972 gdb_assert (disassembly_flavor == att_flavor
3973 || disassembly_flavor == intel_flavor);
3974
3975 info->disassembler_options = disassembly_flavor;
3976
3977 return default_print_insn (pc, info);
3978 }
3979 \f
3980
3981 /* There are a few i386 architecture variants that differ only
3982 slightly from the generic i386 target. For now, we don't give them
3983 their own source file, but include them here. As a consequence,
3984 they'll always be included. */
3985
3986 /* System V Release 4 (SVR4). */
3987
3988 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3989 routine. */
3990
3991 static int
3992 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3993 {
3994 CORE_ADDR pc = get_frame_pc (this_frame);
3995 const char *name;
3996
3997 /* The origin of these symbols is currently unknown. */
3998 find_pc_partial_function (pc, &name, NULL, NULL);
3999 return (name && (strcmp ("_sigreturn", name) == 0
4000 || strcmp ("sigvechandler", name) == 0));
4001 }
4002
4003 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4004 address of the associated sigcontext (ucontext) structure. */
4005
4006 static CORE_ADDR
4007 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4008 {
4009 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4010 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4011 gdb_byte buf[4];
4012 CORE_ADDR sp;
4013
4014 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4015 sp = extract_unsigned_integer (buf, 4, byte_order);
4016
4017 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4018 }
4019
4020 \f
4021
4022 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4023 gdbarch.h. */
4024
4025 int
4026 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4027 {
4028 return (*s == '$' /* Literal number. */
4029 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4030 || (*s == '(' && s[1] == '%') /* Register indirection. */
4031 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4032 }
4033
4034 /* Helper function for i386_stap_parse_special_token.
4035
4036 This function parses operands of the form `-8+3+1(%rbp)', which
4037 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4038
4039 Return 1 if the operand was parsed successfully, zero
4040 otherwise. */
4041
4042 static int
4043 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4044 struct stap_parse_info *p)
4045 {
4046 const char *s = p->arg;
4047
4048 if (isdigit (*s) || *s == '-' || *s == '+')
4049 {
4050 int got_minus[3];
4051 int i;
4052 long displacements[3];
4053 const char *start;
4054 char *regname;
4055 int len;
4056 struct stoken str;
4057 char *endp;
4058
4059 got_minus[0] = 0;
4060 if (*s == '+')
4061 ++s;
4062 else if (*s == '-')
4063 {
4064 ++s;
4065 got_minus[0] = 1;
4066 }
4067
4068 if (!isdigit ((unsigned char) *s))
4069 return 0;
4070
4071 displacements[0] = strtol (s, &endp, 10);
4072 s = endp;
4073
4074 if (*s != '+' && *s != '-')
4075 {
4076 /* We are not dealing with a triplet. */
4077 return 0;
4078 }
4079
4080 got_minus[1] = 0;
4081 if (*s == '+')
4082 ++s;
4083 else
4084 {
4085 ++s;
4086 got_minus[1] = 1;
4087 }
4088
4089 if (!isdigit ((unsigned char) *s))
4090 return 0;
4091
4092 displacements[1] = strtol (s, &endp, 10);
4093 s = endp;
4094
4095 if (*s != '+' && *s != '-')
4096 {
4097 /* We are not dealing with a triplet. */
4098 return 0;
4099 }
4100
4101 got_minus[2] = 0;
4102 if (*s == '+')
4103 ++s;
4104 else
4105 {
4106 ++s;
4107 got_minus[2] = 1;
4108 }
4109
4110 if (!isdigit ((unsigned char) *s))
4111 return 0;
4112
4113 displacements[2] = strtol (s, &endp, 10);
4114 s = endp;
4115
4116 if (*s != '(' || s[1] != '%')
4117 return 0;
4118
4119 s += 2;
4120 start = s;
4121
4122 while (isalnum (*s))
4123 ++s;
4124
4125 if (*s++ != ')')
4126 return 0;
4127
4128 len = s - start - 1;
4129 regname = (char *) alloca (len + 1);
4130
4131 strncpy (regname, start, len);
4132 regname[len] = '\0';
4133
4134 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4135 error (_("Invalid register name `%s' on expression `%s'."),
4136 regname, p->saved_arg);
4137
4138 for (i = 0; i < 3; i++)
4139 {
4140 write_exp_elt_opcode (&p->pstate, OP_LONG);
4141 write_exp_elt_type
4142 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4143 write_exp_elt_longcst (&p->pstate, displacements[i]);
4144 write_exp_elt_opcode (&p->pstate, OP_LONG);
4145 if (got_minus[i])
4146 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4147 }
4148
4149 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4150 str.ptr = regname;
4151 str.length = len;
4152 write_exp_string (&p->pstate, str);
4153 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4154
4155 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4156 write_exp_elt_type (&p->pstate,
4157 builtin_type (gdbarch)->builtin_data_ptr);
4158 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4159
4160 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4161 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4162 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4163
4164 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4165 write_exp_elt_type (&p->pstate,
4166 lookup_pointer_type (p->arg_type));
4167 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4168
4169 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4170
4171 p->arg = s;
4172
4173 return 1;
4174 }
4175
4176 return 0;
4177 }
4178
4179 /* Helper function for i386_stap_parse_special_token.
4180
4181 This function parses operands of the form `register base +
4182 (register index * size) + offset', as represented in
4183 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4184
4185 Return 1 if the operand was parsed successfully, zero
4186 otherwise. */
4187
4188 static int
4189 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4190 struct stap_parse_info *p)
4191 {
4192 const char *s = p->arg;
4193
4194 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4195 {
4196 int offset_minus = 0;
4197 long offset = 0;
4198 int size_minus = 0;
4199 long size = 0;
4200 const char *start;
4201 char *base;
4202 int len_base;
4203 char *index;
4204 int len_index;
4205 struct stoken base_token, index_token;
4206
4207 if (*s == '+')
4208 ++s;
4209 else if (*s == '-')
4210 {
4211 ++s;
4212 offset_minus = 1;
4213 }
4214
4215 if (offset_minus && !isdigit (*s))
4216 return 0;
4217
4218 if (isdigit (*s))
4219 {
4220 char *endp;
4221
4222 offset = strtol (s, &endp, 10);
4223 s = endp;
4224 }
4225
4226 if (*s != '(' || s[1] != '%')
4227 return 0;
4228
4229 s += 2;
4230 start = s;
4231
4232 while (isalnum (*s))
4233 ++s;
4234
4235 if (*s != ',' || s[1] != '%')
4236 return 0;
4237
4238 len_base = s - start;
4239 base = (char *) alloca (len_base + 1);
4240 strncpy (base, start, len_base);
4241 base[len_base] = '\0';
4242
4243 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4244 error (_("Invalid register name `%s' on expression `%s'."),
4245 base, p->saved_arg);
4246
4247 s += 2;
4248 start = s;
4249
4250 while (isalnum (*s))
4251 ++s;
4252
4253 len_index = s - start;
4254 index = (char *) alloca (len_index + 1);
4255 strncpy (index, start, len_index);
4256 index[len_index] = '\0';
4257
4258 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4259 error (_("Invalid register name `%s' on expression `%s'."),
4260 index, p->saved_arg);
4261
4262 if (*s != ',' && *s != ')')
4263 return 0;
4264
4265 if (*s == ',')
4266 {
4267 char *endp;
4268
4269 ++s;
4270 if (*s == '+')
4271 ++s;
4272 else if (*s == '-')
4273 {
4274 ++s;
4275 size_minus = 1;
4276 }
4277
4278 size = strtol (s, &endp, 10);
4279 s = endp;
4280
4281 if (*s != ')')
4282 return 0;
4283 }
4284
4285 ++s;
4286
4287 if (offset)
4288 {
4289 write_exp_elt_opcode (&p->pstate, OP_LONG);
4290 write_exp_elt_type (&p->pstate,
4291 builtin_type (gdbarch)->builtin_long);
4292 write_exp_elt_longcst (&p->pstate, offset);
4293 write_exp_elt_opcode (&p->pstate, OP_LONG);
4294 if (offset_minus)
4295 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4296 }
4297
4298 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4299 base_token.ptr = base;
4300 base_token.length = len_base;
4301 write_exp_string (&p->pstate, base_token);
4302 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4303
4304 if (offset)
4305 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4306
4307 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4308 index_token.ptr = index;
4309 index_token.length = len_index;
4310 write_exp_string (&p->pstate, index_token);
4311 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4312
4313 if (size)
4314 {
4315 write_exp_elt_opcode (&p->pstate, OP_LONG);
4316 write_exp_elt_type (&p->pstate,
4317 builtin_type (gdbarch)->builtin_long);
4318 write_exp_elt_longcst (&p->pstate, size);
4319 write_exp_elt_opcode (&p->pstate, OP_LONG);
4320 if (size_minus)
4321 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4322 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4323 }
4324
4325 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4326
4327 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4328 write_exp_elt_type (&p->pstate,
4329 lookup_pointer_type (p->arg_type));
4330 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4331
4332 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4333
4334 p->arg = s;
4335
4336 return 1;
4337 }
4338
4339 return 0;
4340 }
4341
4342 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4343 gdbarch.h. */
4344
4345 int
4346 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4347 struct stap_parse_info *p)
4348 {
4349 /* In order to parse special tokens, we use a state-machine that go
4350 through every known token and try to get a match. */
4351 enum
4352 {
4353 TRIPLET,
4354 THREE_ARG_DISPLACEMENT,
4355 DONE
4356 };
4357 int current_state;
4358
4359 current_state = TRIPLET;
4360
4361 /* The special tokens to be parsed here are:
4362
4363 - `register base + (register index * size) + offset', as represented
4364 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4365
4366 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4367 `*(-8 + 3 - 1 + (void *) $eax)'. */
4368
4369 while (current_state != DONE)
4370 {
4371 switch (current_state)
4372 {
4373 case TRIPLET:
4374 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4375 return 1;
4376 break;
4377
4378 case THREE_ARG_DISPLACEMENT:
4379 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4380 return 1;
4381 break;
4382 }
4383
4384 /* Advancing to the next state. */
4385 ++current_state;
4386 }
4387
4388 return 0;
4389 }
4390
4391 \f
4392
4393 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4394 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4395
4396 static const char *
4397 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4398 {
4399 return "(x86_64|i.86)";
4400 }
4401
4402 \f
4403
4404 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4405
4406 static bool
4407 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4408 {
4409 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4410 I386_EAX_REGNUM, I386_EIP_REGNUM);
4411 }
4412
4413 /* Generic ELF. */
4414
4415 void
4416 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4417 {
4418 static const char *const stap_integer_prefixes[] = { "$", NULL };
4419 static const char *const stap_register_prefixes[] = { "%", NULL };
4420 static const char *const stap_register_indirection_prefixes[] = { "(",
4421 NULL };
4422 static const char *const stap_register_indirection_suffixes[] = { ")",
4423 NULL };
4424
4425 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4426 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4427
4428 /* Registering SystemTap handlers. */
4429 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4430 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4431 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4432 stap_register_indirection_prefixes);
4433 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4434 stap_register_indirection_suffixes);
4435 set_gdbarch_stap_is_single_operand (gdbarch,
4436 i386_stap_is_single_operand);
4437 set_gdbarch_stap_parse_special_token (gdbarch,
4438 i386_stap_parse_special_token);
4439
4440 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4441 i386_in_indirect_branch_thunk);
4442 }
4443
4444 /* System V Release 4 (SVR4). */
4445
4446 void
4447 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4448 {
4449 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4450
4451 /* System V Release 4 uses ELF. */
4452 i386_elf_init_abi (info, gdbarch);
4453
4454 /* System V Release 4 has shared libraries. */
4455 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4456
4457 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4458 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4459 tdep->sc_pc_offset = 36 + 14 * 4;
4460 tdep->sc_sp_offset = 36 + 17 * 4;
4461
4462 tdep->jb_pc_offset = 20;
4463 }
4464
4465 \f
4466
4467 /* i386 register groups. In addition to the normal groups, add "mmx"
4468 and "sse". */
4469
4470 static struct reggroup *i386_sse_reggroup;
4471 static struct reggroup *i386_mmx_reggroup;
4472
4473 static void
4474 i386_init_reggroups (void)
4475 {
4476 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4477 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4478 }
4479
4480 static void
4481 i386_add_reggroups (struct gdbarch *gdbarch)
4482 {
4483 reggroup_add (gdbarch, i386_sse_reggroup);
4484 reggroup_add (gdbarch, i386_mmx_reggroup);
4485 reggroup_add (gdbarch, general_reggroup);
4486 reggroup_add (gdbarch, float_reggroup);
4487 reggroup_add (gdbarch, all_reggroup);
4488 reggroup_add (gdbarch, save_reggroup);
4489 reggroup_add (gdbarch, restore_reggroup);
4490 reggroup_add (gdbarch, vector_reggroup);
4491 reggroup_add (gdbarch, system_reggroup);
4492 }
4493
4494 int
4495 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4496 struct reggroup *group)
4497 {
4498 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4499 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4500 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4501 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4502 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4503 avx512_p, avx_p, sse_p, pkru_regnum_p;
4504
4505 /* Don't include pseudo registers, except for MMX, in any register
4506 groups. */
4507 if (i386_byte_regnum_p (gdbarch, regnum))
4508 return 0;
4509
4510 if (i386_word_regnum_p (gdbarch, regnum))
4511 return 0;
4512
4513 if (i386_dword_regnum_p (gdbarch, regnum))
4514 return 0;
4515
4516 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4517 if (group == i386_mmx_reggroup)
4518 return mmx_regnum_p;
4519
4520 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4521 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4522 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4523 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4524 if (group == i386_sse_reggroup)
4525 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4526
4527 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4528 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4529 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4530
4531 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4532 == X86_XSTATE_AVX_AVX512_MASK);
4533 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4534 == X86_XSTATE_AVX_MASK) && !avx512_p;
4535 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4536 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4537
4538 if (group == vector_reggroup)
4539 return (mmx_regnum_p
4540 || (zmm_regnum_p && avx512_p)
4541 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4542 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4543 || mxcsr_regnum_p);
4544
4545 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4546 || i386_fpc_regnum_p (gdbarch, regnum));
4547 if (group == float_reggroup)
4548 return fp_regnum_p;
4549
4550 /* For "info reg all", don't include upper YMM registers nor XMM
4551 registers when AVX is supported. */
4552 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4553 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4554 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4555 if (group == all_reggroup
4556 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4557 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4558 || ymmh_regnum_p
4559 || ymmh_avx512_regnum_p
4560 || zmmh_regnum_p))
4561 return 0;
4562
4563 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4564 if (group == all_reggroup
4565 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4566 return bnd_regnum_p;
4567
4568 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4569 if (group == all_reggroup
4570 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4571 return 0;
4572
4573 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4574 if (group == all_reggroup
4575 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4576 return mpx_ctrl_regnum_p;
4577
4578 if (group == general_reggroup)
4579 return (!fp_regnum_p
4580 && !mmx_regnum_p
4581 && !mxcsr_regnum_p
4582 && !xmm_regnum_p
4583 && !xmm_avx512_regnum_p
4584 && !ymm_regnum_p
4585 && !ymmh_regnum_p
4586 && !ymm_avx512_regnum_p
4587 && !ymmh_avx512_regnum_p
4588 && !bndr_regnum_p
4589 && !bnd_regnum_p
4590 && !mpx_ctrl_regnum_p
4591 && !zmm_regnum_p
4592 && !zmmh_regnum_p
4593 && !pkru_regnum_p);
4594
4595 return default_register_reggroup_p (gdbarch, regnum, group);
4596 }
4597 \f
4598
4599 /* Get the ARGIth function argument for the current function. */
4600
4601 static CORE_ADDR
4602 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4603 struct type *type)
4604 {
4605 struct gdbarch *gdbarch = get_frame_arch (frame);
4606 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4607 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4608 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4609 }
4610
4611 #define PREFIX_REPZ 0x01
4612 #define PREFIX_REPNZ 0x02
4613 #define PREFIX_LOCK 0x04
4614 #define PREFIX_DATA 0x08
4615 #define PREFIX_ADDR 0x10
4616
4617 /* operand size */
4618 enum
4619 {
4620 OT_BYTE = 0,
4621 OT_WORD,
4622 OT_LONG,
4623 OT_QUAD,
4624 OT_DQUAD,
4625 };
4626
4627 /* i386 arith/logic operations */
4628 enum
4629 {
4630 OP_ADDL,
4631 OP_ORL,
4632 OP_ADCL,
4633 OP_SBBL,
4634 OP_ANDL,
4635 OP_SUBL,
4636 OP_XORL,
4637 OP_CMPL,
4638 };
4639
4640 struct i386_record_s
4641 {
4642 struct gdbarch *gdbarch;
4643 struct regcache *regcache;
4644 CORE_ADDR orig_addr;
4645 CORE_ADDR addr;
4646 int aflag;
4647 int dflag;
4648 int override;
4649 uint8_t modrm;
4650 uint8_t mod, reg, rm;
4651 int ot;
4652 uint8_t rex_x;
4653 uint8_t rex_b;
4654 int rip_offset;
4655 int popl_esp_hack;
4656 const int *regmap;
4657 };
4658
4659 /* Parse the "modrm" part of the memory address irp->addr points at.
