]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/i960-tdep.c
import gdb-1999-07-07 post reformat
[thirdparty/binutils-gdb.git] / gdb / i960-tdep.c
1 /* Target-machine dependent code for the Intel 960
2 Copyright 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Intel Corporation.
4 examine_prologue and other parts contributed by Wind River Systems.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "floatformat.h"
28 #include "target.h"
29 #include "gdbcore.h"
30
31 static CORE_ADDR next_insn PARAMS ((CORE_ADDR memaddr,
32 unsigned int *pword1,
33 unsigned int *pword2));
34
35 /* Does the specified function use the "struct returning" convention
36 or the "value returning" convention? The "value returning" convention
37 almost invariably returns the entire value in registers. The
38 "struct returning" convention often returns the entire value in
39 memory, and passes a pointer (out of or into the function) saying
40 where the value (is or should go).
41
42 Since this sometimes depends on whether it was compiled with GCC,
43 this is also an argument. This is used in call_function to build a
44 stack, and in value_being_returned to print return values.
45
46 On i960, a structure is returned in registers g0-g3, if it will fit.
47 If it's more than 16 bytes long, g13 pointed to it on entry. */
48
49 int
50 i960_use_struct_convention (gcc_p, type)
51 int gcc_p;
52 struct type *type;
53 {
54 return (TYPE_LENGTH (type) > 16);
55 }
56
57 /* gdb960 is always running on a non-960 host. Check its characteristics.
58 This routine must be called as part of gdb initialization. */
59
60 static void
61 check_host ()
62 {
63 int i;
64
65 static struct typestruct
66 {
67 int hostsize; /* Size of type on host */
68 int i960size; /* Size of type on i960 */
69 char *typename; /* Name of type, for error msg */
70 }
71 types[] =
72 {
73 {
74 sizeof (short), 2, "short"
75 }
76 ,
77 {
78 sizeof (int), 4, "int"
79 }
80 ,
81 {
82 sizeof (long), 4, "long"
83 }
84 ,
85 {
86 sizeof (float), 4, "float"
87 }
88 ,
89 {
90 sizeof (double), 8, "double"
91 }
92 ,
93 {
94 sizeof (char *), 4, "pointer"
95 }
96 ,
97 };
98 #define TYPELEN (sizeof(types) / sizeof(struct typestruct))
99
100 /* Make sure that host type sizes are same as i960
101 */
102 for (i = 0; i < TYPELEN; i++)
103 {
104 if (types[i].hostsize != types[i].i960size)
105 {
106 printf_unfiltered ("sizeof(%s) != %d: PROCEED AT YOUR OWN RISK!\n",
107 types[i].typename, types[i].i960size);
108 }
109
110 }
111 }
112 \f
113 /* Examine an i960 function prologue, recording the addresses at which
114 registers are saved explicitly by the prologue code, and returning
115 the address of the first instruction after the prologue (but not
116 after the instruction at address LIMIT, as explained below).
117
118 LIMIT places an upper bound on addresses of the instructions to be
119 examined. If the prologue code scan reaches LIMIT, the scan is
120 aborted and LIMIT is returned. This is used, when examining the
121 prologue for the current frame, to keep examine_prologue () from
122 claiming that a given register has been saved when in fact the
123 instruction that saves it has not yet been executed. LIMIT is used
124 at other times to stop the scan when we hit code after the true
125 function prologue (e.g. for the first source line) which might
126 otherwise be mistaken for function prologue.
127
128 The format of the function prologue matched by this routine is
129 derived from examination of the source to gcc960 1.21, particularly
130 the routine i960_function_prologue (). A "regular expression" for
131 the function prologue is given below:
132
133 (lda LRn, g14
134 mov g14, g[0-7]
135 (mov 0, g14) | (lda 0, g14))?
136
137 (mov[qtl]? g[0-15], r[4-15])*
138 ((addo [1-31], sp, sp) | (lda n(sp), sp))?
