]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/i386-tdep.c
Support printing of 16 byte real/complex type for Flang compiler
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2/frame.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "target-float.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "gdbsupport/x86-xstate.h"
50 #include "x86-tdep.h"
51
52 #include "record.h"
53 #include "record-full.h"
54 #include "target-descriptions.h"
55 #include "arch/i386.h"
56
57 #include "ax.h"
58 #include "ax-gdb.h"
59
60 #include "stap-probe.h"
61 #include "user-regs.h"
62 #include "cli/cli-utils.h"
63 #include "expression.h"
64 #include "parser-defs.h"
65 #include <ctype.h>
66 #include <algorithm>
67 #include <unordered_set>
68 #include "producer.h"
69
70 /* Register names. */
71
72 static const char *i386_register_names[] =
73 {
74 "eax", "ecx", "edx", "ebx",
75 "esp", "ebp", "esi", "edi",
76 "eip", "eflags", "cs", "ss",
77 "ds", "es", "fs", "gs",
78 "st0", "st1", "st2", "st3",
79 "st4", "st5", "st6", "st7",
80 "fctrl", "fstat", "ftag", "fiseg",
81 "fioff", "foseg", "fooff", "fop",
82 "xmm0", "xmm1", "xmm2", "xmm3",
83 "xmm4", "xmm5", "xmm6", "xmm7",
84 "mxcsr"
85 };
86
87 static const char *i386_zmm_names[] =
88 {
89 "zmm0", "zmm1", "zmm2", "zmm3",
90 "zmm4", "zmm5", "zmm6", "zmm7"
91 };
92
93 static const char *i386_zmmh_names[] =
94 {
95 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
96 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
97 };
98
99 static const char *i386_k_names[] =
100 {
101 "k0", "k1", "k2", "k3",
102 "k4", "k5", "k6", "k7"
103 };
104
105 static const char *i386_ymm_names[] =
106 {
107 "ymm0", "ymm1", "ymm2", "ymm3",
108 "ymm4", "ymm5", "ymm6", "ymm7",
109 };
110
111 static const char *i386_ymmh_names[] =
112 {
113 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
114 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
115 };
116
117 static const char *i386_mpx_names[] =
118 {
119 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
120 };
121
122 static const char* i386_pkeys_names[] =
123 {
124 "pkru"
125 };
126
127 /* Register names for MPX pseudo-registers. */
128
129 static const char *i386_bnd_names[] =
130 {
131 "bnd0", "bnd1", "bnd2", "bnd3"
132 };
133
134 /* Register names for MMX pseudo-registers. */
135
136 static const char *i386_mmx_names[] =
137 {
138 "mm0", "mm1", "mm2", "mm3",
139 "mm4", "mm5", "mm6", "mm7"
140 };
141
142 /* Register names for byte pseudo-registers. */
143
144 static const char *i386_byte_names[] =
145 {
146 "al", "cl", "dl", "bl",
147 "ah", "ch", "dh", "bh"
148 };
149
150 /* Register names for word pseudo-registers. */
151
152 static const char *i386_word_names[] =
153 {
154 "ax", "cx", "dx", "bx",
155 "", "bp", "si", "di"
156 };
157
158 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
159 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
160 we have 16 upper ZMM regs that have to be handled differently. */
161
162 const int num_lower_zmm_regs = 16;
163
164 /* MMX register? */
165
166 static int
167 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
168 {
169 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
170 int mm0_regnum = tdep->mm0_regnum;
171
172 if (mm0_regnum < 0)
173 return 0;
174
175 regnum -= mm0_regnum;
176 return regnum >= 0 && regnum < tdep->num_mmx_regs;
177 }
178
179 /* Byte register? */
180
181 int
182 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
183 {
184 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
185
186 regnum -= tdep->al_regnum;
187 return regnum >= 0 && regnum < tdep->num_byte_regs;
188 }
189
190 /* Word register? */
191
192 int
193 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
194 {
195 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
196
197 regnum -= tdep->ax_regnum;
198 return regnum >= 0 && regnum < tdep->num_word_regs;
199 }
200
201 /* Dword register? */
202
203 int
204 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
205 {
206 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
207 int eax_regnum = tdep->eax_regnum;
208
209 if (eax_regnum < 0)
210 return 0;
211
212 regnum -= eax_regnum;
213 return regnum >= 0 && regnum < tdep->num_dword_regs;
214 }
215
216 /* AVX512 register? */
217
218 int
219 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
220 {
221 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
222 int zmm0h_regnum = tdep->zmm0h_regnum;
223
224 if (zmm0h_regnum < 0)
225 return 0;
226
227 regnum -= zmm0h_regnum;
228 return regnum >= 0 && regnum < tdep->num_zmm_regs;
229 }
230
231 int
232 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
233 {
234 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
235 int zmm0_regnum = tdep->zmm0_regnum;
236
237 if (zmm0_regnum < 0)
238 return 0;
239
240 regnum -= zmm0_regnum;
241 return regnum >= 0 && regnum < tdep->num_zmm_regs;
242 }
243
244 int
245 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
246 {
247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
248 int k0_regnum = tdep->k0_regnum;
249
250 if (k0_regnum < 0)
251 return 0;
252
253 regnum -= k0_regnum;
254 return regnum >= 0 && regnum < I387_NUM_K_REGS;
255 }
256
257 static int
258 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
259 {
260 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
261 int ymm0h_regnum = tdep->ymm0h_regnum;
262
263 if (ymm0h_regnum < 0)
264 return 0;
265
266 regnum -= ymm0h_regnum;
267 return regnum >= 0 && regnum < tdep->num_ymm_regs;
268 }
269
270 /* AVX register? */
271
272 int
273 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
274 {
275 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
276 int ymm0_regnum = tdep->ymm0_regnum;
277
278 if (ymm0_regnum < 0)
279 return 0;
280
281 regnum -= ymm0_regnum;
282 return regnum >= 0 && regnum < tdep->num_ymm_regs;
283 }
284
285 static int
286 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
287 {
288 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
289 int ymm16h_regnum = tdep->ymm16h_regnum;
290
291 if (ymm16h_regnum < 0)
292 return 0;
293
294 regnum -= ymm16h_regnum;
295 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
296 }
297
298 int
299 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
300 {
301 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
302 int ymm16_regnum = tdep->ymm16_regnum;
303
304 if (ymm16_regnum < 0)
305 return 0;
306
307 regnum -= ymm16_regnum;
308 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
309 }
310
311 /* BND register? */
312
313 int
314 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
315 {
316 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
317 int bnd0_regnum = tdep->bnd0_regnum;
318
319 if (bnd0_regnum < 0)
320 return 0;
321
322 regnum -= bnd0_regnum;
323 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
324 }
325
326 /* SSE register? */
327
328 int
329 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
330 {
331 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
332 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
333
334 if (num_xmm_regs == 0)
335 return 0;
336
337 regnum -= I387_XMM0_REGNUM (tdep);
338 return regnum >= 0 && regnum < num_xmm_regs;
339 }
340
341 /* XMM_512 register? */
342
343 int
344 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
345 {
346 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
347 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
348
349 if (num_xmm_avx512_regs == 0)
350 return 0;
351
352 regnum -= I387_XMM16_REGNUM (tdep);
353 return regnum >= 0 && regnum < num_xmm_avx512_regs;
354 }
355
356 static int
357 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
358 {
359 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
360
361 if (I387_NUM_XMM_REGS (tdep) == 0)
362 return 0;
363
364 return (regnum == I387_MXCSR_REGNUM (tdep));
365 }
366
367 /* FP register? */
368
369 int
370 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
371 {
372 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
373
374 if (I387_ST0_REGNUM (tdep) < 0)
375 return 0;
376
377 return (I387_ST0_REGNUM (tdep) <= regnum
378 && regnum < I387_FCTRL_REGNUM (tdep));
379 }
380
381 int
382 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
383 {
384 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
385
386 if (I387_ST0_REGNUM (tdep) < 0)
387 return 0;
388
389 return (I387_FCTRL_REGNUM (tdep) <= regnum
390 && regnum < I387_XMM0_REGNUM (tdep));
391 }
392
393 /* BNDr (raw) register? */
394
395 static int
396 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
397 {
398 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
399
400 if (I387_BND0R_REGNUM (tdep) < 0)
401 return 0;
402
403 regnum -= tdep->bnd0r_regnum;
404 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
405 }
406
407 /* BND control register? */
408
409 static int
410 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
411 {
412 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
413
414 if (I387_BNDCFGU_REGNUM (tdep) < 0)
415 return 0;
416
417 regnum -= I387_BNDCFGU_REGNUM (tdep);
418 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
419 }
420
421 /* PKRU register? */
422
423 bool
424 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
425 {
426 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
427 int pkru_regnum = tdep->pkru_regnum;
428
429 if (pkru_regnum < 0)
430 return false;
431
432 regnum -= pkru_regnum;
433 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
434 }
435
436 /* Return the name of register REGNUM, or the empty string if it is
437 an anonymous register. */
438
439 static const char *
440 i386_register_name (struct gdbarch *gdbarch, int regnum)
441 {
442 /* Hide the upper YMM registers. */
443 if (i386_ymmh_regnum_p (gdbarch, regnum))
444 return "";
445
446 /* Hide the upper YMM16-31 registers. */
447 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
448 return "";
449
450 /* Hide the upper ZMM registers. */
451 if (i386_zmmh_regnum_p (gdbarch, regnum))
452 return "";
453
454 return tdesc_register_name (gdbarch, regnum);
455 }
456
457 /* Return the name of register REGNUM. */
458
459 const char *
460 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
461 {
462 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
463 if (i386_bnd_regnum_p (gdbarch, regnum))
464 return i386_bnd_names[regnum - tdep->bnd0_regnum];
465 if (i386_mmx_regnum_p (gdbarch, regnum))
466 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
467 else if (i386_ymm_regnum_p (gdbarch, regnum))
468 return i386_ymm_names[regnum - tdep->ymm0_regnum];
469 else if (i386_zmm_regnum_p (gdbarch, regnum))
470 return i386_zmm_names[regnum - tdep->zmm0_regnum];
471 else if (i386_byte_regnum_p (gdbarch, regnum))
472 return i386_byte_names[regnum - tdep->al_regnum];
473 else if (i386_word_regnum_p (gdbarch, regnum))
474 return i386_word_names[regnum - tdep->ax_regnum];
475
476 internal_error (__FILE__, __LINE__, _("invalid regnum"));
477 }
478
479 /* Convert a dbx register number REG to the appropriate register
480 number used by GDB. */
481
482 static int
483 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
484 {
485 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
486
487 /* This implements what GCC calls the "default" register map
488 (dbx_register_map[]). */
489
490 if (reg >= 0 && reg <= 7)
491 {
492 /* General-purpose registers. The debug info calls %ebp
493 register 4, and %esp register 5. */
494 if (reg == 4)
495 return 5;
496 else if (reg == 5)
497 return 4;
498 else return reg;
499 }
500 else if (reg >= 12 && reg <= 19)
501 {
502 /* Floating-point registers. */
503 return reg - 12 + I387_ST0_REGNUM (tdep);
504 }
505 else if (reg >= 21 && reg <= 28)
506 {
507 /* SSE registers. */
508 int ymm0_regnum = tdep->ymm0_regnum;
509
510 if (ymm0_regnum >= 0
511 && i386_xmm_regnum_p (gdbarch, reg))
512 return reg - 21 + ymm0_regnum;
513 else
514 return reg - 21 + I387_XMM0_REGNUM (tdep);
515 }
516 else if (reg >= 29 && reg <= 36)
517 {
518 /* MMX registers. */
519 return reg - 29 + I387_MM0_REGNUM (tdep);
520 }
521
522 /* This will hopefully provoke a warning. */
523 return gdbarch_num_cooked_regs (gdbarch);
524 }
525
526 /* Convert SVR4 DWARF register number REG to the appropriate register number
527 used by GDB. */
528
529 static int
530 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
531 {
532 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
533
534 /* This implements the GCC register map that tries to be compatible
535 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
536
537 /* The SVR4 register numbering includes %eip and %eflags, and
538 numbers the floating point registers differently. */
539 if (reg >= 0 && reg <= 9)
540 {
541 /* General-purpose registers. */
542 return reg;
543 }
544 else if (reg >= 11 && reg <= 18)
545 {
546 /* Floating-point registers. */
547 return reg - 11 + I387_ST0_REGNUM (tdep);
548 }
549 else if (reg >= 21 && reg <= 36)
550 {
551 /* The SSE and MMX registers have the same numbers as with dbx. */
552 return i386_dbx_reg_to_regnum (gdbarch, reg);
553 }
554
555 switch (reg)
556 {
557 case 37: return I387_FCTRL_REGNUM (tdep);
558 case 38: return I387_FSTAT_REGNUM (tdep);
559 case 39: return I387_MXCSR_REGNUM (tdep);
560 case 40: return I386_ES_REGNUM;
561 case 41: return I386_CS_REGNUM;
562 case 42: return I386_SS_REGNUM;
563 case 43: return I386_DS_REGNUM;
564 case 44: return I386_FS_REGNUM;
565 case 45: return I386_GS_REGNUM;
566 }
567
568 return -1;
569 }
570
571 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
572 num_regs + num_pseudo_regs for other debug formats. */
573
574 int
575 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
576 {
577 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
578
579 if (regnum == -1)
580 return gdbarch_num_cooked_regs (gdbarch);
581 return regnum;
582 }
583
584 \f
585
586 /* This is the variable that is set with "set disassembly-flavor", and
587 its legitimate values. */
588 static const char att_flavor[] = "att";
589 static const char intel_flavor[] = "intel";
590 static const char *const valid_flavors[] =
591 {
592 att_flavor,
593 intel_flavor,
594 NULL
595 };
596 static const char *disassembly_flavor = att_flavor;
597 \f
598
599 /* Use the program counter to determine the contents and size of a
600 breakpoint instruction. Return a pointer to a string of bytes that
601 encode a breakpoint instruction, store the length of the string in
602 *LEN and optionally adjust *PC to point to the correct memory
603 location for inserting the breakpoint.
604
605 On the i386 we have a single breakpoint that fits in a single byte
606 and can be inserted anywhere.
607
608 This function is 64-bit safe. */
609
610 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
611
612 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
613
614 \f
615 /* Displaced instruction handling. */
616
617 /* Skip the legacy instruction prefixes in INSN.
618 Not all prefixes are valid for any particular insn
619 but we needn't care, the insn will fault if it's invalid.
620 The result is a pointer to the first opcode byte,
621 or NULL if we run off the end of the buffer. */
622
623 static gdb_byte *
624 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
625 {
626 gdb_byte *end = insn + max_len;
627
628 while (insn < end)
629 {
630 switch (*insn)
631 {
632 case DATA_PREFIX_OPCODE:
633 case ADDR_PREFIX_OPCODE:
634 case CS_PREFIX_OPCODE:
635 case DS_PREFIX_OPCODE:
636 case ES_PREFIX_OPCODE:
637 case FS_PREFIX_OPCODE:
638 case GS_PREFIX_OPCODE:
639 case SS_PREFIX_OPCODE:
640 case LOCK_PREFIX_OPCODE:
641 case REPE_PREFIX_OPCODE:
642 case REPNE_PREFIX_OPCODE:
643 ++insn;
644 continue;
645 default:
646 return insn;
647 }
648 }
649
650 return NULL;
651 }
652
653 static int
654 i386_absolute_jmp_p (const gdb_byte *insn)
655 {
656 /* jmp far (absolute address in operand). */
657 if (insn[0] == 0xea)
658 return 1;
659
660 if (insn[0] == 0xff)
661 {
662 /* jump near, absolute indirect (/4). */
663 if ((insn[1] & 0x38) == 0x20)
664 return 1;
665
666 /* jump far, absolute indirect (/5). */
667 if ((insn[1] & 0x38) == 0x28)
668 return 1;
669 }
670
671 return 0;
672 }
673
674 /* Return non-zero if INSN is a jump, zero otherwise. */
675
676 static int
677 i386_jmp_p (const gdb_byte *insn)
678 {
679 /* jump short, relative. */
680 if (insn[0] == 0xeb)
681 return 1;
682
683 /* jump near, relative. */
684 if (insn[0] == 0xe9)
685 return 1;
686
687 return i386_absolute_jmp_p (insn);
688 }
689
690 static int
691 i386_absolute_call_p (const gdb_byte *insn)
692 {
693 /* call far, absolute. */
694 if (insn[0] == 0x9a)
695 return 1;
696
697 if (insn[0] == 0xff)
698 {
699 /* Call near, absolute indirect (/2). */
700 if ((insn[1] & 0x38) == 0x10)
701 return 1;
702
703 /* Call far, absolute indirect (/3). */
704 if ((insn[1] & 0x38) == 0x18)
705 return 1;
706 }
707
708 return 0;
709 }
710
711 static int
712 i386_ret_p (const gdb_byte *insn)
713 {
714 switch (insn[0])
715 {
716 case 0xc2: /* ret near, pop N bytes. */
717 case 0xc3: /* ret near */
718 case 0xca: /* ret far, pop N bytes. */
719 case 0xcb: /* ret far */
720 case 0xcf: /* iret */
721 return 1;
722
723 default:
724 return 0;
725 }
726 }
727
728 static int
729 i386_call_p (const gdb_byte *insn)
730 {
731 if (i386_absolute_call_p (insn))
732 return 1;
733
734 /* call near, relative. */
735 if (insn[0] == 0xe8)
736 return 1;
737
738 return 0;
739 }
740
741 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
742 length in bytes. Otherwise, return zero. */
743
744 static int
745 i386_syscall_p (const gdb_byte *insn, int *lengthp)
746 {
747 /* Is it 'int $0x80'? */
748 if ((insn[0] == 0xcd && insn[1] == 0x80)
749 /* Or is it 'sysenter'? */
750 || (insn[0] == 0x0f && insn[1] == 0x34)
751 /* Or is it 'syscall'? */
752 || (insn[0] == 0x0f && insn[1] == 0x05))
753 {
754 *lengthp = 2;
755 return 1;
756 }
757
758 return 0;
759 }
760
761 /* The gdbarch insn_is_call method. */
762
763 static int
764 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
765 {
766 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
767
768 read_code (addr, buf, I386_MAX_INSN_LEN);
769 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
770
771 return i386_call_p (insn);
772 }
773
774 /* The gdbarch insn_is_ret method. */
775
776 static int
777 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
778 {
779 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
780
781 read_code (addr, buf, I386_MAX_INSN_LEN);
782 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
783
784 return i386_ret_p (insn);
785 }
786
787 /* The gdbarch insn_is_jump method. */
788
789 static int
790 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
791 {
792 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
793
794 read_code (addr, buf, I386_MAX_INSN_LEN);
795 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
796
797 return i386_jmp_p (insn);
798 }
799
800 /* Some kernels may run one past a syscall insn, so we have to cope. */
801
802 displaced_step_closure_up
803 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
804 CORE_ADDR from, CORE_ADDR to,
805 struct regcache *regs)
806 {
807 size_t len = gdbarch_max_insn_length (gdbarch);
808 std::unique_ptr<i386_displaced_step_closure> closure
809 (new i386_displaced_step_closure (len));
810 gdb_byte *buf = closure->buf.data ();
811
812 read_memory (from, buf, len);
813
814 /* GDB may get control back after the insn after the syscall.
815 Presumably this is a kernel bug.
816 If this is a syscall, make sure there's a nop afterwards. */
817 {
818 int syscall_length;
819 gdb_byte *insn;
820
821 insn = i386_skip_prefixes (buf, len);
822 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
823 insn[syscall_length] = NOP_OPCODE;
824 }
825
826 write_memory (to, buf, len);
827
828 if (debug_displaced)
829 {
830 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
831 paddress (gdbarch, from), paddress (gdbarch, to));
832 displaced_step_dump_bytes (gdb_stdlog, buf, len);
833 }
834
835 /* This is a work around for a problem with g++ 4.8. */
836 return displaced_step_closure_up (closure.release ());
837 }
838
839 /* Fix up the state of registers and memory after having single-stepped
840 a displaced instruction. */
841
842 void
843 i386_displaced_step_fixup (struct gdbarch *gdbarch,
844 struct displaced_step_closure *closure_,
845 CORE_ADDR from, CORE_ADDR to,
846 struct regcache *regs)
847 {
848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
849
850 /* The offset we applied to the instruction's address.
851 This could well be negative (when viewed as a signed 32-bit
852 value), but ULONGEST won't reflect that, so take care when
853 applying it. */
854 ULONGEST insn_offset = to - from;
855
856 i386_displaced_step_closure *closure
857 = (i386_displaced_step_closure *) closure_;
858 gdb_byte *insn = closure->buf.data ();
859 /* The start of the insn, needed in case we see some prefixes. */
860 gdb_byte *insn_start = insn;
861
862 if (debug_displaced)
863 fprintf_unfiltered (gdb_stdlog,
864 "displaced: fixup (%s, %s), "
865 "insn = 0x%02x 0x%02x ...\n",
866 paddress (gdbarch, from), paddress (gdbarch, to),
867 insn[0], insn[1]);
868
869 /* The list of issues to contend with here is taken from
870 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
871 Yay for Free Software! */
872
873 /* Relocate the %eip, if necessary. */
874
875 /* The instruction recognizers we use assume any leading prefixes
876 have been skipped. */
877 {
878 /* This is the size of the buffer in closure. */
879 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
880 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
881 /* If there are too many prefixes, just ignore the insn.
882 It will fault when run. */
883 if (opcode != NULL)
884 insn = opcode;
885 }
886
887 /* Except in the case of absolute or indirect jump or call
888 instructions, or a return instruction, the new eip is relative to
889 the displaced instruction; make it relative. Well, signal
890 handler returns don't need relocation either, but we use the
891 value of %eip to recognize those; see below. */
892 if (! i386_absolute_jmp_p (insn)
893 && ! i386_absolute_call_p (insn)
894 && ! i386_ret_p (insn))
895 {
896 ULONGEST orig_eip;
897 int insn_len;
898
899 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
900
901 /* A signal trampoline system call changes the %eip, resuming
902 execution of the main program after the signal handler has
903 returned. That makes them like 'return' instructions; we
904 shouldn't relocate %eip.
905
906 But most system calls don't, and we do need to relocate %eip.
907
908 Our heuristic for distinguishing these cases: if stepping
909 over the system call instruction left control directly after
910 the instruction, the we relocate --- control almost certainly
911 doesn't belong in the displaced copy. Otherwise, we assume
912 the instruction has put control where it belongs, and leave
913 it unrelocated. Goodness help us if there are PC-relative
914 system calls. */
915 if (i386_syscall_p (insn, &insn_len)
916 && orig_eip != to + (insn - insn_start) + insn_len
917 /* GDB can get control back after the insn after the syscall.
918 Presumably this is a kernel bug.
919 i386_displaced_step_copy_insn ensures its a nop,
920 we add one to the length for it. */
921 && orig_eip != to + (insn - insn_start) + insn_len + 1)
922 {
923 if (debug_displaced)
924 fprintf_unfiltered (gdb_stdlog,
925 "displaced: syscall changed %%eip; "
926 "not relocating\n");
927 }
928 else
929 {
930 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
931
932 /* If we just stepped over a breakpoint insn, we don't backup
933 the pc on purpose; this is to match behaviour without
934 stepping. */
935
936 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
937
938 if (debug_displaced)
939 fprintf_unfiltered (gdb_stdlog,
940 "displaced: "
941 "relocated %%eip from %s to %s\n",
942 paddress (gdbarch, orig_eip),
943 paddress (gdbarch, eip));
944 }
945 }
946
947 /* If the instruction was PUSHFL, then the TF bit will be set in the
948 pushed value, and should be cleared. We'll leave this for later,
949 since GDB already messes up the TF flag when stepping over a
950 pushfl. */
951
952 /* If the instruction was a call, the return address now atop the
953 stack is the address following the copied instruction. We need
954 to make it the address following the original instruction. */
955 if (i386_call_p (insn))
956 {
957 ULONGEST esp;
958 ULONGEST retaddr;
959 const ULONGEST retaddr_len = 4;
960
961 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
962 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
963 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
964 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
965
966 if (debug_displaced)
967 fprintf_unfiltered (gdb_stdlog,
968 "displaced: relocated return addr at %s to %s\n",
969 paddress (gdbarch, esp),
970 paddress (gdbarch, retaddr));
971 }
972 }
973
974 static void
975 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
976 {
977 target_write_memory (*to, buf, len);
978 *to += len;
979 }
980
981 static void
982 i386_relocate_instruction (struct gdbarch *gdbarch,
983 CORE_ADDR *to, CORE_ADDR oldloc)
984 {
985 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
986 gdb_byte buf[I386_MAX_INSN_LEN];
987 int offset = 0, rel32, newrel;
988 int insn_length;
989 gdb_byte *insn = buf;
990
991 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
992
993 insn_length = gdb_buffered_insn_length (gdbarch, insn,
994 I386_MAX_INSN_LEN, oldloc);
995
996 /* Get past the prefixes. */
997 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
998
999 /* Adjust calls with 32-bit relative addresses as push/jump, with
1000 the address pushed being the location where the original call in
1001 the user program would return to. */
1002 if (insn[0] == 0xe8)
1003 {
1004 gdb_byte push_buf[16];
1005 unsigned int ret_addr;
1006
1007 /* Where "ret" in the original code will return to. */
1008 ret_addr = oldloc + insn_length;
1009 push_buf[0] = 0x68; /* pushq $... */
1010 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1011 /* Push the push. */
1012 append_insns (to, 5, push_buf);
1013
1014 /* Convert the relative call to a relative jump. */
1015 insn[0] = 0xe9;
1016
1017 /* Adjust the destination offset. */
1018 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1019 newrel = (oldloc - *to) + rel32;
1020 store_signed_integer (insn + 1, 4, byte_order, newrel);
1021
1022 if (debug_displaced)
1023 fprintf_unfiltered (gdb_stdlog,
1024 "Adjusted insn rel32=%s at %s to"
1025 " rel32=%s at %s\n",
1026 hex_string (rel32), paddress (gdbarch, oldloc),
1027 hex_string (newrel), paddress (gdbarch, *to));
1028
1029 /* Write the adjusted jump into its displaced location. */
1030 append_insns (to, 5, insn);
1031 return;
1032 }
1033
1034 /* Adjust jumps with 32-bit relative addresses. Calls are already
1035 handled above. */
1036 if (insn[0] == 0xe9)
1037 offset = 1;
1038 /* Adjust conditional jumps. */
1039 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1040 offset = 2;
1041
1042 if (offset)
1043 {
1044 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1045 newrel = (oldloc - *to) + rel32;
1046 store_signed_integer (insn + offset, 4, byte_order, newrel);
1047 if (debug_displaced)
1048 fprintf_unfiltered (gdb_stdlog,
1049 "Adjusted insn rel32=%s at %s to"
1050 " rel32=%s at %s\n",
1051 hex_string (rel32), paddress (gdbarch, oldloc),
1052 hex_string (newrel), paddress (gdbarch, *to));
1053 }
1054
1055 /* Write the adjusted instructions into their displaced
1056 location. */
1057 append_insns (to, insn_length, buf);
1058 }
1059
1060 \f
1061 #ifdef I386_REGNO_TO_SYMMETRY
1062 #error "The Sequent Symmetry is no longer supported."
