]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/i386-tdep.c
Turn value_type into method
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2023 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2/frame.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "target-float.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "gdbsupport/x86-xstate.h"
50 #include "x86-tdep.h"
51 #include "expop.h"
52
53 #include "record.h"
54 #include "record-full.h"
55 #include "target-descriptions.h"
56 #include "arch/i386.h"
57
58 #include "ax.h"
59 #include "ax-gdb.h"
60
61 #include "stap-probe.h"
62 #include "user-regs.h"
63 #include "cli/cli-utils.h"
64 #include "expression.h"
65 #include "parser-defs.h"
66 #include <ctype.h>
67 #include <algorithm>
68 #include <unordered_set>
69 #include "producer.h"
70 #include "infcall.h"
71 #include "maint.h"
72
73 /* Register names. */
74
75 static const char * const i386_register_names[] =
76 {
77 "eax", "ecx", "edx", "ebx",
78 "esp", "ebp", "esi", "edi",
79 "eip", "eflags", "cs", "ss",
80 "ds", "es", "fs", "gs",
81 "st0", "st1", "st2", "st3",
82 "st4", "st5", "st6", "st7",
83 "fctrl", "fstat", "ftag", "fiseg",
84 "fioff", "foseg", "fooff", "fop",
85 "xmm0", "xmm1", "xmm2", "xmm3",
86 "xmm4", "xmm5", "xmm6", "xmm7",
87 "mxcsr"
88 };
89
90 static const char * const i386_zmm_names[] =
91 {
92 "zmm0", "zmm1", "zmm2", "zmm3",
93 "zmm4", "zmm5", "zmm6", "zmm7"
94 };
95
96 static const char * const i386_zmmh_names[] =
97 {
98 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
99 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
100 };
101
102 static const char * const i386_k_names[] =
103 {
104 "k0", "k1", "k2", "k3",
105 "k4", "k5", "k6", "k7"
106 };
107
108 static const char * const i386_ymm_names[] =
109 {
110 "ymm0", "ymm1", "ymm2", "ymm3",
111 "ymm4", "ymm5", "ymm6", "ymm7",
112 };
113
114 static const char * const i386_ymmh_names[] =
115 {
116 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
117 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
118 };
119
120 static const char * const i386_mpx_names[] =
121 {
122 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
123 };
124
125 static const char * const i386_pkeys_names[] =
126 {
127 "pkru"
128 };
129
130 /* Register names for MPX pseudo-registers. */
131
132 static const char * const i386_bnd_names[] =
133 {
134 "bnd0", "bnd1", "bnd2", "bnd3"
135 };
136
137 /* Register names for MMX pseudo-registers. */
138
139 static const char * const i386_mmx_names[] =
140 {
141 "mm0", "mm1", "mm2", "mm3",
142 "mm4", "mm5", "mm6", "mm7"
143 };
144
145 /* Register names for byte pseudo-registers. */
146
147 static const char * const i386_byte_names[] =
148 {
149 "al", "cl", "dl", "bl",
150 "ah", "ch", "dh", "bh"
151 };
152
153 /* Register names for word pseudo-registers. */
154
155 static const char * const i386_word_names[] =
156 {
157 "ax", "cx", "dx", "bx",
158 "", "bp", "si", "di"
159 };
160
161 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
162 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
163 we have 16 upper ZMM regs that have to be handled differently. */
164
165 const int num_lower_zmm_regs = 16;
166
167 /* MMX register? */
168
169 static int
170 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
171 {
172 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
173 int mm0_regnum = tdep->mm0_regnum;
174
175 if (mm0_regnum < 0)
176 return 0;
177
178 regnum -= mm0_regnum;
179 return regnum >= 0 && regnum < tdep->num_mmx_regs;
180 }
181
182 /* Byte register? */
183
184 int
185 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
186 {
187 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
188
189 regnum -= tdep->al_regnum;
190 return regnum >= 0 && regnum < tdep->num_byte_regs;
191 }
192
193 /* Word register? */
194
195 int
196 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
197 {
198 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
199
200 regnum -= tdep->ax_regnum;
201 return regnum >= 0 && regnum < tdep->num_word_regs;
202 }
203
204 /* Dword register? */
205
206 int
207 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
208 {
209 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
210 int eax_regnum = tdep->eax_regnum;
211
212 if (eax_regnum < 0)
213 return 0;
214
215 regnum -= eax_regnum;
216 return regnum >= 0 && regnum < tdep->num_dword_regs;
217 }
218
219 /* AVX512 register? */
220
221 int
222 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
223 {
224 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
225 int zmm0h_regnum = tdep->zmm0h_regnum;
226
227 if (zmm0h_regnum < 0)
228 return 0;
229
230 regnum -= zmm0h_regnum;
231 return regnum >= 0 && regnum < tdep->num_zmm_regs;
232 }
233
234 int
235 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
236 {
237 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
238 int zmm0_regnum = tdep->zmm0_regnum;
239
240 if (zmm0_regnum < 0)
241 return 0;
242
243 regnum -= zmm0_regnum;
244 return regnum >= 0 && regnum < tdep->num_zmm_regs;
245 }
246
247 int
248 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
249 {
250 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
251 int k0_regnum = tdep->k0_regnum;
252
253 if (k0_regnum < 0)
254 return 0;
255
256 regnum -= k0_regnum;
257 return regnum >= 0 && regnum < I387_NUM_K_REGS;
258 }
259
260 static int
261 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
262 {
263 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
264 int ymm0h_regnum = tdep->ymm0h_regnum;
265
266 if (ymm0h_regnum < 0)
267 return 0;
268
269 regnum -= ymm0h_regnum;
270 return regnum >= 0 && regnum < tdep->num_ymm_regs;
271 }
272
273 /* AVX register? */
274
275 int
276 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
277 {
278 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
279 int ymm0_regnum = tdep->ymm0_regnum;
280
281 if (ymm0_regnum < 0)
282 return 0;
283
284 regnum -= ymm0_regnum;
285 return regnum >= 0 && regnum < tdep->num_ymm_regs;
286 }
287
288 static int
289 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
290 {
291 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
292 int ymm16h_regnum = tdep->ymm16h_regnum;
293
294 if (ymm16h_regnum < 0)
295 return 0;
296
297 regnum -= ymm16h_regnum;
298 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
299 }
300
301 int
302 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
303 {
304 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
305 int ymm16_regnum = tdep->ymm16_regnum;
306
307 if (ymm16_regnum < 0)
308 return 0;
309
310 regnum -= ymm16_regnum;
311 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
312 }
313
314 /* BND register? */
315
316 int
317 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
318 {
319 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
320 int bnd0_regnum = tdep->bnd0_regnum;
321
322 if (bnd0_regnum < 0)
323 return 0;
324
325 regnum -= bnd0_regnum;
326 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
327 }
328
329 /* SSE register? */
330
331 int
332 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
333 {
334 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
335 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
336
337 if (num_xmm_regs == 0)
338 return 0;
339
340 regnum -= I387_XMM0_REGNUM (tdep);
341 return regnum >= 0 && regnum < num_xmm_regs;
342 }
343
344 /* XMM_512 register? */
345
346 int
347 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
348 {
349 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
350 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
351
352 if (num_xmm_avx512_regs == 0)
353 return 0;
354
355 regnum -= I387_XMM16_REGNUM (tdep);
356 return regnum >= 0 && regnum < num_xmm_avx512_regs;
357 }
358
359 static int
360 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
361 {
362 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
363
364 if (I387_NUM_XMM_REGS (tdep) == 0)
365 return 0;
366
367 return (regnum == I387_MXCSR_REGNUM (tdep));
368 }
369
370 /* FP register? */
371
372 int
373 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
374 {
375 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
376
377 if (I387_ST0_REGNUM (tdep) < 0)
378 return 0;
379
380 return (I387_ST0_REGNUM (tdep) <= regnum
381 && regnum < I387_FCTRL_REGNUM (tdep));
382 }
383
384 int
385 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
386 {
387 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
388
389 if (I387_ST0_REGNUM (tdep) < 0)
390 return 0;
391
392 return (I387_FCTRL_REGNUM (tdep) <= regnum
393 && regnum < I387_XMM0_REGNUM (tdep));
394 }
395
396 /* BNDr (raw) register? */
397
398 static int
399 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
400 {
401 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
402
403 if (I387_BND0R_REGNUM (tdep) < 0)
404 return 0;
405
406 regnum -= tdep->bnd0r_regnum;
407 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
408 }
409
410 /* BND control register? */
411
412 static int
413 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
414 {
415 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
416
417 if (I387_BNDCFGU_REGNUM (tdep) < 0)
418 return 0;
419
420 regnum -= I387_BNDCFGU_REGNUM (tdep);
421 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
422 }
423
424 /* PKRU register? */
425
426 bool
427 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
428 {
429 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
430 int pkru_regnum = tdep->pkru_regnum;
431
432 if (pkru_regnum < 0)
433 return false;
434
435 regnum -= pkru_regnum;
436 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
437 }
438
439 /* Return the name of register REGNUM, or the empty string if it is
440 an anonymous register. */
441
442 static const char *
443 i386_register_name (struct gdbarch *gdbarch, int regnum)
444 {
445 /* Hide the upper YMM registers. */
446 if (i386_ymmh_regnum_p (gdbarch, regnum))
447 return "";
448
449 /* Hide the upper YMM16-31 registers. */
450 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
451 return "";
452
453 /* Hide the upper ZMM registers. */
454 if (i386_zmmh_regnum_p (gdbarch, regnum))
455 return "";
456
457 return tdesc_register_name (gdbarch, regnum);
458 }
459
460 /* Return the name of register REGNUM. */
461
462 const char *
463 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
464 {
465 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
466 if (i386_bnd_regnum_p (gdbarch, regnum))
467 return i386_bnd_names[regnum - tdep->bnd0_regnum];
468 if (i386_mmx_regnum_p (gdbarch, regnum))
469 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
470 else if (i386_ymm_regnum_p (gdbarch, regnum))
471 return i386_ymm_names[regnum - tdep->ymm0_regnum];
472 else if (i386_zmm_regnum_p (gdbarch, regnum))
473 return i386_zmm_names[regnum - tdep->zmm0_regnum];
474 else if (i386_byte_regnum_p (gdbarch, regnum))
475 return i386_byte_names[regnum - tdep->al_regnum];
476 else if (i386_word_regnum_p (gdbarch, regnum))
477 return i386_word_names[regnum - tdep->ax_regnum];
478
479 internal_error (_("invalid regnum"));
480 }
481
482 /* Convert a dbx register number REG to the appropriate register
483 number used by GDB. */
484
485 static int
486 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
487 {
488 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
489
490 /* This implements what GCC calls the "default" register map
491 (dbx_register_map[]). */
492
493 if (reg >= 0 && reg <= 7)
494 {
495 /* General-purpose registers. The debug info calls %ebp
496 register 4, and %esp register 5. */
497 if (reg == 4)
498 return 5;
499 else if (reg == 5)
500 return 4;
501 else return reg;
502 }
503 else if (reg >= 12 && reg <= 19)
504 {
505 /* Floating-point registers. */
506 return reg - 12 + I387_ST0_REGNUM (tdep);
507 }
508 else if (reg >= 21 && reg <= 28)
509 {
510 /* SSE registers. */
511 int ymm0_regnum = tdep->ymm0_regnum;
512
513 if (ymm0_regnum >= 0
514 && i386_xmm_regnum_p (gdbarch, reg))
515 return reg - 21 + ymm0_regnum;
516 else
517 return reg - 21 + I387_XMM0_REGNUM (tdep);
518 }
519 else if (reg >= 29 && reg <= 36)
520 {
521 /* MMX registers. */
522 return reg - 29 + I387_MM0_REGNUM (tdep);
523 }
524
525 /* This will hopefully provoke a warning. */
526 return gdbarch_num_cooked_regs (gdbarch);
527 }
528
529 /* Convert SVR4 DWARF register number REG to the appropriate register number
530 used by GDB. */
531
532 static int
533 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
534 {
535 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
536
537 /* This implements the GCC register map that tries to be compatible
538 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
539
540 /* The SVR4 register numbering includes %eip and %eflags, and
541 numbers the floating point registers differently. */
542 if (reg >= 0 && reg <= 9)
543 {
544 /* General-purpose registers. */
545 return reg;
546 }
547 else if (reg >= 11 && reg <= 18)
548 {
549 /* Floating-point registers. */
550 return reg - 11 + I387_ST0_REGNUM (tdep);
551 }
552 else if (reg >= 21 && reg <= 36)
553 {
554 /* The SSE and MMX registers have the same numbers as with dbx. */
555 return i386_dbx_reg_to_regnum (gdbarch, reg);
556 }
557
558 switch (reg)
559 {
560 case 37: return I387_FCTRL_REGNUM (tdep);
561 case 38: return I387_FSTAT_REGNUM (tdep);
562 case 39: return I387_MXCSR_REGNUM (tdep);
563 case 40: return I386_ES_REGNUM;
564 case 41: return I386_CS_REGNUM;
565 case 42: return I386_SS_REGNUM;
566 case 43: return I386_DS_REGNUM;
567 case 44: return I386_FS_REGNUM;
568 case 45: return I386_GS_REGNUM;
569 }
570
571 return -1;
572 }
573
574 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
575 num_regs + num_pseudo_regs for other debug formats. */
576
577 int
578 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
579 {
580 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
581
582 if (regnum == -1)
583 return gdbarch_num_cooked_regs (gdbarch);
584 return regnum;
585 }
586
587 \f
588
589 /* This is the variable that is set with "set disassembly-flavor", and
590 its legitimate values. */
591 static const char att_flavor[] = "att";
592 static const char intel_flavor[] = "intel";
593 static const char *const valid_flavors[] =
594 {
595 att_flavor,
596 intel_flavor,
597 NULL
598 };
599 static const char *disassembly_flavor = att_flavor;
600 \f
601
602 /* Use the program counter to determine the contents and size of a
603 breakpoint instruction. Return a pointer to a string of bytes that
604 encode a breakpoint instruction, store the length of the string in
605 *LEN and optionally adjust *PC to point to the correct memory
606 location for inserting the breakpoint.
607
608 On the i386 we have a single breakpoint that fits in a single byte
609 and can be inserted anywhere.
610
611 This function is 64-bit safe. */
612
613 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
614
615 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
616
617 \f
618 /* Displaced instruction handling. */
619
620 /* Skip the legacy instruction prefixes in INSN.
621 Not all prefixes are valid for any particular insn
622 but we needn't care, the insn will fault if it's invalid.
623 The result is a pointer to the first opcode byte,
624 or NULL if we run off the end of the buffer. */
625
626 static gdb_byte *
627 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
628 {
629 gdb_byte *end = insn + max_len;
630
631 while (insn < end)
632 {
633 switch (*insn)
634 {
635 case DATA_PREFIX_OPCODE:
636 case ADDR_PREFIX_OPCODE:
637 case CS_PREFIX_OPCODE:
638 case DS_PREFIX_OPCODE:
639 case ES_PREFIX_OPCODE:
640 case FS_PREFIX_OPCODE:
641 case GS_PREFIX_OPCODE:
642 case SS_PREFIX_OPCODE:
643 case LOCK_PREFIX_OPCODE:
644 case REPE_PREFIX_OPCODE:
645 case REPNE_PREFIX_OPCODE:
646 ++insn;
647 continue;
648 default:
649 return insn;
650 }
651 }
652
653 return NULL;
654 }
655
656 static int
657 i386_absolute_jmp_p (const gdb_byte *insn)
658 {
659 /* jmp far (absolute address in operand). */
660 if (insn[0] == 0xea)
661 return 1;
662
663 if (insn[0] == 0xff)
664 {
665 /* jump near, absolute indirect (/4). */
666 if ((insn[1] & 0x38) == 0x20)
667 return 1;
668
669 /* jump far, absolute indirect (/5). */
670 if ((insn[1] & 0x38) == 0x28)
671 return 1;
672 }
673
674 return 0;
675 }
676
677 /* Return non-zero if INSN is a jump, zero otherwise. */
678
679 static int
680 i386_jmp_p (const gdb_byte *insn)
681 {
682 /* jump short, relative. */
683 if (insn[0] == 0xeb)
684 return 1;
685
686 /* jump near, relative. */
687 if (insn[0] == 0xe9)
688 return 1;
689
690 return i386_absolute_jmp_p (insn);
691 }
692
693 static int
694 i386_absolute_call_p (const gdb_byte *insn)
695 {
696 /* call far, absolute. */
697 if (insn[0] == 0x9a)
698 return 1;
699
700 if (insn[0] == 0xff)
701 {
702 /* Call near, absolute indirect (/2). */
703 if ((insn[1] & 0x38) == 0x10)
704 return 1;
705
706 /* Call far, absolute indirect (/3). */
707 if ((insn[1] & 0x38) == 0x18)
708 return 1;
709 }
710
711 return 0;
712 }
713
714 static int
715 i386_ret_p (const gdb_byte *insn)
716 {
717 switch (insn[0])
718 {
719 case 0xc2: /* ret near, pop N bytes. */
720 case 0xc3: /* ret near */
721 case 0xca: /* ret far, pop N bytes. */
722 case 0xcb: /* ret far */
723 case 0xcf: /* iret */
724 return 1;
725
726 default:
727 return 0;
728 }
729 }
730
731 static int
732 i386_call_p (const gdb_byte *insn)
733 {
734 if (i386_absolute_call_p (insn))
735 return 1;
736
737 /* call near, relative. */
738 if (insn[0] == 0xe8)
739 return 1;
740
741 return 0;
742 }
743
744 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
745 length in bytes. Otherwise, return zero. */
746
747 static int
748 i386_syscall_p (const gdb_byte *insn, int *lengthp)
749 {
750 /* Is it 'int $0x80'? */
751 if ((insn[0] == 0xcd && insn[1] == 0x80)
752 /* Or is it 'sysenter'? */
753 || (insn[0] == 0x0f && insn[1] == 0x34)
754 /* Or is it 'syscall'? */
755 || (insn[0] == 0x0f && insn[1] == 0x05))
756 {
757 *lengthp = 2;
758 return 1;
759 }
760
761 return 0;
762 }
763
764 /* The gdbarch insn_is_call method. */
765
766 static int
767 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
768 {
769 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
770
771 read_code (addr, buf, I386_MAX_INSN_LEN);
772 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
773
774 return i386_call_p (insn);
775 }
776
777 /* The gdbarch insn_is_ret method. */
778
779 static int
780 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
781 {
782 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
783
784 read_code (addr, buf, I386_MAX_INSN_LEN);
785 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
786
787 return i386_ret_p (insn);
788 }
789
790 /* The gdbarch insn_is_jump method. */
791
792 static int
793 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
794 {
795 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
796
797 read_code (addr, buf, I386_MAX_INSN_LEN);
798 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
799
800 return i386_jmp_p (insn);
801 }
802
803 /* Some kernels may run one past a syscall insn, so we have to cope. */
804
805 displaced_step_copy_insn_closure_up
806 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
807 CORE_ADDR from, CORE_ADDR to,
808 struct regcache *regs)
809 {
810 size_t len = gdbarch_max_insn_length (gdbarch);
811 std::unique_ptr<i386_displaced_step_copy_insn_closure> closure
812 (new i386_displaced_step_copy_insn_closure (len));
813 gdb_byte *buf = closure->buf.data ();
814
815 read_memory (from, buf, len);
816
817 /* GDB may get control back after the insn after the syscall.
818 Presumably this is a kernel bug.
819 If this is a syscall, make sure there's a nop afterwards. */
820 {
821 int syscall_length;
822 gdb_byte *insn;
823
824 insn = i386_skip_prefixes (buf, len);
825 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
826 insn[syscall_length] = NOP_OPCODE;
827 }
828
829 write_memory (to, buf, len);
830
831 displaced_debug_printf ("%s->%s: %s",
832 paddress (gdbarch, from), paddress (gdbarch, to),
833 displaced_step_dump_bytes (buf, len).c_str ());
834
835 /* This is a work around for a problem with g++ 4.8. */
836 return displaced_step_copy_insn_closure_up (closure.release ());
837 }
838
839 /* Fix up the state of registers and memory after having single-stepped
840 a displaced instruction. */
841
842 void
843 i386_displaced_step_fixup (struct gdbarch *gdbarch,
844 struct displaced_step_copy_insn_closure *closure_,
845 CORE_ADDR from, CORE_ADDR to,
846 struct regcache *regs)
847 {
848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
849
850 /* The offset we applied to the instruction's address.
851 This could well be negative (when viewed as a signed 32-bit
852 value), but ULONGEST won't reflect that, so take care when
853 applying it. */
854 ULONGEST insn_offset = to - from;
855
856 i386_displaced_step_copy_insn_closure *closure
857 = (i386_displaced_step_copy_insn_closure *) closure_;
858 gdb_byte *insn = closure->buf.data ();
859 /* The start of the insn, needed in case we see some prefixes. */
860 gdb_byte *insn_start = insn;
861
862 displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...",
863 paddress (gdbarch, from), paddress (gdbarch, to),
864 insn[0], insn[1]);
865
866 /* The list of issues to contend with here is taken from
867 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
868 Yay for Free Software! */
869
870 /* Relocate the %eip, if necessary. */
871
872 /* The instruction recognizers we use assume any leading prefixes
873 have been skipped. */
874 {
875 /* This is the size of the buffer in closure. */
876 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
877 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
878 /* If there are too many prefixes, just ignore the insn.
879 It will fault when run. */
880 if (opcode != NULL)
881 insn = opcode;
882 }
883
884 /* Except in the case of absolute or indirect jump or call
885 instructions, or a return instruction, the new eip is relative to
886 the displaced instruction; make it relative. Well, signal
887 handler returns don't need relocation either, but we use the
888 value of %eip to recognize those; see below. */
889 if (! i386_absolute_jmp_p (insn)
890 && ! i386_absolute_call_p (insn)
891 && ! i386_ret_p (insn))
892 {
893 ULONGEST orig_eip;
894 int insn_len;
895
896 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
897
898 /* A signal trampoline system call changes the %eip, resuming
899 execution of the main program after the signal handler has
900 returned. That makes them like 'return' instructions; we
901 shouldn't relocate %eip.
902
903 But most system calls don't, and we do need to relocate %eip.
904
905 Our heuristic for distinguishing these cases: if stepping
906 over the system call instruction left control directly after
907 the instruction, the we relocate --- control almost certainly
908 doesn't belong in the displaced copy. Otherwise, we assume
909 the instruction has put control where it belongs, and leave
910 it unrelocated. Goodness help us if there are PC-relative
911 system calls. */
912 if (i386_syscall_p (insn, &insn_len)
913 && orig_eip != to + (insn - insn_start) + insn_len
914 /* GDB can get control back after the insn after the syscall.
915 Presumably this is a kernel bug.
916 i386_displaced_step_copy_insn ensures its a nop,
917 we add one to the length for it. */
918 && orig_eip != to + (insn - insn_start) + insn_len + 1)
919 displaced_debug_printf ("syscall changed %%eip; not relocating");
920 else
921 {
922 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
923
924 /* If we just stepped over a breakpoint insn, we don't backup
925 the pc on purpose; this is to match behaviour without
926 stepping. */
927
928 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
929
930 displaced_debug_printf ("relocated %%eip from %s to %s",
931 paddress (gdbarch, orig_eip),
932 paddress (gdbarch, eip));
933 }
934 }
935
936 /* If the instruction was PUSHFL, then the TF bit will be set in the
937 pushed value, and should be cleared. We'll leave this for later,
938 since GDB already messes up the TF flag when stepping over a
939 pushfl. */
940
941 /* If the instruction was a call, the return address now atop the
942 stack is the address following the copied instruction. We need
943 to make it the address following the original instruction. */
944 if (i386_call_p (insn))
945 {
946 ULONGEST esp;
947 ULONGEST retaddr;
948 const ULONGEST retaddr_len = 4;
949
950 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
951 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
952 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
953 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
954
955 displaced_debug_printf ("relocated return addr at %s to %s",
956 paddress (gdbarch, esp),
957 paddress (gdbarch, retaddr));
958 }
959 }
960
961 static void
962 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
963 {
964 target_write_memory (*to, buf, len);
965 *to += len;
966 }
967
968 static void
969 i386_relocate_instruction (struct gdbarch *gdbarch,
970 CORE_ADDR *to, CORE_ADDR oldloc)
971 {
972 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
973 gdb_byte buf[I386_MAX_INSN_LEN];
974 int offset = 0, rel32, newrel;
975 int insn_length;
976 gdb_byte *insn = buf;
977
978 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
979
980 insn_length = gdb_buffered_insn_length (gdbarch, insn,
981 I386_MAX_INSN_LEN, oldloc);
982
983 /* Get past the prefixes. */
984 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
985
986 /* Adjust calls with 32-bit relative addresses as push/jump, with
987 the address pushed being the location where the original call in
988 the user program would return to. */
989 if (insn[0] == 0xe8)
990 {
991 gdb_byte push_buf[16];
992 unsigned int ret_addr;
993
994 /* Where "ret" in the original code will return to. */
995 ret_addr = oldloc + insn_length;
996 push_buf[0] = 0x68; /* pushq $... */
997 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
998 /* Push the push. */
999 append_insns (to, 5, push_buf);
1000
1001 /* Convert the relative call to a relative jump. */
1002 insn[0] = 0xe9;
1003
1004 /* Adjust the destination offset. */
1005 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1006 newrel = (oldloc - *to) + rel32;
1007 store_signed_integer (insn + 1, 4, byte_order, newrel);
1008
1009 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1010 hex_string (rel32), paddress (gdbarch, oldloc),
1011 hex_string (newrel), paddress (gdbarch, *to));
1012
1013 /* Write the adjusted jump into its displaced location. */
1014 append_insns (to, 5, insn);
1015 return;
1016 }
1017
1018 /* Adjust jumps with 32-bit relative addresses. Calls are already
1019 handled above. */
1020 if (insn[0] == 0xe9)
1021 offset = 1;
1022 /* Adjust conditional jumps. */
1023 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1024 offset = 2;
1025
1026 if (offset)
1027 {
1028 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1029 newrel = (oldloc - *to) + rel32;
1030 store_signed_integer (insn + offset, 4, byte_order, newrel);
1031 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1032 hex_string (rel32), paddress (gdbarch, oldloc),
1033 hex_string (newrel), paddress (gdbarch, *to));
1034 }
1035
1036 /* Write the adjusted instructions into their displaced
1037 location. */
1038 append_insns (to, insn_length, buf);
1039 }
1040
1041 \f
1042 #ifdef I386_REGNO_TO_SYMMETRY
1043 #error "The Sequent Symmetry is no longer supported."
1044 #endif
1045
1046 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1047 and %esp "belong" to the calling function. Therefore these
1048 registers should be saved if they're going to be modified. */
1049
1050 /* The maximum number of saved registers. This should include all
1051 registers mentioned above, and %eip. */
1052 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1053
1054 struct i386_frame_cache
1055 {
1056 /* Base address. */
1057 CORE_ADDR base;
1058 int base_p;
1059 LONGEST sp_offset;
1060 CORE_ADDR pc;
1061
1062 /* Saved registers. */
1063 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1064 CORE_ADDR saved_sp;
1065 int saved_sp_reg;
1066 int pc_in_eax;
1067
1068 /* Stack space reserved for local variables. */
1069 long locals;
1070 };
1071
1072 /* Allocate and initialize a frame cache. */
1073
1074 static struct i386_frame_cache *
1075 i386_alloc_frame_cache (void)
1076 {
1077 struct i386_frame_cache *cache;
1078 int i;
1079
1080 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1081
1082 /* Base address. */
1083 cache->base_p = 0;
1084 cache->base = 0;
1085 cache->sp_offset = -4;
1086 cache->pc = 0;
1087
1088 /* Saved registers. We initialize these to -1 since zero is a valid
1089 offset (that's where %ebp is supposed to be stored). */
1090 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1091 cache->saved_regs[i] = -1;
1092 cache->saved_sp = 0;
1093 cache->saved_sp_reg = -1;
1094 cache->pc_in_eax = 0;
1095
1096 /* Frameless until proven otherwise. */
1097 cache->locals = -1;
1098
1099 return cache;
1100 }
1101
1102 /* If the instruction at PC is a jump, return the address of its
1103 target. Otherwise, return PC. */
1104
1105 static CORE_ADDR
1106 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1107 {
1108 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1109 gdb_byte op;
1110 long delta = 0;
1111 int data16 = 0;
1112
1113 if (target_read_code (pc, &op, 1))
1114 return pc;
1115
1116 if (op == 0x66)
1117 {
1118 data16 = 1;
1119
1120 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1121 }
1122
1123 switch (op)
1124 {
1125 case 0xe9:
1126 /* Relative jump: if data16 == 0, disp32, else disp16. */
1127 if (data16)
1128 {
1129 delta = read_memory_integer (pc + 2, 2, byte_order);
1130
1131 /* Include the size of the jmp instruction (including the
1132 0x66 prefix). */
1133 delta += 4;
1134 }
1135 else
1136 {
1137 delta = read_memory_integer (pc + 1, 4, byte_order);
1138
1139 /* Include the size of the jmp instruction. */
1140 delta += 5;
1141 }
1142 break;
1143 case 0xeb:
1144 /* Relative jump, disp8 (ignore data16). */
1145 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1146
1147 delta += data16 + 2;
1148 break;
1149 }
1150
1151 return pc + delta;
1152 }
1153
1154 /* Check whether PC points at a prologue for a function returning a
1155 structure or union. If so, it updates CACHE and returns the
1156 address of the first instruction after the code sequence that
1157 removes the "hidden" argument from the stack or CURRENT_PC,
1158 whichever is smaller. Otherwise, return PC. */
1159
1160 static CORE_ADDR
1161 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1162 struct i386_frame_cache *cache)
1163 {
1164 /* Functions that return a structure or union start with:
1165
1166 popl %eax 0x58
1167 xchgl %eax, (%esp) 0x87 0x04 0x24
1168 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1169
1170 (the System V compiler puts out the second `xchg' instruction,
1171 and the assembler doesn't try to optimize it, so the 'sib' form
1172 gets generated). This sequence is used to get the address of the
1173 return buffer for a function that returns a structure. */
1174 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1175 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1176 gdb_byte buf[4];
1177 gdb_byte op;
1178
1179 if (current_pc <= pc)
1180 return pc;
1181
1182 if (target_read_code (pc, &op, 1))
1183 return pc;
1184
1185 if (op != 0x58) /* popl %eax */
1186 return pc;
1187
1188 if (target_read_code (pc + 1, buf, 4))
1189 return pc;
1190
1191 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1192 return pc;
1193
1194 if (current_pc == pc)
1195 {
1196 cache->sp_offset += 4;
1197 return current_pc;
1198 }
1199
1200 if (current_pc == pc + 1)
1201 {
1202 cache->pc_in_eax = 1;
1203 return current_pc;
1204 }
1205
1206 if (buf[1] == proto1[1])
1207 return pc + 4;
1208 else
1209 return pc + 5;
1210 }
1211
1212 static CORE_ADDR
1213 i386_skip_probe (CORE_ADDR pc)
1214 {
1215 /* A function may start with
1216
1217 pushl constant
1218 call _probe
1219 addl $4, %esp
1220
1221 followed by
1222
1223 pushl %ebp
1224
1225 etc. */
1226 gdb_byte buf[8];
1227 gdb_byte op;
1228
1229 if (target_read_code (pc, &op, 1))
1230 return pc;
1231
1232 if (op == 0x68 || op == 0x6a)
1233 {
1234 int delta;
1235
1236 /* Skip past the `pushl' instruction; it has either a one-byte or a
1237 four-byte operand, depending on the opcode. */
1238 if (op == 0x68)
1239 delta = 5;
1240 else
1241 delta = 2;
1242
1243 /* Read the following 8 bytes, which should be `call _probe' (6
1244 bytes) followed by `addl $4,%esp' (2 bytes). */
1245 read_memory (pc + delta, buf, sizeof (buf));
1246 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1247 pc += delta + sizeof (buf);
1248 }
1249
1250 return pc;
1251 }
1252
1253 /* GCC 4.1 and later, can put code in the prologue to realign the
1254 stack pointer. Check whether PC points to such code, and update
1255 CACHE accordingly. Return the first instruction after the code
1256 sequence or CURRENT_PC, whichever is smaller. If we don't
1257 recognize the code, return PC. */
1258
1259 static CORE_ADDR
1260 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1261 struct i386_frame_cache *cache)
1262 {
1263 /* There are 2 code sequences to re-align stack before the frame
1264 gets set up:
1265
1266 1. Use a caller-saved saved register:
1267
1268 leal 4(%esp), %reg
1269 andl $-XXX, %esp
1270 pushl -4(%reg)
1271
1272 2. Use a callee-saved saved register:
1273
1274 pushl %reg
1275 leal 8(%esp), %reg
1276 andl $-XXX, %esp
1277 pushl -4(%reg)
1278
1279 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1280
1281 0x83 0xe4 0xf0 andl $-16, %esp
1282 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1283 */
1284
1285 gdb_byte buf[14];
1286 int reg;
1287 int offset, offset_and;
1288 static int regnums[8] = {
1289 I386_EAX_REGNUM, /* %eax */
1290 I386_ECX_REGNUM, /* %ecx */
1291 I386_EDX_REGNUM, /* %edx */
1292 I386_EBX_REGNUM, /* %ebx */
1293 I386_ESP_REGNUM, /* %esp */
1294 I386_EBP_REGNUM, /* %ebp */
1295 I386_ESI_REGNUM, /* %esi */
1296 I386_EDI_REGNUM /* %edi */
1297 };
1298
1299 if (target_read_code (pc, buf, sizeof buf))
1300 return pc;
1301
1302 /* Check caller-saved saved register. The first instruction has
1303 to be "leal 4(%esp), %reg". */
1304 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1305 {
1306 /* MOD must be binary 10 and R/M must be binary 100. */
1307 if ((buf[1] & 0xc7) != 0x44)
1308 return pc;
1309
1310 /* REG has register number. */
1311 reg = (buf[1] >> 3) & 7;
1312 offset = 4;
1313 }
1314 else
1315 {
1316 /* Check callee-saved saved register. The first instruction
1317 has to be "pushl %reg". */
1318 if ((buf[0] & 0xf8) != 0x50)
1319 return pc;
1320
1321 /* Get register. */
1322 reg = buf[0] & 0x7;
1323
1324 /* The next instruction has to be "leal 8(%esp), %reg". */
1325 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1326 return pc;
1327
1328 /* MOD must be binary 10 and R/M must be binary 100. */
1329 if ((buf[2] & 0xc7) != 0x44)
1330 return pc;
1331
1332 /* REG has register number. Registers in pushl and leal have to
1333 be the same. */
1334 if (reg != ((buf[2] >> 3) & 7))
1335 return pc;
1336
1337 offset = 5;
1338 }
1339
1340 /* Rigister can't be %esp nor %ebp. */
1341 if (reg == 4 || reg == 5)
1342 return pc;
1343
1344 /* The next instruction has to be "andl $-XXX, %esp". */
1345 if (buf[offset + 1] != 0xe4
1346 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1347 return pc;
1348
1349 offset_and = offset;
1350 offset += buf[offset] == 0x81 ? 6 : 3;
1351
1352 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1353 0xfc. REG must be binary 110 and MOD must be binary 01. */
1354 if (buf[offset] != 0xff
1355 || buf[offset + 2] != 0xfc
1356 || (buf[offset + 1] & 0xf8) != 0x70)
1357 return pc;
1358
1359 /* R/M has register. Registers in leal and pushl have to be the
1360 same. */
1361 if (reg != (buf[offset + 1] & 7))
1362 return pc;
1363
1364 if (current_pc > pc + offset_and)
1365 cache->saved_sp_reg = regnums[reg];
1366
1367 return std::min (pc + offset + 3, current_pc);
1368 }
1369
1370 /* Maximum instruction length we need to handle. */
1371 #define I386_MAX_MATCHED_INSN_LEN 6
1372
1373 /* Instruction description. */
1374 struct i386_insn
1375 {
1376 size_t len;
1377 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1378 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1379 };
1380
1381 /* Return whether instruction at PC matches PATTERN. */
1382
1383 static int
1384 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1385 {
1386 gdb_byte op;
1387
1388 if (target_read_code (pc, &op, 1))
1389 return 0;
1390
1391 if ((op & pattern.mask[0]) == pattern.insn[0])
1392 {
1393 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1394 int insn_matched = 1;
1395 size_t i;
1396
1397 gdb_assert (pattern.len > 1);
1398 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1399
1400 if (target_read_code (pc + 1, buf, pattern.len - 1))
1401 return 0;
1402
1403 for (i = 1; i < pattern.len; i++)
1404 {
1405 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1406 insn_matched = 0;
1407 }
1408 return insn_matched;
1409 }
1410 return 0;
1411 }
1412
1413 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1414 the first instruction description that matches. Otherwise, return
1415 NULL. */
1416
1417 static struct i386_insn *
1418 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1419 {
1420 struct i386_insn *pattern;
1421
1422 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1423 {
1424 if (i386_match_pattern (pc, *pattern))
1425 return pattern;
1426 }
1427
1428 return NULL;
1429 }
1430
1431 /* Return whether PC points inside a sequence of instructions that
1432 matches INSN_PATTERNS. */
1433
1434 static int
1435 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1436 {
1437 CORE_ADDR current_pc;
1438 int ix, i;
1439 struct i386_insn *insn;
1440
1441 insn = i386_match_insn (pc, insn_patterns);
1442 if (insn == NULL)
1443 return 0;
1444
1445 current_pc = pc;
1446 ix = insn - insn_patterns;
1447 for (i = ix - 1; i >= 0; i--)
1448 {
1449 current_pc -= insn_patterns[i].len;
1450
1451 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1452 return 0;
1453 }
1454
1455 current_pc = pc + insn->len;
1456 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1457 {
1458 if (!i386_match_pattern (current_pc, *insn))
1459 return 0;
1460
1461 current_pc += insn->len;
1462 }
1463
1464 return 1;
1465 }
1466
1467 /* Some special instructions that might be migrated by GCC into the
1468 part of the prologue that sets up the new stack frame. Because the
1469 stack frame hasn't been setup yet, no registers have been saved
1470 yet, and only the scratch registers %eax, %ecx and %edx can be
1471 touched. */
1472
1473 static i386_insn i386_frame_setup_skip_insns[] =
1474 {
1475 /* Check for `movb imm8, r' and `movl imm32, r'.