4660 Returns -1 if something goes wrong, 0 otherwise. */
4661
4662 static int
4663 i386_record_modrm (struct i386_record_s *irp)
4664 {
4665 struct gdbarch *gdbarch = irp->gdbarch;
4666
4667 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4668 return -1;
4669
4670 irp->addr++;
4671 irp->mod = (irp->modrm >> 6) & 3;
4672 irp->reg = (irp->modrm >> 3) & 7;
4673 irp->rm = irp->modrm & 7;
4674
4675 return 0;
4676 }
4677
4678 /* Extract the memory address that the current instruction writes to,
4679 and return it in *ADDR. Return -1 if something goes wrong. */
4680
4681 static int
4682 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4683 {
4684 struct gdbarch *gdbarch = irp->gdbarch;
4685 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4686 gdb_byte buf[4];
4687 ULONGEST offset64;
4688
4689 *addr = 0;
4690 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4691 {
4692 /* 32/64 bits */
4693 int havesib = 0;
4694 uint8_t scale = 0;
4695 uint8_t byte;
4696 uint8_t index = 0;
4697 uint8_t base = irp->rm;
4698
4699 if (base == 4)
4700 {
4701 havesib = 1;
4702 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4703 return -1;
4704 irp->addr++;
4705 scale = (byte >> 6) & 3;
4706 index = ((byte >> 3) & 7) | irp->rex_x;
4707 base = (byte & 7);
4708 }
4709 base |= irp->rex_b;
4710
4711 switch (irp->mod)
4712 {
4713 case 0:
4714 if ((base & 7) == 5)
4715 {
4716 base = 0xff;
4717 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4718 return -1;
4719 irp->addr += 4;
4720 *addr = extract_signed_integer (buf, 4, byte_order);
4721 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4722 *addr += irp->addr + irp->rip_offset;
4723 }
4724 break;
4725 case 1:
4726 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4727 return -1;
4728 irp->addr++;
4729 *addr = (int8_t) buf[0];
4730 break;
4731 case 2:
4732 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4733 return -1;
4734 *addr = extract_signed_integer (buf, 4, byte_order);
4735 irp->addr += 4;
4736 break;
4737 }
4738
4739 offset64 = 0;
4740 if (base != 0xff)
4741 {
4742 if (base == 4 && irp->popl_esp_hack)
4743 *addr += irp->popl_esp_hack;
4744 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4745 &offset64);
4746 }
4747 if (irp->aflag == 2)
4748 {
4749 *addr += offset64;
4750 }
4751 else
4752 *addr = (uint32_t) (offset64 + *addr);
4753
4754 if (havesib && (index != 4 || scale != 0))
4755 {
4756 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4757 &offset64);
4758 if (irp->aflag == 2)
4759 *addr += offset64 << scale;
4760 else
4761 *addr = (uint32_t) (*addr + (offset64 << scale));
4762 }
4763
4764 if (!irp->aflag)
4765 {
4766 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4767 address from 32-bit to 64-bit. */
4768 *addr = (uint32_t) *addr;
4769 }
4770 }
4771 else
4772 {
4773 /* 16 bits */
4774 switch (irp->mod)
4775 {
4776 case 0:
4777 if (irp->rm == 6)
4778 {
4779 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4780 return -1;
4781 irp->addr += 2;
4782 *addr = extract_signed_integer (buf, 2, byte_order);
4783 irp->rm = 0;
4784 goto no_rm;
4785 }
4786 break;
4787 case 1:
4788 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4789 return -1;
4790 irp->addr++;
4791 *addr = (int8_t) buf[0];
4792 break;
4793 case 2:
4794 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4795 return -1;
4796 irp->addr += 2;
4797 *addr = extract_signed_integer (buf, 2, byte_order);
4798 break;
4799 }
4800
4801 switch (irp->rm)
4802 {
4803 case 0:
4804 regcache_raw_read_unsigned (irp->regcache,
4805 irp->regmap[X86_RECORD_REBX_REGNUM],
4806 &offset64);
4807 *addr = (uint32_t) (*addr + offset64);
4808 regcache_raw_read_unsigned (irp->regcache,
4809 irp->regmap[X86_RECORD_RESI_REGNUM],
4810 &offset64);
4811 *addr = (uint32_t) (*addr + offset64);
4812 break;
4813 case 1:
4814 regcache_raw_read_unsigned (irp->regcache,
4815 irp->regmap[X86_RECORD_REBX_REGNUM],
4816 &offset64);
4817 *addr = (uint32_t) (*addr + offset64);
4818 regcache_raw_read_unsigned (irp->regcache,
4819 irp->regmap[X86_RECORD_REDI_REGNUM],
4820 &offset64);
4821 *addr = (uint32_t) (*addr + offset64);
4822 break;
4823 case 2:
4824 regcache_raw_read_unsigned (irp->regcache,
4825 irp->regmap[X86_RECORD_REBP_REGNUM],
4826 &offset64);
4827 *addr = (uint32_t) (*addr + offset64);
4828 regcache_raw_read_unsigned (irp->regcache,
4829 irp->regmap[X86_RECORD_RESI_REGNUM],
4830 &offset64);
4831 *addr = (uint32_t) (*addr + offset64);
4832 break;
4833 case 3:
4834 regcache_raw_read_unsigned (irp->regcache,
4835 irp->regmap[X86_RECORD_REBP_REGNUM],
4836 &offset64);
4837 *addr = (uint32_t) (*addr + offset64);
4838 regcache_raw_read_unsigned (irp->regcache,
4839 irp->regmap[X86_RECORD_REDI_REGNUM],
4840 &offset64);
4841 *addr = (uint32_t) (*addr + offset64);
4842 break;
4843 case 4:
4844 regcache_raw_read_unsigned (irp->regcache,
4845 irp->regmap[X86_RECORD_RESI_REGNUM],
4846 &offset64);
4847 *addr = (uint32_t) (*addr + offset64);
4848 break;
4849 case 5:
4850 regcache_raw_read_unsigned (irp->regcache,
4851 irp->regmap[X86_RECORD_REDI_REGNUM],
4852 &offset64);
4853 *addr = (uint32_t) (*addr + offset64);
4854 break;
4855 case 6:
4856 regcache_raw_read_unsigned (irp->regcache,
4857 irp->regmap[X86_RECORD_REBP_REGNUM],
4858 &offset64);
4859 *addr = (uint32_t) (*addr + offset64);
4860 break;
4861 case 7:
4862 regcache_raw_read_unsigned (irp->regcache,
4863 irp->regmap[X86_RECORD_REBX_REGNUM],
4864 &offset64);
4865 *addr = (uint32_t) (*addr + offset64);
4866 break;
4867 }
4868 *addr &= 0xffff;
4869 }
4870
4871 no_rm:
4872 return 0;
4873 }
4874
4875 /* Record the address and contents of the memory that will be changed
4876 by the current instruction. Return -1 if something goes wrong, 0
4877 otherwise. */
4878
4879 static int
4880 i386_record_lea_modrm (struct i386_record_s *irp)
4881 {
4882 struct gdbarch *gdbarch = irp->gdbarch;
4883 uint64_t addr;
4884
4885 if (irp->override >= 0)
4886 {
4887 if (record_full_memory_query)
4888 {
4889 if (yquery (_("\
4890 Process record ignores the memory change of instruction at address %s\n\
4891 because it can't get the value of the segment register.\n\
4892 Do you want to stop the program?"),
4893 paddress (gdbarch, irp->orig_addr)))
4894 return -1;
4895 }
4896
4897 return 0;
4898 }
4899
4900 if (i386_record_lea_modrm_addr (irp, &addr))
4901 return -1;
4902
4903 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4904 return -1;
4905
4906 return 0;
4907 }
4908
4909 /* Record the effects of a push operation. Return -1 if something
4910 goes wrong, 0 otherwise. */
4911
4912 static int
4913 i386_record_push (struct i386_record_s *irp, int size)
4914 {
4915 ULONGEST addr;
4916
4917 if (record_full_arch_list_add_reg (irp->regcache,
4918 irp->regmap[X86_RECORD_RESP_REGNUM]))
4919 return -1;
4920 regcache_raw_read_unsigned (irp->regcache,
4921 irp->regmap[X86_RECORD_RESP_REGNUM],
4922 &addr);
4923 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4924 return -1;
4925
4926 return 0;
4927 }
4928
4929
4930 /* Defines contents to record. */
4931 #define I386_SAVE_FPU_REGS 0xfffd
4932 #define I386_SAVE_FPU_ENV 0xfffe
4933 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4934
4935 /* Record the values of the floating point registers which will be
4936 changed by the current instruction. Returns -1 if something is
4937 wrong, 0 otherwise. */
4938
4939 static int i386_record_floats (struct gdbarch *gdbarch,
4940 struct i386_record_s *ir,
4941 uint32_t iregnum)
4942 {
4943 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4944 int i;
4945
4946 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4947 happen. Currently we store st0-st7 registers, but we need not store all
4948 registers all the time, in future we use ftag register and record only
4949 those who are not marked as an empty. */
4950
4951 if (I386_SAVE_FPU_REGS == iregnum)
4952 {
4953 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4954 {
4955 if (record_full_arch_list_add_reg (ir->regcache, i))
4956 return -1;
4957 }
4958 }
4959 else if (I386_SAVE_FPU_ENV == iregnum)
4960 {
4961 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4962 {
4963 if (record_full_arch_list_add_reg (ir->regcache, i))
4964 return -1;
4965 }
4966 }
4967 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4968 {
4969 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4970 {
4971 if (record_full_arch_list_add_reg (ir->regcache, i))
4972 return -1;
4973 }
4974 }
4975 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4976 (iregnum <= I387_FOP_REGNUM (tdep)))
4977 {
4978 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4979 return -1;
4980 }
4981 else
4982 {
4983 /* Parameter error. */
4984 return -1;
4985 }
4986 if(I386_SAVE_FPU_ENV != iregnum)
4987 {
4988 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4989 {
4990 if (record_full_arch_list_add_reg (ir->regcache, i))
4991 return -1;
4992 }
4993 }
4994 return 0;
4995 }
4996
4997 /* Parse the current instruction, and record the values of the
4998 registers and memory that will be changed by the current
4999 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5000
5001 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5002 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5003
5004 int
5005 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5006 CORE_ADDR input_addr)
5007 {
5008 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5009 int prefixes = 0;
5010 int regnum = 0;
5011 uint32_t opcode;
5012 uint8_t opcode8;
5013 ULONGEST addr;
5014 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5015 struct i386_record_s ir;
5016 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5017 uint8_t rex_w = -1;
5018 uint8_t rex_r = 0;
5019
5020 memset (&ir, 0, sizeof (struct i386_record_s));
5021 ir.regcache = regcache;
5022 ir.addr = input_addr;
5023 ir.orig_addr = input_addr;
5024 ir.aflag = 1;
5025 ir.dflag = 1;
5026 ir.override = -1;
5027 ir.popl_esp_hack = 0;
5028 ir.regmap = tdep->record_regmap;
5029 ir.gdbarch = gdbarch;
5030
5031 if (record_debug > 1)
5032 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5033 "addr = %s\n",
5034 paddress (gdbarch, ir.addr));
5035
5036 /* prefixes */
5037 while (1)
5038 {
5039 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5040 return -1;
5041 ir.addr++;
5042 switch (opcode8) /* Instruction prefixes */
5043 {
5044 case REPE_PREFIX_OPCODE:
5045 prefixes |= PREFIX_REPZ;
5046 break;
5047 case REPNE_PREFIX_OPCODE:
5048 prefixes |= PREFIX_REPNZ;
5049 break;
5050 case LOCK_PREFIX_OPCODE:
5051 prefixes |= PREFIX_LOCK;
5052 break;
5053 case CS_PREFIX_OPCODE:
5054 ir.override = X86_RECORD_CS_REGNUM;
5055 break;
5056 case SS_PREFIX_OPCODE:
5057 ir.override = X86_RECORD_SS_REGNUM;
5058 break;
5059 case DS_PREFIX_OPCODE:
5060 ir.override = X86_RECORD_DS_REGNUM;
5061 break;
5062 case ES_PREFIX_OPCODE:
5063 ir.override = X86_RECORD_ES_REGNUM;
5064 break;
5065 case FS_PREFIX_OPCODE:
5066 ir.override = X86_RECORD_FS_REGNUM;
5067 break;
5068 case GS_PREFIX_OPCODE:
5069 ir.override = X86_RECORD_GS_REGNUM;
5070 break;
5071 case DATA_PREFIX_OPCODE:
5072 prefixes |= PREFIX_DATA;
5073 break;
5074 case ADDR_PREFIX_OPCODE:
5075 prefixes |= PREFIX_ADDR;
5076 break;
5077 case 0x40: /* i386 inc %eax */
5078 case 0x41: /* i386 inc %ecx */
5079 case 0x42: /* i386 inc %edx */
5080 case 0x43: /* i386 inc %ebx */
5081 case 0x44: /* i386 inc %esp */
5082 case 0x45: /* i386 inc %ebp */
5083 case 0x46: /* i386 inc %esi */
5084 case 0x47: /* i386 inc %edi */
5085 case 0x48: /* i386 dec %eax */
5086 case 0x49: /* i386 dec %ecx */
5087 case 0x4a: /* i386 dec %edx */
5088 case 0x4b: /* i386 dec %ebx */
5089 case 0x4c: /* i386 dec %esp */
5090 case 0x4d: /* i386 dec %ebp */
5091 case 0x4e: /* i386 dec %esi */
5092 case 0x4f: /* i386 dec %edi */
5093 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5094 {
5095 /* REX */
5096 rex_w = (opcode8 >> 3) & 1;
5097 rex_r = (opcode8 & 0x4) << 1;
5098 ir.rex_x = (opcode8 & 0x2) << 2;
5099 ir.rex_b = (opcode8 & 0x1) << 3;
5100 }
5101 else /* 32 bit target */
5102 goto out_prefixes;
5103 break;
5104 default:
5105 goto out_prefixes;
5106 break;
5107 }
5108 }
5109 out_prefixes:
5110 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5111 {
5112 ir.dflag = 2;
5113 }
5114 else
5115 {
5116 if (prefixes & PREFIX_DATA)
5117 ir.dflag ^= 1;
5118 }
5119 if (prefixes & PREFIX_ADDR)
5120 ir.aflag ^= 1;
5121 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5122 ir.aflag = 2;
5123
5124 /* Now check op code. */
5125 opcode = (uint32_t) opcode8;
5126 reswitch:
5127 switch (opcode)
5128 {
5129 case 0x0f:
5130 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5131 return -1;
5132 ir.addr++;
5133 opcode = (uint32_t) opcode8 | 0x0f00;
5134 goto reswitch;
5135 break;
5136
5137 case 0x00: /* arith & logic */
5138 case 0x01:
5139 case 0x02:
5140 case 0x03:
5141 case 0x04:
5142 case 0x05:
5143 case 0x08:
5144 case 0x09:
5145 case 0x0a:
5146 case 0x0b:
5147 case 0x0c:
5148 case 0x0d:
5149 case 0x10:
5150 case 0x11:
5151 case 0x12:
5152 case 0x13:
5153 case 0x14:
5154 case 0x15:
5155 case 0x18:
5156 case 0x19:
5157 case 0x1a:
5158 case 0x1b:
5159 case 0x1c:
5160 case 0x1d:
5161 case 0x20:
5162 case 0x21:
5163 case 0x22:
5164 case 0x23:
5165 case 0x24:
5166 case 0x25:
5167 case 0x28:
5168 case 0x29:
5169 case 0x2a:
5170 case 0x2b:
5171 case 0x2c:
5172 case 0x2d:
5173 case 0x30:
5174 case 0x31:
5175 case 0x32:
5176 case 0x33:
5177 case 0x34:
5178 case 0x35:
5179 case 0x38:
5180 case 0x39:
5181 case 0x3a:
5182 case 0x3b:
5183 case 0x3c:
5184 case 0x3d:
5185 if (((opcode >> 3) & 7) != OP_CMPL)
5186 {
5187 if ((opcode & 1) == 0)
5188 ir.ot = OT_BYTE;
5189 else
5190 ir.ot = ir.dflag + OT_WORD;
5191
5192 switch ((opcode >> 1) & 3)
5193 {
5194 case 0: /* OP Ev, Gv */
5195 if (i386_record_modrm (&ir))
5196 return -1;
5197 if (ir.mod != 3)
5198 {
5199 if (i386_record_lea_modrm (&ir))
5200 return -1;
5201 }
5202 else
5203 {
5204 ir.rm |= ir.rex_b;
5205 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5206 ir.rm &= 0x3;
5207 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5208 }
5209 break;
5210 case 1: /* OP Gv, Ev */
5211 if (i386_record_modrm (&ir))
5212 return -1;
5213 ir.reg |= rex_r;
5214 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5215 ir.reg &= 0x3;
5216 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5217 break;
5218 case 2: /* OP A, Iv */
5219 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5220 break;
5221 }
5222 }
5223 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5224 break;
5225
5226 case 0x80: /* GRP1 */
5227 case 0x81:
5228 case 0x82:
5229 case 0x83:
5230 if (i386_record_modrm (&ir))
5231 return -1;
5232
5233 if (ir.reg != OP_CMPL)
5234 {
5235 if ((opcode & 1) == 0)
5236 ir.ot = OT_BYTE;
5237 else
5238 ir.ot = ir.dflag + OT_WORD;
5239
5240 if (ir.mod != 3)
5241 {
5242 if (opcode == 0x83)
5243 ir.rip_offset = 1;
5244 else
5245 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5246 if (i386_record_lea_modrm (&ir))
5247 return -1;
5248 }
5249 else
5250 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5251 }
5252 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5253 break;
5254
5255 case 0x40: /* inc */
5256 case 0x41:
5257 case 0x42:
5258 case 0x43:
5259 case 0x44:
5260 case 0x45:
5261 case 0x46:
5262 case 0x47:
5263
5264 case 0x48: /* dec */
5265 case 0x49:
5266 case 0x4a:
5267 case 0x4b:
5268 case 0x4c:
5269 case 0x4d:
5270 case 0x4e:
5271 case 0x4f:
5272
5273 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5274 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5275 break;
5276
5277 case 0xf6: /* GRP3 */
5278 case 0xf7:
5279 if ((opcode & 1) == 0)
5280 ir.ot = OT_BYTE;
5281 else
5282 ir.ot = ir.dflag + OT_WORD;
5283 if (i386_record_modrm (&ir))
5284 return -1;
5285
5286 if (ir.mod != 3 && ir.reg == 0)
5287 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5288
5289 switch (ir.reg)
5290 {
5291 case 0: /* test */
5292 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5293 break;
5294 case 2: /* not */
5295 case 3: /* neg */
5296 if (ir.mod != 3)
5297 {
5298 if (i386_record_lea_modrm (&ir))
5299 return -1;
5300 }
5301 else
5302 {
5303 ir.rm |= ir.rex_b;
5304 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5305 ir.rm &= 0x3;
5306 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5307 }
5308 if (ir.reg == 3) /* neg */
5309 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5310 break;
5311 case 4: /* mul */
5312 case 5: /* imul */
5313 case 6: /* div */
5314 case 7: /* idiv */
5315 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5316 if (ir.ot != OT_BYTE)
5317 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5318 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5319 break;
5320 default:
5321 ir.addr -= 2;
5322 opcode = opcode << 8 | ir.modrm;
5323 goto no_support;
5324 break;
5325 }
5326 break;
5327
5328 case 0xfe: /* GRP4 */
5329 case 0xff: /* GRP5 */
5330 if (i386_record_modrm (&ir))
5331 return -1;
5332 if (ir.reg >= 2 && opcode == 0xfe)
5333 {
5334 ir.addr -= 2;
5335 opcode = opcode << 8 | ir.modrm;
5336 goto no_support;
5337 }
5338 switch (ir.reg)
5339 {
5340 case 0: /* inc */
5341 case 1: /* dec */
5342 if ((opcode & 1) == 0)
5343 ir.ot = OT_BYTE;
5344 else
5345 ir.ot = ir.dflag + OT_WORD;
5346 if (ir.mod != 3)
5347 {
5348 if (i386_record_lea_modrm (&ir))
5349 return -1;
5350 }
5351 else
5352 {
5353 ir.rm |= ir.rex_b;
5354 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5355 ir.rm &= 0x3;
5356 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5357 }
5358 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5359 break;
5360 case 2: /* call */
5361 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5362 ir.dflag = 2;
5363 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5364 return -1;
5365 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5366 break;
5367 case 3: /* lcall */
5368 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5369 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5370 return -1;
5371 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5372 break;
5373 case 4: /* jmp */
5374 case 5: /* ljmp */
5375 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5376 break;
5377 case 6: /* push */
5378 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5379 ir.dflag = 2;
5380 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5381 return -1;
5382 break;
5383 default:
5384 ir.addr -= 2;
5385 opcode = opcode << 8 | ir.modrm;
5386 goto no_support;
5387 break;
5388 }
5389 break;
5390
5391 case 0x84: /* test */
5392 case 0x85:
5393 case 0xa8:
5394 case 0xa9:
5395 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5396 break;
5397
5398 case 0x98: /* CWDE/CBW */
5399 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5400 break;
5401
5402 case 0x99: /* CDQ/CWD */
5403 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5404 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5405 break;
5406
5407 case 0x0faf: /* imul */
5408 case 0x69:
5409 case 0x6b:
5410 ir.ot = ir.dflag + OT_WORD;
5411 if (i386_record_modrm (&ir))
5412 return -1;
5413 if (opcode == 0x69)
5414 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5415 else if (opcode == 0x6b)
5416 ir.rip_offset = 1;
5417 ir.reg |= rex_r;
5418 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5419 ir.reg &= 0x3;
5420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5421 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5422 break;
5423
5424 case 0x0fc0: /* xadd */
5425 case 0x0fc1:
5426 if ((opcode & 1) == 0)
5427 ir.ot = OT_BYTE;
5428 else
5429 ir.ot = ir.dflag + OT_WORD;
5430 if (i386_record_modrm (&ir))
5431 return -1;
5432 ir.reg |= rex_r;
5433 if (ir.mod == 3)
5434 {
5435 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5436 ir.reg &= 0x3;
5437 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5438 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5439 ir.rm &= 0x3;
5440 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5441 }
5442 else
5443 {
5444 if (i386_record_lea_modrm (&ir))
5445 return -1;
5446 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5447 ir.reg &= 0x3;
5448 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5449 }
5450 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5451 break;
5452
5453 case 0x0fb0: /* cmpxchg */
5454 case 0x0fb1:
5455 if ((opcode & 1) == 0)
5456 ir.ot = OT_BYTE;
5457 else
5458 ir.ot = ir.dflag + OT_WORD;
5459 if (i386_record_modrm (&ir))
5460 return -1;
5461 if (ir.mod == 3)
5462 {
5463 ir.reg |= rex_r;
5464 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5465 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5466 ir.reg &= 0x3;
5467 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5468 }
5469 else
5470 {
5471 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5472 if (i386_record_lea_modrm (&ir))
5473 return -1;
5474 }
5475 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5476 break;
5477
5478 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5479 if (i386_record_modrm (&ir))
5480 return -1;
5481 if (ir.mod == 3)
5482 {
5483 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5484 an extended opcode. rdrand has bits 110 (/6) and rdseed
5485 has bits 111 (/7). */
5486 if (ir.reg == 6 || ir.reg == 7)
5487 {
5488 /* The storage register is described by the 3 R/M bits, but the
5489 REX.B prefix may be used to give access to registers
5490 R8~R15. In this case ir.rex_b + R/M will give us the register
5491 in the range R8~R15.