1063 #endif
1064
1065 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1066 and %esp "belong" to the calling function. Therefore these
1067 registers should be saved if they're going to be modified. */
1068
1069 /* The maximum number of saved registers. This should include all
1070 registers mentioned above, and %eip. */
1071 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1072
1073 struct i386_frame_cache
1074 {
1075 /* Base address. */
1076 CORE_ADDR base;
1077 int base_p;
1078 LONGEST sp_offset;
1079 CORE_ADDR pc;
1080
1081 /* Saved registers. */
1082 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1083 CORE_ADDR saved_sp;
1084 int saved_sp_reg;
1085 int pc_in_eax;
1086
1087 /* Stack space reserved for local variables. */
1088 long locals;
1089 };
1090
1091 /* Allocate and initialize a frame cache. */
1092
1093 static struct i386_frame_cache *
1094 i386_alloc_frame_cache (void)
1095 {
1096 struct i386_frame_cache *cache;
1097 int i;
1098
1099 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1100
1101 /* Base address. */
1102 cache->base_p = 0;
1103 cache->base = 0;
1104 cache->sp_offset = -4;
1105 cache->pc = 0;
1106
1107 /* Saved registers. We initialize these to -1 since zero is a valid
1108 offset (that's where %ebp is supposed to be stored). */
1109 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1110 cache->saved_regs[i] = -1;
1111 cache->saved_sp = 0;
1112 cache->saved_sp_reg = -1;
1113 cache->pc_in_eax = 0;
1114
1115 /* Frameless until proven otherwise. */
1116 cache->locals = -1;
1117
1118 return cache;
1119 }
1120
1121 /* If the instruction at PC is a jump, return the address of its
1122 target. Otherwise, return PC. */
1123
1124 static CORE_ADDR
1125 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1126 {
1127 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1128 gdb_byte op;
1129 long delta = 0;
1130 int data16 = 0;
1131
1132 if (target_read_code (pc, &op, 1))
1133 return pc;
1134
1135 if (op == 0x66)
1136 {
1137 data16 = 1;
1138
1139 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1140 }
1141
1142 switch (op)
1143 {
1144 case 0xe9:
1145 /* Relative jump: if data16 == 0, disp32, else disp16. */
1146 if (data16)
1147 {
1148 delta = read_memory_integer (pc + 2, 2, byte_order);
1149
1150 /* Include the size of the jmp instruction (including the
1151 0x66 prefix). */
1152 delta += 4;
1153 }
1154 else
1155 {
1156 delta = read_memory_integer (pc + 1, 4, byte_order);
1157
1158 /* Include the size of the jmp instruction. */
1159 delta += 5;
1160 }
1161 break;
1162 case 0xeb:
1163 /* Relative jump, disp8 (ignore data16). */
1164 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1165
1166 delta += data16 + 2;
1167 break;
1168 }
1169
1170 return pc + delta;
1171 }
1172
1173 /* Check whether PC points at a prologue for a function returning a
1174 structure or union. If so, it updates CACHE and returns the
1175 address of the first instruction after the code sequence that
1176 removes the "hidden" argument from the stack or CURRENT_PC,
1177 whichever is smaller. Otherwise, return PC. */
1178
1179 static CORE_ADDR
1180 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1181 struct i386_frame_cache *cache)
1182 {
1183 /* Functions that return a structure or union start with:
1184
1185 popl %eax 0x58
1186 xchgl %eax, (%esp) 0x87 0x04 0x24
1187 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1188
1189 (the System V compiler puts out the second `xchg' instruction,
1190 and the assembler doesn't try to optimize it, so the 'sib' form
1191 gets generated). This sequence is used to get the address of the
1192 return buffer for a function that returns a structure. */
1193 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1194 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1195 gdb_byte buf[4];
1196 gdb_byte op;
1197
1198 if (current_pc <= pc)
1199 return pc;
1200
1201 if (target_read_code (pc, &op, 1))
1202 return pc;
1203
1204 if (op != 0x58) /* popl %eax */
1205 return pc;
1206
1207 if (target_read_code (pc + 1, buf, 4))
1208 return pc;
1209
1210 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1211 return pc;
1212
1213 if (current_pc == pc)
1214 {
1215 cache->sp_offset += 4;
1216 return current_pc;
1217 }
1218
1219 if (current_pc == pc + 1)
1220 {
1221 cache->pc_in_eax = 1;
1222 return current_pc;
1223 }
1224
1225 if (buf[1] == proto1[1])
1226 return pc + 4;
1227 else
1228 return pc + 5;
1229 }
1230
1231 static CORE_ADDR
1232 i386_skip_probe (CORE_ADDR pc)
1233 {
1234 /* A function may start with
1235
1236 pushl constant
1237 call _probe
1238 addl $4, %esp
1239
1240 followed by
1241
1242 pushl %ebp
1243
1244 etc. */
1245 gdb_byte buf[8];
1246 gdb_byte op;
1247
1248 if (target_read_code (pc, &op, 1))
1249 return pc;
1250
1251 if (op == 0x68 || op == 0x6a)
1252 {
1253 int delta;
1254
1255 /* Skip past the `pushl' instruction; it has either a one-byte or a
1256 four-byte operand, depending on the opcode. */
1257 if (op == 0x68)
1258 delta = 5;
1259 else
1260 delta = 2;
1261
1262 /* Read the following 8 bytes, which should be `call _probe' (6
1263 bytes) followed by `addl $4,%esp' (2 bytes). */
1264 read_memory (pc + delta, buf, sizeof (buf));
1265 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1266 pc += delta + sizeof (buf);
1267 }
1268
1269 return pc;
1270 }
1271
1272 /* GCC 4.1 and later, can put code in the prologue to realign the
1273 stack pointer. Check whether PC points to such code, and update
1274 CACHE accordingly. Return the first instruction after the code
1275 sequence or CURRENT_PC, whichever is smaller. If we don't
1276 recognize the code, return PC. */
1277
1278 static CORE_ADDR
1279 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1280 struct i386_frame_cache *cache)
1281 {
1282 /* There are 2 code sequences to re-align stack before the frame
1283 gets set up:
1284
1285 1. Use a caller-saved saved register:
1286
1287 leal 4(%esp), %reg
1288 andl $-XXX, %esp
1289 pushl -4(%reg)
1290
1291 2. Use a callee-saved saved register:
1292
1293 pushl %reg
1294 leal 8(%esp), %reg
1295 andl $-XXX, %esp
1296 pushl -4(%reg)
1297
1298 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1299
1300 0x83 0xe4 0xf0 andl $-16, %esp
1301 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1302 */
1303
1304 gdb_byte buf[14];
1305 int reg;
1306 int offset, offset_and;
1307 static int regnums[8] = {
1308 I386_EAX_REGNUM, /* %eax */
1309 I386_ECX_REGNUM, /* %ecx */
1310 I386_EDX_REGNUM, /* %edx */
1311 I386_EBX_REGNUM, /* %ebx */
1312 I386_ESP_REGNUM, /* %esp */
1313 I386_EBP_REGNUM, /* %ebp */
1314 I386_ESI_REGNUM, /* %esi */
1315 I386_EDI_REGNUM /* %edi */
1316 };
1317
1318 if (target_read_code (pc, buf, sizeof buf))
1319 return pc;
1320
1321 /* Check caller-saved saved register. The first instruction has
1322 to be "leal 4(%esp), %reg". */
1323 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1324 {
1325 /* MOD must be binary 10 and R/M must be binary 100. */
1326 if ((buf[1] & 0xc7) != 0x44)
1327 return pc;
1328
1329 /* REG has register number. */
1330 reg = (buf[1] >> 3) & 7;
1331 offset = 4;
1332 }
1333 else
1334 {
1335 /* Check callee-saved saved register. The first instruction
1336 has to be "pushl %reg". */
1337 if ((buf[0] & 0xf8) != 0x50)
1338 return pc;
1339
1340 /* Get register. */
1341 reg = buf[0] & 0x7;
1342
1343 /* The next instruction has to be "leal 8(%esp), %reg". */
1344 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1345 return pc;
1346
1347 /* MOD must be binary 10 and R/M must be binary 100. */
1348 if ((buf[2] & 0xc7) != 0x44)
1349 return pc;
1350
1351 /* REG has register number. Registers in pushl and leal have to
1352 be the same. */
1353 if (reg != ((buf[2] >> 3) & 7))
1354 return pc;
1355
1356 offset = 5;
1357 }
1358
1359 /* Rigister can't be %esp nor %ebp. */
1360 if (reg == 4 || reg == 5)
1361 return pc;
1362
1363 /* The next instruction has to be "andl $-XXX, %esp". */
1364 if (buf[offset + 1] != 0xe4
1365 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1366 return pc;
1367
1368 offset_and = offset;
1369 offset += buf[offset] == 0x81 ? 6 : 3;
1370
1371 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1372 0xfc. REG must be binary 110 and MOD must be binary 01. */
1373 if (buf[offset] != 0xff
1374 || buf[offset + 2] != 0xfc
1375 || (buf[offset + 1] & 0xf8) != 0x70)
1376 return pc;
1377
1378 /* R/M has register. Registers in leal and pushl have to be the
1379 same. */
1380 if (reg != (buf[offset + 1] & 7))
1381 return pc;
1382
1383 if (current_pc > pc + offset_and)
1384 cache->saved_sp_reg = regnums[reg];
1385
1386 return std::min (pc + offset + 3, current_pc);
1387 }
1388
1389 /* Maximum instruction length we need to handle. */
1390 #define I386_MAX_MATCHED_INSN_LEN 6
1391
1392 /* Instruction description. */
1393 struct i386_insn
1394 {
1395 size_t len;
1396 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1397 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1398 };
1399
1400 /* Return whether instruction at PC matches PATTERN. */
1401
1402 static int
1403 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1404 {
1405 gdb_byte op;
1406
1407 if (target_read_code (pc, &op, 1))
1408 return 0;
1409
1410 if ((op & pattern.mask[0]) == pattern.insn[0])
1411 {
1412 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1413 int insn_matched = 1;
1414 size_t i;
1415
1416 gdb_assert (pattern.len > 1);
1417 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1418
1419 if (target_read_code (pc + 1, buf, pattern.len - 1))
1420 return 0;
1421
1422 for (i = 1; i < pattern.len; i++)
1423 {
1424 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1425 insn_matched = 0;
1426 }
1427 return insn_matched;
1428 }
1429 return 0;
1430 }
1431
1432 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1433 the first instruction description that matches. Otherwise, return
1434 NULL. */
1435
1436 static struct i386_insn *
1437 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1438 {
1439 struct i386_insn *pattern;
1440
1441 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1442 {
1443 if (i386_match_pattern (pc, *pattern))
1444 return pattern;
1445 }
1446
1447 return NULL;
1448 }
1449
1450 /* Return whether PC points inside a sequence of instructions that
1451 matches INSN_PATTERNS. */
1452
1453 static int
1454 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1455 {
1456 CORE_ADDR current_pc;
1457 int ix, i;
1458 struct i386_insn *insn;
1459
1460 insn = i386_match_insn (pc, insn_patterns);
1461 if (insn == NULL)
1462 return 0;
1463
1464 current_pc = pc;
1465 ix = insn - insn_patterns;
1466 for (i = ix - 1; i >= 0; i--)
1467 {
1468 current_pc -= insn_patterns[i].len;
1469
1470 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1471 return 0;
1472 }
1473
1474 current_pc = pc + insn->len;
1475 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1476 {
1477 if (!i386_match_pattern (current_pc, *insn))
1478 return 0;
1479
1480 current_pc += insn->len;
1481 }
1482
1483 return 1;
1484 }
1485
1486 /* Some special instructions that might be migrated by GCC into the
1487 part of the prologue that sets up the new stack frame. Because the
1488 stack frame hasn't been setup yet, no registers have been saved
1489 yet, and only the scratch registers %eax, %ecx and %edx can be
1490 touched. */
1491
1492 struct i386_insn i386_frame_setup_skip_insns[] =
1493 {
1494 /* Check for `movb imm8, r' and `movl imm32, r'.
1495
1496 ??? Should we handle 16-bit operand-sizes here? */
1497
1498 /* `movb imm8, %al' and `movb imm8, %ah' */
1499 /* `movb imm8, %cl' and `movb imm8, %ch' */
1500 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1501 /* `movb imm8, %dl' and `movb imm8, %dh' */
1502 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1503 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1504 { 5, { 0xb8 }, { 0xfe } },
1505 /* `movl imm32, %edx' */
1506 { 5, { 0xba }, { 0xff } },
1507
1508 /* Check for `mov imm32, r32'. Note that there is an alternative
1509 encoding for `mov m32, %eax'.
1510
1511 ??? Should we handle SIB addressing here?
1512 ??? Should we handle 16-bit operand-sizes here? */
1513
1514 /* `movl m32, %eax' */
1515 { 5, { 0xa1 }, { 0xff } },
1516 /* `movl m32, %eax' and `mov; m32, %ecx' */
1517 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1518 /* `movl m32, %edx' */
1519 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1520
1521 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1522 Because of the symmetry, there are actually two ways to encode
1523 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1524 opcode bytes 0x31 and 0x33 for `xorl'. */
1525
1526 /* `subl %eax, %eax' */
1527 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1528 /* `subl %ecx, %ecx' */
1529 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1530 /* `subl %edx, %edx' */
1531 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1532 /* `xorl %eax, %eax' */
1533 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1534 /* `xorl %ecx, %ecx' */
1535 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1536 /* `xorl %edx, %edx' */
1537 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1538 { 0 }
1539 };
1540
1541
1542 /* Check whether PC points to a no-op instruction. */
1543 static CORE_ADDR
1544 i386_skip_noop (CORE_ADDR pc)
1545 {
1546 gdb_byte op;
1547 int check = 1;
1548
1549 if (target_read_code (pc, &op, 1))
1550 return pc;
1551
1552 while (check)
1553 {
1554 check = 0;
1555 /* Ignore `nop' instruction. */
1556 if (op == 0x90)
1557 {
1558 pc += 1;
1559 if (target_read_code (pc, &op, 1))
1560 return pc;
1561 check = 1;
1562 }
1563 /* Ignore no-op instruction `mov %edi, %edi'.
1564 Microsoft system dlls often start with
1565 a `mov %edi,%edi' instruction.
1566 The 5 bytes before the function start are
1567 filled with `nop' instructions.
1568 This pattern can be used for hot-patching:
1569 The `mov %edi, %edi' instruction can be replaced by a
1570 near jump to the location of the 5 `nop' instructions
1571 which can be replaced by a 32-bit jump to anywhere
1572 in the 32-bit address space. */
1573
1574 else if (op == 0x8b)
1575 {
1576 if (target_read_code (pc + 1, &op, 1))
1577 return pc;
1578
1579 if (op == 0xff)
1580 {
1581 pc += 2;
1582 if (target_read_code (pc, &op, 1))
1583 return pc;
1584
1585 check = 1;
1586 }
1587 }
1588 }
1589 return pc;
1590 }
1591
1592 /* Check whether PC points at a code that sets up a new stack frame.
1593 If so, it updates CACHE and returns the address of the first
1594 instruction after the sequence that sets up the frame or LIMIT,
1595 whichever is smaller. If we don't recognize the code, return PC. */
1596
1597 static CORE_ADDR
1598 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1599 CORE_ADDR pc, CORE_ADDR limit,
1600 struct i386_frame_cache *cache)
1601 {
1602 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1603 struct i386_insn *insn;
1604 gdb_byte op;
1605 int skip = 0;
1606
1607 if (limit <= pc)
1608 return limit;
1609
1610 if (target_read_code (pc, &op, 1))
1611 return pc;
1612
1613 if (op == 0x55) /* pushl %ebp */
1614 {
1615 /* Take into account that we've executed the `pushl %ebp' that
1616 starts this instruction sequence. */
1617 cache->saved_regs[I386_EBP_REGNUM] = 0;
1618 cache->sp_offset += 4;
1619 pc++;
1620
1621 /* If that's all, return now. */
1622 if (limit <= pc)
1623 return limit;
1624
1625 /* Check for some special instructions that might be migrated by
1626 GCC into the prologue and skip them. At this point in the
1627 prologue, code should only touch the scratch registers %eax,
1628 %ecx and %edx, so while the number of possibilities is sheer,
1629 it is limited.
1630
1631 Make sure we only skip these instructions if we later see the
1632 `movl %esp, %ebp' that actually sets up the frame. */
1633 while (pc + skip < limit)
1634 {
1635 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1636 if (insn == NULL)
1637 break;
1638
1639 skip += insn->len;
1640 }
1641
1642 /* If that's all, return now. */
1643 if (limit <= pc + skip)
1644 return limit;
1645
1646 if (target_read_code (pc + skip, &op, 1))
1647 return pc + skip;
1648
1649 /* The i386 prologue looks like
1650
1651 push %ebp
1652 mov %esp,%ebp
1653 sub $0x10,%esp
1654
1655 and a different prologue can be generated for atom.
1656
1657 push %ebp
1658 lea (%esp),%ebp
1659 lea -0x10(%esp),%esp
1660
1661 We handle both of them here. */
1662
1663 switch (op)
1664 {
1665 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1666 case 0x8b:
1667 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1668 != 0xec)
1669 return pc;
1670 pc += (skip + 2);
1671 break;
1672 case 0x89:
1673 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1674 != 0xe5)
1675 return pc;
1676 pc += (skip + 2);
1677 break;
1678 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1679 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1680 != 0x242c)
1681 return pc;
1682 pc += (skip + 3);
1683 break;
1684 default:
1685 return pc;
1686 }
1687
1688 /* OK, we actually have a frame. We just don't know how large
1689 it is yet. Set its size to zero. We'll adjust it if
1690 necessary. We also now commit to skipping the special
1691 instructions mentioned before. */
1692 cache->locals = 0;
1693
1694 /* If that's all, return now. */
1695 if (limit <= pc)
1696 return limit;
1697
1698 /* Check for stack adjustment
1699
1700 subl $XXX, %esp
1701 or
1702 lea -XXX(%esp),%esp
1703
1704 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1705 reg, so we don't have to worry about a data16 prefix. */
1706 if (target_read_code (pc, &op, 1))
1707 return pc;
1708 if (op == 0x83)
1709 {
1710 /* `subl' with 8-bit immediate. */
1711 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1712 /* Some instruction starting with 0x83 other than `subl'. */
1713 return pc;
1714
1715 /* `subl' with signed 8-bit immediate (though it wouldn't
1716 make sense to be negative). */
1717 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1718 return pc + 3;
1719 }
1720 else if (op == 0x81)
1721 {
1722 /* Maybe it is `subl' with a 32-bit immediate. */
1723 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1724 /* Some instruction starting with 0x81 other than `subl'. */
1725 return pc;
1726
1727 /* It is `subl' with a 32-bit immediate. */
1728 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1729 return pc + 6;
1730 }
1731 else if (op == 0x8d)
1732 {
1733 /* The ModR/M byte is 0x64. */
1734 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1735 return pc;
1736 /* 'lea' with 8-bit displacement. */
1737 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1738 return pc + 4;
1739 }
1740 else
1741 {
1742 /* Some instruction other than `subl' nor 'lea'. */
1743 return pc;
1744 }
1745 }
1746 else if (op == 0xc8) /* enter */
1747 {
1748 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1749 return pc + 4;
1750 }
1751
1752 return pc;
1753 }
1754
1755 /* Check whether PC points at code that saves registers on the stack.
1756 If so, it updates CACHE and returns the address of the first
1757 instruction after the register saves or CURRENT_PC, whichever is
1758 smaller. Otherwise, return PC. */
1759
1760 static CORE_ADDR
1761 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1762 struct i386_frame_cache *cache)
1763 {
1764 CORE_ADDR offset = 0;
1765 gdb_byte op;
1766 int i;
1767
1768 if (cache->locals > 0)
1769 offset -= cache->locals;
1770 for (i = 0; i < 8 && pc < current_pc; i++)
1771 {
1772 if (target_read_code (pc, &op, 1))
1773 return pc;
1774 if (op < 0x50 || op > 0x57)
1775 break;
1776
1777 offset -= 4;
1778 cache->saved_regs[op - 0x50] = offset;
1779 cache->sp_offset += 4;
1780 pc++;
1781 }
1782
1783 return pc;
1784 }
1785
1786 /* Do a full analysis of the prologue at PC and update CACHE
1787 accordingly. Bail out early if CURRENT_PC is reached. Return the
1788 address where the analysis stopped.
1789
1790 We handle these cases:
1791
1792 The startup sequence can be at the start of the function, or the
1793 function can start with a branch to startup code at the end.
1794
1795 %ebp can be set up with either the 'enter' instruction, or "pushl
1796 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1797 once used in the System V compiler).
1798
1799 Local space is allocated just below the saved %ebp by either the
1800 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1801 16-bit unsigned argument for space to allocate, and the 'addl'
1802 instruction could have either a signed byte, or 32-bit immediate.
1803
1804 Next, the registers used by this function are pushed. With the
1805 System V compiler they will always be in the order: %edi, %esi,
1806 %ebx (and sometimes a harmless bug causes it to also save but not
1807 restore %eax); however, the code below is willing to see the pushes
1808 in any order, and will handle up to 8 of them.
1809
1810 If the setup sequence is at the end of the function, then the next
1811 instruction will be a branch back to the start. */
1812
1813 static CORE_ADDR
1814 i386_analyze_prologue (struct gdbarch *gdbarch,
1815 CORE_ADDR pc, CORE_ADDR current_pc,
1816 struct i386_frame_cache *cache)
1817 {
1818 pc = i386_skip_noop (pc);
1819 pc = i386_follow_jump (gdbarch, pc);
1820 pc = i386_analyze_struct_return (pc, current_pc, cache);
1821 pc = i386_skip_probe (pc);
1822 pc = i386_analyze_stack_align (pc, current_pc, cache);
1823 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1824 return i386_analyze_register_saves (pc, current_pc, cache);
1825 }
1826
1827 /* Return PC of first real instruction. */
1828
1829 static CORE_ADDR
1830 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1831 {
1832 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1833
1834 static gdb_byte pic_pat[6] =
1835 {
1836 0xe8, 0, 0, 0, 0, /* call 0x0 */
1837 0x5b, /* popl %ebx */
1838 };
1839 struct i386_frame_cache cache;
1840 CORE_ADDR pc;
1841 gdb_byte op;
1842 int i;
1843 CORE_ADDR func_addr;
1844
1845 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1846 {
1847 CORE_ADDR post_prologue_pc
1848 = skip_prologue_using_sal (gdbarch, func_addr);
1849 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1850
1851 /* LLVM backend (Clang/Flang) always emits a line note before the
1852 prologue and another one after. We trust clang to emit usable
1853 line notes. */
1854 if (post_prologue_pc
1855 && (cust != NULL
1856 && COMPUNIT_PRODUCER (cust) != NULL
1857 && producer_is_llvm (COMPUNIT_PRODUCER (cust))))
1858 return std::max (start_pc, post_prologue_pc);
1859 }
1860
1861 cache.locals = -1;
1862 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1863 if (cache.locals < 0)
1864 return start_pc;
1865
1866 /* Found valid frame setup. */
1867
1868 /* The native cc on SVR4 in -K PIC mode inserts the following code
1869 to get the address of the global offset table (GOT) into register
1870 %ebx:
1871
1872 call 0x0
1873 popl %ebx
1874 movl %ebx,x(%ebp) (optional)
1875 addl y,%ebx
1876
1877 This code is with the rest of the prologue (at the end of the
1878 function), so we have to skip it to get to the first real
1879 instruction at the start of the function. */
1880
1881 for (i = 0; i < 6; i++)
1882 {
1883 if (target_read_code (pc + i, &op, 1))
1884 return pc;
1885
1886 if (pic_pat[i] != op)
1887 break;
1888 }
1889 if (i == 6)
1890 {
1891 int delta = 6;
1892
1893 if (target_read_code (pc + delta, &op, 1))
1894 return pc;
1895
1896 if (op == 0x89) /* movl %ebx, x(%ebp) */
1897 {
1898 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1899
1900 if (op == 0x5d) /* One byte offset from %ebp. */
1901 delta += 3;
1902 else if (op == 0x9d) /* Four byte offset from %ebp. */
1903 delta += 6;
1904 else /* Unexpected instruction. */
1905 delta = 0;
1906
1907 if (target_read_code (pc + delta, &op, 1))
1908 return pc;
1909 }
1910
1911 /* addl y,%ebx */
1912 if (delta > 0 && op == 0x81
1913 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1914 == 0xc3)
1915 {
1916 pc += delta + 6;
1917 }
1918 }
1919
1920 /* If the function starts with a branch (to startup code at the end)
1921 the last instruction should bring us back to the first
1922 instruction of the real code. */
1923 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1924 pc = i386_follow_jump (gdbarch, pc);
1925
1926 return pc;
1927 }
1928
1929 /* Check that the code pointed to by PC corresponds to a call to
1930 __main, skip it if so. Return PC otherwise. */
1931
1932 CORE_ADDR
1933 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1934 {
1935 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1936 gdb_byte op;
1937
1938 if (target_read_code (pc, &op, 1))
1939 return pc;
1940 if (op == 0xe8)
1941 {
1942 gdb_byte buf[4];
1943
1944 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1945 {
1946 /* Make sure address is computed correctly as a 32bit
1947 integer even if CORE_ADDR is 64 bit wide. */
1948 struct bound_minimal_symbol s;
1949 CORE_ADDR call_dest;
1950
1951 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1952 call_dest = call_dest & 0xffffffffU;
1953 s = lookup_minimal_symbol_by_pc (call_dest);
1954 if (s.minsym != NULL
1955 && s.minsym->linkage_name () != NULL
1956 && strcmp (s.minsym->linkage_name (), "__main") == 0)
1957 pc += 5;
1958 }
1959 }
1960
1961 return pc;
1962 }
1963
1964 /* This function is 64-bit safe. */
1965
1966 static CORE_ADDR
1967 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1968 {
1969 gdb_byte buf[8];
1970
1971 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1972 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1973 }
1974 \f
1975
1976 /* Normal frames. */
1977
1978 static void
1979 i386_frame_cache_1 (struct frame_info *this_frame,
1980 struct i386_frame_cache *cache)
1981 {
1982 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1983 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1984 gdb_byte buf[4];
1985 int i;
1986
1987 cache->pc = get_frame_func (this_frame);
1988
1989 /* In principle, for normal frames, %ebp holds the frame pointer,
1990 which holds the base address for the current stack frame.
1991 However, for functions that don't need it, the frame pointer is
1992 optional. For these "frameless" functions the frame pointer is
1993 actually the frame pointer of the calling frame. Signal
1994 trampolines are just a special case of a "frameless" function.
1995 They (usually) share their frame pointer with the frame that was
1996 in progress when the signal occurred. */
1997
1998 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1999 cache->base = extract_unsigned_integer (buf, 4, byte_order);
2000 if (cache->base == 0)
2001 {
2002 cache->base_p = 1;
2003 return;
2004 }
2005
2006 /* For normal frames, %eip is stored at 4(%ebp). */
2007 cache->saved_regs[I386_EIP_REGNUM] = 4;
2008
2009 if (cache->pc != 0)
2010 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2011 cache);
2012
2013 if (cache->locals < 0)
2014 {
2015 /* We didn't find a valid frame, which means that CACHE->base
2016 currently holds the frame pointer for our calling frame. If
2017 we're at the start of a function, or somewhere half-way its
2018 prologue, the function's frame probably hasn't been fully
2019 setup yet. Try to reconstruct the base address for the stack
2020 frame by looking at the stack pointer. For truly "frameless"
2021 functions this might work too. */
2022
2023 if (cache->saved_sp_reg != -1)
2024 {
2025 /* Saved stack pointer has been saved. */
2026 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2027 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2028
2029 /* We're halfway aligning the stack. */
2030 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2031 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2032
2033 /* This will be added back below. */
2034 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2035 }
2036 else if (cache->pc != 0
2037 || target_read_code (get_frame_pc (this_frame), buf, 1))
2038 {
2039 /* We're in a known function, but did not find a frame
2040 setup. Assume that the function does not use %ebp.
2041 Alternatively, we may have jumped to an invalid
2042 address; in that case there is definitely no new
2043 frame in %ebp. */
2044 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2045 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2046 + cache->sp_offset;
2047 }
2048 else
2049 /* We're in an unknown function. We could not find the start
2050 of the function to analyze the prologue; our best option is
2051 to assume a typical frame layout with the caller's %ebp
2052 saved. */
2053 cache->saved_regs[I386_EBP_REGNUM] = 0;
2054 }
2055
2056 if (cache->saved_sp_reg != -1)
2057 {
2058 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2059 register may be unavailable). */
2060 if (cache->saved_sp == 0
2061 && deprecated_frame_register_read (this_frame,
2062 cache->saved_sp_reg, buf))
2063 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2064 }
2065 /* Now that we have the base address for the stack frame we can
2066 calculate the value of %esp in the calling frame. */
2067 else if (cache->saved_sp == 0)
2068 cache->saved_sp = cache->base + 8;
2069
2070 /* Adjust all the saved registers such that they contain addresses
2071 instead of offsets. */
2072 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2073 if (cache->saved_regs[i] != -1)
2074 cache->saved_regs[i] += cache->base;
2075
2076 cache->base_p = 1;
2077 }
2078
2079 static struct i386_frame_cache *
2080 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2081 {
2082 struct i386_frame_cache *cache;
2083
2084 if (*this_cache)
2085 return (struct i386_frame_cache *) *this_cache;
2086
2087 cache = i386_alloc_frame_cache ();
2088 *this_cache = cache;
2089
2090 try
2091 {
2092 i386_frame_cache_1 (this_frame, cache);
2093 }
2094 catch (const gdb_exception_error &ex)
2095 {
2096 if (ex.error != NOT_AVAILABLE_ERROR)
2097 throw;
2098 }
2099
2100 return cache;
2101 }
2102
2103 static void
2104 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2105 struct frame_id *this_id)
2106 {
2107 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2108
2109 if (!cache->base_p)
2110 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2111 else if (cache->base == 0)
2112 {
2113 /* This marks the outermost frame. */
2114 }
2115 else
2116 {
2117 /* See the end of i386_push_dummy_call. */
2118 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2119 }
2120 }
2121
2122 static enum unwind_stop_reason
2123 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2124 void **this_cache)
2125 {
2126 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2127
2128 if (!cache->base_p)
2129 return UNWIND_UNAVAILABLE;
2130
2131 /* This marks the outermost frame. */
2132 if (cache->base == 0)
2133 return UNWIND_OUTERMOST;
2134
2135 return UNWIND_NO_REASON;
2136 }
2137
2138 static struct value *
2139 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2140 int regnum)
2141 {
2142 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2143
2144 gdb_assert (regnum >= 0);
2145
2146 /* The System V ABI says that:
2147
2148 "The flags register contains the system flags, such as the
2149 direction flag and the carry flag. The direction flag must be
2150 set to the forward (that is, zero) direction before entry and
2151 upon exit from a function. Other user flags have no specified
2152 role in the standard calling sequence and are not preserved."
2153
2154 To guarantee the "upon exit" part of that statement we fake a
2155 saved flags register that has its direction flag cleared.
2156
2157 Note that GCC doesn't seem to rely on the fact that the direction
2158 flag is cleared after a function return; it always explicitly
2159 clears the flag before operations where it matters.
2160
2161 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2162 right thing to do. The way we fake the flags register here makes
2163 it impossible to change it. */
2164
2165 if (regnum == I386_EFLAGS_REGNUM)
2166 {
2167 ULONGEST val;
2168
2169 val = get_frame_register_unsigned (this_frame, regnum);
2170 val &= ~(1 << 10);
2171 return frame_unwind_got_constant (this_frame, regnum, val);
2172 }
2173
2174 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2175 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2176
2177 if (regnum == I386_ESP_REGNUM
2178 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2179 {
2180 /* If the SP has been saved, but we don't know where, then this
2181 means that SAVED_SP_REG register was found unavailable back
2182 when we built the cache. */
2183 if (cache->saved_sp == 0)
2184 return frame_unwind_got_register (this_frame, regnum,
2185 cache->saved_sp_reg);
2186 else
2187 return frame_unwind_got_constant (this_frame, regnum,
2188 cache->saved_sp);
2189 }
2190
2191 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2192 return frame_unwind_got_memory (this_frame, regnum,
2193 cache->saved_regs[regnum]);
2194
2195 return frame_unwind_got_register (this_frame, regnum, regnum);
2196 }
2197
2198 static const struct frame_unwind i386_frame_unwind =
2199 {
2200 NORMAL_FRAME,
2201 i386_frame_unwind_stop_reason,
2202 i386_frame_this_id,
2203 i386_frame_prev_register,
2204 NULL,
2205 default_frame_sniffer
2206 };
2207
2208 /* Normal frames, but in a function epilogue. */
2209
2210 /* Implement the stack_frame_destroyed_p gdbarch method.
2211
2212 The epilogue is defined here as the 'ret' instruction, which will
2213 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2214 the function's stack frame. */
2215
2216 static int
2217 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2218 {
2219 gdb_byte insn;
2220 struct compunit_symtab *cust;
2221
2222 cust = find_pc_compunit_symtab (pc);
2223 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2224 return 0;
2225
2226 if (target_read_memory (pc, &insn, 1))
2227 return 0; /* Can't read memory at pc. */
2228
2229 if (insn != 0xc3) /* 'ret' instruction. */
2230 return 0;
2231
2232 return 1;
2233 }
2234
2235 static int
2236 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2237 struct frame_info *this_frame,
2238 void **this_prologue_cache)
2239 {
2240 if (frame_relative_level (this_frame) == 0)
2241 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2242 get_frame_pc (this_frame));
2243 else
2244 return 0;
2245 }
2246
2247 static struct i386_frame_cache *
2248 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2249 {
2250 struct i386_frame_cache *cache;
2251 CORE_ADDR sp;
2252
2253 if (*this_cache)
2254 return (struct i386_frame_cache *) *this_cache;
2255
2256 cache = i386_alloc_frame_cache ();
2257 *this_cache = cache;
2258
2259 try
2260 {
2261 cache->pc = get_frame_func (this_frame);
2262
2263 /* At this point the stack looks as if we just entered the
2264 function, with the return address at the top of the
2265 stack. */
2266 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2267 cache->base = sp + cache->sp_offset;
2268 cache->saved_sp = cache->base + 8;
2269 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2270
2271 cache->base_p = 1;
2272 }
2273 catch (const gdb_exception_error &ex)
2274 {
2275 if (ex.error != NOT_AVAILABLE_ERROR)
2276 throw;
2277 }
2278
2279 return cache;
2280 }
2281
2282 static enum unwind_stop_reason
2283 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2284 void **this_cache)
2285 {
2286 struct i386_frame_cache *cache =
2287 i386_epilogue_frame_cache (this_frame, this_cache);
2288
2289 if (!cache->base_p)
2290 return UNWIND_UNAVAILABLE;
2291
2292 return UNWIND_NO_REASON;
2293 }
2294
2295 static void
2296 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2297 void **this_cache,
2298 struct frame_id *this_id)
2299 {
2300 struct i386_frame_cache *cache =
2301 i386_epilogue_frame_cache (this_frame, this_cache);
2302
2303 if (!cache->base_p)
2304 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2305 else
2306 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2307 }
2308
2309 static struct value *
2310 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2311 void **this_cache, int regnum)
2312 {
2313 /* Make sure we've initialized the cache. */
2314 i386_epilogue_frame_cache (this_frame, this_cache);
2315
2316 return i386_frame_prev_register (this_frame, this_cache, regnum);
2317 }
2318
2319 static const struct frame_unwind i386_epilogue_frame_unwind =
2320 {
2321 NORMAL_FRAME,
2322 i386_epilogue_frame_unwind_stop_reason,
2323 i386_epilogue_frame_this_id,
2324 i386_epilogue_frame_prev_register,
2325 NULL,
2326 i386_epilogue_frame_sniffer
2327 };
2328 \f
2329
2330 /* Stack-based trampolines. */
2331
2332 /* These trampolines are used on cross x86 targets, when taking the
2333 address of a nested function. When executing these trampolines,
2334 no stack frame is set up, so we are in a similar situation as in
2335 epilogues and i386_epilogue_frame_this_id can be re-used. */
2336
2337 /* Static chain passed in register. */
2338
2339 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2340 {
2341 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2342 { 5, { 0xb8 }, { 0xfe } },
2343
2344 /* `jmp imm32' */
2345 { 5, { 0xe9 }, { 0xff } },
2346
2347 {0}
2348 };
2349
2350 /* Static chain passed on stack (when regparm=3). */
2351
2352 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2353 {
2354 /* `push imm32' */
2355 { 5, { 0x68 }, { 0xff } },
2356
2357 /* `jmp imm32' */
2358 { 5, { 0xe9 }, { 0xff } },
2359
2360 {0}
2361 };
2362
2363 /* Return whether PC points inside a stack trampoline. */
2364
2365 static int
2366 i386_in_stack_tramp_p (CORE_ADDR pc)
2367 {
2368 gdb_byte insn;
2369 const char *name;
2370
2371 /* A stack trampoline is detected if no name is associated
2372 to the current pc and if it points inside a trampoline
2373 sequence. */
2374
2375 find_pc_partial_function (pc, &name, NULL, NULL);
2376 if (name)
2377 return 0;
2378
2379 if (target_read_memory (pc, &insn, 1))
2380 return 0;
2381
2382 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2383 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2384 return 0;
2385
2386 return 1;
2387 }
2388
2389 static int
2390 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2391 struct frame_info *this_frame,
2392 void **this_cache)
2393 {
2394 if (frame_relative_level (this_frame) == 0)
2395 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2396 else
2397 return 0;
2398 }
2399
2400 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2401 {
2402 NORMAL_FRAME,
2403 i386_epilogue_frame_unwind_stop_reason,
2404 i386_epilogue_frame_this_id,
2405 i386_epilogue_frame_prev_register,
2406 NULL,
2407 i386_stack_tramp_frame_sniffer
2408 };
2409 \f
2410 /* Generate a bytecode expression to get the value of the saved PC. */
2411
2412 static void
2413 i386_gen_return_address (struct gdbarch *gdbarch,
2414 struct agent_expr *ax, struct axs_value *value,
2415 CORE_ADDR scope)
2416 {
2417 /* The following sequence assumes the traditional use of the base
2418 register. */
2419 ax_reg (ax, I386_EBP_REGNUM);
2420 ax_const_l (ax, 4);
2421 ax_simple (ax, aop_add);
2422 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2423 value->kind = axs_lvalue_memory;
2424 }
2425 \f
2426
2427 /* Signal trampolines. */
2428
2429 static struct i386_frame_cache *
2430 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2431 {
2432 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2433 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2434 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2435 struct i386_frame_cache *cache;
2436 CORE_ADDR addr;
2437 gdb_byte buf[4];
2438
2439 if (*this_cache)
2440 return (struct i386_frame_cache *) *this_cache;
2441
2442 cache = i386_alloc_frame_cache ();
2443
2444 try
2445 {
2446 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2447 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2448
2449 addr = tdep->sigcontext_addr (this_frame);
2450 if (tdep->sc_reg_offset)
2451 {
2452 int i;
2453
2454 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2455
2456 for (i = 0; i < tdep->sc_num_regs; i++)
2457 if (tdep->sc_reg_offset[i] != -1)
2458 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2459 }
2460 else
2461 {
2462 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2463 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2464 }
2465
2466 cache->base_p = 1;
2467 }
2468 catch (const gdb_exception_error &ex)
2469 {
2470 if (ex.error != NOT_AVAILABLE_ERROR)
2471 throw;
2472 }
2473
2474 *this_cache = cache;
2475 return cache;
2476 }
2477
2478 static enum unwind_stop_reason
2479 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2480 void **this_cache)
2481 {
2482 struct i386_frame_cache *cache =
2483 i386_sigtramp_frame_cache (this_frame, this_cache);
2484
2485 if (!cache->base_p)
2486 return UNWIND_UNAVAILABLE;
2487
2488 return UNWIND_NO_REASON;
2489 }
2490
2491 static void
2492 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2493 struct frame_id *this_id)
2494 {
2495 struct i386_frame_cache *cache =
2496 i386_sigtramp_frame_cache (this_frame, this_cache);
2497
2498 if (!cache->base_p)
2499 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2500 else
2501 {
2502 /* See the end of i386_push_dummy_call. */
2503 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2504 }
2505 }
2506
2507 static struct value *
2508 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2509 void **this_cache, int regnum)
2510 {
2511 /* Make sure we've initialized the cache. */
2512 i386_sigtramp_frame_cache (this_frame, this_cache);
2513
2514 return i386_frame_prev_register (this_frame, this_cache, regnum);
2515 }
2516
2517 static int
2518 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2519 struct frame_info *this_frame,
2520 void **this_prologue_cache)
2521 {
2522 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2523
2524 /* We shouldn't even bother if we don't have a sigcontext_addr
2525 handler. */
2526 if (tdep->sigcontext_addr == NULL)
2527 return 0;
2528
2529 if (tdep->sigtramp_p != NULL)
2530 {
2531 if (tdep->sigtramp_p (this_frame))
2532 return 1;
2533 }
2534
2535 if (tdep->sigtramp_start != 0)
2536 {
2537 CORE_ADDR pc = get_frame_pc (this_frame);
2538
2539 gdb_assert (tdep->sigtramp_end != 0);
2540 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2541 return 1;
2542 }
2543
2544 return 0;
2545 }
2546
2547 static const struct frame_unwind i386_sigtramp_frame_unwind =
2548 {
2549 SIGTRAMP_FRAME,
2550 i386_sigtramp_frame_unwind_stop_reason,
2551 i386_sigtramp_frame_this_id,
2552 i386_sigtramp_frame_prev_register,
2553 NULL,
2554 i386_sigtramp_frame_sniffer
2555 };
2556 \f
2557
2558 static CORE_ADDR
2559 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2560 {
2561 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2562
2563 return cache->base;
2564 }
2565
2566 static const struct frame_base i386_frame_base =
2567 {
2568 &i386_frame_unwind,
2569 i386_frame_base_address,
2570 i386_frame_base_address,
2571 i386_frame_base_address
2572 };
2573
2574 static struct frame_id
2575 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2576 {
2577 CORE_ADDR fp;
2578
2579 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2580
2581 /* See the end of i386_push_dummy_call. */
2582 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2583 }
2584
2585 /* _Decimal128 function return values need 16-byte alignment on the
2586 stack. */
2587
2588 static CORE_ADDR
2589 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2590 {
2591 return sp & -(CORE_ADDR)16;
2592 }
2593 \f
2594
2595 /* Figure out where the longjmp will land. Slurp the args out of the
2596 stack. We expect the first arg to be a pointer to the jmp_buf
2597 structure from which we extract the address that we will land at.
