]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/i387-tdep.c
* amd64-tdep.c (amd64_return_value): Change type of readbuf and
[thirdparty/binutils-gdb.git] / gdb / i387-tdep.c
1 /* Intel 387 floating point stuff.
2
3 Copyright 1988, 1989, 1991, 1992, 1993, 1994, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "doublest.h"
25 #include "floatformat.h"
26 #include "frame.h"
27 #include "gdbcore.h"
28 #include "inferior.h"
29 #include "language.h"
30 #include "regcache.h"
31 #include "value.h"
32
33 #include "gdb_assert.h"
34 #include "gdb_string.h"
35
36 #include "i386-tdep.h"
37 #include "i387-tdep.h"
38
39 /* Print the floating point number specified by RAW. */
40
41 static void
42 print_i387_value (char *raw, struct ui_file *file)
43 {
44 DOUBLEST value;
45
46 /* Using extract_typed_floating here might affect the representation
47 of certain numbers such as NaNs, even if GDB is running natively.
48 This is fine since our caller already detects such special
49 numbers and we print the hexadecimal representation anyway. */
50 value = extract_typed_floating (raw, builtin_type_i387_ext);
51
52 /* We try to print 19 digits. The last digit may or may not contain
53 garbage, but we'd better print one too many. We need enough room
54 to print the value, 1 position for the sign, 1 for the decimal
55 point, 19 for the digits and 6 for the exponent adds up to 27. */
56 #ifdef PRINTF_HAS_LONG_DOUBLE
57 fprintf_filtered (file, " %-+27.19Lg", (long double) value);
58 #else
59 fprintf_filtered (file, " %-+27.19g", (double) value);
60 #endif
61 }
62
63 /* Print the classification for the register contents RAW. */
64
65 static void
66 print_i387_ext (unsigned char *raw, struct ui_file *file)
67 {
68 int sign;
69 int integer;
70 unsigned int exponent;
71 unsigned long fraction[2];
72
73 sign = raw[9] & 0x80;
74 integer = raw[7] & 0x80;
75 exponent = (((raw[9] & 0x7f) << 8) | raw[8]);
76 fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]);
77 fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16)
78 | (raw[5] << 8) | raw[4]);
79
80 if (exponent == 0x7fff && integer)
81 {
82 if (fraction[0] == 0x00000000 && fraction[1] == 0x00000000)
83 /* Infinity. */
84 fprintf_filtered (file, " %cInf", (sign ? '-' : '+'));
85 else if (sign && fraction[0] == 0x00000000 && fraction[1] == 0x40000000)
86 /* Real Indefinite (QNaN). */
87 fputs_unfiltered (" Real Indefinite (QNaN)", file);
88 else if (fraction[1] & 0x40000000)
89 /* QNaN. */
90 fputs_filtered (" QNaN", file);
91 else
92 /* SNaN. */
93 fputs_filtered (" SNaN", file);
94 }
95 else if (exponent < 0x7fff && exponent > 0x0000 && integer)
96 /* Normal. */
97 print_i387_value (raw, file);
98 else if (exponent == 0x0000)
99 {
100 /* Denormal or zero. */
101 print_i387_value (raw, file);
102
103 if (integer)
104 /* Pseudo-denormal. */
105 fputs_filtered (" Pseudo-denormal", file);
106 else if (fraction[0] || fraction[1])
107 /* Denormal. */
108 fputs_filtered (" Denormal", file);
109 }
110 else
111 /* Unsupported. */
112 fputs_filtered (" Unsupported", file);
113 }
114
115 /* Print the status word STATUS. */
116
117 static void
118 print_i387_status_word (unsigned int status, struct ui_file *file)
119 {
120 fprintf_filtered (file, "Status Word: %s",
121 hex_string_custom (status, 4));