139 (st[qtl]? g[0-15], n(fp))*
140
141 (cmpobne 0, g14, LFn
142 mov sp, g14
143 lda 0x30(sp), sp
144 LFn: stq g0, (g14)
145 stq g4, 0x10(g14)
146 stq g8, 0x20(g14))?
147
148 (st g14, n(fp))?
149 (mov g13,r[4-15])?
150 */
151
152 /* Macros for extracting fields from i960 instructions. */
153
154 #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
155 #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
156
157 #define REG_SRC1(insn) EXTRACT_FIELD (insn, 0, 5)
158 #define REG_SRC2(insn) EXTRACT_FIELD (insn, 14, 5)
159 #define REG_SRCDST(insn) EXTRACT_FIELD (insn, 19, 5)
160 #define MEM_SRCDST(insn) EXTRACT_FIELD (insn, 19, 5)
161 #define MEMA_OFFSET(insn) EXTRACT_FIELD (insn, 0, 12)
162
163 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
164 is not the address of a valid instruction, the address of the next
165 instruction beyond ADDR otherwise. *PWORD1 receives the first word
166 of the instruction, and (for two-word instructions), *PWORD2 receives
167 the second. */
168
169 #define NEXT_PROLOGUE_INSN(addr, lim, pword1, pword2) \
170 (((addr) < (lim)) ? next_insn (addr, pword1, pword2) : 0)
171
172 static CORE_ADDR
173 examine_prologue (ip, limit, frame_addr, fsr)
174 register CORE_ADDR ip;
175 register CORE_ADDR limit;
176 CORE_ADDR frame_addr;
177 struct frame_saved_regs *fsr;
178 {
179 register CORE_ADDR next_ip;
180 register int src, dst;
181 register unsigned int *pcode;
182 unsigned int insn1, insn2;
183 int size;
184 int within_leaf_prologue;
185 CORE_ADDR save_addr;
186 static unsigned int varargs_prologue_code[] =
187 {
188 0x3507a00c, /* cmpobne 0x0, g14, LFn */
189 0x5cf01601, /* mov sp, g14 */
190 0x8c086030, /* lda 0x30(sp), sp */
191 0xb2879000, /* LFn: stq g0, (g14) */
192 0xb2a7a010, /* stq g4, 0x10(g14) */
193 0xb2c7a020 /* stq g8, 0x20(g14) */
194 };
195
196 /* Accept a leaf procedure prologue code fragment if present.
197 Note that ip might point to either the leaf or non-leaf
198 entry point; we look for the non-leaf entry point first: */
199
200 within_leaf_prologue = 0;
201 if ((next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2))
202 && ((insn1 & 0xfffff000) == 0x8cf00000 /* lda LRx, g14 (MEMA) */
203 || (insn1 & 0xfffffc60) == 0x8cf03000)) /* lda LRx, g14 (MEMB) */
204 {
205 within_leaf_prologue = 1;
206 next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn1, &insn2);
207 }
208
209 /* Now look for the prologue code at a leaf entry point: */
210
211 if (next_ip
212 && (insn1 & 0xff87ffff) == 0x5c80161e /* mov g14, gx */
213 && REG_SRCDST (insn1) <= G0_REGNUM + 7)
214 {
215 within_leaf_prologue = 1;
216 if ((next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn1, &insn2))
217 && (insn1 == 0x8cf00000 /* lda 0, g14 */
218 || insn1 == 0x5cf01e00)) /* mov 0, g14 */
219 {
220 ip = next_ip;
221 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
222 within_leaf_prologue = 0;
223 }
224 }
225
226 /* If something that looks like the beginning of a leaf prologue
227 has been seen, but the remainder of the prologue is missing, bail.
228 We don't know what we've got. */
229
230 if (within_leaf_prologue)
231 return (ip);
232
233 /* Accept zero or more instances of "mov[qtl]? gx, ry", where y >= 4.
