]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infcall.c
Remove CHECK_TYPEDEF, use check_typedef instead
[thirdparty/binutils-gdb.git] / gdb / infcall.c
1 /* Perform an inferior function call, for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "breakpoint.h"
22 #include "tracepoint.h"
23 #include "target.h"
24 #include "regcache.h"
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "block.h"
28 #include "gdbcore.h"
29 #include "language.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "command.h"
33 #include "infcall.h"
34 #include "dummy-frame.h"
35 #include "ada-lang.h"
36 #include "gdbthread.h"
37 #include "event-top.h"
38 #include "observer.h"
39
40 /* If we can't find a function's name from its address,
41 we print this instead. */
42 #define RAW_FUNCTION_ADDRESS_FORMAT "at 0x%s"
43 #define RAW_FUNCTION_ADDRESS_SIZE (sizeof (RAW_FUNCTION_ADDRESS_FORMAT) \
44 + 2 * sizeof (CORE_ADDR))
45
46 /* NOTE: cagney/2003-04-16: What's the future of this code?
47
48 GDB needs an asynchronous expression evaluator, that means an
49 asynchronous inferior function call implementation, and that in
50 turn means restructuring the code so that it is event driven. */
51
52 /* How you should pass arguments to a function depends on whether it
53 was defined in K&R style or prototype style. If you define a
54 function using the K&R syntax that takes a `float' argument, then
55 callers must pass that argument as a `double'. If you define the
56 function using the prototype syntax, then you must pass the
57 argument as a `float', with no promotion.
58
59 Unfortunately, on certain older platforms, the debug info doesn't
60 indicate reliably how each function was defined. A function type's
61 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
62 defined in prototype style. When calling a function whose
63 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults this flag to
64 decide what to do.
65
66 For modern targets, it is proper to assume that, if the prototype
67 flag is clear, that can be trusted: `float' arguments should be
68 promoted to `double'. For some older targets, if the prototype
69 flag is clear, that doesn't tell us anything. The default is to
70 trust the debug information; the user can override this behavior
71 with "set coerce-float-to-double 0". */
72
73 static int coerce_float_to_double_p = 1;
74 static void
75 show_coerce_float_to_double_p (struct ui_file *file, int from_tty,
76 struct cmd_list_element *c, const char *value)
77 {
78 fprintf_filtered (file,
79 _("Coercion of floats to doubles "
80 "when calling functions is %s.\n"),
81 value);
82 }
83
84 /* This boolean tells what gdb should do if a signal is received while
85 in a function called from gdb (call dummy). If set, gdb unwinds
86 the stack and restore the context to what as it was before the
87 call.
88
89 The default is to stop in the frame where the signal was received. */
90
91 static int unwind_on_signal_p = 0;
92 static void
93 show_unwind_on_signal_p (struct ui_file *file, int from_tty,
94 struct cmd_list_element *c, const char *value)
95 {
96 fprintf_filtered (file,
97 _("Unwinding of stack if a signal is "
98 "received while in a call dummy is %s.\n"),
99 value);
100 }
101
102 /* This boolean tells what gdb should do if a std::terminate call is
103 made while in a function called from gdb (call dummy).
104 As the confines of a single dummy stack prohibit out-of-frame
105 handlers from handling a raised exception, and as out-of-frame
106 handlers are common in C++, this can lead to no handler being found
107 by the unwinder, and a std::terminate call. This is a false positive.
108 If set, gdb unwinds the stack and restores the context to what it
109 was before the call.
110
111 The default is to unwind the frame if a std::terminate call is
112 made. */
113
114 static int unwind_on_terminating_exception_p = 1;
115
116 static void
117 show_unwind_on_terminating_exception_p (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c,
119 const char *value)
120
121 {
122 fprintf_filtered (file,
123 _("Unwind stack if a C++ exception is "
124 "unhandled while in a call dummy is %s.\n"),
125 value);
126 }
127
128 /* Perform the standard coercions that are specified
129 for arguments to be passed to C or Ada functions.