122 fputs_filtered (" ", file);
123 fprintf_filtered (file, " %s", (status & 0x0001) ? "IE" : " ");
124 fprintf_filtered (file, " %s", (status & 0x0002) ? "DE" : " ");
125 fprintf_filtered (file, " %s", (status & 0x0004) ? "ZE" : " ");
126 fprintf_filtered (file, " %s", (status & 0x0008) ? "OE" : " ");
127 fprintf_filtered (file, " %s", (status & 0x0010) ? "UE" : " ");
128 fprintf_filtered (file, " %s", (status & 0x0020) ? "PE" : " ");
129 fputs_filtered (" ", file);
130 fprintf_filtered (file, " %s", (status & 0x0080) ? "ES" : " ");
131 fputs_filtered (" ", file);
132 fprintf_filtered (file, " %s", (status & 0x0040) ? "SF" : " ");
133 fputs_filtered (" ", file);
134 fprintf_filtered (file, " %s", (status & 0x0100) ? "C0" : " ");
135 fprintf_filtered (file, " %s", (status & 0x0200) ? "C1" : " ");
136 fprintf_filtered (file, " %s", (status & 0x0400) ? "C2" : " ");
137 fprintf_filtered (file, " %s", (status & 0x4000) ? "C3" : " ");
138
139 fputs_filtered ("\n", file);
140
141 fprintf_filtered (file,
142 " TOP: %d\n", ((status >> 11) & 7));
143 }
144
145 /* Print the control word CONTROL. */
146
147 static void
148 print_i387_control_word (unsigned int control, struct ui_file *file)
149 {
150 fprintf_filtered (file, "Control Word: %s",
151 hex_string_custom (control, 4));
152 fputs_filtered (" ", file);
153 fprintf_filtered (file, " %s", (control & 0x0001) ? "IM" : " ");
154 fprintf_filtered (file, " %s", (control & 0x0002) ? "DM" : " ");
155 fprintf_filtered (file, " %s", (control & 0x0004) ? "ZM" : " ");
156 fprintf_filtered (file, " %s", (control & 0x0008) ? "OM" : " ");
157 fprintf_filtered (file, " %s", (control & 0x0010) ? "UM" : " ");
158 fprintf_filtered (file, " %s", (control & 0x0020) ? "PM" : " ");
159
160 fputs_filtered ("\n", file);
161
162 fputs_filtered (" PC: ", file);
163 switch ((control >> 8) & 3)
164 {
165 case 0:
166 fputs_filtered ("Single Precision (24-bits)\n", file);
167 break;
168 case 1:
169 fputs_filtered ("Reserved\n", file);
170 break;
171 case 2:
172 fputs_filtered ("Double Precision (53-bits)\n", file);
173 break;
174 case 3:
175 fputs_filtered ("Extended Precision (64-bits)\n", file);
176 break;
177 }
178
179 fputs_filtered (" RC: ", file);
180 switch ((control >> 10) & 3)
181 {
182 case 0:
183 fputs_filtered ("Round to nearest\n", file);
184 break;
185 case 1:
186 fputs_filtered ("Round down\n", file);
187 break;
188 case 2:
189 fputs_filtered ("Round up\n", file);
190 break;
191 case 3:
192 fputs_filtered ("Round toward zero\n", file);
193 break;
194 }
195 }
196
197 /* Print out the i387 floating point state. Note that we ignore FRAME
198 in the code below. That's OK since floating-point registers are
199 never saved on the stack. */
200
201 void
202 i387_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
203 struct frame_info *frame, const char *args)
204 {
205 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
206 char buf[4];
207 ULONGEST fctrl;
208 ULONGEST fstat;
209 ULONGEST ftag;
210 ULONGEST fiseg;
211 ULONGEST fioff;
212 ULONGEST foseg;
213 ULONGEST fooff;
214 ULONGEST fop;
215 int fpreg;
216 int top;
217
218 gdb_assert (gdbarch == get_frame_arch (frame));
219
220 /* Define I387_ST0_REGNUM such that we use the proper definitions
221 for FRAME's architecture. */