234 This may cause us to mistake the moving of a register
235 parameter to a local register for the saving of a callee-saved
236 register, but that can't be helped, since with the
237 "-fcall-saved" flag, any register can be made callee-saved. */
238
239 while (next_ip
240 && (insn1 & 0xfc802fb0) == 0x5c000610
241 && (dst = REG_SRCDST (insn1)) >= (R0_REGNUM + 4))
242 {
243 src = REG_SRC1 (insn1);
244 size = EXTRACT_FIELD (insn1, 24, 2) + 1;
245 save_addr = frame_addr + ((dst - R0_REGNUM) * 4);
246 while (size--)
247 {
248 fsr->regs[src++] = save_addr;
249 save_addr += 4;
250 }
251 ip = next_ip;
252 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
253 }
254
255 /* Accept an optional "addo n, sp, sp" or "lda n(sp), sp". */
256
257 if (next_ip &&
258 ((insn1 & 0xffffffe0) == 0x59084800 /* addo n, sp, sp */
259 || (insn1 & 0xfffff000) == 0x8c086000 /* lda n(sp), sp (MEMA) */
260 || (insn1 & 0xfffffc60) == 0x8c087400)) /* lda n(sp), sp (MEMB) */
261 {
262 ip = next_ip;
263 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
264 }
265
266 /* Accept zero or more instances of "st[qtl]? gx, n(fp)".
267 This may cause us to mistake the copying of a register
268 parameter to the frame for the saving of a callee-saved
269 register, but that can't be helped, since with the
270 "-fcall-saved" flag, any register can be made callee-saved.
271 We can, however, refuse to accept a save of register g14,
272 since that is matched explicitly below. */
273
274 while (next_ip &&
275 ((insn1 & 0xf787f000) == 0x9287e000 /* stl? gx, n(fp) (MEMA) */
276 || (insn1 & 0xf787fc60) == 0x9287f400 /* stl? gx, n(fp) (MEMB) */
277 || (insn1 & 0xef87f000) == 0xa287e000 /* st[tq] gx, n(fp) (MEMA) */
278 || (insn1 & 0xef87fc60) == 0xa287f400) /* st[tq] gx, n(fp) (MEMB) */
279 && ((src = MEM_SRCDST (insn1)) != G14_REGNUM))
280 {
281 save_addr = frame_addr + ((insn1 & BITMASK (12, 1))
282 ? insn2 : MEMA_OFFSET (insn1));
283 size = (insn1 & BITMASK (29, 1)) ? ((insn1 & BITMASK (28, 1)) ? 4 : 3)
284 : ((insn1 & BITMASK (27, 1)) ? 2 : 1);
285 while (size--)
286 {
287 fsr->regs[src++] = save_addr;
288 save_addr += 4;
289 }
290 ip = next_ip;
291 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
292 }
293
294 /* Accept the varargs prologue code if present. */
295
296 size = sizeof (varargs_prologue_code) / sizeof (int);
297 pcode = varargs_prologue_code;
298 while (size-- && next_ip && *pcode++ == insn1)
299 {
300 ip = next_ip;
301 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
302 }
303
304 /* Accept an optional "st g14, n(fp)". */
305
306 if (next_ip &&
307 ((insn1 & 0xfffff000) == 0x92f7e000 /* st g14, n(fp) (MEMA) */
308 || (insn1 & 0xfffffc60) == 0x92f7f400)) /* st g14, n(fp) (MEMB) */
309 {
310 fsr->regs[G14_REGNUM] = frame_addr + ((insn1 & BITMASK (12, 1))
311 ? insn2 : MEMA_OFFSET (insn1));
312 ip = next_ip;
313 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
314 }
315
316 /* Accept zero or one instance of "mov g13, ry", where y >= 4.