5492
5493 REX.W may also be used to access 64-bit registers, but we
5494 already record entire registers and not just partial bits
5495 of them. */
5496 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5497 /* These instructions also set conditional bits. */
5498 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5499 break;
5500 }
5501 else
5502 {
5503 /* We don't handle this particular instruction yet. */
5504 ir.addr -= 2;
5505 opcode = opcode << 8 | ir.modrm;
5506 goto no_support;
5507 }
5508 }
5509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5510 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5511 if (i386_record_lea_modrm (&ir))
5512 return -1;
5513 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5514 break;
5515
5516 case 0x50: /* push */
5517 case 0x51:
5518 case 0x52:
5519 case 0x53:
5520 case 0x54:
5521 case 0x55:
5522 case 0x56:
5523 case 0x57:
5524 case 0x68:
5525 case 0x6a:
5526 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5527 ir.dflag = 2;
5528 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5529 return -1;
5530 break;
5531
5532 case 0x06: /* push es */
5533 case 0x0e: /* push cs */
5534 case 0x16: /* push ss */
5535 case 0x1e: /* push ds */
5536 if (ir.regmap[X86_RECORD_R8_REGNUM])
5537 {
5538 ir.addr -= 1;
5539 goto no_support;
5540 }
5541 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5542 return -1;
5543 break;
5544
5545 case 0x0fa0: /* push fs */
5546 case 0x0fa8: /* push gs */
5547 if (ir.regmap[X86_RECORD_R8_REGNUM])
5548 {
5549 ir.addr -= 2;
5550 goto no_support;
5551 }
5552 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5553 return -1;
5554 break;
5555
5556 case 0x60: /* pusha */
5557 if (ir.regmap[X86_RECORD_R8_REGNUM])
5558 {
5559 ir.addr -= 1;
5560 goto no_support;
5561 }
5562 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5563 return -1;
5564 break;
5565
5566 case 0x58: /* pop */
5567 case 0x59:
5568 case 0x5a:
5569 case 0x5b:
5570 case 0x5c:
5571 case 0x5d:
5572 case 0x5e:
5573 case 0x5f:
5574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5575 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5576 break;
5577
5578 case 0x61: /* popa */
5579 if (ir.regmap[X86_RECORD_R8_REGNUM])
5580 {
5581 ir.addr -= 1;
5582 goto no_support;
5583 }
5584 for (regnum = X86_RECORD_REAX_REGNUM;
5585 regnum <= X86_RECORD_REDI_REGNUM;
5586 regnum++)
5587 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5588 break;
5589
5590 case 0x8f: /* pop */
5591 if (ir.regmap[X86_RECORD_R8_REGNUM])
5592 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5593 else
5594 ir.ot = ir.dflag + OT_WORD;
5595 if (i386_record_modrm (&ir))
5596 return -1;
5597 if (ir.mod == 3)
5598 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5599 else
5600 {
5601 ir.popl_esp_hack = 1 << ir.ot;
5602 if (i386_record_lea_modrm (&ir))
5603 return -1;
5604 }
5605 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5606 break;
5607
5608 case 0xc8: /* enter */
5609 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5610 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5611 ir.dflag = 2;
5612 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5613 return -1;
5614 break;
5615
5616 case 0xc9: /* leave */
5617 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5618 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5619 break;
5620
5621 case 0x07: /* pop es */
5622 if (ir.regmap[X86_RECORD_R8_REGNUM])
5623 {
5624 ir.addr -= 1;
5625 goto no_support;
5626 }
5627 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5628 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5629 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5630 break;
5631
5632 case 0x17: /* pop ss */
5633 if (ir.regmap[X86_RECORD_R8_REGNUM])
5634 {
5635 ir.addr -= 1;
5636 goto no_support;
5637 }
5638 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5639 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5640 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5641 break;
5642
5643 case 0x1f: /* pop ds */
5644 if (ir.regmap[X86_RECORD_R8_REGNUM])
5645 {
5646 ir.addr -= 1;
5647 goto no_support;
5648 }
5649 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5650 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5651 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5652 break;
5653
5654 case 0x0fa1: /* pop fs */
5655 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5656 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5657 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5658 break;
5659
5660 case 0x0fa9: /* pop gs */
5661 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5662 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5664 break;
5665
5666 case 0x88: /* mov */
5667 case 0x89:
5668 case 0xc6:
5669 case 0xc7:
5670 if ((opcode & 1) == 0)
5671 ir.ot = OT_BYTE;
5672 else
5673 ir.ot = ir.dflag + OT_WORD;
5674
5675 if (i386_record_modrm (&ir))
5676 return -1;
5677
5678 if (ir.mod != 3)
5679 {
5680 if (opcode == 0xc6 || opcode == 0xc7)
5681 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5682 if (i386_record_lea_modrm (&ir))
5683 return -1;
5684 }
5685 else
5686 {
5687 if (opcode == 0xc6 || opcode == 0xc7)
5688 ir.rm |= ir.rex_b;
5689 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5690 ir.rm &= 0x3;
5691 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5692 }
5693 break;
5694
5695 case 0x8a: /* mov */
5696 case 0x8b:
5697 if ((opcode & 1) == 0)
5698 ir.ot = OT_BYTE;
5699 else
5700 ir.ot = ir.dflag + OT_WORD;
5701 if (i386_record_modrm (&ir))
5702 return -1;
5703 ir.reg |= rex_r;
5704 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5705 ir.reg &= 0x3;
5706 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5707 break;
5708
5709 case 0x8c: /* mov seg */
5710 if (i386_record_modrm (&ir))
5711 return -1;
5712 if (ir.reg > 5)
5713 {
5714 ir.addr -= 2;
5715 opcode = opcode << 8 | ir.modrm;
5716 goto no_support;
5717 }
5718
5719 if (ir.mod == 3)
5720 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5721 else
5722 {
5723 ir.ot = OT_WORD;
5724 if (i386_record_lea_modrm (&ir))
5725 return -1;
5726 }
5727 break;
5728
5729 case 0x8e: /* mov seg */
5730 if (i386_record_modrm (&ir))
5731 return -1;
5732 switch (ir.reg)
5733 {
5734 case 0:
5735 regnum = X86_RECORD_ES_REGNUM;
5736 break;
5737 case 2:
5738 regnum = X86_RECORD_SS_REGNUM;
5739 break;
5740 case 3:
5741 regnum = X86_RECORD_DS_REGNUM;
5742 break;
5743 case 4:
5744 regnum = X86_RECORD_FS_REGNUM;
5745 break;
5746 case 5:
5747 regnum = X86_RECORD_GS_REGNUM;
5748 break;
5749 default:
5750 ir.addr -= 2;
5751 opcode = opcode << 8 | ir.modrm;
5752 goto no_support;
5753 break;
5754 }
5755 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5756 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5757 break;
5758
5759 case 0x0fb6: /* movzbS */
5760 case 0x0fb7: /* movzwS */
5761 case 0x0fbe: /* movsbS */
5762 case 0x0fbf: /* movswS */
5763 if (i386_record_modrm (&ir))
5764 return -1;
5765 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5766 break;
5767
5768 case 0x8d: /* lea */
5769 if (i386_record_modrm (&ir))
5770 return -1;
5771 if (ir.mod == 3)
5772 {
5773 ir.addr -= 2;
5774 opcode = opcode << 8 | ir.modrm;
5775 goto no_support;
5776 }
5777 ir.ot = ir.dflag;
5778 ir.reg |= rex_r;
5779 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5780 ir.reg &= 0x3;
5781 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5782 break;
5783
5784 case 0xa0: /* mov EAX */
5785 case 0xa1:
5786
5787 case 0xd7: /* xlat */
5788 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5789 break;
5790
5791 case 0xa2: /* mov EAX */
5792 case 0xa3:
5793 if (ir.override >= 0)
5794 {
5795 if (record_full_memory_query)
5796 {
5797 if (yquery (_("\
5798 Process record ignores the memory change of instruction at address %s\n\
5799 because it can't get the value of the segment register.\n\
5800 Do you want to stop the program?"),
5801 paddress (gdbarch, ir.orig_addr)))
5802 return -1;
5803 }
5804 }
5805 else
5806 {
5807 if ((opcode & 1) == 0)
5808 ir.ot = OT_BYTE;
5809 else
5810 ir.ot = ir.dflag + OT_WORD;
5811 if (ir.aflag == 2)
5812 {
5813 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5814 return -1;
5815 ir.addr += 8;
5816 addr = extract_unsigned_integer (buf, 8, byte_order);
5817 }
5818 else if (ir.aflag)
5819 {
5820 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5821 return -1;
5822 ir.addr += 4;
5823 addr = extract_unsigned_integer (buf, 4, byte_order);
5824 }
5825 else
5826 {
5827 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5828 return -1;
5829 ir.addr += 2;
5830 addr = extract_unsigned_integer (buf, 2, byte_order);
5831 }
5832 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5833 return -1;
5834 }
5835 break;
5836
5837 case 0xb0: /* mov R, Ib */
5838 case 0xb1:
5839 case 0xb2:
5840 case 0xb3:
5841 case 0xb4:
5842 case 0xb5:
5843 case 0xb6:
5844 case 0xb7:
5845 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5846 ? ((opcode & 0x7) | ir.rex_b)
5847 : ((opcode & 0x7) & 0x3));
5848 break;
5849
5850 case 0xb8: /* mov R, Iv */
5851 case 0xb9:
5852 case 0xba:
5853 case 0xbb:
5854 case 0xbc:
5855 case 0xbd:
5856 case 0xbe:
5857 case 0xbf:
5858 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5859 break;
5860
5861 case 0x91: /* xchg R, EAX */
5862 case 0x92:
5863 case 0x93:
5864 case 0x94:
5865 case 0x95:
5866 case 0x96:
5867 case 0x97:
5868 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5869 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5870 break;
5871
5872 case 0x86: /* xchg Ev, Gv */
5873 case 0x87:
5874 if ((opcode & 1) == 0)
5875 ir.ot = OT_BYTE;
5876 else
5877 ir.ot = ir.dflag + OT_WORD;
5878 if (i386_record_modrm (&ir))
5879 return -1;
5880 if (ir.mod == 3)
5881 {
5882 ir.rm |= ir.rex_b;
5883 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5884 ir.rm &= 0x3;
5885 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5886 }
5887 else
5888 {
5889 if (i386_record_lea_modrm (&ir))
5890 return -1;
5891 }
5892 ir.reg |= rex_r;
5893 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5894 ir.reg &= 0x3;
5895 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5896 break;
5897
5898 case 0xc4: /* les Gv */
5899 case 0xc5: /* lds Gv */
5900 if (ir.regmap[X86_RECORD_R8_REGNUM])
5901 {
5902 ir.addr -= 1;
5903 goto no_support;
5904 }
5905 /* FALLTHROUGH */
5906 case 0x0fb2: /* lss Gv */
5907 case 0x0fb4: /* lfs Gv */
5908 case 0x0fb5: /* lgs Gv */
5909 if (i386_record_modrm (&ir))
5910 return -1;
5911 if (ir.mod == 3)
5912 {
5913 if (opcode > 0xff)
5914 ir.addr -= 3;
5915 else
5916 ir.addr -= 2;
5917 opcode = opcode << 8 | ir.modrm;
5918 goto no_support;
5919 }
5920 switch (opcode)
5921 {
5922 case 0xc4: /* les Gv */
5923 regnum = X86_RECORD_ES_REGNUM;
5924 break;
5925 case 0xc5: /* lds Gv */
5926 regnum = X86_RECORD_DS_REGNUM;
5927 break;
5928 case 0x0fb2: /* lss Gv */
5929 regnum = X86_RECORD_SS_REGNUM;
5930 break;
5931 case 0x0fb4: /* lfs Gv */
5932 regnum = X86_RECORD_FS_REGNUM;
5933 break;
5934 case 0x0fb5: /* lgs Gv */
5935 regnum = X86_RECORD_GS_REGNUM;
5936 break;
5937 }
5938 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5939 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5940 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5941 break;
5942
5943 case 0xc0: /* shifts */
5944 case 0xc1:
5945 case 0xd0:
5946 case 0xd1:
5947 case 0xd2:
5948 case 0xd3:
5949 if ((opcode & 1) == 0)
5950 ir.ot = OT_BYTE;
5951 else
5952 ir.ot = ir.dflag + OT_WORD;
5953 if (i386_record_modrm (&ir))
5954 return -1;
5955 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5956 {
5957 if (i386_record_lea_modrm (&ir))
5958 return -1;
5959 }
5960 else
5961 {
5962 ir.rm |= ir.rex_b;
5963 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5964 ir.rm &= 0x3;
5965 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5966 }
5967 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5968 break;
5969
5970 case 0x0fa4:
5971 case 0x0fa5:
5972 case 0x0fac:
5973 case 0x0fad:
5974 if (i386_record_modrm (&ir))
5975 return -1;
5976 if (ir.mod == 3)
5977 {
5978 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5979 return -1;
5980 }
5981 else
5982 {
5983 if (i386_record_lea_modrm (&ir))
5984 return -1;
5985 }
5986 break;
5987
5988 case 0xd8: /* Floats. */
5989 case 0xd9:
5990 case 0xda:
5991 case 0xdb:
5992 case 0xdc:
5993 case 0xdd:
5994 case 0xde:
5995 case 0xdf:
5996 if (i386_record_modrm (&ir))
5997 return -1;
5998 ir.reg |= ((opcode & 7) << 3);
5999 if (ir.mod != 3)
6000 {
6001 /* Memory. */
6002 uint64_t addr64;
6003
6004 if (i386_record_lea_modrm_addr (&ir, &addr64))
6005 return -1;
6006 switch (ir.reg)
6007 {
6008 case 0x02:
6009 case 0x12:
6010 case 0x22:
6011 case 0x32:
6012 /* For fcom, ficom nothing to do. */
6013 break;
6014 case 0x03:
6015 case 0x13:
6016 case 0x23:
6017 case 0x33:
6018 /* For fcomp, ficomp pop FPU stack, store all. */
6019 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6020 return -1;
6021 break;
6022 case 0x00:
6023 case 0x01:
6024 case 0x04:
6025 case 0x05:
6026 case 0x06:
6027 case 0x07:
6028 case 0x10:
6029 case 0x11:
6030 case 0x14:
6031 case 0x15:
6032 case 0x16:
6033 case 0x17:
6034 case 0x20:
6035 case 0x21:
6036 case 0x24:
6037 case 0x25:
6038 case 0x26:
6039 case 0x27:
6040 case 0x30:
6041 case 0x31:
6042 case 0x34:
6043 case 0x35:
6044 case 0x36:
6045 case 0x37:
6046 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6047 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6048 of code, always affects st(0) register. */
6049 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6050 return -1;
6051 break;
6052 case 0x08:
6053 case 0x0a:
6054 case 0x0b:
6055 case 0x18:
6056 case 0x19:
6057 case 0x1a:
6058 case 0x1b:
6059 case 0x1d:
6060 case 0x28:
6061 case 0x29:
6062 case 0x2a:
6063 case 0x2b:
6064 case 0x38:
6065 case 0x39:
6066 case 0x3a:
6067 case 0x3b:
6068 case 0x3c:
6069 case 0x3d:
6070 switch (ir.reg & 7)
6071 {
6072 case 0:
6073 /* Handling fld, fild. */
6074 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6075 return -1;
6076 break;
6077 case 1:
6078 switch (ir.reg >> 4)
6079 {
6080 case 0:
6081 if (record_full_arch_list_add_mem (addr64, 4))
6082 return -1;
6083 break;
6084 case 2:
6085 if (record_full_arch_list_add_mem (addr64, 8))
6086 return -1;
6087 break;
6088 case 3:
6089 break;
6090 default:
6091 if (record_full_arch_list_add_mem (addr64, 2))
6092 return -1;
6093 break;
6094 }
6095 break;
6096 default:
6097 switch (ir.reg >> 4)
6098 {
6099 case 0:
6100 if (record_full_arch_list_add_mem (addr64, 4))
6101 return -1;
6102 if (3 == (ir.reg & 7))
6103 {
6104 /* For fstp m32fp. */
6105 if (i386_record_floats (gdbarch, &ir,
6106 I386_SAVE_FPU_REGS))
6107 return -1;
6108 }
6109 break;
6110 case 1:
6111 if (record_full_arch_list_add_mem (addr64, 4))
6112 return -1;
6113 if ((3 == (ir.reg & 7))
6114 || (5 == (ir.reg & 7))
6115 || (7 == (ir.reg & 7)))
6116 {
6117 /* For fstp insn. */
6118 if (i386_record_floats (gdbarch, &ir,
6119 I386_SAVE_FPU_REGS))
6120 return -1;
6121 }
6122 break;
6123 case 2:
6124 if (record_full_arch_list_add_mem (addr64, 8))
6125 return -1;
6126 if (3 == (ir.reg & 7))
6127 {
6128 /* For fstp m64fp. */
6129 if (i386_record_floats (gdbarch, &ir,
6130 I386_SAVE_FPU_REGS))
6131 return -1;
6132 }
6133 break;
6134 case 3:
6135 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6136 {
6137 /* For fistp, fbld, fild, fbstp. */
6138 if (i386_record_floats (gdbarch, &ir,