1476
1477 ??? Should we handle 16-bit operand-sizes here? */
1478
1479 /* `movb imm8, %al' and `movb imm8, %ah' */
1480 /* `movb imm8, %cl' and `movb imm8, %ch' */
1481 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1482 /* `movb imm8, %dl' and `movb imm8, %dh' */
1483 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1484 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1485 { 5, { 0xb8 }, { 0xfe } },
1486 /* `movl imm32, %edx' */
1487 { 5, { 0xba }, { 0xff } },
1488
1489 /* Check for `mov imm32, r32'. Note that there is an alternative
1490 encoding for `mov m32, %eax'.
1491
1492 ??? Should we handle SIB addressing here?
1493 ??? Should we handle 16-bit operand-sizes here? */
1494
1495 /* `movl m32, %eax' */
1496 { 5, { 0xa1 }, { 0xff } },
1497 /* `movl m32, %eax' and `mov; m32, %ecx' */
1498 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1499 /* `movl m32, %edx' */
1500 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1501
1502 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1503 Because of the symmetry, there are actually two ways to encode
1504 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1505 opcode bytes 0x31 and 0x33 for `xorl'. */
1506
1507 /* `subl %eax, %eax' */
1508 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1509 /* `subl %ecx, %ecx' */
1510 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1511 /* `subl %edx, %edx' */
1512 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1513 /* `xorl %eax, %eax' */
1514 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1515 /* `xorl %ecx, %ecx' */
1516 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1517 /* `xorl %edx, %edx' */
1518 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1519 { 0 }
1520 };
1521
1522 /* Check whether PC points to an endbr32 instruction. */
1523 static CORE_ADDR
1524 i386_skip_endbr (CORE_ADDR pc)
1525 {
1526 static const gdb_byte endbr32[] = { 0xf3, 0x0f, 0x1e, 0xfb };
1527
1528 gdb_byte buf[sizeof (endbr32)];
1529
1530 /* Stop there if we can't read the code */
1531 if (target_read_code (pc, buf, sizeof (endbr32)))
1532 return pc;
1533
1534 /* If the instruction isn't an endbr32, stop */
1535 if (memcmp (buf, endbr32, sizeof (endbr32)) != 0)
1536 return pc;
1537
1538 return pc + sizeof (endbr32);
1539 }
1540
1541 /* Check whether PC points to a no-op instruction. */
1542 static CORE_ADDR
1543 i386_skip_noop (CORE_ADDR pc)
1544 {
1545 gdb_byte op;
1546 int check = 1;
1547
1548 if (target_read_code (pc, &op, 1))
1549 return pc;
1550
1551 while (check)
1552 {
1553 check = 0;
1554 /* Ignore `nop' instruction. */
1555 if (op == 0x90)
1556 {
1557 pc += 1;
1558 if (target_read_code (pc, &op, 1))
1559 return pc;
1560 check = 1;
1561 }
1562 /* Ignore no-op instruction `mov %edi, %edi'.
1563 Microsoft system dlls often start with
1564 a `mov %edi,%edi' instruction.
1565 The 5 bytes before the function start are
1566 filled with `nop' instructions.
1567 This pattern can be used for hot-patching:
1568 The `mov %edi, %edi' instruction can be replaced by a
1569 near jump to the location of the 5 `nop' instructions
1570 which can be replaced by a 32-bit jump to anywhere
1571 in the 32-bit address space. */
1572
1573 else if (op == 0x8b)
1574 {
1575 if (target_read_code (pc + 1, &op, 1))
1576 return pc;
1577
1578 if (op == 0xff)
1579 {
1580 pc += 2;
1581 if (target_read_code (pc, &op, 1))
1582 return pc;
1583
1584 check = 1;
1585 }
1586 }
1587 }
1588 return pc;
1589 }
1590
1591 /* Check whether PC points at a code that sets up a new stack frame.
1592 If so, it updates CACHE and returns the address of the first
1593 instruction after the sequence that sets up the frame or LIMIT,
1594 whichever is smaller. If we don't recognize the code, return PC. */
1595
1596 static CORE_ADDR
1597 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1598 CORE_ADDR pc, CORE_ADDR limit,
1599 struct i386_frame_cache *cache)
1600 {
1601 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1602 struct i386_insn *insn;
1603 gdb_byte op;
1604 int skip = 0;
1605
1606 if (limit <= pc)
1607 return limit;
1608
1609 if (target_read_code (pc, &op, 1))
1610 return pc;
1611
1612 if (op == 0x55) /* pushl %ebp */
1613 {
1614 /* Take into account that we've executed the `pushl %ebp' that
1615 starts this instruction sequence. */
1616 cache->saved_regs[I386_EBP_REGNUM] = 0;
1617 cache->sp_offset += 4;
1618 pc++;
1619
1620 /* If that's all, return now. */
1621 if (limit <= pc)
1622 return limit;
1623
1624 /* Check for some special instructions that might be migrated by
1625 GCC into the prologue and skip them. At this point in the
1626 prologue, code should only touch the scratch registers %eax,
1627 %ecx and %edx, so while the number of possibilities is sheer,
1628 it is limited.
1629
1630 Make sure we only skip these instructions if we later see the
1631 `movl %esp, %ebp' that actually sets up the frame. */
1632 while (pc + skip < limit)
1633 {
1634 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1635 if (insn == NULL)
1636 break;
1637
1638 skip += insn->len;
1639 }
1640
1641 /* If that's all, return now. */
1642 if (limit <= pc + skip)
1643 return limit;
1644
1645 if (target_read_code (pc + skip, &op, 1))
1646 return pc + skip;
1647
1648 /* The i386 prologue looks like
1649
1650 push %ebp
1651 mov %esp,%ebp
1652 sub $0x10,%esp
1653
1654 and a different prologue can be generated for atom.
1655
1656 push %ebp
1657 lea (%esp),%ebp
1658 lea -0x10(%esp),%esp
1659
1660 We handle both of them here. */
1661
1662 switch (op)
1663 {
1664 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1665 case 0x8b:
1666 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1667 != 0xec)
1668 return pc;
1669 pc += (skip + 2);
1670 break;
1671 case 0x89:
1672 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1673 != 0xe5)
1674 return pc;
1675 pc += (skip + 2);
1676 break;
1677 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1678 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1679 != 0x242c)
1680 return pc;
1681 pc += (skip + 3);
1682 break;
1683 default:
1684 return pc;
1685 }
1686
1687 /* OK, we actually have a frame. We just don't know how large
1688 it is yet. Set its size to zero. We'll adjust it if
1689 necessary. We also now commit to skipping the special
1690 instructions mentioned before. */
1691 cache->locals = 0;
1692
1693 /* If that's all, return now. */
1694 if (limit <= pc)
1695 return limit;
1696
1697 /* Check for stack adjustment
1698
1699 subl $XXX, %esp
1700 or
1701 lea -XXX(%esp),%esp
1702
1703 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1704 reg, so we don't have to worry about a data16 prefix. */
1705 if (target_read_code (pc, &op, 1))
1706 return pc;
1707 if (op == 0x83)
1708 {
1709 /* `subl' with 8-bit immediate. */
1710 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1711 /* Some instruction starting with 0x83 other than `subl'. */
1712 return pc;
1713
1714 /* `subl' with signed 8-bit immediate (though it wouldn't
1715 make sense to be negative). */
1716 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1717 return pc + 3;
1718 }
1719 else if (op == 0x81)
1720 {
1721 /* Maybe it is `subl' with a 32-bit immediate. */
1722 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1723 /* Some instruction starting with 0x81 other than `subl'. */
1724 return pc;
1725
1726 /* It is `subl' with a 32-bit immediate. */
1727 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1728 return pc + 6;
1729 }
1730 else if (op == 0x8d)
1731 {
1732 /* The ModR/M byte is 0x64. */
1733 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1734 return pc;
1735 /* 'lea' with 8-bit displacement. */
1736 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1737 return pc + 4;
1738 }
1739 else
1740 {
1741 /* Some instruction other than `subl' nor 'lea'. */
1742 return pc;
1743 }
1744 }
1745 else if (op == 0xc8) /* enter */
1746 {
1747 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1748 return pc + 4;
1749 }
1750
1751 return pc;
1752 }
1753
1754 /* Check whether PC points at code that saves registers on the stack.
1755 If so, it updates CACHE and returns the address of the first
1756 instruction after the register saves or CURRENT_PC, whichever is
1757 smaller. Otherwise, return PC. */
1758
1759 static CORE_ADDR
1760 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1761 struct i386_frame_cache *cache)
1762 {
1763 CORE_ADDR offset = 0;
1764 gdb_byte op;
1765 int i;
1766
1767 if (cache->locals > 0)
1768 offset -= cache->locals;
1769 for (i = 0; i < 8 && pc < current_pc; i++)
1770 {
1771 if (target_read_code (pc, &op, 1))
1772 return pc;
1773 if (op < 0x50 || op > 0x57)
1774 break;
1775
1776 offset -= 4;
1777 cache->saved_regs[op - 0x50] = offset;
1778 cache->sp_offset += 4;
1779 pc++;
1780 }
1781
1782 return pc;
1783 }
1784
1785 /* Do a full analysis of the prologue at PC and update CACHE
1786 accordingly. Bail out early if CURRENT_PC is reached. Return the
1787 address where the analysis stopped.
1788
1789 We handle these cases:
1790
1791 The startup sequence can be at the start of the function, or the
1792 function can start with a branch to startup code at the end.
1793
1794 %ebp can be set up with either the 'enter' instruction, or "pushl
1795 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1796 once used in the System V compiler).
1797
1798 Local space is allocated just below the saved %ebp by either the
1799 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1800 16-bit unsigned argument for space to allocate, and the 'addl'
1801 instruction could have either a signed byte, or 32-bit immediate.
1802
1803 Next, the registers used by this function are pushed. With the
1804 System V compiler they will always be in the order: %edi, %esi,
1805 %ebx (and sometimes a harmless bug causes it to also save but not
1806 restore %eax); however, the code below is willing to see the pushes
1807 in any order, and will handle up to 8 of them.
1808
1809 If the setup sequence is at the end of the function, then the next
1810 instruction will be a branch back to the start. */
1811
1812 static CORE_ADDR
1813 i386_analyze_prologue (struct gdbarch *gdbarch,
1814 CORE_ADDR pc, CORE_ADDR current_pc,
1815 struct i386_frame_cache *cache)
1816 {
1817 pc = i386_skip_endbr (pc);
1818 pc = i386_skip_noop (pc);
1819 pc = i386_follow_jump (gdbarch, pc);
1820 pc = i386_analyze_struct_return (pc, current_pc, cache);
1821 pc = i386_skip_probe (pc);
1822 pc = i386_analyze_stack_align (pc, current_pc, cache);
1823 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1824 return i386_analyze_register_saves (pc, current_pc, cache);
1825 }
1826
1827 /* Return PC of first real instruction. */
1828
1829 static CORE_ADDR
1830 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1831 {
1832 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1833
1834 static gdb_byte pic_pat[6] =
1835 {
1836 0xe8, 0, 0, 0, 0, /* call 0x0 */
1837 0x5b, /* popl %ebx */
1838 };
1839 struct i386_frame_cache cache;
1840 CORE_ADDR pc;
1841 gdb_byte op;
1842 int i;
1843 CORE_ADDR func_addr;
1844
1845 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1846 {
1847 CORE_ADDR post_prologue_pc
1848 = skip_prologue_using_sal (gdbarch, func_addr);
1849 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1850
1851 /* LLVM backend (Clang/Flang) always emits a line note before the
1852 prologue and another one after. We trust clang and newer Intel
1853 compilers to emit usable line notes. */
1854 if (post_prologue_pc
1855 && (cust != NULL
1856 && cust->producer () != NULL
1857 && (producer_is_llvm (cust->producer ())
1858 || producer_is_icc_ge_19 (cust->producer ()))))
1859 return std::max (start_pc, post_prologue_pc);
1860 }
1861
1862 cache.locals = -1;
1863 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1864 if (cache.locals < 0)
1865 return start_pc;
1866
1867 /* Found valid frame setup. */
1868
1869 /* The native cc on SVR4 in -K PIC mode inserts the following code
1870 to get the address of the global offset table (GOT) into register
1871 %ebx:
1872
1873 call 0x0
1874 popl %ebx
1875 movl %ebx,x(%ebp) (optional)
1876 addl y,%ebx
1877
1878 This code is with the rest of the prologue (at the end of the
1879 function), so we have to skip it to get to the first real
1880 instruction at the start of the function. */
1881
1882 for (i = 0; i < 6; i++)
1883 {
1884 if (target_read_code (pc + i, &op, 1))
1885 return pc;
1886
1887 if (pic_pat[i] != op)
1888 break;
1889 }
1890 if (i == 6)
1891 {
1892 int delta = 6;
1893
1894 if (target_read_code (pc + delta, &op, 1))
1895 return pc;
1896
1897 if (op == 0x89) /* movl %ebx, x(%ebp) */
1898 {
1899 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1900
1901 if (op == 0x5d) /* One byte offset from %ebp. */
1902 delta += 3;
1903 else if (op == 0x9d) /* Four byte offset from %ebp. */
1904 delta += 6;
1905 else /* Unexpected instruction. */
1906 delta = 0;
1907
1908 if (target_read_code (pc + delta, &op, 1))
1909 return pc;
1910 }
1911
1912 /* addl y,%ebx */
1913 if (delta > 0 && op == 0x81
1914 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1915 == 0xc3)
1916 {
1917 pc += delta + 6;
1918 }
1919 }
1920
1921 /* If the function starts with a branch (to startup code at the end)
1922 the last instruction should bring us back to the first
1923 instruction of the real code. */
1924 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1925 pc = i386_follow_jump (gdbarch, pc);
1926
1927 return pc;
1928 }
1929
1930 /* Check that the code pointed to by PC corresponds to a call to
1931 __main, skip it if so. Return PC otherwise. */
1932
1933 CORE_ADDR
1934 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1935 {
1936 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1937 gdb_byte op;
1938
1939 if (target_read_code (pc, &op, 1))
1940 return pc;
1941 if (op == 0xe8)
1942 {
1943 gdb_byte buf[4];
1944
1945 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1946 {
1947 /* Make sure address is computed correctly as a 32bit
1948 integer even if CORE_ADDR is 64 bit wide. */
1949 struct bound_minimal_symbol s;
1950 CORE_ADDR call_dest;
1951
1952 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1953 call_dest = call_dest & 0xffffffffU;
1954 s = lookup_minimal_symbol_by_pc (call_dest);
1955 if (s.minsym != NULL
1956 && s.minsym->linkage_name () != NULL
1957 && strcmp (s.minsym->linkage_name (), "__main") == 0)
1958 pc += 5;
1959 }
1960 }
1961
1962 return pc;
1963 }
1964
1965 /* This function is 64-bit safe. */
1966
1967 static CORE_ADDR
1968 i386_unwind_pc (struct gdbarch *gdbarch, frame_info_ptr next_frame)
1969 {
1970 gdb_byte buf[8];
1971
1972 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1973 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1974 }
1975 \f
1976
1977 /* Normal frames. */
1978
1979 static void
1980 i386_frame_cache_1 (frame_info_ptr this_frame,
1981 struct i386_frame_cache *cache)
1982 {
1983 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1984 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1985 gdb_byte buf[4];
1986 int i;
1987
1988 cache->pc = get_frame_func (this_frame);
1989
1990 /* In principle, for normal frames, %ebp holds the frame pointer,
1991 which holds the base address for the current stack frame.
1992 However, for functions that don't need it, the frame pointer is
1993 optional. For these "frameless" functions the frame pointer is
1994 actually the frame pointer of the calling frame. Signal
1995 trampolines are just a special case of a "frameless" function.
1996 They (usually) share their frame pointer with the frame that was
1997 in progress when the signal occurred. */
1998
1999 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
2000 cache->base = extract_unsigned_integer (buf, 4, byte_order);
2001 if (cache->base == 0)
2002 {
2003 cache->base_p = 1;
2004 return;
2005 }
2006
2007 /* For normal frames, %eip is stored at 4(%ebp). */
2008 cache->saved_regs[I386_EIP_REGNUM] = 4;
2009
2010 if (cache->pc != 0)
2011 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2012 cache);
2013
2014 if (cache->locals < 0)
2015 {
2016 /* We didn't find a valid frame, which means that CACHE->base
2017 currently holds the frame pointer for our calling frame. If
2018 we're at the start of a function, or somewhere half-way its
2019 prologue, the function's frame probably hasn't been fully
2020 setup yet. Try to reconstruct the base address for the stack
2021 frame by looking at the stack pointer. For truly "frameless"
2022 functions this might work too. */
2023
2024 if (cache->saved_sp_reg != -1)
2025 {
2026 /* Saved stack pointer has been saved. */
2027 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2028 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2029
2030 /* We're halfway aligning the stack. */
2031 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2032 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2033
2034 /* This will be added back below. */
2035 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2036 }
2037 else if (cache->pc != 0
2038 || target_read_code (get_frame_pc (this_frame), buf, 1))
2039 {
2040 /* We're in a known function, but did not find a frame
2041 setup. Assume that the function does not use %ebp.
2042 Alternatively, we may have jumped to an invalid
2043 address; in that case there is definitely no new
2044 frame in %ebp. */
2045 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2046 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2047 + cache->sp_offset;
2048 }
2049 else
2050 /* We're in an unknown function. We could not find the start
2051 of the function to analyze the prologue; our best option is
2052 to assume a typical frame layout with the caller's %ebp
2053 saved. */
2054 cache->saved_regs[I386_EBP_REGNUM] = 0;
2055 }
2056
2057 if (cache->saved_sp_reg != -1)
2058 {
2059 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2060 register may be unavailable). */
2061 if (cache->saved_sp == 0
2062 && deprecated_frame_register_read (this_frame,
2063 cache->saved_sp_reg, buf))
2064 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2065 }
2066 /* Now that we have the base address for the stack frame we can
2067 calculate the value of %esp in the calling frame. */
2068 else if (cache->saved_sp == 0)
2069 cache->saved_sp = cache->base + 8;
2070
2071 /* Adjust all the saved registers such that they contain addresses
2072 instead of offsets. */
2073 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2074 if (cache->saved_regs[i] != -1)
2075 cache->saved_regs[i] += cache->base;
2076
2077 cache->base_p = 1;
2078 }
2079
2080 static struct i386_frame_cache *
2081 i386_frame_cache (frame_info_ptr this_frame, void **this_cache)
2082 {
2083 struct i386_frame_cache *cache;
2084
2085 if (*this_cache)
2086 return (struct i386_frame_cache *) *this_cache;
2087
2088 cache = i386_alloc_frame_cache ();
2089 *this_cache = cache;
2090
2091 try
2092 {
2093 i386_frame_cache_1 (this_frame, cache);
2094 }
2095 catch (const gdb_exception_error &ex)
2096 {
2097 if (ex.error != NOT_AVAILABLE_ERROR)
2098 throw;
2099 }
2100
2101 return cache;
2102 }
2103
2104 static void
2105 i386_frame_this_id (frame_info_ptr this_frame, void **this_cache,
2106 struct frame_id *this_id)
2107 {
2108 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2109
2110 if (!cache->base_p)
2111 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2112 else if (cache->base == 0)
2113 {
2114 /* This marks the outermost frame. */
2115 }
2116 else
2117 {
2118 /* See the end of i386_push_dummy_call. */
2119 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2120 }
2121 }
2122
2123 static enum unwind_stop_reason
2124 i386_frame_unwind_stop_reason (frame_info_ptr this_frame,
2125 void **this_cache)
2126 {
2127 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2128
2129 if (!cache->base_p)
2130 return UNWIND_UNAVAILABLE;
2131
2132 /* This marks the outermost frame. */
2133 if (cache->base == 0)
2134 return UNWIND_OUTERMOST;
2135
2136 return UNWIND_NO_REASON;
2137 }
2138
2139 static struct value *
2140 i386_frame_prev_register (frame_info_ptr this_frame, void **this_cache,
2141 int regnum)
2142 {
2143 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2144
2145 gdb_assert (regnum >= 0);
2146
2147 /* The System V ABI says that:
2148
2149 "The flags register contains the system flags, such as the
2150 direction flag and the carry flag. The direction flag must be
2151 set to the forward (that is, zero) direction before entry and
2152 upon exit from a function. Other user flags have no specified
2153 role in the standard calling sequence and are not preserved."
2154
2155 To guarantee the "upon exit" part of that statement we fake a
2156 saved flags register that has its direction flag cleared.
2157
2158 Note that GCC doesn't seem to rely on the fact that the direction
2159 flag is cleared after a function return; it always explicitly
2160 clears the flag before operations where it matters.
2161
2162 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2163 right thing to do. The way we fake the flags register here makes
2164 it impossible to change it. */
2165
2166 if (regnum == I386_EFLAGS_REGNUM)
2167 {
2168 ULONGEST val;
2169
2170 val = get_frame_register_unsigned (this_frame, regnum);
2171 val &= ~(1 << 10);
2172 return frame_unwind_got_constant (this_frame, regnum, val);
2173 }
2174
2175 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2176 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2177
2178 if (regnum == I386_ESP_REGNUM
2179 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2180 {
2181 /* If the SP has been saved, but we don't know where, then this
2182 means that SAVED_SP_REG register was found unavailable back
2183 when we built the cache. */
2184 if (cache->saved_sp == 0)
2185 return frame_unwind_got_register (this_frame, regnum,
2186 cache->saved_sp_reg);
2187 else
2188 return frame_unwind_got_constant (this_frame, regnum,
2189 cache->saved_sp);
2190 }
2191
2192 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2193 return frame_unwind_got_memory (this_frame, regnum,
2194 cache->saved_regs[regnum]);
2195
2196 return frame_unwind_got_register (this_frame, regnum, regnum);
2197 }
2198
2199 static const struct frame_unwind i386_frame_unwind =
2200 {
2201 "i386 prologue",
2202 NORMAL_FRAME,
2203 i386_frame_unwind_stop_reason,
2204 i386_frame_this_id,
2205 i386_frame_prev_register,
2206 NULL,
2207 default_frame_sniffer
2208 };
2209
2210 /* Normal frames, but in a function epilogue. */
2211
2212 /* Implement the stack_frame_destroyed_p gdbarch method.
2213
2214 The epilogue is defined here as the 'ret' instruction, which will
2215 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2216 the function's stack frame. */
2217
2218 static int
2219 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2220 {
2221 gdb_byte insn;
2222 struct compunit_symtab *cust;
2223
2224 cust = find_pc_compunit_symtab (pc);
2225 if (cust != NULL && cust->epilogue_unwind_valid ())
2226 return 0;
2227
2228 if (target_read_memory (pc, &insn, 1))
2229 return 0; /* Can't read memory at pc. */
2230
2231 if (insn != 0xc3) /* 'ret' instruction. */
2232 return 0;
2233
2234 return 1;
2235 }
2236
2237 static int
2238 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2239 frame_info_ptr this_frame,
2240 void **this_prologue_cache)
2241 {
2242 if (frame_relative_level (this_frame) == 0)
2243 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2244 get_frame_pc (this_frame));
2245 else
2246 return 0;
2247 }
2248
2249 static struct i386_frame_cache *
2250 i386_epilogue_frame_cache (frame_info_ptr this_frame, void **this_cache)
2251 {
2252 struct i386_frame_cache *cache;
2253 CORE_ADDR sp;
2254
2255 if (*this_cache)
2256 return (struct i386_frame_cache *) *this_cache;
2257
2258 cache = i386_alloc_frame_cache ();
2259 *this_cache = cache;
2260
2261 try
2262 {
2263 cache->pc = get_frame_func (this_frame);
2264
2265 /* At this point the stack looks as if we just entered the
2266 function, with the return address at the top of the
2267 stack. */
2268 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2269 cache->base = sp + cache->sp_offset;
2270 cache->saved_sp = cache->base + 8;
2271 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2272
2273 cache->base_p = 1;
2274 }
2275 catch (const gdb_exception_error &ex)
2276 {
2277 if (ex.error != NOT_AVAILABLE_ERROR)
2278 throw;
2279 }
2280
2281 return cache;
2282 }
2283
2284 static enum unwind_stop_reason
2285 i386_epilogue_frame_unwind_stop_reason (frame_info_ptr this_frame,
2286 void **this_cache)
2287 {
2288 struct i386_frame_cache *cache =
2289 i386_epilogue_frame_cache (this_frame, this_cache);
2290
2291 if (!cache->base_p)
2292 return UNWIND_UNAVAILABLE;
2293
2294 return UNWIND_NO_REASON;
2295 }
2296
2297 static void
2298 i386_epilogue_frame_this_id (frame_info_ptr this_frame,
2299 void **this_cache,
2300 struct frame_id *this_id)
2301 {
2302 struct i386_frame_cache *cache =
2303 i386_epilogue_frame_cache (this_frame, this_cache);
2304
2305 if (!cache->base_p)
2306 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2307 else
2308 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2309 }
2310
2311 static struct value *
2312 i386_epilogue_frame_prev_register (frame_info_ptr this_frame,
2313 void **this_cache, int regnum)
2314 {
2315 /* Make sure we've initialized the cache. */
2316 i386_epilogue_frame_cache (this_frame, this_cache);
2317
2318 return i386_frame_prev_register (this_frame, this_cache, regnum);
2319 }
2320
2321 static const struct frame_unwind i386_epilogue_frame_unwind =
2322 {
2323 "i386 epilogue",
2324 NORMAL_FRAME,
2325 i386_epilogue_frame_unwind_stop_reason,
2326 i386_epilogue_frame_this_id,
2327 i386_epilogue_frame_prev_register,
2328 NULL,
2329 i386_epilogue_frame_sniffer
2330 };
2331 \f
2332
2333 /* Stack-based trampolines. */
2334
2335 /* These trampolines are used on cross x86 targets, when taking the
2336 address of a nested function. When executing these trampolines,
2337 no stack frame is set up, so we are in a similar situation as in
2338 epilogues and i386_epilogue_frame_this_id can be re-used. */
2339
2340 /* Static chain passed in register. */
2341
2342 static i386_insn i386_tramp_chain_in_reg_insns[] =
2343 {
2344 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2345 { 5, { 0xb8 }, { 0xfe } },
2346
2347 /* `jmp imm32' */
2348 { 5, { 0xe9 }, { 0xff } },
2349
2350 {0}
2351 };
2352
2353 /* Static chain passed on stack (when regparm=3). */
2354
2355 static i386_insn i386_tramp_chain_on_stack_insns[] =
2356 {
2357 /* `push imm32' */
2358 { 5, { 0x68 }, { 0xff } },
2359
2360 /* `jmp imm32' */
2361 { 5, { 0xe9 }, { 0xff } },
2362
2363 {0}
2364 };
2365
2366 /* Return whether PC points inside a stack trampoline. */
2367
2368 static int
2369 i386_in_stack_tramp_p (CORE_ADDR pc)
2370 {
2371 gdb_byte insn;
2372 const char *name;
2373
2374 /* A stack trampoline is detected if no name is associated
2375 to the current pc and if it points inside a trampoline
2376 sequence. */
2377
2378 find_pc_partial_function (pc, &name, NULL, NULL);
2379 if (name)
2380 return 0;
2381
2382 if (target_read_memory (pc, &insn, 1))
2383 return 0;
2384
2385 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2386 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2387 return 0;
2388
2389 return 1;
2390 }
2391
2392 static int
2393 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2394 frame_info_ptr this_frame,
2395 void **this_cache)
2396 {
2397 if (frame_relative_level (this_frame) == 0)
2398 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2399 else
2400 return 0;
2401 }
2402
2403 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2404 {
2405 "i386 stack tramp",
2406 NORMAL_FRAME,
2407 i386_epilogue_frame_unwind_stop_reason,
2408 i386_epilogue_frame_this_id,
2409 i386_epilogue_frame_prev_register,
2410 NULL,
2411 i386_stack_tramp_frame_sniffer
2412 };
2413 \f
2414 /* Generate a bytecode expression to get the value of the saved PC. */
2415
2416 static void
2417 i386_gen_return_address (struct gdbarch *gdbarch,
2418 struct agent_expr *ax, struct axs_value *value,
2419 CORE_ADDR scope)
2420 {
2421 /* The following sequence assumes the traditional use of the base
2422 register. */
2423 ax_reg (ax, I386_EBP_REGNUM);
2424 ax_const_l (ax, 4);
2425 ax_simple (ax, aop_add);
2426 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2427 value->kind = axs_lvalue_memory;
2428 }
2429 \f
2430
2431 /* Signal trampolines. */
2432
2433 static struct i386_frame_cache *
2434 i386_sigtramp_frame_cache (frame_info_ptr this_frame, void **this_cache)
2435 {
2436 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2437 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
2438 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2439 struct i386_frame_cache *cache;
2440 CORE_ADDR addr;
2441 gdb_byte buf[4];
2442
2443 if (*this_cache)
2444 return (struct i386_frame_cache *) *this_cache;
2445
2446 cache = i386_alloc_frame_cache ();
2447
2448 try
2449 {
2450 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2451 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2452
2453 addr = tdep->sigcontext_addr (this_frame);
2454 if (tdep->sc_reg_offset)
2455 {
2456 int i;
2457
2458 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2459
2460 for (i = 0; i < tdep->sc_num_regs; i++)
2461 if (tdep->sc_reg_offset[i] != -1)
2462 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2463 }
2464 else
2465 {
2466 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2467 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2468 }
2469
2470 cache->base_p = 1;
2471 }
2472 catch (const gdb_exception_error &ex)
2473 {
2474 if (ex.error != NOT_AVAILABLE_ERROR)
2475 throw;
2476 }
2477
2478 *this_cache = cache;
2479 return cache;
2480 }
2481
2482 static enum unwind_stop_reason
2483 i386_sigtramp_frame_unwind_stop_reason (frame_info_ptr this_frame,
2484 void **this_cache)
2485 {
2486 struct i386_frame_cache *cache =
2487 i386_sigtramp_frame_cache (this_frame, this_cache);
2488
2489 if (!cache->base_p)
2490 return UNWIND_UNAVAILABLE;
2491
2492 return UNWIND_NO_REASON;
2493 }
2494
2495 static void
2496 i386_sigtramp_frame_this_id (frame_info_ptr this_frame, void **this_cache,
2497 struct frame_id *this_id)
2498 {
2499 struct i386_frame_cache *cache =
2500 i386_sigtramp_frame_cache (this_frame, this_cache);
2501
2502 if (!cache->base_p)
2503 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2504 else
2505 {
2506 /* See the end of i386_push_dummy_call. */
2507 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2508 }
2509 }
2510
2511 static struct value *
2512 i386_sigtramp_frame_prev_register (frame_info_ptr this_frame,
2513 void **this_cache, int regnum)
2514 {
2515 /* Make sure we've initialized the cache. */
2516 i386_sigtramp_frame_cache (this_frame, this_cache);
2517
2518 return i386_frame_prev_register (this_frame, this_cache, regnum);
2519 }
2520
2521 static int
2522 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2523 frame_info_ptr this_frame,
2524 void **this_prologue_cache)
2525 {
2526 gdbarch *arch = get_frame_arch (this_frame);
2527 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
2528
2529 /* We shouldn't even bother if we don't have a sigcontext_addr
2530 handler. */
2531 if (tdep->sigcontext_addr == NULL)
2532 return 0;
2533
2534 if (tdep->sigtramp_p != NULL)
2535 {
2536 if (tdep->sigtramp_p (this_frame))
2537 return 1;
2538 }
2539
2540 if (tdep->sigtramp_start != 0)
2541 {
2542 CORE_ADDR pc = get_frame_pc (this_frame);
2543
2544 gdb_assert (tdep->sigtramp_end != 0);
2545 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2546 return 1;
2547 }
2548
2549 return 0;
2550 }
2551
2552 static const struct frame_unwind i386_sigtramp_frame_unwind =
2553 {
2554 "i386 sigtramp",
2555 SIGTRAMP_FRAME,
2556 i386_sigtramp_frame_unwind_stop_reason,
2557 i386_sigtramp_frame_this_id,
2558 i386_sigtramp_frame_prev_register,
2559 NULL,
2560 i386_sigtramp_frame_sniffer
2561 };
2562 \f
2563
2564 static CORE_ADDR
2565 i386_frame_base_address (frame_info_ptr this_frame, void **this_cache)
2566 {
2567 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2568
2569 return cache->base;
2570 }
2571
2572 static const struct frame_base i386_frame_base =
2573 {
2574 &i386_frame_unwind,
2575 i386_frame_base_address,
2576 i386_frame_base_address,
2577 i386_frame_base_address
2578 };
2579
2580 static struct frame_id
2581 i386_dummy_id (struct gdbarch *gdbarch, frame_info_ptr this_frame)
2582 {
2583 CORE_ADDR fp;
2584
2585 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2586
2587 /* See the end of i386_push_dummy_call. */
2588 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2589 }
2590
2591 /* _Decimal128 function return values need 16-byte alignment on the
2592 stack. */
2593
2594 static CORE_ADDR
2595 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2596 {
2597 return sp & -(CORE_ADDR)16;
2598 }
2599 \f
2600
2601 /* Figure out where the longjmp will land. Slurp the args out of the
2602 stack. We expect the first arg to be a pointer to the jmp_buf
2603 structure from which we extract the address that we will land at.