2598 This address is copied into PC. This routine returns non-zero on
2599 success. */
2600
2601 static int
2602 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2603 {
2604 gdb_byte buf[4];
2605 CORE_ADDR sp, jb_addr;
2606 struct gdbarch *gdbarch = get_frame_arch (frame);
2607 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2608 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2609
2610 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2611 longjmp will land. */
2612 if (jb_pc_offset == -1)
2613 return 0;
2614
2615 get_frame_register (frame, I386_ESP_REGNUM, buf);
2616 sp = extract_unsigned_integer (buf, 4, byte_order);
2617 if (target_read_memory (sp + 4, buf, 4))
2618 return 0;
2619
2620 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2621 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2622 return 0;
2623
2624 *pc = extract_unsigned_integer (buf, 4, byte_order);
2625 return 1;
2626 }
2627 \f
2628
2629 /* Check whether TYPE must be 16-byte-aligned when passed as a
2630 function argument. 16-byte vectors, _Decimal128 and structures or
2631 unions containing such types must be 16-byte-aligned; other
2632 arguments are 4-byte-aligned. */
2633
2634 static int
2635 i386_16_byte_align_p (struct type *type)
2636 {
2637 type = check_typedef (type);
2638 if ((type->code () == TYPE_CODE_DECFLOAT
2639 || (type->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2640 && TYPE_LENGTH (type) == 16)
2641 return 1;
2642 if (type->code () == TYPE_CODE_ARRAY)
2643 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2644 if (type->code () == TYPE_CODE_STRUCT
2645 || type->code () == TYPE_CODE_UNION)
2646 {
2647 int i;
2648 for (i = 0; i < type->num_fields (); i++)
2649 {
2650 if (i386_16_byte_align_p (type->field (i).type ()))
2651 return 1;
2652 }
2653 }
2654 return 0;
2655 }
2656
2657 /* Implementation for set_gdbarch_push_dummy_code. */
2658
2659 static CORE_ADDR
2660 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2661 struct value **args, int nargs, struct type *value_type,
2662 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2663 struct regcache *regcache)
2664 {
2665 /* Use 0xcc breakpoint - 1 byte. */
2666 *bp_addr = sp - 1;
2667 *real_pc = funaddr;
2668
2669 /* Keep the stack aligned. */
2670 return sp - 16;
2671 }
2672
2673 /* The "push_dummy_call" gdbarch method, optionally with the thiscall
2674 calling convention. */
2675
2676 CORE_ADDR
2677 i386_thiscall_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2678 struct regcache *regcache, CORE_ADDR bp_addr,
2679 int nargs, struct value **args, CORE_ADDR sp,
2680 function_call_return_method return_method,
2681 CORE_ADDR struct_addr, bool thiscall)
2682 {
2683 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2684 gdb_byte buf[4];
2685 int i;
2686 int write_pass;
2687 int args_space = 0;
2688
2689 /* BND registers can be in arbitrary values at the moment of the
2690 inferior call. This can cause boundary violations that are not
2691 due to a real bug or even desired by the user. The best to be done
2692 is set the BND registers to allow access to the whole memory, INIT
2693 state, before pushing the inferior call. */
2694 i387_reset_bnd_regs (gdbarch, regcache);
2695
2696 /* Determine the total space required for arguments and struct
2697 return address in a first pass (allowing for 16-byte-aligned
2698 arguments), then push arguments in a second pass. */
2699
2700 for (write_pass = 0; write_pass < 2; write_pass++)
2701 {
2702 int args_space_used = 0;
2703
2704 if (return_method == return_method_struct)
2705 {
2706 if (write_pass)
2707 {
2708 /* Push value address. */
2709 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2710 write_memory (sp, buf, 4);
2711 args_space_used += 4;
2712 }
2713 else
2714 args_space += 4;
2715 }
2716
2717 for (i = thiscall ? 1 : 0; i < nargs; i++)
2718 {
2719 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2720
2721 if (write_pass)
2722 {
2723 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2724 args_space_used = align_up (args_space_used, 16);
2725
2726 write_memory (sp + args_space_used,
2727 value_contents_all (args[i]), len);
2728 /* The System V ABI says that:
2729
2730 "An argument's size is increased, if necessary, to make it a
2731 multiple of [32-bit] words. This may require tail padding,
2732 depending on the size of the argument."
2733
2734 This makes sure the stack stays word-aligned. */
2735 args_space_used += align_up (len, 4);
2736 }
2737 else
2738 {
2739 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2740 args_space = align_up (args_space, 16);
2741 args_space += align_up (len, 4);
2742 }
2743 }
2744
2745 if (!write_pass)
2746 {
2747 sp -= args_space;
2748
2749 /* The original System V ABI only requires word alignment,
2750 but modern incarnations need 16-byte alignment in order
2751 to support SSE. Since wasting a few bytes here isn't
2752 harmful we unconditionally enforce 16-byte alignment. */
2753 sp &= ~0xf;
2754 }
2755 }
2756
2757 /* Store return address. */
2758 sp -= 4;
2759 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2760 write_memory (sp, buf, 4);
2761
2762 /* Finally, update the stack pointer... */
2763 store_unsigned_integer (buf, 4, byte_order, sp);
2764 regcache->cooked_write (I386_ESP_REGNUM, buf);
2765
2766 /* ...and fake a frame pointer. */
2767 regcache->cooked_write (I386_EBP_REGNUM, buf);
2768
2769 /* The 'this' pointer needs to be in ECX. */
2770 if (thiscall)
2771 regcache->cooked_write (I386_ECX_REGNUM, value_contents_all (args[0]));
2772
2773 /* MarkK wrote: This "+ 8" is all over the place:
2774 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2775 i386_dummy_id). It's there, since all frame unwinders for
2776 a given target have to agree (within a certain margin) on the
2777 definition of the stack address of a frame. Otherwise frame id
2778 comparison might not work correctly. Since DWARF2/GCC uses the
2779 stack address *before* the function call as a frame's CFA. On
2780 the i386, when %ebp is used as a frame pointer, the offset
2781 between the contents %ebp and the CFA as defined by GCC. */
2782 return sp + 8;
2783 }
2784
2785 /* Implement the "push_dummy_call" gdbarch method. */
2786
2787 static CORE_ADDR
2788 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2789 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2790 struct value **args, CORE_ADDR sp,
2791 function_call_return_method return_method,
2792 CORE_ADDR struct_addr)
2793 {
2794 return i386_thiscall_push_dummy_call (gdbarch, function, regcache, bp_addr,
2795 nargs, args, sp, return_method,
2796 struct_addr, false);
2797 }
2798
2799 /* These registers are used for returning integers (and on some
2800 targets also for returning `struct' and `union' values when their
2801 size and alignment match an integer type). */
2802 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2803 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2804
2805 /* Read, for architecture GDBARCH, a function return value of TYPE
2806 from REGCACHE, and copy that into VALBUF. */
2807
2808 static void
2809 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2810 struct regcache *regcache, gdb_byte *valbuf)
2811 {
2812 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2813 int len = TYPE_LENGTH (type);
2814 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2815
2816 if (type->code () == TYPE_CODE_FLT)
2817 {
2818 if (tdep->st0_regnum < 0)
2819 {
2820 warning (_("Cannot find floating-point return value."));
2821 memset (valbuf, 0, len);
2822 return;
2823 }
2824
2825 /* Floating-point return values can be found in %st(0). Convert
2826 its contents to the desired type. This is probably not
2827 exactly how it would happen on the target itself, but it is
2828 the best we can do. */
2829 regcache->raw_read (I386_ST0_REGNUM, buf);
2830 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2831 }
2832 else
2833 {
2834 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2835 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2836
2837 if (len <= low_size)
2838 {
2839 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2840 memcpy (valbuf, buf, len);
2841 }
2842 else if (len <= (low_size + high_size))
2843 {
2844 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2845 memcpy (valbuf, buf, low_size);
2846 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
2847 memcpy (valbuf + low_size, buf, len - low_size);
2848 }
2849 else
2850 internal_error (__FILE__, __LINE__,
2851 _("Cannot extract return value of %d bytes long."),
2852 len);
2853 }
2854 }
2855
2856 /* Write, for architecture GDBARCH, a function return value of TYPE
2857 from VALBUF into REGCACHE. */
2858
2859 static void
2860 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2861 struct regcache *regcache, const gdb_byte *valbuf)
2862 {
2863 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2864 int len = TYPE_LENGTH (type);
2865
2866 if (type->code () == TYPE_CODE_FLT)
2867 {
2868 ULONGEST fstat;
2869 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2870
2871 if (tdep->st0_regnum < 0)
2872 {
2873 warning (_("Cannot set floating-point return value."));
2874 return;
2875 }
2876
2877 /* Returning floating-point values is a bit tricky. Apart from
2878 storing the return value in %st(0), we have to simulate the
2879 state of the FPU at function return point. */
2880
2881 /* Convert the value found in VALBUF to the extended
2882 floating-point format used by the FPU. This is probably
2883 not exactly how it would happen on the target itself, but
2884 it is the best we can do. */
2885 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2886 regcache->raw_write (I386_ST0_REGNUM, buf);
2887
2888 /* Set the top of the floating-point register stack to 7. The
2889 actual value doesn't really matter, but 7 is what a normal
2890 function return would end up with if the program started out
2891 with a freshly initialized FPU. */
2892 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2893 fstat |= (7 << 11);
2894 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2895
2896 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2897 the floating-point register stack to 7, the appropriate value
2898 for the tag word is 0x3fff. */
2899 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2900 }
2901 else
2902 {
2903 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2904 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2905
2906 if (len <= low_size)
2907 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
2908 else if (len <= (low_size + high_size))
2909 {
2910 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
2911 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2912 valbuf + low_size);
2913 }
2914 else
2915 internal_error (__FILE__, __LINE__,
2916 _("Cannot store return value of %d bytes long."), len);
2917 }
2918 }
2919 \f
2920
2921 /* This is the variable that is set with "set struct-convention", and
2922 its legitimate values. */
2923 static const char default_struct_convention[] = "default";
2924 static const char pcc_struct_convention[] = "pcc";
2925 static const char reg_struct_convention[] = "reg";
2926 static const char *const valid_conventions[] =
2927 {
2928 default_struct_convention,
2929 pcc_struct_convention,
2930 reg_struct_convention,
2931 NULL
2932 };
2933 static const char *struct_convention = default_struct_convention;
2934
2935 /* Return non-zero if TYPE, which is assumed to be a structure,
2936 a union type, or an array type, should be returned in registers
2937 for architecture GDBARCH. */
2938
2939 static int
2940 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2941 {
2942 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2943 enum type_code code = type->code ();
2944 int len = TYPE_LENGTH (type);
2945
2946 gdb_assert (code == TYPE_CODE_STRUCT
2947 || code == TYPE_CODE_UNION
2948 || code == TYPE_CODE_ARRAY);
2949
2950 if (struct_convention == pcc_struct_convention
2951 || (struct_convention == default_struct_convention
2952 && tdep->struct_return == pcc_struct_return))
2953 return 0;
2954
2955 /* Structures consisting of a single `float', `double' or 'long
2956 double' member are returned in %st(0). */
2957 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
2958 {
2959 type = check_typedef (type->field (0).type ());
2960 if (type->code () == TYPE_CODE_FLT)
2961 return (len == 4 || len == 8 || len == 12);
2962 }
2963
2964 return (len == 1 || len == 2 || len == 4 || len == 8);
2965 }
2966
2967 /* Determine, for architecture GDBARCH, how a return value of TYPE
2968 should be returned. If it is supposed to be returned in registers,
2969 and READBUF is non-zero, read the appropriate value from REGCACHE,
2970 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2971 from WRITEBUF into REGCACHE. */
2972
2973 static enum return_value_convention
2974 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2975 struct type *type, struct regcache *regcache,
2976 gdb_byte *readbuf, const gdb_byte *writebuf)
2977 {
2978 enum type_code code = type->code ();
2979
2980 if (((code == TYPE_CODE_STRUCT
2981 || code == TYPE_CODE_UNION
2982 || code == TYPE_CODE_ARRAY)
2983 && !i386_reg_struct_return_p (gdbarch, type))
2984 /* Complex double and long double uses the struct return convention. */
2985 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2986 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2987 /* 128-bit decimal float uses the struct return convention. */
2988 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2989 {
2990 /* The System V ABI says that:
2991
2992 "A function that returns a structure or union also sets %eax
2993 to the value of the original address of the caller's area
2994 before it returns. Thus when the caller receives control
2995 again, the address of the returned object resides in register
2996 %eax and can be used to access the object."
2997
2998 So the ABI guarantees that we can always find the return
2999 value just after the function has returned. */
3000
3001 /* Note that the ABI doesn't mention functions returning arrays,
3002 which is something possible in certain languages such as Ada.
3003 In this case, the value is returned as if it was wrapped in
3004 a record, so the convention applied to records also applies
3005 to arrays. */
3006
3007 if (readbuf)
3008 {
3009 ULONGEST addr;
3010
3011 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
3012 read_memory (addr, readbuf, TYPE_LENGTH (type));
3013 }
3014
3015 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
3016 }
3017
3018 /* This special case is for structures consisting of a single
3019 `float', `double' or 'long double' member. These structures are
3020 returned in %st(0). For these structures, we call ourselves
3021 recursively, changing TYPE into the type of the first member of
3022 the structure. Since that should work for all structures that
3023 have only one member, we don't bother to check the member's type
3024 here. */
3025 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
3026 {
3027 type = check_typedef (type->field (0).type ());
3028 return i386_return_value (gdbarch, function, type, regcache,
3029 readbuf, writebuf);
3030 }
3031
3032 if (readbuf)
3033 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3034 if (writebuf)
3035 i386_store_return_value (gdbarch, type, regcache, writebuf);
3036
3037 return RETURN_VALUE_REGISTER_CONVENTION;
3038 }
3039 \f
3040
3041 struct type *
3042 i387_ext_type (struct gdbarch *gdbarch)
3043 {
3044 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3045
3046 if (!tdep->i387_ext_type)
3047 {
3048 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3049 gdb_assert (tdep->i387_ext_type != NULL);
3050 }
3051
3052 return tdep->i387_ext_type;
3053 }
3054
3055 /* Construct type for pseudo BND registers. We can't use
3056 tdesc_find_type since a complement of one value has to be used
3057 to describe the upper bound. */
3058
3059 static struct type *
3060 i386_bnd_type (struct gdbarch *gdbarch)
3061 {
3062 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3063
3064
3065 if (!tdep->i386_bnd_type)
3066 {
3067 struct type *t;
3068 const struct builtin_type *bt = builtin_type (gdbarch);
3069
3070 /* The type we're building is described bellow: */
3071 #if 0
3072 struct __bound128
3073 {
3074 void *lbound;
3075 void *ubound; /* One complement of raw ubound field. */
3076 };
3077 #endif
3078
3079 t = arch_composite_type (gdbarch,
3080 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3081
3082 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3083 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3084
3085 t->set_name ("builtin_type_bound128");
3086 tdep->i386_bnd_type = t;
3087 }
3088
3089 return tdep->i386_bnd_type;
3090 }
3091
3092 /* Construct vector type for pseudo ZMM registers. We can't use
3093 tdesc_find_type since ZMM isn't described in target description. */
3094
3095 static struct type *
3096 i386_zmm_type (struct gdbarch *gdbarch)
3097 {
3098 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3099
3100 if (!tdep->i386_zmm_type)
3101 {
3102 const struct builtin_type *bt = builtin_type (gdbarch);
3103
3104 /* The type we're building is this: */
3105 #if 0
3106 union __gdb_builtin_type_vec512i
3107 {
3108 int128_t uint128[4];
3109 int64_t v4_int64[8];
3110 int32_t v8_int32[16];
3111 int16_t v16_int16[32];
3112 int8_t v32_int8[64];
3113 double v4_double[8];
3114 float v8_float[16];
3115 };
3116 #endif
3117
3118 struct type *t;
3119
3120 t = arch_composite_type (gdbarch,
3121 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3122 append_composite_type_field (t, "v16_float",
3123 init_vector_type (bt->builtin_float, 16));
3124 append_composite_type_field (t, "v8_double",
3125 init_vector_type (bt->builtin_double, 8));
3126 append_composite_type_field (t, "v64_int8",
3127 init_vector_type (bt->builtin_int8, 64));
3128 append_composite_type_field (t, "v32_int16",
3129 init_vector_type (bt->builtin_int16, 32));
3130 append_composite_type_field (t, "v16_int32",
3131 init_vector_type (bt->builtin_int32, 16));
3132 append_composite_type_field (t, "v8_int64",
3133 init_vector_type (bt->builtin_int64, 8));
3134 append_composite_type_field (t, "v4_int128",
3135 init_vector_type (bt->builtin_int128, 4));
3136
3137 TYPE_VECTOR (t) = 1;
3138 t->set_name ("builtin_type_vec512i");
3139 tdep->i386_zmm_type = t;
3140 }
3141
3142 return tdep->i386_zmm_type;
3143 }
3144
3145 /* Construct vector type for pseudo YMM registers. We can't use
3146 tdesc_find_type since YMM isn't described in target description. */
3147
3148 static struct type *
3149 i386_ymm_type (struct gdbarch *gdbarch)
3150 {
3151 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3152
3153 if (!tdep->i386_ymm_type)
3154 {
3155 const struct builtin_type *bt = builtin_type (gdbarch);
3156
3157 /* The type we're building is this: */
3158 #if 0
3159 union __gdb_builtin_type_vec256i
3160 {
3161 int128_t uint128[2];
3162 int64_t v2_int64[4];
3163 int32_t v4_int32[8];
3164 int16_t v8_int16[16];
3165 int8_t v16_int8[32];
3166 double v2_double[4];
3167 float v4_float[8];
3168 };
3169 #endif
3170
3171 struct type *t;
3172
3173 t = arch_composite_type (gdbarch,
3174 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3175 append_composite_type_field (t, "v8_float",
3176 init_vector_type (bt->builtin_float, 8));
3177 append_composite_type_field (t, "v4_double",
3178 init_vector_type (bt->builtin_double, 4));
3179 append_composite_type_field (t, "v32_int8",
3180 init_vector_type (bt->builtin_int8, 32));
3181 append_composite_type_field (t, "v16_int16",
3182 init_vector_type (bt->builtin_int16, 16));
3183 append_composite_type_field (t, "v8_int32",
3184 init_vector_type (bt->builtin_int32, 8));
3185 append_composite_type_field (t, "v4_int64",
3186 init_vector_type (bt->builtin_int64, 4));
3187 append_composite_type_field (t, "v2_int128",
3188 init_vector_type (bt->builtin_int128, 2));
3189
3190 TYPE_VECTOR (t) = 1;
3191 t->set_name ("builtin_type_vec256i");
3192 tdep->i386_ymm_type = t;
3193 }
3194
3195 return tdep->i386_ymm_type;
3196 }
3197
3198 /* Construct vector type for MMX registers. */
3199 static struct type *
3200 i386_mmx_type (struct gdbarch *gdbarch)
3201 {
3202 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3203
3204 if (!tdep->i386_mmx_type)
3205 {
3206 const struct builtin_type *bt = builtin_type (gdbarch);
3207
3208 /* The type we're building is this: */
3209 #if 0
3210 union __gdb_builtin_type_vec64i
3211 {
3212 int64_t uint64;
3213 int32_t v2_int32[2];
3214 int16_t v4_int16[4];
3215 int8_t v8_int8[8];
3216 };
3217 #endif
3218
3219 struct type *t;
3220
3221 t = arch_composite_type (gdbarch,
3222 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3223
3224 append_composite_type_field (t, "uint64", bt->builtin_int64);
3225 append_composite_type_field (t, "v2_int32",
3226 init_vector_type (bt->builtin_int32, 2));
3227 append_composite_type_field (t, "v4_int16",
3228 init_vector_type (bt->builtin_int16, 4));
3229 append_composite_type_field (t, "v8_int8",
3230 init_vector_type (bt->builtin_int8, 8));
3231
3232 TYPE_VECTOR (t) = 1;
3233 t->set_name ("builtin_type_vec64i");
3234 tdep->i386_mmx_type = t;
3235 }
3236
3237 return tdep->i386_mmx_type;
3238 }
3239
3240 /* Return the GDB type object for the "standard" data type of data in
3241 register REGNUM. */
3242
3243 struct type *
3244 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3245 {
3246 if (i386_bnd_regnum_p (gdbarch, regnum))
3247 return i386_bnd_type (gdbarch);
3248 if (i386_mmx_regnum_p (gdbarch, regnum))
3249 return i386_mmx_type (gdbarch);
3250 else if (i386_ymm_regnum_p (gdbarch, regnum))
3251 return i386_ymm_type (gdbarch);
3252 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3253 return i386_ymm_type (gdbarch);
3254 else if (i386_zmm_regnum_p (gdbarch, regnum))
3255 return i386_zmm_type (gdbarch);
3256 else
3257 {
3258 const struct builtin_type *bt = builtin_type (gdbarch);
3259 if (i386_byte_regnum_p (gdbarch, regnum))
3260 return bt->builtin_int8;
3261 else if (i386_word_regnum_p (gdbarch, regnum))
3262 return bt->builtin_int16;
3263 else if (i386_dword_regnum_p (gdbarch, regnum))
3264 return bt->builtin_int32;
3265 else if (i386_k_regnum_p (gdbarch, regnum))
3266 return bt->builtin_int64;
3267 }
3268
3269 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3270 }
3271
3272 /* Map a cooked register onto a raw register or memory. For the i386,
3273 the MMX registers need to be mapped onto floating point registers. */
3274
3275 static int
3276 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3277 {
3278 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
3279 int mmxreg, fpreg;
3280 ULONGEST fstat;
3281 int tos;
3282
3283 mmxreg = regnum - tdep->mm0_regnum;
3284 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3285 tos = (fstat >> 11) & 0x7;
3286 fpreg = (mmxreg + tos) % 8;
3287
3288 return (I387_ST0_REGNUM (tdep) + fpreg);
3289 }
3290
3291 /* A helper function for us by i386_pseudo_register_read_value and
3292 amd64_pseudo_register_read_value. It does all the work but reads
3293 the data into an already-allocated value. */
3294
3295 void
3296 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3297 readable_regcache *regcache,
3298 int regnum,
3299 struct value *result_value)
3300 {
3301 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3302 enum register_status status;
3303 gdb_byte *buf = value_contents_raw (result_value);
3304
3305 if (i386_mmx_regnum_p (gdbarch, regnum))
3306 {
3307 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3308
3309 /* Extract (always little endian). */
3310 status = regcache->raw_read (fpnum, raw_buf);
3311 if (status != REG_VALID)
3312 mark_value_bytes_unavailable (result_value, 0,
3313 TYPE_LENGTH (value_type (result_value)));
3314 else
3315 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3316 }
3317 else
3318 {
3319 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3320 if (i386_bnd_regnum_p (gdbarch, regnum))
3321 {
3322 regnum -= tdep->bnd0_regnum;
3323
3324 /* Extract (always little endian). Read lower 128bits. */
3325 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3326 raw_buf);
3327 if (status != REG_VALID)
3328 mark_value_bytes_unavailable (result_value, 0, 16);
3329 else
3330 {
3331 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3332 LONGEST upper, lower;
3333 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3334
3335 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3336 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3337 upper = ~upper;
3338
3339 memcpy (buf, &lower, size);
3340 memcpy (buf + size, &upper, size);
3341 }
3342 }
3343 else if (i386_k_regnum_p (gdbarch, regnum))
3344 {
3345 regnum -= tdep->k0_regnum;
3346
3347 /* Extract (always little endian). */
3348 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3349 if (status != REG_VALID)
3350 mark_value_bytes_unavailable (result_value, 0, 8);
3351 else
3352 memcpy (buf, raw_buf, 8);
3353 }
3354 else if (i386_zmm_regnum_p (gdbarch, regnum))
3355 {
3356 regnum -= tdep->zmm0_regnum;
3357
3358 if (regnum < num_lower_zmm_regs)
3359 {
3360 /* Extract (always little endian). Read lower 128bits. */
3361 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3362 raw_buf);
3363 if (status != REG_VALID)
3364 mark_value_bytes_unavailable (result_value, 0, 16);
3365 else
3366 memcpy (buf, raw_buf, 16);
3367
3368 /* Extract (always little endian). Read upper 128bits. */
3369 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3370 raw_buf);
3371 if (status != REG_VALID)
3372 mark_value_bytes_unavailable (result_value, 16, 16);
3373 else
3374 memcpy (buf + 16, raw_buf, 16);
3375 }
3376 else
3377 {
3378 /* Extract (always little endian). Read lower 128bits. */
3379 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3380 - num_lower_zmm_regs,
3381 raw_buf);
3382 if (status != REG_VALID)
3383 mark_value_bytes_unavailable (result_value, 0, 16);
3384 else
3385 memcpy (buf, raw_buf, 16);
3386
3387 /* Extract (always little endian). Read upper 128bits. */
3388 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3389 - num_lower_zmm_regs,
3390 raw_buf);
3391 if (status != REG_VALID)
3392 mark_value_bytes_unavailable (result_value, 16, 16);
3393 else
3394 memcpy (buf + 16, raw_buf, 16);
3395 }
3396
3397 /* Read upper 256bits. */
3398 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3399 raw_buf);
3400 if (status != REG_VALID)
3401 mark_value_bytes_unavailable (result_value, 32, 32);
3402 else
3403 memcpy (buf + 32, raw_buf, 32);
3404 }
3405 else if (i386_ymm_regnum_p (gdbarch, regnum))
3406 {
3407 regnum -= tdep->ymm0_regnum;
3408
3409 /* Extract (always little endian). Read lower 128bits. */
3410 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3411 raw_buf);
3412 if (status != REG_VALID)
3413 mark_value_bytes_unavailable (result_value, 0, 16);
3414 else
3415 memcpy (buf, raw_buf, 16);
3416 /* Read upper 128bits. */
3417 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3418 raw_buf);
3419 if (status != REG_VALID)
3420 mark_value_bytes_unavailable (result_value, 16, 32);
3421 else
3422 memcpy (buf + 16, raw_buf, 16);
3423 }
3424 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3425 {
3426 regnum -= tdep->ymm16_regnum;
3427 /* Extract (always little endian). Read lower 128bits. */
3428 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3429 raw_buf);
3430 if (status != REG_VALID)
3431 mark_value_bytes_unavailable (result_value, 0, 16);
3432 else
3433 memcpy (buf, raw_buf, 16);
3434 /* Read upper 128bits. */
3435 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3436 raw_buf);
3437 if (status != REG_VALID)
3438 mark_value_bytes_unavailable (result_value, 16, 16);
3439 else
3440 memcpy (buf + 16, raw_buf, 16);
3441 }
3442 else if (i386_word_regnum_p (gdbarch, regnum))
3443 {
3444 int gpnum = regnum - tdep->ax_regnum;
3445
3446 /* Extract (always little endian). */
3447 status = regcache->raw_read (gpnum, raw_buf);
3448 if (status != REG_VALID)
3449 mark_value_bytes_unavailable (result_value, 0,
3450 TYPE_LENGTH (value_type (result_value)));
3451 else
3452 memcpy (buf, raw_buf, 2);
3453 }
3454 else if (i386_byte_regnum_p (gdbarch, regnum))
3455 {
3456 int gpnum = regnum - tdep->al_regnum;
3457
3458 /* Extract (always little endian). We read both lower and
3459 upper registers. */
3460 status = regcache->raw_read (gpnum % 4, raw_buf);
3461 if (status != REG_VALID)
3462 mark_value_bytes_unavailable (result_value, 0,
3463 TYPE_LENGTH (value_type (result_value)));
3464 else if (gpnum >= 4)
3465 memcpy (buf, raw_buf + 1, 1);
3466 else
3467 memcpy (buf, raw_buf, 1);
3468 }
3469 else
3470 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3471 }
3472 }
3473
3474 static struct value *
3475 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3476 readable_regcache *regcache,
3477 int regnum)
3478 {
3479 struct value *result;
3480
3481 result = allocate_value (register_type (gdbarch, regnum));
3482 VALUE_LVAL (result) = lval_register;
3483 VALUE_REGNUM (result) = regnum;
3484
3485 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3486
3487 return result;
3488 }
3489
3490 void
3491 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3492 int regnum, const gdb_byte *buf)
3493 {
3494 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3495
3496 if (i386_mmx_regnum_p (gdbarch, regnum))
3497 {
3498 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3499
3500 /* Read ... */
3501 regcache->raw_read (fpnum, raw_buf);
3502 /* ... Modify ... (always little endian). */
3503 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3504 /* ... Write. */
3505 regcache->raw_write (fpnum, raw_buf);
3506 }
3507 else
3508 {
3509 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3510
3511 if (i386_bnd_regnum_p (gdbarch, regnum))
3512 {
3513 ULONGEST upper, lower;
3514 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3515 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3516
3517 /* New values from input value. */
3518 regnum -= tdep->bnd0_regnum;
3519 lower = extract_unsigned_integer (buf, size, byte_order);
3520 upper = extract_unsigned_integer (buf + size, size, byte_order);
3521
3522 /* Fetching register buffer. */
3523 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3524 raw_buf);
3525
3526 upper = ~upper;
3527
3528 /* Set register bits. */
3529 memcpy (raw_buf, &lower, 8);
3530 memcpy (raw_buf + 8, &upper, 8);
3531
3532 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
3533 }
3534 else if (i386_k_regnum_p (gdbarch, regnum))
3535 {
3536 regnum -= tdep->k0_regnum;
3537
3538 regcache->raw_write (tdep->k0_regnum + regnum, buf);
3539 }
3540 else if (i386_zmm_regnum_p (gdbarch, regnum))
3541 {
3542 regnum -= tdep->zmm0_regnum;
3543
3544 if (regnum < num_lower_zmm_regs)
3545 {
3546 /* Write lower 128bits. */
3547 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3548 /* Write upper 128bits. */
3549 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
3550 }
3551 else
3552 {
3553 /* Write lower 128bits. */
3554 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3555 - num_lower_zmm_regs, buf);
3556 /* Write upper 128bits. */
3557 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3558 - num_lower_zmm_regs, buf + 16);
3559 }
3560 /* Write upper 256bits. */
3561 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
3562 }
3563 else if (i386_ymm_regnum_p (gdbarch, regnum))
3564 {
3565 regnum -= tdep->ymm0_regnum;
3566
3567 /* ... Write lower 128bits. */
3568 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3569 /* ... Write upper 128bits. */
3570 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
3571 }
3572 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3573 {
3574 regnum -= tdep->ymm16_regnum;
3575
3576 /* ... Write lower 128bits. */
3577 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
3578 /* ... Write upper 128bits. */
3579 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