6139 I386_SAVE_FPU_REGS))
6140 return -1;
6141 }
6142 /* Fall through */
6143 default:
6144 if (record_full_arch_list_add_mem (addr64, 2))
6145 return -1;
6146 break;
6147 }
6148 break;
6149 }
6150 break;
6151 case 0x0c:
6152 /* Insn fldenv. */
6153 if (i386_record_floats (gdbarch, &ir,
6154 I386_SAVE_FPU_ENV_REG_STACK))
6155 return -1;
6156 break;
6157 case 0x0d:
6158 /* Insn fldcw. */
6159 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6160 return -1;
6161 break;
6162 case 0x2c:
6163 /* Insn frstor. */
6164 if (i386_record_floats (gdbarch, &ir,
6165 I386_SAVE_FPU_ENV_REG_STACK))
6166 return -1;
6167 break;
6168 case 0x0e:
6169 if (ir.dflag)
6170 {
6171 if (record_full_arch_list_add_mem (addr64, 28))
6172 return -1;
6173 }
6174 else
6175 {
6176 if (record_full_arch_list_add_mem (addr64, 14))
6177 return -1;
6178 }
6179 break;
6180 case 0x0f:
6181 case 0x2f:
6182 if (record_full_arch_list_add_mem (addr64, 2))
6183 return -1;
6184 /* Insn fstp, fbstp. */
6185 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6186 return -1;
6187 break;
6188 case 0x1f:
6189 case 0x3e:
6190 if (record_full_arch_list_add_mem (addr64, 10))
6191 return -1;
6192 break;
6193 case 0x2e:
6194 if (ir.dflag)
6195 {
6196 if (record_full_arch_list_add_mem (addr64, 28))
6197 return -1;
6198 addr64 += 28;
6199 }
6200 else
6201 {
6202 if (record_full_arch_list_add_mem (addr64, 14))
6203 return -1;
6204 addr64 += 14;
6205 }
6206 if (record_full_arch_list_add_mem (addr64, 80))
6207 return -1;
6208 /* Insn fsave. */
6209 if (i386_record_floats (gdbarch, &ir,
6210 I386_SAVE_FPU_ENV_REG_STACK))
6211 return -1;
6212 break;
6213 case 0x3f:
6214 if (record_full_arch_list_add_mem (addr64, 8))
6215 return -1;
6216 /* Insn fistp. */
6217 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6218 return -1;
6219 break;
6220 default:
6221 ir.addr -= 2;
6222 opcode = opcode << 8 | ir.modrm;
6223 goto no_support;
6224 break;
6225 }
6226 }
6227 /* Opcode is an extension of modR/M byte. */
6228 else
6229 {
6230 switch (opcode)
6231 {
6232 case 0xd8:
6233 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6234 return -1;
6235 break;
6236 case 0xd9:
6237 if (0x0c == (ir.modrm >> 4))
6238 {
6239 if ((ir.modrm & 0x0f) <= 7)
6240 {
6241 if (i386_record_floats (gdbarch, &ir,
6242 I386_SAVE_FPU_REGS))
6243 return -1;
6244 }
6245 else
6246 {
6247 if (i386_record_floats (gdbarch, &ir,
6248 I387_ST0_REGNUM (tdep)))
6249 return -1;
6250 /* If only st(0) is changing, then we have already
6251 recorded. */
6252 if ((ir.modrm & 0x0f) - 0x08)
6253 {
6254 if (i386_record_floats (gdbarch, &ir,
6255 I387_ST0_REGNUM (tdep) +
6256 ((ir.modrm & 0x0f) - 0x08)))
6257 return -1;
6258 }
6259 }
6260 }
6261 else
6262 {
6263 switch (ir.modrm)
6264 {
6265 case 0xe0:
6266 case 0xe1:
6267 case 0xf0:
6268 case 0xf5:
6269 case 0xf8:
6270 case 0xfa:
6271 case 0xfc:
6272 case 0xfe:
6273 case 0xff:
6274 if (i386_record_floats (gdbarch, &ir,
6275 I387_ST0_REGNUM (tdep)))
6276 return -1;
6277 break;
6278 case 0xf1:
6279 case 0xf2:
6280 case 0xf3:
6281 case 0xf4:
6282 case 0xf6:
6283 case 0xf7:
6284 case 0xe8:
6285 case 0xe9:
6286 case 0xea:
6287 case 0xeb:
6288 case 0xec:
6289 case 0xed:
6290 case 0xee:
6291 case 0xf9:
6292 case 0xfb:
6293 if (i386_record_floats (gdbarch, &ir,
6294 I386_SAVE_FPU_REGS))
6295 return -1;
6296 break;
6297 case 0xfd:
6298 if (i386_record_floats (gdbarch, &ir,
6299 I387_ST0_REGNUM (tdep)))
6300 return -1;
6301 if (i386_record_floats (gdbarch, &ir,
6302 I387_ST0_REGNUM (tdep) + 1))
6303 return -1;
6304 break;
6305 }
6306 }
6307 break;
6308 case 0xda:
6309 if (0xe9 == ir.modrm)
6310 {
6311 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6312 return -1;
6313 }
6314 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6315 {
6316 if (i386_record_floats (gdbarch, &ir,
6317 I387_ST0_REGNUM (tdep)))
6318 return -1;
6319 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6320 {
6321 if (i386_record_floats (gdbarch, &ir,
6322 I387_ST0_REGNUM (tdep) +
6323 (ir.modrm & 0x0f)))
6324 return -1;
6325 }
6326 else if ((ir.modrm & 0x0f) - 0x08)
6327 {
6328 if (i386_record_floats (gdbarch, &ir,
6329 I387_ST0_REGNUM (tdep) +
6330 ((ir.modrm & 0x0f) - 0x08)))
6331 return -1;
6332 }
6333 }
6334 break;
6335 case 0xdb:
6336 if (0xe3 == ir.modrm)
6337 {
6338 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6339 return -1;
6340 }
6341 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6342 {
6343 if (i386_record_floats (gdbarch, &ir,
6344 I387_ST0_REGNUM (tdep)))
6345 return -1;
6346 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6347 {
6348 if (i386_record_floats (gdbarch, &ir,
6349 I387_ST0_REGNUM (tdep) +
6350 (ir.modrm & 0x0f)))
6351 return -1;
6352 }
6353 else if ((ir.modrm & 0x0f) - 0x08)
6354 {
6355 if (i386_record_floats (gdbarch, &ir,
6356 I387_ST0_REGNUM (tdep) +
6357 ((ir.modrm & 0x0f) - 0x08)))
6358 return -1;
6359 }
6360 }
6361 break;
6362 case 0xdc:
6363 if ((0x0c == ir.modrm >> 4)
6364 || (0x0d == ir.modrm >> 4)
6365 || (0x0f == ir.modrm >> 4))
6366 {
6367 if ((ir.modrm & 0x0f) <= 7)
6368 {
6369 if (i386_record_floats (gdbarch, &ir,
6370 I387_ST0_REGNUM (tdep) +
6371 (ir.modrm & 0x0f)))
6372 return -1;
6373 }
6374 else
6375 {
6376 if (i386_record_floats (gdbarch, &ir,
6377 I387_ST0_REGNUM (tdep) +
6378 ((ir.modrm & 0x0f) - 0x08)))
6379 return -1;
6380 }
6381 }
6382 break;
6383 case 0xdd:
6384 if (0x0c == ir.modrm >> 4)
6385 {
6386 if (i386_record_floats (gdbarch, &ir,
6387 I387_FTAG_REGNUM (tdep)))
6388 return -1;
6389 }
6390 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6391 {
6392 if ((ir.modrm & 0x0f) <= 7)
6393 {
6394 if (i386_record_floats (gdbarch, &ir,
6395 I387_ST0_REGNUM (tdep) +
6396 (ir.modrm & 0x0f)))
6397 return -1;
6398 }
6399 else
6400 {
6401 if (i386_record_floats (gdbarch, &ir,
6402 I386_SAVE_FPU_REGS))
6403 return -1;
6404 }
6405 }
6406 break;
6407 case 0xde:
6408 if ((0x0c == ir.modrm >> 4)
6409 || (0x0e == ir.modrm >> 4)
6410 || (0x0f == ir.modrm >> 4)
6411 || (0xd9 == ir.modrm))
6412 {
6413 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6414 return -1;
6415 }
6416 break;
6417 case 0xdf:
6418 if (0xe0 == ir.modrm)
6419 {
6420 if (record_full_arch_list_add_reg (ir.regcache,
6421 I386_EAX_REGNUM))
6422 return -1;
6423 }
6424 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6425 {
6426 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6427 return -1;
6428 }
6429 break;
6430 }
6431 }
6432 break;
6433 /* string ops */
6434 case 0xa4: /* movsS */
6435 case 0xa5:
6436 case 0xaa: /* stosS */
6437 case 0xab:
6438 case 0x6c: /* insS */
6439 case 0x6d:
6440 regcache_raw_read_unsigned (ir.regcache,
6441 ir.regmap[X86_RECORD_RECX_REGNUM],
6442 &addr);
6443 if (addr)
6444 {
6445 ULONGEST es, ds;
6446
6447 if ((opcode & 1) == 0)
6448 ir.ot = OT_BYTE;
6449 else
6450 ir.ot = ir.dflag + OT_WORD;
6451 regcache_raw_read_unsigned (ir.regcache,
6452 ir.regmap[X86_RECORD_REDI_REGNUM],
6453 &addr);
6454
6455 regcache_raw_read_unsigned (ir.regcache,
6456 ir.regmap[X86_RECORD_ES_REGNUM],
6457 &es);
6458 regcache_raw_read_unsigned (ir.regcache,
6459 ir.regmap[X86_RECORD_DS_REGNUM],
6460 &ds);
6461 if (ir.aflag && (es != ds))
6462 {
6463 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6464 if (record_full_memory_query)
6465 {
6466 if (yquery (_("\
6467 Process record ignores the memory change of instruction at address %s\n\
6468 because it can't get the value of the segment register.\n\
6469 Do you want to stop the program?"),
6470 paddress (gdbarch, ir.orig_addr)))
6471 return -1;
6472 }
6473 }
6474 else
6475 {
6476 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6477 return -1;
6478 }
6479
6480 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6481 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6482 if (opcode == 0xa4 || opcode == 0xa5)
6483 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6484 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6485 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6486 }
6487 break;
6488
6489 case 0xa6: /* cmpsS */
6490 case 0xa7:
6491 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6492 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6493 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6494 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6495 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6496 break;
6497
6498 case 0xac: /* lodsS */
6499 case 0xad:
6500 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6501 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6502 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6503 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6505 break;
6506
6507 case 0xae: /* scasS */
6508 case 0xaf:
6509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6510 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6511 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6512 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6513 break;
6514
6515 case 0x6e: /* outsS */
6516 case 0x6f:
6517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6518 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6521 break;
6522
6523 case 0xe4: /* port I/O */
6524 case 0xe5:
6525 case 0xec:
6526 case 0xed:
6527 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6529 break;
6530
6531 case 0xe6:
6532 case 0xe7:
6533 case 0xee:
6534 case 0xef:
6535 break;
6536
6537 /* control */
6538 case 0xc2: /* ret im */
6539 case 0xc3: /* ret */
6540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6541 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6542 break;
6543
6544 case 0xca: /* lret im */
6545 case 0xcb: /* lret */
6546 case 0xcf: /* iret */
6547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6550 break;
6551
6552 case 0xe8: /* call im */
6553 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6554 ir.dflag = 2;
6555 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6556 return -1;
6557 break;
6558
6559 case 0x9a: /* lcall im */
6560 if (ir.regmap[X86_RECORD_R8_REGNUM])
6561 {
6562 ir.addr -= 1;
6563 goto no_support;
6564 }
6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6566 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6567 return -1;
6568 break;
6569
6570 case 0xe9: /* jmp im */
6571 case 0xea: /* ljmp im */
6572 case 0xeb: /* jmp Jb */
6573 case 0x70: /* jcc Jb */
6574 case 0x71:
6575 case 0x72:
6576 case 0x73:
6577 case 0x74:
6578 case 0x75:
6579 case 0x76:
6580 case 0x77:
6581 case 0x78:
6582 case 0x79:
6583 case 0x7a:
6584 case 0x7b:
6585 case 0x7c:
6586 case 0x7d:
6587 case 0x7e:
6588 case 0x7f:
6589 case 0x0f80: /* jcc Jv */
6590 case 0x0f81:
6591 case 0x0f82:
6592 case 0x0f83:
6593 case 0x0f84:
6594 case 0x0f85:
6595 case 0x0f86:
6596 case 0x0f87:
6597 case 0x0f88:
6598 case 0x0f89:
6599 case 0x0f8a:
6600 case 0x0f8b:
6601 case 0x0f8c:
6602 case 0x0f8d:
6603 case 0x0f8e:
6604 case 0x0f8f:
6605 break;
6606
6607 case 0x0f90: /* setcc Gv */
6608 case 0x0f91:
6609 case 0x0f92:
6610 case 0x0f93:
6611 case 0x0f94:
6612 case 0x0f95:
6613 case 0x0f96:
6614 case 0x0f97:
6615 case 0x0f98:
6616 case 0x0f99:
6617 case 0x0f9a:
6618 case 0x0f9b:
6619 case 0x0f9c:
6620 case 0x0f9d:
6621 case 0x0f9e:
6622 case 0x0f9f:
6623 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6624 ir.ot = OT_BYTE;
6625 if (i386_record_modrm (&ir))
6626 return -1;
6627 if (ir.mod == 3)
6628 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6629 : (ir.rm & 0x3));
6630 else
6631 {
6632 if (i386_record_lea_modrm (&ir))
6633 return -1;
6634 }
6635 break;
6636
6637 case 0x0f40: /* cmov Gv, Ev */
6638 case 0x0f41:
6639 case 0x0f42:
6640 case 0x0f43:
6641 case 0x0f44:
6642 case 0x0f45:
6643 case 0x0f46:
6644 case 0x0f47:
6645 case 0x0f48:
6646 case 0x0f49:
6647 case 0x0f4a:
6648 case 0x0f4b:
6649 case 0x0f4c:
6650 case 0x0f4d:
6651 case 0x0f4e:
6652 case 0x0f4f:
6653 if (i386_record_modrm (&ir))
6654 return -1;
6655 ir.reg |= rex_r;
6656 if (ir.dflag == OT_BYTE)
6657 ir.reg &= 0x3;
6658 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6659 break;
6660
6661 /* flags */
6662 case 0x9c: /* pushf */
6663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6664 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6665 ir.dflag = 2;
6666 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6667 return -1;
6668 break;
6669
6670 case 0x9d: /* popf */
6671 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6672 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6673 break;
6674
6675 case 0x9e: /* sahf */
6676 if (ir.regmap[X86_RECORD_R8_REGNUM])
6677 {
6678 ir.addr -= 1;
6679 goto no_support;
6680 }
6681 /* FALLTHROUGH */
6682 case 0xf5: /* cmc */
6683 case 0xf8: /* clc */
6684 case 0xf9: /* stc */
6685 case 0xfc: /* cld */
6686 case 0xfd: /* std */
6687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6688 break;
6689
6690 case 0x9f: /* lahf */
6691 if (ir.regmap[X86_RECORD_R8_REGNUM])
6692 {
6693 ir.addr -= 1;
6694 goto no_support;
6695 }
6696 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6697 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6698 break;
6699
6700 /* bit operations */
6701 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6702 ir.ot = ir.dflag + OT_WORD;
6703 if (i386_record_modrm (&ir))
6704 return -1;
6705 if (ir.reg < 4)
6706 {
6707 ir.addr -= 2;
6708 opcode = opcode << 8 | ir.modrm;
6709 goto no_support;
6710 }
6711 if (ir.reg != 4)
6712 {
6713 if (ir.mod == 3)
6714 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6715 else
6716 {
6717 if (i386_record_lea_modrm (&ir))
6718 return -1;
6719 }
6720 }
6721 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6722 break;
6723
6724 case 0x0fa3: /* bt Gv, Ev */
6725 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6726 break;
6727
6728 case 0x0fab: /* bts */
6729 case 0x0fb3: /* btr */
6730 case 0x0fbb: /* btc */
6731 ir.ot = ir.dflag + OT_WORD;
6732 if (i386_record_modrm (&ir))
6733 return -1;
6734 if (ir.mod == 3)
6735 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6736 else
6737 {
6738 uint64_t addr64;
6739 if (i386_record_lea_modrm_addr (&ir, &addr64))
6740 return -1;
6741 regcache_raw_read_unsigned (ir.regcache,
6742 ir.regmap[ir.reg | rex_r],
6743 &addr);
6744 switch (ir.dflag)
6745 {
6746 case 0:
6747 addr64 += ((int16_t) addr >> 4) << 4;
6748 break;
6749 case 1:
6750 addr64 += ((int32_t) addr >> 5) << 5;
6751 break;
6752 case 2:
6753 addr64 += ((int64_t) addr >> 6) << 6;
6754 break;
6755 }
6756 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6757 return -1;
6758 if (i386_record_lea_modrm (&ir))
6759 return -1;
6760 }
6761 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6762 break;
6763
6764 case 0x0fbc: /* bsf */
6765 case 0x0fbd: /* bsr */
6766 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6767 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6768 break;
6769
6770 /* bcd */
6771 case 0x27: /* daa */
6772 case 0x2f: /* das */
6773 case 0x37: /* aaa */
6774 case 0x3f: /* aas */
6775 case 0xd4: /* aam */
6776 case 0xd5: /* aad */
6777 if (ir.regmap[X86_RECORD_R8_REGNUM])
6778 {
6779 ir.addr -= 1;
6780 goto no_support;
6781 }
6782 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6783 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6784 break;
6785
6786 /* misc */
6787 case 0x90: /* nop */
6788 if (prefixes & PREFIX_LOCK)
6789 {
6790 ir.addr -= 1;
6791 goto no_support;
6792 }
6793 break;
6794
6795 case 0x9b: /* fwait */
6796 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6797 return -1;