2604 This address is copied into PC. This routine returns non-zero on
2605 success. */
2606
2607 static int
2608 i386_get_longjmp_target (frame_info_ptr frame, CORE_ADDR *pc)
2609 {
2610 gdb_byte buf[4];
2611 CORE_ADDR sp, jb_addr;
2612 struct gdbarch *gdbarch = get_frame_arch (frame);
2613 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2614 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
2615 int jb_pc_offset = tdep->jb_pc_offset;
2616
2617 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2618 longjmp will land. */
2619 if (jb_pc_offset == -1)
2620 return 0;
2621
2622 get_frame_register (frame, I386_ESP_REGNUM, buf);
2623 sp = extract_unsigned_integer (buf, 4, byte_order);
2624 if (target_read_memory (sp + 4, buf, 4))
2625 return 0;
2626
2627 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2628 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2629 return 0;
2630
2631 *pc = extract_unsigned_integer (buf, 4, byte_order);
2632 return 1;
2633 }
2634 \f
2635
2636 /* Check whether TYPE must be 16-byte-aligned when passed as a
2637 function argument. 16-byte vectors, _Decimal128 and structures or
2638 unions containing such types must be 16-byte-aligned; other
2639 arguments are 4-byte-aligned. */
2640
2641 static int
2642 i386_16_byte_align_p (struct type *type)
2643 {
2644 type = check_typedef (type);
2645 if ((type->code () == TYPE_CODE_DECFLOAT
2646 || (type->code () == TYPE_CODE_ARRAY && type->is_vector ()))
2647 && type->length () == 16)
2648 return 1;
2649 if (type->code () == TYPE_CODE_ARRAY)
2650 return i386_16_byte_align_p (type->target_type ());
2651 if (type->code () == TYPE_CODE_STRUCT
2652 || type->code () == TYPE_CODE_UNION)
2653 {
2654 int i;
2655 for (i = 0; i < type->num_fields (); i++)
2656 {
2657 if (field_is_static (&type->field (i)))
2658 continue;
2659 if (i386_16_byte_align_p (type->field (i).type ()))
2660 return 1;
2661 }
2662 }
2663 return 0;
2664 }
2665
2666 /* Implementation for set_gdbarch_push_dummy_code. */
2667
2668 static CORE_ADDR
2669 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2670 struct value **args, int nargs, struct type *value_type,
2671 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2672 struct regcache *regcache)
2673 {
2674 /* Use 0xcc breakpoint - 1 byte. */
2675 *bp_addr = sp - 1;
2676 *real_pc = funaddr;
2677
2678 /* Keep the stack aligned. */
2679 return sp - 16;
2680 }
2681
2682 /* The "push_dummy_call" gdbarch method, optionally with the thiscall
2683 calling convention. */
2684
2685 CORE_ADDR
2686 i386_thiscall_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2687 struct regcache *regcache, CORE_ADDR bp_addr,
2688 int nargs, struct value **args, CORE_ADDR sp,
2689 function_call_return_method return_method,
2690 CORE_ADDR struct_addr, bool thiscall)
2691 {
2692 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2693 gdb_byte buf[4];
2694 int i;
2695 int write_pass;
2696 int args_space = 0;
2697
2698 /* BND registers can be in arbitrary values at the moment of the
2699 inferior call. This can cause boundary violations that are not
2700 due to a real bug or even desired by the user. The best to be done
2701 is set the BND registers to allow access to the whole memory, INIT
2702 state, before pushing the inferior call. */
2703 i387_reset_bnd_regs (gdbarch, regcache);
2704
2705 /* Determine the total space required for arguments and struct
2706 return address in a first pass (allowing for 16-byte-aligned
2707 arguments), then push arguments in a second pass. */
2708
2709 for (write_pass = 0; write_pass < 2; write_pass++)
2710 {
2711 int args_space_used = 0;
2712
2713 if (return_method == return_method_struct)
2714 {
2715 if (write_pass)
2716 {
2717 /* Push value address. */
2718 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2719 write_memory (sp, buf, 4);
2720 args_space_used += 4;
2721 }
2722 else
2723 args_space += 4;
2724 }
2725
2726 for (i = thiscall ? 1 : 0; i < nargs; i++)
2727 {
2728 int len = value_enclosing_type (args[i])->length ();
2729
2730 if (write_pass)
2731 {
2732 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2733 args_space_used = align_up (args_space_used, 16);
2734
2735 write_memory (sp + args_space_used,
2736 value_contents_all (args[i]).data (), len);
2737 /* The System V ABI says that:
2738
2739 "An argument's size is increased, if necessary, to make it a
2740 multiple of [32-bit] words. This may require tail padding,
2741 depending on the size of the argument."
2742
2743 This makes sure the stack stays word-aligned. */
2744 args_space_used += align_up (len, 4);
2745 }
2746 else
2747 {
2748 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2749 args_space = align_up (args_space, 16);
2750 args_space += align_up (len, 4);
2751 }
2752 }
2753
2754 if (!write_pass)
2755 {
2756 sp -= args_space;
2757
2758 /* The original System V ABI only requires word alignment,
2759 but modern incarnations need 16-byte alignment in order
2760 to support SSE. Since wasting a few bytes here isn't
2761 harmful we unconditionally enforce 16-byte alignment. */
2762 sp &= ~0xf;
2763 }
2764 }
2765
2766 /* Store return address. */
2767 sp -= 4;
2768 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2769 write_memory (sp, buf, 4);
2770
2771 /* Finally, update the stack pointer... */
2772 store_unsigned_integer (buf, 4, byte_order, sp);
2773 regcache->cooked_write (I386_ESP_REGNUM, buf);
2774
2775 /* ...and fake a frame pointer. */
2776 regcache->cooked_write (I386_EBP_REGNUM, buf);
2777
2778 /* The 'this' pointer needs to be in ECX. */
2779 if (thiscall)
2780 regcache->cooked_write (I386_ECX_REGNUM,
2781 value_contents_all (args[0]).data ());
2782
2783 /* If the PLT is position-independent, the SYSTEM V ABI requires %ebx to be
2784 set to the address of the GOT when doing a call to a PLT address.
2785 Note that we do not try to determine whether the PLT is
2786 position-independent, we just set the register regardless. */
2787 CORE_ADDR func_addr = find_function_addr (function, nullptr, nullptr);
2788 if (in_plt_section (func_addr))
2789 {
2790 struct objfile *objf = nullptr;
2791 asection *asect = nullptr;
2792 obj_section *osect = nullptr;
2793
2794 /* Get object file containing func_addr. */
2795 obj_section *func_section = find_pc_section (func_addr);
2796 if (func_section != nullptr)
2797 objf = func_section->objfile;
2798
2799 if (objf != nullptr)
2800 {
2801 /* Get corresponding .got.plt or .got section. */
2802 asect = bfd_get_section_by_name (objf->obfd.get (), ".got.plt");
2803 if (asect == nullptr)
2804 asect = bfd_get_section_by_name (objf->obfd.get (), ".got");
2805 }
2806
2807 if (asect != nullptr)
2808 /* Translate asection to obj_section. */
2809 osect = maint_obj_section_from_bfd_section (objf->obfd.get (),
2810 asect, objf);
2811
2812 if (osect != nullptr)
2813 {
2814 /* Store the section address in %ebx. */
2815 store_unsigned_integer (buf, 4, byte_order, osect->addr ());
2816 regcache->cooked_write (I386_EBX_REGNUM, buf);
2817 }
2818 else
2819 {
2820 /* If we would only do this for a position-independent PLT, it would
2821 make sense to issue a warning here. */
2822 }
2823 }
2824
2825 /* MarkK wrote: This "+ 8" is all over the place:
2826 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2827 i386_dummy_id). It's there, since all frame unwinders for
2828 a given target have to agree (within a certain margin) on the
2829 definition of the stack address of a frame. Otherwise frame id
2830 comparison might not work correctly. Since DWARF2/GCC uses the
2831 stack address *before* the function call as a frame's CFA. On
2832 the i386, when %ebp is used as a frame pointer, the offset
2833 between the contents %ebp and the CFA as defined by GCC. */
2834 return sp + 8;
2835 }
2836
2837 /* Implement the "push_dummy_call" gdbarch method. */
2838
2839 static CORE_ADDR
2840 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2841 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2842 struct value **args, CORE_ADDR sp,
2843 function_call_return_method return_method,
2844 CORE_ADDR struct_addr)
2845 {
2846 return i386_thiscall_push_dummy_call (gdbarch, function, regcache, bp_addr,
2847 nargs, args, sp, return_method,
2848 struct_addr, false);
2849 }
2850
2851 /* These registers are used for returning integers (and on some
2852 targets also for returning `struct' and `union' values when their
2853 size and alignment match an integer type). */
2854 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2855 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2856
2857 /* Read, for architecture GDBARCH, a function return value of TYPE
2858 from REGCACHE, and copy that into VALBUF. */
2859
2860 static void
2861 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2862 struct regcache *regcache, gdb_byte *valbuf)
2863 {
2864 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
2865 int len = type->length ();
2866 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2867
2868 /* _Float16 and _Float16 _Complex values are returned via xmm0. */
2869 if (((type->code () == TYPE_CODE_FLT) && len == 2)
2870 || ((type->code () == TYPE_CODE_COMPLEX) && len == 4))
2871 {
2872 regcache->raw_read (I387_XMM0_REGNUM (tdep), valbuf);
2873 return;
2874 }
2875 else if (type->code () == TYPE_CODE_FLT)
2876 {
2877 if (tdep->st0_regnum < 0)
2878 {
2879 warning (_("Cannot find floating-point return value."));
2880 memset (valbuf, 0, len);
2881 return;
2882 }
2883
2884 /* Floating-point return values can be found in %st(0). Convert
2885 its contents to the desired type. This is probably not
2886 exactly how it would happen on the target itself, but it is
2887 the best we can do. */
2888 regcache->raw_read (I386_ST0_REGNUM, buf);
2889 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2890 }
2891 else
2892 {
2893 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2894 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2895
2896 if (len <= low_size)
2897 {
2898 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2899 memcpy (valbuf, buf, len);
2900 }
2901 else if (len <= (low_size + high_size))
2902 {
2903 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2904 memcpy (valbuf, buf, low_size);
2905 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
2906 memcpy (valbuf + low_size, buf, len - low_size);
2907 }
2908 else
2909 internal_error (_("Cannot extract return value of %d bytes long."),
2910 len);
2911 }
2912 }
2913
2914 /* Write, for architecture GDBARCH, a function return value of TYPE
2915 from VALBUF into REGCACHE. */
2916
2917 static void
2918 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2919 struct regcache *regcache, const gdb_byte *valbuf)
2920 {
2921 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
2922 int len = type->length ();
2923
2924 if (type->code () == TYPE_CODE_FLT)
2925 {
2926 ULONGEST fstat;
2927 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2928
2929 if (tdep->st0_regnum < 0)
2930 {
2931 warning (_("Cannot set floating-point return value."));
2932 return;
2933 }
2934
2935 /* Returning floating-point values is a bit tricky. Apart from
2936 storing the return value in %st(0), we have to simulate the
2937 state of the FPU at function return point. */
2938
2939 /* Convert the value found in VALBUF to the extended
2940 floating-point format used by the FPU. This is probably
2941 not exactly how it would happen on the target itself, but
2942 it is the best we can do. */
2943 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2944 regcache->raw_write (I386_ST0_REGNUM, buf);
2945
2946 /* Set the top of the floating-point register stack to 7. The
2947 actual value doesn't really matter, but 7 is what a normal
2948 function return would end up with if the program started out
2949 with a freshly initialized FPU. */
2950 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2951 fstat |= (7 << 11);
2952 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2953
2954 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2955 the floating-point register stack to 7, the appropriate value
2956 for the tag word is 0x3fff. */
2957 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2958 }
2959 else
2960 {
2961 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2962 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2963
2964 if (len <= low_size)
2965 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
2966 else if (len <= (low_size + high_size))
2967 {
2968 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
2969 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2970 valbuf + low_size);
2971 }
2972 else
2973 internal_error (_("Cannot store return value of %d bytes long."), len);
2974 }
2975 }
2976 \f
2977
2978 /* This is the variable that is set with "set struct-convention", and
2979 its legitimate values. */
2980 static const char default_struct_convention[] = "default";
2981 static const char pcc_struct_convention[] = "pcc";
2982 static const char reg_struct_convention[] = "reg";
2983 static const char *const valid_conventions[] =
2984 {
2985 default_struct_convention,
2986 pcc_struct_convention,
2987 reg_struct_convention,
2988 NULL
2989 };
2990 static const char *struct_convention = default_struct_convention;
2991
2992 /* Return non-zero if TYPE, which is assumed to be a structure,
2993 a union type, or an array type, should be returned in registers
2994 for architecture GDBARCH. */
2995
2996 static int
2997 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2998 {
2999 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3000 enum type_code code = type->code ();
3001 int len = type->length ();
3002
3003 gdb_assert (code == TYPE_CODE_STRUCT
3004 || code == TYPE_CODE_UNION
3005 || code == TYPE_CODE_ARRAY);
3006
3007 if (struct_convention == pcc_struct_convention
3008 || (struct_convention == default_struct_convention
3009 && tdep->struct_return == pcc_struct_return)
3010 || TYPE_HAS_DYNAMIC_LENGTH (type))
3011 return 0;
3012
3013 /* Structures consisting of a single `float', `double' or 'long
3014 double' member are returned in %st(0). */
3015 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
3016 {
3017 type = check_typedef (type->field (0).type ());
3018 if (type->code () == TYPE_CODE_FLT)
3019 return (len == 4 || len == 8 || len == 12);
3020 }
3021
3022 return (len == 1 || len == 2 || len == 4 || len == 8);
3023 }
3024
3025 /* Determine, for architecture GDBARCH, how a return value of TYPE
3026 should be returned. If it is supposed to be returned in registers,
3027 and READBUF is non-zero, read the appropriate value from REGCACHE,
3028 and copy it into READBUF. If WRITEBUF is non-zero, write the value
3029 from WRITEBUF into REGCACHE. */
3030
3031 static enum return_value_convention
3032 i386_return_value (struct gdbarch *gdbarch, struct value *function,
3033 struct type *type, struct regcache *regcache,
3034 struct value **read_value, const gdb_byte *writebuf)
3035 {
3036 enum type_code code = type->code ();
3037
3038 if (((code == TYPE_CODE_STRUCT
3039 || code == TYPE_CODE_UNION
3040 || code == TYPE_CODE_ARRAY)
3041 && !i386_reg_struct_return_p (gdbarch, type))
3042 /* Complex double and long double uses the struct return convention. */
3043 || (code == TYPE_CODE_COMPLEX && type->length () == 16)
3044 || (code == TYPE_CODE_COMPLEX && type->length () == 24)
3045 /* 128-bit decimal float uses the struct return convention. */
3046 || (code == TYPE_CODE_DECFLOAT && type->length () == 16))
3047 {
3048 /* The System V ABI says that:
3049
3050 "A function that returns a structure or union also sets %eax
3051 to the value of the original address of the caller's area
3052 before it returns. Thus when the caller receives control
3053 again, the address of the returned object resides in register
3054 %eax and can be used to access the object."
3055
3056 So the ABI guarantees that we can always find the return
3057 value just after the function has returned. */
3058
3059 /* Note that the ABI doesn't mention functions returning arrays,
3060 which is something possible in certain languages such as Ada.
3061 In this case, the value is returned as if it was wrapped in
3062 a record, so the convention applied to records also applies
3063 to arrays. */
3064
3065 if (read_value != nullptr)
3066 {
3067 ULONGEST addr;
3068
3069 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
3070 *read_value = value_at_non_lval (type, addr);
3071 }
3072
3073 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
3074 }
3075
3076 /* This special case is for structures consisting of a single
3077 `float', `double' or 'long double' member. These structures are
3078 returned in %st(0). For these structures, we call ourselves
3079 recursively, changing TYPE into the type of the first member of
3080 the structure. Since that should work for all structures that
3081 have only one member, we don't bother to check the member's type
3082 here. */
3083 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
3084 {
3085 struct type *inner_type = check_typedef (type->field (0).type ());
3086 enum return_value_convention result
3087 = i386_return_value (gdbarch, function, inner_type, regcache,
3088 read_value, writebuf);
3089 if (read_value != nullptr)
3090 deprecated_set_value_type (*read_value, type);
3091 return result;
3092 }
3093
3094 if (read_value != nullptr)
3095 {
3096 *read_value = allocate_value (type);
3097 i386_extract_return_value (gdbarch, type, regcache,
3098 value_contents_raw (*read_value).data ());
3099 }
3100 if (writebuf)
3101 i386_store_return_value (gdbarch, type, regcache, writebuf);
3102
3103 return RETURN_VALUE_REGISTER_CONVENTION;
3104 }
3105 \f
3106
3107 struct type *
3108 i387_ext_type (struct gdbarch *gdbarch)
3109 {
3110 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3111
3112 if (!tdep->i387_ext_type)
3113 {
3114 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3115 gdb_assert (tdep->i387_ext_type != NULL);
3116 }
3117
3118 return tdep->i387_ext_type;
3119 }
3120
3121 /* Construct type for pseudo BND registers. We can't use
3122 tdesc_find_type since a complement of one value has to be used
3123 to describe the upper bound. */
3124
3125 static struct type *
3126 i386_bnd_type (struct gdbarch *gdbarch)
3127 {
3128 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3129
3130
3131 if (!tdep->i386_bnd_type)
3132 {
3133 struct type *t;
3134 const struct builtin_type *bt = builtin_type (gdbarch);
3135
3136 /* The type we're building is described bellow: */
3137 #if 0
3138 struct __bound128
3139 {
3140 void *lbound;
3141 void *ubound; /* One complement of raw ubound field. */
3142 };
3143 #endif
3144
3145 t = arch_composite_type (gdbarch,
3146 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3147
3148 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3149 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3150
3151 t->set_name ("builtin_type_bound128");
3152 tdep->i386_bnd_type = t;
3153 }
3154
3155 return tdep->i386_bnd_type;
3156 }
3157
3158 /* Construct vector type for pseudo ZMM registers. We can't use
3159 tdesc_find_type since ZMM isn't described in target description. */
3160
3161 static struct type *
3162 i386_zmm_type (struct gdbarch *gdbarch)
3163 {
3164 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3165
3166 if (!tdep->i386_zmm_type)
3167 {
3168 const struct builtin_type *bt = builtin_type (gdbarch);
3169
3170 /* The type we're building is this: */
3171 #if 0
3172 union __gdb_builtin_type_vec512i
3173 {
3174 int128_t v4_int128[4];
3175 int64_t v8_int64[8];
3176 int32_t v16_int32[16];
3177 int16_t v32_int16[32];
3178 int8_t v64_int8[64];
3179 double v8_double[8];
3180 float v16_float[16];
3181 float16_t v32_half[32];
3182 bfloat16_t v32_bfloat16[32];
3183 };
3184 #endif
3185
3186 struct type *t;
3187
3188 t = arch_composite_type (gdbarch,
3189 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3190 append_composite_type_field (t, "v32_bfloat16",
3191 init_vector_type (bt->builtin_bfloat16, 32));
3192 append_composite_type_field (t, "v32_half",
3193 init_vector_type (bt->builtin_half, 32));
3194 append_composite_type_field (t, "v16_float",
3195 init_vector_type (bt->builtin_float, 16));
3196 append_composite_type_field (t, "v8_double",
3197 init_vector_type (bt->builtin_double, 8));
3198 append_composite_type_field (t, "v64_int8",
3199 init_vector_type (bt->builtin_int8, 64));
3200 append_composite_type_field (t, "v32_int16",
3201 init_vector_type (bt->builtin_int16, 32));
3202 append_composite_type_field (t, "v16_int32",
3203 init_vector_type (bt->builtin_int32, 16));
3204 append_composite_type_field (t, "v8_int64",
3205 init_vector_type (bt->builtin_int64, 8));
3206 append_composite_type_field (t, "v4_int128",
3207 init_vector_type (bt->builtin_int128, 4));
3208
3209 t->set_is_vector (true);
3210 t->set_name ("builtin_type_vec512i");
3211 tdep->i386_zmm_type = t;
3212 }
3213
3214 return tdep->i386_zmm_type;
3215 }
3216
3217 /* Construct vector type for pseudo YMM registers. We can't use
3218 tdesc_find_type since YMM isn't described in target description. */
3219
3220 static struct type *
3221 i386_ymm_type (struct gdbarch *gdbarch)
3222 {
3223 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3224
3225 if (!tdep->i386_ymm_type)
3226 {
3227 const struct builtin_type *bt = builtin_type (gdbarch);
3228
3229 /* The type we're building is this: */
3230 #if 0
3231 union __gdb_builtin_type_vec256i
3232 {
3233 int128_t v2_int128[2];
3234 int64_t v4_int64[4];
3235 int32_t v8_int32[8];
3236 int16_t v16_int16[16];
3237 int8_t v32_int8[32];
3238 double v4_double[4];
3239 float v8_float[8];
3240 float16_t v16_half[16];
3241 bfloat16_t v16_bfloat16[16];
3242 };
3243 #endif
3244
3245 struct type *t;
3246
3247 t = arch_composite_type (gdbarch,
3248 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3249 append_composite_type_field (t, "v16_bfloat16",
3250 init_vector_type (bt->builtin_bfloat16, 16));
3251 append_composite_type_field (t, "v16_half",
3252 init_vector_type (bt->builtin_half, 16));
3253 append_composite_type_field (t, "v8_float",
3254 init_vector_type (bt->builtin_float, 8));
3255 append_composite_type_field (t, "v4_double",
3256 init_vector_type (bt->builtin_double, 4));
3257 append_composite_type_field (t, "v32_int8",
3258 init_vector_type (bt->builtin_int8, 32));
3259 append_composite_type_field (t, "v16_int16",
3260 init_vector_type (bt->builtin_int16, 16));
3261 append_composite_type_field (t, "v8_int32",
3262 init_vector_type (bt->builtin_int32, 8));
3263 append_composite_type_field (t, "v4_int64",
3264 init_vector_type (bt->builtin_int64, 4));
3265 append_composite_type_field (t, "v2_int128",
3266 init_vector_type (bt->builtin_int128, 2));
3267
3268 t->set_is_vector (true);
3269 t->set_name ("builtin_type_vec256i");
3270 tdep->i386_ymm_type = t;
3271 }
3272
3273 return tdep->i386_ymm_type;
3274 }
3275
3276 /* Construct vector type for MMX registers. */
3277 static struct type *
3278 i386_mmx_type (struct gdbarch *gdbarch)
3279 {
3280 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3281
3282 if (!tdep->i386_mmx_type)
3283 {
3284 const struct builtin_type *bt = builtin_type (gdbarch);
3285
3286 /* The type we're building is this: */
3287 #if 0
3288 union __gdb_builtin_type_vec64i
3289 {
3290 int64_t uint64;
3291 int32_t v2_int32[2];
3292 int16_t v4_int16[4];
3293 int8_t v8_int8[8];
3294 };
3295 #endif
3296
3297 struct type *t;
3298
3299 t = arch_composite_type (gdbarch,
3300 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3301
3302 append_composite_type_field (t, "uint64", bt->builtin_int64);
3303 append_composite_type_field (t, "v2_int32",
3304 init_vector_type (bt->builtin_int32, 2));
3305 append_composite_type_field (t, "v4_int16",
3306 init_vector_type (bt->builtin_int16, 4));
3307 append_composite_type_field (t, "v8_int8",
3308 init_vector_type (bt->builtin_int8, 8));
3309
3310 t->set_is_vector (true);
3311 t->set_name ("builtin_type_vec64i");
3312 tdep->i386_mmx_type = t;
3313 }
3314
3315 return tdep->i386_mmx_type;
3316 }
3317
3318 /* Return the GDB type object for the "standard" data type of data in
3319 register REGNUM. */
3320
3321 struct type *
3322 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3323 {
3324 if (i386_bnd_regnum_p (gdbarch, regnum))
3325 return i386_bnd_type (gdbarch);
3326 if (i386_mmx_regnum_p (gdbarch, regnum))
3327 return i386_mmx_type (gdbarch);
3328 else if (i386_ymm_regnum_p (gdbarch, regnum))
3329 return i386_ymm_type (gdbarch);
3330 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3331 return i386_ymm_type (gdbarch);
3332 else if (i386_zmm_regnum_p (gdbarch, regnum))
3333 return i386_zmm_type (gdbarch);
3334 else
3335 {
3336 const struct builtin_type *bt = builtin_type (gdbarch);
3337 if (i386_byte_regnum_p (gdbarch, regnum))
3338 return bt->builtin_int8;
3339 else if (i386_word_regnum_p (gdbarch, regnum))
3340 return bt->builtin_int16;
3341 else if (i386_dword_regnum_p (gdbarch, regnum))
3342 return bt->builtin_int32;
3343 else if (i386_k_regnum_p (gdbarch, regnum))
3344 return bt->builtin_int64;
3345 }
3346
3347 internal_error (_("invalid regnum"));
3348 }
3349
3350 /* Map a cooked register onto a raw register or memory. For the i386,
3351 the MMX registers need to be mapped onto floating point registers. */
3352
3353 static int
3354 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3355 {
3356 gdbarch *arch = regcache->arch ();
3357 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
3358 int mmxreg, fpreg;
3359 ULONGEST fstat;
3360 int tos;
3361
3362 mmxreg = regnum - tdep->mm0_regnum;
3363 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3364 tos = (fstat >> 11) & 0x7;
3365 fpreg = (mmxreg + tos) % 8;
3366
3367 return (I387_ST0_REGNUM (tdep) + fpreg);
3368 }
3369
3370 /* A helper function for us by i386_pseudo_register_read_value and
3371 amd64_pseudo_register_read_value. It does all the work but reads
3372 the data into an already-allocated value. */
3373
3374 void
3375 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3376 readable_regcache *regcache,
3377 int regnum,
3378 struct value *result_value)
3379 {
3380 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3381 enum register_status status;
3382 gdb_byte *buf = value_contents_raw (result_value).data ();
3383
3384 if (i386_mmx_regnum_p (gdbarch, regnum))
3385 {
3386 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3387
3388 /* Extract (always little endian). */
3389 status = regcache->raw_read (fpnum, raw_buf);
3390 if (status != REG_VALID)
3391 mark_value_bytes_unavailable (result_value, 0,
3392 result_value->type ()->length ());
3393 else
3394 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3395 }
3396 else
3397 {
3398 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3399 if (i386_bnd_regnum_p (gdbarch, regnum))
3400 {
3401 regnum -= tdep->bnd0_regnum;
3402
3403 /* Extract (always little endian). Read lower 128bits. */
3404 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3405 raw_buf);
3406 if (status != REG_VALID)
3407 mark_value_bytes_unavailable (result_value, 0, 16);
3408 else
3409 {
3410 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3411 LONGEST upper, lower;
3412 int size = builtin_type (gdbarch)->builtin_data_ptr->length ();
3413
3414 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3415 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3416 upper = ~upper;
3417
3418 memcpy (buf, &lower, size);
3419 memcpy (buf + size, &upper, size);
3420 }
3421 }
3422 else if (i386_k_regnum_p (gdbarch, regnum))
3423 {
3424 regnum -= tdep->k0_regnum;
3425
3426 /* Extract (always little endian). */
3427 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3428 if (status != REG_VALID)
3429 mark_value_bytes_unavailable (result_value, 0, 8);
3430 else
3431 memcpy (buf, raw_buf, 8);
3432 }
3433 else if (i386_zmm_regnum_p (gdbarch, regnum))
3434 {
3435 regnum -= tdep->zmm0_regnum;
3436
3437 if (regnum < num_lower_zmm_regs)
3438 {
3439 /* Extract (always little endian). Read lower 128bits. */
3440 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3441 raw_buf);
3442 if (status != REG_VALID)
3443 mark_value_bytes_unavailable (result_value, 0, 16);
3444 else
3445 memcpy (buf, raw_buf, 16);
3446
3447 /* Extract (always little endian). Read upper 128bits. */
3448 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3449 raw_buf);
3450 if (status != REG_VALID)
3451 mark_value_bytes_unavailable (result_value, 16, 16);
3452 else
3453 memcpy (buf + 16, raw_buf, 16);
3454 }
3455 else
3456 {
3457 /* Extract (always little endian). Read lower 128bits. */
3458 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3459 - num_lower_zmm_regs,
3460 raw_buf);
3461 if (status != REG_VALID)
3462 mark_value_bytes_unavailable (result_value, 0, 16);
3463 else
3464 memcpy (buf, raw_buf, 16);
3465
3466 /* Extract (always little endian). Read upper 128bits. */
3467 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3468 - num_lower_zmm_regs,
3469 raw_buf);
3470 if (status != REG_VALID)
3471 mark_value_bytes_unavailable (result_value, 16, 16);
3472 else
3473 memcpy (buf + 16, raw_buf, 16);
3474 }
3475
3476 /* Read upper 256bits. */
3477 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3478 raw_buf);
3479 if (status != REG_VALID)
3480 mark_value_bytes_unavailable (result_value, 32, 32);
3481 else
3482 memcpy (buf + 32, raw_buf, 32);
3483 }
3484 else if (i386_ymm_regnum_p (gdbarch, regnum))
3485 {
3486 regnum -= tdep->ymm0_regnum;
3487
3488 /* Extract (always little endian). Read lower 128bits. */
3489 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3490 raw_buf);
3491 if (status != REG_VALID)
3492 mark_value_bytes_unavailable (result_value, 0, 16);
3493 else
3494 memcpy (buf, raw_buf, 16);
3495 /* Read upper 128bits. */
3496 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3497 raw_buf);
3498 if (status != REG_VALID)
3499 mark_value_bytes_unavailable (result_value, 16, 32);
3500 else
3501 memcpy (buf + 16, raw_buf, 16);
3502 }
3503 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3504 {
3505 regnum -= tdep->ymm16_regnum;
3506 /* Extract (always little endian). Read lower 128bits. */
3507 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3508 raw_buf);
3509 if (status != REG_VALID)
3510 mark_value_bytes_unavailable (result_value, 0, 16);
3511 else
3512 memcpy (buf, raw_buf, 16);
3513 /* Read upper 128bits. */
3514 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3515 raw_buf);
3516 if (status != REG_VALID)
3517 mark_value_bytes_unavailable (result_value, 16, 16);
3518 else
3519 memcpy (buf + 16, raw_buf, 16);
3520 }
3521 else if (i386_word_regnum_p (gdbarch, regnum))
3522 {
3523 int gpnum = regnum - tdep->ax_regnum;
3524
3525 /* Extract (always little endian). */
3526 status = regcache->raw_read (gpnum, raw_buf);
3527 if (status != REG_VALID)
3528 mark_value_bytes_unavailable (result_value, 0,
3529 result_value->type ()->length ());
3530 else
3531 memcpy (buf, raw_buf, 2);
3532 }
3533 else if (i386_byte_regnum_p (gdbarch, regnum))
3534 {
3535 int gpnum = regnum - tdep->al_regnum;
3536
3537 /* Extract (always little endian). We read both lower and
3538 upper registers. */
3539 status = regcache->raw_read (gpnum % 4, raw_buf);
3540 if (status != REG_VALID)
3541 mark_value_bytes_unavailable (result_value, 0,
3542 result_value->type ()->length ());
3543 else if (gpnum >= 4)
3544 memcpy (buf, raw_buf + 1, 1);
3545 else
3546 memcpy (buf, raw_buf, 1);
3547 }
3548 else
3549 internal_error (_("invalid regnum"));
3550 }
3551 }
3552
3553 static struct value *
3554 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3555 readable_regcache *regcache,
3556 int regnum)
3557 {
3558 struct value *result;
3559
3560 result = allocate_value (register_type (gdbarch, regnum));
3561 VALUE_LVAL (result) = lval_register;
3562 VALUE_REGNUM (result) = regnum;
3563
3564 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3565
3566 return result;
3567 }
3568
3569 void
3570 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3571 int regnum, const gdb_byte *buf)
3572 {
3573 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3574
3575 if (i386_mmx_regnum_p (gdbarch, regnum))
3576 {
3577 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3578
3579 /* Read ... */
3580 regcache->raw_read (fpnum, raw_buf);
3581 /* ... Modify ... (always little endian). */
3582 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3583 /* ... Write. */