317 This is saving the address where a struct should be returned. */
318
319 if (next_ip
320 && (insn1 & 0xff802fbf) == 0x5c00061d
321 && (dst = REG_SRCDST (insn1)) >= (R0_REGNUM + 4))
322 {
323 save_addr = frame_addr + ((dst - R0_REGNUM) * 4);
324 fsr->regs[G0_REGNUM + 13] = save_addr;
325 ip = next_ip;
326 #if 0 /* We'll need this once there is a subsequent instruction examined. */
327 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
328 #endif
329 }
330
331 return (ip);
332 }
333
334 /* Given an ip value corresponding to the start of a function,
335 return the ip of the first instruction after the function
336 prologue. */
337
338 CORE_ADDR
339 i960_skip_prologue (ip)
340 CORE_ADDR (ip);
341 {
342 struct frame_saved_regs saved_regs_dummy;
343 struct symtab_and_line sal;
344 CORE_ADDR limit;
345
346 sal = find_pc_line (ip, 0);
347 limit = (sal.end) ? sal.end : 0xffffffff;
348
349 return (examine_prologue (ip, limit, (CORE_ADDR) 0, &saved_regs_dummy));
350 }
351
352 /* Put here the code to store, into a struct frame_saved_regs,
353 the addresses of the saved registers of frame described by FRAME_INFO.
354 This includes special registers such as pc and fp saved in special
355 ways in the stack frame. sp is even more special:
356 the address we return for it IS the sp for the next frame.
357
358 We cache the result of doing this in the frame_obstack, since it is
359 fairly expensive. */
360
361 void
362 frame_find_saved_regs (fi, fsr)
363 struct frame_info *fi;
364 struct frame_saved_regs *fsr;
365 {
366 register CORE_ADDR next_addr;
367 register CORE_ADDR *saved_regs;
368 register int regnum;
369 register struct frame_saved_regs *cache_fsr;
370 CORE_ADDR ip;
371 struct symtab_and_line sal;
372 CORE_ADDR limit;
373
374 if (!fi->fsr)
375 {
376 cache_fsr = (struct frame_saved_regs *)
377 frame_obstack_alloc (sizeof (struct frame_saved_regs));
378 memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
379 fi->fsr = cache_fsr;
380
381 /* Find the start and end of the function prologue. If the PC
382 is in the function prologue, we only consider the part that
383 has executed already. */
384
385 ip = get_pc_function_start (fi->pc);
386 sal = find_pc_line (ip, 0);
387 limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
388
389 examine_prologue (ip, limit, fi->frame, cache_fsr);
390
391 /* Record the addresses at which the local registers are saved.
392 Strictly speaking, we should only do this for non-leaf procedures,
393 but no one will ever look at these values if it is a leaf procedure,
394 since local registers are always caller-saved. */
395
396 next_addr = (CORE_ADDR) fi->frame;
397 saved_regs = cache_fsr->regs;
398 for (regnum = R0_REGNUM; regnum <= R15_REGNUM; regnum++)
399 {
400 *saved_regs++ = next_addr;
401 next_addr += 4;
402 }
403
404 cache_fsr->regs[FP_REGNUM] = cache_fsr->regs[PFP_REGNUM];
405 }
406
407 *fsr = *fi->fsr;
408
409 /* Fetch the value of the sp from memory every time, since it
410 is conceivable that it has changed since the cache was flushed.
411 This unfortunately undoes much of the savings from caching the
412 saved register values. I suggest adding an argument to
413 get_frame_saved_regs () specifying the register number we're
414 interested in (or -1 for all registers). This would be passed
415 through to FRAME_FIND_SAVED_REGS (), permitting more efficient
416 computation of saved register addresses (e.g., on the i960,
417 we don't have to examine the prologue to find local registers).