3580 }
3581 else if (i386_word_regnum_p (gdbarch, regnum))
3582 {
3583 int gpnum = regnum - tdep->ax_regnum;
3584
3585 /* Read ... */
3586 regcache->raw_read (gpnum, raw_buf);
3587 /* ... Modify ... (always little endian). */
3588 memcpy (raw_buf, buf, 2);
3589 /* ... Write. */
3590 regcache->raw_write (gpnum, raw_buf);
3591 }
3592 else if (i386_byte_regnum_p (gdbarch, regnum))
3593 {
3594 int gpnum = regnum - tdep->al_regnum;
3595
3596 /* Read ... We read both lower and upper registers. */
3597 regcache->raw_read (gpnum % 4, raw_buf);
3598 /* ... Modify ... (always little endian). */
3599 if (gpnum >= 4)
3600 memcpy (raw_buf + 1, buf, 1);
3601 else
3602 memcpy (raw_buf, buf, 1);
3603 /* ... Write. */
3604 regcache->raw_write (gpnum % 4, raw_buf);
3605 }
3606 else
3607 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3608 }
3609 }
3610
3611 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3612
3613 int
3614 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3615 struct agent_expr *ax, int regnum)
3616 {
3617 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3618
3619 if (i386_mmx_regnum_p (gdbarch, regnum))
3620 {
3621 /* MMX to FPU register mapping depends on current TOS. Let's just
3622 not care and collect everything... */
3623 int i;
3624
3625 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3626 for (i = 0; i < 8; i++)
3627 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3628 return 0;
3629 }
3630 else if (i386_bnd_regnum_p (gdbarch, regnum))
3631 {
3632 regnum -= tdep->bnd0_regnum;
3633 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3634 return 0;
3635 }
3636 else if (i386_k_regnum_p (gdbarch, regnum))
3637 {
3638 regnum -= tdep->k0_regnum;
3639 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3640 return 0;
3641 }
3642 else if (i386_zmm_regnum_p (gdbarch, regnum))
3643 {
3644 regnum -= tdep->zmm0_regnum;
3645 if (regnum < num_lower_zmm_regs)
3646 {
3647 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3648 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3649 }
3650 else
3651 {
3652 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3653 - num_lower_zmm_regs);
3654 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3655 - num_lower_zmm_regs);
3656 }
3657 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3658 return 0;
3659 }
3660 else if (i386_ymm_regnum_p (gdbarch, regnum))
3661 {
3662 regnum -= tdep->ymm0_regnum;
3663 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3664 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3665 return 0;
3666 }
3667 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3668 {
3669 regnum -= tdep->ymm16_regnum;
3670 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3671 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3672 return 0;
3673 }
3674 else if (i386_word_regnum_p (gdbarch, regnum))
3675 {
3676 int gpnum = regnum - tdep->ax_regnum;
3677
3678 ax_reg_mask (ax, gpnum);
3679 return 0;
3680 }
3681 else if (i386_byte_regnum_p (gdbarch, regnum))
3682 {
3683 int gpnum = regnum - tdep->al_regnum;
3684
3685 ax_reg_mask (ax, gpnum % 4);
3686 return 0;
3687 }
3688 else
3689 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3690 return 1;
3691 }
3692 \f
3693
3694 /* Return the register number of the register allocated by GCC after
3695 REGNUM, or -1 if there is no such register. */
3696
3697 static int
3698 i386_next_regnum (int regnum)
3699 {
3700 /* GCC allocates the registers in the order:
3701
3702 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3703
3704 Since storing a variable in %esp doesn't make any sense we return
3705 -1 for %ebp and for %esp itself. */
3706 static int next_regnum[] =
3707 {
3708 I386_EDX_REGNUM, /* Slot for %eax. */
3709 I386_EBX_REGNUM, /* Slot for %ecx. */
3710 I386_ECX_REGNUM, /* Slot for %edx. */
3711 I386_ESI_REGNUM, /* Slot for %ebx. */
3712 -1, -1, /* Slots for %esp and %ebp. */
3713 I386_EDI_REGNUM, /* Slot for %esi. */
3714 I386_EBP_REGNUM /* Slot for %edi. */
3715 };
3716
3717 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3718 return next_regnum[regnum];
3719
3720 return -1;
3721 }
3722
3723 /* Return nonzero if a value of type TYPE stored in register REGNUM
3724 needs any special handling. */
3725
3726 static int
3727 i386_convert_register_p (struct gdbarch *gdbarch,
3728 int regnum, struct type *type)
3729 {
3730 int len = TYPE_LENGTH (type);
3731
3732 /* Values may be spread across multiple registers. Most debugging
3733 formats aren't expressive enough to specify the locations, so
3734 some heuristics is involved. Right now we only handle types that
3735 have a length that is a multiple of the word size, since GCC
3736 doesn't seem to put any other types into registers. */
3737 if (len > 4 && len % 4 == 0)
3738 {
3739 int last_regnum = regnum;
3740
3741 while (len > 4)
3742 {
3743 last_regnum = i386_next_regnum (last_regnum);
3744 len -= 4;
3745 }
3746
3747 if (last_regnum != -1)
3748 return 1;
3749 }
3750
3751 return i387_convert_register_p (gdbarch, regnum, type);
3752 }
3753
3754 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3755 return its contents in TO. */
3756
3757 static int
3758 i386_register_to_value (struct frame_info *frame, int regnum,
3759 struct type *type, gdb_byte *to,
3760 int *optimizedp, int *unavailablep)
3761 {
3762 struct gdbarch *gdbarch = get_frame_arch (frame);
3763 int len = TYPE_LENGTH (type);
3764
3765 if (i386_fp_regnum_p (gdbarch, regnum))
3766 return i387_register_to_value (frame, regnum, type, to,
3767 optimizedp, unavailablep);
3768
3769 /* Read a value spread across multiple registers. */
3770
3771 gdb_assert (len > 4 && len % 4 == 0);
3772
3773 while (len > 0)
3774 {
3775 gdb_assert (regnum != -1);
3776 gdb_assert (register_size (gdbarch, regnum) == 4);
3777
3778 if (!get_frame_register_bytes (frame, regnum, 0,
3779 register_size (gdbarch, regnum),
3780 to, optimizedp, unavailablep))
3781 return 0;
3782
3783 regnum = i386_next_regnum (regnum);
3784 len -= 4;
3785 to += 4;
3786 }
3787
3788 *optimizedp = *unavailablep = 0;
3789 return 1;
3790 }
3791
3792 /* Write the contents FROM of a value of type TYPE into register
3793 REGNUM in frame FRAME. */
3794
3795 static void
3796 i386_value_to_register (struct frame_info *frame, int regnum,
3797 struct type *type, const gdb_byte *from)
3798 {
3799 int len = TYPE_LENGTH (type);
3800
3801 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3802 {
3803 i387_value_to_register (frame, regnum, type, from);
3804 return;
3805 }
3806
3807 /* Write a value spread across multiple registers. */
3808
3809 gdb_assert (len > 4 && len % 4 == 0);
3810
3811 while (len > 0)
3812 {
3813 gdb_assert (regnum != -1);
3814 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3815
3816 put_frame_register (frame, regnum, from);
3817 regnum = i386_next_regnum (regnum);
3818 len -= 4;
3819 from += 4;
3820 }
3821 }
3822 \f
3823 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3824 in the general-purpose register set REGSET to register cache
3825 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3826
3827 void
3828 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3829 int regnum, const void *gregs, size_t len)
3830 {
3831 struct gdbarch *gdbarch = regcache->arch ();
3832 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3833 const gdb_byte *regs = (const gdb_byte *) gregs;
3834 int i;
3835
3836 gdb_assert (len >= tdep->sizeof_gregset);
3837
3838 for (i = 0; i < tdep->gregset_num_regs; i++)
3839 {
3840 if ((regnum == i || regnum == -1)
3841 && tdep->gregset_reg_offset[i] != -1)
3842 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
3843 }
3844 }
3845
3846 /* Collect register REGNUM from the register cache REGCACHE and store
3847 it in the buffer specified by GREGS and LEN as described by the
3848 general-purpose register set REGSET. If REGNUM is -1, do this for
3849 all registers in REGSET. */
3850
3851 static void
3852 i386_collect_gregset (const struct regset *regset,
3853 const struct regcache *regcache,
3854 int regnum, void *gregs, size_t len)
3855 {
3856 struct gdbarch *gdbarch = regcache->arch ();
3857 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3858 gdb_byte *regs = (gdb_byte *) gregs;
3859 int i;
3860
3861 gdb_assert (len >= tdep->sizeof_gregset);
3862
3863 for (i = 0; i < tdep->gregset_num_regs; i++)
3864 {
3865 if ((regnum == i || regnum == -1)
3866 && tdep->gregset_reg_offset[i] != -1)
3867 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
3868 }
3869 }
3870
3871 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3872 in the floating-point register set REGSET to register cache
3873 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3874
3875 static void
3876 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3877 int regnum, const void *fpregs, size_t len)
3878 {
3879 struct gdbarch *gdbarch = regcache->arch ();
3880 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3881
3882 if (len == I387_SIZEOF_FXSAVE)
3883 {
3884 i387_supply_fxsave (regcache, regnum, fpregs);
3885 return;
3886 }
3887
3888 gdb_assert (len >= tdep->sizeof_fpregset);
3889 i387_supply_fsave (regcache, regnum, fpregs);
3890 }
3891
3892 /* Collect register REGNUM from the register cache REGCACHE and store
3893 it in the buffer specified by FPREGS and LEN as described by the
3894 floating-point register set REGSET. If REGNUM is -1, do this for
3895 all registers in REGSET. */
3896
3897 static void
3898 i386_collect_fpregset (const struct regset *regset,
3899 const struct regcache *regcache,
3900 int regnum, void *fpregs, size_t len)
3901 {
3902 struct gdbarch *gdbarch = regcache->arch ();
3903 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3904
3905 if (len == I387_SIZEOF_FXSAVE)
3906 {
3907 i387_collect_fxsave (regcache, regnum, fpregs);
3908 return;
3909 }
3910
3911 gdb_assert (len >= tdep->sizeof_fpregset);
3912 i387_collect_fsave (regcache, regnum, fpregs);
3913 }
3914
3915 /* Register set definitions. */
3916
3917 const struct regset i386_gregset =
3918 {
3919 NULL, i386_supply_gregset, i386_collect_gregset
3920 };
3921
3922 const struct regset i386_fpregset =
3923 {
3924 NULL, i386_supply_fpregset, i386_collect_fpregset
3925 };
3926
3927 /* Default iterator over core file register note sections. */
3928
3929 void
3930 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3931 iterate_over_regset_sections_cb *cb,
3932 void *cb_data,
3933 const struct regcache *regcache)
3934 {
3935 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3936
3937 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
3938 cb_data);
3939 if (tdep->sizeof_fpregset)
3940 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
3941 NULL, cb_data);
3942 }
3943 \f
3944
3945 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3946
3947 CORE_ADDR
3948 i386_pe_skip_trampoline_code (struct frame_info *frame,
3949 CORE_ADDR pc, char *name)
3950 {
3951 struct gdbarch *gdbarch = get_frame_arch (frame);
3952 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3953
3954 /* jmp *(dest) */
3955 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3956 {
3957 unsigned long indirect =
3958 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3959 struct minimal_symbol *indsym =
3960 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3961 const char *symname = indsym ? indsym->linkage_name () : 0;
3962
3963 if (symname)
3964 {
3965 if (startswith (symname, "__imp_")
3966 || startswith (symname, "_imp_"))
3967 return name ? 1 :
3968 read_memory_unsigned_integer (indirect, 4, byte_order);
3969 }
3970 }
3971 return 0; /* Not a trampoline. */
3972 }
3973 \f
3974
3975 /* Return whether the THIS_FRAME corresponds to a sigtramp
3976 routine. */
3977
3978 int
3979 i386_sigtramp_p (struct frame_info *this_frame)
3980 {
3981 CORE_ADDR pc = get_frame_pc (this_frame);
3982 const char *name;
3983
3984 find_pc_partial_function (pc, &name, NULL, NULL);
3985 return (name && strcmp ("_sigtramp", name) == 0);
3986 }
3987 \f
3988
3989 /* We have two flavours of disassembly. The machinery on this page
3990 deals with switching between those. */
3991
3992 static int
3993 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3994 {
3995 gdb_assert (disassembly_flavor == att_flavor
3996 || disassembly_flavor == intel_flavor);
3997
3998 info->disassembler_options = disassembly_flavor;
3999
4000 return default_print_insn (pc, info);
4001 }
4002 \f
4003
4004 /* There are a few i386 architecture variants that differ only
4005 slightly from the generic i386 target. For now, we don't give them
4006 their own source file, but include them here. As a consequence,
4007 they'll always be included. */
4008
4009 /* System V Release 4 (SVR4). */
4010
4011 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4012 routine. */
4013
4014 static int
4015 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4016 {
4017 CORE_ADDR pc = get_frame_pc (this_frame);
4018 const char *name;
4019
4020 /* The origin of these symbols is currently unknown. */
4021 find_pc_partial_function (pc, &name, NULL, NULL);
4022 return (name && (strcmp ("_sigreturn", name) == 0
4023 || strcmp ("sigvechandler", name) == 0));
4024 }
4025
4026 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4027 address of the associated sigcontext (ucontext) structure. */
4028
4029 static CORE_ADDR
4030 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4031 {
4032 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4033 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4034 gdb_byte buf[4];
4035 CORE_ADDR sp;
4036
4037 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4038 sp = extract_unsigned_integer (buf, 4, byte_order);
4039
4040 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4041 }
4042
4043 \f
4044
4045 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4046 gdbarch.h. */
4047
4048 int
4049 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4050 {
4051 return (*s == '$' /* Literal number. */
4052 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4053 || (*s == '(' && s[1] == '%') /* Register indirection. */
4054 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4055 }
4056
4057 /* Helper function for i386_stap_parse_special_token.
4058
4059 This function parses operands of the form `-8+3+1(%rbp)', which
4060 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4061
4062 Return true if the operand was parsed successfully, false
4063 otherwise. */
4064
4065 static bool
4066 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4067 struct stap_parse_info *p)
4068 {
4069 const char *s = p->arg;
4070
4071 if (isdigit (*s) || *s == '-' || *s == '+')
4072 {
4073 bool got_minus[3];
4074 int i;
4075 long displacements[3];
4076 const char *start;
4077 char *regname;
4078 int len;
4079 struct stoken str;
4080 char *endp;
4081
4082 got_minus[0] = false;
4083 if (*s == '+')
4084 ++s;
4085 else if (*s == '-')
4086 {
4087 ++s;
4088 got_minus[0] = true;
4089 }
4090
4091 if (!isdigit ((unsigned char) *s))
4092 return false;
4093
4094 displacements[0] = strtol (s, &endp, 10);
4095 s = endp;
4096
4097 if (*s != '+' && *s != '-')
4098 {
4099 /* We are not dealing with a triplet. */
4100 return false;
4101 }
4102
4103 got_minus[1] = false;
4104 if (*s == '+')
4105 ++s;
4106 else
4107 {
4108 ++s;
4109 got_minus[1] = true;
4110 }
4111
4112 if (!isdigit ((unsigned char) *s))
4113 return false;
4114
4115 displacements[1] = strtol (s, &endp, 10);
4116 s = endp;
4117
4118 if (*s != '+' && *s != '-')
4119 {
4120 /* We are not dealing with a triplet. */
4121 return false;
4122 }
4123
4124 got_minus[2] = false;
4125 if (*s == '+')
4126 ++s;
4127 else
4128 {
4129 ++s;
4130 got_minus[2] = true;
4131 }
4132
4133 if (!isdigit ((unsigned char) *s))
4134 return false;
4135
4136 displacements[2] = strtol (s, &endp, 10);
4137 s = endp;
4138
4139 if (*s != '(' || s[1] != '%')
4140 return false;
4141
4142 s += 2;
4143 start = s;
4144
4145 while (isalnum (*s))
4146 ++s;
4147
4148 if (*s++ != ')')
4149 return false;
4150
4151 len = s - start - 1;
4152 regname = (char *) alloca (len + 1);
4153
4154 strncpy (regname, start, len);
4155 regname[len] = '\0';
4156
4157 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4158 error (_("Invalid register name `%s' on expression `%s'."),
4159 regname, p->saved_arg);
4160
4161 for (i = 0; i < 3; i++)
4162 {
4163 write_exp_elt_opcode (&p->pstate, OP_LONG);
4164 write_exp_elt_type
4165 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4166 write_exp_elt_longcst (&p->pstate, displacements[i]);
4167 write_exp_elt_opcode (&p->pstate, OP_LONG);
4168 if (got_minus[i])
4169 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4170 }
4171
4172 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4173 str.ptr = regname;
4174 str.length = len;
4175 write_exp_string (&p->pstate, str);
4176 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4177
4178 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4179 write_exp_elt_type (&p->pstate,
4180 builtin_type (gdbarch)->builtin_data_ptr);
4181 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4182
4183 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4184 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4185 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4186
4187 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4188 write_exp_elt_type (&p->pstate,
4189 lookup_pointer_type (p->arg_type));
4190 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4191
4192 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4193
4194 p->arg = s;
4195
4196 return true;
4197 }
4198
4199 return false;
4200 }
4201
4202 /* Helper function for i386_stap_parse_special_token.
4203
4204 This function parses operands of the form `register base +
4205 (register index * size) + offset', as represented in
4206 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4207
4208 Return true if the operand was parsed successfully, false
4209 otherwise. */
4210
4211 static bool
4212 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4213 struct stap_parse_info *p)
4214 {
4215 const char *s = p->arg;
4216
4217 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4218 {
4219 bool offset_minus = false;
4220 long offset = 0;
4221 bool size_minus = false;
4222 long size = 0;
4223 const char *start;
4224 char *base;
4225 int len_base;
4226 char *index;
4227 int len_index;
4228 struct stoken base_token, index_token;
4229
4230 if (*s == '+')
4231 ++s;
4232 else if (*s == '-')
4233 {
4234 ++s;
4235 offset_minus = true;
4236 }
4237
4238 if (offset_minus && !isdigit (*s))
4239 return false;
4240
4241 if (isdigit (*s))
4242 {
4243 char *endp;
4244
4245 offset = strtol (s, &endp, 10);
4246 s = endp;
4247 }
4248
4249 if (*s != '(' || s[1] != '%')
4250 return false;
4251
4252 s += 2;
4253 start = s;
4254
4255 while (isalnum (*s))
4256 ++s;
4257
4258 if (*s != ',' || s[1] != '%')
4259 return false;
4260
4261 len_base = s - start;
4262 base = (char *) alloca (len_base + 1);
4263 strncpy (base, start, len_base);
4264 base[len_base] = '\0';
4265
4266 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4267 error (_("Invalid register name `%s' on expression `%s'."),
4268 base, p->saved_arg);
4269
4270 s += 2;
4271 start = s;
4272
4273 while (isalnum (*s))
4274 ++s;
4275
4276 len_index = s - start;
4277 index = (char *) alloca (len_index + 1);
4278 strncpy (index, start, len_index);
4279 index[len_index] = '\0';
4280
4281 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4282 error (_("Invalid register name `%s' on expression `%s'."),
4283 index, p->saved_arg);
4284
4285 if (*s != ',' && *s != ')')
4286 return false;
4287
4288 if (*s == ',')
4289 {
4290 char *endp;
4291
4292 ++s;
4293 if (*s == '+')
4294 ++s;
4295 else if (*s == '-')
4296 {
4297 ++s;
4298 size_minus = true;
4299 }
4300
4301 size = strtol (s, &endp, 10);
4302 s = endp;
4303
4304 if (*s != ')')
4305 return false;
4306 }
4307
4308 ++s;
4309
4310 if (offset)
4311 {
4312 write_exp_elt_opcode (&p->pstate, OP_LONG);
4313 write_exp_elt_type (&p->pstate,
4314 builtin_type (gdbarch)->builtin_long);
4315 write_exp_elt_longcst (&p->pstate, offset);
4316 write_exp_elt_opcode (&p->pstate, OP_LONG);
4317 if (offset_minus)
4318 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4319 }
4320
4321 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4322 base_token.ptr = base;
4323 base_token.length = len_base;
4324 write_exp_string (&p->pstate, base_token);
4325 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4326
4327 if (offset)
4328 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4329
4330 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4331 index_token.ptr = index;
4332 index_token.length = len_index;
4333 write_exp_string (&p->pstate, index_token);
4334 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4335
4336 if (size)
4337 {
4338 write_exp_elt_opcode (&p->pstate, OP_LONG);
4339 write_exp_elt_type (&p->pstate,
4340 builtin_type (gdbarch)->builtin_long);
4341 write_exp_elt_longcst (&p->pstate, size);
4342 write_exp_elt_opcode (&p->pstate, OP_LONG);
4343 if (size_minus)
4344 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4345 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4346 }
4347
4348 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4349
4350 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4351 write_exp_elt_type (&p->pstate,
4352 lookup_pointer_type (p->arg_type));
4353 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4354
4355 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4356
4357 p->arg = s;
4358
4359 return true;
4360 }
4361
4362 return false;
4363 }
4364
4365 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4366 gdbarch.h. */
4367
4368 int
4369 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4370 struct stap_parse_info *p)
4371 {
4372 /* In order to parse special tokens, we use a state-machine that go
4373 through every known token and try to get a match. */
4374 enum
4375 {
4376 TRIPLET,
4377 THREE_ARG_DISPLACEMENT,
4378 DONE
4379 };
4380 int current_state;
4381
4382 current_state = TRIPLET;
4383
4384 /* The special tokens to be parsed here are:
4385
4386 - `register base + (register index * size) + offset', as represented
4387 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4388
4389 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4390 `*(-8 + 3 - 1 + (void *) $eax)'. */
4391
4392 while (current_state != DONE)
4393 {
4394 switch (current_state)
4395 {
4396 case TRIPLET:
4397 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4398 return 1;
4399 break;
4400
4401 case THREE_ARG_DISPLACEMENT:
4402 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4403 return 1;
4404 break;
4405 }
4406
4407 /* Advancing to the next state. */
4408 ++current_state;
4409 }
4410
4411 return 0;
4412 }
4413
4414 /* Implementation of 'gdbarch_stap_adjust_register', as defined in
4415 gdbarch.h. */
4416
4417 static std::string
4418 i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
4419 const std::string &regname, int regnum)
4420 {
4421 static const std::unordered_set<std::string> reg_assoc
4422 = { "ax", "bx", "cx", "dx",
4423 "si", "di", "bp", "sp" };
4424
4425 /* If we are dealing with a register whose size is less than the size
4426 specified by the "[-]N@" prefix, and it is one of the registers that
4427 we know has an extended variant available, then use the extended
4428 version of the register instead. */
4429 if (register_size (gdbarch, regnum) < TYPE_LENGTH (p->arg_type)
4430 && reg_assoc.find (regname) != reg_assoc.end ())
4431 return "e" + regname;
4432
4433 /* Otherwise, just use the requested register. */
4434 return regname;
4435 }
4436
4437 \f
4438
4439 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4440 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4441
4442 static const char *
4443 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4444 {
4445 return "(x86_64|i.86)";
4446 }
4447
4448 \f
4449
4450 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4451
4452 static bool
4453 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4454 {
4455 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4456 I386_EAX_REGNUM, I386_EIP_REGNUM);
4457 }
4458
4459 /* Generic ELF. */
4460
4461 void
4462 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4463 {
4464 static const char *const stap_integer_prefixes[] = { "$", NULL };
4465 static const char *const stap_register_prefixes[] = { "%", NULL };
4466 static const char *const stap_register_indirection_prefixes[] = { "(",
4467 NULL };
4468 static const char *const stap_register_indirection_suffixes[] = { ")",
4469 NULL };
4470
4471 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4472 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4473
4474 /* Registering SystemTap handlers. */
4475 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4476 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4477 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4478 stap_register_indirection_prefixes);
4479 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4480 stap_register_indirection_suffixes);
4481 set_gdbarch_stap_is_single_operand (gdbarch,
4482 i386_stap_is_single_operand);
4483 set_gdbarch_stap_parse_special_token (gdbarch,
4484 i386_stap_parse_special_token);
4485 set_gdbarch_stap_adjust_register (gdbarch,
4486 i386_stap_adjust_register);
4487
4488 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4489 i386_in_indirect_branch_thunk);
4490 }
4491
4492 /* System V Release 4 (SVR4). */
4493
4494 void
4495 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4496 {
4497 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4498
4499 /* System V Release 4 uses ELF. */
4500 i386_elf_init_abi (info, gdbarch);
4501
4502 /* System V Release 4 has shared libraries. */
4503 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4504
4505 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4506 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4507 tdep->sc_pc_offset = 36 + 14 * 4;
4508 tdep->sc_sp_offset = 36 + 17 * 4;
4509
4510 tdep->jb_pc_offset = 20;
4511 }
4512
4513 \f
4514
4515 /* i386 register groups. In addition to the normal groups, add "mmx"
4516 and "sse". */
4517
4518 static struct reggroup *i386_sse_reggroup;
4519 static struct reggroup *i386_mmx_reggroup;
4520
4521 static void
4522 i386_init_reggroups (void)
4523 {
4524 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4525 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4526 }
4527
4528 static void
4529 i386_add_reggroups (struct gdbarch *gdbarch)
4530 {
4531 reggroup_add (gdbarch, i386_sse_reggroup);
4532 reggroup_add (gdbarch, i386_mmx_reggroup);
4533 reggroup_add (gdbarch, general_reggroup);
4534 reggroup_add (gdbarch, float_reggroup);
4535 reggroup_add (gdbarch, all_reggroup);
4536 reggroup_add (gdbarch, save_reggroup);
4537 reggroup_add (gdbarch, restore_reggroup);
4538 reggroup_add (gdbarch, vector_reggroup);
4539 reggroup_add (gdbarch, system_reggroup);
4540 }
4541
4542 int
4543 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4544 struct reggroup *group)
4545 {
4546 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4547 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4548 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4549 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4550 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4551 avx512_p, avx_p, sse_p, pkru_regnum_p;
4552
4553 /* Don't include pseudo registers, except for MMX, in any register
4554 groups. */
4555 if (i386_byte_regnum_p (gdbarch, regnum))
4556 return 0;
4557
4558 if (i386_word_regnum_p (gdbarch, regnum))
4559 return 0;
4560
4561 if (i386_dword_regnum_p (gdbarch, regnum))
4562 return 0;
4563
4564 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4565 if (group == i386_mmx_reggroup)
4566 return mmx_regnum_p;
4567
4568 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4569 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4570 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4571 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4572 if (group == i386_sse_reggroup)
4573 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4574
4575 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4576 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4577 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4578
4579 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4580 == X86_XSTATE_AVX_AVX512_MASK);
4581 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4582 == X86_XSTATE_AVX_MASK) && !avx512_p;
4583 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4584 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4585
4586 if (group == vector_reggroup)
4587 return (mmx_regnum_p
4588 || (zmm_regnum_p && avx512_p)
4589 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4590 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4591 || mxcsr_regnum_p);
4592
4593 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4594 || i386_fpc_regnum_p (gdbarch, regnum));
4595 if (group == float_reggroup)
4596 return fp_regnum_p;
4597
4598 /* For "info reg all", don't include upper YMM registers nor XMM
4599 registers when AVX is supported. */
4600 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4601 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4602 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4603 if (group == all_reggroup
4604 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4605 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4606 || ymmh_regnum_p
4607 || ymmh_avx512_regnum_p
4608 || zmmh_regnum_p))
4609 return 0;
4610
4611 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4612 if (group == all_reggroup
4613 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4614 return bnd_regnum_p;
4615
4616 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4617 if (group == all_reggroup
4618 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4619 return 0;
4620
4621 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4622 if (group == all_reggroup
4623 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4624 return mpx_ctrl_regnum_p;
4625
4626 if (group == general_reggroup)
4627 return (!fp_regnum_p
4628 && !mmx_regnum_p
4629 && !mxcsr_regnum_p
4630 && !xmm_regnum_p
4631 && !xmm_avx512_regnum_p
4632 && !ymm_regnum_p
4633 && !ymmh_regnum_p
4634 && !ymm_avx512_regnum_p
4635 && !ymmh_avx512_regnum_p
4636 && !bndr_regnum_p
4637 && !bnd_regnum_p
4638 && !mpx_ctrl_regnum_p
4639 && !zmm_regnum_p
4640 && !zmmh_regnum_p
4641 && !pkru_regnum_p);
4642
4643 return default_register_reggroup_p (gdbarch, regnum, group);
4644 }
4645 \f
4646
4647 /* Get the ARGIth function argument for the current function. */
4648
4649 static CORE_ADDR
4650 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4651 struct type *type)
4652 {
4653 struct gdbarch *gdbarch = get_frame_arch (frame);
4654 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4655 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4656 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4657 }
4658
4659 #define PREFIX_REPZ 0x01
4660 #define PREFIX_REPNZ 0x02
4661 #define PREFIX_LOCK 0x04
4662 #define PREFIX_DATA 0x08
4663 #define PREFIX_ADDR 0x10
4664
4665 /* operand size */
4666 enum
4667 {
4668 OT_BYTE = 0,
4669 OT_WORD,
4670 OT_LONG,
4671 OT_QUAD,
4672 OT_DQUAD,
4673 };
4674
4675 /* i386 arith/logic operations */
4676 enum
4677 {
4678 OP_ADDL,
4679 OP_ORL,
4680 OP_ADCL,
4681 OP_SBBL,
4682 OP_ANDL,
4683 OP_SUBL,
4684 OP_XORL,
4685 OP_CMPL,
4686 };
4687
4688 struct i386_record_s
4689 {
4690 struct gdbarch *gdbarch;
4691 struct regcache *regcache;
4692 CORE_ADDR orig_addr;
4693 CORE_ADDR addr;
4694 int aflag;
4695 int dflag;
4696 int override;
4697 uint8_t modrm;
4698 uint8_t mod, reg, rm;
4699 int ot;
4700 uint8_t rex_x;
4701 uint8_t rex_b;
4702 int rip_offset;
4703 int popl_esp_hack;
4704 const int *regmap;
4705 };
4706
4707 /* Parse the "modrm" part of the memory address irp->addr points at.