3584 regcache->raw_write (fpnum, raw_buf);
3585 }
3586 else
3587 {
3588 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3589
3590 if (i386_bnd_regnum_p (gdbarch, regnum))
3591 {
3592 ULONGEST upper, lower;
3593 int size = builtin_type (gdbarch)->builtin_data_ptr->length ();
3594 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3595
3596 /* New values from input value. */
3597 regnum -= tdep->bnd0_regnum;
3598 lower = extract_unsigned_integer (buf, size, byte_order);
3599 upper = extract_unsigned_integer (buf + size, size, byte_order);
3600
3601 /* Fetching register buffer. */
3602 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3603 raw_buf);
3604
3605 upper = ~upper;
3606
3607 /* Set register bits. */
3608 memcpy (raw_buf, &lower, 8);
3609 memcpy (raw_buf + 8, &upper, 8);
3610
3611 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
3612 }
3613 else if (i386_k_regnum_p (gdbarch, regnum))
3614 {
3615 regnum -= tdep->k0_regnum;
3616
3617 regcache->raw_write (tdep->k0_regnum + regnum, buf);
3618 }
3619 else if (i386_zmm_regnum_p (gdbarch, regnum))
3620 {
3621 regnum -= tdep->zmm0_regnum;
3622
3623 if (regnum < num_lower_zmm_regs)
3624 {
3625 /* Write lower 128bits. */
3626 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3627 /* Write upper 128bits. */
3628 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
3629 }
3630 else
3631 {
3632 /* Write lower 128bits. */
3633 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3634 - num_lower_zmm_regs, buf);
3635 /* Write upper 128bits. */
3636 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3637 - num_lower_zmm_regs, buf + 16);
3638 }
3639 /* Write upper 256bits. */
3640 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
3641 }
3642 else if (i386_ymm_regnum_p (gdbarch, regnum))
3643 {
3644 regnum -= tdep->ymm0_regnum;
3645
3646 /* ... Write lower 128bits. */
3647 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3648 /* ... Write upper 128bits. */
3649 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
3650 }
3651 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3652 {
3653 regnum -= tdep->ymm16_regnum;
3654
3655 /* ... Write lower 128bits. */
3656 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
3657 /* ... Write upper 128bits. */
3658 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
3659 }
3660 else if (i386_word_regnum_p (gdbarch, regnum))
3661 {
3662 int gpnum = regnum - tdep->ax_regnum;
3663
3664 /* Read ... */
3665 regcache->raw_read (gpnum, raw_buf);
3666 /* ... Modify ... (always little endian). */
3667 memcpy (raw_buf, buf, 2);
3668 /* ... Write. */
3669 regcache->raw_write (gpnum, raw_buf);
3670 }
3671 else if (i386_byte_regnum_p (gdbarch, regnum))
3672 {
3673 int gpnum = regnum - tdep->al_regnum;
3674
3675 /* Read ... We read both lower and upper registers. */
3676 regcache->raw_read (gpnum % 4, raw_buf);
3677 /* ... Modify ... (always little endian). */
3678 if (gpnum >= 4)
3679 memcpy (raw_buf + 1, buf, 1);
3680 else
3681 memcpy (raw_buf, buf, 1);
3682 /* ... Write. */
3683 regcache->raw_write (gpnum % 4, raw_buf);
3684 }
3685 else
3686 internal_error (_("invalid regnum"));
3687 }
3688 }
3689
3690 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3691
3692 int
3693 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3694 struct agent_expr *ax, int regnum)
3695 {
3696 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3697
3698 if (i386_mmx_regnum_p (gdbarch, regnum))
3699 {
3700 /* MMX to FPU register mapping depends on current TOS. Let's just
3701 not care and collect everything... */
3702 int i;
3703
3704 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3705 for (i = 0; i < 8; i++)
3706 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3707 return 0;
3708 }
3709 else if (i386_bnd_regnum_p (gdbarch, regnum))
3710 {
3711 regnum -= tdep->bnd0_regnum;
3712 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3713 return 0;
3714 }
3715 else if (i386_k_regnum_p (gdbarch, regnum))
3716 {
3717 regnum -= tdep->k0_regnum;
3718 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3719 return 0;
3720 }
3721 else if (i386_zmm_regnum_p (gdbarch, regnum))
3722 {
3723 regnum -= tdep->zmm0_regnum;
3724 if (regnum < num_lower_zmm_regs)
3725 {
3726 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3727 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3728 }
3729 else
3730 {
3731 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3732 - num_lower_zmm_regs);
3733 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3734 - num_lower_zmm_regs);
3735 }
3736 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3737 return 0;
3738 }
3739 else if (i386_ymm_regnum_p (gdbarch, regnum))
3740 {
3741 regnum -= tdep->ymm0_regnum;
3742 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3743 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3744 return 0;
3745 }
3746 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3747 {
3748 regnum -= tdep->ymm16_regnum;
3749 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3750 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3751 return 0;
3752 }
3753 else if (i386_word_regnum_p (gdbarch, regnum))
3754 {
3755 int gpnum = regnum - tdep->ax_regnum;
3756
3757 ax_reg_mask (ax, gpnum);
3758 return 0;
3759 }
3760 else if (i386_byte_regnum_p (gdbarch, regnum))
3761 {
3762 int gpnum = regnum - tdep->al_regnum;
3763
3764 ax_reg_mask (ax, gpnum % 4);
3765 return 0;
3766 }
3767 else
3768 internal_error (_("invalid regnum"));
3769 return 1;
3770 }
3771 \f
3772
3773 /* Return the register number of the register allocated by GCC after
3774 REGNUM, or -1 if there is no such register. */
3775
3776 static int
3777 i386_next_regnum (int regnum)
3778 {
3779 /* GCC allocates the registers in the order:
3780
3781 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3782
3783 Since storing a variable in %esp doesn't make any sense we return
3784 -1 for %ebp and for %esp itself. */
3785 static int next_regnum[] =
3786 {
3787 I386_EDX_REGNUM, /* Slot for %eax. */
3788 I386_EBX_REGNUM, /* Slot for %ecx. */
3789 I386_ECX_REGNUM, /* Slot for %edx. */
3790 I386_ESI_REGNUM, /* Slot for %ebx. */
3791 -1, -1, /* Slots for %esp and %ebp. */
3792 I386_EDI_REGNUM, /* Slot for %esi. */
3793 I386_EBP_REGNUM /* Slot for %edi. */
3794 };
3795
3796 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3797 return next_regnum[regnum];
3798
3799 return -1;
3800 }
3801
3802 /* Return nonzero if a value of type TYPE stored in register REGNUM
3803 needs any special handling. */
3804
3805 static int
3806 i386_convert_register_p (struct gdbarch *gdbarch,
3807 int regnum, struct type *type)
3808 {
3809 int len = type->length ();
3810
3811 /* Values may be spread across multiple registers. Most debugging
3812 formats aren't expressive enough to specify the locations, so
3813 some heuristics is involved. Right now we only handle types that
3814 have a length that is a multiple of the word size, since GCC
3815 doesn't seem to put any other types into registers. */
3816 if (len > 4 && len % 4 == 0)
3817 {
3818 int last_regnum = regnum;
3819
3820 while (len > 4)
3821 {
3822 last_regnum = i386_next_regnum (last_regnum);
3823 len -= 4;
3824 }
3825
3826 if (last_regnum != -1)
3827 return 1;
3828 }
3829
3830 return i387_convert_register_p (gdbarch, regnum, type);
3831 }
3832
3833 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3834 return its contents in TO. */
3835
3836 static int
3837 i386_register_to_value (frame_info_ptr frame, int regnum,
3838 struct type *type, gdb_byte *to,
3839 int *optimizedp, int *unavailablep)
3840 {
3841 struct gdbarch *gdbarch = get_frame_arch (frame);
3842 int len = type->length ();
3843
3844 if (i386_fp_regnum_p (gdbarch, regnum))
3845 return i387_register_to_value (frame, regnum, type, to,
3846 optimizedp, unavailablep);
3847
3848 /* Read a value spread across multiple registers. */
3849
3850 gdb_assert (len > 4 && len % 4 == 0);
3851
3852 while (len > 0)
3853 {
3854 gdb_assert (regnum != -1);
3855 gdb_assert (register_size (gdbarch, regnum) == 4);
3856
3857 if (!get_frame_register_bytes (frame, regnum, 0,
3858 gdb::make_array_view (to,
3859 register_size (gdbarch,
3860 regnum)),
3861 optimizedp, unavailablep))
3862 return 0;
3863
3864 regnum = i386_next_regnum (regnum);
3865 len -= 4;
3866 to += 4;
3867 }
3868
3869 *optimizedp = *unavailablep = 0;
3870 return 1;
3871 }
3872
3873 /* Write the contents FROM of a value of type TYPE into register
3874 REGNUM in frame FRAME. */
3875
3876 static void
3877 i386_value_to_register (frame_info_ptr frame, int regnum,
3878 struct type *type, const gdb_byte *from)
3879 {
3880 int len = type->length ();
3881
3882 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3883 {
3884 i387_value_to_register (frame, regnum, type, from);
3885 return;
3886 }
3887
3888 /* Write a value spread across multiple registers. */
3889
3890 gdb_assert (len > 4 && len % 4 == 0);
3891
3892 while (len > 0)
3893 {
3894 gdb_assert (regnum != -1);
3895 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3896
3897 put_frame_register (frame, regnum, from);
3898 regnum = i386_next_regnum (regnum);
3899 len -= 4;
3900 from += 4;
3901 }
3902 }
3903 \f
3904 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3905 in the general-purpose register set REGSET to register cache
3906 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3907
3908 void
3909 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3910 int regnum, const void *gregs, size_t len)
3911 {
3912 struct gdbarch *gdbarch = regcache->arch ();
3913 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3914 const gdb_byte *regs = (const gdb_byte *) gregs;
3915 int i;
3916
3917 gdb_assert (len >= tdep->sizeof_gregset);
3918
3919 for (i = 0; i < tdep->gregset_num_regs; i++)
3920 {
3921 if ((regnum == i || regnum == -1)
3922 && tdep->gregset_reg_offset[i] != -1)
3923 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
3924 }
3925 }
3926
3927 /* Collect register REGNUM from the register cache REGCACHE and store
3928 it in the buffer specified by GREGS and LEN as described by the
3929 general-purpose register set REGSET. If REGNUM is -1, do this for
3930 all registers in REGSET. */
3931
3932 static void
3933 i386_collect_gregset (const struct regset *regset,
3934 const struct regcache *regcache,
3935 int regnum, void *gregs, size_t len)
3936 {
3937 struct gdbarch *gdbarch = regcache->arch ();
3938 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3939 gdb_byte *regs = (gdb_byte *) gregs;
3940 int i;
3941
3942 gdb_assert (len >= tdep->sizeof_gregset);
3943
3944 for (i = 0; i < tdep->gregset_num_regs; i++)
3945 {
3946 if ((regnum == i || regnum == -1)
3947 && tdep->gregset_reg_offset[i] != -1)
3948 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
3949 }
3950 }
3951
3952 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3953 in the floating-point register set REGSET to register cache
3954 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3955
3956 static void
3957 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3958 int regnum, const void *fpregs, size_t len)
3959 {
3960 struct gdbarch *gdbarch = regcache->arch ();
3961 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3962
3963 if (len == I387_SIZEOF_FXSAVE)
3964 {
3965 i387_supply_fxsave (regcache, regnum, fpregs);
3966 return;
3967 }
3968
3969 gdb_assert (len >= tdep->sizeof_fpregset);
3970 i387_supply_fsave (regcache, regnum, fpregs);
3971 }
3972
3973 /* Collect register REGNUM from the register cache REGCACHE and store
3974 it in the buffer specified by FPREGS and LEN as described by the
3975 floating-point register set REGSET. If REGNUM is -1, do this for
3976 all registers in REGSET. */
3977
3978 static void
3979 i386_collect_fpregset (const struct regset *regset,
3980 const struct regcache *regcache,
3981 int regnum, void *fpregs, size_t len)
3982 {
3983 struct gdbarch *gdbarch = regcache->arch ();
3984 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3985
3986 if (len == I387_SIZEOF_FXSAVE)
3987 {
3988 i387_collect_fxsave (regcache, regnum, fpregs);
3989 return;
3990 }
3991
3992 gdb_assert (len >= tdep->sizeof_fpregset);
3993 i387_collect_fsave (regcache, regnum, fpregs);
3994 }
3995
3996 /* Register set definitions. */
3997
3998 const struct regset i386_gregset =
3999 {
4000 NULL, i386_supply_gregset, i386_collect_gregset
4001 };
4002
4003 const struct regset i386_fpregset =
4004 {
4005 NULL, i386_supply_fpregset, i386_collect_fpregset
4006 };
4007
4008 /* Default iterator over core file register note sections. */
4009
4010 void
4011 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
4012 iterate_over_regset_sections_cb *cb,
4013 void *cb_data,
4014 const struct regcache *regcache)
4015 {
4016 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
4017
4018 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
4019 cb_data);
4020 if (tdep->sizeof_fpregset)
4021 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
4022 NULL, cb_data);
4023 }
4024 \f
4025
4026 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
4027
4028 CORE_ADDR
4029 i386_pe_skip_trampoline_code (frame_info_ptr frame,
4030 CORE_ADDR pc, char *name)
4031 {
4032 struct gdbarch *gdbarch = get_frame_arch (frame);
4033 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4034
4035 /* jmp *(dest) */
4036 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
4037 {
4038 unsigned long indirect =
4039 read_memory_unsigned_integer (pc + 2, 4, byte_order);
4040 struct minimal_symbol *indsym =
4041 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
4042 const char *symname = indsym ? indsym->linkage_name () : 0;
4043
4044 if (symname)
4045 {
4046 if (startswith (symname, "__imp_")
4047 || startswith (symname, "_imp_"))
4048 return name ? 1 :
4049 read_memory_unsigned_integer (indirect, 4, byte_order);
4050 }
4051 }
4052 return 0; /* Not a trampoline. */
4053 }
4054 \f
4055
4056 /* Return whether the THIS_FRAME corresponds to a sigtramp
4057 routine. */
4058
4059 int
4060 i386_sigtramp_p (frame_info_ptr this_frame)
4061 {
4062 CORE_ADDR pc = get_frame_pc (this_frame);
4063 const char *name;
4064
4065 find_pc_partial_function (pc, &name, NULL, NULL);
4066 return (name && strcmp ("_sigtramp", name) == 0);
4067 }
4068 \f
4069
4070 /* We have two flavours of disassembly. The machinery on this page
4071 deals with switching between those. */
4072
4073 static int
4074 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
4075 {
4076 gdb_assert (disassembly_flavor == att_flavor
4077 || disassembly_flavor == intel_flavor);
4078
4079 info->disassembler_options = disassembly_flavor;
4080
4081 return default_print_insn (pc, info);
4082 }
4083 \f
4084
4085 /* There are a few i386 architecture variants that differ only
4086 slightly from the generic i386 target. For now, we don't give them
4087 their own source file, but include them here. As a consequence,
4088 they'll always be included. */
4089
4090 /* System V Release 4 (SVR4). */
4091
4092 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4093 routine. */
4094
4095 static int
4096 i386_svr4_sigtramp_p (frame_info_ptr this_frame)
4097 {
4098 CORE_ADDR pc = get_frame_pc (this_frame);
4099 const char *name;
4100
4101 /* The origin of these symbols is currently unknown. */
4102 find_pc_partial_function (pc, &name, NULL, NULL);
4103 return (name && (strcmp ("_sigreturn", name) == 0
4104 || strcmp ("sigvechandler", name) == 0));
4105 }
4106
4107 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4108 address of the associated sigcontext (ucontext) structure. */
4109
4110 static CORE_ADDR
4111 i386_svr4_sigcontext_addr (frame_info_ptr this_frame)
4112 {
4113 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4114 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4115 gdb_byte buf[4];
4116 CORE_ADDR sp;
4117
4118 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4119 sp = extract_unsigned_integer (buf, 4, byte_order);
4120
4121 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4122 }
4123
4124 \f
4125
4126 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4127 gdbarch.h. */
4128
4129 int
4130 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4131 {
4132 return (*s == '$' /* Literal number. */
4133 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4134 || (*s == '(' && s[1] == '%') /* Register indirection. */
4135 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4136 }
4137
4138 /* Helper function for i386_stap_parse_special_token.
4139
4140 This function parses operands of the form `-8+3+1(%rbp)', which
4141 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4142
4143 Return true if the operand was parsed successfully, false
4144 otherwise. */
4145
4146 static expr::operation_up
4147 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4148 struct stap_parse_info *p)
4149 {
4150 const char *s = p->arg;
4151
4152 if (isdigit (*s) || *s == '-' || *s == '+')
4153 {
4154 bool got_minus[3];
4155 int i;
4156 long displacements[3];
4157 const char *start;
4158 int len;
4159 char *endp;
4160
4161 got_minus[0] = false;
4162 if (*s == '+')
4163 ++s;
4164 else if (*s == '-')
4165 {
4166 ++s;
4167 got_minus[0] = true;
4168 }
4169
4170 if (!isdigit ((unsigned char) *s))
4171 return {};
4172
4173 displacements[0] = strtol (s, &endp, 10);
4174 s = endp;
4175
4176 if (*s != '+' && *s != '-')
4177 {
4178 /* We are not dealing with a triplet. */
4179 return {};
4180 }
4181
4182 got_minus[1] = false;
4183 if (*s == '+')
4184 ++s;
4185 else
4186 {
4187 ++s;
4188 got_minus[1] = true;
4189 }
4190
4191 if (!isdigit ((unsigned char) *s))
4192 return {};
4193
4194 displacements[1] = strtol (s, &endp, 10);
4195 s = endp;
4196
4197 if (*s != '+' && *s != '-')
4198 {
4199 /* We are not dealing with a triplet. */
4200 return {};
4201 }
4202
4203 got_minus[2] = false;
4204 if (*s == '+')
4205 ++s;
4206 else
4207 {
4208 ++s;
4209 got_minus[2] = true;
4210 }
4211
4212 if (!isdigit ((unsigned char) *s))
4213 return {};
4214
4215 displacements[2] = strtol (s, &endp, 10);
4216 s = endp;
4217
4218 if (*s != '(' || s[1] != '%')
4219 return {};
4220
4221 s += 2;
4222 start = s;
4223
4224 while (isalnum (*s))
4225 ++s;
4226
4227 if (*s++ != ')')
4228 return {};
4229
4230 len = s - start - 1;
4231 std::string regname (start, len);
4232
4233 if (user_reg_map_name_to_regnum (gdbarch, regname.c_str (), len) == -1)
4234 error (_("Invalid register name `%s' on expression `%s'."),
4235 regname.c_str (), p->saved_arg);
4236
4237 LONGEST value = 0;
4238 for (i = 0; i < 3; i++)
4239 {
4240 LONGEST this_val = displacements[i];
4241 if (got_minus[i])
4242 this_val = -this_val;
4243 value += this_val;
4244 }
4245
4246 p->arg = s;
4247
4248 using namespace expr;
4249
4250 struct type *long_type = builtin_type (gdbarch)->builtin_long;
4251 operation_up offset
4252 = make_operation<long_const_operation> (long_type, value);
4253
4254 operation_up reg
4255 = make_operation<register_operation> (std::move (regname));
4256 struct type *void_ptr = builtin_type (gdbarch)->builtin_data_ptr;
4257 reg = make_operation<unop_cast_operation> (std::move (reg), void_ptr);
4258
4259 operation_up sum
4260 = make_operation<add_operation> (std::move (reg), std::move (offset));
4261 struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
4262 sum = make_operation<unop_cast_operation> (std::move (sum),
4263 arg_ptr_type);
4264 return make_operation<unop_ind_operation> (std::move (sum));
4265 }
4266
4267 return {};
4268 }
4269
4270 /* Helper function for i386_stap_parse_special_token.
4271
4272 This function parses operands of the form `register base +
4273 (register index * size) + offset', as represented in
4274 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4275
4276 Return true if the operand was parsed successfully, false
4277 otherwise. */
4278
4279 static expr::operation_up
4280 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4281 struct stap_parse_info *p)
4282 {
4283 const char *s = p->arg;
4284
4285 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4286 {
4287 bool offset_minus = false;
4288 long offset = 0;
4289 bool size_minus = false;
4290 long size = 0;
4291 const char *start;
4292 int len_base;
4293 int len_index;
4294
4295 if (*s == '+')
4296 ++s;
4297 else if (*s == '-')
4298 {
4299 ++s;
4300 offset_minus = true;
4301 }
4302
4303 if (offset_minus && !isdigit (*s))
4304 return {};
4305
4306 if (isdigit (*s))
4307 {
4308 char *endp;
4309
4310 offset = strtol (s, &endp, 10);
4311 s = endp;
4312 }
4313
4314 if (*s != '(' || s[1] != '%')
4315 return {};
4316
4317 s += 2;
4318 start = s;
4319
4320 while (isalnum (*s))
4321 ++s;
4322
4323 if (*s != ',' || s[1] != '%')
4324 return {};
4325
4326 len_base = s - start;
4327 std::string base (start, len_base);
4328
4329 if (user_reg_map_name_to_regnum (gdbarch, base.c_str (), len_base) == -1)
4330 error (_("Invalid register name `%s' on expression `%s'."),
4331 base.c_str (), p->saved_arg);
4332
4333 s += 2;
4334 start = s;
4335
4336 while (isalnum (*s))
4337 ++s;
4338
4339 len_index = s - start;
4340 std::string index (start, len_index);
4341
4342 if (user_reg_map_name_to_regnum (gdbarch, index.c_str (),
4343 len_index) == -1)
4344 error (_("Invalid register name `%s' on expression `%s'."),
4345 index.c_str (), p->saved_arg);
4346
4347 if (*s != ',' && *s != ')')
4348 return {};
4349
4350 if (*s == ',')
4351 {
4352 char *endp;
4353
4354 ++s;
4355 if (*s == '+')
4356 ++s;
4357 else if (*s == '-')
4358 {
4359 ++s;
4360 size_minus = true;
4361 }
4362
4363 size = strtol (s, &endp, 10);
4364 s = endp;
4365
4366 if (*s != ')')
4367 return {};
4368 }
4369
4370 ++s;
4371 p->arg = s;
4372
4373 using namespace expr;
4374
4375 struct type *long_type = builtin_type (gdbarch)->builtin_long;
4376 operation_up reg = make_operation<register_operation> (std::move (base));
4377
4378 if (offset != 0)
4379 {
4380 if (offset_minus)
4381 offset = -offset;
4382 operation_up value
4383 = make_operation<long_const_operation> (long_type, offset);
4384 reg = make_operation<add_operation> (std::move (reg),
4385 std::move (value));
4386 }
4387
4388 operation_up ind_reg
4389 = make_operation<register_operation> (std::move (index));
4390
4391 if (size != 0)
4392 {
4393 if (size_minus)
4394 size = -size;
4395 operation_up value
4396 = make_operation<long_const_operation> (long_type, size);
4397 ind_reg = make_operation<mul_operation> (std::move (ind_reg),
4398 std::move (value));
4399 }
4400
4401 operation_up sum
4402 = make_operation<add_operation> (std::move (reg),
4403 std::move (ind_reg));
4404
4405 struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
4406 sum = make_operation<unop_cast_operation> (std::move (sum),
4407 arg_ptr_type);
4408 return make_operation<unop_ind_operation> (std::move (sum));
4409 }
4410
4411 return {};
4412 }
4413
4414 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4415 gdbarch.h. */
4416
4417 expr::operation_up
4418 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4419 struct stap_parse_info *p)
4420 {
4421 /* The special tokens to be parsed here are:
4422
4423 - `register base + (register index * size) + offset', as represented
4424 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4425
4426 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4427 `*(-8 + 3 - 1 + (void *) $eax)'. */
4428
4429 expr::operation_up result
4430 = i386_stap_parse_special_token_triplet (gdbarch, p);
4431
4432 if (result == nullptr)
4433 result = i386_stap_parse_special_token_three_arg_disp (gdbarch, p);
4434
4435 return result;
4436 }
4437
4438 /* Implementation of 'gdbarch_stap_adjust_register', as defined in
4439 gdbarch.h. */
4440
4441 static std::string
4442 i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
4443 const std::string &regname, int regnum)
4444 {
4445 static const std::unordered_set<std::string> reg_assoc
4446 = { "ax", "bx", "cx", "dx",
4447 "si", "di", "bp", "sp" };
4448
4449 /* If we are dealing with a register whose size is less than the size
4450 specified by the "[-]N@" prefix, and it is one of the registers that
4451 we know has an extended variant available, then use the extended
4452 version of the register instead. */
4453 if (register_size (gdbarch, regnum) < p->arg_type->length ()
4454 && reg_assoc.find (regname) != reg_assoc.end ())
4455 return "e" + regname;
4456
4457 /* Otherwise, just use the requested register. */
4458 return regname;
4459 }
4460
4461 \f
4462
4463 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4464 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4465
4466 static const char *
4467 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4468 {
4469 return "(x86_64|i.86)";
4470 }
4471
4472 \f
4473
4474 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4475
4476 static bool
4477 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4478 {
4479 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4480 I386_EAX_REGNUM, I386_EIP_REGNUM);
4481 }
4482
4483 /* Generic ELF. */
4484
4485 void
4486 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4487 {
4488 static const char *const stap_integer_prefixes[] = { "$", NULL };
4489 static const char *const stap_register_prefixes[] = { "%", NULL };
4490 static const char *const stap_register_indirection_prefixes[] = { "(",
4491 NULL };
4492 static const char *const stap_register_indirection_suffixes[] = { ")",
4493 NULL };
4494
4495 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4496 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4497
4498 /* Registering SystemTap handlers. */
4499 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4500 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4501 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4502 stap_register_indirection_prefixes);
4503 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4504 stap_register_indirection_suffixes);
4505 set_gdbarch_stap_is_single_operand (gdbarch,
4506 i386_stap_is_single_operand);
4507 set_gdbarch_stap_parse_special_token (gdbarch,
4508 i386_stap_parse_special_token);
4509 set_gdbarch_stap_adjust_register (gdbarch,
4510 i386_stap_adjust_register);
4511
4512 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4513 i386_in_indirect_branch_thunk);
4514 }
4515
4516 /* System V Release 4 (SVR4). */
4517
4518 void
4519 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4520 {
4521 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
4522
4523 /* System V Release 4 uses ELF. */
4524 i386_elf_init_abi (info, gdbarch);
4525
4526 /* System V Release 4 has shared libraries. */
4527 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4528
4529 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4530 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4531 tdep->sc_pc_offset = 36 + 14 * 4;
4532 tdep->sc_sp_offset = 36 + 17 * 4;
4533
4534 tdep->jb_pc_offset = 20;
4535 }
4536
4537 \f
4538
4539 /* i386 register groups. In addition to the normal groups, add "mmx"
4540 and "sse". */
4541
4542 static const reggroup *i386_sse_reggroup;
4543 static const reggroup *i386_mmx_reggroup;
4544
4545 static void
4546 i386_init_reggroups (void)
4547 {
4548 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4549 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4550 }
4551
4552 static void
4553 i386_add_reggroups (struct gdbarch *gdbarch)
4554 {
4555 reggroup_add (gdbarch, i386_sse_reggroup);
4556 reggroup_add (gdbarch, i386_mmx_reggroup);
4557 }
4558
4559 int
4560 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4561 const struct reggroup *group)
4562 {
4563 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
4564 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4565 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4566 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4567 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4568 avx512_p, avx_p, sse_p, pkru_regnum_p;
4569
4570 /* Don't include pseudo registers, except for MMX, in any register
4571 groups. */
4572 if (i386_byte_regnum_p (gdbarch, regnum))
4573 return 0;
4574
4575 if (i386_word_regnum_p (gdbarch, regnum))
4576 return 0;
4577
4578 if (i386_dword_regnum_p (gdbarch, regnum))
4579 return 0;
4580
4581 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4582 if (group == i386_mmx_reggroup)
4583 return mmx_regnum_p;
4584
4585 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4586 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4587 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4588 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4589 if (group == i386_sse_reggroup)
4590 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4591
4592 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4593 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4594 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4595
4596 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4597 == X86_XSTATE_AVX_AVX512_MASK);
4598 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4599 == X86_XSTATE_AVX_MASK) && !avx512_p;
4600 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4601 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4602
4603 if (group == vector_reggroup)
4604 return (mmx_regnum_p
4605 || (zmm_regnum_p && avx512_p)
4606 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4607 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4608 || mxcsr_regnum_p);
4609
4610 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4611 || i386_fpc_regnum_p (gdbarch, regnum));
4612 if (group == float_reggroup)
4613 return fp_regnum_p;
4614
4615 /* For "info reg all", don't include upper YMM registers nor XMM
4616 registers when AVX is supported. */
4617 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4618 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4619 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4620 if (group == all_reggroup
4621 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4622 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4623 || ymmh_regnum_p
4624 || ymmh_avx512_regnum_p
4625 || zmmh_regnum_p))
4626 return 0;
4627
4628 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4629 if (group == all_reggroup
4630 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4631 return bnd_regnum_p;
4632
4633 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4634 if (group == all_reggroup
4635 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4636 return 0;
4637
4638 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4639 if (group == all_reggroup
4640 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4641 return mpx_ctrl_regnum_p;
4642
4643 if (group == general_reggroup)
4644 return (!fp_regnum_p
4645 && !mmx_regnum_p
4646 && !mxcsr_regnum_p
4647 && !xmm_regnum_p
4648 && !xmm_avx512_regnum_p
4649 && !ymm_regnum_p
4650 && !ymmh_regnum_p
4651 && !ymm_avx512_regnum_p
4652 && !ymmh_avx512_regnum_p
4653 && !bndr_regnum_p
4654 && !bnd_regnum_p
4655 && !mpx_ctrl_regnum_p
4656 && !zmm_regnum_p
4657 && !zmmh_regnum_p
4658 && !pkru_regnum_p);
4659
4660 return default_register_reggroup_p (gdbarch, regnum, group);
4661 }
4662 \f
4663
4664 /* Get the ARGIth function argument for the current function. */
4665
4666 static CORE_ADDR
4667 i386_fetch_pointer_argument (frame_info_ptr frame, int argi,
4668 struct type *type)
4669 {
4670 struct gdbarch *gdbarch = get_frame_arch (frame);
4671 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4672 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4673 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4674 }
4675
4676 #define PREFIX_REPZ 0x01
4677 #define PREFIX_REPNZ 0x02
4678 #define PREFIX_LOCK 0x04
4679 #define PREFIX_DATA 0x08
4680 #define PREFIX_ADDR 0x10
4681
4682 /* operand size */
4683 enum
4684 {
4685 OT_BYTE = 0,
4686 OT_WORD,
4687 OT_LONG,
4688 OT_QUAD,
4689 OT_DQUAD,
4690 };
4691
4692 /* i386 arith/logic operations */
4693 enum
4694 {
4695 OP_ADDL,
4696 OP_ORL,
4697 OP_ADCL,
4698 OP_SBBL,
4699 OP_ANDL,
4700 OP_SUBL,
4701 OP_XORL,
4702 OP_CMPL,
4703 };
4704
4705 struct i386_record_s
4706 {
4707 struct gdbarch *gdbarch;
4708 struct regcache *regcache;
4709 CORE_ADDR orig_addr;
4710 CORE_ADDR addr;
4711 int aflag;
4712 int dflag;
4713 int override;
4714 uint8_t modrm;
4715 uint8_t mod, reg, rm;
4716 int ot;
4717 uint8_t rex_x;
4718 uint8_t rex_b;
4719 int rip_offset;
4720 int popl_esp_hack;
4721 const int *regmap;
4722 };
4723
4724 /* Parse the "modrm" part of the memory address irp->addr points at.