222 #define I387_ST0_REGNUM tdep->st0_regnum
223
224 fctrl = get_frame_register_unsigned (frame, I387_FCTRL_REGNUM);
225 fstat = get_frame_register_unsigned (frame, I387_FSTAT_REGNUM);
226 ftag = get_frame_register_unsigned (frame, I387_FTAG_REGNUM);
227 fiseg = get_frame_register_unsigned (frame, I387_FISEG_REGNUM);
228 fioff = get_frame_register_unsigned (frame, I387_FIOFF_REGNUM);
229 foseg = get_frame_register_unsigned (frame, I387_FOSEG_REGNUM);
230 fooff = get_frame_register_unsigned (frame, I387_FOOFF_REGNUM);
231 fop = get_frame_register_unsigned (frame, I387_FOP_REGNUM);
232
233 top = ((fstat >> 11) & 7);
234
235 for (fpreg = 7; fpreg >= 0; fpreg--)
236 {
237 unsigned char raw[I386_MAX_REGISTER_SIZE];
238 int tag = (ftag >> (fpreg * 2)) & 3;
239 int i;
240
241 fprintf_filtered (file, "%sR%d: ", fpreg == top ? "=>" : " ", fpreg);
242
243 switch (tag)
244 {
245 case 0:
246 fputs_filtered ("Valid ", file);
247 break;
248 case 1:
249 fputs_filtered ("Zero ", file);
250 break;
251 case 2:
252 fputs_filtered ("Special ", file);
253 break;
254 case 3:
255 fputs_filtered ("Empty ", file);
256 break;
257 }
258
259 get_frame_register (frame, (fpreg + 8 - top) % 8 + I387_ST0_REGNUM, raw);
260
261 fputs_filtered ("0x", file);
262 for (i = 9; i >= 0; i--)
263 fprintf_filtered (file, "%02x", raw[i]);
264
265 if (tag != 3)
266 print_i387_ext (raw, file);
267
268 fputs_filtered ("\n", file);
269 }
270
271 fputs_filtered ("\n", file);
272
273 print_i387_status_word (fstat, file);
274 print_i387_control_word (fctrl, file);
275 fprintf_filtered (file, "Tag Word: %s\n",
276 hex_string_custom (ftag, 4));
277 fprintf_filtered (file, "Instruction Pointer: %s:",
278 hex_string_custom (fiseg, 2));
279 fprintf_filtered (file, "%s\n", hex_string_custom (fioff, 8));
280 fprintf_filtered (file, "Operand Pointer: %s:",
281 hex_string_custom (foseg, 2));
282 fprintf_filtered (file, "%s\n", hex_string_custom (fooff, 8));
283 fprintf_filtered (file, "Opcode: %s\n",
284 hex_string_custom (fop ? (fop | 0xd800) : 0, 4));
285
286 #undef I387_ST0_REGNUM
287 }
288 \f
289
290 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
291 return its contents in TO. */
292
293 void
294 i387_register_to_value (struct frame_info *frame, int regnum,
295 struct type *type, gdb_byte *to)
296 {
297 char from[I386_MAX_REGISTER_SIZE];
298
299 gdb_assert (i386_fp_regnum_p (regnum));
300
301 /* We only support floating-point values. */
302 if (TYPE_CODE (type) != TYPE_CODE_FLT)
303 {
304 warning (_("Cannot convert floating-point register value "
305 "to non-floating-point type."));
306 return;
307 }
308
309 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
310 the extended floating-point format used by the FPU. */
311 get_frame_register (frame, regnum, from);
312 convert_typed_floating (from, builtin_type_i387_ext, to, type);
313 }
314
315 /* Write the contents FROM of a value of type TYPE into register
316 REGNUM in frame FRAME. */
317
318 void
319 i387_value_to_register (struct frame_info *frame, int regnum,
320 struct type *type, const gdb_byte *from)
321 {
322 char to[I386_MAX_REGISTER_SIZE];
323
324 gdb_assert (i386_fp_regnum_p (regnum));
325
326 /* We only support floating-point values. */
327 if (TYPE_CODE (type) != TYPE_CODE_FLT)
328 {