6798 opcode = (uint32_t) opcode8;
6799 ir.addr++;
6800 goto reswitch;
6801 break;
6802
6803 /* XXX */
6804 case 0xcc: /* int3 */
6805 printf_unfiltered (_("Process record does not support instruction "
6806 "int3.\n"));
6807 ir.addr -= 1;
6808 goto no_support;
6809 break;
6810
6811 /* XXX */
6812 case 0xcd: /* int */
6813 {
6814 int ret;
6815 uint8_t interrupt;
6816 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6817 return -1;
6818 ir.addr++;
6819 if (interrupt != 0x80
6820 || tdep->i386_intx80_record == NULL)
6821 {
6822 printf_unfiltered (_("Process record does not support "
6823 "instruction int 0x%02x.\n"),
6824 interrupt);
6825 ir.addr -= 2;
6826 goto no_support;
6827 }
6828 ret = tdep->i386_intx80_record (ir.regcache);
6829 if (ret)
6830 return ret;
6831 }
6832 break;
6833
6834 /* XXX */
6835 case 0xce: /* into */
6836 printf_unfiltered (_("Process record does not support "
6837 "instruction into.\n"));
6838 ir.addr -= 1;
6839 goto no_support;
6840 break;
6841
6842 case 0xfa: /* cli */
6843 case 0xfb: /* sti */
6844 break;
6845
6846 case 0x62: /* bound */
6847 printf_unfiltered (_("Process record does not support "
6848 "instruction bound.\n"));
6849 ir.addr -= 1;
6850 goto no_support;
6851 break;
6852
6853 case 0x0fc8: /* bswap reg */
6854 case 0x0fc9:
6855 case 0x0fca:
6856 case 0x0fcb:
6857 case 0x0fcc:
6858 case 0x0fcd:
6859 case 0x0fce:
6860 case 0x0fcf:
6861 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6862 break;
6863
6864 case 0xd6: /* salc */
6865 if (ir.regmap[X86_RECORD_R8_REGNUM])
6866 {
6867 ir.addr -= 1;
6868 goto no_support;
6869 }
6870 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6871 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6872 break;
6873
6874 case 0xe0: /* loopnz */
6875 case 0xe1: /* loopz */
6876 case 0xe2: /* loop */
6877 case 0xe3: /* jecxz */
6878 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6879 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6880 break;
6881
6882 case 0x0f30: /* wrmsr */
6883 printf_unfiltered (_("Process record does not support "
6884 "instruction wrmsr.\n"));
6885 ir.addr -= 2;
6886 goto no_support;
6887 break;
6888
6889 case 0x0f32: /* rdmsr */
6890 printf_unfiltered (_("Process record does not support "
6891 "instruction rdmsr.\n"));
6892 ir.addr -= 2;
6893 goto no_support;
6894 break;
6895
6896 case 0x0f31: /* rdtsc */
6897 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6898 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6899 break;
6900
6901 case 0x0f34: /* sysenter */
6902 {
6903 int ret;
6904 if (ir.regmap[X86_RECORD_R8_REGNUM])
6905 {
6906 ir.addr -= 2;
6907 goto no_support;
6908 }
6909 if (tdep->i386_sysenter_record == NULL)
6910 {
6911 printf_unfiltered (_("Process record does not support "
6912 "instruction sysenter.\n"));
6913 ir.addr -= 2;
6914 goto no_support;
6915 }
6916 ret = tdep->i386_sysenter_record (ir.regcache);
6917 if (ret)
6918 return ret;
6919 }
6920 break;
6921
6922 case 0x0f35: /* sysexit */
6923 printf_unfiltered (_("Process record does not support "
6924 "instruction sysexit.\n"));
6925 ir.addr -= 2;
6926 goto no_support;
6927 break;
6928
6929 case 0x0f05: /* syscall */
6930 {
6931 int ret;
6932 if (tdep->i386_syscall_record == NULL)
6933 {
6934 printf_unfiltered (_("Process record does not support "
6935 "instruction syscall.\n"));
6936 ir.addr -= 2;
6937 goto no_support;
6938 }
6939 ret = tdep->i386_syscall_record (ir.regcache);
6940 if (ret)
6941 return ret;
6942 }
6943 break;
6944
6945 case 0x0f07: /* sysret */
6946 printf_unfiltered (_("Process record does not support "
6947 "instruction sysret.\n"));
6948 ir.addr -= 2;
6949 goto no_support;
6950 break;
6951
6952 case 0x0fa2: /* cpuid */
6953 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6954 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6955 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6956 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6957 break;
6958
6959 case 0xf4: /* hlt */
6960 printf_unfiltered (_("Process record does not support "
6961 "instruction hlt.\n"));
6962 ir.addr -= 1;
6963 goto no_support;
6964 break;
6965
6966 case 0x0f00:
6967 if (i386_record_modrm (&ir))
6968 return -1;
6969 switch (ir.reg)
6970 {
6971 case 0: /* sldt */
6972 case 1: /* str */
6973 if (ir.mod == 3)
6974 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6975 else
6976 {
6977 ir.ot = OT_WORD;
6978 if (i386_record_lea_modrm (&ir))
6979 return -1;
6980 }
6981 break;
6982 case 2: /* lldt */
6983 case 3: /* ltr */
6984 break;
6985 case 4: /* verr */
6986 case 5: /* verw */
6987 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6988 break;
6989 default:
6990 ir.addr -= 3;
6991 opcode = opcode << 8 | ir.modrm;
6992 goto no_support;
6993 break;
6994 }
6995 break;
6996
6997 case 0x0f01:
6998 if (i386_record_modrm (&ir))
6999 return -1;
7000 switch (ir.reg)
7001 {
7002 case 0: /* sgdt */
7003 {
7004 uint64_t addr64;
7005
7006 if (ir.mod == 3)
7007 {
7008 ir.addr -= 3;
7009 opcode = opcode << 8 | ir.modrm;
7010 goto no_support;
7011 }
7012 if (ir.override >= 0)
7013 {
7014 if (record_full_memory_query)
7015 {
7016 if (yquery (_("\
7017 Process record ignores the memory change of instruction at address %s\n\
7018 because it can't get the value of the segment register.\n\
7019 Do you want to stop the program?"),
7020 paddress (gdbarch, ir.orig_addr)))
7021 return -1;
7022 }
7023 }
7024 else
7025 {
7026 if (i386_record_lea_modrm_addr (&ir, &addr64))
7027 return -1;
7028 if (record_full_arch_list_add_mem (addr64, 2))
7029 return -1;
7030 addr64 += 2;
7031 if (ir.regmap[X86_RECORD_R8_REGNUM])
7032 {
7033 if (record_full_arch_list_add_mem (addr64, 8))
7034 return -1;
7035 }
7036 else
7037 {
7038 if (record_full_arch_list_add_mem (addr64, 4))
7039 return -1;
7040 }
7041 }
7042 }
7043 break;
7044 case 1:
7045 if (ir.mod == 3)
7046 {
7047 switch (ir.rm)
7048 {
7049 case 0: /* monitor */
7050 break;
7051 case 1: /* mwait */
7052 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7053 break;
7054 default:
7055 ir.addr -= 3;
7056 opcode = opcode << 8 | ir.modrm;
7057 goto no_support;
7058 break;
7059 }
7060 }
7061 else
7062 {
7063 /* sidt */
7064 if (ir.override >= 0)
7065 {
7066 if (record_full_memory_query)
7067 {
7068 if (yquery (_("\
7069 Process record ignores the memory change of instruction at address %s\n\
7070 because it can't get the value of the segment register.\n\
7071 Do you want to stop the program?"),
7072 paddress (gdbarch, ir.orig_addr)))
7073 return -1;
7074 }
7075 }
7076 else
7077 {
7078 uint64_t addr64;
7079
7080 if (i386_record_lea_modrm_addr (&ir, &addr64))
7081 return -1;
7082 if (record_full_arch_list_add_mem (addr64, 2))
7083 return -1;
7084 addr64 += 2;
7085 if (ir.regmap[X86_RECORD_R8_REGNUM])
7086 {
7087 if (record_full_arch_list_add_mem (addr64, 8))
7088 return -1;
7089 }
7090 else
7091 {
7092 if (record_full_arch_list_add_mem (addr64, 4))
7093 return -1;
7094 }
7095 }
7096 }
7097 break;
7098 case 2: /* lgdt */
7099 if (ir.mod == 3)
7100 {
7101 /* xgetbv */
7102 if (ir.rm == 0)
7103 {
7104 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7105 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7106 break;
7107 }
7108 /* xsetbv */
7109 else if (ir.rm == 1)
7110 break;
7111 }
7112 /* Fall through. */
7113 case 3: /* lidt */
7114 if (ir.mod == 3)
7115 {
7116 ir.addr -= 3;
7117 opcode = opcode << 8 | ir.modrm;
7118 goto no_support;
7119 }
7120 break;
7121 case 4: /* smsw */
7122 if (ir.mod == 3)
7123 {
7124 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7125 return -1;
7126 }
7127 else
7128 {
7129 ir.ot = OT_WORD;
7130 if (i386_record_lea_modrm (&ir))
7131 return -1;
7132 }
7133 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7134 break;
7135 case 6: /* lmsw */
7136 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7137 break;
7138 case 7: /* invlpg */
7139 if (ir.mod == 3)
7140 {
7141 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7142 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7143 else
7144 {
7145 ir.addr -= 3;
7146 opcode = opcode << 8 | ir.modrm;
7147 goto no_support;
7148 }
7149 }
7150 else
7151 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7152 break;
7153 default:
7154 ir.addr -= 3;
7155 opcode = opcode << 8 | ir.modrm;
7156 goto no_support;
7157 break;
7158 }
7159 break;
7160
7161 case 0x0f08: /* invd */
7162 case 0x0f09: /* wbinvd */
7163 break;
7164
7165 case 0x63: /* arpl */
7166 if (i386_record_modrm (&ir))
7167 return -1;
7168 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7169 {
7170 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7171 ? (ir.reg | rex_r) : ir.rm);
7172 }
7173 else
7174 {
7175 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7176 if (i386_record_lea_modrm (&ir))
7177 return -1;
7178 }
7179 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7180 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7181 break;
7182
7183 case 0x0f02: /* lar */
7184 case 0x0f03: /* lsl */
7185 if (i386_record_modrm (&ir))
7186 return -1;
7187 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7188 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7189 break;
7190
7191 case 0x0f18:
7192 if (i386_record_modrm (&ir))
7193 return -1;
7194 if (ir.mod == 3 && ir.reg == 3)
7195 {
7196 ir.addr -= 3;
7197 opcode = opcode << 8 | ir.modrm;
7198 goto no_support;
7199 }
7200 break;
7201
7202 case 0x0f19:
7203 case 0x0f1a:
7204 case 0x0f1b:
7205 case 0x0f1c:
7206 case 0x0f1d:
7207 case 0x0f1e:
7208 case 0x0f1f:
7209 /* nop (multi byte) */
7210 break;
7211
7212 case 0x0f20: /* mov reg, crN */
7213 case 0x0f22: /* mov crN, reg */
7214 if (i386_record_modrm (&ir))
7215 return -1;
7216 if ((ir.modrm & 0xc0) != 0xc0)
7217 {
7218 ir.addr -= 3;
7219 opcode = opcode << 8 | ir.modrm;
7220 goto no_support;
7221 }
7222 switch (ir.reg)
7223 {
7224 case 0:
7225 case 2:
7226 case 3:
7227 case 4:
7228 case 8:
7229 if (opcode & 2)
7230 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7231 else
7232 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7233 break;
7234 default:
7235 ir.addr -= 3;
7236 opcode = opcode << 8 | ir.modrm;
7237 goto no_support;
7238 break;
7239 }
7240 break;
7241
7242 case 0x0f21: /* mov reg, drN */
7243 case 0x0f23: /* mov drN, reg */
7244 if (i386_record_modrm (&ir))
7245 return -1;
7246 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7247 || ir.reg == 5 || ir.reg >= 8)
7248 {
7249 ir.addr -= 3;
7250 opcode = opcode << 8 | ir.modrm;
7251 goto no_support;
7252 }
7253 if (opcode & 2)
7254 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7255 else
7256 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7257 break;
7258
7259 case 0x0f06: /* clts */
7260 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7261 break;
7262
7263 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7264
7265 case 0x0f0d: /* 3DNow! prefetch */
7266 break;
7267
7268 case 0x0f0e: /* 3DNow! femms */
7269 case 0x0f77: /* emms */
7270 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7271 goto no_support;
7272 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7273 break;
7274
7275 case 0x0f0f: /* 3DNow! data */
7276 if (i386_record_modrm (&ir))
7277 return -1;
7278 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7279 return -1;
7280 ir.addr++;
7281 switch (opcode8)
7282 {
7283 case 0x0c: /* 3DNow! pi2fw */
7284 case 0x0d: /* 3DNow! pi2fd */
7285 case 0x1c: /* 3DNow! pf2iw */
7286 case 0x1d: /* 3DNow! pf2id */
7287 case 0x8a: /* 3DNow! pfnacc */
7288 case 0x8e: /* 3DNow! pfpnacc */
7289 case 0x90: /* 3DNow! pfcmpge */
7290 case 0x94: /* 3DNow! pfmin */
7291 case 0x96: /* 3DNow! pfrcp */
7292 case 0x97: /* 3DNow! pfrsqrt */
7293 case 0x9a: /* 3DNow! pfsub */
7294 case 0x9e: /* 3DNow! pfadd */
7295 case 0xa0: /* 3DNow! pfcmpgt */
7296 case 0xa4: /* 3DNow! pfmax */
7297 case 0xa6: /* 3DNow! pfrcpit1 */
7298 case 0xa7: /* 3DNow! pfrsqit1 */
7299 case 0xaa: /* 3DNow! pfsubr */
7300 case 0xae: /* 3DNow! pfacc */
7301 case 0xb0: /* 3DNow! pfcmpeq */
7302 case 0xb4: /* 3DNow! pfmul */
7303 case 0xb6: /* 3DNow! pfrcpit2 */
7304 case 0xb7: /* 3DNow! pmulhrw */
7305 case 0xbb: /* 3DNow! pswapd */
7306 case 0xbf: /* 3DNow! pavgusb */
7307 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7308 goto no_support_3dnow_data;
7309 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7310 break;
7311
7312 default:
7313 no_support_3dnow_data:
7314 opcode = (opcode << 8) | opcode8;
7315 goto no_support;
7316 break;
7317 }
7318 break;
7319
7320 case 0x0faa: /* rsm */
7321 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7322 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7323 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7324 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7325 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7326 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7327 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7328 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7329 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7330 break;
7331
7332 case 0x0fae:
7333 if (i386_record_modrm (&ir))
7334 return -1;
7335 switch(ir.reg)
7336 {
7337 case 0: /* fxsave */
7338 {
7339 uint64_t tmpu64;
7340
7341 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7342 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7343 return -1;
7344 if (record_full_arch_list_add_mem (tmpu64, 512))
7345 return -1;
7346 }
7347 break;
7348
7349 case 1: /* fxrstor */
7350 {
7351 int i;
7352
7353 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7354
7355 for (i = I387_MM0_REGNUM (tdep);
7356 i386_mmx_regnum_p (gdbarch, i); i++)
7357 record_full_arch_list_add_reg (ir.regcache, i);
7358
7359 for (i = I387_XMM0_REGNUM (tdep);
7360 i386_xmm_regnum_p (gdbarch, i); i++)
7361 record_full_arch_list_add_reg (ir.regcache, i);
7362
7363 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7364 record_full_arch_list_add_reg (ir.regcache,
7365 I387_MXCSR_REGNUM(tdep));
7366
7367 for (i = I387_ST0_REGNUM (tdep);
7368 i386_fp_regnum_p (gdbarch, i); i++)
7369 record_full_arch_list_add_reg (ir.regcache, i);
7370
7371 for (i = I387_FCTRL_REGNUM (tdep);
7372 i386_fpc_regnum_p (gdbarch, i); i++)
7373 record_full_arch_list_add_reg (ir.regcache, i);
7374 }
7375 break;
7376
7377 case 2: /* ldmxcsr */
7378 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7379 goto no_support;
7380 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7381 break;
7382
7383 case 3: /* stmxcsr */
7384 ir.ot = OT_LONG;
7385 if (i386_record_lea_modrm (&ir))
7386 return -1;
7387 break;
7388
7389 case 5: /* lfence */
7390 case 6: /* mfence */
7391 case 7: /* sfence clflush */
7392 break;
7393
7394 default:
7395 opcode = (opcode << 8) | ir.modrm;
7396 goto no_support;
7397 break;
7398 }
7399 break;
7400
7401 case 0x0fc3: /* movnti */
7402 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7403 if (i386_record_modrm (&ir))
7404 return -1;
7405 if (ir.mod == 3)
7406 goto no_support;
7407 ir.reg |= rex_r;
7408 if (i386_record_lea_modrm (&ir))
7409 return -1;
7410 break;
7411
7412 /* Add prefix to opcode. */
7413 case 0x0f10:
7414 case 0x0f11:
7415 case 0x0f12:
7416 case 0x0f13:
7417 case 0x0f14:
7418 case 0x0f15:
7419 case 0x0f16:
7420 case 0x0f17:
7421 case 0x0f28:
7422 case 0x0f29:
7423 case 0x0f2a:
7424 case 0x0f2b:
7425 case 0x0f2c:
7426 case 0x0f2d:
7427 case 0x0f2e:
7428 case 0x0f2f:
7429 case 0x0f38:
7430 case 0x0f39:
7431 case 0x0f3a:
7432 case 0x0f50:
7433 case 0x0f51:
7434 case 0x0f52:
7435 case 0x0f53:
7436 case 0x0f54:
7437 case 0x0f55:
7438 case 0x0f56:
7439 case 0x0f57:
7440 case 0x0f58:
7441 case 0x0f59:
7442 case 0x0f5a:
7443 case 0x0f5b:
7444 case 0x0f5c:
7445 case 0x0f5d:
7446 case 0x0f5e:
7447 case 0x0f5f:
7448 case 0x0f60:
7449 case 0x0f61:
7450 case 0x0f62:
7451 case 0x0f63:
7452 case 0x0f64:
7453 case 0x0f65:
7454 case 0x0f66:
7455 case 0x0f67:
7456 case 0x0f68:
7457 case 0x0f69:
7458 case 0x0f6a:
7459 case 0x0f6b:
7460 case 0x0f6c:
7461 case 0x0f6d:
7462 case 0x0f6e:
7463 case 0x0f6f:
7464 case 0x0f70:
7465 case 0x0f71:
7466 case 0x0f72:
7467 case 0x0f73:
7468 case 0x0f74:
7469 case 0x0f75:
7470 case 0x0f76:
7471 case 0x0f7c:
7472 case 0x0f7d:
7473 case 0x0f7e:
7474 case 0x0f7f:
7475 case 0x0fb8:
7476 case 0x0fc2:
7477 case 0x0fc4:
7478 case 0x0fc5:
7479 case 0x0fc6:
7480 case 0x0fd0:
7481 case 0x0fd1:
7482 case 0x0fd2:
7483 case 0x0fd3:
7484 case 0x0fd4:
7485 case 0x0fd5:
7486 case 0x0fd6:
7487 case 0x0fd7:
7488 case 0x0fd8:
7489 case 0x0fd9:
7490 case 0x0fda:
7491 case 0x0fdb:
7492 case 0x0fdc:
7493 case 0x0fdd:
7494 case 0x0fde:
7495 case 0x0fdf:
7496 case 0x0fe0:
7497 case 0x0fe1:
7498 case 0x0fe2:
7499 case 0x0fe3:
7500 case 0x0fe4:
7501 case 0x0fe5:
7502 case 0x0fe6:
7503 case 0x0fe7:
7504 case 0x0fe8:
7505 case 0x0fe9:
7506 case 0x0fea:
7507 case 0x0feb:
7508 case 0x0fec:
7509 case 0x0fed:
7510 case 0x0fee:
7511 case 0x0fef:
7512 case 0x0ff0:
7513 case 0x0ff1:
7514 case 0x0ff2:
7515 case 0x0ff3:
7516 case 0x0ff4:
7517 case 0x0ff5:
7518 case 0x0ff6:
7519 case 0x0ff7:
7520 case 0x0ff8:
7521 case 0x0ff9:
7522 case 0x0ffa:
7523 case 0x0ffb:
7524 case 0x0ffc:
7525 case 0x0ffd:
7526 case 0x0ffe:
7527 /* Mask out PREFIX_ADDR. */
7528 switch ((prefixes & ~PREFIX_ADDR))
7529 {
7530 case PREFIX_REPNZ:
7531 opcode |= 0xf20000;
7532 break;
7533 case PREFIX_DATA:
7534 opcode |= 0x660000;
7535 break;
7536 case PREFIX_REPZ:
7537 opcode |= 0xf30000;
7538 break;
7539 }
7540 reswitch_prefix_add:
7541 switch (opcode)
7542 {
7543 case 0x0f38:
7544 case 0x660f38:
7545 case 0xf20f38:
7546 case 0x0f3a:
7547 case 0x660f3a:
7548 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7549 return -1;
7550 ir.addr++;
7551 opcode = (uint32_t) opcode8 | opcode << 8;
7552 goto reswitch_prefix_add;
7553 break;
7554
7555 case 0x0f10: /* movups */
7556 case 0x660f10: /* movupd */
7557 case 0xf30f10: /* movss */
7558 case 0xf20f10: /* movsd */
7559 case 0x0f12: /* movlps */
7560 case 0x660f12: /* movlpd */
7561 case 0xf30f12: /* movsldup */
7562 case 0xf20f12: /* movddup */
7563 case 0x0f14: /* unpcklps */
7564 case 0x660f14: /* unpcklpd */
7565 case 0x0f15: /* unpckhps */
7566 case 0x660f15: /* unpckhpd */
7567 case 0x0f16: /* movhps */
7568 case 0x660f16: /* movhpd */
7569 case 0xf30f16: /* movshdup */
7570 case 0x0f28: /* movaps */
7571 case 0x660f28: /* movapd */
7572 case 0x0f2a: /* cvtpi2ps */
7573 case 0x660f2a: /* cvtpi2pd */
7574 case 0xf30f2a: /* cvtsi2ss */
7575 case 0xf20f2a: /* cvtsi2sd */
7576 case 0x0f2c: /* cvttps2pi */
7577 case 0x660f2c: /* cvttpd2pi */
7578 case 0x0f2d: /* cvtps2pi */
7579 case 0x660f2d: /* cvtpd2pi */
7580 case 0x660f3800: /* pshufb */
7581 case 0x660f3801: /* phaddw */
7582 case 0x660f3802: /* phaddd */
7583 case 0x660f3803: /* phaddsw */
7584 case 0x660f3804: /* pmaddubsw */
7585 case 0x660f3805: /* phsubw */
7586 case 0x660f3806: /* phsubd */
7587 case 0x660f3807: /* phsubsw */
7588 case 0x660f3808: /* psignb */
7589 case 0x660f3809: /* psignw */
7590 case 0x660f380a: /* psignd */
7591 case 0x660f380b: /* pmulhrsw */
7592 case 0x660f3810: /* pblendvb */
7593 case 0x660f3814: /* blendvps */
7594 case 0x660f3815: /* blendvpd */
7595 case 0x660f381c: /* pabsb */
7596 case 0x660f381d: /* pabsw */
7597 case 0x660f381e: /* pabsd */
7598 case 0x660f3820: /* pmovsxbw */
7599 case 0x660f3821: /* pmovsxbd */
7600 case 0x660f3822: /* pmovsxbq */
7601 case 0x660f3823: /* pmovsxwd */
7602 case 0x660f3824: /* pmovsxwq */
7603 case 0x660f3825: /* pmovsxdq */
7604 case 0x660f3828: /* pmuldq */
7605 case 0x660f3829: /* pcmpeqq */
7606 case 0x660f382a: /* movntdqa */
7607 case 0x660f3a08: /* roundps */
7608 case 0x660f3a09: /* roundpd */
7609 case 0x660f3a0a: /* roundss */
7610 case 0x660f3a0b: /* roundsd */
7611 case 0x660f3a0c: /* blendps */
7612 case 0x660f3a0d: /* blendpd */
7613 case 0x660f3a0e: /* pblendw */
7614 case 0x660f3a0f: /* palignr */
7615 case 0x660f3a20: /* pinsrb */
7616 case 0x660f3a21: /* insertps */
7617 case 0x660f3a22: /* pinsrd pinsrq */
7618 case 0x660f3a40: /* dpps */
7619 case 0x660f3a41: /* dppd */
7620 case 0x660f3a42: /* mpsadbw */
7621 case 0x660f3a60: /* pcmpestrm */
7622 case 0x660f3a61: /* pcmpestri */
7623 case 0x660f3a62: /* pcmpistrm */
7624 case 0x660f3a63: /* pcmpistri */
7625 case 0x0f51: /* sqrtps */
7626 case 0x660f51: /* sqrtpd */
7627 case 0xf20f51: /* sqrtsd */
7628 case 0xf30f51: /* sqrtss */
7629 case 0x0f52: /* rsqrtps */
7630 case 0xf30f52: /* rsqrtss */
7631 case 0x0f53: /* rcpps */
7632 case 0xf30f53: /* rcpss */
7633 case 0x0f54: /* andps */
7634 case 0x660f54: /* andpd */
7635 case 0x0f55: /* andnps */
7636 case 0x660f55: /* andnpd */
7637 case 0x0f56: /* orps */
7638 case 0x660f56: /* orpd */
7639 case 0x0f57: /* xorps */
7640 case 0x660f57: /* xorpd */
7641 case 0x0f58: /* addps */
7642 case 0x660f58: /* addpd */
7643 case 0xf20f58: /* addsd */
7644 case 0xf30f58: /* addss */
7645 case 0x0f59: /* mulps */
7646 case 0x660f59: /* mulpd */
7647 case 0xf20f59: /* mulsd */
7648 case 0xf30f59: /* mulss */
7649 case 0x0f5a: /* cvtps2pd */
7650 case 0x660f5a: /* cvtpd2ps */
7651 case 0xf20f5a: /* cvtsd2ss */
7652 case 0xf30f5a: /* cvtss2sd */
7653 case 0x0f5b: /* cvtdq2ps */
7654 case 0x660f5b: /* cvtps2dq */
7655 case 0xf30f5b: /* cvttps2dq */
7656 case 0x0f5c: /* subps */
7657 case 0x660f5c: /* subpd */
7658 case 0xf20f5c: /* subsd */
7659 case 0xf30f5c: /* subss */
7660 case 0x0f5d: /* minps */
7661 case 0x660f5d: /* minpd */
7662 case 0xf20f5d: /* minsd */
7663 case 0xf30f5d: /* minss */
7664 case 0x0f5e: /* divps */
7665 case 0x660f5e: /* divpd */
7666 case 0xf20f5e: /* divsd */
7667 case 0xf30f5e: /* divss */
7668 case 0x0f5f: /* maxps */
7669 case 0x660f5f: /* maxpd */
7670 case 0xf20f5f: /* maxsd */
7671 case 0xf30f5f: /* maxss */
7672 case 0x660f60: /* punpcklbw */
7673 case 0x660f61: /* punpcklwd */
7674 case 0x660f62: /* punpckldq */
7675 case 0x660f63: /* packsswb */
7676 case 0x660f64: /* pcmpgtb */
7677 case 0x660f65: /* pcmpgtw */
7678 case 0x660f66: /* pcmpgtd */
7679 case 0x660f67: /* packuswb */
7680 case 0x660f68: /* punpckhbw */
7681 case 0x660f69: /* punpckhwd */
7682 case 0x660f6a: /* punpckhdq */
7683 case 0x660f6b: /* packssdw */
7684 case 0x660f6c: /* punpcklqdq */
7685 case 0x660f6d: /* punpckhqdq */
7686 case 0x660f6e: /* movd */
7687 case 0x660f6f: /* movdqa */
7688 case 0xf30f6f: /* movdqu */
7689 case 0x660f70: /* pshufd */
7690 case 0xf20f70: /* pshuflw */
7691 case 0xf30f70: /* pshufhw */
7692 case 0x660f74: /* pcmpeqb */
7693 case 0x660f75: /* pcmpeqw */
7694 case 0x660f76: /* pcmpeqd */
7695 case 0x660f7c: /* haddpd */
7696 case 0xf20f7c: /* haddps */
7697 case 0x660f7d: /* hsubpd */
7698 case 0xf20f7d: /* hsubps */
7699 case 0xf30f7e: /* movq */
7700 case 0x0fc2: /* cmpps */
7701 case 0x660fc2: /* cmppd */
7702 case 0xf20fc2: /* cmpsd */
7703 case 0xf30fc2: /* cmpss */
7704 case 0x660fc4: /* pinsrw */
7705 case 0x0fc6: /* shufps */
7706 case 0x660fc6: /* shufpd */
7707 case 0x660fd0: /* addsubpd */
7708 case 0xf20fd0: /* addsubps */
7709 case 0x660fd1: /* psrlw */
7710 case 0x660fd2: /* psrld */
7711 case 0x660fd3: /* psrlq */
7712 case 0x660fd4: /* paddq */
7713 case 0x660fd5: /* pmullw */
7714 case 0xf30fd6: /* movq2dq */
7715 case 0x660fd8: /* psubusb */
7716 case 0x660fd9: /* psubusw */
7717 case 0x660fda: /* pminub */
7718 case 0x660fdb: /* pand */
7719 case 0x660fdc: /* paddusb */
7720 case 0x660fdd: /* paddusw */
7721 case 0x660fde: /* pmaxub */
7722 case 0x660fdf: /* pandn */
7723 case 0x660fe0: /* pavgb */
7724 case 0x660fe1: /* psraw */
7725 case 0x660fe2: /* psrad */
7726 case 0x660fe3: /* pavgw */
7727 case 0x660fe4: /* pmulhuw */
7728 case 0x660fe5: /* pmulhw */
7729 case 0x660fe6: /* cvttpd2dq */
7730 case 0xf20fe6: /* cvtpd2dq */
7731 case 0xf30fe6: /* cvtdq2pd */
7732 case 0x660fe8: /* psubsb */
7733 case 0x660fe9: /* psubsw */
7734 case 0x660fea: /* pminsw */
7735 case 0x660feb: /* por */
7736 case 0x660fec: /* paddsb */
7737 case 0x660fed: /* paddsw */
7738 case 0x660fee: /* pmaxsw */
7739 case 0x660fef: /* pxor */
7740 case 0xf20ff0: /* lddqu */
7741 case 0x660ff1: /* psllw */
7742 case 0x660ff2: /* pslld */
7743 case 0x660ff3: /* psllq */
7744 case 0x660ff4: /* pmuludq */
7745 case 0x660ff5: /* pmaddwd */
7746 case 0x660ff6: /* psadbw */
7747 case 0x660ff8: /* psubb */
7748 case 0x660ff9: /* psubw */
7749 case 0x660ffa: /* psubd */
7750 case 0x660ffb: /* psubq */
7751 case 0x660ffc: /* paddb */
7752 case 0x660ffd: /* paddw */
7753 case 0x660ffe: /* paddd */
7754 if (i386_record_modrm (&ir))
7755 return -1;
7756 ir.reg |= rex_r;
7757 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7758 goto no_support;
7759 record_full_arch_list_add_reg (ir.regcache,
7760 I387_XMM0_REGNUM (tdep) + ir.reg);
7761 if ((opcode & 0xfffffffc) == 0x660f3a60)
7762 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7763 break;
7764
7765 case 0x0f11: /* movups */
7766 case 0x660f11: /* movupd */
7767 case 0xf30f11: /* movss */
7768 case 0xf20f11: /* movsd */
7769 case 0x0f13: /* movlps */
7770 case 0x660f13: /* movlpd */
7771 case 0x0f17: /* movhps */
7772 case 0x660f17: /* movhpd */
7773 case 0x0f29: /* movaps */
7774 case 0x660f29: /* movapd */
7775 case 0x660f3a14: /* pextrb */
7776 case 0x660f3a15: /* pextrw */
7777 case 0x660f3a16: /* pextrd pextrq */
7778 case 0x660f3a17: /* extractps */
7779 case 0x660f7f: /* movdqa */
7780 case 0xf30f7f: /* movdqu */
7781 if (i386_record_modrm (&ir))
7782 return -1;
7783 if (ir.mod == 3)
7784 {
7785 if (opcode == 0x0f13 || opcode == 0x660f13
7786 || opcode == 0x0f17 || opcode == 0x660f17)
7787 goto no_support;
7788 ir.rm |= ir.rex_b;
7789 if (!i386_xmm_regnum_p (gdbarch,
7790 I387_XMM0_REGNUM (tdep) + ir.rm))
7791 goto no_support;
7792 record_full_arch_list_add_reg (ir.regcache,
7793 I387_XMM0_REGNUM (tdep) + ir.rm);
7794 }
7795 else
7796 {
7797 switch (opcode)
7798 {
7799 case 0x660f3a14:
7800 ir.ot = OT_BYTE;
7801 break;
7802 case 0x660f3a15:
7803 ir.ot = OT_WORD;
7804 break;
7805 case 0x660f3a16:
7806 ir.ot = OT_LONG;
7807 break;
7808 case 0x660f3a17:
7809 ir.ot = OT_QUAD;
7810 break;
7811 default:
7812 ir.ot = OT_DQUAD;
7813 break;
7814 }
7815 if (i386_record_lea_modrm (&ir))
7816 return -1;
7817 }
7818 break;
7819
7820 case 0x0f2b: /* movntps */
7821 case 0x660f2b: /* movntpd */
7822 case 0x0fe7: /* movntq */
7823 case 0x660fe7: /* movntdq */
7824 if (ir.mod == 3)
7825 goto no_support;
7826 if (opcode == 0x0fe7)
7827 ir.ot = OT_QUAD;
7828 else
7829 ir.ot = OT_DQUAD;
7830 if (i386_record_lea_modrm (&ir))
7831 return -1;
7832 break;
7833
7834 case 0xf30f2c: /* cvttss2si */
7835 case 0xf20f2c: /* cvttsd2si */
7836 case 0xf30f2d: /* cvtss2si */
7837 case 0xf20f2d: /* cvtsd2si */
7838 case 0xf20f38f0: /* crc32 */
7839 case 0xf20f38f1: /* crc32 */
7840 case 0x0f50: /* movmskps */
7841 case 0x660f50: /* movmskpd */
7842 case 0x0fc5: /* pextrw */
7843 case 0x660fc5: /* pextrw */
7844 case 0x0fd7: /* pmovmskb */
7845 case 0x660fd7: /* pmovmskb */
7846 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7847 break;
7848
7849 case 0x0f3800: /* pshufb */
7850 case 0x0f3801: /* phaddw */
7851 case 0x0f3802: /* phaddd */
7852 case 0x0f3803: /* phaddsw */
7853 case 0x0f3804: /* pmaddubsw */
7854 case 0x0f3805: /* phsubw */
7855 case 0x0f3806: /* phsubd */
7856 case 0x0f3807: /* phsubsw */
7857 case 0x0f3808: /* psignb */
7858 case 0x0f3809: /* psignw */
7859 case 0x0f380a: /* psignd */
7860 case 0x0f380b: /* pmulhrsw */
7861 case 0x0f381c: /* pabsb */
7862 case 0x0f381d: /* pabsw */
7863 case 0x0f381e: /* pabsd */
7864 case 0x0f382b: /* packusdw */
7865 case 0x0f3830: /* pmovzxbw */
7866 case 0x0f3831: /* pmovzxbd */
7867 case 0x0f3832: /* pmovzxbq */
7868 case 0x0f3833: /* pmovzxwd */
7869 case 0x0f3834: /* pmovzxwq */
7870 case 0x0f3835: /* pmovzxdq */
7871 case 0x0f3837: /* pcmpgtq */
7872 case 0x0f3838: /* pminsb */
7873 case 0x0f3839: /* pminsd */
7874 case 0x0f383a: /* pminuw */
7875 case 0x0f383b: /* pminud */
7876 case 0x0f383c: /* pmaxsb */
7877 case 0x0f383d: /* pmaxsd */
7878 case 0x0f383e: /* pmaxuw */
7879 case 0x0f383f: /* pmaxud */
7880 case 0x0f3840: /* pmulld */
7881 case 0x0f3841: /* phminposuw */
7882 case 0x0f3a0f: /* palignr */
7883 case 0x0f60: /* punpcklbw */
7884 case 0x0f61: /* punpcklwd */
7885 case 0x0f62: /* punpckldq */
7886 case 0x0f63: /* packsswb */
7887 case 0x0f64: /* pcmpgtb */
7888 case 0x0f65: /* pcmpgtw */
7889 case 0x0f66: /* pcmpgtd */
7890 case 0x0f67: /* packuswb */
7891 case 0x0f68: /* punpckhbw */
7892 case 0x0f69: /* punpckhwd */
7893 case 0x0f6a: /* punpckhdq */
7894 case 0x0f6b: /* packssdw */
7895 case 0x0f6e: /* movd */
7896 case 0x0f6f: /* movq */
7897 case 0x0f70: /* pshufw */
7898 case 0x0f74: /* pcmpeqb */
7899 case 0x0f75: /* pcmpeqw */
7900 case 0x0f76: /* pcmpeqd */
7901 case 0x0fc4: /* pinsrw */
7902 case 0x0fd1: /* psrlw */
7903 case 0x0fd2: /* psrld */
7904 case 0x0fd3: /* psrlq */
7905 case 0x0fd4: /* paddq */
7906 case 0x0fd5: /* pmullw */
7907 case 0xf20fd6: /* movdq2q */
7908 case 0x0fd8: /* psubusb */
7909 case 0x0fd9: /* psubusw */
7910 case 0x0fda: /* pminub */
7911 case 0x0fdb: /* pand */
7912 case 0x0fdc: /* paddusb */
7913 case 0x0fdd: /* paddusw */
7914 case 0x0fde: /* pmaxub */
7915 case 0x0fdf: /* pandn */
7916 case 0x0fe0: /* pavgb */
7917 case 0x0fe1: /* psraw */
7918 case 0x0fe2: /* psrad */
7919 case 0x0fe3: /* pavgw */
7920 case 0x0fe4: /* pmulhuw */
7921 case 0x0fe5: /* pmulhw */
7922 case 0x0fe8: /* psubsb */
7923 case 0x0fe9: /* psubsw */
7924 case 0x0fea: /* pminsw */
7925 case 0x0feb: /* por */
7926 case 0x0fec: /* paddsb */
7927 case 0x0fed: /* paddsw */
7928 case 0x0fee: /* pmaxsw */
7929 case 0x0fef: /* pxor */
7930 case 0x0ff1: /* psllw */
7931 case 0x0ff2: /* pslld */
7932 case 0x0ff3: /* psllq */
7933 case 0x0ff4: /* pmuludq */
7934 case 0x0ff5: /* pmaddwd */
7935 case 0x0ff6: /* psadbw */
7936 case 0x0ff8: /* psubb */
7937 case 0x0ff9: /* psubw */
7938 case 0x0ffa: /* psubd */
7939 case 0x0ffb: /* psubq */
7940 case 0x0ffc: /* paddb */
7941 case 0x0ffd: /* paddw */
7942 case 0x0ffe: /* paddd */
7943 if (i386_record_modrm (&ir))
7944 return -1;
7945 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7946 goto no_support;
7947 record_full_arch_list_add_reg (ir.regcache,
7948 I387_MM0_REGNUM (tdep) + ir.reg);
7949 break;
7950
7951 case 0x0f71: /* psllw */
7952 case 0x0f72: /* pslld */
7953 case 0x0f73: /* psllq */
7954 if (i386_record_modrm (&ir))
7955 return -1;
7956 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7957 goto no_support;
7958 record_full_arch_list_add_reg (ir.regcache,
7959 I387_MM0_REGNUM (tdep) + ir.rm);
7960 break;
7961
7962 case 0x660f71: /* psllw */
7963 case 0x660f72: /* pslld */
7964 case 0x660f73: /* psllq */
7965 if (i386_record_modrm (&ir))
7966 return -1;
7967 ir.rm |= ir.rex_b;