4708 Returns -1 if something goes wrong, 0 otherwise. */
4709
4710 static int
4711 i386_record_modrm (struct i386_record_s *irp)
4712 {
4713 struct gdbarch *gdbarch = irp->gdbarch;
4714
4715 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4716 return -1;
4717
4718 irp->addr++;
4719 irp->mod = (irp->modrm >> 6) & 3;
4720 irp->reg = (irp->modrm >> 3) & 7;
4721 irp->rm = irp->modrm & 7;
4722
4723 return 0;
4724 }
4725
4726 /* Extract the memory address that the current instruction writes to,
4727 and return it in *ADDR. Return -1 if something goes wrong. */
4728
4729 static int
4730 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4731 {
4732 struct gdbarch *gdbarch = irp->gdbarch;
4733 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4734 gdb_byte buf[4];
4735 ULONGEST offset64;
4736
4737 *addr = 0;
4738 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4739 {
4740 /* 32/64 bits */
4741 int havesib = 0;
4742 uint8_t scale = 0;
4743 uint8_t byte;
4744 uint8_t index = 0;
4745 uint8_t base = irp->rm;
4746
4747 if (base == 4)
4748 {
4749 havesib = 1;
4750 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4751 return -1;
4752 irp->addr++;
4753 scale = (byte >> 6) & 3;
4754 index = ((byte >> 3) & 7) | irp->rex_x;
4755 base = (byte & 7);
4756 }
4757 base |= irp->rex_b;
4758
4759 switch (irp->mod)
4760 {
4761 case 0:
4762 if ((base & 7) == 5)
4763 {
4764 base = 0xff;
4765 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4766 return -1;
4767 irp->addr += 4;
4768 *addr = extract_signed_integer (buf, 4, byte_order);
4769 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4770 *addr += irp->addr + irp->rip_offset;
4771 }
4772 break;
4773 case 1:
4774 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4775 return -1;
4776 irp->addr++;
4777 *addr = (int8_t) buf[0];
4778 break;
4779 case 2:
4780 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4781 return -1;
4782 *addr = extract_signed_integer (buf, 4, byte_order);
4783 irp->addr += 4;
4784 break;
4785 }
4786
4787 offset64 = 0;
4788 if (base != 0xff)
4789 {
4790 if (base == 4 && irp->popl_esp_hack)
4791 *addr += irp->popl_esp_hack;
4792 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4793 &offset64);
4794 }
4795 if (irp->aflag == 2)
4796 {
4797 *addr += offset64;
4798 }
4799 else
4800 *addr = (uint32_t) (offset64 + *addr);
4801
4802 if (havesib && (index != 4 || scale != 0))
4803 {
4804 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4805 &offset64);
4806 if (irp->aflag == 2)
4807 *addr += offset64 << scale;
4808 else
4809 *addr = (uint32_t) (*addr + (offset64 << scale));
4810 }
4811
4812 if (!irp->aflag)
4813 {
4814 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4815 address from 32-bit to 64-bit. */
4816 *addr = (uint32_t) *addr;
4817 }
4818 }
4819 else
4820 {
4821 /* 16 bits */
4822 switch (irp->mod)
4823 {
4824 case 0:
4825 if (irp->rm == 6)
4826 {
4827 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4828 return -1;
4829 irp->addr += 2;
4830 *addr = extract_signed_integer (buf, 2, byte_order);
4831 irp->rm = 0;
4832 goto no_rm;
4833 }
4834 break;
4835 case 1:
4836 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4837 return -1;
4838 irp->addr++;
4839 *addr = (int8_t) buf[0];
4840 break;
4841 case 2:
4842 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4843 return -1;
4844 irp->addr += 2;
4845 *addr = extract_signed_integer (buf, 2, byte_order);
4846 break;
4847 }
4848
4849 switch (irp->rm)
4850 {
4851 case 0:
4852 regcache_raw_read_unsigned (irp->regcache,
4853 irp->regmap[X86_RECORD_REBX_REGNUM],
4854 &offset64);
4855 *addr = (uint32_t) (*addr + offset64);
4856 regcache_raw_read_unsigned (irp->regcache,
4857 irp->regmap[X86_RECORD_RESI_REGNUM],
4858 &offset64);
4859 *addr = (uint32_t) (*addr + offset64);
4860 break;
4861 case 1:
4862 regcache_raw_read_unsigned (irp->regcache,
4863 irp->regmap[X86_RECORD_REBX_REGNUM],
4864 &offset64);
4865 *addr = (uint32_t) (*addr + offset64);
4866 regcache_raw_read_unsigned (irp->regcache,
4867 irp->regmap[X86_RECORD_REDI_REGNUM],
4868 &offset64);
4869 *addr = (uint32_t) (*addr + offset64);
4870 break;
4871 case 2:
4872 regcache_raw_read_unsigned (irp->regcache,
4873 irp->regmap[X86_RECORD_REBP_REGNUM],
4874 &offset64);
4875 *addr = (uint32_t) (*addr + offset64);
4876 regcache_raw_read_unsigned (irp->regcache,
4877 irp->regmap[X86_RECORD_RESI_REGNUM],
4878 &offset64);
4879 *addr = (uint32_t) (*addr + offset64);
4880 break;
4881 case 3:
4882 regcache_raw_read_unsigned (irp->regcache,
4883 irp->regmap[X86_RECORD_REBP_REGNUM],
4884 &offset64);
4885 *addr = (uint32_t) (*addr + offset64);
4886 regcache_raw_read_unsigned (irp->regcache,
4887 irp->regmap[X86_RECORD_REDI_REGNUM],
4888 &offset64);
4889 *addr = (uint32_t) (*addr + offset64);
4890 break;
4891 case 4:
4892 regcache_raw_read_unsigned (irp->regcache,
4893 irp->regmap[X86_RECORD_RESI_REGNUM],
4894 &offset64);
4895 *addr = (uint32_t) (*addr + offset64);
4896 break;
4897 case 5:
4898 regcache_raw_read_unsigned (irp->regcache,
4899 irp->regmap[X86_RECORD_REDI_REGNUM],
4900 &offset64);
4901 *addr = (uint32_t) (*addr + offset64);
4902 break;
4903 case 6:
4904 regcache_raw_read_unsigned (irp->regcache,
4905 irp->regmap[X86_RECORD_REBP_REGNUM],
4906 &offset64);
4907 *addr = (uint32_t) (*addr + offset64);
4908 break;
4909 case 7:
4910 regcache_raw_read_unsigned (irp->regcache,
4911 irp->regmap[X86_RECORD_REBX_REGNUM],
4912 &offset64);
4913 *addr = (uint32_t) (*addr + offset64);
4914 break;
4915 }
4916 *addr &= 0xffff;
4917 }
4918
4919 no_rm:
4920 return 0;
4921 }
4922
4923 /* Record the address and contents of the memory that will be changed
4924 by the current instruction. Return -1 if something goes wrong, 0
4925 otherwise. */
4926
4927 static int
4928 i386_record_lea_modrm (struct i386_record_s *irp)
4929 {
4930 struct gdbarch *gdbarch = irp->gdbarch;
4931 uint64_t addr;
4932
4933 if (irp->override >= 0)
4934 {
4935 if (record_full_memory_query)
4936 {
4937 if (yquery (_("\
4938 Process record ignores the memory change of instruction at address %s\n\
4939 because it can't get the value of the segment register.\n\
4940 Do you want to stop the program?"),
4941 paddress (gdbarch, irp->orig_addr)))
4942 return -1;
4943 }
4944
4945 return 0;
4946 }
4947
4948 if (i386_record_lea_modrm_addr (irp, &addr))
4949 return -1;
4950
4951 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4952 return -1;
4953
4954 return 0;
4955 }
4956
4957 /* Record the effects of a push operation. Return -1 if something
4958 goes wrong, 0 otherwise. */
4959
4960 static int
4961 i386_record_push (struct i386_record_s *irp, int size)
4962 {
4963 ULONGEST addr;
4964
4965 if (record_full_arch_list_add_reg (irp->regcache,
4966 irp->regmap[X86_RECORD_RESP_REGNUM]))
4967 return -1;
4968 regcache_raw_read_unsigned (irp->regcache,
4969 irp->regmap[X86_RECORD_RESP_REGNUM],
4970 &addr);
4971 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4972 return -1;
4973
4974 return 0;
4975 }
4976
4977
4978 /* Defines contents to record. */
4979 #define I386_SAVE_FPU_REGS 0xfffd
4980 #define I386_SAVE_FPU_ENV 0xfffe
4981 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4982
4983 /* Record the values of the floating point registers which will be
4984 changed by the current instruction. Returns -1 if something is
4985 wrong, 0 otherwise. */
4986
4987 static int i386_record_floats (struct gdbarch *gdbarch,
4988 struct i386_record_s *ir,
4989 uint32_t iregnum)
4990 {
4991 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4992 int i;
4993
4994 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4995 happen. Currently we store st0-st7 registers, but we need not store all
4996 registers all the time, in future we use ftag register and record only
4997 those who are not marked as an empty. */
4998
4999 if (I386_SAVE_FPU_REGS == iregnum)
5000 {
5001 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
5002 {
5003 if (record_full_arch_list_add_reg (ir->regcache, i))
5004 return -1;
5005 }
5006 }
5007 else if (I386_SAVE_FPU_ENV == iregnum)
5008 {
5009 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5010 {
5011 if (record_full_arch_list_add_reg (ir->regcache, i))
5012 return -1;
5013 }
5014 }
5015 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
5016 {
5017 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5018 {
5019 if (record_full_arch_list_add_reg (ir->regcache, i))
5020 return -1;
5021 }
5022 }
5023 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5024 (iregnum <= I387_FOP_REGNUM (tdep)))
5025 {
5026 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5027 return -1;
5028 }
5029 else
5030 {
5031 /* Parameter error. */
5032 return -1;
5033 }
5034 if(I386_SAVE_FPU_ENV != iregnum)
5035 {
5036 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5037 {
5038 if (record_full_arch_list_add_reg (ir->regcache, i))
5039 return -1;
5040 }
5041 }
5042 return 0;
5043 }
5044
5045 /* Parse the current instruction, and record the values of the
5046 registers and memory that will be changed by the current
5047 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5048
5049 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5050 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5051
5052 int
5053 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5054 CORE_ADDR input_addr)
5055 {
5056 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5057 int prefixes = 0;
5058 int regnum = 0;
5059 uint32_t opcode;
5060 uint8_t opcode8;
5061 ULONGEST addr;
5062 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5063 struct i386_record_s ir;
5064 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5065 uint8_t rex_w = -1;
5066 uint8_t rex_r = 0;
5067
5068 memset (&ir, 0, sizeof (struct i386_record_s));
5069 ir.regcache = regcache;
5070 ir.addr = input_addr;
5071 ir.orig_addr = input_addr;
5072 ir.aflag = 1;
5073 ir.dflag = 1;
5074 ir.override = -1;
5075 ir.popl_esp_hack = 0;
5076 ir.regmap = tdep->record_regmap;
5077 ir.gdbarch = gdbarch;
5078
5079 if (record_debug > 1)
5080 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5081 "addr = %s\n",
5082 paddress (gdbarch, ir.addr));
5083
5084 /* prefixes */
5085 while (1)
5086 {
5087 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5088 return -1;
5089 ir.addr++;
5090 switch (opcode8) /* Instruction prefixes */
5091 {
5092 case REPE_PREFIX_OPCODE:
5093 prefixes |= PREFIX_REPZ;
5094 break;
5095 case REPNE_PREFIX_OPCODE:
5096 prefixes |= PREFIX_REPNZ;
5097 break;
5098 case LOCK_PREFIX_OPCODE:
5099 prefixes |= PREFIX_LOCK;
5100 break;
5101 case CS_PREFIX_OPCODE:
5102 ir.override = X86_RECORD_CS_REGNUM;
5103 break;
5104 case SS_PREFIX_OPCODE:
5105 ir.override = X86_RECORD_SS_REGNUM;
5106 break;
5107 case DS_PREFIX_OPCODE:
5108 ir.override = X86_RECORD_DS_REGNUM;
5109 break;
5110 case ES_PREFIX_OPCODE:
5111 ir.override = X86_RECORD_ES_REGNUM;
5112 break;
5113 case FS_PREFIX_OPCODE:
5114 ir.override = X86_RECORD_FS_REGNUM;
5115 break;
5116 case GS_PREFIX_OPCODE:
5117 ir.override = X86_RECORD_GS_REGNUM;
5118 break;
5119 case DATA_PREFIX_OPCODE:
5120 prefixes |= PREFIX_DATA;
5121 break;
5122 case ADDR_PREFIX_OPCODE:
5123 prefixes |= PREFIX_ADDR;
5124 break;
5125 case 0x40: /* i386 inc %eax */
5126 case 0x41: /* i386 inc %ecx */
5127 case 0x42: /* i386 inc %edx */
5128 case 0x43: /* i386 inc %ebx */
5129 case 0x44: /* i386 inc %esp */
5130 case 0x45: /* i386 inc %ebp */
5131 case 0x46: /* i386 inc %esi */
5132 case 0x47: /* i386 inc %edi */
5133 case 0x48: /* i386 dec %eax */
5134 case 0x49: /* i386 dec %ecx */
5135 case 0x4a: /* i386 dec %edx */
5136 case 0x4b: /* i386 dec %ebx */
5137 case 0x4c: /* i386 dec %esp */
5138 case 0x4d: /* i386 dec %ebp */
5139 case 0x4e: /* i386 dec %esi */
5140 case 0x4f: /* i386 dec %edi */
5141 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5142 {
5143 /* REX */
5144 rex_w = (opcode8 >> 3) & 1;
5145 rex_r = (opcode8 & 0x4) << 1;
5146 ir.rex_x = (opcode8 & 0x2) << 2;
5147 ir.rex_b = (opcode8 & 0x1) << 3;
5148 }
5149 else /* 32 bit target */
5150 goto out_prefixes;
5151 break;
5152 default:
5153 goto out_prefixes;
5154 break;
5155 }
5156 }
5157 out_prefixes:
5158 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5159 {
5160 ir.dflag = 2;
5161 }
5162 else
5163 {
5164 if (prefixes & PREFIX_DATA)
5165 ir.dflag ^= 1;
5166 }
5167 if (prefixes & PREFIX_ADDR)
5168 ir.aflag ^= 1;
5169 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5170 ir.aflag = 2;
5171
5172 /* Now check op code. */
5173 opcode = (uint32_t) opcode8;
5174 reswitch:
5175 switch (opcode)
5176 {
5177 case 0x0f:
5178 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5179 return -1;
5180 ir.addr++;
5181 opcode = (uint32_t) opcode8 | 0x0f00;
5182 goto reswitch;
5183 break;
5184
5185 case 0x00: /* arith & logic */
5186 case 0x01:
5187 case 0x02:
5188 case 0x03:
5189 case 0x04:
5190 case 0x05:
5191 case 0x08:
5192 case 0x09:
5193 case 0x0a:
5194 case 0x0b:
5195 case 0x0c:
5196 case 0x0d:
5197 case 0x10:
5198 case 0x11:
5199 case 0x12:
5200 case 0x13:
5201 case 0x14:
5202 case 0x15:
5203 case 0x18:
5204 case 0x19:
5205 case 0x1a:
5206 case 0x1b:
5207 case 0x1c:
5208 case 0x1d:
5209 case 0x20:
5210 case 0x21:
5211 case 0x22:
5212 case 0x23:
5213 case 0x24:
5214 case 0x25:
5215 case 0x28:
5216 case 0x29:
5217 case 0x2a:
5218 case 0x2b:
5219 case 0x2c:
5220 case 0x2d:
5221 case 0x30:
5222 case 0x31:
5223 case 0x32:
5224 case 0x33:
5225 case 0x34:
5226 case 0x35:
5227 case 0x38:
5228 case 0x39:
5229 case 0x3a:
5230 case 0x3b:
5231 case 0x3c:
5232 case 0x3d:
5233 if (((opcode >> 3) & 7) != OP_CMPL)
5234 {
5235 if ((opcode & 1) == 0)
5236 ir.ot = OT_BYTE;
5237 else
5238 ir.ot = ir.dflag + OT_WORD;
5239
5240 switch ((opcode >> 1) & 3)
5241 {
5242 case 0: /* OP Ev, Gv */
5243 if (i386_record_modrm (&ir))
5244 return -1;
5245 if (ir.mod != 3)
5246 {
5247 if (i386_record_lea_modrm (&ir))
5248 return -1;
5249 }
5250 else
5251 {
5252 ir.rm |= ir.rex_b;
5253 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5254 ir.rm &= 0x3;
5255 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5256 }
5257 break;
5258 case 1: /* OP Gv, Ev */
5259 if (i386_record_modrm (&ir))
5260 return -1;
5261 ir.reg |= rex_r;
5262 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5263 ir.reg &= 0x3;
5264 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5265 break;
5266 case 2: /* OP A, Iv */
5267 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5268 break;
5269 }
5270 }
5271 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5272 break;
5273
5274 case 0x80: /* GRP1 */
5275 case 0x81:
5276 case 0x82:
5277 case 0x83:
5278 if (i386_record_modrm (&ir))
5279 return -1;
5280
5281 if (ir.reg != OP_CMPL)
5282 {
5283 if ((opcode & 1) == 0)
5284 ir.ot = OT_BYTE;
5285 else
5286 ir.ot = ir.dflag + OT_WORD;
5287
5288 if (ir.mod != 3)
5289 {
5290 if (opcode == 0x83)
5291 ir.rip_offset = 1;
5292 else
5293 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5294 if (i386_record_lea_modrm (&ir))
5295 return -1;
5296 }
5297 else
5298 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5299 }
5300 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5301 break;
5302
5303 case 0x40: /* inc */
5304 case 0x41:
5305 case 0x42:
5306 case 0x43:
5307 case 0x44:
5308 case 0x45:
5309 case 0x46:
5310 case 0x47:
5311
5312 case 0x48: /* dec */
5313 case 0x49:
5314 case 0x4a:
5315 case 0x4b:
5316 case 0x4c:
5317 case 0x4d:
5318 case 0x4e:
5319 case 0x4f:
5320
5321 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5322 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5323 break;
5324
5325 case 0xf6: /* GRP3 */
5326 case 0xf7:
5327 if ((opcode & 1) == 0)
5328 ir.ot = OT_BYTE;
5329 else
5330 ir.ot = ir.dflag + OT_WORD;
5331 if (i386_record_modrm (&ir))
5332 return -1;
5333
5334 if (ir.mod != 3 && ir.reg == 0)
5335 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5336
5337 switch (ir.reg)
5338 {
5339 case 0: /* test */
5340 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5341 break;
5342 case 2: /* not */
5343 case 3: /* neg */
5344 if (ir.mod != 3)
5345 {
5346 if (i386_record_lea_modrm (&ir))
5347 return -1;
5348 }
5349 else
5350 {
5351 ir.rm |= ir.rex_b;
5352 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5353 ir.rm &= 0x3;
5354 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5355 }
5356 if (ir.reg == 3) /* neg */
5357 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5358 break;
5359 case 4: /* mul */
5360 case 5: /* imul */
5361 case 6: /* div */
5362 case 7: /* idiv */
5363 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5364 if (ir.ot != OT_BYTE)
5365 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5366 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5367 break;
5368 default:
5369 ir.addr -= 2;
5370 opcode = opcode << 8 | ir.modrm;
5371 goto no_support;
5372 break;
5373 }
5374 break;
5375
5376 case 0xfe: /* GRP4 */
5377 case 0xff: /* GRP5 */
5378 if (i386_record_modrm (&ir))
5379 return -1;
5380 if (ir.reg >= 2 && opcode == 0xfe)
5381 {
5382 ir.addr -= 2;
5383 opcode = opcode << 8 | ir.modrm;
5384 goto no_support;
5385 }
5386 switch (ir.reg)
5387 {
5388 case 0: /* inc */
5389 case 1: /* dec */
5390 if ((opcode & 1) == 0)
5391 ir.ot = OT_BYTE;
5392 else
5393 ir.ot = ir.dflag + OT_WORD;
5394 if (ir.mod != 3)
5395 {
5396 if (i386_record_lea_modrm (&ir))
5397 return -1;
5398 }
5399 else
5400 {
5401 ir.rm |= ir.rex_b;
5402 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5403 ir.rm &= 0x3;
5404 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5405 }
5406 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5407 break;
5408 case 2: /* call */
5409 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5410 ir.dflag = 2;
5411 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5412 return -1;
5413 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5414 break;
5415 case 3: /* lcall */
5416 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5417 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5418 return -1;
5419 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5420 break;
5421 case 4: /* jmp */
5422 case 5: /* ljmp */
5423 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5424 break;
5425 case 6: /* push */
5426 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5427 ir.dflag = 2;
5428 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5429 return -1;
5430 break;
5431 default:
5432 ir.addr -= 2;
5433 opcode = opcode << 8 | ir.modrm;
5434 goto no_support;
5435 break;
5436 }
5437 break;
5438
5439 case 0x84: /* test */
5440 case 0x85:
5441 case 0xa8:
5442 case 0xa9:
5443 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5444 break;
5445
5446 case 0x98: /* CWDE/CBW */
5447 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5448 break;
5449
5450 case 0x99: /* CDQ/CWD */
5451 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5452 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5453 break;
5454
5455 case 0x0faf: /* imul */
5456 case 0x69:
5457 case 0x6b:
5458 ir.ot = ir.dflag + OT_WORD;
5459 if (i386_record_modrm (&ir))
5460 return -1;
5461 if (opcode == 0x69)
5462 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5463 else if (opcode == 0x6b)
5464 ir.rip_offset = 1;
5465 ir.reg |= rex_r;
5466 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5467 ir.reg &= 0x3;
5468 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5469 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5470 break;
5471
5472 case 0x0fc0: /* xadd */
5473 case 0x0fc1:
5474 if ((opcode & 1) == 0)
5475 ir.ot = OT_BYTE;
5476 else
5477 ir.ot = ir.dflag + OT_WORD;
5478 if (i386_record_modrm (&ir))
5479 return -1;
5480 ir.reg |= rex_r;
5481 if (ir.mod == 3)
5482 {
5483 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5484 ir.reg &= 0x3;
5485 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5486 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5487 ir.rm &= 0x3;
5488 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5489 }
5490 else
5491 {
5492 if (i386_record_lea_modrm (&ir))
5493 return -1;
5494 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5495 ir.reg &= 0x3;
5496 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5497 }
5498 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5499 break;
5500
5501 case 0x0fb0: /* cmpxchg */
5502 case 0x0fb1:
5503 if ((opcode & 1) == 0)
5504 ir.ot = OT_BYTE;
5505 else
5506 ir.ot = ir.dflag + OT_WORD;
5507 if (i386_record_modrm (&ir))
5508 return -1;
5509 if (ir.mod == 3)
5510 {
5511 ir.reg |= rex_r;
5512 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5513 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5514 ir.reg &= 0x3;
5515 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5516 }
5517 else
5518 {
5519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5520 if (i386_record_lea_modrm (&ir))
5521 return -1;
5522 }
5523 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5524 break;
5525
5526 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5527 if (i386_record_modrm (&ir))
5528 return -1;
5529 if (ir.mod == 3)
5530 {
5531 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5532 an extended opcode. rdrand has bits 110 (/6) and rdseed
5533 has bits 111 (/7). */
5534 if (ir.reg == 6 || ir.reg == 7)
5535 {
5536 /* The storage register is described by the 3 R/M bits, but the
5537 REX.B prefix may be used to give access to registers
5538 R8~R15. In this case ir.rex_b + R/M will give us the register
5539 in the range R8~R15.