329 warning (_("Cannot convert non-floating-point type "
330 "to floating-point register value."));
331 return;
332 }
333
334 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
335 to the extended floating-point format used by the FPU. */
336 convert_typed_floating (from, type, to, builtin_type_i387_ext);
337 put_frame_register (frame, regnum, to);
338 }
339 \f
340
341 /* Handle FSAVE and FXSAVE formats. */
342
343 /* At fsave_offset[REGNUM] you'll find the offset to the location in
344 the data structure used by the "fsave" instruction where GDB
345 register REGNUM is stored. */
346
347 static int fsave_offset[] =
348 {
349 28 + 0 * 10, /* %st(0) ... */
350 28 + 1 * 10,
351 28 + 2 * 10,
352 28 + 3 * 10,
353 28 + 4 * 10,
354 28 + 5 * 10,
355 28 + 6 * 10,
356 28 + 7 * 10, /* ... %st(7). */
357 0, /* `fctrl' (16 bits). */
358 4, /* `fstat' (16 bits). */
359 8, /* `ftag' (16 bits). */
360 16, /* `fiseg' (16 bits). */
361 12, /* `fioff'. */
362 24, /* `foseg' (16 bits). */
363 20, /* `fooff'. */
364 18 /* `fop' (bottom 11 bits). */
365 };
366
367 #define FSAVE_ADDR(fsave, regnum) \
368 (fsave + fsave_offset[regnum - I387_ST0_REGNUM])
369 \f
370
371 /* Fill register REGNUM in REGCACHE with the appropriate value from
372 *FSAVE. This function masks off any of the reserved bits in
373 *FSAVE. */
374
375 void
376 i387_supply_fsave (struct regcache *regcache, int regnum, const void *fsave)
377 {
378 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
379 const char *regs = fsave;
380 int i;
381
382 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
383
384 /* Define I387_ST0_REGNUM and I387_NUM_XMM_REGS such that we use the
385 proper definitions for REGCACHE's architecture. */
386
387 #define I387_ST0_REGNUM tdep->st0_regnum
388 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
389
390 for (i = I387_ST0_REGNUM; i < I387_XMM0_REGNUM; i++)
391 if (regnum == -1 || regnum == i)
392 {
393 if (fsave == NULL)
394 {
395 regcache_raw_supply (regcache, i, NULL);
396 continue;
397 }
398
399 /* Most of the FPU control registers occupy only 16 bits in the
400 fsave area. Give those a special treatment. */
401 if (i >= I387_FCTRL_REGNUM
402 && i != I387_FIOFF_REGNUM && i != I387_FOOFF_REGNUM)
403 {
404 unsigned char val[4];
405
406 memcpy (val, FSAVE_ADDR (regs, i), 2);
407 val[2] = val[3] = 0;
408 if (i == I387_FOP_REGNUM)
409 val[1] &= ((1 << 3) - 1);
410 regcache_raw_supply (regcache, i, val);
411 }
412 else
413 regcache_raw_supply (regcache, i, FSAVE_ADDR (regs, i));
414 }
415
416 /* Provide dummy values for the SSE registers. */
417 for (i = I387_XMM0_REGNUM; i < I387_MXCSR_REGNUM; i++)
418 if (regnum == -1 || regnum == i)
419 regcache_raw_supply (regcache, i, NULL);
420 if (regnum == -1 || regnum == I387_MXCSR_REGNUM)
421 {
422 char buf[4];
423
424 store_unsigned_integer (buf, 4, 0x1f80);
425 regcache_raw_supply (regcache, I387_MXCSR_REGNUM, buf);
426 }
427
428 #undef I387_ST0_REGNUM
429 #undef I387_NUM_XMM_REGS
430 }
431
432 /* Fill register REGNUM (if it is a floating-point register) in *FSAVE
433 with the value from REGCACHE. If REGNUM is -1, do this for all
434 registers. This function doesn't touch any of the reserved bits in
435 *FSAVE. */
436
437 void
438 i387_collect_fsave (const struct regcache *regcache, int regnum, void *fsave)