4725 Returns -1 if something goes wrong, 0 otherwise. */
4726
4727 static int
4728 i386_record_modrm (struct i386_record_s *irp)
4729 {
4730 struct gdbarch *gdbarch = irp->gdbarch;
4731
4732 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4733 return -1;
4734
4735 irp->addr++;
4736 irp->mod = (irp->modrm >> 6) & 3;
4737 irp->reg = (irp->modrm >> 3) & 7;
4738 irp->rm = irp->modrm & 7;
4739
4740 return 0;
4741 }
4742
4743 /* Extract the memory address that the current instruction writes to,
4744 and return it in *ADDR. Return -1 if something goes wrong. */
4745
4746 static int
4747 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4748 {
4749 struct gdbarch *gdbarch = irp->gdbarch;
4750 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4751 gdb_byte buf[4];
4752 ULONGEST offset64;
4753
4754 *addr = 0;
4755 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4756 {
4757 /* 32/64 bits */
4758 int havesib = 0;
4759 uint8_t scale = 0;
4760 uint8_t byte;
4761 uint8_t index = 0;
4762 uint8_t base = irp->rm;
4763
4764 if (base == 4)
4765 {
4766 havesib = 1;
4767 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4768 return -1;
4769 irp->addr++;
4770 scale = (byte >> 6) & 3;
4771 index = ((byte >> 3) & 7) | irp->rex_x;
4772 base = (byte & 7);
4773 }
4774 base |= irp->rex_b;
4775
4776 switch (irp->mod)
4777 {
4778 case 0:
4779 if ((base & 7) == 5)
4780 {
4781 base = 0xff;
4782 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4783 return -1;
4784 irp->addr += 4;
4785 *addr = extract_signed_integer (buf, 4, byte_order);
4786 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4787 *addr += irp->addr + irp->rip_offset;
4788 }
4789 break;
4790 case 1:
4791 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4792 return -1;
4793 irp->addr++;
4794 *addr = (int8_t) buf[0];
4795 break;
4796 case 2:
4797 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4798 return -1;
4799 *addr = extract_signed_integer (buf, 4, byte_order);
4800 irp->addr += 4;
4801 break;
4802 }
4803
4804 offset64 = 0;
4805 if (base != 0xff)
4806 {
4807 if (base == 4 && irp->popl_esp_hack)
4808 *addr += irp->popl_esp_hack;
4809 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4810 &offset64);
4811 }
4812 if (irp->aflag == 2)
4813 {
4814 *addr += offset64;
4815 }
4816 else
4817 *addr = (uint32_t) (offset64 + *addr);
4818
4819 if (havesib && (index != 4 || scale != 0))
4820 {
4821 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4822 &offset64);
4823 if (irp->aflag == 2)
4824 *addr += offset64 << scale;
4825 else
4826 *addr = (uint32_t) (*addr + (offset64 << scale));
4827 }
4828
4829 if (!irp->aflag)
4830 {
4831 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4832 address from 32-bit to 64-bit. */
4833 *addr = (uint32_t) *addr;
4834 }
4835 }
4836 else
4837 {
4838 /* 16 bits */
4839 switch (irp->mod)
4840 {
4841 case 0:
4842 if (irp->rm == 6)
4843 {
4844 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4845 return -1;
4846 irp->addr += 2;
4847 *addr = extract_signed_integer (buf, 2, byte_order);
4848 irp->rm = 0;
4849 goto no_rm;
4850 }
4851 break;
4852 case 1:
4853 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4854 return -1;
4855 irp->addr++;
4856 *addr = (int8_t) buf[0];
4857 break;
4858 case 2:
4859 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4860 return -1;
4861 irp->addr += 2;
4862 *addr = extract_signed_integer (buf, 2, byte_order);
4863 break;
4864 }
4865
4866 switch (irp->rm)
4867 {
4868 case 0:
4869 regcache_raw_read_unsigned (irp->regcache,
4870 irp->regmap[X86_RECORD_REBX_REGNUM],
4871 &offset64);
4872 *addr = (uint32_t) (*addr + offset64);
4873 regcache_raw_read_unsigned (irp->regcache,
4874 irp->regmap[X86_RECORD_RESI_REGNUM],
4875 &offset64);
4876 *addr = (uint32_t) (*addr + offset64);
4877 break;
4878 case 1:
4879 regcache_raw_read_unsigned (irp->regcache,
4880 irp->regmap[X86_RECORD_REBX_REGNUM],
4881 &offset64);
4882 *addr = (uint32_t) (*addr + offset64);
4883 regcache_raw_read_unsigned (irp->regcache,
4884 irp->regmap[X86_RECORD_REDI_REGNUM],
4885 &offset64);
4886 *addr = (uint32_t) (*addr + offset64);
4887 break;
4888 case 2:
4889 regcache_raw_read_unsigned (irp->regcache,
4890 irp->regmap[X86_RECORD_REBP_REGNUM],
4891 &offset64);
4892 *addr = (uint32_t) (*addr + offset64);
4893 regcache_raw_read_unsigned (irp->regcache,
4894 irp->regmap[X86_RECORD_RESI_REGNUM],
4895 &offset64);
4896 *addr = (uint32_t) (*addr + offset64);
4897 break;
4898 case 3:
4899 regcache_raw_read_unsigned (irp->regcache,
4900 irp->regmap[X86_RECORD_REBP_REGNUM],
4901 &offset64);
4902 *addr = (uint32_t) (*addr + offset64);
4903 regcache_raw_read_unsigned (irp->regcache,
4904 irp->regmap[X86_RECORD_REDI_REGNUM],
4905 &offset64);
4906 *addr = (uint32_t) (*addr + offset64);
4907 break;
4908 case 4:
4909 regcache_raw_read_unsigned (irp->regcache,
4910 irp->regmap[X86_RECORD_RESI_REGNUM],
4911 &offset64);
4912 *addr = (uint32_t) (*addr + offset64);
4913 break;
4914 case 5:
4915 regcache_raw_read_unsigned (irp->regcache,
4916 irp->regmap[X86_RECORD_REDI_REGNUM],
4917 &offset64);
4918 *addr = (uint32_t) (*addr + offset64);
4919 break;
4920 case 6:
4921 regcache_raw_read_unsigned (irp->regcache,
4922 irp->regmap[X86_RECORD_REBP_REGNUM],
4923 &offset64);
4924 *addr = (uint32_t) (*addr + offset64);
4925 break;
4926 case 7:
4927 regcache_raw_read_unsigned (irp->regcache,
4928 irp->regmap[X86_RECORD_REBX_REGNUM],
4929 &offset64);
4930 *addr = (uint32_t) (*addr + offset64);
4931 break;
4932 }
4933 *addr &= 0xffff;
4934 }
4935
4936 no_rm:
4937 return 0;
4938 }
4939
4940 /* Record the address and contents of the memory that will be changed
4941 by the current instruction. Return -1 if something goes wrong, 0
4942 otherwise. */
4943
4944 static int
4945 i386_record_lea_modrm (struct i386_record_s *irp)
4946 {
4947 struct gdbarch *gdbarch = irp->gdbarch;
4948 uint64_t addr;
4949
4950 if (irp->override >= 0)
4951 {
4952 if (record_full_memory_query)
4953 {
4954 if (yquery (_("\
4955 Process record ignores the memory change of instruction at address %s\n\
4956 because it can't get the value of the segment register.\n\
4957 Do you want to stop the program?"),
4958 paddress (gdbarch, irp->orig_addr)))
4959 return -1;
4960 }
4961
4962 return 0;
4963 }
4964
4965 if (i386_record_lea_modrm_addr (irp, &addr))
4966 return -1;
4967
4968 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4969 return -1;
4970
4971 return 0;
4972 }
4973
4974 /* Record the effects of a push operation. Return -1 if something
4975 goes wrong, 0 otherwise. */
4976
4977 static int
4978 i386_record_push (struct i386_record_s *irp, int size)
4979 {
4980 ULONGEST addr;
4981
4982 if (record_full_arch_list_add_reg (irp->regcache,
4983 irp->regmap[X86_RECORD_RESP_REGNUM]))
4984 return -1;
4985 regcache_raw_read_unsigned (irp->regcache,
4986 irp->regmap[X86_RECORD_RESP_REGNUM],
4987 &addr);
4988 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4989 return -1;
4990
4991 return 0;
4992 }
4993
4994
4995 /* Defines contents to record. */
4996 #define I386_SAVE_FPU_REGS 0xfffd
4997 #define I386_SAVE_FPU_ENV 0xfffe
4998 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4999
5000 /* Record the values of the floating point registers which will be
5001 changed by the current instruction. Returns -1 if something is
5002 wrong, 0 otherwise. */
5003
5004 static int i386_record_floats (struct gdbarch *gdbarch,
5005 struct i386_record_s *ir,
5006 uint32_t iregnum)
5007 {
5008 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
5009 int i;
5010
5011 /* Oza: Because of floating point insn push/pop of fpu stack is going to
5012 happen. Currently we store st0-st7 registers, but we need not store all
5013 registers all the time, in future we use ftag register and record only
5014 those who are not marked as an empty. */
5015
5016 if (I386_SAVE_FPU_REGS == iregnum)
5017 {
5018 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
5019 {
5020 if (record_full_arch_list_add_reg (ir->regcache, i))
5021 return -1;
5022 }
5023 }
5024 else if (I386_SAVE_FPU_ENV == iregnum)
5025 {
5026 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5027 {
5028 if (record_full_arch_list_add_reg (ir->regcache, i))
5029 return -1;
5030 }
5031 }
5032 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
5033 {
5034 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5035 if (record_full_arch_list_add_reg (ir->regcache, i))
5036 return -1;
5037 }
5038 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5039 (iregnum <= I387_FOP_REGNUM (tdep)))
5040 {
5041 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5042 return -1;
5043 }
5044 else
5045 {
5046 /* Parameter error. */
5047 return -1;
5048 }
5049 if(I386_SAVE_FPU_ENV != iregnum)
5050 {
5051 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5052 {
5053 if (record_full_arch_list_add_reg (ir->regcache, i))
5054 return -1;
5055 }
5056 }
5057 return 0;
5058 }
5059
5060 /* Parse the current instruction, and record the values of the
5061 registers and memory that will be changed by the current
5062 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5063
5064 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5065 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5066
5067 int
5068 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5069 CORE_ADDR input_addr)
5070 {
5071 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5072 int prefixes = 0;
5073 int regnum = 0;
5074 uint32_t opcode;
5075 uint8_t opcode8;
5076 ULONGEST addr;
5077 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5078 struct i386_record_s ir;
5079 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
5080 uint8_t rex_w = -1;
5081 uint8_t rex_r = 0;
5082
5083 memset (&ir, 0, sizeof (struct i386_record_s));
5084 ir.regcache = regcache;
5085 ir.addr = input_addr;
5086 ir.orig_addr = input_addr;
5087 ir.aflag = 1;
5088 ir.dflag = 1;
5089 ir.override = -1;
5090 ir.popl_esp_hack = 0;
5091 ir.regmap = tdep->record_regmap;
5092 ir.gdbarch = gdbarch;
5093
5094 if (record_debug > 1)
5095 gdb_printf (gdb_stdlog, "Process record: i386_process_record "
5096 "addr = %s\n",
5097 paddress (gdbarch, ir.addr));
5098
5099 /* prefixes */
5100 while (1)
5101 {
5102 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5103 return -1;
5104 ir.addr++;
5105 switch (opcode8) /* Instruction prefixes */
5106 {
5107 case REPE_PREFIX_OPCODE:
5108 prefixes |= PREFIX_REPZ;
5109 break;
5110 case REPNE_PREFIX_OPCODE:
5111 prefixes |= PREFIX_REPNZ;
5112 break;
5113 case LOCK_PREFIX_OPCODE:
5114 prefixes |= PREFIX_LOCK;
5115 break;
5116 case CS_PREFIX_OPCODE:
5117 ir.override = X86_RECORD_CS_REGNUM;
5118 break;
5119 case SS_PREFIX_OPCODE:
5120 ir.override = X86_RECORD_SS_REGNUM;
5121 break;
5122 case DS_PREFIX_OPCODE:
5123 ir.override = X86_RECORD_DS_REGNUM;
5124 break;
5125 case ES_PREFIX_OPCODE:
5126 ir.override = X86_RECORD_ES_REGNUM;
5127 break;
5128 case FS_PREFIX_OPCODE:
5129 ir.override = X86_RECORD_FS_REGNUM;
5130 break;
5131 case GS_PREFIX_OPCODE:
5132 ir.override = X86_RECORD_GS_REGNUM;
5133 break;
5134 case DATA_PREFIX_OPCODE:
5135 prefixes |= PREFIX_DATA;
5136 break;
5137 case ADDR_PREFIX_OPCODE:
5138 prefixes |= PREFIX_ADDR;
5139 break;
5140 case 0x40: /* i386 inc %eax */
5141 case 0x41: /* i386 inc %ecx */
5142 case 0x42: /* i386 inc %edx */
5143 case 0x43: /* i386 inc %ebx */
5144 case 0x44: /* i386 inc %esp */
5145 case 0x45: /* i386 inc %ebp */
5146 case 0x46: /* i386 inc %esi */
5147 case 0x47: /* i386 inc %edi */
5148 case 0x48: /* i386 dec %eax */
5149 case 0x49: /* i386 dec %ecx */
5150 case 0x4a: /* i386 dec %edx */
5151 case 0x4b: /* i386 dec %ebx */
5152 case 0x4c: /* i386 dec %esp */
5153 case 0x4d: /* i386 dec %ebp */
5154 case 0x4e: /* i386 dec %esi */
5155 case 0x4f: /* i386 dec %edi */
5156 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5157 {
5158 /* REX */
5159 rex_w = (opcode8 >> 3) & 1;
5160 rex_r = (opcode8 & 0x4) << 1;
5161 ir.rex_x = (opcode8 & 0x2) << 2;
5162 ir.rex_b = (opcode8 & 0x1) << 3;
5163 }
5164 else /* 32 bit target */
5165 goto out_prefixes;
5166 break;
5167 default:
5168 goto out_prefixes;
5169 break;
5170 }
5171 }
5172 out_prefixes:
5173 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5174 {
5175 ir.dflag = 2;
5176 }
5177 else
5178 {
5179 if (prefixes & PREFIX_DATA)
5180 ir.dflag ^= 1;
5181 }
5182 if (prefixes & PREFIX_ADDR)
5183 ir.aflag ^= 1;
5184 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5185 ir.aflag = 2;
5186
5187 /* Now check op code. */
5188 opcode = (uint32_t) opcode8;
5189 reswitch:
5190 switch (opcode)
5191 {
5192 case 0x0f:
5193 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5194 return -1;
5195 ir.addr++;
5196 opcode = (uint32_t) opcode8 | 0x0f00;
5197 goto reswitch;
5198 break;
5199
5200 case 0x00: /* arith & logic */
5201 case 0x01:
5202 case 0x02:
5203 case 0x03:
5204 case 0x04:
5205 case 0x05:
5206 case 0x08:
5207 case 0x09:
5208 case 0x0a:
5209 case 0x0b:
5210 case 0x0c:
5211 case 0x0d:
5212 case 0x10:
5213 case 0x11:
5214 case 0x12:
5215 case 0x13:
5216 case 0x14:
5217 case 0x15:
5218 case 0x18:
5219 case 0x19:
5220 case 0x1a:
5221 case 0x1b:
5222 case 0x1c:
5223 case 0x1d:
5224 case 0x20:
5225 case 0x21:
5226 case 0x22:
5227 case 0x23:
5228 case 0x24:
5229 case 0x25:
5230 case 0x28:
5231 case 0x29:
5232 case 0x2a:
5233 case 0x2b:
5234 case 0x2c:
5235 case 0x2d:
5236 case 0x30:
5237 case 0x31:
5238 case 0x32:
5239 case 0x33:
5240 case 0x34:
5241 case 0x35:
5242 case 0x38:
5243 case 0x39:
5244 case 0x3a:
5245 case 0x3b:
5246 case 0x3c:
5247 case 0x3d:
5248 if (((opcode >> 3) & 7) != OP_CMPL)
5249 {
5250 if ((opcode & 1) == 0)
5251 ir.ot = OT_BYTE;
5252 else
5253 ir.ot = ir.dflag + OT_WORD;
5254
5255 switch ((opcode >> 1) & 3)
5256 {
5257 case 0: /* OP Ev, Gv */
5258 if (i386_record_modrm (&ir))
5259 return -1;
5260 if (ir.mod != 3)
5261 {
5262 if (i386_record_lea_modrm (&ir))
5263 return -1;
5264 }
5265 else
5266 {
5267 ir.rm |= ir.rex_b;
5268 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5269 ir.rm &= 0x3;
5270 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5271 }
5272 break;
5273 case 1: /* OP Gv, Ev */
5274 if (i386_record_modrm (&ir))
5275 return -1;
5276 ir.reg |= rex_r;
5277 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5278 ir.reg &= 0x3;
5279 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5280 break;
5281 case 2: /* OP A, Iv */
5282 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5283 break;
5284 }
5285 }
5286 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5287 break;
5288
5289 case 0x80: /* GRP1 */
5290 case 0x81:
5291 case 0x82:
5292 case 0x83:
5293 if (i386_record_modrm (&ir))
5294 return -1;
5295
5296 if (ir.reg != OP_CMPL)
5297 {
5298 if ((opcode & 1) == 0)
5299 ir.ot = OT_BYTE;
5300 else
5301 ir.ot = ir.dflag + OT_WORD;
5302
5303 if (ir.mod != 3)
5304 {
5305 if (opcode == 0x83)
5306 ir.rip_offset = 1;
5307 else
5308 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5309 if (i386_record_lea_modrm (&ir))
5310 return -1;
5311 }
5312 else
5313 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5314 }
5315 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5316 break;
5317
5318 case 0x40: /* inc */
5319 case 0x41:
5320 case 0x42:
5321 case 0x43:
5322 case 0x44:
5323 case 0x45:
5324 case 0x46:
5325 case 0x47:
5326
5327 case 0x48: /* dec */
5328 case 0x49:
5329 case 0x4a:
5330 case 0x4b:
5331 case 0x4c:
5332 case 0x4d:
5333 case 0x4e:
5334 case 0x4f:
5335
5336 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5337 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5338 break;
5339
5340 case 0xf6: /* GRP3 */
5341 case 0xf7:
5342 if ((opcode & 1) == 0)
5343 ir.ot = OT_BYTE;
5344 else
5345 ir.ot = ir.dflag + OT_WORD;
5346 if (i386_record_modrm (&ir))
5347 return -1;
5348
5349 if (ir.mod != 3 && ir.reg == 0)
5350 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5351
5352 switch (ir.reg)
5353 {
5354 case 0: /* test */
5355 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5356 break;
5357 case 2: /* not */
5358 case 3: /* neg */
5359 if (ir.mod != 3)
5360 {
5361 if (i386_record_lea_modrm (&ir))
5362 return -1;
5363 }
5364 else
5365 {
5366 ir.rm |= ir.rex_b;
5367 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5368 ir.rm &= 0x3;
5369 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5370 }
5371 if (ir.reg == 3) /* neg */
5372 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5373 break;
5374 case 4: /* mul */
5375 case 5: /* imul */
5376 case 6: /* div */
5377 case 7: /* idiv */
5378 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5379 if (ir.ot != OT_BYTE)
5380 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5381 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5382 break;
5383 default:
5384 ir.addr -= 2;
5385 opcode = opcode << 8 | ir.modrm;
5386 goto no_support;
5387 break;
5388 }
5389 break;
5390
5391 case 0xfe: /* GRP4 */
5392 case 0xff: /* GRP5 */
5393 if (i386_record_modrm (&ir))
5394 return -1;
5395 if (ir.reg >= 2 && opcode == 0xfe)
5396 {
5397 ir.addr -= 2;
5398 opcode = opcode << 8 | ir.modrm;
5399 goto no_support;
5400 }
5401 switch (ir.reg)
5402 {
5403 case 0: /* inc */
5404 case 1: /* dec */
5405 if ((opcode & 1) == 0)
5406 ir.ot = OT_BYTE;
5407 else
5408 ir.ot = ir.dflag + OT_WORD;
5409 if (ir.mod != 3)
5410 {
5411 if (i386_record_lea_modrm (&ir))
5412 return -1;
5413 }
5414 else
5415 {
5416 ir.rm |= ir.rex_b;
5417 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5418 ir.rm &= 0x3;
5419 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5420 }
5421 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5422 break;
5423 case 2: /* call */
5424 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5425 ir.dflag = 2;
5426 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5427 return -1;
5428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5429 break;
5430 case 3: /* lcall */
5431 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5432 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5433 return -1;
5434 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5435 break;
5436 case 4: /* jmp */
5437 case 5: /* ljmp */
5438 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5439 break;
5440 case 6: /* push */
5441 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5442 ir.dflag = 2;
5443 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5444 return -1;
5445 break;
5446 default:
5447 ir.addr -= 2;
5448 opcode = opcode << 8 | ir.modrm;
5449 goto no_support;
5450 break;
5451 }
5452 break;
5453
5454 case 0x84: /* test */
5455 case 0x85:
5456 case 0xa8:
5457 case 0xa9:
5458 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5459 break;
5460
5461 case 0x98: /* CWDE/CBW */
5462 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5463 break;
5464
5465 case 0x99: /* CDQ/CWD */
5466 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5467 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5468 break;
5469
5470 case 0x0faf: /* imul */
5471 case 0x69:
5472 case 0x6b:
5473 ir.ot = ir.dflag + OT_WORD;
5474 if (i386_record_modrm (&ir))
5475 return -1;
5476 if (opcode == 0x69)
5477 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5478 else if (opcode == 0x6b)
5479 ir.rip_offset = 1;
5480 ir.reg |= rex_r;
5481 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5482 ir.reg &= 0x3;
5483 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5484 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5485 break;
5486
5487 case 0x0fc0: /* xadd */
5488 case 0x0fc1:
5489 if ((opcode & 1) == 0)
5490 ir.ot = OT_BYTE;
5491 else
5492 ir.ot = ir.dflag + OT_WORD;
5493 if (i386_record_modrm (&ir))
5494 return -1;
5495 ir.reg |= rex_r;
5496 if (ir.mod == 3)
5497 {
5498 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5499 ir.reg &= 0x3;
5500 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5501 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5502 ir.rm &= 0x3;
5503 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5504 }
5505 else
5506 {
5507 if (i386_record_lea_modrm (&ir))
5508 return -1;
5509 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5510 ir.reg &= 0x3;
5511 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5512 }
5513 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5514 break;
5515
5516 case 0x0fb0: /* cmpxchg */
5517 case 0x0fb1:
5518 if ((opcode & 1) == 0)
5519 ir.ot = OT_BYTE;
5520 else
5521 ir.ot = ir.dflag + OT_WORD;
5522 if (i386_record_modrm (&ir))
5523 return -1;
5524 if (ir.mod == 3)
5525 {
5526 ir.reg |= rex_r;
5527 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5528 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5529 ir.reg &= 0x3;
5530 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5531 }
5532 else
5533 {
5534 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5535 if (i386_record_lea_modrm (&ir))
5536 return -1;
5537 }
5538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5539 break;
5540
5541 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5542 if (i386_record_modrm (&ir))
5543 return -1;
5544 if (ir.mod == 3)
5545 {
5546 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5547 an extended opcode. rdrand has bits 110 (/6) and rdseed
5548 has bits 111 (/7). */
5549 if (ir.reg == 6 || ir.reg == 7)
5550 {
5551 /* The storage register is described by the 3 R/M bits, but the
5552 REX.B prefix may be used to give access to registers
5553 R8~R15. In this case ir.rex_b + R/M will give us the register
5554 in the range R8~R15.