418 -- markf@wrs.com
419 FIXME, we don't need to refetch this, since the cache is cleared
420 every time the child process is restarted. If GDB itself
421 modifies SP, it has to clear the cache by hand (does it?). -gnu */
422
423 fsr->regs[SP_REGNUM] = read_memory_integer (fsr->regs[SP_REGNUM], 4);
424 }
425
426 /* Return the address of the argument block for the frame
427 described by FI. Returns 0 if the address is unknown. */
428
429 CORE_ADDR
430 frame_args_address (fi, must_be_correct)
431 struct frame_info *fi;
432 {
433 struct frame_saved_regs fsr;
434 CORE_ADDR ap;
435
436 /* If g14 was saved in the frame by the function prologue code, return
437 the saved value. If the frame is current and we are being sloppy,
438 return the value of g14. Otherwise, return zero. */
439
440 get_frame_saved_regs (fi, &fsr);
441 if (fsr.regs[G14_REGNUM])
442 ap = read_memory_integer (fsr.regs[G14_REGNUM], 4);
443 else
444 {
445 if (must_be_correct)
446 return 0; /* Don't cache this result */
447 if (get_next_frame (fi))
448 ap = 0;
449 else
450 ap = read_register (G14_REGNUM);
451 if (ap == 0)
452 ap = fi->frame;
453 }
454 fi->arg_pointer = ap; /* Cache it for next time */
455 return ap;
456 }
457
458 /* Return the address of the return struct for the frame
459 described by FI. Returns 0 if the address is unknown. */
460
461 CORE_ADDR
462 frame_struct_result_address (fi)
463 struct frame_info *fi;
464 {
465 struct frame_saved_regs fsr;
466 CORE_ADDR ap;
467
468 /* If the frame is non-current, check to see if g14 was saved in the
469 frame by the function prologue code; return the saved value if so,
470 zero otherwise. If the frame is current, return the value of g14.
471
472 FIXME, shouldn't this use the saved value as long as we are past
473 the function prologue, and only use the current value if we have
474 no saved value and are at TOS? -- gnu@cygnus.com */
475
476 if (get_next_frame (fi))
477 {
478 get_frame_saved_regs (fi, &fsr);
479 if (fsr.regs[G13_REGNUM])
480 ap = read_memory_integer (fsr.regs[G13_REGNUM], 4);
481 else
482 ap = 0;
483 }
484 else
485 ap = read_register (G13_REGNUM);
486
487 return ap;
488 }
489
490 /* Return address to which the currently executing leafproc will return,
491 or 0 if ip is not in a leafproc (or if we can't tell if it is).
492
493 Do this by finding the starting address of the routine in which ip lies.
494 If the instruction there is "mov g14, gx" (where x is in [0,7]), this
495 is a leafproc and the return address is in register gx. Well, this is
496 true unless the return address points at a RET instruction in the current
497 procedure, which indicates that we have a 'dual entry' routine that
498 has been entered through the CALL entry point. */
499
500 CORE_ADDR
501 leafproc_return (ip)
502 CORE_ADDR ip; /* ip from currently executing function */
503 {
504 register struct minimal_symbol *msymbol;
505 char *p;
506 int dst;
507 unsigned int insn1, insn2;
508 CORE_ADDR return_addr;
509
510 if ((msymbol = lookup_minimal_symbol_by_pc (ip)) != NULL)
511 {
512 if ((p = strchr (SYMBOL_NAME (msymbol), '.')) && STREQ (p, ".lf"))
513 {
514 if (next_insn (SYMBOL_VALUE_ADDRESS (msymbol), &insn1, &insn2)
515 && (insn1 & 0xff87ffff) == 0x5c80161e /* mov g14, gx */
516 && (dst = REG_SRCDST (insn1)) <= G0_REGNUM + 7)
517 {
518 /* Get the return address. If the "mov g14, gx"
519 instruction hasn't been executed yet, read
520 the return address from g14; otherwise, read it
521 from the register into which g14 was moved. */
522
523 return_addr =
524 read_register ((ip == SYMBOL_VALUE_ADDRESS (msymbol))
525 ? G14_REGNUM : dst);
526
527 /* We know we are in a leaf procedure, but we don't know
528 whether the caller actually did a "bal" to the ".lf"
529 entry point, or a normal "call" to the non-leaf entry
530 point one instruction before. In the latter case, the
531 return address will be the address of a "ret"
532 instruction within the procedure itself. We test for
533 this below. */
534
535 if (!next_insn (return_addr, &insn1, &insn2)
536 || (insn1 & 0xff000000) != 0xa000000 /* ret */
537 || lookup_minimal_symbol_by_pc (return_addr) != msymbol)
538 return (return_addr);
539 }
540 }
541 }
542
543 return (0);
544 }
545
546 /* Immediately after a function call, return the saved pc.