439 {
440 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
441 char *regs = fsave;
442 int i;
443
444 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
445
446 /* Define I387_ST0_REGNUM such that we use the proper definitions
447 for REGCACHE's architecture. */
448 #define I387_ST0_REGNUM tdep->st0_regnum
449
450 for (i = I387_ST0_REGNUM; i < I387_XMM0_REGNUM; i++)
451 if (regnum == -1 || regnum == i)
452 {
453 /* Most of the FPU control registers occupy only 16 bits in
454 the fsave area. Give those a special treatment. */
455 if (i >= I387_FCTRL_REGNUM
456 && i != I387_FIOFF_REGNUM && i != I387_FOOFF_REGNUM)
457 {
458 unsigned char buf[4];
459
460 regcache_raw_collect (regcache, i, buf);
461
462 if (i == I387_FOP_REGNUM)
463 {
464 /* The opcode occupies only 11 bits. Make sure we
465 don't touch the other bits. */
466 buf[1] &= ((1 << 3) - 1);
467 buf[1] |= ((FSAVE_ADDR (regs, i))[1] & ~((1 << 3) - 1));
468 }
469 memcpy (FSAVE_ADDR (regs, i), buf, 2);
470 }
471 else
472 regcache_raw_collect (regcache, i, FSAVE_ADDR (regs, i));
473 }
474 #undef I387_ST0_REGNUM
475 }
476
477 /* Fill register REGNUM (if it is a floating-point register) in *FSAVE
478 with the value in GDB's register cache. If REGNUM is -1, do this
479 for all registers. This function doesn't touch any of the reserved
480 bits in *FSAVE. */
481
482 void
483 i387_fill_fsave (void *fsave, int regnum)
484 {
485 i387_collect_fsave (current_regcache, regnum, fsave);
486 }
487 \f
488
489 /* At fxsave_offset[REGNUM] you'll find the offset to the location in
490 the data structure used by the "fxsave" instruction where GDB
491 register REGNUM is stored. */
492
493 static int fxsave_offset[] =
494 {
495 32, /* %st(0) through ... */
496 48,
497 64,
498 80,
499 96,
500 112,
501 128,
502 144, /* ... %st(7) (80 bits each). */
503 0, /* `fctrl' (16 bits). */
504 2, /* `fstat' (16 bits). */
505 4, /* `ftag' (16 bits). */
506 12, /* `fiseg' (16 bits). */
507 8, /* `fioff'. */
508 20, /* `foseg' (16 bits). */
509 16, /* `fooff'. */
510 6, /* `fop' (bottom 11 bits). */
511 160 + 0 * 16, /* %xmm0 through ... */
512 160 + 1 * 16,
513 160 + 2 * 16,
514 160 + 3 * 16,
515 160 + 4 * 16,
516 160 + 5 * 16,
517 160 + 6 * 16,
518 160 + 7 * 16,
519 160 + 8 * 16,
520 160 + 9 * 16,
521 160 + 10 * 16,
522 160 + 11 * 16,
523 160 + 12 * 16,
524 160 + 13 * 16,
525 160 + 14 * 16,
526 160 + 15 * 16, /* ... %xmm15 (128 bits each). */
527 };
528
529 #define FXSAVE_ADDR(fxsave, regnum) \
530 (fxsave + fxsave_offset[regnum - I387_ST0_REGNUM])
531
532 /* We made an unfortunate choice in putting %mxcsr after the SSE
533 registers %xmm0-%xmm7 instead of before, since it makes supporting
534 the registers %xmm8-%xmm15 on AMD64 a bit involved. Therefore we
535 don't include the offset for %mxcsr here above. */
536
537 #define FXSAVE_MXCSR_ADDR(fxsave) (fxsave + 24)
538
539 static int i387_tag (const unsigned char *raw);
540 \f
541
542 /* Fill register REGNUM in REGCACHE with the appropriate
543 floating-point or SSE register value from *FXSAVE. This function
544 masks off any of the reserved bits in *FXSAVE. */
545
546 void
547 i387_supply_fxsave (struct regcache *regcache, int regnum, const void *fxsave)
548 {
549 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