5555
5556 REX.W may also be used to access 64-bit registers, but we
5557 already record entire registers and not just partial bits
5558 of them. */
5559 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5560 /* These instructions also set conditional bits. */
5561 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5562 break;
5563 }
5564 else
5565 {
5566 /* We don't handle this particular instruction yet. */
5567 ir.addr -= 2;
5568 opcode = opcode << 8 | ir.modrm;
5569 goto no_support;
5570 }
5571 }
5572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5574 if (i386_record_lea_modrm (&ir))
5575 return -1;
5576 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5577 break;
5578
5579 case 0x50: /* push */
5580 case 0x51:
5581 case 0x52:
5582 case 0x53:
5583 case 0x54:
5584 case 0x55:
5585 case 0x56:
5586 case 0x57:
5587 case 0x68:
5588 case 0x6a:
5589 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5590 ir.dflag = 2;
5591 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5592 return -1;
5593 break;
5594
5595 case 0x06: /* push es */
5596 case 0x0e: /* push cs */
5597 case 0x16: /* push ss */
5598 case 0x1e: /* push ds */
5599 if (ir.regmap[X86_RECORD_R8_REGNUM])
5600 {
5601 ir.addr -= 1;
5602 goto no_support;
5603 }
5604 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5605 return -1;
5606 break;
5607
5608 case 0x0fa0: /* push fs */
5609 case 0x0fa8: /* push gs */
5610 if (ir.regmap[X86_RECORD_R8_REGNUM])
5611 {
5612 ir.addr -= 2;
5613 goto no_support;
5614 }
5615 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5616 return -1;
5617 break;
5618
5619 case 0x60: /* pusha */
5620 if (ir.regmap[X86_RECORD_R8_REGNUM])
5621 {
5622 ir.addr -= 1;
5623 goto no_support;
5624 }
5625 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5626 return -1;
5627 break;
5628
5629 case 0x58: /* pop */
5630 case 0x59:
5631 case 0x5a:
5632 case 0x5b:
5633 case 0x5c:
5634 case 0x5d:
5635 case 0x5e:
5636 case 0x5f:
5637 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5638 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5639 break;
5640
5641 case 0x61: /* popa */
5642 if (ir.regmap[X86_RECORD_R8_REGNUM])
5643 {
5644 ir.addr -= 1;
5645 goto no_support;
5646 }
5647 for (regnum = X86_RECORD_REAX_REGNUM;
5648 regnum <= X86_RECORD_REDI_REGNUM;
5649 regnum++)
5650 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5651 break;
5652
5653 case 0x8f: /* pop */
5654 if (ir.regmap[X86_RECORD_R8_REGNUM])
5655 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5656 else
5657 ir.ot = ir.dflag + OT_WORD;
5658 if (i386_record_modrm (&ir))
5659 return -1;
5660 if (ir.mod == 3)
5661 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5662 else
5663 {
5664 ir.popl_esp_hack = 1 << ir.ot;
5665 if (i386_record_lea_modrm (&ir))
5666 return -1;
5667 }
5668 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5669 break;
5670
5671 case 0xc8: /* enter */
5672 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5673 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5674 ir.dflag = 2;
5675 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5676 return -1;
5677 break;
5678
5679 case 0xc9: /* leave */
5680 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5681 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5682 break;
5683
5684 case 0x07: /* pop es */
5685 if (ir.regmap[X86_RECORD_R8_REGNUM])
5686 {
5687 ir.addr -= 1;
5688 goto no_support;
5689 }
5690 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5691 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5692 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5693 break;
5694
5695 case 0x17: /* pop ss */
5696 if (ir.regmap[X86_RECORD_R8_REGNUM])
5697 {
5698 ir.addr -= 1;
5699 goto no_support;
5700 }
5701 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5702 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5703 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5704 break;
5705
5706 case 0x1f: /* pop ds */
5707 if (ir.regmap[X86_RECORD_R8_REGNUM])
5708 {
5709 ir.addr -= 1;
5710 goto no_support;
5711 }
5712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5713 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5714 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5715 break;
5716
5717 case 0x0fa1: /* pop fs */
5718 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5719 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5720 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5721 break;
5722
5723 case 0x0fa9: /* pop gs */
5724 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5725 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5726 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5727 break;
5728
5729 case 0x88: /* mov */
5730 case 0x89:
5731 case 0xc6:
5732 case 0xc7:
5733 if ((opcode & 1) == 0)
5734 ir.ot = OT_BYTE;
5735 else
5736 ir.ot = ir.dflag + OT_WORD;
5737
5738 if (i386_record_modrm (&ir))
5739 return -1;
5740
5741 if (ir.mod != 3)
5742 {
5743 if (opcode == 0xc6 || opcode == 0xc7)
5744 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5745 if (i386_record_lea_modrm (&ir))
5746 return -1;
5747 }
5748 else
5749 {
5750 if (opcode == 0xc6 || opcode == 0xc7)
5751 ir.rm |= ir.rex_b;
5752 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5753 ir.rm &= 0x3;
5754 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5755 }
5756 break;
5757
5758 case 0x8a: /* mov */
5759 case 0x8b:
5760 if ((opcode & 1) == 0)
5761 ir.ot = OT_BYTE;
5762 else
5763 ir.ot = ir.dflag + OT_WORD;
5764 if (i386_record_modrm (&ir))
5765 return -1;
5766 ir.reg |= rex_r;
5767 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5768 ir.reg &= 0x3;
5769 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5770 break;
5771
5772 case 0x8c: /* mov seg */
5773 if (i386_record_modrm (&ir))
5774 return -1;
5775 if (ir.reg > 5)
5776 {
5777 ir.addr -= 2;
5778 opcode = opcode << 8 | ir.modrm;
5779 goto no_support;
5780 }
5781
5782 if (ir.mod == 3)
5783 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5784 else
5785 {
5786 ir.ot = OT_WORD;
5787 if (i386_record_lea_modrm (&ir))
5788 return -1;
5789 }
5790 break;
5791
5792 case 0x8e: /* mov seg */
5793 if (i386_record_modrm (&ir))
5794 return -1;
5795 switch (ir.reg)
5796 {
5797 case 0:
5798 regnum = X86_RECORD_ES_REGNUM;
5799 break;
5800 case 2:
5801 regnum = X86_RECORD_SS_REGNUM;
5802 break;
5803 case 3:
5804 regnum = X86_RECORD_DS_REGNUM;
5805 break;
5806 case 4:
5807 regnum = X86_RECORD_FS_REGNUM;
5808 break;
5809 case 5:
5810 regnum = X86_RECORD_GS_REGNUM;
5811 break;
5812 default:
5813 ir.addr -= 2;
5814 opcode = opcode << 8 | ir.modrm;
5815 goto no_support;
5816 break;
5817 }
5818 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5819 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5820 break;
5821
5822 case 0x0fb6: /* movzbS */
5823 case 0x0fb7: /* movzwS */
5824 case 0x0fbe: /* movsbS */
5825 case 0x0fbf: /* movswS */
5826 if (i386_record_modrm (&ir))
5827 return -1;
5828 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5829 break;
5830
5831 case 0x8d: /* lea */
5832 if (i386_record_modrm (&ir))
5833 return -1;
5834 if (ir.mod == 3)
5835 {
5836 ir.addr -= 2;
5837 opcode = opcode << 8 | ir.modrm;
5838 goto no_support;
5839 }
5840 ir.ot = ir.dflag;
5841 ir.reg |= rex_r;
5842 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5843 ir.reg &= 0x3;
5844 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5845 break;
5846
5847 case 0xa0: /* mov EAX */
5848 case 0xa1:
5849
5850 case 0xd7: /* xlat */
5851 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5852 break;
5853
5854 case 0xa2: /* mov EAX */
5855 case 0xa3:
5856 if (ir.override >= 0)
5857 {
5858 if (record_full_memory_query)
5859 {
5860 if (yquery (_("\
5861 Process record ignores the memory change of instruction at address %s\n\
5862 because it can't get the value of the segment register.\n\
5863 Do you want to stop the program?"),
5864 paddress (gdbarch, ir.orig_addr)))
5865 return -1;
5866 }
5867 }
5868 else
5869 {
5870 if ((opcode & 1) == 0)
5871 ir.ot = OT_BYTE;
5872 else
5873 ir.ot = ir.dflag + OT_WORD;
5874 if (ir.aflag == 2)
5875 {
5876 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5877 return -1;
5878 ir.addr += 8;
5879 addr = extract_unsigned_integer (buf, 8, byte_order);
5880 }
5881 else if (ir.aflag)
5882 {
5883 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5884 return -1;
5885 ir.addr += 4;
5886 addr = extract_unsigned_integer (buf, 4, byte_order);
5887 }
5888 else
5889 {
5890 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5891 return -1;
5892 ir.addr += 2;
5893 addr = extract_unsigned_integer (buf, 2, byte_order);
5894 }
5895 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5896 return -1;
5897 }
5898 break;
5899
5900 case 0xb0: /* mov R, Ib */
5901 case 0xb1:
5902 case 0xb2:
5903 case 0xb3:
5904 case 0xb4:
5905 case 0xb5:
5906 case 0xb6:
5907 case 0xb7:
5908 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5909 ? ((opcode & 0x7) | ir.rex_b)
5910 : ((opcode & 0x7) & 0x3));
5911 break;
5912
5913 case 0xb8: /* mov R, Iv */
5914 case 0xb9:
5915 case 0xba:
5916 case 0xbb:
5917 case 0xbc:
5918 case 0xbd:
5919 case 0xbe:
5920 case 0xbf:
5921 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5922 break;
5923
5924 case 0x91: /* xchg R, EAX */
5925 case 0x92:
5926 case 0x93:
5927 case 0x94:
5928 case 0x95:
5929 case 0x96:
5930 case 0x97:
5931 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5932 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5933 break;
5934
5935 case 0x86: /* xchg Ev, Gv */
5936 case 0x87:
5937 if ((opcode & 1) == 0)
5938 ir.ot = OT_BYTE;
5939 else
5940 ir.ot = ir.dflag + OT_WORD;
5941 if (i386_record_modrm (&ir))
5942 return -1;
5943 if (ir.mod == 3)
5944 {
5945 ir.rm |= ir.rex_b;
5946 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5947 ir.rm &= 0x3;
5948 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5949 }
5950 else
5951 {
5952 if (i386_record_lea_modrm (&ir))
5953 return -1;
5954 }
5955 ir.reg |= rex_r;
5956 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5957 ir.reg &= 0x3;
5958 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5959 break;
5960
5961 case 0xc4: /* les Gv */
5962 case 0xc5: /* lds Gv */
5963 if (ir.regmap[X86_RECORD_R8_REGNUM])
5964 {
5965 ir.addr -= 1;
5966 goto no_support;
5967 }
5968 /* FALLTHROUGH */
5969 case 0x0fb2: /* lss Gv */
5970 case 0x0fb4: /* lfs Gv */
5971 case 0x0fb5: /* lgs Gv */
5972 if (i386_record_modrm (&ir))
5973 return -1;
5974 if (ir.mod == 3)
5975 {
5976 if (opcode > 0xff)
5977 ir.addr -= 3;
5978 else
5979 ir.addr -= 2;
5980 opcode = opcode << 8 | ir.modrm;
5981 goto no_support;
5982 }
5983 switch (opcode)
5984 {
5985 case 0xc4: /* les Gv */
5986 regnum = X86_RECORD_ES_REGNUM;
5987 break;
5988 case 0xc5: /* lds Gv */
5989 regnum = X86_RECORD_DS_REGNUM;
5990 break;
5991 case 0x0fb2: /* lss Gv */
5992 regnum = X86_RECORD_SS_REGNUM;
5993 break;
5994 case 0x0fb4: /* lfs Gv */
5995 regnum = X86_RECORD_FS_REGNUM;
5996 break;
5997 case 0x0fb5: /* lgs Gv */
5998 regnum = X86_RECORD_GS_REGNUM;
5999 break;
6000 }
6001 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
6002 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6003 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6004 break;
6005
6006 case 0xc0: /* shifts */
6007 case 0xc1:
6008 case 0xd0:
6009 case 0xd1:
6010 case 0xd2:
6011 case 0xd3:
6012 if ((opcode & 1) == 0)
6013 ir.ot = OT_BYTE;
6014 else
6015 ir.ot = ir.dflag + OT_WORD;
6016 if (i386_record_modrm (&ir))
6017 return -1;
6018 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
6019 {
6020 if (i386_record_lea_modrm (&ir))
6021 return -1;
6022 }
6023 else
6024 {
6025 ir.rm |= ir.rex_b;
6026 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
6027 ir.rm &= 0x3;
6028 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
6029 }
6030 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6031 break;
6032
6033 case 0x0fa4:
6034 case 0x0fa5:
6035 case 0x0fac:
6036 case 0x0fad:
6037 if (i386_record_modrm (&ir))
6038 return -1;
6039 if (ir.mod == 3)
6040 {
6041 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
6042 return -1;
6043 }
6044 else
6045 {
6046 if (i386_record_lea_modrm (&ir))
6047 return -1;
6048 }
6049 break;
6050
6051 case 0xd8: /* Floats. */
6052 case 0xd9:
6053 case 0xda:
6054 case 0xdb:
6055 case 0xdc:
6056 case 0xdd:
6057 case 0xde:
6058 case 0xdf:
6059 if (i386_record_modrm (&ir))
6060 return -1;
6061 ir.reg |= ((opcode & 7) << 3);
6062 if (ir.mod != 3)
6063 {
6064 /* Memory. */
6065 uint64_t addr64;
6066
6067 if (i386_record_lea_modrm_addr (&ir, &addr64))
6068 return -1;
6069 switch (ir.reg)
6070 {
6071 case 0x02:
6072 case 0x12:
6073 case 0x22:
6074 case 0x32:
6075 /* For fcom, ficom nothing to do. */
6076 break;
6077 case 0x03:
6078 case 0x13:
6079 case 0x23:
6080 case 0x33:
6081 /* For fcomp, ficomp pop FPU stack, store all. */
6082 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6083 return -1;
6084 break;
6085 case 0x00:
6086 case 0x01:
6087 case 0x04:
6088 case 0x05:
6089 case 0x06:
6090 case 0x07:
6091 case 0x10:
6092 case 0x11:
6093 case 0x14:
6094 case 0x15:
6095 case 0x16:
6096 case 0x17:
6097 case 0x20:
6098 case 0x21:
6099 case 0x24:
6100 case 0x25:
6101 case 0x26:
6102 case 0x27:
6103 case 0x30:
6104 case 0x31:
6105 case 0x34:
6106 case 0x35:
6107 case 0x36:
6108 case 0x37:
6109 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6110 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6111 of code, always affects st(0) register. */
6112 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6113 return -1;
6114 break;
6115 case 0x08:
6116 case 0x0a:
6117 case 0x0b:
6118 case 0x18:
6119 case 0x19:
6120 case 0x1a:
6121 case 0x1b:
6122 case 0x1d:
6123 case 0x28:
6124 case 0x29:
6125 case 0x2a:
6126 case 0x2b:
6127 case 0x38:
6128 case 0x39:
6129 case 0x3a:
6130 case 0x3b:
6131 case 0x3c:
6132 case 0x3d:
6133 switch (ir.reg & 7)
6134 {
6135 case 0:
6136 /* Handling fld, fild. */
6137 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6138 return -1;
6139 break;
6140 case 1:
6141 switch (ir.reg >> 4)
6142 {
6143 case 0:
6144 if (record_full_arch_list_add_mem (addr64, 4))
6145 return -1;
6146 break;
6147 case 2:
6148 if (record_full_arch_list_add_mem (addr64, 8))
6149 return -1;
6150 break;
6151 case 3:
6152 break;
6153 default:
6154 if (record_full_arch_list_add_mem (addr64, 2))
6155 return -1;
6156 break;
6157 }
6158 break;
6159 default:
6160 switch (ir.reg >> 4)
6161 {
6162 case 0:
6163 if (record_full_arch_list_add_mem (addr64, 4))
6164 return -1;
6165 if (3 == (ir.reg & 7))
6166 {
6167 /* For fstp m32fp. */
6168 if (i386_record_floats (gdbarch, &ir,
6169 I386_SAVE_FPU_REGS))
6170 return -1;
6171 }
6172 break;
6173 case 1:
6174 if (record_full_arch_list_add_mem (addr64, 4))
6175 return -1;
6176 if ((3 == (ir.reg & 7))
6177 || (5 == (ir.reg & 7))
6178 || (7 == (ir.reg & 7)))
6179 {
6180 /* For fstp insn. */
6181 if (i386_record_floats (gdbarch, &ir,
6182 I386_SAVE_FPU_REGS))
6183 return -1;
6184 }
6185 break;
6186 case 2:
6187 if (record_full_arch_list_add_mem (addr64, 8))
6188 return -1;
6189 if (3 == (ir.reg & 7))
6190 {
6191 /* For fstp m64fp. */
6192 if (i386_record_floats (gdbarch, &ir,
6193 I386_SAVE_FPU_REGS))
6194 return -1;
6195 }
6196 break;
6197 case 3:
6198 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6199 {
6200 /* For fistp, fbld, fild, fbstp. */
6201 if (i386_record_floats (gdbarch, &ir,
6202 I386_SAVE_FPU_REGS))
6203 return -1;
6204 }
6205 /* Fall through */
6206 default:
6207 if (record_full_arch_list_add_mem (addr64, 2))
6208 return -1;
6209 break;
6210 }
6211 break;
6212 }
6213 break;
6214 case 0x0c:
6215 /* Insn fldenv. */
6216 if (i386_record_floats (gdbarch, &ir,
6217 I386_SAVE_FPU_ENV_REG_STACK))
6218 return -1;
6219 break;
6220 case 0x0d:
6221 /* Insn fldcw. */
6222 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6223 return -1;
6224 break;
6225 case 0x2c:
6226 /* Insn frstor. */
6227 if (i386_record_floats (gdbarch, &ir,
6228 I386_SAVE_FPU_ENV_REG_STACK))
6229 return -1;
6230 break;
6231 case 0x0e:
6232 if (ir.dflag)
6233 {
6234 if (record_full_arch_list_add_mem (addr64, 28))
6235 return -1;
6236 }
6237 else
6238 {
6239 if (record_full_arch_list_add_mem (addr64, 14))
6240 return -1;
6241 }
6242 break;
6243 case 0x0f:
6244 case 0x2f:
6245 if (record_full_arch_list_add_mem (addr64, 2))
6246 return -1;
6247 /* Insn fstp, fbstp. */
6248 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6249 return -1;
6250 break;
6251 case 0x1f:
6252 case 0x3e:
6253 if (record_full_arch_list_add_mem (addr64, 10))
6254 return -1;
6255 break;
6256 case 0x2e:
6257 if (ir.dflag)
6258 {
6259 if (record_full_arch_list_add_mem (addr64, 28))
6260 return -1;
6261 addr64 += 28;
6262 }
6263 else
6264 {
6265 if (record_full_arch_list_add_mem (addr64, 14))
6266 return -1;
6267 addr64 += 14;
6268 }
6269 if (record_full_arch_list_add_mem (addr64, 80))
6270 return -1;
6271 /* Insn fsave. */
6272 if (i386_record_floats (gdbarch, &ir,
6273 I386_SAVE_FPU_ENV_REG_STACK))
6274 return -1;
6275 break;
6276 case 0x3f:
6277 if (record_full_arch_list_add_mem (addr64, 8))
6278 return -1;
6279 /* Insn fistp. */
6280 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6281 return -1;
6282 break;
6283 default:
6284 ir.addr -= 2;
6285 opcode = opcode << 8 | ir.modrm;
6286 goto no_support;
6287 break;
6288 }
6289 }
6290 /* Opcode is an extension of modR/M byte. */
6291 else
6292 {
6293 switch (opcode)
6294 {
6295 case 0xd8:
6296 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6297 return -1;
6298 break;
6299 case 0xd9:
6300 if (0x0c == (ir.modrm >> 4))
6301 {
6302 if ((ir.modrm & 0x0f) <= 7)
6303 {
6304 if (i386_record_floats (gdbarch, &ir,
6305 I386_SAVE_FPU_REGS))
6306 return -1;
6307 }
6308 else
6309 {
6310 if (i386_record_floats (gdbarch, &ir,
6311 I387_ST0_REGNUM (tdep)))
6312 return -1;
6313 /* If only st(0) is changing, then we have already
6314 recorded. */
6315 if ((ir.modrm & 0x0f) - 0x08)
6316 {
6317 if (i386_record_floats (gdbarch, &ir,
6318 I387_ST0_REGNUM (tdep) +
6319 ((ir.modrm & 0x0f) - 0x08)))
6320 return -1;
6321 }
6322 }
6323 }
6324 else
6325 {
6326 switch (ir.modrm)
6327 {
6328 case 0xe0:
6329 case 0xe1:
6330 case 0xf0:
6331 case 0xf5:
6332 case 0xf8:
6333 case 0xfa:
6334 case 0xfc:
6335 case 0xfe:
6336 case 0xff:
6337 if (i386_record_floats (gdbarch, &ir,
6338 I387_ST0_REGNUM (tdep)))
6339 return -1;
6340 break;
6341 case 0xf1:
6342 case 0xf2:
6343 case 0xf3:
6344 case 0xf4:
6345 case 0xf6:
6346 case 0xf7:
6347 case 0xe8:
6348 case 0xe9:
6349 case 0xea:
6350 case 0xeb:
6351 case 0xec:
6352 case 0xed:
6353 case 0xee:
6354 case 0xf9:
6355 case 0xfb:
6356 if (i386_record_floats (gdbarch, &ir,
6357 I386_SAVE_FPU_REGS))
6358 return -1;
6359 break;
6360 case 0xfd:
6361 if (i386_record_floats (gdbarch, &ir,
6362 I387_ST0_REGNUM (tdep)))
6363 return -1;
6364 if (i386_record_floats (gdbarch, &ir,
6365 I387_ST0_REGNUM (tdep) + 1))
6366 return -1;
6367 break;
6368 }
6369 }
6370 break;
6371 case 0xda:
6372 if (0xe9 == ir.modrm)
6373 {
6374 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6375 return -1;
6376 }
6377 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6378 {
6379 if (i386_record_floats (gdbarch, &ir,
6380 I387_ST0_REGNUM (tdep)))
6381 return -1;
6382 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6383 {
6384 if (i386_record_floats (gdbarch, &ir,
6385 I387_ST0_REGNUM (tdep) +
6386 (ir.modrm & 0x0f)))
6387 return -1;
6388 }
6389 else if ((ir.modrm & 0x0f) - 0x08)
6390 {
6391 if (i386_record_floats (gdbarch, &ir,
6392 I387_ST0_REGNUM (tdep) +
6393 ((ir.modrm & 0x0f) - 0x08)))
6394 return -1;
6395 }
6396 }
6397 break;
6398 case 0xdb:
6399 if (0xe3 == ir.modrm)
6400 {
6401 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6402 return -1;
6403 }
6404 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6405 {
6406 if (i386_record_floats (gdbarch, &ir,
6407 I387_ST0_REGNUM (tdep)))
6408 return -1;
6409 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6410 {
6411 if (i386_record_floats (gdbarch, &ir,
6412 I387_ST0_REGNUM (tdep) +
6413 (ir.modrm & 0x0f)))
6414 return -1;
6415 }
6416 else if ((ir.modrm & 0x0f) - 0x08)
6417 {
6418 if (i386_record_floats (gdbarch, &ir,
6419 I387_ST0_REGNUM (tdep) +
6420 ((ir.modrm & 0x0f) - 0x08)))
6421 return -1;
6422 }
6423 }
6424 break;
6425 case 0xdc:
6426 if ((0x0c == ir.modrm >> 4)
6427 || (0x0d == ir.modrm >> 4)
6428 || (0x0f == ir.modrm >> 4))
6429 {
6430 if ((ir.modrm & 0x0f) <= 7)
6431 {
6432 if (i386_record_floats (gdbarch, &ir,
6433 I387_ST0_REGNUM (tdep) +
6434 (ir.modrm & 0x0f)))
6435 return -1;
6436 }
6437 else
6438 {
6439 if (i386_record_floats (gdbarch, &ir,
6440 I387_ST0_REGNUM (tdep) +
6441 ((ir.modrm & 0x0f) - 0x08)))
6442 return -1;
6443 }
6444 }
6445 break;
6446 case 0xdd:
6447 if (0x0c == ir.modrm >> 4)
6448 {
6449 if (i386_record_floats (gdbarch, &ir,
6450 I387_FTAG_REGNUM (tdep)))
6451 return -1;
6452 }
6453 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6454 {
6455 if ((ir.modrm & 0x0f) <= 7)
6456 {
6457 if (i386_record_floats (gdbarch, &ir,
6458 I387_ST0_REGNUM (tdep) +
6459 (ir.modrm & 0x0f)))
6460 return -1;
6461 }
6462 else
6463 {
6464 if (i386_record_floats (gdbarch, &ir,
6465 I386_SAVE_FPU_REGS))
6466 return -1;
6467 }
6468 }
6469 break;
6470 case 0xde:
6471 if ((0x0c == ir.modrm >> 4)
6472 || (0x0e == ir.modrm >> 4)
6473 || (0x0f == ir.modrm >> 4)
6474 || (0xd9 == ir.modrm))
6475 {
6476 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6477 return -1;
6478 }
6479 break;
6480 case 0xdf:
6481 if (0xe0 == ir.modrm)
6482 {
6483 if (record_full_arch_list_add_reg (ir.regcache,
6484 I386_EAX_REGNUM))
6485 return -1;
6486 }
6487 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6488 {
6489 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6490 return -1;
6491 }
6492 break;
6493 }
6494 }
6495 break;
6496 /* string ops */
6497 case 0xa4: /* movsS */
6498 case 0xa5:
6499 case 0xaa: /* stosS */
6500 case 0xab:
6501 case 0x6c: /* insS */
6502 case 0x6d:
6503 regcache_raw_read_unsigned (ir.regcache,
6504 ir.regmap[X86_RECORD_RECX_REGNUM],
6505 &addr);
6506 if (addr)
6507 {
6508 ULONGEST es, ds;
6509
6510 if ((opcode & 1) == 0)
6511 ir.ot = OT_BYTE;
6512 else
6513 ir.ot = ir.dflag + OT_WORD;
6514 regcache_raw_read_unsigned (ir.regcache,
6515 ir.regmap[X86_RECORD_REDI_REGNUM],
6516 &addr);
6517
6518 regcache_raw_read_unsigned (ir.regcache,
6519 ir.regmap[X86_RECORD_ES_REGNUM],
6520 &es);
6521 regcache_raw_read_unsigned (ir.regcache,
6522 ir.regmap[X86_RECORD_DS_REGNUM],
6523 &ds);
6524 if (ir.aflag && (es != ds))
6525 {
6526 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6527 if (record_full_memory_query)
6528 {
6529 if (yquery (_("\
6530 Process record ignores the memory change of instruction at address %s\n\
6531 because it can't get the value of the segment register.\n\
6532 Do you want to stop the program?"),
6533 paddress (gdbarch, ir.orig_addr)))
6534 return -1;
6535 }
6536 }
6537 else
6538 {
6539 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6540 return -1;
6541 }
6542
6543 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6544 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6545 if (opcode == 0xa4 || opcode == 0xa5)
6546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6549 }
6550 break;
6551
6552 case 0xa6: /* cmpsS */
6553 case 0xa7:
6554 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6556 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6557 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6558 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6559 break;
6560
6561 case 0xac: /* lodsS */
6562 case 0xad:
6563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6565 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6567 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6568 break;
6569
6570 case 0xae: /* scasS */
6571 case 0xaf:
6572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6573 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6575 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6576 break;
6577
6578 case 0x6e: /* outsS */
6579 case 0x6f:
6580 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6581 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6582 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6583 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6584 break;
6585
6586 case 0xe4: /* port I/O */
6587 case 0xe5:
6588 case 0xec:
6589 case 0xed:
6590 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6591 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6592 break;
6593
6594 case 0xe6:
6595 case 0xe7:
6596 case 0xee:
6597 case 0xef:
6598 break;
6599
6600 /* control */
6601 case 0xc2: /* ret im */
6602 case 0xc3: /* ret */
6603 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6604 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6605 break;
6606
6607 case 0xca: /* lret im */
6608 case 0xcb: /* lret */
6609 case 0xcf: /* iret */
6610 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6611 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6612 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6613 break;
6614
6615 case 0xe8: /* call im */
6616 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6617 ir.dflag = 2;
6618 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6619 return -1;
6620 break;
6621
6622 case 0x9a: /* lcall im */
6623 if (ir.regmap[X86_RECORD_R8_REGNUM])
6624 {
6625 ir.addr -= 1;
6626 goto no_support;
6627 }
6628 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6629 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6630 return -1;
6631 break;
6632
6633 case 0xe9: /* jmp im */
6634 case 0xea: /* ljmp im */
6635 case 0xeb: /* jmp Jb */
6636 case 0x70: /* jcc Jb */
6637 case 0x71:
6638 case 0x72:
6639 case 0x73:
6640 case 0x74:
6641 case 0x75:
6642 case 0x76:
6643 case 0x77:
6644 case 0x78:
6645 case 0x79:
6646 case 0x7a:
6647 case 0x7b:
6648 case 0x7c:
6649 case 0x7d:
6650 case 0x7e:
6651 case 0x7f:
6652 case 0x0f80: /* jcc Jv */
6653 case 0x0f81:
6654 case 0x0f82:
6655 case 0x0f83:
6656 case 0x0f84:
6657 case 0x0f85:
6658 case 0x0f86:
6659 case 0x0f87:
6660 case 0x0f88:
6661 case 0x0f89:
6662 case 0x0f8a:
6663 case 0x0f8b:
6664 case 0x0f8c:
6665 case 0x0f8d:
6666 case 0x0f8e:
6667 case 0x0f8f:
6668 break;
6669
6670 case 0x0f90: /* setcc Gv */
6671 case 0x0f91:
6672 case 0x0f92:
6673 case 0x0f93:
6674 case 0x0f94:
6675 case 0x0f95:
6676 case 0x0f96:
6677 case 0x0f97:
6678 case 0x0f98:
6679 case 0x0f99:
6680 case 0x0f9a:
6681 case 0x0f9b:
6682 case 0x0f9c:
6683 case 0x0f9d:
6684 case 0x0f9e:
6685 case 0x0f9f:
6686 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6687 ir.ot = OT_BYTE;
6688 if (i386_record_modrm (&ir))
6689 return -1;
6690 if (ir.mod == 3)
6691 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6692 : (ir.rm & 0x3));
6693 else
6694 {
6695 if (i386_record_lea_modrm (&ir))
6696 return -1;
6697 }
6698 break;
6699
6700 case 0x0f40: /* cmov Gv, Ev */
6701 case 0x0f41:
6702 case 0x0f42:
6703 case 0x0f43:
6704 case 0x0f44:
6705 case 0x0f45:
6706 case 0x0f46:
6707 case 0x0f47:
6708 case 0x0f48:
6709 case 0x0f49:
6710 case 0x0f4a:
6711 case 0x0f4b:
6712 case 0x0f4c:
6713 case 0x0f4d:
6714 case 0x0f4e:
6715 case 0x0f4f:
6716 if (i386_record_modrm (&ir))
6717 return -1;
6718 ir.reg |= rex_r;
6719 if (ir.dflag == OT_BYTE)
6720 ir.reg &= 0x3;
6721 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6722 break;
6723
6724 /* flags */
6725 case 0x9c: /* pushf */
6726 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6727 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6728 ir.dflag = 2;
6729 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6730 return -1;
6731 break;
6732
6733 case 0x9d: /* popf */
6734 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6735 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6736 break;
6737
6738 case 0x9e: /* sahf */
6739 if (ir.regmap[X86_RECORD_R8_REGNUM])
6740 {
6741 ir.addr -= 1;
6742 goto no_support;
6743 }
6744 /* FALLTHROUGH */
6745 case 0xf5: /* cmc */
6746 case 0xf8: /* clc */
6747 case 0xf9: /* stc */
6748 case 0xfc: /* cld */
6749 case 0xfd: /* std */
6750 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6751 break;
6752
6753 case 0x9f: /* lahf */
6754 if (ir.regmap[X86_RECORD_R8_REGNUM])
6755 {
6756 ir.addr -= 1;
6757 goto no_support;
6758 }
6759 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6760 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6761 break;
6762
6763 /* bit operations */
6764 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6765 ir.ot = ir.dflag + OT_WORD;
6766 if (i386_record_modrm (&ir))
6767 return -1;
6768 if (ir.reg < 4)
6769 {
6770 ir.addr -= 2;
6771 opcode = opcode << 8 | ir.modrm;
6772 goto no_support;
6773 }
6774 if (ir.reg != 4)
6775 {
6776 if (ir.mod == 3)
6777 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6778 else
6779 {
6780 if (i386_record_lea_modrm (&ir))
6781 return -1;
6782 }
6783 }
6784 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6785 break;
6786
6787 case 0x0fa3: /* bt Gv, Ev */
6788 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6789 break;
6790
6791 case 0x0fab: /* bts */
6792 case 0x0fb3: /* btr */
6793 case 0x0fbb: /* btc */
6794 ir.ot = ir.dflag + OT_WORD;
6795 if (i386_record_modrm (&ir))
6796 return -1;
6797 if (ir.mod == 3)
6798 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6799 else
6800 {
6801 uint64_t addr64;
6802 if (i386_record_lea_modrm_addr (&ir, &addr64))
6803 return -1;
6804 regcache_raw_read_unsigned (ir.regcache,
6805 ir.regmap[ir.reg | rex_r],
6806 &addr);
6807 switch (ir.dflag)
6808 {
6809 case 0:
6810 addr64 += ((int16_t) addr >> 4) << 4;
6811 break;
6812 case 1:
6813 addr64 += ((int32_t) addr >> 5) << 5;
6814 break;
6815 case 2:
6816 addr64 += ((int64_t) addr >> 6) << 6;
6817 break;
6818 }
6819 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6820 return -1;
6821 if (i386_record_lea_modrm (&ir))
6822 return -1;
6823 }
6824 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6825 break;
6826
6827 case 0x0fbc: /* bsf */
6828 case 0x0fbd: /* bsr */
6829 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6830 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6831 break;
6832
6833 /* bcd */
6834 case 0x27: /* daa */
6835 case 0x2f: /* das */
6836 case 0x37: /* aaa */
6837 case 0x3f: /* aas */
6838 case 0xd4: /* aam */
6839 case 0xd5: /* aad */
6840 if (ir.regmap[X86_RECORD_R8_REGNUM])
6841 {
6842 ir.addr -= 1;
6843 goto no_support;
6844 }
6845 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6846 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6847 break;
6848
6849 /* misc */
6850 case 0x90: /* nop */
6851 if (prefixes & PREFIX_LOCK)
6852 {
6853 ir.addr -= 1;
6854 goto no_support;
6855 }
6856 break;
6857
6858 case 0x9b: /* fwait */
6859 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6860 return -1;
6861 opcode = (uint32_t) opcode8;
6862 ir.addr++;
6863 goto reswitch;
6864 break;
6865
6866 /* XXX */
6867 case 0xcc: /* int3 */
6868 gdb_printf (gdb_stderr,
6869 _("Process record does not support instruction "
6870 "int3.\n"));
6871 ir.addr -= 1;
6872 goto no_support;
6873 break;
6874
6875 /* XXX */
6876 case 0xcd: /* int */
6877 {
6878 int ret;
6879 uint8_t interrupt;
6880 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6881 return -1;
6882 ir.addr++;
6883 if (interrupt != 0x80
6884 || tdep->i386_intx80_record == NULL)
6885 {
6886 gdb_printf (gdb_stderr,
6887 _("Process record does not support "
6888 "instruction int 0x%02x.\n"),
6889 interrupt);
6890 ir.addr -= 2;
6891 goto no_support;
6892 }
6893 ret = tdep->i386_intx80_record (ir.regcache);
6894 if (ret)
6895 return ret;
6896 }
6897 break;
6898
6899 /* XXX */
6900 case 0xce: /* into */
6901 gdb_printf (gdb_stderr,
6902 _("Process record does not support "
6903 "instruction into.\n"));
6904 ir.addr -= 1;
6905 goto no_support;
6906 break;
6907
6908 case 0xfa: /* cli */
6909 case 0xfb: /* sti */
6910 break;
6911
6912 case 0x62: /* bound */
6913 gdb_printf (gdb_stderr,
6914 _("Process record does not support "
6915 "instruction bound.\n"));
6916 ir.addr -= 1;
6917 goto no_support;
6918 break;
6919
6920 case 0x0fc8: /* bswap reg */
6921 case 0x0fc9:
6922 case 0x0fca:
6923 case 0x0fcb:
6924 case 0x0fcc:
6925 case 0x0fcd:
6926 case 0x0fce:
6927 case 0x0fcf:
6928 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6929 break;
6930
6931 case 0xd6: /* salc */
6932 if (ir.regmap[X86_RECORD_R8_REGNUM])
6933 {
6934 ir.addr -= 1;
6935 goto no_support;
6936 }
6937 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6938 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6939 break;
6940
6941 case 0xe0: /* loopnz */
6942 case 0xe1: /* loopz */
6943 case 0xe2: /* loop */
6944 case 0xe3: /* jecxz */
6945 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6946 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6947 break;
6948
6949 case 0x0f30: /* wrmsr */
6950 gdb_printf (gdb_stderr,
6951 _("Process record does not support "
6952 "instruction wrmsr.\n"));
6953 ir.addr -= 2;
6954 goto no_support;
6955 break;
6956
6957 case 0x0f32: /* rdmsr */
6958 gdb_printf (gdb_stderr,
6959 _("Process record does not support "
6960 "instruction rdmsr.\n"));
6961 ir.addr -= 2;
6962 goto no_support;
6963 break;
6964
6965 case 0x0f31: /* rdtsc */
6966 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6967 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6968 break;
6969
6970 case 0x0f34: /* sysenter */
6971 {
6972 int ret;
6973 if (ir.regmap[X86_RECORD_R8_REGNUM])
6974 {
6975 ir.addr -= 2;