5540
5541 REX.W may also be used to access 64-bit registers, but we
5542 already record entire registers and not just partial bits
5543 of them. */
5544 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5545 /* These instructions also set conditional bits. */
5546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5547 break;
5548 }
5549 else
5550 {
5551 /* We don't handle this particular instruction yet. */
5552 ir.addr -= 2;
5553 opcode = opcode << 8 | ir.modrm;
5554 goto no_support;
5555 }
5556 }
5557 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5558 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5559 if (i386_record_lea_modrm (&ir))
5560 return -1;
5561 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5562 break;
5563
5564 case 0x50: /* push */
5565 case 0x51:
5566 case 0x52:
5567 case 0x53:
5568 case 0x54:
5569 case 0x55:
5570 case 0x56:
5571 case 0x57:
5572 case 0x68:
5573 case 0x6a:
5574 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5575 ir.dflag = 2;
5576 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5577 return -1;
5578 break;
5579
5580 case 0x06: /* push es */
5581 case 0x0e: /* push cs */
5582 case 0x16: /* push ss */
5583 case 0x1e: /* push ds */
5584 if (ir.regmap[X86_RECORD_R8_REGNUM])
5585 {
5586 ir.addr -= 1;
5587 goto no_support;
5588 }
5589 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5590 return -1;
5591 break;
5592
5593 case 0x0fa0: /* push fs */
5594 case 0x0fa8: /* push gs */
5595 if (ir.regmap[X86_RECORD_R8_REGNUM])
5596 {
5597 ir.addr -= 2;
5598 goto no_support;
5599 }
5600 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5601 return -1;
5602 break;
5603
5604 case 0x60: /* pusha */
5605 if (ir.regmap[X86_RECORD_R8_REGNUM])
5606 {
5607 ir.addr -= 1;
5608 goto no_support;
5609 }
5610 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5611 return -1;
5612 break;
5613
5614 case 0x58: /* pop */
5615 case 0x59:
5616 case 0x5a:
5617 case 0x5b:
5618 case 0x5c:
5619 case 0x5d:
5620 case 0x5e:
5621 case 0x5f:
5622 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5623 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5624 break;
5625
5626 case 0x61: /* popa */
5627 if (ir.regmap[X86_RECORD_R8_REGNUM])
5628 {
5629 ir.addr -= 1;
5630 goto no_support;
5631 }
5632 for (regnum = X86_RECORD_REAX_REGNUM;
5633 regnum <= X86_RECORD_REDI_REGNUM;
5634 regnum++)
5635 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5636 break;
5637
5638 case 0x8f: /* pop */
5639 if (ir.regmap[X86_RECORD_R8_REGNUM])
5640 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5641 else
5642 ir.ot = ir.dflag + OT_WORD;
5643 if (i386_record_modrm (&ir))
5644 return -1;
5645 if (ir.mod == 3)
5646 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5647 else
5648 {
5649 ir.popl_esp_hack = 1 << ir.ot;
5650 if (i386_record_lea_modrm (&ir))
5651 return -1;
5652 }
5653 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5654 break;
5655
5656 case 0xc8: /* enter */
5657 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5658 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5659 ir.dflag = 2;
5660 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5661 return -1;
5662 break;
5663
5664 case 0xc9: /* leave */
5665 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5666 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5667 break;
5668
5669 case 0x07: /* pop es */
5670 if (ir.regmap[X86_RECORD_R8_REGNUM])
5671 {
5672 ir.addr -= 1;
5673 goto no_support;
5674 }
5675 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5676 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5677 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5678 break;
5679
5680 case 0x17: /* pop ss */
5681 if (ir.regmap[X86_RECORD_R8_REGNUM])
5682 {
5683 ir.addr -= 1;
5684 goto no_support;
5685 }
5686 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5688 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5689 break;
5690
5691 case 0x1f: /* pop ds */
5692 if (ir.regmap[X86_RECORD_R8_REGNUM])
5693 {
5694 ir.addr -= 1;
5695 goto no_support;
5696 }
5697 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5698 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5699 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5700 break;
5701
5702 case 0x0fa1: /* pop fs */
5703 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5704 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5705 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5706 break;
5707
5708 case 0x0fa9: /* pop gs */
5709 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5710 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5711 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5712 break;
5713
5714 case 0x88: /* mov */
5715 case 0x89:
5716 case 0xc6:
5717 case 0xc7:
5718 if ((opcode & 1) == 0)
5719 ir.ot = OT_BYTE;
5720 else
5721 ir.ot = ir.dflag + OT_WORD;
5722
5723 if (i386_record_modrm (&ir))
5724 return -1;
5725
5726 if (ir.mod != 3)
5727 {
5728 if (opcode == 0xc6 || opcode == 0xc7)
5729 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5730 if (i386_record_lea_modrm (&ir))
5731 return -1;
5732 }
5733 else
5734 {
5735 if (opcode == 0xc6 || opcode == 0xc7)
5736 ir.rm |= ir.rex_b;
5737 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5738 ir.rm &= 0x3;
5739 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5740 }
5741 break;
5742
5743 case 0x8a: /* mov */
5744 case 0x8b:
5745 if ((opcode & 1) == 0)
5746 ir.ot = OT_BYTE;
5747 else
5748 ir.ot = ir.dflag + OT_WORD;
5749 if (i386_record_modrm (&ir))
5750 return -1;
5751 ir.reg |= rex_r;
5752 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5753 ir.reg &= 0x3;
5754 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5755 break;
5756
5757 case 0x8c: /* mov seg */
5758 if (i386_record_modrm (&ir))
5759 return -1;
5760 if (ir.reg > 5)
5761 {
5762 ir.addr -= 2;
5763 opcode = opcode << 8 | ir.modrm;
5764 goto no_support;
5765 }
5766
5767 if (ir.mod == 3)
5768 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5769 else
5770 {
5771 ir.ot = OT_WORD;
5772 if (i386_record_lea_modrm (&ir))
5773 return -1;
5774 }
5775 break;
5776
5777 case 0x8e: /* mov seg */
5778 if (i386_record_modrm (&ir))
5779 return -1;
5780 switch (ir.reg)
5781 {
5782 case 0:
5783 regnum = X86_RECORD_ES_REGNUM;
5784 break;
5785 case 2:
5786 regnum = X86_RECORD_SS_REGNUM;
5787 break;
5788 case 3:
5789 regnum = X86_RECORD_DS_REGNUM;
5790 break;
5791 case 4:
5792 regnum = X86_RECORD_FS_REGNUM;
5793 break;
5794 case 5:
5795 regnum = X86_RECORD_GS_REGNUM;
5796 break;
5797 default:
5798 ir.addr -= 2;
5799 opcode = opcode << 8 | ir.modrm;
5800 goto no_support;
5801 break;
5802 }
5803 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5804 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5805 break;
5806
5807 case 0x0fb6: /* movzbS */
5808 case 0x0fb7: /* movzwS */
5809 case 0x0fbe: /* movsbS */
5810 case 0x0fbf: /* movswS */
5811 if (i386_record_modrm (&ir))
5812 return -1;
5813 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5814 break;
5815
5816 case 0x8d: /* lea */
5817 if (i386_record_modrm (&ir))
5818 return -1;
5819 if (ir.mod == 3)
5820 {
5821 ir.addr -= 2;
5822 opcode = opcode << 8 | ir.modrm;
5823 goto no_support;
5824 }
5825 ir.ot = ir.dflag;
5826 ir.reg |= rex_r;
5827 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5828 ir.reg &= 0x3;
5829 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5830 break;
5831
5832 case 0xa0: /* mov EAX */
5833 case 0xa1:
5834
5835 case 0xd7: /* xlat */
5836 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5837 break;
5838
5839 case 0xa2: /* mov EAX */
5840 case 0xa3:
5841 if (ir.override >= 0)
5842 {
5843 if (record_full_memory_query)
5844 {
5845 if (yquery (_("\
5846 Process record ignores the memory change of instruction at address %s\n\
5847 because it can't get the value of the segment register.\n\
5848 Do you want to stop the program?"),
5849 paddress (gdbarch, ir.orig_addr)))
5850 return -1;
5851 }
5852 }
5853 else
5854 {
5855 if ((opcode & 1) == 0)
5856 ir.ot = OT_BYTE;
5857 else
5858 ir.ot = ir.dflag + OT_WORD;
5859 if (ir.aflag == 2)
5860 {
5861 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5862 return -1;
5863 ir.addr += 8;
5864 addr = extract_unsigned_integer (buf, 8, byte_order);
5865 }
5866 else if (ir.aflag)
5867 {
5868 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5869 return -1;
5870 ir.addr += 4;
5871 addr = extract_unsigned_integer (buf, 4, byte_order);
5872 }
5873 else
5874 {
5875 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5876 return -1;
5877 ir.addr += 2;
5878 addr = extract_unsigned_integer (buf, 2, byte_order);
5879 }
5880 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5881 return -1;
5882 }
5883 break;
5884
5885 case 0xb0: /* mov R, Ib */
5886 case 0xb1:
5887 case 0xb2:
5888 case 0xb3:
5889 case 0xb4:
5890 case 0xb5:
5891 case 0xb6:
5892 case 0xb7:
5893 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5894 ? ((opcode & 0x7) | ir.rex_b)
5895 : ((opcode & 0x7) & 0x3));
5896 break;
5897
5898 case 0xb8: /* mov R, Iv */
5899 case 0xb9:
5900 case 0xba:
5901 case 0xbb:
5902 case 0xbc:
5903 case 0xbd:
5904 case 0xbe:
5905 case 0xbf:
5906 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5907 break;
5908
5909 case 0x91: /* xchg R, EAX */
5910 case 0x92:
5911 case 0x93:
5912 case 0x94:
5913 case 0x95:
5914 case 0x96:
5915 case 0x97:
5916 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5917 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5918 break;
5919
5920 case 0x86: /* xchg Ev, Gv */
5921 case 0x87:
5922 if ((opcode & 1) == 0)
5923 ir.ot = OT_BYTE;
5924 else
5925 ir.ot = ir.dflag + OT_WORD;
5926 if (i386_record_modrm (&ir))
5927 return -1;
5928 if (ir.mod == 3)
5929 {
5930 ir.rm |= ir.rex_b;
5931 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5932 ir.rm &= 0x3;
5933 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5934 }
5935 else
5936 {
5937 if (i386_record_lea_modrm (&ir))
5938 return -1;
5939 }
5940 ir.reg |= rex_r;
5941 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5942 ir.reg &= 0x3;
5943 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5944 break;
5945
5946 case 0xc4: /* les Gv */
5947 case 0xc5: /* lds Gv */
5948 if (ir.regmap[X86_RECORD_R8_REGNUM])
5949 {
5950 ir.addr -= 1;
5951 goto no_support;
5952 }
5953 /* FALLTHROUGH */
5954 case 0x0fb2: /* lss Gv */
5955 case 0x0fb4: /* lfs Gv */
5956 case 0x0fb5: /* lgs Gv */
5957 if (i386_record_modrm (&ir))
5958 return -1;
5959 if (ir.mod == 3)
5960 {
5961 if (opcode > 0xff)
5962 ir.addr -= 3;
5963 else
5964 ir.addr -= 2;
5965 opcode = opcode << 8 | ir.modrm;
5966 goto no_support;
5967 }
5968 switch (opcode)
5969 {
5970 case 0xc4: /* les Gv */
5971 regnum = X86_RECORD_ES_REGNUM;
5972 break;
5973 case 0xc5: /* lds Gv */
5974 regnum = X86_RECORD_DS_REGNUM;
5975 break;
5976 case 0x0fb2: /* lss Gv */
5977 regnum = X86_RECORD_SS_REGNUM;
5978 break;
5979 case 0x0fb4: /* lfs Gv */
5980 regnum = X86_RECORD_FS_REGNUM;
5981 break;
5982 case 0x0fb5: /* lgs Gv */
5983 regnum = X86_RECORD_GS_REGNUM;
5984 break;
5985 }
5986 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5987 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5988 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5989 break;
5990
5991 case 0xc0: /* shifts */
5992 case 0xc1:
5993 case 0xd0:
5994 case 0xd1:
5995 case 0xd2:
5996 case 0xd3:
5997 if ((opcode & 1) == 0)
5998 ir.ot = OT_BYTE;
5999 else
6000 ir.ot = ir.dflag + OT_WORD;
6001 if (i386_record_modrm (&ir))
6002 return -1;
6003 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
6004 {
6005 if (i386_record_lea_modrm (&ir))
6006 return -1;
6007 }
6008 else
6009 {
6010 ir.rm |= ir.rex_b;
6011 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
6012 ir.rm &= 0x3;
6013 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
6014 }
6015 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6016 break;
6017
6018 case 0x0fa4:
6019 case 0x0fa5:
6020 case 0x0fac:
6021 case 0x0fad:
6022 if (i386_record_modrm (&ir))
6023 return -1;
6024 if (ir.mod == 3)
6025 {
6026 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
6027 return -1;
6028 }
6029 else
6030 {
6031 if (i386_record_lea_modrm (&ir))
6032 return -1;
6033 }
6034 break;
6035
6036 case 0xd8: /* Floats. */
6037 case 0xd9:
6038 case 0xda:
6039 case 0xdb:
6040 case 0xdc:
6041 case 0xdd:
6042 case 0xde:
6043 case 0xdf:
6044 if (i386_record_modrm (&ir))
6045 return -1;
6046 ir.reg |= ((opcode & 7) << 3);
6047 if (ir.mod != 3)
6048 {
6049 /* Memory. */
6050 uint64_t addr64;
6051
6052 if (i386_record_lea_modrm_addr (&ir, &addr64))
6053 return -1;
6054 switch (ir.reg)
6055 {
6056 case 0x02:
6057 case 0x12:
6058 case 0x22:
6059 case 0x32:
6060 /* For fcom, ficom nothing to do. */
6061 break;
6062 case 0x03:
6063 case 0x13:
6064 case 0x23:
6065 case 0x33:
6066 /* For fcomp, ficomp pop FPU stack, store all. */
6067 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6068 return -1;
6069 break;
6070 case 0x00:
6071 case 0x01:
6072 case 0x04:
6073 case 0x05:
6074 case 0x06:
6075 case 0x07:
6076 case 0x10:
6077 case 0x11:
6078 case 0x14:
6079 case 0x15:
6080 case 0x16:
6081 case 0x17:
6082 case 0x20:
6083 case 0x21:
6084 case 0x24:
6085 case 0x25:
6086 case 0x26:
6087 case 0x27:
6088 case 0x30:
6089 case 0x31:
6090 case 0x34:
6091 case 0x35:
6092 case 0x36:
6093 case 0x37:
6094 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6095 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6096 of code, always affects st(0) register. */
6097 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6098 return -1;
6099 break;
6100 case 0x08:
6101 case 0x0a:
6102 case 0x0b:
6103 case 0x18:
6104 case 0x19:
6105 case 0x1a:
6106 case 0x1b:
6107 case 0x1d:
6108 case 0x28:
6109 case 0x29:
6110 case 0x2a:
6111 case 0x2b:
6112 case 0x38:
6113 case 0x39:
6114 case 0x3a:
6115 case 0x3b:
6116 case 0x3c:
6117 case 0x3d:
6118 switch (ir.reg & 7)
6119 {
6120 case 0:
6121 /* Handling fld, fild. */
6122 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6123 return -1;
6124 break;
6125 case 1:
6126 switch (ir.reg >> 4)
6127 {
6128 case 0:
6129 if (record_full_arch_list_add_mem (addr64, 4))
6130 return -1;
6131 break;
6132 case 2:
6133 if (record_full_arch_list_add_mem (addr64, 8))
6134 return -1;
6135 break;
6136 case 3:
6137 break;
6138 default:
6139 if (record_full_arch_list_add_mem (addr64, 2))
6140 return -1;
6141 break;
6142 }
6143 break;
6144 default:
6145 switch (ir.reg >> 4)
6146 {
6147 case 0:
6148 if (record_full_arch_list_add_mem (addr64, 4))
6149 return -1;
6150 if (3 == (ir.reg & 7))
6151 {
6152 /* For fstp m32fp. */
6153 if (i386_record_floats (gdbarch, &ir,
6154 I386_SAVE_FPU_REGS))
6155 return -1;
6156 }
6157 break;
6158 case 1:
6159 if (record_full_arch_list_add_mem (addr64, 4))
6160 return -1;
6161 if ((3 == (ir.reg & 7))
6162 || (5 == (ir.reg & 7))
6163 || (7 == (ir.reg & 7)))
6164 {
6165 /* For fstp insn. */
6166 if (i386_record_floats (gdbarch, &ir,
6167 I386_SAVE_FPU_REGS))
6168 return -1;
6169 }
6170 break;
6171 case 2:
6172 if (record_full_arch_list_add_mem (addr64, 8))
6173 return -1;
6174 if (3 == (ir.reg & 7))
6175 {
6176 /* For fstp m64fp. */
6177 if (i386_record_floats (gdbarch, &ir,
6178 I386_SAVE_FPU_REGS))
6179 return -1;
6180 }
6181 break;
6182 case 3:
6183 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6184 {
6185 /* For fistp, fbld, fild, fbstp. */
6186 if (i386_record_floats (gdbarch, &ir,
6187 I386_SAVE_FPU_REGS))
6188 return -1;
6189 }
6190 /* Fall through */
6191 default:
6192 if (record_full_arch_list_add_mem (addr64, 2))
6193 return -1;
6194 break;
6195 }
6196 break;
6197 }
6198 break;
6199 case 0x0c:
6200 /* Insn fldenv. */
6201 if (i386_record_floats (gdbarch, &ir,
6202 I386_SAVE_FPU_ENV_REG_STACK))
6203 return -1;
6204 break;
6205 case 0x0d:
6206 /* Insn fldcw. */
6207 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6208 return -1;
6209 break;
6210 case 0x2c:
6211 /* Insn frstor. */
6212 if (i386_record_floats (gdbarch, &ir,
6213 I386_SAVE_FPU_ENV_REG_STACK))
6214 return -1;
6215 break;
6216 case 0x0e:
6217 if (ir.dflag)
6218 {
6219 if (record_full_arch_list_add_mem (addr64, 28))
6220 return -1;
6221 }
6222 else
6223 {
6224 if (record_full_arch_list_add_mem (addr64, 14))
6225 return -1;
6226 }
6227 break;
6228 case 0x0f:
6229 case 0x2f:
6230 if (record_full_arch_list_add_mem (addr64, 2))
6231 return -1;
6232 /* Insn fstp, fbstp. */
6233 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6234 return -1;
6235 break;
6236 case 0x1f:
6237 case 0x3e:
6238 if (record_full_arch_list_add_mem (addr64, 10))
6239 return -1;
6240 break;
6241 case 0x2e:
6242 if (ir.dflag)
6243 {
6244 if (record_full_arch_list_add_mem (addr64, 28))
6245 return -1;
6246 addr64 += 28;
6247 }
6248 else
6249 {
6250 if (record_full_arch_list_add_mem (addr64, 14))
6251 return -1;
6252 addr64 += 14;
6253 }
6254 if (record_full_arch_list_add_mem (addr64, 80))
6255 return -1;
6256 /* Insn fsave. */
6257 if (i386_record_floats (gdbarch, &ir,
6258 I386_SAVE_FPU_ENV_REG_STACK))
6259 return -1;
6260 break;
6261 case 0x3f:
6262 if (record_full_arch_list_add_mem (addr64, 8))
6263 return -1;
6264 /* Insn fistp. */
6265 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6266 return -1;
6267 break;
6268 default:
6269 ir.addr -= 2;
6270 opcode = opcode << 8 | ir.modrm;
6271 goto no_support;
6272 break;
6273 }
6274 }
6275 /* Opcode is an extension of modR/M byte. */
6276 else
6277 {
6278 switch (opcode)
6279 {
6280 case 0xd8:
6281 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6282 return -1;
6283 break;
6284 case 0xd9:
6285 if (0x0c == (ir.modrm >> 4))
6286 {
6287 if ((ir.modrm & 0x0f) <= 7)
6288 {
6289 if (i386_record_floats (gdbarch, &ir,
6290 I386_SAVE_FPU_REGS))
6291 return -1;
6292 }
6293 else
6294 {
6295 if (i386_record_floats (gdbarch, &ir,
6296 I387_ST0_REGNUM (tdep)))
6297 return -1;
6298 /* If only st(0) is changing, then we have already
6299 recorded. */
6300 if ((ir.modrm & 0x0f) - 0x08)
6301 {
6302 if (i386_record_floats (gdbarch, &ir,
6303 I387_ST0_REGNUM (tdep) +
6304 ((ir.modrm & 0x0f) - 0x08)))
6305 return -1;
6306 }
6307 }
6308 }
6309 else
6310 {
6311 switch (ir.modrm)
6312 {
6313 case 0xe0:
6314 case 0xe1:
6315 case 0xf0:
6316 case 0xf5:
6317 case 0xf8:
6318 case 0xfa:
6319 case 0xfc:
6320 case 0xfe:
6321 case 0xff:
6322 if (i386_record_floats (gdbarch, &ir,
6323 I387_ST0_REGNUM (tdep)))
6324 return -1;
6325 break;
6326 case 0xf1:
6327 case 0xf2:
6328 case 0xf3:
6329 case 0xf4:
6330 case 0xf6:
6331 case 0xf7:
6332 case 0xe8:
6333 case 0xe9:
6334 case 0xea:
6335 case 0xeb:
6336 case 0xec:
6337 case 0xed:
6338 case 0xee:
6339 case 0xf9:
6340 case 0xfb:
6341 if (i386_record_floats (gdbarch, &ir,
6342 I386_SAVE_FPU_REGS))
6343 return -1;
6344 break;
6345 case 0xfd:
6346 if (i386_record_floats (gdbarch, &ir,
6347 I387_ST0_REGNUM (tdep)))
6348 return -1;
6349 if (i386_record_floats (gdbarch, &ir,
6350 I387_ST0_REGNUM (tdep) + 1))
6351 return -1;
6352 break;
6353 }
6354 }
6355 break;
6356 case 0xda:
6357 if (0xe9 == ir.modrm)
6358 {
6359 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6360 return -1;
6361 }
6362 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6363 {
6364 if (i386_record_floats (gdbarch, &ir,
6365 I387_ST0_REGNUM (tdep)))
6366 return -1;
6367 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6368 {
6369 if (i386_record_floats (gdbarch, &ir,
6370 I387_ST0_REGNUM (tdep) +
6371 (ir.modrm & 0x0f)))
6372 return -1;
6373 }
6374 else if ((ir.modrm & 0x0f) - 0x08)
6375 {
6376 if (i386_record_floats (gdbarch, &ir,
6377 I387_ST0_REGNUM (tdep) +
6378 ((ir.modrm & 0x0f) - 0x08)))
6379 return -1;
6380 }
6381 }
6382 break;
6383 case 0xdb:
6384 if (0xe3 == ir.modrm)
6385 {
6386 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6387 return -1;
6388 }
6389 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6390 {
6391 if (i386_record_floats (gdbarch, &ir,
6392 I387_ST0_REGNUM (tdep)))
6393 return -1;
6394 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6395 {
6396 if (i386_record_floats (gdbarch, &ir,
6397 I387_ST0_REGNUM (tdep) +
6398 (ir.modrm & 0x0f)))
6399 return -1;
6400 }
6401 else if ((ir.modrm & 0x0f) - 0x08)
6402 {
6403 if (i386_record_floats (gdbarch, &ir,
6404 I387_ST0_REGNUM (tdep) +
6405 ((ir.modrm & 0x0f) - 0x08)))
6406 return -1;
6407 }
6408 }
6409 break;
6410 case 0xdc:
6411 if ((0x0c == ir.modrm >> 4)
6412 || (0x0d == ir.modrm >> 4)
6413 || (0x0f == ir.modrm >> 4))
6414 {
6415 if ((ir.modrm & 0x0f) <= 7)
6416 {
6417 if (i386_record_floats (gdbarch, &ir,
6418 I387_ST0_REGNUM (tdep) +
6419 (ir.modrm & 0x0f)))
6420 return -1;
6421 }
6422 else
6423 {
6424 if (i386_record_floats (gdbarch, &ir,
6425 I387_ST0_REGNUM (tdep) +
6426 ((ir.modrm & 0x0f) - 0x08)))
6427 return -1;
6428 }
6429 }
6430 break;
6431 case 0xdd:
6432 if (0x0c == ir.modrm >> 4)
6433 {
6434 if (i386_record_floats (gdbarch, &ir,
6435 I387_FTAG_REGNUM (tdep)))
6436 return -1;
6437 }
6438 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6439 {
6440 if ((ir.modrm & 0x0f) <= 7)
6441 {
6442 if (i386_record_floats (gdbarch, &ir,
6443 I387_ST0_REGNUM (tdep) +
6444 (ir.modrm & 0x0f)))
6445 return -1;
6446 }
6447 else
6448 {
6449 if (i386_record_floats (gdbarch, &ir,
6450 I386_SAVE_FPU_REGS))
6451 return -1;
6452 }
6453 }
6454 break;
6455 case 0xde:
6456 if ((0x0c == ir.modrm >> 4)
6457 || (0x0e == ir.modrm >> 4)
6458 || (0x0f == ir.modrm >> 4)
6459 || (0xd9 == ir.modrm))
6460 {
6461 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6462 return -1;
6463 }
6464 break;
6465 case 0xdf:
6466 if (0xe0 == ir.modrm)
6467 {
6468 if (record_full_arch_list_add_reg (ir.regcache,
6469 I386_EAX_REGNUM))
6470 return -1;
6471 }
6472 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6473 {
6474 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6475 return -1;
6476 }
6477 break;
6478 }
6479 }
6480 break;
6481 /* string ops */
6482 case 0xa4: /* movsS */
6483 case 0xa5:
6484 case 0xaa: /* stosS */
6485 case 0xab:
6486 case 0x6c: /* insS */
6487 case 0x6d:
6488 regcache_raw_read_unsigned (ir.regcache,
6489 ir.regmap[X86_RECORD_RECX_REGNUM],
6490 &addr);
6491 if (addr)
6492 {
6493 ULONGEST es, ds;
6494
6495 if ((opcode & 1) == 0)
6496 ir.ot = OT_BYTE;
6497 else
6498 ir.ot = ir.dflag + OT_WORD;
6499 regcache_raw_read_unsigned (ir.regcache,
6500 ir.regmap[X86_RECORD_REDI_REGNUM],
6501 &addr);
6502
6503 regcache_raw_read_unsigned (ir.regcache,
6504 ir.regmap[X86_RECORD_ES_REGNUM],
6505 &es);
6506 regcache_raw_read_unsigned (ir.regcache,
6507 ir.regmap[X86_RECORD_DS_REGNUM],
6508 &ds);
6509 if (ir.aflag && (es != ds))
6510 {
6511 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6512 if (record_full_memory_query)
6513 {
6514 if (yquery (_("\
6515 Process record ignores the memory change of instruction at address %s\n\
6516 because it can't get the value of the segment register.\n\
6517 Do you want to stop the program?"),
6518 paddress (gdbarch, ir.orig_addr)))
6519 return -1;
6520 }
6521 }
6522 else
6523 {
6524 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6525 return -1;
6526 }
6527
6528 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6529 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6530 if (opcode == 0xa4 || opcode == 0xa5)
6531 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6532 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6533 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6534 }
6535 break;
6536
6537 case 0xa6: /* cmpsS */
6538 case 0xa7:
6539 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6541 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6542 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6543 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6544 break;
6545
6546 case 0xac: /* lodsS */
6547 case 0xad:
6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6550 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6551 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6553 break;
6554
6555 case 0xae: /* scasS */
6556 case 0xaf:
6557 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6558 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6559 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6560 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6561 break;
6562
6563 case 0x6e: /* outsS */
6564 case 0x6f:
6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6566 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6567 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6568 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6569 break;
6570
6571 case 0xe4: /* port I/O */
6572 case 0xe5:
6573 case 0xec:
6574 case 0xed:
6575 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6576 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6577 break;
6578
6579 case 0xe6:
6580 case 0xe7:
6581 case 0xee:
6582 case 0xef:
6583 break;
6584
6585 /* control */
6586 case 0xc2: /* ret im */
6587 case 0xc3: /* ret */
6588 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6589 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6590 break;
6591
6592 case 0xca: /* lret im */
6593 case 0xcb: /* lret */
6594 case 0xcf: /* iret */
6595 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6596 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6597 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6598 break;
6599
6600 case 0xe8: /* call im */
6601 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6602 ir.dflag = 2;
6603 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6604 return -1;
6605 break;
6606
6607 case 0x9a: /* lcall im */
6608 if (ir.regmap[X86_RECORD_R8_REGNUM])
6609 {
6610 ir.addr -= 1;
6611 goto no_support;
6612 }
6613 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6614 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6615 return -1;
6616 break;
6617
6618 case 0xe9: /* jmp im */
6619 case 0xea: /* ljmp im */
6620 case 0xeb: /* jmp Jb */
6621 case 0x70: /* jcc Jb */
6622 case 0x71:
6623 case 0x72:
6624 case 0x73:
6625 case 0x74:
6626 case 0x75:
6627 case 0x76:
6628 case 0x77:
6629 case 0x78:
6630 case 0x79:
6631 case 0x7a:
6632 case 0x7b:
6633 case 0x7c:
6634 case 0x7d:
6635 case 0x7e:
6636 case 0x7f:
6637 case 0x0f80: /* jcc Jv */
6638 case 0x0f81:
6639 case 0x0f82:
6640 case 0x0f83:
6641 case 0x0f84:
6642 case 0x0f85:
6643 case 0x0f86:
6644 case 0x0f87:
6645 case 0x0f88:
6646 case 0x0f89:
6647 case 0x0f8a:
6648 case 0x0f8b:
6649 case 0x0f8c:
6650 case 0x0f8d:
6651 case 0x0f8e:
6652 case 0x0f8f:
6653 break;
6654
6655 case 0x0f90: /* setcc Gv */
6656 case 0x0f91:
6657 case 0x0f92:
6658 case 0x0f93:
6659 case 0x0f94:
6660 case 0x0f95:
6661 case 0x0f96:
6662 case 0x0f97:
6663 case 0x0f98:
6664 case 0x0f99:
6665 case 0x0f9a:
6666 case 0x0f9b:
6667 case 0x0f9c:
6668 case 0x0f9d:
6669 case 0x0f9e:
6670 case 0x0f9f:
6671 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6672 ir.ot = OT_BYTE;
6673 if (i386_record_modrm (&ir))
6674 return -1;
6675 if (ir.mod == 3)
6676 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6677 : (ir.rm & 0x3));
6678 else
6679 {
6680 if (i386_record_lea_modrm (&ir))
6681 return -1;
6682 }
6683 break;
6684
6685 case 0x0f40: /* cmov Gv, Ev */
6686 case 0x0f41:
6687 case 0x0f42:
6688 case 0x0f43:
6689 case 0x0f44:
6690 case 0x0f45:
6691 case 0x0f46:
6692 case 0x0f47:
6693 case 0x0f48:
6694 case 0x0f49:
6695 case 0x0f4a:
6696 case 0x0f4b:
6697 case 0x0f4c:
6698 case 0x0f4d:
6699 case 0x0f4e:
6700 case 0x0f4f:
6701 if (i386_record_modrm (&ir))
6702 return -1;
6703 ir.reg |= rex_r;
6704 if (ir.dflag == OT_BYTE)
6705 ir.reg &= 0x3;
6706 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6707 break;
6708
6709 /* flags */
6710 case 0x9c: /* pushf */
6711 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6712 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6713 ir.dflag = 2;
6714 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6715 return -1;
6716 break;
6717
6718 case 0x9d: /* popf */
6719 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6720 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6721 break;
6722
6723 case 0x9e: /* sahf */
6724 if (ir.regmap[X86_RECORD_R8_REGNUM])
6725 {
6726 ir.addr -= 1;
6727 goto no_support;
6728 }
6729 /* FALLTHROUGH */
6730 case 0xf5: /* cmc */
6731 case 0xf8: /* clc */
6732 case 0xf9: /* stc */
6733 case 0xfc: /* cld */
6734 case 0xfd: /* std */
6735 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6736 break;
6737
6738 case 0x9f: /* lahf */
6739 if (ir.regmap[X86_RECORD_R8_REGNUM])
6740 {
6741 ir.addr -= 1;
6742 goto no_support;
6743 }
6744 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6745 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6746 break;
6747
6748 /* bit operations */
6749 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6750 ir.ot = ir.dflag + OT_WORD;
6751 if (i386_record_modrm (&ir))
6752 return -1;
6753 if (ir.reg < 4)
6754 {
6755 ir.addr -= 2;
6756 opcode = opcode << 8 | ir.modrm;
6757 goto no_support;
6758 }
6759 if (ir.reg != 4)
6760 {
6761 if (ir.mod == 3)
6762 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6763 else
6764 {
6765 if (i386_record_lea_modrm (&ir))
6766 return -1;
6767 }
6768 }
6769 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6770 break;
6771
6772 case 0x0fa3: /* bt Gv, Ev */
6773 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6774 break;
6775
6776 case 0x0fab: /* bts */
6777 case 0x0fb3: /* btr */
6778 case 0x0fbb: /* btc */
6779 ir.ot = ir.dflag + OT_WORD;
6780 if (i386_record_modrm (&ir))
6781 return -1;
6782 if (ir.mod == 3)
6783 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6784 else
6785 {
6786 uint64_t addr64;
6787 if (i386_record_lea_modrm_addr (&ir, &addr64))
6788 return -1;
6789 regcache_raw_read_unsigned (ir.regcache,
6790 ir.regmap[ir.reg | rex_r],
6791 &addr);
6792 switch (ir.dflag)
6793 {
6794 case 0:
6795 addr64 += ((int16_t) addr >> 4) << 4;
6796 break;
6797 case 1:
6798 addr64 += ((int32_t) addr >> 5) << 5;
6799 break;
6800 case 2:
6801 addr64 += ((int64_t) addr >> 6) << 6;
6802 break;
6803 }
6804 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6805 return -1;
6806 if (i386_record_lea_modrm (&ir))
6807 return -1;
6808 }
6809 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6810 break;
6811
6812 case 0x0fbc: /* bsf */
6813 case 0x0fbd: /* bsr */
6814 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6815 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6816 break;
6817
6818 /* bcd */
6819 case 0x27: /* daa */
6820 case 0x2f: /* das */
6821 case 0x37: /* aaa */
6822 case 0x3f: /* aas */
6823 case 0xd4: /* aam */
6824 case 0xd5: /* aad */
6825 if (ir.regmap[X86_RECORD_R8_REGNUM])
6826 {
6827 ir.addr -= 1;
6828 goto no_support;
6829 }
6830 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6831 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6832 break;
6833
6834 /* misc */
6835 case 0x90: /* nop */
6836 if (prefixes & PREFIX_LOCK)
6837 {
6838 ir.addr -= 1;
6839 goto no_support;
6840 }
6841 break;
6842
6843 case 0x9b: /* fwait */
6844 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6845 return -1;
6846 opcode = (uint32_t) opcode8;
6847 ir.addr++;
6848 goto reswitch;
6849 break;
6850
6851 /* XXX */
6852 case 0xcc: /* int3 */
6853 printf_unfiltered (_("Process record does not support instruction "
6854 "int3.\n"));
6855 ir.addr -= 1;
6856 goto no_support;
6857 break;
6858
6859 /* XXX */
6860 case 0xcd: /* int */
6861 {
6862 int ret;
6863 uint8_t interrupt;
6864 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6865 return -1;
6866 ir.addr++;
6867 if (interrupt != 0x80
6868 || tdep->i386_intx80_record == NULL)
6869 {
6870 printf_unfiltered (_("Process record does not support "
6871 "instruction int 0x%02x.\n"),
6872 interrupt);
6873 ir.addr -= 2;
6874 goto no_support;
6875 }
6876 ret = tdep->i386_intx80_record (ir.regcache);
6877 if (ret)
6878 return ret;
6879 }
6880 break;
6881
6882 /* XXX */
6883 case 0xce: /* into */
6884 printf_unfiltered (_("Process record does not support "
6885 "instruction into.\n"));
6886 ir.addr -= 1;
6887 goto no_support;
6888 break;
6889
6890 case 0xfa: /* cli */
6891 case 0xfb: /* sti */
6892 break;
6893
6894 case 0x62: /* bound */
6895 printf_unfiltered (_("Process record does not support "
6896 "instruction bound.\n"));
6897 ir.addr -= 1;
6898 goto no_support;
6899 break;
6900
6901 case 0x0fc8: /* bswap reg */
6902 case 0x0fc9:
6903 case 0x0fca:
6904 case 0x0fcb:
6905 case 0x0fcc:
6906 case 0x0fcd:
6907 case 0x0fce:
6908 case 0x0fcf:
6909 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6910 break;
6911
6912 case 0xd6: /* salc */
6913 if (ir.regmap[X86_RECORD_R8_REGNUM])
6914 {
6915 ir.addr -= 1;
6916 goto no_support;
6917 }
6918 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6919 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6920 break;
6921
6922 case 0xe0: /* loopnz */
6923 case 0xe1: /* loopz */
6924 case 0xe2: /* loop */
6925 case 0xe3: /* jecxz */
6926 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6927 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6928 break;
6929
6930 case 0x0f30: /* wrmsr */
6931 printf_unfiltered (_("Process record does not support "
6932 "instruction wrmsr.\n"));
6933 ir.addr -= 2;
6934 goto no_support;
6935 break;
6936
6937 case 0x0f32: /* rdmsr */
6938 printf_unfiltered (_("Process record does not support "
6939 "instruction rdmsr.\n"));
6940 ir.addr -= 2;
6941 goto no_support;
6942 break;
6943
6944 case 0x0f31: /* rdtsc */
6945 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6946 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6947 break;