550 const char *regs = fxsave;
551 int i;
552
553 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
554 gdb_assert (tdep->num_xmm_regs > 0);
555
556 /* Define I387_ST0_REGNUM and I387_NUM_XMM_REGS such that we use the
557 proper definitions for REGCACHE's architecture. */
558
559 #define I387_ST0_REGNUM tdep->st0_regnum
560 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
561
562 for (i = I387_ST0_REGNUM; i < I387_MXCSR_REGNUM; i++)
563 if (regnum == -1 || regnum == i)
564 {
565 if (regs == NULL)
566 {
567 regcache_raw_supply (regcache, i, NULL);
568 continue;
569 }
570
571 /* Most of the FPU control registers occupy only 16 bits in
572 the fxsave area. Give those a special treatment. */
573 if (i >= I387_FCTRL_REGNUM && i < I387_XMM0_REGNUM
574 && i != I387_FIOFF_REGNUM && i != I387_FOOFF_REGNUM)
575 {
576 unsigned char val[4];
577
578 memcpy (val, FXSAVE_ADDR (regs, i), 2);
579 val[2] = val[3] = 0;
580 if (i == I387_FOP_REGNUM)
581 val[1] &= ((1 << 3) - 1);
582 else if (i== I387_FTAG_REGNUM)
583 {
584 /* The fxsave area contains a simplified version of
585 the tag word. We have to look at the actual 80-bit
586 FP data to recreate the traditional i387 tag word. */
587
588 unsigned long ftag = 0;
589 int fpreg;
590 int top;
591
592 top = ((FXSAVE_ADDR (regs, I387_FSTAT_REGNUM))[1] >> 3);
593 top &= 0x7;
594
595 for (fpreg = 7; fpreg >= 0; fpreg--)
596 {
597 int tag;
598
599 if (val[0] & (1 << fpreg))
600 {
601 int regnum = (fpreg + 8 - top) % 8 + I387_ST0_REGNUM;
602 tag = i387_tag (FXSAVE_ADDR (regs, regnum));
603 }
604 else
605 tag = 3; /* Empty */
606
607 ftag |= tag << (2 * fpreg);
608 }
609 val[0] = ftag & 0xff;
610 val[1] = (ftag >> 8) & 0xff;
611 }
612 regcache_raw_supply (regcache, i, val);
613 }
614 else
615 regcache_raw_supply (regcache, i, FXSAVE_ADDR (regs, i));
616 }
617
618 if (regnum == I387_MXCSR_REGNUM || regnum == -1)
619 {
620 if (regs == NULL)
621 regcache_raw_supply (regcache, I387_MXCSR_REGNUM, NULL);
622 else
623 regcache_raw_supply (regcache, I387_MXCSR_REGNUM,
624 FXSAVE_MXCSR_ADDR (regs));
625 }
626
627 #undef I387_ST0_REGNUM
628 #undef I387_NUM_XMM_REGS
629 }
630
631 /* Fill register REGNUM (if it is a floating-point or SSE register) in
632 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
633 all registers. This function doesn't touch any of the reserved
634 bits in *FXSAVE. */
635
636 void
637 i387_collect_fxsave (const struct regcache *regcache, int regnum, void *fxsave)
638 {
639 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
640 char *regs = fxsave;
641 int i;
642
643 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
644 gdb_assert (tdep->num_xmm_regs > 0);
645
646 /* Define I387_ST0_REGNUM and I387_NUM_XMM_REGS such that we use the
647 proper definitions for REGCACHE's architecture. */
648
649 #define I387_ST0_REGNUM tdep->st0_regnum
650 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
651
652 for (i = I387_ST0_REGNUM; i < I387_MXCSR_REGNUM; i++)
653 if (regnum == -1 || regnum == i)
654 {
655 /* Most of the FPU control registers occupy only 16 bits in
656 the fxsave area. Give those a special treatment. */
657 if (i >= I387_FCTRL_REGNUM && i < I387_XMM0_REGNUM
658 && i != I387_FIOFF_REGNUM && i != I387_FOOFF_REGNUM)
659 {
660 unsigned char buf[4];
661