6976 goto no_support;
6977 }
6978 if (tdep->i386_sysenter_record == NULL)
6979 {
6980 gdb_printf (gdb_stderr,
6981 _("Process record does not support "
6982 "instruction sysenter.\n"));
6983 ir.addr -= 2;
6984 goto no_support;
6985 }
6986 ret = tdep->i386_sysenter_record (ir.regcache);
6987 if (ret)
6988 return ret;
6989 }
6990 break;
6991
6992 case 0x0f35: /* sysexit */
6993 gdb_printf (gdb_stderr,
6994 _("Process record does not support "
6995 "instruction sysexit.\n"));
6996 ir.addr -= 2;
6997 goto no_support;
6998 break;
6999
7000 case 0x0f05: /* syscall */
7001 {
7002 int ret;
7003 if (tdep->i386_syscall_record == NULL)
7004 {
7005 gdb_printf (gdb_stderr,
7006 _("Process record does not support "
7007 "instruction syscall.\n"));
7008 ir.addr -= 2;
7009 goto no_support;
7010 }
7011 ret = tdep->i386_syscall_record (ir.regcache);
7012 if (ret)
7013 return ret;
7014 }
7015 break;
7016
7017 case 0x0f07: /* sysret */
7018 gdb_printf (gdb_stderr,
7019 _("Process record does not support "
7020 "instruction sysret.\n"));
7021 ir.addr -= 2;
7022 goto no_support;
7023 break;
7024
7025 case 0x0fa2: /* cpuid */
7026 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7027 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7028 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7029 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7030 break;
7031
7032 case 0xf4: /* hlt */
7033 gdb_printf (gdb_stderr,
7034 _("Process record does not support "
7035 "instruction hlt.\n"));
7036 ir.addr -= 1;
7037 goto no_support;
7038 break;
7039
7040 case 0x0f00:
7041 if (i386_record_modrm (&ir))
7042 return -1;
7043 switch (ir.reg)
7044 {
7045 case 0: /* sldt */
7046 case 1: /* str */
7047 if (ir.mod == 3)
7048 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7049 else
7050 {
7051 ir.ot = OT_WORD;
7052 if (i386_record_lea_modrm (&ir))
7053 return -1;
7054 }
7055 break;
7056 case 2: /* lldt */
7057 case 3: /* ltr */
7058 break;
7059 case 4: /* verr */
7060 case 5: /* verw */
7061 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7062 break;
7063 default:
7064 ir.addr -= 3;
7065 opcode = opcode << 8 | ir.modrm;
7066 goto no_support;
7067 break;
7068 }
7069 break;
7070
7071 case 0x0f01:
7072 if (i386_record_modrm (&ir))
7073 return -1;
7074 switch (ir.reg)
7075 {
7076 case 0: /* sgdt */
7077 {
7078 uint64_t addr64;
7079
7080 if (ir.mod == 3)
7081 {
7082 ir.addr -= 3;
7083 opcode = opcode << 8 | ir.modrm;
7084 goto no_support;
7085 }
7086 if (ir.override >= 0)
7087 {
7088 if (record_full_memory_query)
7089 {
7090 if (yquery (_("\
7091 Process record ignores the memory change of instruction at address %s\n\
7092 because it can't get the value of the segment register.\n\
7093 Do you want to stop the program?"),
7094 paddress (gdbarch, ir.orig_addr)))
7095 return -1;
7096 }
7097 }
7098 else
7099 {
7100 if (i386_record_lea_modrm_addr (&ir, &addr64))
7101 return -1;
7102 if (record_full_arch_list_add_mem (addr64, 2))
7103 return -1;
7104 addr64 += 2;
7105 if (ir.regmap[X86_RECORD_R8_REGNUM])
7106 {
7107 if (record_full_arch_list_add_mem (addr64, 8))
7108 return -1;
7109 }
7110 else
7111 {
7112 if (record_full_arch_list_add_mem (addr64, 4))
7113 return -1;
7114 }
7115 }
7116 }
7117 break;
7118 case 1:
7119 if (ir.mod == 3)
7120 {
7121 switch (ir.rm)
7122 {
7123 case 0: /* monitor */
7124 break;
7125 case 1: /* mwait */
7126 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7127 break;
7128 default:
7129 ir.addr -= 3;
7130 opcode = opcode << 8 | ir.modrm;
7131 goto no_support;
7132 break;
7133 }
7134 }
7135 else
7136 {
7137 /* sidt */
7138 if (ir.override >= 0)
7139 {
7140 if (record_full_memory_query)
7141 {
7142 if (yquery (_("\
7143 Process record ignores the memory change of instruction at address %s\n\
7144 because it can't get the value of the segment register.\n\
7145 Do you want to stop the program?"),
7146 paddress (gdbarch, ir.orig_addr)))
7147 return -1;
7148 }
7149 }
7150 else
7151 {
7152 uint64_t addr64;
7153
7154 if (i386_record_lea_modrm_addr (&ir, &addr64))
7155 return -1;
7156 if (record_full_arch_list_add_mem (addr64, 2))
7157 return -1;
7158 addr64 += 2;
7159 if (ir.regmap[X86_RECORD_R8_REGNUM])
7160 {
7161 if (record_full_arch_list_add_mem (addr64, 8))
7162 return -1;
7163 }
7164 else
7165 {
7166 if (record_full_arch_list_add_mem (addr64, 4))
7167 return -1;
7168 }
7169 }
7170 }
7171 break;
7172 case 2: /* lgdt */
7173 if (ir.mod == 3)
7174 {
7175 /* xgetbv */
7176 if (ir.rm == 0)
7177 {
7178 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7179 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7180 break;
7181 }
7182 /* xsetbv */
7183 else if (ir.rm == 1)
7184 break;
7185 }
7186 /* Fall through. */
7187 case 3: /* lidt */
7188 if (ir.mod == 3)
7189 {
7190 ir.addr -= 3;
7191 opcode = opcode << 8 | ir.modrm;
7192 goto no_support;
7193 }
7194 break;
7195 case 4: /* smsw */
7196 if (ir.mod == 3)
7197 {
7198 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7199 return -1;
7200 }
7201 else
7202 {
7203 ir.ot = OT_WORD;
7204 if (i386_record_lea_modrm (&ir))
7205 return -1;
7206 }
7207 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7208 break;
7209 case 6: /* lmsw */
7210 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7211 break;
7212 case 7: /* invlpg */
7213 if (ir.mod == 3)
7214 {
7215 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7216 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7217 else
7218 {
7219 ir.addr -= 3;
7220 opcode = opcode << 8 | ir.modrm;
7221 goto no_support;
7222 }
7223 }
7224 else
7225 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7226 break;
7227 default:
7228 ir.addr -= 3;
7229 opcode = opcode << 8 | ir.modrm;
7230 goto no_support;
7231 break;
7232 }
7233 break;
7234
7235 case 0x0f08: /* invd */
7236 case 0x0f09: /* wbinvd */
7237 break;
7238
7239 case 0x63: /* arpl */
7240 if (i386_record_modrm (&ir))
7241 return -1;
7242 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7243 {
7244 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7245 ? (ir.reg | rex_r) : ir.rm);
7246 }
7247 else
7248 {
7249 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7250 if (i386_record_lea_modrm (&ir))
7251 return -1;
7252 }
7253 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7254 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7255 break;
7256
7257 case 0x0f02: /* lar */
7258 case 0x0f03: /* lsl */
7259 if (i386_record_modrm (&ir))
7260 return -1;
7261 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7262 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7263 break;
7264
7265 case 0x0f18:
7266 if (i386_record_modrm (&ir))
7267 return -1;
7268 if (ir.mod == 3 && ir.reg == 3)
7269 {
7270 ir.addr -= 3;
7271 opcode = opcode << 8 | ir.modrm;
7272 goto no_support;
7273 }
7274 break;
7275
7276 case 0x0f19:
7277 case 0x0f1a:
7278 case 0x0f1b:
7279 case 0x0f1c:
7280 case 0x0f1d:
7281 case 0x0f1e:
7282 case 0x0f1f:
7283 /* nop (multi byte) */
7284 break;
7285
7286 case 0x0f20: /* mov reg, crN */
7287 case 0x0f22: /* mov crN, reg */
7288 if (i386_record_modrm (&ir))
7289 return -1;
7290 if ((ir.modrm & 0xc0) != 0xc0)
7291 {
7292 ir.addr -= 3;
7293 opcode = opcode << 8 | ir.modrm;
7294 goto no_support;
7295 }
7296 switch (ir.reg)
7297 {
7298 case 0:
7299 case 2:
7300 case 3:
7301 case 4:
7302 case 8:
7303 if (opcode & 2)
7304 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7305 else
7306 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7307 break;
7308 default:
7309 ir.addr -= 3;
7310 opcode = opcode << 8 | ir.modrm;
7311 goto no_support;
7312 break;
7313 }
7314 break;
7315
7316 case 0x0f21: /* mov reg, drN */
7317 case 0x0f23: /* mov drN, reg */
7318 if (i386_record_modrm (&ir))
7319 return -1;
7320 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7321 || ir.reg == 5 || ir.reg >= 8)
7322 {
7323 ir.addr -= 3;
7324 opcode = opcode << 8 | ir.modrm;
7325 goto no_support;
7326 }
7327 if (opcode & 2)
7328 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7329 else
7330 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7331 break;
7332
7333 case 0x0f06: /* clts */
7334 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7335 break;
7336
7337 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7338
7339 case 0x0f0d: /* 3DNow! prefetch */
7340 break;
7341
7342 case 0x0f0e: /* 3DNow! femms */
7343 case 0x0f77: /* emms */
7344 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7345 goto no_support;
7346 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7347 break;
7348
7349 case 0x0f0f: /* 3DNow! data */
7350 if (i386_record_modrm (&ir))
7351 return -1;
7352 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7353 return -1;
7354 ir.addr++;
7355 switch (opcode8)
7356 {
7357 case 0x0c: /* 3DNow! pi2fw */
7358 case 0x0d: /* 3DNow! pi2fd */
7359 case 0x1c: /* 3DNow! pf2iw */
7360 case 0x1d: /* 3DNow! pf2id */
7361 case 0x8a: /* 3DNow! pfnacc */
7362 case 0x8e: /* 3DNow! pfpnacc */
7363 case 0x90: /* 3DNow! pfcmpge */
7364 case 0x94: /* 3DNow! pfmin */
7365 case 0x96: /* 3DNow! pfrcp */
7366 case 0x97: /* 3DNow! pfrsqrt */
7367 case 0x9a: /* 3DNow! pfsub */
7368 case 0x9e: /* 3DNow! pfadd */
7369 case 0xa0: /* 3DNow! pfcmpgt */
7370 case 0xa4: /* 3DNow! pfmax */
7371 case 0xa6: /* 3DNow! pfrcpit1 */
7372 case 0xa7: /* 3DNow! pfrsqit1 */
7373 case 0xaa: /* 3DNow! pfsubr */
7374 case 0xae: /* 3DNow! pfacc */
7375 case 0xb0: /* 3DNow! pfcmpeq */
7376 case 0xb4: /* 3DNow! pfmul */
7377 case 0xb6: /* 3DNow! pfrcpit2 */
7378 case 0xb7: /* 3DNow! pmulhrw */
7379 case 0xbb: /* 3DNow! pswapd */
7380 case 0xbf: /* 3DNow! pavgusb */
7381 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7382 goto no_support_3dnow_data;
7383 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7384 break;
7385
7386 default:
7387 no_support_3dnow_data:
7388 opcode = (opcode << 8) | opcode8;
7389 goto no_support;
7390 break;
7391 }
7392 break;
7393
7394 case 0x0faa: /* rsm */
7395 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7396 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7397 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7398 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7399 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7400 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7401 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7402 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7403 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7404 break;
7405
7406 case 0x0fae:
7407 if (i386_record_modrm (&ir))
7408 return -1;
7409 switch(ir.reg)
7410 {
7411 case 0: /* fxsave */
7412 {
7413 uint64_t tmpu64;
7414
7415 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7416 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7417 return -1;
7418 if (record_full_arch_list_add_mem (tmpu64, 512))
7419 return -1;
7420 }
7421 break;
7422
7423 case 1: /* fxrstor */
7424 {
7425 int i;
7426
7427 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7428
7429 for (i = I387_MM0_REGNUM (tdep);
7430 i386_mmx_regnum_p (gdbarch, i); i++)
7431 record_full_arch_list_add_reg (ir.regcache, i);
7432
7433 for (i = I387_XMM0_REGNUM (tdep);
7434 i386_xmm_regnum_p (gdbarch, i); i++)
7435 record_full_arch_list_add_reg (ir.regcache, i);
7436
7437 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7438 record_full_arch_list_add_reg (ir.regcache,
7439 I387_MXCSR_REGNUM(tdep));
7440
7441 for (i = I387_ST0_REGNUM (tdep);
7442 i386_fp_regnum_p (gdbarch, i); i++)
7443 record_full_arch_list_add_reg (ir.regcache, i);
7444
7445 for (i = I387_FCTRL_REGNUM (tdep);
7446 i386_fpc_regnum_p (gdbarch, i); i++)
7447 record_full_arch_list_add_reg (ir.regcache, i);
7448 }
7449 break;
7450
7451 case 2: /* ldmxcsr */
7452 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7453 goto no_support;
7454 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7455 break;
7456
7457 case 3: /* stmxcsr */
7458 ir.ot = OT_LONG;
7459 if (i386_record_lea_modrm (&ir))
7460 return -1;
7461 break;
7462
7463 case 5: /* lfence */
7464 case 6: /* mfence */
7465 case 7: /* sfence clflush */
7466 break;
7467
7468 default:
7469 opcode = (opcode << 8) | ir.modrm;
7470 goto no_support;
7471 break;
7472 }
7473 break;
7474
7475 case 0x0fc3: /* movnti */
7476 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7477 if (i386_record_modrm (&ir))
7478 return -1;
7479 if (ir.mod == 3)
7480 goto no_support;
7481 ir.reg |= rex_r;
7482 if (i386_record_lea_modrm (&ir))
7483 return -1;
7484 break;
7485
7486 /* Add prefix to opcode. */
7487 case 0x0f10:
7488 case 0x0f11:
7489 case 0x0f12:
7490 case 0x0f13:
7491 case 0x0f14:
7492 case 0x0f15:
7493 case 0x0f16:
7494 case 0x0f17:
7495 case 0x0f28:
7496 case 0x0f29:
7497 case 0x0f2a:
7498 case 0x0f2b:
7499 case 0x0f2c:
7500 case 0x0f2d:
7501 case 0x0f2e:
7502 case 0x0f2f:
7503 case 0x0f38:
7504 case 0x0f39:
7505 case 0x0f3a:
7506 case 0x0f50:
7507 case 0x0f51:
7508 case 0x0f52:
7509 case 0x0f53:
7510 case 0x0f54:
7511 case 0x0f55:
7512 case 0x0f56:
7513 case 0x0f57:
7514 case 0x0f58:
7515 case 0x0f59:
7516 case 0x0f5a:
7517 case 0x0f5b:
7518 case 0x0f5c:
7519 case 0x0f5d:
7520 case 0x0f5e:
7521 case 0x0f5f:
7522 case 0x0f60:
7523 case 0x0f61:
7524 case 0x0f62:
7525 case 0x0f63:
7526 case 0x0f64:
7527 case 0x0f65:
7528 case 0x0f66:
7529 case 0x0f67:
7530 case 0x0f68:
7531 case 0x0f69:
7532 case 0x0f6a:
7533 case 0x0f6b:
7534 case 0x0f6c:
7535 case 0x0f6d:
7536 case 0x0f6e:
7537 case 0x0f6f:
7538 case 0x0f70:
7539 case 0x0f71:
7540 case 0x0f72:
7541 case 0x0f73:
7542 case 0x0f74:
7543 case 0x0f75:
7544 case 0x0f76:
7545 case 0x0f7c:
7546 case 0x0f7d:
7547 case 0x0f7e:
7548 case 0x0f7f:
7549 case 0x0fb8:
7550 case 0x0fc2:
7551 case 0x0fc4:
7552 case 0x0fc5:
7553 case 0x0fc6:
7554 case 0x0fd0:
7555 case 0x0fd1:
7556 case 0x0fd2:
7557 case 0x0fd3:
7558 case 0x0fd4:
7559 case 0x0fd5:
7560 case 0x0fd6:
7561 case 0x0fd7:
7562 case 0x0fd8:
7563 case 0x0fd9:
7564 case 0x0fda:
7565 case 0x0fdb:
7566 case 0x0fdc:
7567 case 0x0fdd:
7568 case 0x0fde:
7569 case 0x0fdf:
7570 case 0x0fe0:
7571 case 0x0fe1:
7572 case 0x0fe2:
7573 case 0x0fe3:
7574 case 0x0fe4:
7575 case 0x0fe5:
7576 case 0x0fe6:
7577 case 0x0fe7:
7578 case 0x0fe8:
7579 case 0x0fe9:
7580 case 0x0fea:
7581 case 0x0feb:
7582 case 0x0fec:
7583 case 0x0fed:
7584 case 0x0fee:
7585 case 0x0fef:
7586 case 0x0ff0:
7587 case 0x0ff1:
7588 case 0x0ff2:
7589 case 0x0ff3:
7590 case 0x0ff4:
7591 case 0x0ff5:
7592 case 0x0ff6:
7593 case 0x0ff7:
7594 case 0x0ff8:
7595 case 0x0ff9:
7596 case 0x0ffa:
7597 case 0x0ffb:
7598 case 0x0ffc:
7599 case 0x0ffd:
7600 case 0x0ffe:
7601 /* Mask out PREFIX_ADDR. */
7602 switch ((prefixes & ~PREFIX_ADDR))
7603 {
7604 case PREFIX_REPNZ:
7605 opcode |= 0xf20000;
7606 break;
7607 case PREFIX_DATA:
7608 opcode |= 0x660000;
7609 break;
7610 case PREFIX_REPZ:
7611 opcode |= 0xf30000;
7612 break;
7613 }
7614 reswitch_prefix_add:
7615 switch (opcode)
7616 {
7617 case 0x0f38:
7618 case 0x660f38:
7619 case 0xf20f38:
7620 case 0x0f3a:
7621 case 0x660f3a:
7622 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7623 return -1;
7624 ir.addr++;
7625 opcode = (uint32_t) opcode8 | opcode << 8;
7626 goto reswitch_prefix_add;
7627 break;
7628
7629 case 0x0f10: /* movups */
7630 case 0x660f10: /* movupd */
7631 case 0xf30f10: /* movss */
7632 case 0xf20f10: /* movsd */
7633 case 0x0f12: /* movlps */
7634 case 0x660f12: /* movlpd */
7635 case 0xf30f12: /* movsldup */
7636 case 0xf20f12: /* movddup */
7637 case 0x0f14: /* unpcklps */
7638 case 0x660f14: /* unpcklpd */
7639 case 0x0f15: /* unpckhps */
7640 case 0x660f15: /* unpckhpd */
7641 case 0x0f16: /* movhps */
7642 case 0x660f16: /* movhpd */
7643 case 0xf30f16: /* movshdup */
7644 case 0x0f28: /* movaps */
7645 case 0x660f28: /* movapd */
7646 case 0x0f2a: /* cvtpi2ps */
7647 case 0x660f2a: /* cvtpi2pd */
7648 case 0xf30f2a: /* cvtsi2ss */
7649 case 0xf20f2a: /* cvtsi2sd */
7650 case 0x0f2c: /* cvttps2pi */
7651 case 0x660f2c: /* cvttpd2pi */
7652 case 0x0f2d: /* cvtps2pi */
7653 case 0x660f2d: /* cvtpd2pi */
7654 case 0x660f3800: /* pshufb */
7655 case 0x660f3801: /* phaddw */
7656 case 0x660f3802: /* phaddd */
7657 case 0x660f3803: /* phaddsw */
7658 case 0x660f3804: /* pmaddubsw */
7659 case 0x660f3805: /* phsubw */
7660 case 0x660f3806: /* phsubd */
7661 case 0x660f3807: /* phsubsw */
7662 case 0x660f3808: /* psignb */
7663 case 0x660f3809: /* psignw */
7664 case 0x660f380a: /* psignd */
7665 case 0x660f380b: /* pmulhrsw */
7666 case 0x660f3810: /* pblendvb */
7667 case 0x660f3814: /* blendvps */
7668 case 0x660f3815: /* blendvpd */
7669 case 0x660f381c: /* pabsb */
7670 case 0x660f381d: /* pabsw */
7671 case 0x660f381e: /* pabsd */
7672 case 0x660f3820: /* pmovsxbw */
7673 case 0x660f3821: /* pmovsxbd */
7674 case 0x660f3822: /* pmovsxbq */
7675 case 0x660f3823: /* pmovsxwd */
7676 case 0x660f3824: /* pmovsxwq */
7677 case 0x660f3825: /* pmovsxdq */
7678 case 0x660f3828: /* pmuldq */
7679 case 0x660f3829: /* pcmpeqq */
7680 case 0x660f382a: /* movntdqa */
7681 case 0x660f3a08: /* roundps */
7682 case 0x660f3a09: /* roundpd */
7683 case 0x660f3a0a: /* roundss */
7684 case 0x660f3a0b: /* roundsd */
7685 case 0x660f3a0c: /* blendps */
7686 case 0x660f3a0d: /* blendpd */
7687 case 0x660f3a0e: /* pblendw */
7688 case 0x660f3a0f: /* palignr */
7689 case 0x660f3a20: /* pinsrb */
7690 case 0x660f3a21: /* insertps */
7691 case 0x660f3a22: /* pinsrd pinsrq */
7692 case 0x660f3a40: /* dpps */
7693 case 0x660f3a41: /* dppd */
7694 case 0x660f3a42: /* mpsadbw */
7695 case 0x660f3a60: /* pcmpestrm */
7696 case 0x660f3a61: /* pcmpestri */
7697 case 0x660f3a62: /* pcmpistrm */
7698 case 0x660f3a63: /* pcmpistri */
7699 case 0x0f51: /* sqrtps */
7700 case 0x660f51: /* sqrtpd */
7701 case 0xf20f51: /* sqrtsd */
7702 case 0xf30f51: /* sqrtss */
7703 case 0x0f52: /* rsqrtps */
7704 case 0xf30f52: /* rsqrtss */
7705 case 0x0f53: /* rcpps */
7706 case 0xf30f53: /* rcpss */
7707 case 0x0f54: /* andps */
7708 case 0x660f54: /* andpd */
7709 case 0x0f55: /* andnps */
7710 case 0x660f55: /* andnpd */
7711 case 0x0f56: /* orps */
7712 case 0x660f56: /* orpd */
7713 case 0x0f57: /* xorps */
7714 case 0x660f57: /* xorpd */
7715 case 0x0f58: /* addps */
7716 case 0x660f58: /* addpd */
7717 case 0xf20f58: /* addsd */
7718 case 0xf30f58: /* addss */
7719 case 0x0f59: /* mulps */
7720 case 0x660f59: /* mulpd */
7721 case 0xf20f59: /* mulsd */
7722 case 0xf30f59: /* mulss */
7723 case 0x0f5a: /* cvtps2pd */
7724 case 0x660f5a: /* cvtpd2ps */
7725 case 0xf20f5a: /* cvtsd2ss */
7726 case 0xf30f5a: /* cvtss2sd */
7727 case 0x0f5b: /* cvtdq2ps */
7728 case 0x660f5b: /* cvtps2dq */
7729 case 0xf30f5b: /* cvttps2dq */
7730 case 0x0f5c: /* subps */
7731 case 0x660f5c: /* subpd */
7732 case 0xf20f5c: /* subsd */
7733 case 0xf30f5c: /* subss */
7734 case 0x0f5d: /* minps */
7735 case 0x660f5d: /* minpd */
7736 case 0xf20f5d: /* minsd */
7737 case 0xf30f5d: /* minss */
7738 case 0x0f5e: /* divps */
7739 case 0x660f5e: /* divpd */
7740 case 0xf20f5e: /* divsd */
7741 case 0xf30f5e: /* divss */
7742 case 0x0f5f: /* maxps */
7743 case 0x660f5f: /* maxpd */
7744 case 0xf20f5f: /* maxsd */
7745 case 0xf30f5f: /* maxss */
7746 case 0x660f60: /* punpcklbw */
7747 case 0x660f61: /* punpcklwd */
7748 case 0x660f62: /* punpckldq */
7749 case 0x660f63: /* packsswb */
7750 case 0x660f64: /* pcmpgtb */
7751 case 0x660f65: /* pcmpgtw */
7752 case 0x660f66: /* pcmpgtd */
7753 case 0x660f67: /* packuswb */
7754 case 0x660f68: /* punpckhbw */
7755 case 0x660f69: /* punpckhwd */
7756 case 0x660f6a: /* punpckhdq */
7757 case 0x660f6b: /* packssdw */
7758 case 0x660f6c: /* punpcklqdq */
7759 case 0x660f6d: /* punpckhqdq */
7760 case 0x660f6e: /* movd */
7761 case 0x660f6f: /* movdqa */
7762 case 0xf30f6f: /* movdqu */
7763 case 0x660f70: /* pshufd */
7764 case 0xf20f70: /* pshuflw */
7765 case 0xf30f70: /* pshufhw */
7766 case 0x660f74: /* pcmpeqb */
7767 case 0x660f75: /* pcmpeqw */
7768 case 0x660f76: /* pcmpeqd */
7769 case 0x660f7c: /* haddpd */
7770 case 0xf20f7c: /* haddps */
7771 case 0x660f7d: /* hsubpd */
7772 case 0xf20f7d: /* hsubps */
7773 case 0xf30f7e: /* movq */
7774 case 0x0fc2: /* cmpps */
7775 case 0x660fc2: /* cmppd */
7776 case 0xf20fc2: /* cmpsd */
7777 case 0xf30fc2: /* cmpss */
7778 case 0x660fc4: /* pinsrw */
7779 case 0x0fc6: /* shufps */
7780 case 0x660fc6: /* shufpd */
7781 case 0x660fd0: /* addsubpd */
7782 case 0xf20fd0: /* addsubps */
7783 case 0x660fd1: /* psrlw */
7784 case 0x660fd2: /* psrld */
7785 case 0x660fd3: /* psrlq */
7786 case 0x660fd4: /* paddq */
7787 case 0x660fd5: /* pmullw */
7788 case 0xf30fd6: /* movq2dq */
7789 case 0x660fd8: /* psubusb */
7790 case 0x660fd9: /* psubusw */
7791 case 0x660fda: /* pminub */
7792 case 0x660fdb: /* pand */
7793 case 0x660fdc: /* paddusb */
7794 case 0x660fdd: /* paddusw */
7795 case 0x660fde: /* pmaxub */
7796 case 0x660fdf: /* pandn */
7797 case 0x660fe0: /* pavgb */
7798 case 0x660fe1: /* psraw */
7799 case 0x660fe2: /* psrad */
7800 case 0x660fe3: /* pavgw */
7801 case 0x660fe4: /* pmulhuw */
7802 case 0x660fe5: /* pmulhw */
7803 case 0x660fe6: /* cvttpd2dq */
7804 case 0xf20fe6: /* cvtpd2dq */
7805 case 0xf30fe6: /* cvtdq2pd */
7806 case 0x660fe8: /* psubsb */
7807 case 0x660fe9: /* psubsw */
7808 case 0x660fea: /* pminsw */
7809 case 0x660feb: /* por */
7810 case 0x660fec: /* paddsb */
7811 case 0x660fed: /* paddsw */
7812 case 0x660fee: /* pmaxsw */
7813 case 0x660fef: /* pxor */
7814 case 0xf20ff0: /* lddqu */
7815 case 0x660ff1: /* psllw */
7816 case 0x660ff2: /* pslld */
7817 case 0x660ff3: /* psllq */
7818 case 0x660ff4: /* pmuludq */
7819 case 0x660ff5: /* pmaddwd */
7820 case 0x660ff6: /* psadbw */
7821 case 0x660ff8: /* psubb */
7822 case 0x660ff9: /* psubw */
7823 case 0x660ffa: /* psubd */
7824 case 0x660ffb: /* psubq */
7825 case 0x660ffc: /* paddb */
7826 case 0x660ffd: /* paddw */
7827 case 0x660ffe: /* paddd */
7828 if (i386_record_modrm (&ir))
7829 return -1;
7830 ir.reg |= rex_r;
7831 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7832 goto no_support;
7833 record_full_arch_list_add_reg (ir.regcache,
7834 I387_XMM0_REGNUM (tdep) + ir.reg);
7835 if ((opcode & 0xfffffffc) == 0x660f3a60)
7836 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7837 break;
7838
7839 case 0x0f11: /* movups */
7840 case 0x660f11: /* movupd */
7841 case 0xf30f11: /* movss */
7842 case 0xf20f11: /* movsd */
7843 case 0x0f13: /* movlps */
7844 case 0x660f13: /* movlpd */
7845 case 0x0f17: /* movhps */
7846 case 0x660f17: /* movhpd */
7847 case 0x0f29: /* movaps */
7848 case 0x660f29: /* movapd */
7849 case 0x660f3a14: /* pextrb */
7850 case 0x660f3a15: /* pextrw */
7851 case 0x660f3a16: /* pextrd pextrq */
7852 case 0x660f3a17: /* extractps */
7853 case 0x660f7f: /* movdqa */
7854 case 0xf30f7f: /* movdqu */
7855 if (i386_record_modrm (&ir))
7856 return -1;
7857 if (ir.mod == 3)
7858 {
7859 if (opcode == 0x0f13 || opcode == 0x660f13
7860 || opcode == 0x0f17 || opcode == 0x660f17)
7861 goto no_support;
7862 ir.rm |= ir.rex_b;
7863 if (!i386_xmm_regnum_p (gdbarch,
7864 I387_XMM0_REGNUM (tdep) + ir.rm))
7865 goto no_support;
7866 record_full_arch_list_add_reg (ir.regcache,
7867 I387_XMM0_REGNUM (tdep) + ir.rm);
7868 }
7869 else
7870 {
7871 switch (opcode)
7872 {
7873 case 0x660f3a14:
7874 ir.ot = OT_BYTE;
7875 break;
7876 case 0x660f3a15:
7877 ir.ot = OT_WORD;
7878 break;
7879 case 0x660f3a16:
7880 ir.ot = OT_LONG;
7881 break;
7882 case 0x660f3a17:
7883 ir.ot = OT_QUAD;
7884 break;
7885 default:
7886 ir.ot = OT_DQUAD;
7887 break;
7888 }
7889 if (i386_record_lea_modrm (&ir))
7890 return -1;
7891 }
7892 break;
7893
7894 case 0x0f2b: /* movntps */
7895 case 0x660f2b: /* movntpd */
7896 case 0x0fe7: /* movntq */
7897 case 0x660fe7: /* movntdq */
7898 if (ir.mod == 3)
7899 goto no_support;
7900 if (opcode == 0x0fe7)
7901 ir.ot = OT_QUAD;
7902 else
7903 ir.ot = OT_DQUAD;
7904 if (i386_record_lea_modrm (&ir))
7905 return -1;
7906 break;
7907
7908 case 0xf30f2c: /* cvttss2si */
7909 case 0xf20f2c: /* cvttsd2si */
7910 case 0xf30f2d: /* cvtss2si */
7911 case 0xf20f2d: /* cvtsd2si */
7912 case 0xf20f38f0: /* crc32 */
7913 case 0xf20f38f1: /* crc32 */
7914 case 0x0f50: /* movmskps */
7915 case 0x660f50: /* movmskpd */
7916 case 0x0fc5: /* pextrw */
7917 case 0x660fc5: /* pextrw */
7918 case 0x0fd7: /* pmovmskb */
7919 case 0x660fd7: /* pmovmskb */
7920 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7921 break;
7922
7923 case 0x0f3800: /* pshufb */
7924 case 0x0f3801: /* phaddw */
7925 case 0x0f3802: /* phaddd */
7926 case 0x0f3803: /* phaddsw */
7927 case 0x0f3804: /* pmaddubsw */
7928 case 0x0f3805: /* phsubw */
7929 case 0x0f3806: /* phsubd */
7930 case 0x0f3807: /* phsubsw */
7931 case 0x0f3808: /* psignb */
7932 case 0x0f3809: /* psignw */
7933 case 0x0f380a: /* psignd */
7934 case 0x0f380b: /* pmulhrsw */
7935 case 0x0f381c: /* pabsb */
7936 case 0x0f381d: /* pabsw */
7937 case 0x0f381e: /* pabsd */
7938 case 0x0f382b: /* packusdw */
7939 case 0x0f3830: /* pmovzxbw */
7940 case 0x0f3831: /* pmovzxbd */
7941 case 0x0f3832: /* pmovzxbq */
7942 case 0x0f3833: /* pmovzxwd */
7943 case 0x0f3834: /* pmovzxwq */
7944 case 0x0f3835: /* pmovzxdq */
7945 case 0x0f3837: /* pcmpgtq */
7946 case 0x0f3838: /* pminsb */
7947 case 0x0f3839: /* pminsd */
7948 case 0x0f383a: /* pminuw */
7949 case 0x0f383b: /* pminud */
7950 case 0x0f383c: /* pmaxsb */
7951 case 0x0f383d: /* pmaxsd */
7952 case 0x0f383e: /* pmaxuw */
7953 case 0x0f383f: /* pmaxud */
7954 case 0x0f3840: /* pmulld */
7955 case 0x0f3841: /* phminposuw */
7956 case 0x0f3a0f: /* palignr */
7957 case 0x0f60: /* punpcklbw */
7958 case 0x0f61: /* punpcklwd */
7959 case 0x0f62: /* punpckldq */
7960 case 0x0f63: /* packsswb */
7961 case 0x0f64: /* pcmpgtb */
7962 case 0x0f65: /* pcmpgtw */
7963 case 0x0f66: /* pcmpgtd */
7964 case 0x0f67: /* packuswb */
7965 case 0x0f68: /* punpckhbw */
7966 case 0x0f69: /* punpckhwd */
7967 case 0x0f6a: /* punpckhdq */
7968 case 0x0f6b: /* packssdw */
7969 case 0x0f6e: /* movd */
7970 case 0x0f6f: /* movq */
7971 case 0x0f70: /* pshufw */
7972 case 0x0f74: /* pcmpeqb */
7973 case 0x0f75: /* pcmpeqw */
7974 case 0x0f76: /* pcmpeqd */
7975 case 0x0fc4: /* pinsrw */
7976 case 0x0fd1: /* psrlw */
7977 case 0x0fd2: /* psrld */
7978 case 0x0fd3: /* psrlq */
7979 case 0x0fd4: /* paddq */
7980 case 0x0fd5: /* pmullw */
7981 case 0xf20fd6: /* movdq2q */
7982 case 0x0fd8: /* psubusb */
7983 case 0x0fd9: /* psubusw */
7984 case 0x0fda: /* pminub */
7985 case 0x0fdb: /* pand */
7986 case 0x0fdc: /* paddusb */
7987 case 0x0fdd: /* paddusw */
7988 case 0x0fde: /* pmaxub */
7989 case 0x0fdf: /* pandn */
7990 case 0x0fe0: /* pavgb */
7991 case 0x0fe1: /* psraw */
7992 case 0x0fe2: /* psrad */
7993 case 0x0fe3: /* pavgw */
7994 case 0x0fe4: /* pmulhuw */
7995 case 0x0fe5: /* pmulhw */
7996 case 0x0fe8: /* psubsb */
7997 case 0x0fe9: /* psubsw */
7998 case 0x0fea: /* pminsw */
7999 case 0x0feb: /* por */
8000 case 0x0fec: /* paddsb */
8001 case 0x0fed: /* paddsw */
8002 case 0x0fee: /* pmaxsw */
8003 case 0x0fef: /* pxor */
8004 case 0x0ff1: /* psllw */
8005 case 0x0ff2: /* pslld */
8006 case 0x0ff3: /* psllq */
8007 case 0x0ff4: /* pmuludq */
8008 case 0x0ff5: /* pmaddwd */
8009 case 0x0ff6: /* psadbw */
8010 case 0x0ff8: /* psubb */
8011 case 0x0ff9: /* psubw */
8012 case 0x0ffa: /* psubd */
8013 case 0x0ffb: /* psubq */
8014 case 0x0ffc: /* paddb */
8015 case 0x0ffd: /* paddw */
8016 case 0x0ffe: /* paddd */
8017 if (i386_record_modrm (&ir))
8018 return -1;
8019 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
8020 goto no_support;
8021 record_full_arch_list_add_reg (ir.regcache,
8022 I387_MM0_REGNUM (tdep) + ir.reg);
8023 break;
8024
8025 case 0x0f71: /* psllw */
8026 case 0x0f72: /* pslld */
8027 case 0x0f73: /* psllq */
8028 if (i386_record_modrm (&ir))
8029 return -1;
8030 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8031 goto no_support;
8032 record_full_arch_list_add_reg (ir.regcache,
8033 I387_MM0_REGNUM (tdep) + ir.rm);
8034 break;
8035
8036 case 0x660f71: /* psllw */
8037 case 0x660f72: /* pslld */
8038 case 0x660f73: /* psllq */
8039 if (i386_record_modrm (&ir))
8040 return -1;
8041 ir.rm |= ir.rex_b;
8042 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
8043 goto no_support;
8044 record_full_arch_list_add_reg (ir.regcache,
8045 I387_XMM0_REGNUM (tdep) + ir.rm);
8046 break;
8047
8048 case 0x0f7e: /* movd */
8049 case 0x660f7e: /* movd */
8050 if (i386_record_modrm (&ir))
8051 return -1;
8052 if (ir.mod == 3)
8053 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8054 else
8055 {
8056 if (ir.dflag == 2)
8057 ir.ot = OT_QUAD;
8058 else
8059 ir.ot = OT_LONG;
8060 if (i386_record_lea_modrm (&ir))
8061 return -1;
8062 }
8063 break;
8064
8065 case 0x0f7f: /* movq */
8066 if (i386_record_modrm (&ir))
8067 return -1;
8068 if (ir.mod == 3)
8069 {
8070 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8071 goto no_support;
8072 record_full_arch_list_add_reg (ir.regcache,
8073 I387_MM0_REGNUM (tdep) + ir.rm);
8074 }
8075 else
8076 {
8077 ir.ot = OT_QUAD;
8078 if (i386_record_lea_modrm (&ir))
8079 return -1;
8080 }
8081 break;
8082
8083 case 0xf30fb8: /* popcnt */
8084 if (i386_record_modrm (&ir))
8085 return -1;
8086 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8087 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8088 break;
8089
8090 case 0x660fd6: /* movq */
8091 if (i386_record_modrm (&ir))
8092 return -1;
8093 if (ir.mod == 3)
8094 {
8095 ir.rm |= ir.rex_b;
8096 if (!i386_xmm_regnum_p (gdbarch,
8097 I387_XMM0_REGNUM (tdep) + ir.rm))
8098 goto no_support;
8099 record_full_arch_list_add_reg (ir.regcache,
8100 I387_XMM0_REGNUM (tdep) + ir.rm);
8101 }
8102 else
8103 {
8104 ir.ot = OT_QUAD;
8105 if (i386_record_lea_modrm (&ir))
8106 return -1;
8107 }
8108 break;
8109
8110 case 0x660f3817: /* ptest */
8111 case 0x0f2e: /* ucomiss */
8112 case 0x660f2e: /* ucomisd */
8113 case 0x0f2f: /* comiss */
8114 case 0x660f2f: /* comisd */
8115 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8116 break;
8117
8118 case 0x0ff7: /* maskmovq */
8119 regcache_raw_read_unsigned (ir.regcache,
8120 ir.regmap[X86_RECORD_REDI_REGNUM],
8121 &addr);
8122 if (record_full_arch_list_add_mem (addr, 64))
8123 return -1;
8124 break;
8125
8126 case 0x660ff7: /* maskmovdqu */
8127 regcache_raw_read_unsigned (ir.regcache,
8128 ir.regmap[X86_RECORD_REDI_REGNUM],
8129 &addr);
8130 if (record_full_arch_list_add_mem (addr, 128))
8131 return -1;
8132 break;
8133
8134 default:
8135 goto no_support;
8136 break;
8137 }
8138 break;
8139
8140 default:
8141 goto no_support;
8142 break;
8143 }
8144
8145 /* In the future, maybe still need to deal with need_dasm. */
8146 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8147 if (record_full_arch_list_add_end ())
8148 return -1;
8149
8150 return 0;
8151
8152 no_support:
8153 gdb_printf (gdb_stderr,
8154 _("Process record does not support instruction 0x%02x "
8155 "at address %s.\n"),
8156 (unsigned int) (opcode),
8157 paddress (gdbarch, ir.orig_addr));
8158 return -1;
8159 }
8160
8161 static const int i386_record_regmap[] =
8162 {
8163 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8164 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8165 0, 0, 0, 0, 0, 0, 0, 0,
8166 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8167 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8168 };
8169
8170 /* Check that the given address appears suitable for a fast
8171 tracepoint, which on x86-64 means that we need an instruction of at
8172 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8173 jump and not have to worry about program jumps to an address in the
8174 middle of the tracepoint jump. On x86, it may be possible to use
8175 4-byte jumps with a 2-byte offset to a trampoline located in the
8176 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8177 of instruction to replace, and 0 if not, plus an explanatory
8178 string. */
8179
8180 static int
8181 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8182 std::string *msg)
8183 {
8184 int len, jumplen;
8185
8186 /* Ask the target for the minimum instruction length supported. */
8187 jumplen = target_get_min_fast_tracepoint_insn_len ();
8188
8189 if (jumplen < 0)
8190 {
8191 /* If the target does not support the get_min_fast_tracepoint_insn_len
8192 operation, assume that fast tracepoints will always be implemented
8193 using 4-byte relative jumps on both x86 and x86-64. */
8194 jumplen = 5;
8195 }
8196 else if (jumplen == 0)
8197 {
8198 /* If the target does support get_min_fast_tracepoint_insn_len but
8199 returns zero, then the IPA has not loaded yet. In this case,
8200 we optimistically assume that truncated 2-byte relative jumps
8201 will be available on x86, and compensate later if this assumption
8202 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8203 jumps will always be used. */
8204 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8205 }
8206
8207 /* Check for fit. */
8208 len = gdb_insn_length (gdbarch, addr);
8209
8210 if (len < jumplen)
8211 {
8212 /* Return a bit of target-specific detail to add to the caller's
8213 generic failure message. */
8214 if (msg)
8215 *msg = string_printf (_("; instruction is only %d bytes long, "
8216 "need at least %d bytes for the jump"),
8217 len, jumplen);
8218 return 0;
8219 }
8220 else
8221 {
8222 if (msg)
8223 msg->clear ();
8224 return 1;
8225 }
8226 }
8227
8228 /* Return a floating-point format for a floating-point variable of
8229 length LEN in bits. If non-NULL, NAME is the name of its type.