7968 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7969 goto no_support;
7970 record_full_arch_list_add_reg (ir.regcache,
7971 I387_XMM0_REGNUM (tdep) + ir.rm);
7972 break;
7973
7974 case 0x0f7e: /* movd */
7975 case 0x660f7e: /* movd */
7976 if (i386_record_modrm (&ir))
7977 return -1;
7978 if (ir.mod == 3)
7979 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7980 else
7981 {
7982 if (ir.dflag == 2)
7983 ir.ot = OT_QUAD;
7984 else
7985 ir.ot = OT_LONG;
7986 if (i386_record_lea_modrm (&ir))
7987 return -1;
7988 }
7989 break;
7990
7991 case 0x0f7f: /* movq */
7992 if (i386_record_modrm (&ir))
7993 return -1;
7994 if (ir.mod == 3)
7995 {
7996 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7997 goto no_support;
7998 record_full_arch_list_add_reg (ir.regcache,
7999 I387_MM0_REGNUM (tdep) + ir.rm);
8000 }
8001 else
8002 {
8003 ir.ot = OT_QUAD;
8004 if (i386_record_lea_modrm (&ir))
8005 return -1;
8006 }
8007 break;
8008
8009 case 0xf30fb8: /* popcnt */
8010 if (i386_record_modrm (&ir))
8011 return -1;
8012 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8013 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8014 break;
8015
8016 case 0x660fd6: /* movq */
8017 if (i386_record_modrm (&ir))
8018 return -1;
8019 if (ir.mod == 3)
8020 {
8021 ir.rm |= ir.rex_b;
8022 if (!i386_xmm_regnum_p (gdbarch,
8023 I387_XMM0_REGNUM (tdep) + ir.rm))
8024 goto no_support;
8025 record_full_arch_list_add_reg (ir.regcache,
8026 I387_XMM0_REGNUM (tdep) + ir.rm);
8027 }
8028 else
8029 {
8030 ir.ot = OT_QUAD;
8031 if (i386_record_lea_modrm (&ir))
8032 return -1;
8033 }
8034 break;
8035
8036 case 0x660f3817: /* ptest */
8037 case 0x0f2e: /* ucomiss */
8038 case 0x660f2e: /* ucomisd */
8039 case 0x0f2f: /* comiss */
8040 case 0x660f2f: /* comisd */
8041 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8042 break;
8043
8044 case 0x0ff7: /* maskmovq */
8045 regcache_raw_read_unsigned (ir.regcache,
8046 ir.regmap[X86_RECORD_REDI_REGNUM],
8047 &addr);
8048 if (record_full_arch_list_add_mem (addr, 64))
8049 return -1;
8050 break;
8051
8052 case 0x660ff7: /* maskmovdqu */
8053 regcache_raw_read_unsigned (ir.regcache,
8054 ir.regmap[X86_RECORD_REDI_REGNUM],
8055 &addr);
8056 if (record_full_arch_list_add_mem (addr, 128))
8057 return -1;
8058 break;
8059
8060 default:
8061 goto no_support;
8062 break;
8063 }
8064 break;
8065
8066 default:
8067 goto no_support;
8068 break;
8069 }
8070
8071 /* In the future, maybe still need to deal with need_dasm. */
8072 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8073 if (record_full_arch_list_add_end ())
8074 return -1;
8075
8076 return 0;
8077
8078 no_support:
8079 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8080 "at address %s.\n"),
8081 (unsigned int) (opcode),
8082 paddress (gdbarch, ir.orig_addr));
8083 return -1;
8084 }
8085
8086 static const int i386_record_regmap[] =
8087 {
8088 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8089 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8090 0, 0, 0, 0, 0, 0, 0, 0,
8091 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8092 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8093 };
8094
8095 /* Check that the given address appears suitable for a fast
8096 tracepoint, which on x86-64 means that we need an instruction of at
8097 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8098 jump and not have to worry about program jumps to an address in the
8099 middle of the tracepoint jump. On x86, it may be possible to use
8100 4-byte jumps with a 2-byte offset to a trampoline located in the
8101 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8102 of instruction to replace, and 0 if not, plus an explanatory
8103 string. */
8104
8105 static int
8106 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8107 std::string *msg)
8108 {
8109 int len, jumplen;
8110
8111 /* Ask the target for the minimum instruction length supported. */
8112 jumplen = target_get_min_fast_tracepoint_insn_len ();
8113
8114 if (jumplen < 0)
8115 {
8116 /* If the target does not support the get_min_fast_tracepoint_insn_len
8117 operation, assume that fast tracepoints will always be implemented
8118 using 4-byte relative jumps on both x86 and x86-64. */
8119 jumplen = 5;
8120 }
8121 else if (jumplen == 0)
8122 {
8123 /* If the target does support get_min_fast_tracepoint_insn_len but
8124 returns zero, then the IPA has not loaded yet. In this case,
8125 we optimistically assume that truncated 2-byte relative jumps
8126 will be available on x86, and compensate later if this assumption
8127 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8128 jumps will always be used. */
8129 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8130 }
8131
8132 /* Check for fit. */
8133 len = gdb_insn_length (gdbarch, addr);
8134
8135 if (len < jumplen)
8136 {
8137 /* Return a bit of target-specific detail to add to the caller's
8138 generic failure message. */
8139 if (msg)
8140 *msg = string_printf (_("; instruction is only %d bytes long, "
8141 "need at least %d bytes for the jump"),
8142 len, jumplen);
8143 return 0;
8144 }
8145 else
8146 {
8147 if (msg)
8148 msg->clear ();
8149 return 1;
8150 }
8151 }
8152
8153 /* Return a floating-point format for a floating-point variable of
8154 length LEN in bits. If non-NULL, NAME is the name of its type.
8155 If no suitable type is found, return NULL. */
8156
8157 const struct floatformat **
8158 i386_floatformat_for_type (struct gdbarch *gdbarch,
8159 const char *name, int len)
8160 {
8161 if (len == 128 && name)
8162 if (strcmp (name, "__float128") == 0
8163 || strcmp (name, "_Float128") == 0
8164 || strcmp (name, "complex _Float128") == 0)
8165 return floatformats_ia64_quad;
8166
8167 return default_floatformat_for_type (gdbarch, name, len);
8168 }
8169
8170 static int
8171 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8172 struct tdesc_arch_data *tdesc_data)
8173 {
8174 const struct target_desc *tdesc = tdep->tdesc;
8175 const struct tdesc_feature *feature_core;
8176
8177 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8178 *feature_avx512, *feature_pkeys, *feature_segments;
8179 int i, num_regs, valid_p;
8180
8181 if (! tdesc_has_registers (tdesc))
8182 return 0;
8183
8184 /* Get core registers. */
8185 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8186 if (feature_core == NULL)
8187 return 0;
8188
8189 /* Get SSE registers. */
8190 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8191
8192 /* Try AVX registers. */
8193 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8194
8195 /* Try MPX registers. */
8196 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8197
8198 /* Try AVX512 registers. */
8199 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8200
8201 /* Try segment base registers. */
8202 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8203
8204 /* Try PKEYS */
8205 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8206
8207 valid_p = 1;
8208
8209 /* The XCR0 bits. */
8210 if (feature_avx512)
8211 {
8212 /* AVX512 register description requires AVX register description. */
8213 if (!feature_avx)
8214 return 0;
8215
8216 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8217
8218 /* It may have been set by OSABI initialization function. */
8219 if (tdep->k0_regnum < 0)
8220 {
8221 tdep->k_register_names = i386_k_names;
8222 tdep->k0_regnum = I386_K0_REGNUM;
8223 }
8224
8225 for (i = 0; i < I387_NUM_K_REGS; i++)
8226 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8227 tdep->k0_regnum + i,
8228 i386_k_names[i]);
8229
8230 if (tdep->num_zmm_regs == 0)
8231 {
8232 tdep->zmmh_register_names = i386_zmmh_names;
8233 tdep->num_zmm_regs = 8;
8234 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8235 }
8236
8237 for (i = 0; i < tdep->num_zmm_regs; i++)
8238 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8239 tdep->zmm0h_regnum + i,
8240 tdep->zmmh_register_names[i]);
8241
8242 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8243 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8244 tdep->xmm16_regnum + i,
8245 tdep->xmm_avx512_register_names[i]);
8246
8247 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8248 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8249 tdep->ymm16h_regnum + i,
8250 tdep->ymm16h_register_names[i]);
8251 }
8252 if (feature_avx)
8253 {
8254 /* AVX register description requires SSE register description. */
8255 if (!feature_sse)
8256 return 0;
8257
8258 if (!feature_avx512)
8259 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8260
8261 /* It may have been set by OSABI initialization function. */
8262 if (tdep->num_ymm_regs == 0)
8263 {
8264 tdep->ymmh_register_names = i386_ymmh_names;
8265 tdep->num_ymm_regs = 8;
8266 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8267 }
8268
8269 for (i = 0; i < tdep->num_ymm_regs; i++)
8270 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8271 tdep->ymm0h_regnum + i,
8272 tdep->ymmh_register_names[i]);
8273 }
8274 else if (feature_sse)
8275 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8276 else
8277 {
8278 tdep->xcr0 = X86_XSTATE_X87_MASK;
8279 tdep->num_xmm_regs = 0;
8280 }
8281
8282 num_regs = tdep->num_core_regs;
8283 for (i = 0; i < num_regs; i++)
8284 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8285 tdep->register_names[i]);
8286
8287 if (feature_sse)
8288 {
8289 /* Need to include %mxcsr, so add one. */
8290 num_regs += tdep->num_xmm_regs + 1;
8291 for (; i < num_regs; i++)
8292 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8293 tdep->register_names[i]);
8294 }
8295
8296 if (feature_mpx)
8297 {
8298 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8299
8300 if (tdep->bnd0r_regnum < 0)
8301 {
8302 tdep->mpx_register_names = i386_mpx_names;
8303 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8304 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8305 }
8306
8307 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8308 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8309 I387_BND0R_REGNUM (tdep) + i,
8310 tdep->mpx_register_names[i]);
8311 }
8312
8313 if (feature_segments)
8314 {
8315 if (tdep->fsbase_regnum < 0)
8316 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8317 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8318 tdep->fsbase_regnum, "fs_base");
8319 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8320 tdep->fsbase_regnum + 1, "gs_base");
8321 }
8322
8323 if (feature_pkeys)
8324 {
8325 tdep->xcr0 |= X86_XSTATE_PKRU;
8326 if (tdep->pkru_regnum < 0)
8327 {
8328 tdep->pkeys_register_names = i386_pkeys_names;
8329 tdep->pkru_regnum = I386_PKRU_REGNUM;
8330 tdep->num_pkeys_regs = 1;
8331 }
8332
8333 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8334 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8335 I387_PKRU_REGNUM (tdep) + i,
8336 tdep->pkeys_register_names[i]);
8337 }
8338
8339 return valid_p;
8340 }
8341
8342 \f
8343
8344 /* Implement the type_align gdbarch function. */
8345
8346 static ULONGEST
8347 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8348 {
8349 type = check_typedef (type);
8350
8351 if (gdbarch_ptr_bit (gdbarch) == 32)
8352 {
8353 if ((TYPE_CODE (type) == TYPE_CODE_INT
8354 || TYPE_CODE (type) == TYPE_CODE_FLT)
8355 && TYPE_LENGTH (type) > 4)
8356 return 4;
8357
8358 /* Handle x86's funny long double. */
8359 if (TYPE_CODE (type) == TYPE_CODE_FLT
8360 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8361 return 4;
8362 }
8363
8364 return 0;
8365 }
8366
8367 \f
8368 /* Note: This is called for both i386 and amd64. */
8369
8370 static struct gdbarch *
8371 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8372 {
8373 struct gdbarch_tdep *tdep;
8374 struct gdbarch *gdbarch;
8375 struct tdesc_arch_data *tdesc_data;
8376 const struct target_desc *tdesc;
8377 int mm0_regnum;
8378 int ymm0_regnum;
8379 int bnd0_regnum;
8380 int num_bnd_cooked;
8381
8382 /* If there is already a candidate, use it. */
8383 arches = gdbarch_list_lookup_by_info (arches, &info);
8384 if (arches != NULL)
8385 return arches->gdbarch;
8386
8387 /* Allocate space for the new architecture. Assume i386 for now. */
8388 tdep = XCNEW (struct gdbarch_tdep);
8389 gdbarch = gdbarch_alloc (&info, tdep);
8390
8391 /* General-purpose registers. */
8392 tdep->gregset_reg_offset = NULL;
8393 tdep->gregset_num_regs = I386_NUM_GREGS;
8394 tdep->sizeof_gregset = 0;
8395
8396 /* Floating-point registers. */
8397 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8398 tdep->fpregset = &i386_fpregset;
8399
8400 /* The default settings include the FPU registers, the MMX registers
8401 and the SSE registers. This can be overridden for a specific ABI
8402 by adjusting the members `st0_regnum', `mm0_regnum' and
8403 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8404 will show up in the output of "info all-registers". */
8405
8406 tdep->st0_regnum = I386_ST0_REGNUM;
8407
8408 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8409 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8410
8411 tdep->jb_pc_offset = -1;
8412 tdep->struct_return = pcc_struct_return;
8413 tdep->sigtramp_start = 0;
8414 tdep->sigtramp_end = 0;
8415 tdep->sigtramp_p = i386_sigtramp_p;
8416 tdep->sigcontext_addr = NULL;
8417 tdep->sc_reg_offset = NULL;
8418 tdep->sc_pc_offset = -1;
8419 tdep->sc_sp_offset = -1;
8420
8421 tdep->xsave_xcr0_offset = -1;
8422
8423 tdep->record_regmap = i386_record_regmap;
8424
8425 set_gdbarch_type_align (gdbarch, i386_type_align);
8426
8427 /* The format used for `long double' on almost all i386 targets is
8428 the i387 extended floating-point format. In fact, of all targets
8429 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8430 on having a `long double' that's not `long' at all. */
8431 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8432
8433 /* Although the i387 extended floating-point has only 80 significant
8434 bits, a `long double' actually takes up 96, probably to enforce
8435 alignment. */
8436 set_gdbarch_long_double_bit (gdbarch, 96);
8437
8438 /* Support for floating-point data type variants. */
8439 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8440
8441 /* Register numbers of various important registers. */
8442 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8443 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8444 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8445 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8446
8447 /* NOTE: kettenis/20040418: GCC does have two possible register
8448 numbering schemes on the i386: dbx and SVR4. These schemes
8449 differ in how they number %ebp, %esp, %eflags, and the
8450 floating-point registers, and are implemented by the arrays
8451 dbx_register_map[] and svr4_dbx_register_map in
8452 gcc/config/i386.c. GCC also defines a third numbering scheme in
8453 gcc/config/i386.c, which it designates as the "default" register
8454 map used in 64bit mode. This last register numbering scheme is
8455 implemented in dbx64_register_map, and is used for AMD64; see
8456 amd64-tdep.c.
8457
8458 Currently, each GCC i386 target always uses the same register
8459 numbering scheme across all its supported debugging formats
8460 i.e. SDB (COFF), stabs and DWARF 2. This is because
8461 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8462 DBX_REGISTER_NUMBER macro which is defined by each target's
8463 respective config header in a manner independent of the requested
8464 output debugging format.