662 regcache_raw_collect (regcache, i, buf);
663
664 if (i == I387_FOP_REGNUM)
665 {
666 /* The opcode occupies only 11 bits. Make sure we
667 don't touch the other bits. */
668 buf[1] &= ((1 << 3) - 1);
669 buf[1] |= ((FXSAVE_ADDR (regs, i))[1] & ~((1 << 3) - 1));
670 }
671 else if (i == I387_FTAG_REGNUM)
672 {
673 /* Converting back is much easier. */
674
675 unsigned short ftag;
676 int fpreg;
677
678 ftag = (buf[1] << 8) | buf[0];
679 buf[0] = 0;
680 buf[1] = 0;
681
682 for (fpreg = 7; fpreg >= 0; fpreg--)
683 {
684 int tag = (ftag >> (fpreg * 2)) & 3;
685
686 if (tag != 3)
687 buf[0] |= (1 << fpreg);
688 }
689 }
690 memcpy (FXSAVE_ADDR (regs, i), buf, 2);
691 }
692 else
693 regcache_raw_collect (regcache, i, FXSAVE_ADDR (regs, i));
694 }
695
696 if (regnum == I387_MXCSR_REGNUM || regnum == -1)
697 regcache_raw_collect (regcache, I387_MXCSR_REGNUM,
698 FXSAVE_MXCSR_ADDR (regs));
699
700 #undef I387_ST0_REGNUM
701 #undef I387_NUM_XMM_REGS
702 }
703
704 /* Fill register REGNUM (if it is a floating-point or SSE register) in
705 *FXSAVE with the value in GDB's register cache. If REGNUM is -1, do
706 this for all registers. This function doesn't touch any of the
707 reserved bits in *FXSAVE. */
708
709 void
710 i387_fill_fxsave (void *fxsave, int regnum)
711 {
712 i387_collect_fxsave (current_regcache, regnum, fxsave);
713 }
714
715 /* Recreate the FTW (tag word) valid bits from the 80-bit FP data in
716 *RAW. */
717
718 static int
719 i387_tag (const unsigned char *raw)
720 {
721 int integer;
722 unsigned int exponent;
723 unsigned long fraction[2];
724
725 integer = raw[7] & 0x80;
726 exponent = (((raw[9] & 0x7f) << 8) | raw[8]);
727 fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]);
728 fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16)
729 | (raw[5] << 8) | raw[4]);
730
731 if (exponent == 0x7fff)
732 {
733 /* Special. */
734 return (2);
735 }
736 else if (exponent == 0x0000)
737 {
738 if (fraction[0] == 0x0000 && fraction[1] == 0x0000 && !integer)
739 {
740 /* Zero. */
741 return (1);
742 }
743 else
744 {
745 /* Special. */
746 return (2);
747 }
748 }
749 else
750 {
751 if (integer)
752 {
753 /* Valid. */
754 return (0);
755 }
756 else
757 {
758 /* Special. */
759 return (2);
760 }
761 }
762 }
763
764 /* Prepare the FPU stack in REGCACHE for a function return. */
765
766 void
767 i387_return_value (struct gdbarch *gdbarch, struct regcache *regcache)
768 {
769 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
770 ULONGEST fstat;
771
772 /* Define I387_ST0_REGNUM such that we use the proper
773 definitions for the architecture. */
774 #define I387_ST0_REGNUM tdep->st0_regnum
775
776 /* Set the top of the floating-point register stack to 7. The
777 actual value doesn't really matter, but 7 is what a normal
778 function return would end up with if the program started out with
779 a freshly initialized FPU. */
780 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
781 fstat |= (7 << 11);
782 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
783
784 /* Mark %st(1) through %st(7) as empty. Since we set the top of the
785 floating-point register stack to 7, the appropriate value for the
786 tag word is 0x3fff. */
787 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
788
789 #undef I387_ST0_REGNUM
790 }