8230 If no suitable type is found, return NULL. */
8231
8232 static const struct floatformat **
8233 i386_floatformat_for_type (struct gdbarch *gdbarch,
8234 const char *name, int len)
8235 {
8236 if (len == 128 && name)
8237 if (strcmp (name, "__float128") == 0
8238 || strcmp (name, "_Float128") == 0
8239 || strcmp (name, "complex _Float128") == 0
8240 || strcmp (name, "complex(kind=16)") == 0
8241 || strcmp (name, "complex*32") == 0
8242 || strcmp (name, "COMPLEX*32") == 0
8243 || strcmp (name, "quad complex") == 0
8244 || strcmp (name, "real(kind=16)") == 0
8245 || strcmp (name, "real*16") == 0
8246 || strcmp (name, "REAL*16") == 0)
8247 return floatformats_ieee_quad;
8248
8249 return default_floatformat_for_type (gdbarch, name, len);
8250 }
8251
8252 static int
8253 i386_validate_tdesc_p (i386_gdbarch_tdep *tdep,
8254 struct tdesc_arch_data *tdesc_data)
8255 {
8256 const struct target_desc *tdesc = tdep->tdesc;
8257 const struct tdesc_feature *feature_core;
8258
8259 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8260 *feature_avx512, *feature_pkeys, *feature_segments;
8261 int i, num_regs, valid_p;
8262
8263 if (! tdesc_has_registers (tdesc))
8264 return 0;
8265
8266 /* Get core registers. */
8267 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8268 if (feature_core == NULL)
8269 return 0;
8270
8271 /* Get SSE registers. */
8272 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8273
8274 /* Try AVX registers. */
8275 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8276
8277 /* Try MPX registers. */
8278 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8279
8280 /* Try AVX512 registers. */
8281 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8282
8283 /* Try segment base registers. */
8284 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8285
8286 /* Try PKEYS */
8287 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8288
8289 valid_p = 1;
8290
8291 /* The XCR0 bits. */
8292 if (feature_avx512)
8293 {
8294 /* AVX512 register description requires AVX register description. */
8295 if (!feature_avx)
8296 return 0;
8297
8298 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8299
8300 /* It may have been set by OSABI initialization function. */
8301 if (tdep->k0_regnum < 0)
8302 {
8303 tdep->k_register_names = i386_k_names;
8304 tdep->k0_regnum = I386_K0_REGNUM;
8305 }
8306
8307 for (i = 0; i < I387_NUM_K_REGS; i++)
8308 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8309 tdep->k0_regnum + i,
8310 i386_k_names[i]);
8311
8312 if (tdep->num_zmm_regs == 0)
8313 {
8314 tdep->zmmh_register_names = i386_zmmh_names;
8315 tdep->num_zmm_regs = 8;
8316 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8317 }
8318
8319 for (i = 0; i < tdep->num_zmm_regs; i++)
8320 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8321 tdep->zmm0h_regnum + i,
8322 tdep->zmmh_register_names[i]);
8323
8324 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8325 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8326 tdep->xmm16_regnum + i,
8327 tdep->xmm_avx512_register_names[i]);
8328
8329 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8330 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8331 tdep->ymm16h_regnum + i,
8332 tdep->ymm16h_register_names[i]);
8333 }
8334 if (feature_avx)
8335 {
8336 /* AVX register description requires SSE register description. */
8337 if (!feature_sse)
8338 return 0;
8339
8340 if (!feature_avx512)
8341 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8342
8343 /* It may have been set by OSABI initialization function. */
8344 if (tdep->num_ymm_regs == 0)
8345 {
8346 tdep->ymmh_register_names = i386_ymmh_names;
8347 tdep->num_ymm_regs = 8;
8348 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8349 }
8350
8351 for (i = 0; i < tdep->num_ymm_regs; i++)
8352 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8353 tdep->ymm0h_regnum + i,
8354 tdep->ymmh_register_names[i]);
8355 }
8356 else if (feature_sse)
8357 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8358 else
8359 {
8360 tdep->xcr0 = X86_XSTATE_X87_MASK;
8361 tdep->num_xmm_regs = 0;
8362 }
8363
8364 num_regs = tdep->num_core_regs;
8365 for (i = 0; i < num_regs; i++)
8366 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8367 tdep->register_names[i]);
8368
8369 if (feature_sse)
8370 {
8371 /* Need to include %mxcsr, so add one. */
8372 num_regs += tdep->num_xmm_regs + 1;
8373 for (; i < num_regs; i++)
8374 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8375 tdep->register_names[i]);
8376 }
8377
8378 if (feature_mpx)
8379 {
8380 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8381
8382 if (tdep->bnd0r_regnum < 0)
8383 {
8384 tdep->mpx_register_names = i386_mpx_names;
8385 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8386 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8387 }
8388
8389 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8390 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8391 I387_BND0R_REGNUM (tdep) + i,
8392 tdep->mpx_register_names[i]);
8393 }
8394
8395 if (feature_segments)
8396 {
8397 if (tdep->fsbase_regnum < 0)
8398 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8399 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8400 tdep->fsbase_regnum, "fs_base");
8401 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8402 tdep->fsbase_regnum + 1, "gs_base");
8403 }
8404
8405 if (feature_pkeys)
8406 {
8407 tdep->xcr0 |= X86_XSTATE_PKRU;
8408 if (tdep->pkru_regnum < 0)
8409 {
8410 tdep->pkeys_register_names = i386_pkeys_names;
8411 tdep->pkru_regnum = I386_PKRU_REGNUM;
8412 tdep->num_pkeys_regs = 1;
8413 }
8414
8415 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8416 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8417 I387_PKRU_REGNUM (tdep) + i,
8418 tdep->pkeys_register_names[i]);
8419 }
8420
8421 return valid_p;
8422 }
8423
8424 \f
8425
8426 /* Implement the type_align gdbarch function. */
8427
8428 static ULONGEST
8429 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8430 {
8431 type = check_typedef (type);
8432
8433 if (gdbarch_ptr_bit (gdbarch) == 32)
8434 {
8435 if ((type->code () == TYPE_CODE_INT
8436 || type->code () == TYPE_CODE_FLT)
8437 && type->length () > 4)
8438 return 4;
8439
8440 /* Handle x86's funny long double. */
8441 if (type->code () == TYPE_CODE_FLT
8442 && gdbarch_long_double_bit (gdbarch) == type->length () * 8)
8443 return 4;
8444 }
8445
8446 return 0;
8447 }
8448
8449 \f
8450 /* Note: This is called for both i386 and amd64. */
8451
8452 static struct gdbarch *
8453 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8454 {
8455 const struct target_desc *tdesc;
8456 int mm0_regnum;
8457 int ymm0_regnum;
8458 int bnd0_regnum;
8459 int num_bnd_cooked;
8460
8461 /* If there is already a candidate, use it. */
8462 arches = gdbarch_list_lookup_by_info (arches, &info);
8463 if (arches != NULL)
8464 return arches->gdbarch;
8465
8466 /* Allocate space for the new architecture. Assume i386 for now. */
8467 gdbarch *gdbarch
8468 = gdbarch_alloc (&info, gdbarch_tdep_up (new i386_gdbarch_tdep));
8469 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
8470
8471 /* General-purpose registers. */
8472 tdep->gregset_reg_offset = NULL;
8473 tdep->gregset_num_regs = I386_NUM_GREGS;
8474 tdep->sizeof_gregset = 0;
8475
8476 /* Floating-point registers. */
8477 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8478 tdep->fpregset = &i386_fpregset;
8479
8480 /* The default settings include the FPU registers, the MMX registers
8481 and the SSE registers. This can be overridden for a specific ABI
8482 by adjusting the members `st0_regnum', `mm0_regnum' and
8483 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8484 will show up in the output of "info all-registers". */
8485
8486 tdep->st0_regnum = I386_ST0_REGNUM;
8487
8488 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8489 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8490
8491 tdep->jb_pc_offset = -1;
8492 tdep->struct_return = pcc_struct_return;
8493 tdep->sigtramp_start = 0;
8494 tdep->sigtramp_end = 0;
8495 tdep->sigtramp_p = i386_sigtramp_p;
8496 tdep->sigcontext_addr = NULL;
8497 tdep->sc_reg_offset = NULL;
8498 tdep->sc_pc_offset = -1;
8499 tdep->sc_sp_offset = -1;
8500
8501 tdep->xsave_xcr0_offset = -1;
8502
8503 tdep->record_regmap = i386_record_regmap;
8504
8505 set_gdbarch_type_align (gdbarch, i386_type_align);
8506
8507 /* The format used for `long double' on almost all i386 targets is
8508 the i387 extended floating-point format. In fact, of all targets
8509 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8510 on having a `long double' that's not `long' at all. */
8511 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8512
8513 /* Although the i387 extended floating-point has only 80 significant
8514 bits, a `long double' actually takes up 96, probably to enforce
8515 alignment. */
8516 set_gdbarch_long_double_bit (gdbarch, 96);
8517
8518 /* Support of bfloat16 format. */
8519 set_gdbarch_bfloat16_format (gdbarch, floatformats_bfloat16);
8520
8521 /* Support for floating-point data type variants. */
8522 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8523
8524 /* Register numbers of various important registers. */
8525 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8526 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8527 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8528 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8529
8530 /* NOTE: kettenis/20040418: GCC does have two possible register
8531 numbering schemes on the i386: dbx and SVR4. These schemes
8532 differ in how they number %ebp, %esp, %eflags, and the
8533 floating-point registers, and are implemented by the arrays
8534 dbx_register_map[] and svr4_dbx_register_map in
8535 gcc/config/i386.c. GCC also defines a third numbering scheme in
8536 gcc/config/i386.c, which it designates as the "default" register
8537 map used in 64bit mode. This last register numbering scheme is
8538 implemented in dbx64_register_map, and is used for AMD64; see
8539 amd64-tdep.c.
8540
8541 Currently, each GCC i386 target always uses the same register
8542 numbering scheme across all its supported debugging formats
8543 i.e. SDB (COFF), stabs and DWARF 2. This is because
8544 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8545 DBX_REGISTER_NUMBER macro which is defined by each target's
8546 respective config header in a manner independent of the requested
8547 output debugging format.
8548
8549 This does not match the arrangement below, which presumes that
8550 the SDB and stabs numbering schemes differ from the DWARF and
8551 DWARF 2 ones. The reason for this arrangement is that it is
8552 likely to get the numbering scheme for the target's
8553 default/native debug format right. For targets where GCC is the
8554 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8555 targets where the native toolchain uses a different numbering
8556 scheme for a particular debug format (stabs-in-ELF on Solaris)
8557 the defaults below will have to be overridden, like
8558 i386_elf_init_abi() does. */
8559
8560 /* Use the dbx register numbering scheme for stabs and COFF. */
8561 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8562 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8563
8564 /* Use the SVR4 register numbering scheme for DWARF 2. */
8565 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8566
8567 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8568 be in use on any of the supported i386 targets. */
8569
8570 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8571
8572 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8573
8574 /* Call dummy code. */
8575 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8576 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8577 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8578 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8579
8580 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8581 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8582 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8583
8584 set_gdbarch_return_value_as_value (gdbarch, i386_return_value);
8585
8586 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8587
8588 /* Stack grows downward. */
8589 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8590
8591 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8592 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8593
8594 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8595 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8596
8597 set_gdbarch_frame_args_skip (gdbarch, 8);
8598
8599 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8600
8601 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8602
8603 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8604
8605 /* Add the i386 register groups. */
8606 i386_add_reggroups (gdbarch);
8607 tdep->register_reggroup_p = i386_register_reggroup_p;
8608
8609 /* Helper for function argument information. */
8610 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8611
8612 /* Hook the function epilogue frame unwinder. This unwinder is
8613 appended to the list first, so that it supercedes the DWARF
8614 unwinder in function epilogues (where the DWARF unwinder
8615 currently fails). */
8616 if (info.bfd_arch_info->bits_per_word == 32)
8617 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8618
8619 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8620 to the list before the prologue-based unwinders, so that DWARF
8621 CFI info will be used if it is available. */
8622 dwarf2_append_unwinders (gdbarch);
8623
8624 frame_base_set_default (gdbarch, &i386_frame_base);
8625
8626 /* Pseudo registers may be changed by amd64_init_abi. */
8627 set_gdbarch_pseudo_register_read_value (gdbarch,
8628 i386_pseudo_register_read_value);
8629 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8630 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8631 i386_ax_pseudo_register_collect);
8632
8633 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8634 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8635
8636 /* Override the normal target description method to make the AVX
8637 upper halves anonymous. */
8638 set_gdbarch_register_name (gdbarch, i386_register_name);
8639
8640 /* Even though the default ABI only includes general-purpose registers,
8641 floating-point registers and the SSE registers, we have to leave a
8642 gap for the upper AVX, MPX and AVX512 registers. */
8643 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
8644
8645 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8646
8647 /* Get the x86 target description from INFO. */
8648 tdesc = info.target_desc;
8649 if (! tdesc_has_registers (tdesc))
8650 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
8651 tdep->tdesc = tdesc;
8652
8653 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8654 tdep->register_names = i386_register_names;
8655
8656 /* No upper YMM registers. */
8657 tdep->ymmh_register_names = NULL;
8658 tdep->ymm0h_regnum = -1;
8659
8660 /* No upper ZMM registers. */
8661 tdep->zmmh_register_names = NULL;
8662 tdep->zmm0h_regnum = -1;
8663
8664 /* No high XMM registers. */
8665 tdep->xmm_avx512_register_names = NULL;
8666 tdep->xmm16_regnum = -1;
8667
8668 /* No upper YMM16-31 registers. */
8669 tdep->ymm16h_register_names = NULL;
8670 tdep->ymm16h_regnum = -1;
8671
8672 tdep->num_byte_regs = 8;
8673 tdep->num_word_regs = 8;
8674 tdep->num_dword_regs = 0;
8675 tdep->num_mmx_regs = 8;
8676 tdep->num_ymm_regs = 0;
8677
8678 /* No MPX registers. */
8679 tdep->bnd0r_regnum = -1;
8680 tdep->bndcfgu_regnum = -1;
8681
8682 /* No AVX512 registers. */
8683 tdep->k0_regnum = -1;
8684 tdep->num_zmm_regs = 0;
8685 tdep->num_ymm_avx512_regs = 0;
8686 tdep->num_xmm_avx512_regs = 0;
8687
8688 /* No PKEYS registers */
8689 tdep->pkru_regnum = -1;
8690 tdep->num_pkeys_regs = 0;
8691
8692 /* No segment base registers. */
8693 tdep->fsbase_regnum = -1;
8694
8695 tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();
8696
8697 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8698
8699 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8700
8701 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8702 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8703 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8704
8705 /* Hook in ABI-specific overrides, if they have been registered.
8706 Note: If INFO specifies a 64 bit arch, this is where we turn
8707 a 32-bit i386 into a 64-bit amd64. */
8708 info.tdesc_data = tdesc_data.get ();
8709 gdbarch_init_osabi (info, gdbarch);
8710
8711 if (!i386_validate_tdesc_p (tdep, tdesc_data.get ()))
8712 {
8713 gdbarch_free (gdbarch);
8714 return NULL;
8715 }
8716
8717 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8718
8719 /* Wire in pseudo registers. Number of pseudo registers may be
8720 changed. */
8721 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8722 + tdep->num_word_regs
8723 + tdep->num_dword_regs
8724 + tdep->num_mmx_regs
8725 + tdep->num_ymm_regs
8726 + num_bnd_cooked
8727 + tdep->num_ymm_avx512_regs
8728 + tdep->num_zmm_regs));
8729
8730 /* Target description may be changed. */
8731 tdesc = tdep->tdesc;
8732
8733 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
8734
8735 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8736 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8737
8738 /* Make %al the first pseudo-register. */
8739 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8740 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8741
8742 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8743 if (tdep->num_dword_regs)
8744 {
8745 /* Support dword pseudo-register if it hasn't been disabled. */
8746 tdep->eax_regnum = ymm0_regnum;
8747 ymm0_regnum += tdep->num_dword_regs;
8748 }
8749 else
8750 tdep->eax_regnum = -1;
8751
8752 mm0_regnum = ymm0_regnum;
8753 if (tdep->num_ymm_regs)
8754 {
8755 /* Support YMM pseudo-register if it is available. */
8756 tdep->ymm0_regnum = ymm0_regnum;
8757 mm0_regnum += tdep->num_ymm_regs;
8758 }
8759 else
8760 tdep->ymm0_regnum = -1;
8761
8762 if (tdep->num_ymm_avx512_regs)
8763 {
8764 /* Support YMM16-31 pseudo registers if available. */
8765 tdep->ymm16_regnum = mm0_regnum;
8766 mm0_regnum += tdep->num_ymm_avx512_regs;
8767 }
8768 else
8769 tdep->ymm16_regnum = -1;
8770
8771 if (tdep->num_zmm_regs)
8772 {
8773 /* Support ZMM pseudo-register if it is available. */
8774 tdep->zmm0_regnum = mm0_regnum;
8775 mm0_regnum += tdep->num_zmm_regs;
8776 }
8777 else
8778 tdep->zmm0_regnum = -1;
8779
8780 bnd0_regnum = mm0_regnum;
8781 if (tdep->num_mmx_regs != 0)
8782 {
8783 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8784 tdep->mm0_regnum = mm0_regnum;
8785 bnd0_regnum += tdep->num_mmx_regs;
8786 }
8787 else
8788 tdep->mm0_regnum = -1;
8789
8790 if (tdep->bnd0r_regnum > 0)
8791 tdep->bnd0_regnum = bnd0_regnum;
8792 else
8793 tdep-> bnd0_regnum = -1;
8794
8795 /* Hook in the legacy prologue-based unwinders last (fallback). */
8796 if (info.bfd_arch_info->bits_per_word == 32)
8797 {
8798 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8799 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8800 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8801 }
8802
8803 /* If we have a register mapping, enable the generic core file
8804 support, unless it has already been enabled. */
8805 if (tdep->gregset_reg_offset
8806 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8807 set_gdbarch_iterate_over_regset_sections
8808 (gdbarch, i386_iterate_over_regset_sections);
8809
8810 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8811 i386_fast_tracepoint_valid_at);
8812
8813 return gdbarch;
8814 }
8815
8816 \f
8817
8818 /* Return the target description for a specified XSAVE feature mask. */
8819
8820 const struct target_desc *
8821 i386_target_description (uint64_t xcr0, bool segments)
8822 {
8823 static target_desc *i386_tdescs \
8824 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8825 target_desc **tdesc;
8826
8827 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8828 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8829 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8830 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8831 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8832 [segments ? 1 : 0];
8833
8834 if (*tdesc == NULL)
8835 *tdesc = i386_create_target_description (xcr0, false, segments);
8836
8837 return *tdesc;
8838 }
8839
8840 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8841
8842 /* Find the bound directory base address. */
8843
8844 static unsigned long
8845 i386_mpx_bd_base (void)
8846 {
8847 struct regcache *rcache;
8848 ULONGEST ret;
8849 enum register_status regstatus;
8850
8851 rcache = get_current_regcache ();
8852 gdbarch *arch = rcache->arch ();
8853 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
8854
8855 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8856
8857 if (regstatus != REG_VALID)
8858 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8859
8860 return ret & MPX_BASE_MASK;
8861 }
8862
8863 int
8864 i386_mpx_enabled (void)
8865 {
8866 gdbarch *arch = get_current_arch ();
8867 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
8868 const struct target_desc *tdesc = tdep->tdesc;
8869
8870 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8871 }
8872
8873 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8874 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8875 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8876 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8877
8878 /* Find the bound table entry given the pointer location and the base
8879 address of the table. */
8880
8881 static CORE_ADDR
8882 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8883 {
8884 CORE_ADDR offset1;
8885 CORE_ADDR offset2;
8886 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8887 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8888 CORE_ADDR bd_entry_addr;
8889 CORE_ADDR bt_addr;
8890 CORE_ADDR bd_entry;
8891 struct gdbarch *gdbarch = get_current_arch ();
8892 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8893
8894
8895 if (gdbarch_ptr_bit (gdbarch) == 64)
8896 {
8897 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8898 bd_ptr_r_shift = 20;
8899 bd_ptr_l_shift = 3;
8900 bt_select_r_shift = 3;
8901 bt_select_l_shift = 5;
8902 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8903
8904 if ( sizeof (CORE_ADDR) == 4)
8905 error (_("bound table examination not supported\
8906 for 64-bit process with 32-bit GDB"));
8907 }
8908 else
8909 {
8910 mpx_bd_mask = MPX_BD_MASK_32;
8911 bd_ptr_r_shift = 12;
8912 bd_ptr_l_shift = 2;
8913 bt_select_r_shift = 2;
8914 bt_select_l_shift = 4;
8915 bt_mask = MPX_BT_MASK_32;
8916 }
8917
8918 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8919 bd_entry_addr = bd_base + offset1;
8920 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8921
8922 if ((bd_entry & 0x1) == 0)
8923 error (_("Invalid bounds directory entry at %s."),
8924 paddress (get_current_arch (), bd_entry_addr));
8925
8926 /* Clearing status bit. */
8927 bd_entry--;
8928 bt_addr = bd_entry & ~bt_select_r_shift;
8929 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8930
8931 return bt_addr + offset2;
8932 }
8933
8934 /* Print routine for the mpx bounds. */
8935
8936 static void
8937 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8938 {
8939 struct ui_out *uiout = current_uiout;
8940 LONGEST size;
8941 struct gdbarch *gdbarch = get_current_arch ();
8942 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8943 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8944
8945 if (bounds_in_map == 1)
8946 {
8947 uiout->text ("Null bounds on map:");
8948 uiout->text (" pointer value = ");
8949 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8950 uiout->text (".");
8951 uiout->text ("\n");
8952 }
8953 else
8954 {
8955 uiout->text ("{lbound = ");
8956 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8957 uiout->text (", ubound = ");
8958
8959 /* The upper bound is stored in 1's complement. */
8960 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8961 uiout->text ("}: pointer value = ");
8962 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8963
8964 if (gdbarch_ptr_bit (gdbarch) == 64)
8965 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8966 else
8967 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8968
8969 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8970 -1 represents in this sense full memory access, and there is no need
8971 one to the size. */
8972
8973 size = (size > -1 ? size + 1 : size);
8974 uiout->text (", size = ");
8975 uiout->field_string ("size", plongest (size));
8976
8977 uiout->text (", metadata = ");
8978 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8979 uiout->text ("\n");
8980 }
8981 }
8982
8983 /* Implement the command "show mpx bound". */
8984
8985 static void
8986 i386_mpx_info_bounds (const char *args, int from_tty)
8987 {
8988 CORE_ADDR bd_base = 0;
8989 CORE_ADDR addr;
8990 CORE_ADDR bt_entry_addr = 0;
8991 CORE_ADDR bt_entry[4];
8992 int i;
8993 struct gdbarch *gdbarch = get_current_arch ();
8994 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8995
8996 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8997 || !i386_mpx_enabled ())
8998 {
8999 gdb_printf (_("Intel Memory Protection Extensions not "
9000 "supported on this target.\n"));
9001 return;
9002 }
9003
9004 if (args == NULL)
9005 {
9006 gdb_printf (_("Address of pointer variable expected.\n"));
9007 return;
9008 }
9009
9010 addr = parse_and_eval_address (args);
9011
9012 bd_base = i386_mpx_bd_base ();
9013 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9014
9015 memset (bt_entry, 0, sizeof (bt_entry));
9016
9017 for (i = 0; i < 4; i++)
9018 bt_entry[i] = read_memory_typed_address (bt_entry_addr
9019 + i * data_ptr_type->length (),
9020 data_ptr_type);
9021
9022 i386_mpx_print_bounds (bt_entry);
9023 }
9024
9025 /* Implement the command "set mpx bound". */
9026
9027 static void
9028 i386_mpx_set_bounds (const char *args, int from_tty)
9029 {
9030 CORE_ADDR bd_base = 0;
9031 CORE_ADDR addr, lower, upper;
9032 CORE_ADDR bt_entry_addr = 0;
9033 CORE_ADDR bt_entry[2];
9034 const char *input = args;
9035 int i;
9036 struct gdbarch *gdbarch = get_current_arch ();
9037 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9038 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
9039
9040 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
9041 || !i386_mpx_enabled ())
9042 error (_("Intel Memory Protection Extensions not supported\
9043 on this target."));
9044
9045 if (args == NULL)
9046 error (_("Pointer value expected."));
9047
9048 addr = value_as_address (parse_to_comma_and_eval (&input));
9049
9050 if (input[0] == ',')
9051 ++input;
9052 if (input[0] == '\0')
9053 error (_("wrong number of arguments: missing lower and upper bound."));
9054 lower = value_as_address (parse_to_comma_and_eval (&input));
9055
9056 if (input[0] == ',')
9057 ++input;
9058 if (input[0] == '\0')
9059 error (_("Wrong number of arguments; Missing upper bound."));
9060 upper = value_as_address (parse_to_comma_and_eval (&input));
9061
9062 bd_base = i386_mpx_bd_base ();
9063 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9064 for (i = 0; i < 2; i++)
9065 bt_entry[i] = read_memory_typed_address (bt_entry_addr
9066 + i * data_ptr_type->length (),
9067 data_ptr_type);
9068 bt_entry[0] = (uint64_t) lower;
9069 bt_entry[1] = ~(uint64_t) upper;
9070
9071 for (i = 0; i < 2; i++)
9072 write_memory_unsigned_integer (bt_entry_addr
9073 + i * data_ptr_type->length (),
9074 data_ptr_type->length (), byte_order,
9075 bt_entry[i]);
9076 }
9077
9078 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9079
9080 void _initialize_i386_tdep ();
9081 void
9082 _initialize_i386_tdep ()
9083 {
9084 gdbarch_register (bfd_arch_i386, i386_gdbarch_init);
9085
9086 /* Add the variable that controls the disassembly flavor. */
9087 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9088 &disassembly_flavor, _("\
9089 Set the disassembly flavor."), _("\
9090 Show the disassembly flavor."), _("\
9091 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9092 NULL,
9093 NULL, /* FIXME: i18n: */
9094 &setlist, &showlist);
9095
9096 /* Add the variable that controls the convention for returning
9097 structs. */
9098 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9099 &struct_convention, _("\
9100 Set the convention for returning small structs."), _("\
9101 Show the convention for returning small structs."), _("\
9102 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9103 is \"default\"."),
9104 NULL,
9105 NULL, /* FIXME: i18n: */
9106 &setlist, &showlist);
9107
9108 /* Add "mpx" prefix for the set and show commands. */
9109
9110 add_setshow_prefix_cmd
9111 ("mpx", class_support,
9112 _("Set Intel Memory Protection Extensions specific variables."),
9113 _("Show Intel Memory Protection Extensions specific variables."),
9114 &mpx_set_cmdlist, &mpx_show_cmdlist, &setlist, &showlist);
9115
9116 /* Add "bound" command for the show mpx commands list. */
9117
9118 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9119 "Show the memory bounds for a given array/pointer storage\
9120 in the bound table.",
9121 &mpx_show_cmdlist);
9122
9123 /* Add "bound" command for the set mpx commands list. */
9124
9125 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9126 "Set the memory bounds for a given array/pointer storage\
9127 in the bound table.",
9128 &mpx_set_cmdlist);
9129
9130 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9131 i386_svr4_init_abi);
9132
9133 /* Initialize the i386-specific register groups. */
9134 i386_init_reggroups ();
9135
9136 /* Tell remote stub that we support XML target description. */
9137 register_remote_support_xml ("i386");
9138 }