6948
6949 case 0x0f34: /* sysenter */
6950 {
6951 int ret;
6952 if (ir.regmap[X86_RECORD_R8_REGNUM])
6953 {
6954 ir.addr -= 2;
6955 goto no_support;
6956 }
6957 if (tdep->i386_sysenter_record == NULL)
6958 {
6959 printf_unfiltered (_("Process record does not support "
6960 "instruction sysenter.\n"));
6961 ir.addr -= 2;
6962 goto no_support;
6963 }
6964 ret = tdep->i386_sysenter_record (ir.regcache);
6965 if (ret)
6966 return ret;
6967 }
6968 break;
6969
6970 case 0x0f35: /* sysexit */
6971 printf_unfiltered (_("Process record does not support "
6972 "instruction sysexit.\n"));
6973 ir.addr -= 2;
6974 goto no_support;
6975 break;
6976
6977 case 0x0f05: /* syscall */
6978 {
6979 int ret;
6980 if (tdep->i386_syscall_record == NULL)
6981 {
6982 printf_unfiltered (_("Process record does not support "
6983 "instruction syscall.\n"));
6984 ir.addr -= 2;
6985 goto no_support;
6986 }
6987 ret = tdep->i386_syscall_record (ir.regcache);
6988 if (ret)
6989 return ret;
6990 }
6991 break;
6992
6993 case 0x0f07: /* sysret */
6994 printf_unfiltered (_("Process record does not support "
6995 "instruction sysret.\n"));
6996 ir.addr -= 2;
6997 goto no_support;
6998 break;
6999
7000 case 0x0fa2: /* cpuid */
7001 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7002 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7003 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7004 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7005 break;
7006
7007 case 0xf4: /* hlt */
7008 printf_unfiltered (_("Process record does not support "
7009 "instruction hlt.\n"));
7010 ir.addr -= 1;
7011 goto no_support;
7012 break;
7013
7014 case 0x0f00:
7015 if (i386_record_modrm (&ir))
7016 return -1;
7017 switch (ir.reg)
7018 {
7019 case 0: /* sldt */
7020 case 1: /* str */
7021 if (ir.mod == 3)
7022 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7023 else
7024 {
7025 ir.ot = OT_WORD;
7026 if (i386_record_lea_modrm (&ir))
7027 return -1;
7028 }
7029 break;
7030 case 2: /* lldt */
7031 case 3: /* ltr */
7032 break;
7033 case 4: /* verr */
7034 case 5: /* verw */
7035 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7036 break;
7037 default:
7038 ir.addr -= 3;
7039 opcode = opcode << 8 | ir.modrm;
7040 goto no_support;
7041 break;
7042 }
7043 break;
7044
7045 case 0x0f01:
7046 if (i386_record_modrm (&ir))
7047 return -1;
7048 switch (ir.reg)
7049 {
7050 case 0: /* sgdt */
7051 {
7052 uint64_t addr64;
7053
7054 if (ir.mod == 3)
7055 {
7056 ir.addr -= 3;
7057 opcode = opcode << 8 | ir.modrm;
7058 goto no_support;
7059 }
7060 if (ir.override >= 0)
7061 {
7062 if (record_full_memory_query)
7063 {
7064 if (yquery (_("\
7065 Process record ignores the memory change of instruction at address %s\n\
7066 because it can't get the value of the segment register.\n\
7067 Do you want to stop the program?"),
7068 paddress (gdbarch, ir.orig_addr)))
7069 return -1;
7070 }
7071 }
7072 else
7073 {
7074 if (i386_record_lea_modrm_addr (&ir, &addr64))
7075 return -1;
7076 if (record_full_arch_list_add_mem (addr64, 2))
7077 return -1;
7078 addr64 += 2;
7079 if (ir.regmap[X86_RECORD_R8_REGNUM])
7080 {
7081 if (record_full_arch_list_add_mem (addr64, 8))
7082 return -1;
7083 }
7084 else
7085 {
7086 if (record_full_arch_list_add_mem (addr64, 4))
7087 return -1;
7088 }
7089 }
7090 }
7091 break;
7092 case 1:
7093 if (ir.mod == 3)
7094 {
7095 switch (ir.rm)
7096 {
7097 case 0: /* monitor */
7098 break;
7099 case 1: /* mwait */
7100 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7101 break;
7102 default:
7103 ir.addr -= 3;
7104 opcode = opcode << 8 | ir.modrm;
7105 goto no_support;
7106 break;
7107 }
7108 }
7109 else
7110 {
7111 /* sidt */
7112 if (ir.override >= 0)
7113 {
7114 if (record_full_memory_query)
7115 {
7116 if (yquery (_("\
7117 Process record ignores the memory change of instruction at address %s\n\
7118 because it can't get the value of the segment register.\n\
7119 Do you want to stop the program?"),
7120 paddress (gdbarch, ir.orig_addr)))
7121 return -1;
7122 }
7123 }
7124 else
7125 {
7126 uint64_t addr64;
7127
7128 if (i386_record_lea_modrm_addr (&ir, &addr64))
7129 return -1;
7130 if (record_full_arch_list_add_mem (addr64, 2))
7131 return -1;
7132 addr64 += 2;
7133 if (ir.regmap[X86_RECORD_R8_REGNUM])
7134 {
7135 if (record_full_arch_list_add_mem (addr64, 8))
7136 return -1;
7137 }
7138 else
7139 {
7140 if (record_full_arch_list_add_mem (addr64, 4))
7141 return -1;
7142 }
7143 }
7144 }
7145 break;
7146 case 2: /* lgdt */
7147 if (ir.mod == 3)
7148 {
7149 /* xgetbv */
7150 if (ir.rm == 0)
7151 {
7152 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7153 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7154 break;
7155 }
7156 /* xsetbv */
7157 else if (ir.rm == 1)
7158 break;
7159 }
7160 /* Fall through. */
7161 case 3: /* lidt */
7162 if (ir.mod == 3)
7163 {
7164 ir.addr -= 3;
7165 opcode = opcode << 8 | ir.modrm;
7166 goto no_support;
7167 }
7168 break;
7169 case 4: /* smsw */
7170 if (ir.mod == 3)
7171 {
7172 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7173 return -1;
7174 }
7175 else
7176 {
7177 ir.ot = OT_WORD;
7178 if (i386_record_lea_modrm (&ir))
7179 return -1;
7180 }
7181 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7182 break;
7183 case 6: /* lmsw */
7184 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7185 break;
7186 case 7: /* invlpg */
7187 if (ir.mod == 3)
7188 {
7189 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7190 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7191 else
7192 {
7193 ir.addr -= 3;
7194 opcode = opcode << 8 | ir.modrm;
7195 goto no_support;
7196 }
7197 }
7198 else
7199 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7200 break;
7201 default:
7202 ir.addr -= 3;
7203 opcode = opcode << 8 | ir.modrm;
7204 goto no_support;
7205 break;
7206 }
7207 break;
7208
7209 case 0x0f08: /* invd */
7210 case 0x0f09: /* wbinvd */
7211 break;
7212
7213 case 0x63: /* arpl */
7214 if (i386_record_modrm (&ir))
7215 return -1;
7216 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7217 {
7218 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7219 ? (ir.reg | rex_r) : ir.rm);
7220 }
7221 else
7222 {
7223 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7224 if (i386_record_lea_modrm (&ir))
7225 return -1;
7226 }
7227 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7228 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7229 break;
7230
7231 case 0x0f02: /* lar */
7232 case 0x0f03: /* lsl */
7233 if (i386_record_modrm (&ir))
7234 return -1;
7235 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7236 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7237 break;
7238
7239 case 0x0f18:
7240 if (i386_record_modrm (&ir))
7241 return -1;
7242 if (ir.mod == 3 && ir.reg == 3)
7243 {
7244 ir.addr -= 3;
7245 opcode = opcode << 8 | ir.modrm;
7246 goto no_support;
7247 }
7248 break;
7249
7250 case 0x0f19:
7251 case 0x0f1a:
7252 case 0x0f1b:
7253 case 0x0f1c:
7254 case 0x0f1d:
7255 case 0x0f1e:
7256 case 0x0f1f:
7257 /* nop (multi byte) */
7258 break;
7259
7260 case 0x0f20: /* mov reg, crN */
7261 case 0x0f22: /* mov crN, reg */
7262 if (i386_record_modrm (&ir))
7263 return -1;
7264 if ((ir.modrm & 0xc0) != 0xc0)
7265 {
7266 ir.addr -= 3;
7267 opcode = opcode << 8 | ir.modrm;
7268 goto no_support;
7269 }
7270 switch (ir.reg)
7271 {
7272 case 0:
7273 case 2:
7274 case 3:
7275 case 4:
7276 case 8:
7277 if (opcode & 2)
7278 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7279 else
7280 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7281 break;
7282 default:
7283 ir.addr -= 3;
7284 opcode = opcode << 8 | ir.modrm;
7285 goto no_support;
7286 break;
7287 }
7288 break;
7289
7290 case 0x0f21: /* mov reg, drN */
7291 case 0x0f23: /* mov drN, reg */
7292 if (i386_record_modrm (&ir))
7293 return -1;
7294 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7295 || ir.reg == 5 || ir.reg >= 8)
7296 {
7297 ir.addr -= 3;
7298 opcode = opcode << 8 | ir.modrm;
7299 goto no_support;
7300 }
7301 if (opcode & 2)
7302 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7303 else
7304 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7305 break;
7306
7307 case 0x0f06: /* clts */
7308 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7309 break;
7310
7311 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7312
7313 case 0x0f0d: /* 3DNow! prefetch */
7314 break;
7315
7316 case 0x0f0e: /* 3DNow! femms */
7317 case 0x0f77: /* emms */
7318 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7319 goto no_support;
7320 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7321 break;
7322
7323 case 0x0f0f: /* 3DNow! data */
7324 if (i386_record_modrm (&ir))
7325 return -1;
7326 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7327 return -1;
7328 ir.addr++;
7329 switch (opcode8)
7330 {
7331 case 0x0c: /* 3DNow! pi2fw */
7332 case 0x0d: /* 3DNow! pi2fd */
7333 case 0x1c: /* 3DNow! pf2iw */
7334 case 0x1d: /* 3DNow! pf2id */
7335 case 0x8a: /* 3DNow! pfnacc */
7336 case 0x8e: /* 3DNow! pfpnacc */
7337 case 0x90: /* 3DNow! pfcmpge */
7338 case 0x94: /* 3DNow! pfmin */
7339 case 0x96: /* 3DNow! pfrcp */
7340 case 0x97: /* 3DNow! pfrsqrt */
7341 case 0x9a: /* 3DNow! pfsub */
7342 case 0x9e: /* 3DNow! pfadd */
7343 case 0xa0: /* 3DNow! pfcmpgt */
7344 case 0xa4: /* 3DNow! pfmax */
7345 case 0xa6: /* 3DNow! pfrcpit1 */
7346 case 0xa7: /* 3DNow! pfrsqit1 */
7347 case 0xaa: /* 3DNow! pfsubr */
7348 case 0xae: /* 3DNow! pfacc */
7349 case 0xb0: /* 3DNow! pfcmpeq */
7350 case 0xb4: /* 3DNow! pfmul */
7351 case 0xb6: /* 3DNow! pfrcpit2 */
7352 case 0xb7: /* 3DNow! pmulhrw */
7353 case 0xbb: /* 3DNow! pswapd */
7354 case 0xbf: /* 3DNow! pavgusb */
7355 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7356 goto no_support_3dnow_data;
7357 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7358 break;
7359
7360 default:
7361 no_support_3dnow_data:
7362 opcode = (opcode << 8) | opcode8;
7363 goto no_support;
7364 break;
7365 }
7366 break;
7367
7368 case 0x0faa: /* rsm */
7369 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7370 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7371 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7372 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7373 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7374 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7375 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7376 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7378 break;
7379
7380 case 0x0fae:
7381 if (i386_record_modrm (&ir))
7382 return -1;
7383 switch(ir.reg)
7384 {
7385 case 0: /* fxsave */
7386 {
7387 uint64_t tmpu64;
7388
7389 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7390 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7391 return -1;
7392 if (record_full_arch_list_add_mem (tmpu64, 512))
7393 return -1;
7394 }
7395 break;
7396
7397 case 1: /* fxrstor */
7398 {
7399 int i;
7400
7401 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7402
7403 for (i = I387_MM0_REGNUM (tdep);
7404 i386_mmx_regnum_p (gdbarch, i); i++)
7405 record_full_arch_list_add_reg (ir.regcache, i);
7406
7407 for (i = I387_XMM0_REGNUM (tdep);
7408 i386_xmm_regnum_p (gdbarch, i); i++)
7409 record_full_arch_list_add_reg (ir.regcache, i);
7410
7411 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7412 record_full_arch_list_add_reg (ir.regcache,
7413 I387_MXCSR_REGNUM(tdep));
7414
7415 for (i = I387_ST0_REGNUM (tdep);
7416 i386_fp_regnum_p (gdbarch, i); i++)
7417 record_full_arch_list_add_reg (ir.regcache, i);
7418
7419 for (i = I387_FCTRL_REGNUM (tdep);
7420 i386_fpc_regnum_p (gdbarch, i); i++)
7421 record_full_arch_list_add_reg (ir.regcache, i);
7422 }
7423 break;
7424
7425 case 2: /* ldmxcsr */
7426 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7427 goto no_support;
7428 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7429 break;
7430
7431 case 3: /* stmxcsr */
7432 ir.ot = OT_LONG;
7433 if (i386_record_lea_modrm (&ir))
7434 return -1;
7435 break;
7436
7437 case 5: /* lfence */
7438 case 6: /* mfence */
7439 case 7: /* sfence clflush */
7440 break;
7441
7442 default:
7443 opcode = (opcode << 8) | ir.modrm;
7444 goto no_support;
7445 break;
7446 }
7447 break;
7448
7449 case 0x0fc3: /* movnti */
7450 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7451 if (i386_record_modrm (&ir))
7452 return -1;
7453 if (ir.mod == 3)
7454 goto no_support;
7455 ir.reg |= rex_r;
7456 if (i386_record_lea_modrm (&ir))
7457 return -1;
7458 break;
7459
7460 /* Add prefix to opcode. */
7461 case 0x0f10:
7462 case 0x0f11:
7463 case 0x0f12:
7464 case 0x0f13:
7465 case 0x0f14:
7466 case 0x0f15:
7467 case 0x0f16:
7468 case 0x0f17:
7469 case 0x0f28:
7470 case 0x0f29:
7471 case 0x0f2a:
7472 case 0x0f2b:
7473 case 0x0f2c:
7474 case 0x0f2d:
7475 case 0x0f2e:
7476 case 0x0f2f:
7477 case 0x0f38:
7478 case 0x0f39:
7479 case 0x0f3a:
7480 case 0x0f50:
7481 case 0x0f51:
7482 case 0x0f52:
7483 case 0x0f53:
7484 case 0x0f54:
7485 case 0x0f55:
7486 case 0x0f56:
7487 case 0x0f57:
7488 case 0x0f58:
7489 case 0x0f59:
7490 case 0x0f5a:
7491 case 0x0f5b:
7492 case 0x0f5c:
7493 case 0x0f5d:
7494 case 0x0f5e:
7495 case 0x0f5f:
7496 case 0x0f60:
7497 case 0x0f61:
7498 case 0x0f62:
7499 case 0x0f63:
7500 case 0x0f64:
7501 case 0x0f65:
7502 case 0x0f66:
7503 case 0x0f67:
7504 case 0x0f68:
7505 case 0x0f69:
7506 case 0x0f6a:
7507 case 0x0f6b:
7508 case 0x0f6c:
7509 case 0x0f6d:
7510 case 0x0f6e:
7511 case 0x0f6f:
7512 case 0x0f70:
7513 case 0x0f71:
7514 case 0x0f72:
7515 case 0x0f73:
7516 case 0x0f74:
7517 case 0x0f75:
7518 case 0x0f76:
7519 case 0x0f7c:
7520 case 0x0f7d:
7521 case 0x0f7e:
7522 case 0x0f7f:
7523 case 0x0fb8:
7524 case 0x0fc2:
7525 case 0x0fc4:
7526 case 0x0fc5:
7527 case 0x0fc6:
7528 case 0x0fd0:
7529 case 0x0fd1:
7530 case 0x0fd2:
7531 case 0x0fd3:
7532 case 0x0fd4:
7533 case 0x0fd5:
7534 case 0x0fd6:
7535 case 0x0fd7:
7536 case 0x0fd8:
7537 case 0x0fd9:
7538 case 0x0fda:
7539 case 0x0fdb:
7540 case 0x0fdc:
7541 case 0x0fdd:
7542 case 0x0fde:
7543 case 0x0fdf:
7544 case 0x0fe0:
7545 case 0x0fe1:
7546 case 0x0fe2:
7547 case 0x0fe3:
7548 case 0x0fe4:
7549 case 0x0fe5:
7550 case 0x0fe6:
7551 case 0x0fe7:
7552 case 0x0fe8:
7553 case 0x0fe9:
7554 case 0x0fea:
7555 case 0x0feb:
7556 case 0x0fec:
7557 case 0x0fed:
7558 case 0x0fee:
7559 case 0x0fef:
7560 case 0x0ff0:
7561 case 0x0ff1:
7562 case 0x0ff2:
7563 case 0x0ff3:
7564 case 0x0ff4:
7565 case 0x0ff5:
7566 case 0x0ff6:
7567 case 0x0ff7:
7568 case 0x0ff8:
7569 case 0x0ff9:
7570 case 0x0ffa:
7571 case 0x0ffb:
7572 case 0x0ffc:
7573 case 0x0ffd:
7574 case 0x0ffe:
7575 /* Mask out PREFIX_ADDR. */
7576 switch ((prefixes & ~PREFIX_ADDR))
7577 {
7578 case PREFIX_REPNZ:
7579 opcode |= 0xf20000;
7580 break;
7581 case PREFIX_DATA:
7582 opcode |= 0x660000;
7583 break;
7584 case PREFIX_REPZ:
7585 opcode |= 0xf30000;
7586 break;
7587 }
7588 reswitch_prefix_add:
7589 switch (opcode)
7590 {
7591 case 0x0f38:
7592 case 0x660f38:
7593 case 0xf20f38:
7594 case 0x0f3a:
7595 case 0x660f3a:
7596 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7597 return -1;
7598 ir.addr++;
7599 opcode = (uint32_t) opcode8 | opcode << 8;
7600 goto reswitch_prefix_add;
7601 break;
7602
7603 case 0x0f10: /* movups */
7604 case 0x660f10: /* movupd */
7605 case 0xf30f10: /* movss */
7606 case 0xf20f10: /* movsd */
7607 case 0x0f12: /* movlps */
7608 case 0x660f12: /* movlpd */
7609 case 0xf30f12: /* movsldup */
7610 case 0xf20f12: /* movddup */
7611 case 0x0f14: /* unpcklps */
7612 case 0x660f14: /* unpcklpd */
7613 case 0x0f15: /* unpckhps */
7614 case 0x660f15: /* unpckhpd */
7615 case 0x0f16: /* movhps */
7616 case 0x660f16: /* movhpd */
7617 case 0xf30f16: /* movshdup */
7618 case 0x0f28: /* movaps */
7619 case 0x660f28: /* movapd */
7620 case 0x0f2a: /* cvtpi2ps */
7621 case 0x660f2a: /* cvtpi2pd */
7622 case 0xf30f2a: /* cvtsi2ss */
7623 case 0xf20f2a: /* cvtsi2sd */
7624 case 0x0f2c: /* cvttps2pi */
7625 case 0x660f2c: /* cvttpd2pi */
7626 case 0x0f2d: /* cvtps2pi */
7627 case 0x660f2d: /* cvtpd2pi */
7628 case 0x660f3800: /* pshufb */
7629 case 0x660f3801: /* phaddw */
7630 case 0x660f3802: /* phaddd */
7631 case 0x660f3803: /* phaddsw */
7632 case 0x660f3804: /* pmaddubsw */
7633 case 0x660f3805: /* phsubw */
7634 case 0x660f3806: /* phsubd */
7635 case 0x660f3807: /* phsubsw */
7636 case 0x660f3808: /* psignb */
7637 case 0x660f3809: /* psignw */
7638 case 0x660f380a: /* psignd */
7639 case 0x660f380b: /* pmulhrsw */
7640 case 0x660f3810: /* pblendvb */
7641 case 0x660f3814: /* blendvps */
7642 case 0x660f3815: /* blendvpd */
7643 case 0x660f381c: /* pabsb */
7644 case 0x660f381d: /* pabsw */
7645 case 0x660f381e: /* pabsd */
7646 case 0x660f3820: /* pmovsxbw */
7647 case 0x660f3821: /* pmovsxbd */
7648 case 0x660f3822: /* pmovsxbq */
7649 case 0x660f3823: /* pmovsxwd */
7650 case 0x660f3824: /* pmovsxwq */
7651 case 0x660f3825: /* pmovsxdq */
7652 case 0x660f3828: /* pmuldq */
7653 case 0x660f3829: /* pcmpeqq */
7654 case 0x660f382a: /* movntdqa */
7655 case 0x660f3a08: /* roundps */
7656 case 0x660f3a09: /* roundpd */
7657 case 0x660f3a0a: /* roundss */
7658 case 0x660f3a0b: /* roundsd */
7659 case 0x660f3a0c: /* blendps */
7660 case 0x660f3a0d: /* blendpd */
7661 case 0x660f3a0e: /* pblendw */
7662 case 0x660f3a0f: /* palignr */
7663 case 0x660f3a20: /* pinsrb */
7664 case 0x660f3a21: /* insertps */
7665 case 0x660f3a22: /* pinsrd pinsrq */
7666 case 0x660f3a40: /* dpps */
7667 case 0x660f3a41: /* dppd */
7668 case 0x660f3a42: /* mpsadbw */
7669 case 0x660f3a60: /* pcmpestrm */
7670 case 0x660f3a61: /* pcmpestri */
7671 case 0x660f3a62: /* pcmpistrm */
7672 case 0x660f3a63: /* pcmpistri */
7673 case 0x0f51: /* sqrtps */
7674 case 0x660f51: /* sqrtpd */
7675 case 0xf20f51: /* sqrtsd */
7676 case 0xf30f51: /* sqrtss */
7677 case 0x0f52: /* rsqrtps */
7678 case 0xf30f52: /* rsqrtss */
7679 case 0x0f53: /* rcpps */
7680 case 0xf30f53: /* rcpss */
7681 case 0x0f54: /* andps */
7682 case 0x660f54: /* andpd */
7683 case 0x0f55: /* andnps */
7684 case 0x660f55: /* andnpd */
7685 case 0x0f56: /* orps */
7686 case 0x660f56: /* orpd */
7687 case 0x0f57: /* xorps */
7688 case 0x660f57: /* xorpd */
7689 case 0x0f58: /* addps */
7690 case 0x660f58: /* addpd */
7691 case 0xf20f58: /* addsd */
7692 case 0xf30f58: /* addss */
7693 case 0x0f59: /* mulps */
7694 case 0x660f59: /* mulpd */
7695 case 0xf20f59: /* mulsd */
7696 case 0xf30f59: /* mulss */
7697 case 0x0f5a: /* cvtps2pd */
7698 case 0x660f5a: /* cvtpd2ps */
7699 case 0xf20f5a: /* cvtsd2ss */
7700 case 0xf30f5a: /* cvtss2sd */
7701 case 0x0f5b: /* cvtdq2ps */
7702 case 0x660f5b: /* cvtps2dq */
7703 case 0xf30f5b: /* cvttps2dq */
7704 case 0x0f5c: /* subps */
7705 case 0x660f5c: /* subpd */
7706 case 0xf20f5c: /* subsd */
7707 case 0xf30f5c: /* subss */
7708 case 0x0f5d: /* minps */
7709 case 0x660f5d: /* minpd */
7710 case 0xf20f5d: /* minsd */
7711 case 0xf30f5d: /* minss */
7712 case 0x0f5e: /* divps */
7713 case 0x660f5e: /* divpd */
7714 case 0xf20f5e: /* divsd */
7715 case 0xf30f5e: /* divss */
7716 case 0x0f5f: /* maxps */
7717 case 0x660f5f: /* maxpd */
7718 case 0xf20f5f: /* maxsd */
7719 case 0xf30f5f: /* maxss */
7720 case 0x660f60: /* punpcklbw */
7721 case 0x660f61: /* punpcklwd */
7722 case 0x660f62: /* punpckldq */
7723 case 0x660f63: /* packsswb */
7724 case 0x660f64: /* pcmpgtb */
7725 case 0x660f65: /* pcmpgtw */
7726 case 0x660f66: /* pcmpgtd */
7727 case 0x660f67: /* packuswb */
7728 case 0x660f68: /* punpckhbw */
7729 case 0x660f69: /* punpckhwd */
7730 case 0x660f6a: /* punpckhdq */
7731 case 0x660f6b: /* packssdw */
7732 case 0x660f6c: /* punpcklqdq */
7733 case 0x660f6d: /* punpckhqdq */
7734 case 0x660f6e: /* movd */
7735 case 0x660f6f: /* movdqa */
7736 case 0xf30f6f: /* movdqu */
7737 case 0x660f70: /* pshufd */
7738 case 0xf20f70: /* pshuflw */
7739 case 0xf30f70: /* pshufhw */
7740 case 0x660f74: /* pcmpeqb */
7741 case 0x660f75: /* pcmpeqw */
7742 case 0x660f76: /* pcmpeqd */
7743 case 0x660f7c: /* haddpd */
7744 case 0xf20f7c: /* haddps */
7745 case 0x660f7d: /* hsubpd */
7746 case 0xf20f7d: /* hsubps */
7747 case 0xf30f7e: /* movq */
7748 case 0x0fc2: /* cmpps */
7749 case 0x660fc2: /* cmppd */
7750 case 0xf20fc2: /* cmpsd */
7751 case 0xf30fc2: /* cmpss */
7752 case 0x660fc4: /* pinsrw */
7753 case 0x0fc6: /* shufps */
7754 case 0x660fc6: /* shufpd */
7755 case 0x660fd0: /* addsubpd */
7756 case 0xf20fd0: /* addsubps */
7757 case 0x660fd1: /* psrlw */
7758 case 0x660fd2: /* psrld */
7759 case 0x660fd3: /* psrlq */
7760 case 0x660fd4: /* paddq */
7761 case 0x660fd5: /* pmullw */
7762 case 0xf30fd6: /* movq2dq */
7763 case 0x660fd8: /* psubusb */
7764 case 0x660fd9: /* psubusw */
7765 case 0x660fda: /* pminub */
7766 case 0x660fdb: /* pand */
7767 case 0x660fdc: /* paddusb */
7768 case 0x660fdd: /* paddusw */
7769 case 0x660fde: /* pmaxub */
7770 case 0x660fdf: /* pandn */
7771 case 0x660fe0: /* pavgb */
7772 case 0x660fe1: /* psraw */
7773 case 0x660fe2: /* psrad */
7774 case 0x660fe3: /* pavgw */
7775 case 0x660fe4: /* pmulhuw */
7776 case 0x660fe5: /* pmulhw */
7777 case 0x660fe6: /* cvttpd2dq */
7778 case 0xf20fe6: /* cvtpd2dq */
7779 case 0xf30fe6: /* cvtdq2pd */
7780 case 0x660fe8: /* psubsb */
7781 case 0x660fe9: /* psubsw */
7782 case 0x660fea: /* pminsw */
7783 case 0x660feb: /* por */
7784 case 0x660fec: /* paddsb */
7785 case 0x660fed: /* paddsw */
7786 case 0x660fee: /* pmaxsw */
7787 case 0x660fef: /* pxor */
7788 case 0xf20ff0: /* lddqu */
7789 case 0x660ff1: /* psllw */
7790 case 0x660ff2: /* pslld */
7791 case 0x660ff3: /* psllq */
7792 case 0x660ff4: /* pmuludq */
7793 case 0x660ff5: /* pmaddwd */
7794 case 0x660ff6: /* psadbw */
7795 case 0x660ff8: /* psubb */
7796 case 0x660ff9: /* psubw */
7797 case 0x660ffa: /* psubd */
7798 case 0x660ffb: /* psubq */
7799 case 0x660ffc: /* paddb */
7800 case 0x660ffd: /* paddw */
7801 case 0x660ffe: /* paddd */
7802 if (i386_record_modrm (&ir))
7803 return -1;
7804 ir.reg |= rex_r;
7805 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7806 goto no_support;
7807 record_full_arch_list_add_reg (ir.regcache,
7808 I387_XMM0_REGNUM (tdep) + ir.reg);
7809 if ((opcode & 0xfffffffc) == 0x660f3a60)
7810 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7811 break;
7812
7813 case 0x0f11: /* movups */
7814 case 0x660f11: /* movupd */
7815 case 0xf30f11: /* movss */
7816 case 0xf20f11: /* movsd */
7817 case 0x0f13: /* movlps */
7818 case 0x660f13: /* movlpd */
7819 case 0x0f17: /* movhps */
7820 case 0x660f17: /* movhpd */
7821 case 0x0f29: /* movaps */
7822 case 0x660f29: /* movapd */
7823 case 0x660f3a14: /* pextrb */
7824 case 0x660f3a15: /* pextrw */
7825 case 0x660f3a16: /* pextrd pextrq */
7826 case 0x660f3a17: /* extractps */
7827 case 0x660f7f: /* movdqa */
7828 case 0xf30f7f: /* movdqu */
7829 if (i386_record_modrm (&ir))
7830 return -1;
7831 if (ir.mod == 3)
7832 {
7833 if (opcode == 0x0f13 || opcode == 0x660f13
7834 || opcode == 0x0f17 || opcode == 0x660f17)
7835 goto no_support;
7836 ir.rm |= ir.rex_b;
7837 if (!i386_xmm_regnum_p (gdbarch,
7838 I387_XMM0_REGNUM (tdep) + ir.rm))
7839 goto no_support;
7840 record_full_arch_list_add_reg (ir.regcache,
7841 I387_XMM0_REGNUM (tdep) + ir.rm);
7842 }
7843 else
7844 {
7845 switch (opcode)
7846 {
7847 case 0x660f3a14:
7848 ir.ot = OT_BYTE;
7849 break;
7850 case 0x660f3a15:
7851 ir.ot = OT_WORD;
7852 break;
7853 case 0x660f3a16:
7854 ir.ot = OT_LONG;
7855 break;
7856 case 0x660f3a17:
7857 ir.ot = OT_QUAD;
7858 break;
7859 default:
7860 ir.ot = OT_DQUAD;
7861 break;
7862 }
7863 if (i386_record_lea_modrm (&ir))
7864 return -1;
7865 }
7866 break;
7867
7868 case 0x0f2b: /* movntps */
7869 case 0x660f2b: /* movntpd */
7870 case 0x0fe7: /* movntq */
7871 case 0x660fe7: /* movntdq */
7872 if (ir.mod == 3)
7873 goto no_support;
7874 if (opcode == 0x0fe7)
7875 ir.ot = OT_QUAD;
7876 else
7877 ir.ot = OT_DQUAD;
7878 if (i386_record_lea_modrm (&ir))
7879 return -1;
7880 break;
7881
7882 case 0xf30f2c: /* cvttss2si */
7883 case 0xf20f2c: /* cvttsd2si */
7884 case 0xf30f2d: /* cvtss2si */
7885 case 0xf20f2d: /* cvtsd2si */
7886 case 0xf20f38f0: /* crc32 */
7887 case 0xf20f38f1: /* crc32 */
7888 case 0x0f50: /* movmskps */
7889 case 0x660f50: /* movmskpd */
7890 case 0x0fc5: /* pextrw */
7891 case 0x660fc5: /* pextrw */
7892 case 0x0fd7: /* pmovmskb */
7893 case 0x660fd7: /* pmovmskb */
7894 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7895 break;
7896
7897 case 0x0f3800: /* pshufb */
7898 case 0x0f3801: /* phaddw */
7899 case 0x0f3802: /* phaddd */
7900 case 0x0f3803: /* phaddsw */
7901 case 0x0f3804: /* pmaddubsw */
7902 case 0x0f3805: /* phsubw */
7903 case 0x0f3806: /* phsubd */
7904 case 0x0f3807: /* phsubsw */
7905 case 0x0f3808: /* psignb */
7906 case 0x0f3809: /* psignw */
7907 case 0x0f380a: /* psignd */
7908 case 0x0f380b: /* pmulhrsw */
7909 case 0x0f381c: /* pabsb */
7910 case 0x0f381d: /* pabsw */
7911 case 0x0f381e: /* pabsd */
7912 case 0x0f382b: /* packusdw */
7913 case 0x0f3830: /* pmovzxbw */
7914 case 0x0f3831: /* pmovzxbd */
7915 case 0x0f3832: /* pmovzxbq */
7916 case 0x0f3833: /* pmovzxwd */
7917 case 0x0f3834: /* pmovzxwq */
7918 case 0x0f3835: /* pmovzxdq */
7919 case 0x0f3837: /* pcmpgtq */
7920 case 0x0f3838: /* pminsb */
7921 case 0x0f3839: /* pminsd */
7922 case 0x0f383a: /* pminuw */
7923 case 0x0f383b: /* pminud */
7924 case 0x0f383c: /* pmaxsb */
7925 case 0x0f383d: /* pmaxsd */
7926 case 0x0f383e: /* pmaxuw */
7927 case 0x0f383f: /* pmaxud */
7928 case 0x0f3840: /* pmulld */
7929 case 0x0f3841: /* phminposuw */
7930 case 0x0f3a0f: /* palignr */
7931 case 0x0f60: /* punpcklbw */
7932 case 0x0f61: /* punpcklwd */
7933 case 0x0f62: /* punpckldq */
7934 case 0x0f63: /* packsswb */
7935 case 0x0f64: /* pcmpgtb */
7936 case 0x0f65: /* pcmpgtw */
7937 case 0x0f66: /* pcmpgtd */
7938 case 0x0f67: /* packuswb */
7939 case 0x0f68: /* punpckhbw */
7940 case 0x0f69: /* punpckhwd */
7941 case 0x0f6a: /* punpckhdq */
7942 case 0x0f6b: /* packssdw */
7943 case 0x0f6e: /* movd */
7944 case 0x0f6f: /* movq */
7945 case 0x0f70: /* pshufw */
7946 case 0x0f74: /* pcmpeqb */
7947 case 0x0f75: /* pcmpeqw */
7948 case 0x0f76: /* pcmpeqd */
7949 case 0x0fc4: /* pinsrw */
7950 case 0x0fd1: /* psrlw */
7951 case 0x0fd2: /* psrld */
7952 case 0x0fd3: /* psrlq */
7953 case 0x0fd4: /* paddq */
7954 case 0x0fd5: /* pmullw */
7955 case 0xf20fd6: /* movdq2q */
7956 case 0x0fd8: /* psubusb */
7957 case 0x0fd9: /* psubusw */
7958 case 0x0fda: /* pminub */
7959 case 0x0fdb: /* pand */
7960 case 0x0fdc: /* paddusb */
7961 case 0x0fdd: /* paddusw */
7962 case 0x0fde: /* pmaxub */
7963 case 0x0fdf: /* pandn */
7964 case 0x0fe0: /* pavgb */
7965 case 0x0fe1: /* psraw */
7966 case 0x0fe2: /* psrad */
7967 case 0x0fe3: /* pavgw */
7968 case 0x0fe4: /* pmulhuw */
7969 case 0x0fe5: /* pmulhw */
7970 case 0x0fe8: /* psubsb */
7971 case 0x0fe9: /* psubsw */
7972 case 0x0fea: /* pminsw */
7973 case 0x0feb: /* por */
7974 case 0x0fec: /* paddsb */
7975 case 0x0fed: /* paddsw */
7976 case 0x0fee: /* pmaxsw */
7977 case 0x0fef: /* pxor */
7978 case 0x0ff1: /* psllw */
7979 case 0x0ff2: /* pslld */
7980 case 0x0ff3: /* psllq */
7981 case 0x0ff4: /* pmuludq */
7982 case 0x0ff5: /* pmaddwd */
7983 case 0x0ff6: /* psadbw */
7984 case 0x0ff8: /* psubb */
7985 case 0x0ff9: /* psubw */
7986 case 0x0ffa: /* psubd */
7987 case 0x0ffb: /* psubq */
7988 case 0x0ffc: /* paddb */
7989 case 0x0ffd: /* paddw */
7990 case 0x0ffe: /* paddd */
7991 if (i386_record_modrm (&ir))
7992 return -1;
7993 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7994 goto no_support;
7995 record_full_arch_list_add_reg (ir.regcache,
7996 I387_MM0_REGNUM (tdep) + ir.reg);
7997 break;
7998
7999 case 0x0f71: /* psllw */
8000 case 0x0f72: /* pslld */
8001 case 0x0f73: /* psllq */
8002 if (i386_record_modrm (&ir))
8003 return -1;
8004 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8005 goto no_support;
8006 record_full_arch_list_add_reg (ir.regcache,
8007 I387_MM0_REGNUM (tdep) + ir.rm);
8008 break;
8009
8010 case 0x660f71: /* psllw */
8011 case 0x660f72: /* pslld */
8012 case 0x660f73: /* psllq */
8013 if (i386_record_modrm (&ir))
8014 return -1;
8015 ir.rm |= ir.rex_b;
8016 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
8017 goto no_support;
8018 record_full_arch_list_add_reg (ir.regcache,
8019 I387_XMM0_REGNUM (tdep) + ir.rm);
8020 break;
8021
8022 case 0x0f7e: /* movd */
8023 case 0x660f7e: /* movd */
8024 if (i386_record_modrm (&ir))
8025 return -1;
8026 if (ir.mod == 3)
8027 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8028 else
8029 {
8030 if (ir.dflag == 2)
8031 ir.ot = OT_QUAD;
8032 else
8033 ir.ot = OT_LONG;
8034 if (i386_record_lea_modrm (&ir))
8035 return -1;
8036 }
8037 break;
8038
8039 case 0x0f7f: /* movq */
8040 if (i386_record_modrm (&ir))
8041 return -1;
8042 if (ir.mod == 3)
8043 {
8044 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8045 goto no_support;
8046 record_full_arch_list_add_reg (ir.regcache,
8047 I387_MM0_REGNUM (tdep) + ir.rm);
8048 }
8049 else
8050 {
8051 ir.ot = OT_QUAD;
8052 if (i386_record_lea_modrm (&ir))
8053 return -1;
8054 }
8055 break;
8056
8057 case 0xf30fb8: /* popcnt */
8058 if (i386_record_modrm (&ir))
8059 return -1;
8060 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8061 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8062 break;
8063
8064 case 0x660fd6: /* movq */
8065 if (i386_record_modrm (&ir))
8066 return -1;
8067 if (ir.mod == 3)
8068 {
8069 ir.rm |= ir.rex_b;
8070 if (!i386_xmm_regnum_p (gdbarch,
8071 I387_XMM0_REGNUM (tdep) + ir.rm))
8072 goto no_support;
8073 record_full_arch_list_add_reg (ir.regcache,
8074 I387_XMM0_REGNUM (tdep) + ir.rm);
8075 }
8076 else
8077 {
8078 ir.ot = OT_QUAD;
8079 if (i386_record_lea_modrm (&ir))
8080 return -1;
8081 }
8082 break;
8083
8084 case 0x660f3817: /* ptest */
8085 case 0x0f2e: /* ucomiss */
8086 case 0x660f2e: /* ucomisd */
8087 case 0x0f2f: /* comiss */
8088 case 0x660f2f: /* comisd */
8089 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8090 break;
8091
8092 case 0x0ff7: /* maskmovq */
8093 regcache_raw_read_unsigned (ir.regcache,
8094 ir.regmap[X86_RECORD_REDI_REGNUM],
8095 &addr);
8096 if (record_full_arch_list_add_mem (addr, 64))
8097 return -1;
8098 break;
8099
8100 case 0x660ff7: /* maskmovdqu */
8101 regcache_raw_read_unsigned (ir.regcache,
8102 ir.regmap[X86_RECORD_REDI_REGNUM],
8103 &addr);
8104 if (record_full_arch_list_add_mem (addr, 128))
8105 return -1;
8106 break;
8107
8108 default:
8109 goto no_support;
8110 break;
8111 }
8112 break;
8113
8114 default:
8115 goto no_support;
8116 break;
8117 }
8118
8119 /* In the future, maybe still need to deal with need_dasm. */
8120 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8121 if (record_full_arch_list_add_end ())
8122 return -1;
8123
8124 return 0;
8125
8126 no_support:
8127 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8128 "at address %s.\n"),
8129 (unsigned int) (opcode),
8130 paddress (gdbarch, ir.orig_addr));
8131 return -1;
8132 }
8133
8134 static const int i386_record_regmap[] =
8135 {
8136 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8137 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8138 0, 0, 0, 0, 0, 0, 0, 0,
8139 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8140 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8141 };
8142
8143 /* Check that the given address appears suitable for a fast
8144 tracepoint, which on x86-64 means that we need an instruction of at
8145 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8146 jump and not have to worry about program jumps to an address in the
8147 middle of the tracepoint jump. On x86, it may be possible to use
8148 4-byte jumps with a 2-byte offset to a trampoline located in the
8149 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8150 of instruction to replace, and 0 if not, plus an explanatory
8151 string. */
8152
8153 static int
8154 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8155 std::string *msg)
8156 {
8157 int len, jumplen;
8158
8159 /* Ask the target for the minimum instruction length supported. */
8160 jumplen = target_get_min_fast_tracepoint_insn_len ();
8161
8162 if (jumplen < 0)
8163 {
8164 /* If the target does not support the get_min_fast_tracepoint_insn_len
8165 operation, assume that fast tracepoints will always be implemented
8166 using 4-byte relative jumps on both x86 and x86-64. */
8167 jumplen = 5;
8168 }
8169 else if (jumplen == 0)
8170 {
8171 /* If the target does support get_min_fast_tracepoint_insn_len but
8172 returns zero, then the IPA has not loaded yet. In this case,
8173 we optimistically assume that truncated 2-byte relative jumps
8174 will be available on x86, and compensate later if this assumption
8175 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8176 jumps will always be used. */
8177 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8178 }
8179
8180 /* Check for fit. */
8181 len = gdb_insn_length (gdbarch, addr);
8182
8183 if (len < jumplen)
8184 {
8185 /* Return a bit of target-specific detail to add to the caller's
8186 generic failure message. */
8187 if (msg)
8188 *msg = string_printf (_("; instruction is only %d bytes long, "
8189 "need at least %d bytes for the jump"),
8190 len, jumplen);
8191 return 0;
8192 }
8193 else
8194 {
8195 if (msg)
8196 msg->clear ();
8197 return 1;
8198 }
8199 }
8200
8201 /* Return a floating-point format for a floating-point variable of
8202 length LEN in bits. If non-NULL, NAME is the name of its type.