547 Can't go through the frames for this because on some machines
548 the new frame is not set up until the new function executes
549 some instructions.
550 On the i960, the frame *is* set up immediately after the call,
551 unless the function is a leaf procedure. */
552
553 CORE_ADDR
554 saved_pc_after_call (frame)
555 struct frame_info *frame;
556 {
557 CORE_ADDR saved_pc;
558
559 saved_pc = leafproc_return (get_frame_pc (frame));
560 if (!saved_pc)
561 saved_pc = FRAME_SAVED_PC (frame);
562
563 return saved_pc;
564 }
565
566 /* Discard from the stack the innermost frame,
567 restoring all saved registers. */
568
569 void
570 pop_frame ()
571 {
572 register struct frame_info *current_fi, *prev_fi;
573 register int i;
574 CORE_ADDR save_addr;
575 CORE_ADDR leaf_return_addr;
576 struct frame_saved_regs fsr;
577 char local_regs_buf[16 * 4];
578
579 current_fi = get_current_frame ();
580
581 /* First, undo what the hardware does when we return.
582 If this is a non-leaf procedure, restore local registers from
583 the save area in the calling frame. Otherwise, load the return
584 address obtained from leafproc_return () into the rip. */
585
586 leaf_return_addr = leafproc_return (current_fi->pc);
587 if (!leaf_return_addr)
588 {
589 /* Non-leaf procedure. Restore local registers, incl IP. */
590 prev_fi = get_prev_frame (current_fi);
591 read_memory (prev_fi->frame, local_regs_buf, sizeof (local_regs_buf));
592 write_register_bytes (REGISTER_BYTE (R0_REGNUM), local_regs_buf,
593 sizeof (local_regs_buf));
594
595 /* Restore frame pointer. */
596 write_register (FP_REGNUM, prev_fi->frame);
597 }
598 else
599 {
600 /* Leaf procedure. Just restore the return address into the IP. */
601 write_register (RIP_REGNUM, leaf_return_addr);
602 }
603
604 /* Now restore any global regs that the current function had saved. */
605 get_frame_saved_regs (current_fi, &fsr);
606 for (i = G0_REGNUM; i < G14_REGNUM; i++)
607 {
608 save_addr = fsr.regs[i];
609 if (save_addr != 0)
610 write_register (i, read_memory_integer (save_addr, 4));
611 }
612
613 /* Flush the frame cache, create a frame for the new innermost frame,
614 and make it the current frame. */
615
616 flush_cached_frames ();
617 }
618
619 /* Given a 960 stop code (fault or trace), return the signal which
620 corresponds. */
621
622 enum target_signal
623 i960_fault_to_signal (fault)
624 int fault;
625 {
626 switch (fault)
627 {
628 case 0:
629 return TARGET_SIGNAL_BUS; /* parallel fault */
630 case 1:
631 return TARGET_SIGNAL_UNKNOWN;
632 case 2:
633 return TARGET_SIGNAL_ILL; /* operation fault */
634 case 3:
635 return TARGET_SIGNAL_FPE; /* arithmetic fault */
636 case 4:
637 return TARGET_SIGNAL_FPE; /* floating point fault */
638
639 /* constraint fault. This appears not to distinguish between
640 a range constraint fault (which should be SIGFPE) and a privileged
641 fault (which should be SIGILL). */
642 case 5:
643 return TARGET_SIGNAL_ILL;
644
645 case 6:
646 return TARGET_SIGNAL_SEGV; /* virtual memory fault */
647
648 /* protection fault. This is for an out-of-range argument to
649 "calls". I guess it also could be SIGILL. */
650 case 7:
651 return TARGET_SIGNAL_SEGV;
652
653 case 8:
654 return TARGET_SIGNAL_BUS; /* machine fault */
655 case 9:
656 return TARGET_SIGNAL_BUS; /* structural fault */
657 case 0xa:
658 return TARGET_SIGNAL_ILL; /* type fault */
659 case 0xb:
660 return TARGET_SIGNAL_UNKNOWN; /* reserved fault */
661 case 0xc:
662 return TARGET_SIGNAL_BUS; /* process fault */
663 case 0xd:
664 return TARGET_SIGNAL_SEGV; /* descriptor fault */
665 case 0xe:
666 return TARGET_SIGNAL_BUS; /* event fault */
667 case 0xf:
668 return TARGET_SIGNAL_UNKNOWN; /* reserved fault */
669 case 0x10:
670 return TARGET_SIGNAL_TRAP; /* single-step trace */
671 case 0x11:
672 return TARGET_SIGNAL_TRAP; /* branch trace */
673 case 0x12:
674 return TARGET_SIGNAL_TRAP; /* call trace */
675 case 0x13:
676 return TARGET_SIGNAL_TRAP; /* return trace */
677 case 0x14:
678 return TARGET_SIGNAL_TRAP; /* pre-return trace */
679 case 0x15:
680 return TARGET_SIGNAL_TRAP; /* supervisor call trace */
681 case 0x16:
682 return TARGET_SIGNAL_TRAP; /* breakpoint trace */
683 default:
684 return TARGET_SIGNAL_UNKNOWN;
685 }
686 }
687
688 /****************************************/
689 /* MEM format */
690 /****************************************/
691
692 struct tabent
693 {
694 char *name;
695 char numops;
696 };
697
698 static int /* returns instruction length: 4 or 8 */
699 mem (memaddr, word1, word2, noprint)
700 unsigned long memaddr;
701 unsigned long word1, word2;
702 int noprint; /* If TRUE, return instruction length, but
703 don't output any text. */
704 {
705 int i, j;
706 int len;
707 int mode;
708 int offset;
709 const char *reg1, *reg2, *reg3;
710
711 /* This lookup table is too sparse to make it worth typing in, but not
712 * so large as to make a sparse array necessary. We allocate the
713 * table at runtime, initialize all entries to empty, and copy the
714 * real ones in from an initialization table.
715 *
716 * NOTE: In this table, the meaning of 'numops' is:
717 * 1: single operand
718 * 2: 2 operands, load instruction
719 * -2: 2 operands, store instruction
720 */
721 static struct tabent *mem_tab = NULL;
722 /* Opcodes of 0x8X, 9X, aX, bX, and cX must be in the table. */
723 #define MEM_MIN 0x80
724 #define MEM_MAX 0xcf
725 #define MEM_SIZ ((MEM_MAX-MEM_MIN+1) * sizeof(struct tabent))
726
727 static struct
728 {
729 int opcode;
730 char *name;
731 char numops;
732 }
733 mem_init[] =
734 {
735 0x80, "ldob", 2,
736 0x82, "stob", -2,
737 0x84, "bx", 1,
738 0x85, "balx", 2,
739 0x86, "callx", 1,
740 0x88, "ldos", 2,
741 0x8a, "stos", -2,
742 0x8c, "lda", 2,
743 0x90, "ld", 2,
744 0x92, "st", -2,
745 0x98, "ldl", 2,
746 0x9a, "stl", -2,
747 0xa0, "ldt", 2,
748 0xa2, "stt", -2,
749 0xb0, "ldq", 2,
750 0xb2, "stq", -2,
751 0xc0, "ldib", 2,
752 0xc2, "stib", -2,
753 0xc8, "ldis", 2,
754 0xca, "stis", -2,
755 0, NULL, 0
756 };
757
758 if (mem_tab == NULL)
759 {
760 mem_tab = (struct tabent *) xmalloc (MEM_SIZ);
761 memset (mem_tab, '\0', MEM_SIZ);
762 for (i = 0; mem_init[i].opcode != 0; i++)
763 {
764 j = mem_init[i].opcode - MEM_MIN;
765 mem_tab[j].name = mem_init[i].name;
766 mem_tab[j].numops = mem_init[i].numops;
767 }
768 }
769
770 i = ((word1 >> 24) & 0xff) - MEM_MIN;
771 mode = (word1 >> 10) & 0xf;
772
773 if ((mem_tab[i].name != NULL) /* Valid instruction */
774 && ((mode == 5) || (mode >= 12)))
775 { /* With 32-bit displacement */
776 len = 8;
777 }
778 else
779 {
780 len = 4;
781 }
782
783 if (noprint)
784 {
785 return len;
786 }
787 abort ();
788 }
789
790 /* Read the i960 instruction at 'memaddr' and return the address of
791 the next instruction after that, or 0 if 'memaddr' is not the
792 address of a valid instruction. The first word of the instruction
793 is stored at 'pword1', and the second word, if any, is stored at
794 'pword2'. */
795
796 static CORE_ADDR
797 next_insn (memaddr, pword1, pword2)
798 unsigned int *pword1, *pword2;
799 CORE_ADDR memaddr;
800 {
801 int len;
802 char buf[8];
803
804 /* Read the two (potential) words of the instruction at once,
805 to eliminate the overhead of two calls to read_memory ().