8465
8466 This does not match the arrangement below, which presumes that
8467 the SDB and stabs numbering schemes differ from the DWARF and
8468 DWARF 2 ones. The reason for this arrangement is that it is
8469 likely to get the numbering scheme for the target's
8470 default/native debug format right. For targets where GCC is the
8471 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8472 targets where the native toolchain uses a different numbering
8473 scheme for a particular debug format (stabs-in-ELF on Solaris)
8474 the defaults below will have to be overridden, like
8475 i386_elf_init_abi() does. */
8476
8477 /* Use the dbx register numbering scheme for stabs and COFF. */
8478 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8479 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8480
8481 /* Use the SVR4 register numbering scheme for DWARF 2. */
8482 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8483
8484 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8485 be in use on any of the supported i386 targets. */
8486
8487 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8488
8489 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8490
8491 /* Call dummy code. */
8492 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8493 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8494 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8495 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8496
8497 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8498 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8499 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8500
8501 set_gdbarch_return_value (gdbarch, i386_return_value);
8502
8503 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8504
8505 /* Stack grows downward. */
8506 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8507
8508 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8509 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8510
8511 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8512 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8513
8514 set_gdbarch_frame_args_skip (gdbarch, 8);
8515
8516 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8517
8518 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8519
8520 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8521
8522 /* Add the i386 register groups. */
8523 i386_add_reggroups (gdbarch);
8524 tdep->register_reggroup_p = i386_register_reggroup_p;
8525
8526 /* Helper for function argument information. */
8527 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8528
8529 /* Hook the function epilogue frame unwinder. This unwinder is
8530 appended to the list first, so that it supercedes the DWARF
8531 unwinder in function epilogues (where the DWARF unwinder
8532 currently fails). */
8533 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8534
8535 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8536 to the list before the prologue-based unwinders, so that DWARF
8537 CFI info will be used if it is available. */
8538 dwarf2_append_unwinders (gdbarch);
8539
8540 frame_base_set_default (gdbarch, &i386_frame_base);
8541
8542 /* Pseudo registers may be changed by amd64_init_abi. */
8543 set_gdbarch_pseudo_register_read_value (gdbarch,
8544 i386_pseudo_register_read_value);
8545 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8546 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8547 i386_ax_pseudo_register_collect);
8548
8549 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8550 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8551
8552 /* Override the normal target description method to make the AVX
8553 upper halves anonymous. */
8554 set_gdbarch_register_name (gdbarch, i386_register_name);
8555
8556 /* Even though the default ABI only includes general-purpose registers,
8557 floating-point registers and the SSE registers, we have to leave a
8558 gap for the upper AVX, MPX and AVX512 registers. */
8559 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
8560
8561 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8562
8563 /* Get the x86 target description from INFO. */
8564 tdesc = info.target_desc;
8565 if (! tdesc_has_registers (tdesc))
8566 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
8567 tdep->tdesc = tdesc;
8568
8569 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8570 tdep->register_names = i386_register_names;
8571
8572 /* No upper YMM registers. */
8573 tdep->ymmh_register_names = NULL;
8574 tdep->ymm0h_regnum = -1;
8575
8576 /* No upper ZMM registers. */
8577 tdep->zmmh_register_names = NULL;
8578 tdep->zmm0h_regnum = -1;
8579
8580 /* No high XMM registers. */
8581 tdep->xmm_avx512_register_names = NULL;
8582 tdep->xmm16_regnum = -1;
8583
8584 /* No upper YMM16-31 registers. */
8585 tdep->ymm16h_register_names = NULL;
8586 tdep->ymm16h_regnum = -1;
8587
8588 tdep->num_byte_regs = 8;
8589 tdep->num_word_regs = 8;
8590 tdep->num_dword_regs = 0;
8591 tdep->num_mmx_regs = 8;
8592 tdep->num_ymm_regs = 0;
8593
8594 /* No MPX registers. */
8595 tdep->bnd0r_regnum = -1;
8596 tdep->bndcfgu_regnum = -1;
8597
8598 /* No AVX512 registers. */
8599 tdep->k0_regnum = -1;
8600 tdep->num_zmm_regs = 0;
8601 tdep->num_ymm_avx512_regs = 0;
8602 tdep->num_xmm_avx512_regs = 0;
8603
8604 /* No PKEYS registers */
8605 tdep->pkru_regnum = -1;
8606 tdep->num_pkeys_regs = 0;
8607
8608 /* No segment base registers. */
8609 tdep->fsbase_regnum = -1;
8610
8611 tdesc_data = tdesc_data_alloc ();
8612
8613 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8614
8615 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8616
8617 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8618 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8619 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8620
8621 /* Hook in ABI-specific overrides, if they have been registered.
8622 Note: If INFO specifies a 64 bit arch, this is where we turn
8623 a 32-bit i386 into a 64-bit amd64. */
8624 info.tdesc_data = tdesc_data;
8625 gdbarch_init_osabi (info, gdbarch);
8626
8627 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8628 {
8629 tdesc_data_cleanup (tdesc_data);
8630 xfree (tdep);
8631 gdbarch_free (gdbarch);
8632 return NULL;
8633 }
8634
8635 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8636
8637 /* Wire in pseudo registers. Number of pseudo registers may be
8638 changed. */
8639 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8640 + tdep->num_word_regs
8641 + tdep->num_dword_regs
8642 + tdep->num_mmx_regs
8643 + tdep->num_ymm_regs
8644 + num_bnd_cooked
8645 + tdep->num_ymm_avx512_regs
8646 + tdep->num_zmm_regs));
8647
8648 /* Target description may be changed. */
8649 tdesc = tdep->tdesc;
8650
8651 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8652
8653 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8654 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8655
8656 /* Make %al the first pseudo-register. */
8657 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8658 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8659
8660 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8661 if (tdep->num_dword_regs)
8662 {
8663 /* Support dword pseudo-register if it hasn't been disabled. */
8664 tdep->eax_regnum = ymm0_regnum;
8665 ymm0_regnum += tdep->num_dword_regs;
8666 }
8667 else
8668 tdep->eax_regnum = -1;
8669
8670 mm0_regnum = ymm0_regnum;
8671 if (tdep->num_ymm_regs)
8672 {
8673 /* Support YMM pseudo-register if it is available. */
8674 tdep->ymm0_regnum = ymm0_regnum;
8675 mm0_regnum += tdep->num_ymm_regs;
8676 }
8677 else
8678 tdep->ymm0_regnum = -1;
8679
8680 if (tdep->num_ymm_avx512_regs)
8681 {
8682 /* Support YMM16-31 pseudo registers if available. */
8683 tdep->ymm16_regnum = mm0_regnum;
8684 mm0_regnum += tdep->num_ymm_avx512_regs;
8685 }
8686 else
8687 tdep->ymm16_regnum = -1;
8688
8689 if (tdep->num_zmm_regs)
8690 {
8691 /* Support ZMM pseudo-register if it is available. */
8692 tdep->zmm0_regnum = mm0_regnum;
8693 mm0_regnum += tdep->num_zmm_regs;
8694 }
8695 else
8696 tdep->zmm0_regnum = -1;
8697
8698 bnd0_regnum = mm0_regnum;
8699 if (tdep->num_mmx_regs != 0)
8700 {
8701 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8702 tdep->mm0_regnum = mm0_regnum;
8703 bnd0_regnum += tdep->num_mmx_regs;
8704 }
8705 else
8706 tdep->mm0_regnum = -1;
8707
8708 if (tdep->bnd0r_regnum > 0)
8709 tdep->bnd0_regnum = bnd0_regnum;
8710 else
8711 tdep-> bnd0_regnum = -1;
8712
8713 /* Hook in the legacy prologue-based unwinders last (fallback). */
8714 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8715 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8716 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8717
8718 /* If we have a register mapping, enable the generic core file
8719 support, unless it has already been enabled. */
8720 if (tdep->gregset_reg_offset
8721 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8722 set_gdbarch_iterate_over_regset_sections
8723 (gdbarch, i386_iterate_over_regset_sections);
8724
8725 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8726 i386_fast_tracepoint_valid_at);
8727
8728 return gdbarch;
8729 }
8730
8731 \f
8732
8733 /* Return the target description for a specified XSAVE feature mask. */
8734
8735 const struct target_desc *
8736 i386_target_description (uint64_t xcr0, bool segments)
8737 {
8738 static target_desc *i386_tdescs \
8739 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8740 target_desc **tdesc;
8741
8742 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8743 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8744 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8745 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8746 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8747 [segments ? 1 : 0];
8748
8749 if (*tdesc == NULL)
8750 *tdesc = i386_create_target_description (xcr0, false, segments);
8751
8752 return *tdesc;
8753 }
8754
8755 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8756
8757 /* Find the bound directory base address. */
8758
8759 static unsigned long
8760 i386_mpx_bd_base (void)
8761 {
8762 struct regcache *rcache;
8763 struct gdbarch_tdep *tdep;
8764 ULONGEST ret;
8765 enum register_status regstatus;
8766
8767 rcache = get_current_regcache ();
8768 tdep = gdbarch_tdep (rcache->arch ());
8769
8770 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8771
8772 if (regstatus != REG_VALID)
8773 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8774
8775 return ret & MPX_BASE_MASK;
8776 }
8777
8778 int
8779 i386_mpx_enabled (void)
8780 {
8781 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8782 const struct target_desc *tdesc = tdep->tdesc;
8783
8784 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8785 }
8786
8787 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8788 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8789 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8790 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8791
8792 /* Find the bound table entry given the pointer location and the base
8793 address of the table. */
8794
8795 static CORE_ADDR
8796 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8797 {
8798 CORE_ADDR offset1;
8799 CORE_ADDR offset2;
8800 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8801 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8802 CORE_ADDR bd_entry_addr;
8803 CORE_ADDR bt_addr;
8804 CORE_ADDR bd_entry;
8805 struct gdbarch *gdbarch = get_current_arch ();
8806 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8807
8808
8809 if (gdbarch_ptr_bit (gdbarch) == 64)
8810 {
8811 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8812 bd_ptr_r_shift = 20;
8813 bd_ptr_l_shift = 3;
8814 bt_select_r_shift = 3;
8815 bt_select_l_shift = 5;
8816 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8817
8818 if ( sizeof (CORE_ADDR) == 4)
8819 error (_("bound table examination not supported\
8820 for 64-bit process with 32-bit GDB"));
8821 }
8822 else
8823 {
8824 mpx_bd_mask = MPX_BD_MASK_32;
8825 bd_ptr_r_shift = 12;
8826 bd_ptr_l_shift = 2;
8827 bt_select_r_shift = 2;
8828 bt_select_l_shift = 4;
8829 bt_mask = MPX_BT_MASK_32;
8830 }
8831
8832 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8833 bd_entry_addr = bd_base + offset1;
8834 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8835
8836 if ((bd_entry & 0x1) == 0)
8837 error (_("Invalid bounds directory entry at %s."),
8838 paddress (get_current_arch (), bd_entry_addr));
8839
8840 /* Clearing status bit. */
8841 bd_entry--;
8842 bt_addr = bd_entry & ~bt_select_r_shift;
8843 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8844
8845 return bt_addr + offset2;
8846 }
8847
8848 /* Print routine for the mpx bounds. */
8849
8850 static void
8851 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8852 {
8853 struct ui_out *uiout = current_uiout;
8854 LONGEST size;
8855 struct gdbarch *gdbarch = get_current_arch ();
8856 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8857 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8858
8859 if (bounds_in_map == 1)
8860 {
8861 uiout->text ("Null bounds on map:");
8862 uiout->text (" pointer value = ");
8863 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8864 uiout->text (".");
8865 uiout->text ("\n");
8866 }
8867 else
8868 {
8869 uiout->text ("{lbound = ");
8870 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8871 uiout->text (", ubound = ");
8872
8873 /* The upper bound is stored in 1's complement. */
8874 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8875 uiout->text ("}: pointer value = ");
8876 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8877
8878 if (gdbarch_ptr_bit (gdbarch) == 64)
8879 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8880 else
8881 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8882
8883 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8884 -1 represents in this sense full memory access, and there is no need
8885 one to the size. */
8886
8887 size = (size > -1 ? size + 1 : size);
8888 uiout->text (", size = ");
8889 uiout->field_fmt ("size", "%s", plongest (size));
8890
8891 uiout->text (", metadata = ");
8892 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8893 uiout->text ("\n");
8894 }
8895 }
8896
8897 /* Implement the command "show mpx bound". */
8898
8899 static void
8900 i386_mpx_info_bounds (const char *args, int from_tty)
8901 {
8902 CORE_ADDR bd_base = 0;
8903 CORE_ADDR addr;
8904 CORE_ADDR bt_entry_addr = 0;
8905 CORE_ADDR bt_entry[4];
8906 int i;
8907 struct gdbarch *gdbarch = get_current_arch ();
8908 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8909
8910 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8911 || !i386_mpx_enabled ())
8912 {
8913 printf_unfiltered (_("Intel Memory Protection Extensions not "
8914 "supported on this target.\n"));
8915 return;
8916 }
8917
8918 if (args == NULL)
8919 {
8920 printf_unfiltered (_("Address of pointer variable expected.\n"));
8921 return;
8922 }
8923
8924 addr = parse_and_eval_address (args);
8925
8926 bd_base = i386_mpx_bd_base ();
8927 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8928
8929 memset (bt_entry, 0, sizeof (bt_entry));
8930
8931 for (i = 0; i < 4; i++)
8932 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8933 + i * TYPE_LENGTH (data_ptr_type),
8934 data_ptr_type);
8935
8936 i386_mpx_print_bounds (bt_entry);
8937 }
8938
8939 /* Implement the command "set mpx bound". */
8940
8941 static void
8942 i386_mpx_set_bounds (const char *args, int from_tty)
8943 {
8944 CORE_ADDR bd_base = 0;
8945 CORE_ADDR addr, lower, upper;
8946 CORE_ADDR bt_entry_addr = 0;
8947 CORE_ADDR bt_entry[2];
8948 const char *input = args;
8949 int i;
8950 struct gdbarch *gdbarch = get_current_arch ();
8951 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8952 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8953
8954 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8955 || !i386_mpx_enabled ())
8956 error (_("Intel Memory Protection Extensions not supported\
8957 on this target."));
8958
8959 if (args == NULL)
8960 error (_("Pointer value expected."));
8961
8962 addr = value_as_address (parse_to_comma_and_eval (&input));
8963
8964 if (input[0] == ',')
8965 ++input;
8966 if (input[0] == '\0')
8967 error (_("wrong number of arguments: missing lower and upper bound."));
8968 lower = value_as_address (parse_to_comma_and_eval (&input));
8969
8970 if (input[0] == ',')
8971 ++input;
8972 if (input[0] == '\0')
8973 error (_("Wrong number of arguments; Missing upper bound."));
8974 upper = value_as_address (parse_to_comma_and_eval (&input));
8975
8976 bd_base = i386_mpx_bd_base ();
8977 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8978 for (i = 0; i < 2; i++)
8979 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8980 + i * TYPE_LENGTH (data_ptr_type),
8981 data_ptr_type);
8982 bt_entry[0] = (uint64_t) lower;
8983 bt_entry[1] = ~(uint64_t) upper;
8984
8985 for (i = 0; i < 2; i++)
8986 write_memory_unsigned_integer (bt_entry_addr
8987 + i * TYPE_LENGTH (data_ptr_type),
8988 TYPE_LENGTH (data_ptr_type), byte_order,
8989 bt_entry[i]);
8990 }
8991
8992 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
8993
8994 /* Helper function for the CLI commands. */
8995
8996 static void
8997 set_mpx_cmd (const char *args, int from_tty)
8998 {
8999 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
9000 }
9001
9002 /* Helper function for the CLI commands. */
9003
9004 static void
9005 show_mpx_cmd (const char *args, int from_tty)
9006 {
9007 cmd_show_list (mpx_show_cmdlist, from_tty, "");
9008 }
9009
9010 void
9011 _initialize_i386_tdep (void)
9012 {
9013 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9014
9015 /* Add the variable that controls the disassembly flavor. */
9016 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9017 &disassembly_flavor, _("\
9018 Set the disassembly flavor."), _("\
9019 Show the disassembly flavor."), _("\
9020 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9021 NULL,
9022 NULL, /* FIXME: i18n: */
9023 &setlist, &showlist);
9024
9025 /* Add the variable that controls the convention for returning
9026 structs. */
9027 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9028 &struct_convention, _("\
9029 Set the convention for returning small structs."), _("\
9030 Show the convention for returning small structs."), _("\
9031 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9032 is \"default\"."),
9033 NULL,
9034 NULL, /* FIXME: i18n: */
9035 &setlist, &showlist);
9036
9037 /* Add "mpx" prefix for the set commands. */
9038
9039 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
9040 Set Intel Memory Protection Extensions specific variables."),
9041 &mpx_set_cmdlist, "set mpx ",
9042 0 /* allow-unknown */, &setlist);
9043
9044 /* Add "mpx" prefix for the show commands. */
9045
9046 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
9047 Show Intel Memory Protection Extensions specific variables."),
9048 &mpx_show_cmdlist, "show mpx ",
9049 0 /* allow-unknown */, &showlist);
9050
9051 /* Add "bound" command for the show mpx commands list. */
9052
9053 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9054 "Show the memory bounds for a given array/pointer storage\
9055 in the bound table.",
9056 &mpx_show_cmdlist);
9057
9058 /* Add "bound" command for the set mpx commands list. */
9059
9060 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9061 "Set the memory bounds for a given array/pointer storage\
9062 in the bound table.",
9063 &mpx_set_cmdlist);
9064
9065 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9066 i386_svr4_init_abi);
9067
9068 /* Initialize the i386-specific register groups. */
9069 i386_init_reggroups ();
9070
9071 /* Tell remote stub that we support XML target description. */
9072 register_remote_support_xml ("i386");
9073
9074 #if GDB_SELF_TEST
9075 struct
9076 {
9077 const char *xml;
9078 uint64_t mask;
9079 } xml_masks[] = {
9080 { "i386/i386.xml", X86_XSTATE_SSE_MASK },
9081 { "i386/i386-mmx.xml", X86_XSTATE_X87_MASK },
9082 { "i386/i386-avx.xml", X86_XSTATE_AVX_MASK },
9083 { "i386/i386-mpx.xml", X86_XSTATE_MPX_MASK },
9084 { "i386/i386-avx-mpx.xml", X86_XSTATE_AVX_MPX_MASK },
9085 { "i386/i386-avx-avx512.xml", X86_XSTATE_AVX_AVX512_MASK },
9086 { "i386/i386-avx-mpx-avx512-pku.xml",
9087 X86_XSTATE_AVX_MPX_AVX512_PKU_MASK },
9088 };
9089
9090 for (auto &a : xml_masks)
9091 {
9092 auto tdesc = i386_target_description (a.mask, false);
9093
9094 selftests::record_xml_tdesc (a.xml, tdesc);
9095 }
9096 #endif /* GDB_SELF_TEST */
9097 }