8203 If no suitable type is found, return NULL. */
8204
8205 static const struct floatformat **
8206 i386_floatformat_for_type (struct gdbarch *gdbarch,
8207 const char *name, int len)
8208 {
8209 if (len == 128 && name)
8210 if (strcmp (name, "__float128") == 0
8211 || strcmp (name, "_Float128") == 0
8212 || strcmp (name, "complex _Float128") == 0
8213 || strcmp (name, "complex(kind=16)") == 0
8214 || strcmp (name, "quad complex") == 0
8215 || strcmp (name, "real(kind=16)") == 0
8216 || strcmp (name, "real*16") == 0)
8217 return floatformats_ia64_quad;
8218
8219 return default_floatformat_for_type (gdbarch, name, len);
8220 }
8221
8222 static int
8223 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8224 struct tdesc_arch_data *tdesc_data)
8225 {
8226 const struct target_desc *tdesc = tdep->tdesc;
8227 const struct tdesc_feature *feature_core;
8228
8229 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8230 *feature_avx512, *feature_pkeys, *feature_segments;
8231 int i, num_regs, valid_p;
8232
8233 if (! tdesc_has_registers (tdesc))
8234 return 0;
8235
8236 /* Get core registers. */
8237 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8238 if (feature_core == NULL)
8239 return 0;
8240
8241 /* Get SSE registers. */
8242 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8243
8244 /* Try AVX registers. */
8245 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8246
8247 /* Try MPX registers. */
8248 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8249
8250 /* Try AVX512 registers. */
8251 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8252
8253 /* Try segment base registers. */
8254 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8255
8256 /* Try PKEYS */
8257 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8258
8259 valid_p = 1;
8260
8261 /* The XCR0 bits. */
8262 if (feature_avx512)
8263 {
8264 /* AVX512 register description requires AVX register description. */
8265 if (!feature_avx)
8266 return 0;
8267
8268 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8269
8270 /* It may have been set by OSABI initialization function. */
8271 if (tdep->k0_regnum < 0)
8272 {
8273 tdep->k_register_names = i386_k_names;
8274 tdep->k0_regnum = I386_K0_REGNUM;
8275 }
8276
8277 for (i = 0; i < I387_NUM_K_REGS; i++)
8278 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8279 tdep->k0_regnum + i,
8280 i386_k_names[i]);
8281
8282 if (tdep->num_zmm_regs == 0)
8283 {
8284 tdep->zmmh_register_names = i386_zmmh_names;
8285 tdep->num_zmm_regs = 8;
8286 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8287 }
8288
8289 for (i = 0; i < tdep->num_zmm_regs; i++)
8290 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8291 tdep->zmm0h_regnum + i,
8292 tdep->zmmh_register_names[i]);
8293
8294 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8295 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8296 tdep->xmm16_regnum + i,
8297 tdep->xmm_avx512_register_names[i]);
8298
8299 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8300 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8301 tdep->ymm16h_regnum + i,
8302 tdep->ymm16h_register_names[i]);
8303 }
8304 if (feature_avx)
8305 {
8306 /* AVX register description requires SSE register description. */
8307 if (!feature_sse)
8308 return 0;
8309
8310 if (!feature_avx512)
8311 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8312
8313 /* It may have been set by OSABI initialization function. */
8314 if (tdep->num_ymm_regs == 0)
8315 {
8316 tdep->ymmh_register_names = i386_ymmh_names;
8317 tdep->num_ymm_regs = 8;
8318 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8319 }
8320
8321 for (i = 0; i < tdep->num_ymm_regs; i++)
8322 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8323 tdep->ymm0h_regnum + i,
8324 tdep->ymmh_register_names[i]);
8325 }
8326 else if (feature_sse)
8327 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8328 else
8329 {
8330 tdep->xcr0 = X86_XSTATE_X87_MASK;
8331 tdep->num_xmm_regs = 0;
8332 }
8333
8334 num_regs = tdep->num_core_regs;
8335 for (i = 0; i < num_regs; i++)
8336 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8337 tdep->register_names[i]);
8338
8339 if (feature_sse)
8340 {
8341 /* Need to include %mxcsr, so add one. */
8342 num_regs += tdep->num_xmm_regs + 1;
8343 for (; i < num_regs; i++)
8344 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8345 tdep->register_names[i]);
8346 }
8347
8348 if (feature_mpx)
8349 {
8350 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8351
8352 if (tdep->bnd0r_regnum < 0)
8353 {
8354 tdep->mpx_register_names = i386_mpx_names;
8355 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8356 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8357 }
8358
8359 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8360 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8361 I387_BND0R_REGNUM (tdep) + i,
8362 tdep->mpx_register_names[i]);
8363 }
8364
8365 if (feature_segments)
8366 {
8367 if (tdep->fsbase_regnum < 0)
8368 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8369 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8370 tdep->fsbase_regnum, "fs_base");
8371 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8372 tdep->fsbase_regnum + 1, "gs_base");
8373 }
8374
8375 if (feature_pkeys)
8376 {
8377 tdep->xcr0 |= X86_XSTATE_PKRU;
8378 if (tdep->pkru_regnum < 0)
8379 {
8380 tdep->pkeys_register_names = i386_pkeys_names;
8381 tdep->pkru_regnum = I386_PKRU_REGNUM;
8382 tdep->num_pkeys_regs = 1;
8383 }
8384
8385 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8386 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8387 I387_PKRU_REGNUM (tdep) + i,
8388 tdep->pkeys_register_names[i]);
8389 }
8390
8391 return valid_p;
8392 }
8393
8394 \f
8395
8396 /* Implement the type_align gdbarch function. */
8397
8398 static ULONGEST
8399 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8400 {
8401 type = check_typedef (type);
8402
8403 if (gdbarch_ptr_bit (gdbarch) == 32)
8404 {
8405 if ((type->code () == TYPE_CODE_INT
8406 || type->code () == TYPE_CODE_FLT)
8407 && TYPE_LENGTH (type) > 4)
8408 return 4;
8409
8410 /* Handle x86's funny long double. */
8411 if (type->code () == TYPE_CODE_FLT
8412 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8413 return 4;
8414 }
8415
8416 return 0;
8417 }
8418
8419 \f
8420 /* Note: This is called for both i386 and amd64. */
8421
8422 static struct gdbarch *
8423 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8424 {
8425 struct gdbarch_tdep *tdep;
8426 struct gdbarch *gdbarch;
8427 struct tdesc_arch_data *tdesc_data;
8428 const struct target_desc *tdesc;
8429 int mm0_regnum;
8430 int ymm0_regnum;
8431 int bnd0_regnum;
8432 int num_bnd_cooked;
8433
8434 /* If there is already a candidate, use it. */
8435 arches = gdbarch_list_lookup_by_info (arches, &info);
8436 if (arches != NULL)
8437 return arches->gdbarch;
8438
8439 /* Allocate space for the new architecture. Assume i386 for now. */
8440 tdep = XCNEW (struct gdbarch_tdep);
8441 gdbarch = gdbarch_alloc (&info, tdep);
8442
8443 /* General-purpose registers. */
8444 tdep->gregset_reg_offset = NULL;
8445 tdep->gregset_num_regs = I386_NUM_GREGS;
8446 tdep->sizeof_gregset = 0;
8447
8448 /* Floating-point registers. */
8449 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8450 tdep->fpregset = &i386_fpregset;
8451
8452 /* The default settings include the FPU registers, the MMX registers
8453 and the SSE registers. This can be overridden for a specific ABI
8454 by adjusting the members `st0_regnum', `mm0_regnum' and
8455 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8456 will show up in the output of "info all-registers". */
8457
8458 tdep->st0_regnum = I386_ST0_REGNUM;
8459
8460 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8461 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8462
8463 tdep->jb_pc_offset = -1;
8464 tdep->struct_return = pcc_struct_return;
8465 tdep->sigtramp_start = 0;
8466 tdep->sigtramp_end = 0;
8467 tdep->sigtramp_p = i386_sigtramp_p;
8468 tdep->sigcontext_addr = NULL;
8469 tdep->sc_reg_offset = NULL;
8470 tdep->sc_pc_offset = -1;
8471 tdep->sc_sp_offset = -1;
8472
8473 tdep->xsave_xcr0_offset = -1;
8474
8475 tdep->record_regmap = i386_record_regmap;
8476
8477 set_gdbarch_type_align (gdbarch, i386_type_align);
8478
8479 /* The format used for `long double' on almost all i386 targets is
8480 the i387 extended floating-point format. In fact, of all targets
8481 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8482 on having a `long double' that's not `long' at all. */
8483 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8484
8485 /* Although the i387 extended floating-point has only 80 significant
8486 bits, a `long double' actually takes up 96, probably to enforce
8487 alignment. */
8488 set_gdbarch_long_double_bit (gdbarch, 96);
8489
8490 /* Support for floating-point data type variants. */
8491 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8492
8493 /* Register numbers of various important registers. */
8494 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8495 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8496 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8497 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8498
8499 /* NOTE: kettenis/20040418: GCC does have two possible register
8500 numbering schemes on the i386: dbx and SVR4. These schemes
8501 differ in how they number %ebp, %esp, %eflags, and the
8502 floating-point registers, and are implemented by the arrays
8503 dbx_register_map[] and svr4_dbx_register_map in
8504 gcc/config/i386.c. GCC also defines a third numbering scheme in
8505 gcc/config/i386.c, which it designates as the "default" register
8506 map used in 64bit mode. This last register numbering scheme is
8507 implemented in dbx64_register_map, and is used for AMD64; see
8508 amd64-tdep.c.
8509
8510 Currently, each GCC i386 target always uses the same register
8511 numbering scheme across all its supported debugging formats
8512 i.e. SDB (COFF), stabs and DWARF 2. This is because
8513 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8514 DBX_REGISTER_NUMBER macro which is defined by each target's
8515 respective config header in a manner independent of the requested
8516 output debugging format.
8517
8518 This does not match the arrangement below, which presumes that
8519 the SDB and stabs numbering schemes differ from the DWARF and
8520 DWARF 2 ones. The reason for this arrangement is that it is
8521 likely to get the numbering scheme for the target's
8522 default/native debug format right. For targets where GCC is the
8523 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8524 targets where the native toolchain uses a different numbering
8525 scheme for a particular debug format (stabs-in-ELF on Solaris)
8526 the defaults below will have to be overridden, like
8527 i386_elf_init_abi() does. */
8528
8529 /* Use the dbx register numbering scheme for stabs and COFF. */
8530 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8531 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8532
8533 /* Use the SVR4 register numbering scheme for DWARF 2. */
8534 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8535
8536 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8537 be in use on any of the supported i386 targets. */
8538
8539 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8540
8541 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8542
8543 /* Call dummy code. */
8544 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8545 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8546 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8547 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8548
8549 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8550 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8551 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8552
8553 set_gdbarch_return_value (gdbarch, i386_return_value);
8554
8555 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8556
8557 /* Stack grows downward. */
8558 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8559
8560 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8561 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8562
8563 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8564 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8565
8566 set_gdbarch_frame_args_skip (gdbarch, 8);
8567
8568 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8569
8570 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8571
8572 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8573
8574 /* Add the i386 register groups. */
8575 i386_add_reggroups (gdbarch);
8576 tdep->register_reggroup_p = i386_register_reggroup_p;
8577
8578 /* Helper for function argument information. */
8579 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8580
8581 /* Hook the function epilogue frame unwinder. This unwinder is
8582 appended to the list first, so that it supercedes the DWARF
8583 unwinder in function epilogues (where the DWARF unwinder
8584 currently fails). */
8585 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8586
8587 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8588 to the list before the prologue-based unwinders, so that DWARF
8589 CFI info will be used if it is available. */
8590 dwarf2_append_unwinders (gdbarch);
8591
8592 frame_base_set_default (gdbarch, &i386_frame_base);
8593
8594 /* Pseudo registers may be changed by amd64_init_abi. */
8595 set_gdbarch_pseudo_register_read_value (gdbarch,
8596 i386_pseudo_register_read_value);
8597 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8598 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8599 i386_ax_pseudo_register_collect);
8600
8601 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8602 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8603
8604 /* Override the normal target description method to make the AVX
8605 upper halves anonymous. */
8606 set_gdbarch_register_name (gdbarch, i386_register_name);
8607
8608 /* Even though the default ABI only includes general-purpose registers,
8609 floating-point registers and the SSE registers, we have to leave a
8610 gap for the upper AVX, MPX and AVX512 registers. */
8611 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
8612
8613 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8614
8615 /* Get the x86 target description from INFO. */
8616 tdesc = info.target_desc;
8617 if (! tdesc_has_registers (tdesc))
8618 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
8619 tdep->tdesc = tdesc;
8620
8621 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8622 tdep->register_names = i386_register_names;
8623
8624 /* No upper YMM registers. */
8625 tdep->ymmh_register_names = NULL;
8626 tdep->ymm0h_regnum = -1;
8627
8628 /* No upper ZMM registers. */
8629 tdep->zmmh_register_names = NULL;
8630 tdep->zmm0h_regnum = -1;
8631
8632 /* No high XMM registers. */
8633 tdep->xmm_avx512_register_names = NULL;
8634 tdep->xmm16_regnum = -1;
8635
8636 /* No upper YMM16-31 registers. */
8637 tdep->ymm16h_register_names = NULL;
8638 tdep->ymm16h_regnum = -1;
8639
8640 tdep->num_byte_regs = 8;
8641 tdep->num_word_regs = 8;
8642 tdep->num_dword_regs = 0;
8643 tdep->num_mmx_regs = 8;
8644 tdep->num_ymm_regs = 0;
8645
8646 /* No MPX registers. */
8647 tdep->bnd0r_regnum = -1;
8648 tdep->bndcfgu_regnum = -1;
8649
8650 /* No AVX512 registers. */
8651 tdep->k0_regnum = -1;
8652 tdep->num_zmm_regs = 0;
8653 tdep->num_ymm_avx512_regs = 0;
8654 tdep->num_xmm_avx512_regs = 0;
8655
8656 /* No PKEYS registers */
8657 tdep->pkru_regnum = -1;
8658 tdep->num_pkeys_regs = 0;
8659
8660 /* No segment base registers. */
8661 tdep->fsbase_regnum = -1;
8662
8663 tdesc_data = tdesc_data_alloc ();
8664
8665 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8666
8667 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8668
8669 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8670 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8671 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8672
8673 /* Hook in ABI-specific overrides, if they have been registered.
8674 Note: If INFO specifies a 64 bit arch, this is where we turn
8675 a 32-bit i386 into a 64-bit amd64. */
8676 info.tdesc_data = tdesc_data;
8677 gdbarch_init_osabi (info, gdbarch);
8678
8679 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8680 {
8681 tdesc_data_cleanup (tdesc_data);
8682 xfree (tdep);
8683 gdbarch_free (gdbarch);
8684 return NULL;
8685 }
8686
8687 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8688
8689 /* Wire in pseudo registers. Number of pseudo registers may be
8690 changed. */
8691 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8692 + tdep->num_word_regs
8693 + tdep->num_dword_regs
8694 + tdep->num_mmx_regs
8695 + tdep->num_ymm_regs
8696 + num_bnd_cooked
8697 + tdep->num_ymm_avx512_regs
8698 + tdep->num_zmm_regs));
8699
8700 /* Target description may be changed. */
8701 tdesc = tdep->tdesc;
8702
8703 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8704
8705 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8706 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8707
8708 /* Make %al the first pseudo-register. */
8709 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8710 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8711
8712 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8713 if (tdep->num_dword_regs)
8714 {
8715 /* Support dword pseudo-register if it hasn't been disabled. */
8716 tdep->eax_regnum = ymm0_regnum;
8717 ymm0_regnum += tdep->num_dword_regs;
8718 }
8719 else
8720 tdep->eax_regnum = -1;
8721
8722 mm0_regnum = ymm0_regnum;
8723 if (tdep->num_ymm_regs)
8724 {
8725 /* Support YMM pseudo-register if it is available. */
8726 tdep->ymm0_regnum = ymm0_regnum;
8727 mm0_regnum += tdep->num_ymm_regs;
8728 }
8729 else
8730 tdep->ymm0_regnum = -1;
8731
8732 if (tdep->num_ymm_avx512_regs)
8733 {
8734 /* Support YMM16-31 pseudo registers if available. */
8735 tdep->ymm16_regnum = mm0_regnum;
8736 mm0_regnum += tdep->num_ymm_avx512_regs;
8737 }
8738 else
8739 tdep->ymm16_regnum = -1;
8740
8741 if (tdep->num_zmm_regs)
8742 {
8743 /* Support ZMM pseudo-register if it is available. */
8744 tdep->zmm0_regnum = mm0_regnum;
8745 mm0_regnum += tdep->num_zmm_regs;
8746 }
8747 else
8748 tdep->zmm0_regnum = -1;
8749
8750 bnd0_regnum = mm0_regnum;
8751 if (tdep->num_mmx_regs != 0)
8752 {
8753 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8754 tdep->mm0_regnum = mm0_regnum;
8755 bnd0_regnum += tdep->num_mmx_regs;
8756 }
8757 else
8758 tdep->mm0_regnum = -1;
8759
8760 if (tdep->bnd0r_regnum > 0)
8761 tdep->bnd0_regnum = bnd0_regnum;
8762 else
8763 tdep-> bnd0_regnum = -1;
8764
8765 /* Hook in the legacy prologue-based unwinders last (fallback). */
8766 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8767 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8768 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8769
8770 /* If we have a register mapping, enable the generic core file
8771 support, unless it has already been enabled. */
8772 if (tdep->gregset_reg_offset
8773 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8774 set_gdbarch_iterate_over_regset_sections
8775 (gdbarch, i386_iterate_over_regset_sections);
8776
8777 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8778 i386_fast_tracepoint_valid_at);
8779
8780 return gdbarch;
8781 }
8782
8783 \f
8784
8785 /* Return the target description for a specified XSAVE feature mask. */
8786
8787 const struct target_desc *
8788 i386_target_description (uint64_t xcr0, bool segments)
8789 {
8790 static target_desc *i386_tdescs \
8791 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8792 target_desc **tdesc;
8793
8794 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8795 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8796 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8797 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8798 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8799 [segments ? 1 : 0];
8800
8801 if (*tdesc == NULL)
8802 *tdesc = i386_create_target_description (xcr0, false, segments);
8803
8804 return *tdesc;
8805 }
8806
8807 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8808
8809 /* Find the bound directory base address. */
8810
8811 static unsigned long
8812 i386_mpx_bd_base (void)
8813 {
8814 struct regcache *rcache;
8815 struct gdbarch_tdep *tdep;
8816 ULONGEST ret;
8817 enum register_status regstatus;
8818
8819 rcache = get_current_regcache ();
8820 tdep = gdbarch_tdep (rcache->arch ());
8821
8822 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8823
8824 if (regstatus != REG_VALID)
8825 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8826
8827 return ret & MPX_BASE_MASK;
8828 }
8829
8830 int
8831 i386_mpx_enabled (void)
8832 {
8833 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8834 const struct target_desc *tdesc = tdep->tdesc;
8835
8836 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8837 }
8838
8839 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8840 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8841 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8842 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8843
8844 /* Find the bound table entry given the pointer location and the base
8845 address of the table. */
8846
8847 static CORE_ADDR
8848 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8849 {
8850 CORE_ADDR offset1;
8851 CORE_ADDR offset2;
8852 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8853 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8854 CORE_ADDR bd_entry_addr;
8855 CORE_ADDR bt_addr;
8856 CORE_ADDR bd_entry;
8857 struct gdbarch *gdbarch = get_current_arch ();
8858 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8859
8860
8861 if (gdbarch_ptr_bit (gdbarch) == 64)
8862 {
8863 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8864 bd_ptr_r_shift = 20;
8865 bd_ptr_l_shift = 3;
8866 bt_select_r_shift = 3;
8867 bt_select_l_shift = 5;
8868 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8869
8870 if ( sizeof (CORE_ADDR) == 4)
8871 error (_("bound table examination not supported\
8872 for 64-bit process with 32-bit GDB"));
8873 }
8874 else
8875 {
8876 mpx_bd_mask = MPX_BD_MASK_32;
8877 bd_ptr_r_shift = 12;
8878 bd_ptr_l_shift = 2;
8879 bt_select_r_shift = 2;
8880 bt_select_l_shift = 4;
8881 bt_mask = MPX_BT_MASK_32;
8882 }
8883
8884 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8885 bd_entry_addr = bd_base + offset1;
8886 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8887
8888 if ((bd_entry & 0x1) == 0)
8889 error (_("Invalid bounds directory entry at %s."),
8890 paddress (get_current_arch (), bd_entry_addr));
8891
8892 /* Clearing status bit. */
8893 bd_entry--;
8894 bt_addr = bd_entry & ~bt_select_r_shift;
8895 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8896
8897 return bt_addr + offset2;
8898 }
8899
8900 /* Print routine for the mpx bounds. */
8901
8902 static void
8903 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8904 {
8905 struct ui_out *uiout = current_uiout;
8906 LONGEST size;
8907 struct gdbarch *gdbarch = get_current_arch ();
8908 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8909 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8910
8911 if (bounds_in_map == 1)
8912 {
8913 uiout->text ("Null bounds on map:");
8914 uiout->text (" pointer value = ");
8915 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8916 uiout->text (".");
8917 uiout->text ("\n");
8918 }
8919 else
8920 {
8921 uiout->text ("{lbound = ");
8922 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8923 uiout->text (", ubound = ");
8924
8925 /* The upper bound is stored in 1's complement. */
8926 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8927 uiout->text ("}: pointer value = ");
8928 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8929
8930 if (gdbarch_ptr_bit (gdbarch) == 64)
8931 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8932 else
8933 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8934
8935 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8936 -1 represents in this sense full memory access, and there is no need
8937 one to the size. */
8938
8939 size = (size > -1 ? size + 1 : size);
8940 uiout->text (", size = ");
8941 uiout->field_string ("size", plongest (size));
8942
8943 uiout->text (", metadata = ");
8944 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8945 uiout->text ("\n");
8946 }
8947 }
8948
8949 /* Implement the command "show mpx bound". */
8950
8951 static void
8952 i386_mpx_info_bounds (const char *args, int from_tty)
8953 {
8954 CORE_ADDR bd_base = 0;
8955 CORE_ADDR addr;
8956 CORE_ADDR bt_entry_addr = 0;
8957 CORE_ADDR bt_entry[4];
8958 int i;
8959 struct gdbarch *gdbarch = get_current_arch ();
8960 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8961
8962 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8963 || !i386_mpx_enabled ())
8964 {
8965 printf_unfiltered (_("Intel Memory Protection Extensions not "
8966 "supported on this target.\n"));
8967 return;
8968 }
8969
8970 if (args == NULL)
8971 {
8972 printf_unfiltered (_("Address of pointer variable expected.\n"));
8973 return;
8974 }
8975
8976 addr = parse_and_eval_address (args);
8977
8978 bd_base = i386_mpx_bd_base ();
8979 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8980
8981 memset (bt_entry, 0, sizeof (bt_entry));
8982
8983 for (i = 0; i < 4; i++)
8984 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8985 + i * TYPE_LENGTH (data_ptr_type),
8986 data_ptr_type);
8987
8988 i386_mpx_print_bounds (bt_entry);
8989 }
8990
8991 /* Implement the command "set mpx bound". */
8992
8993 static void
8994 i386_mpx_set_bounds (const char *args, int from_tty)
8995 {
8996 CORE_ADDR bd_base = 0;
8997 CORE_ADDR addr, lower, upper;
8998 CORE_ADDR bt_entry_addr = 0;
8999 CORE_ADDR bt_entry[2];
9000 const char *input = args;
9001 int i;
9002 struct gdbarch *gdbarch = get_current_arch ();
9003 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9004 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
9005
9006 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
9007 || !i386_mpx_enabled ())
9008 error (_("Intel Memory Protection Extensions not supported\
9009 on this target."));
9010
9011 if (args == NULL)
9012 error (_("Pointer value expected."));
9013
9014 addr = value_as_address (parse_to_comma_and_eval (&input));
9015
9016 if (input[0] == ',')
9017 ++input;
9018 if (input[0] == '\0')
9019 error (_("wrong number of arguments: missing lower and upper bound."));
9020 lower = value_as_address (parse_to_comma_and_eval (&input));
9021
9022 if (input[0] == ',')
9023 ++input;
9024 if (input[0] == '\0')
9025 error (_("Wrong number of arguments; Missing upper bound."));
9026 upper = value_as_address (parse_to_comma_and_eval (&input));
9027
9028 bd_base = i386_mpx_bd_base ();
9029 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9030 for (i = 0; i < 2; i++)
9031 bt_entry[i] = read_memory_typed_address (bt_entry_addr
9032 + i * TYPE_LENGTH (data_ptr_type),
9033 data_ptr_type);
9034 bt_entry[0] = (uint64_t) lower;
9035 bt_entry[1] = ~(uint64_t) upper;
9036
9037 for (i = 0; i < 2; i++)
9038 write_memory_unsigned_integer (bt_entry_addr
9039 + i * TYPE_LENGTH (data_ptr_type),
9040 TYPE_LENGTH (data_ptr_type), byte_order,
9041 bt_entry[i]);
9042 }
9043
9044 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9045
9046 void _initialize_i386_tdep ();
9047 void
9048 _initialize_i386_tdep ()
9049 {
9050 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9051
9052 /* Add the variable that controls the disassembly flavor. */
9053 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9054 &disassembly_flavor, _("\
9055 Set the disassembly flavor."), _("\
9056 Show the disassembly flavor."), _("\
9057 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9058 NULL,
9059 NULL, /* FIXME: i18n: */
9060 &setlist, &showlist);
9061
9062 /* Add the variable that controls the convention for returning
9063 structs. */
9064 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9065 &struct_convention, _("\
9066 Set the convention for returning small structs."), _("\
9067 Show the convention for returning small structs."), _("\
9068 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9069 is \"default\"."),
9070 NULL,
9071 NULL, /* FIXME: i18n: */
9072 &setlist, &showlist);
9073
9074 /* Add "mpx" prefix for the set commands. */
9075
9076 add_basic_prefix_cmd ("mpx", class_support, _("\
9077 Set Intel Memory Protection Extensions specific variables."),
9078 &mpx_set_cmdlist, "set mpx ",
9079 0 /* allow-unknown */, &setlist);
9080
9081 /* Add "mpx" prefix for the show commands. */
9082
9083 add_show_prefix_cmd ("mpx", class_support, _("\
9084 Show Intel Memory Protection Extensions specific variables."),
9085 &mpx_show_cmdlist, "show mpx ",
9086 0 /* allow-unknown */, &showlist);
9087
9088 /* Add "bound" command for the show mpx commands list. */
9089
9090 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9091 "Show the memory bounds for a given array/pointer storage\
9092 in the bound table.",
9093 &mpx_show_cmdlist);
9094
9095 /* Add "bound" command for the set mpx commands list. */
9096
9097 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9098 "Set the memory bounds for a given array/pointer storage\
9099 in the bound table.",
9100 &mpx_set_cmdlist);
9101
9102 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9103 i386_svr4_init_abi);
9104
9105 /* Initialize the i386-specific register groups. */
9106 i386_init_reggroups ();
9107
9108 /* Tell remote stub that we support XML target description. */
9109 register_remote_support_xml ("i386");
9110 }