806 FIXME: Loses if the first one is readable but the second is not
807 (e.g. last word of the segment). */
808
809 read_memory (memaddr, buf, 8);
810 *pword1 = extract_unsigned_integer (buf, 4);
811 *pword2 = extract_unsigned_integer (buf + 4, 4);
812
813 /* Divide instruction set into classes based on high 4 bits of opcode */
814
815 switch ((*pword1 >> 28) & 0xf)
816 {
817 case 0x0:
818 case 0x1: /* ctrl */
819
820 case 0x2:
821 case 0x3: /* cobr */
822
823 case 0x5:
824 case 0x6:
825 case 0x7: /* reg */
826 len = 4;
827 break;
828
829 case 0x8:
830 case 0x9:
831 case 0xa:
832 case 0xb:
833 case 0xc:
834 len = mem (memaddr, *pword1, *pword2, 1);
835 break;
836
837 default: /* invalid instruction */
838 len = 0;
839 break;
840 }
841
842 if (len)
843 return memaddr + len;
844 else
845 return 0;
846 }
847
848 /* 'start_frame' is a variable in the MON960 runtime startup routine
849 that contains the frame pointer of the 'start' routine (the routine
850 that calls 'main'). By reading its contents out of remote memory,
851 we can tell where the frame chain ends: backtraces should halt before
852 they display this frame. */
853
854 int
855 mon960_frame_chain_valid (chain, curframe)
856 CORE_ADDR chain;
857 struct frame_info *curframe;
858 {
859 struct symbol *sym;
860 struct minimal_symbol *msymbol;
861
862 /* crtmon960.o is an assembler module that is assumed to be linked
863 * first in an i80960 executable. It contains the true entry point;
864 * it performs startup up initialization and then calls 'main'.
865 *
866 * 'sf' is the name of a variable in crtmon960.o that is set
867 * during startup to the address of the first frame.
868 *
869 * 'a' is the address of that variable in 80960 memory.
870 */
871 static char sf[] = "start_frame";
872 CORE_ADDR a;
873
874
875 chain &= ~0x3f; /* Zero low 6 bits because previous frame pointers
876 contain return status info in them. */
877 if (chain == 0)
878 {
879 return 0;
880 }
881
882 sym = lookup_symbol (sf, 0, VAR_NAMESPACE, (int *) NULL,
883 (struct symtab **) NULL);
884 if (sym != 0)
885 {
886 a = SYMBOL_VALUE (sym);
887 }
888 else
889 {
890 msymbol = lookup_minimal_symbol (sf, NULL, NULL);
891 if (msymbol == NULL)
892 return 0;
893 a = SYMBOL_VALUE_ADDRESS (msymbol);
894 }
895
896 return (chain != read_memory_integer (a, 4));
897 }
898
899 void
900 _initialize_i960_tdep ()
901 {
902 check_host ();
903
904 tm_print_insn = print_insn_i960;
905 }