130
131 If PARAM_TYPE is non-NULL, it is the expected parameter type.
132 IS_PROTOTYPED is non-zero if the function declaration is prototyped.
133 SP is the stack pointer were additional data can be pushed (updating
134 its value as needed). */
135
136 static struct value *
137 value_arg_coerce (struct gdbarch *gdbarch, struct value *arg,
138 struct type *param_type, int is_prototyped, CORE_ADDR *sp)
139 {
140 const struct builtin_type *builtin = builtin_type (gdbarch);
141 struct type *arg_type = check_typedef (value_type (arg));
142 struct type *type
143 = param_type ? check_typedef (param_type) : arg_type;
144
145 /* Perform any Ada-specific coercion first. */
146 if (current_language->la_language == language_ada)
147 arg = ada_convert_actual (arg, type);
148
149 /* Force the value to the target if we will need its address. At
150 this point, we could allocate arguments on the stack instead of
151 calling malloc if we knew that their addresses would not be
152 saved by the called function. */
153 arg = value_coerce_to_target (arg);
154
155 switch (TYPE_CODE (type))
156 {
157 case TYPE_CODE_REF:
158 {
159 struct value *new_value;
160
161 if (TYPE_CODE (arg_type) == TYPE_CODE_REF)
162 return value_cast_pointers (type, arg, 0);
163
164 /* Cast the value to the reference's target type, and then
165 convert it back to a reference. This will issue an error
166 if the value was not previously in memory - in some cases
167 we should clearly be allowing this, but how? */
168 new_value = value_cast (TYPE_TARGET_TYPE (type), arg);
169 new_value = value_ref (new_value);
170 return new_value;
171 }
172 case TYPE_CODE_INT:
173 case TYPE_CODE_CHAR:
174 case TYPE_CODE_BOOL:
175 case TYPE_CODE_ENUM:
176 /* If we don't have a prototype, coerce to integer type if necessary. */
177 if (!is_prototyped)
178 {
179 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
180 type = builtin->builtin_int;
181 }
182 /* Currently all target ABIs require at least the width of an integer
183 type for an argument. We may have to conditionalize the following
184 type coercion for future targets. */
185 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
186 type = builtin->builtin_int;
187 break;
188 case TYPE_CODE_FLT:
189 if (!is_prototyped && coerce_float_to_double_p)
190 {
191 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_double))
192 type = builtin->builtin_double;
193 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin->builtin_double))
194 type = builtin->builtin_long_double;
195 }
196 break;
197 case TYPE_CODE_FUNC:
198 type = lookup_pointer_type (type);
199 break;
200 case TYPE_CODE_ARRAY:
201 /* Arrays are coerced to pointers to their first element, unless
202 they are vectors, in which case we want to leave them alone,
203 because they are passed by value. */
204 if (current_language->c_style_arrays)
205 if (!TYPE_VECTOR (type))
206 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
207 break;
208 case TYPE_CODE_UNDEF:
209 case TYPE_CODE_PTR:
210 case TYPE_CODE_STRUCT:
211 case TYPE_CODE_UNION:
212 case TYPE_CODE_VOID:
213 case TYPE_CODE_SET:
214 case TYPE_CODE_RANGE:
215 case TYPE_CODE_STRING:
216 case TYPE_CODE_ERROR:
217 case TYPE_CODE_MEMBERPTR:
218 case TYPE_CODE_METHODPTR:
219 case TYPE_CODE_METHOD:
220 case TYPE_CODE_COMPLEX:
221 default:
222 break;
223 }
224
225 return value_cast (type, arg);
226 }
227
228 /* Return the return type of a function with its first instruction exactly at
229 the PC address. Return NULL otherwise. */
230
231 static struct type *
232 find_function_return_type (CORE_ADDR pc)
233 {
234 struct symbol *sym = find_pc_function (pc);
235
236 if (sym != NULL && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) == pc
237 && SYMBOL_TYPE (sym) != NULL)
238 return TYPE_TARGET_TYPE (SYMBOL_TYPE (sym));
239
240 return NULL;
241 }
242
243 /* Determine a function's address and its return type from its value.
244 Calls error() if the function is not valid for calling. */
245
246 CORE_ADDR
247 find_function_addr (struct value *function, struct type **retval_type)
248 {
249 struct type *ftype = check_typedef (value_type (function));
250 struct gdbarch *gdbarch = get_type_arch (ftype);
251 struct type *value_type = NULL;
252 /* Initialize it just to avoid a GCC false warning. */
253 CORE_ADDR funaddr = 0;
254
255 /* If it's a member function, just look at the function
256 part of it. */
257
258 /* Determine address to call. */
259 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
260 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
261 funaddr = value_address (function);
262 else if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
263 {
264 funaddr = value_as_address (function);
265 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
266 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
267 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
268 funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
269 &current_target);
270 }
271 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
272 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
273 {
274 value_type = TYPE_TARGET_TYPE (ftype);
275
276 if (TYPE_GNU_IFUNC (ftype))
277 {
278 funaddr = gnu_ifunc_resolve_addr (gdbarch, funaddr);
279
280 /* Skip querying the function symbol if no RETVAL_TYPE has been
281 asked for. */
282 if (retval_type)
283 value_type = find_function_return_type (funaddr);
284 }
285 }
286 else if (TYPE_CODE (ftype) == TYPE_CODE_INT)
287 {
288 /* Handle the case of functions lacking debugging info.
289 Their values are characters since their addresses are char. */
290 if (TYPE_LENGTH (ftype) == 1)
291 funaddr = value_as_address (value_addr (function));
292 else
293 {
294 /* Handle function descriptors lacking debug info. */
295 int found_descriptor = 0;
296
297 funaddr = 0; /* pacify "gcc -Werror" */
298 if (VALUE_LVAL (function) == lval_memory)
299 {
300 CORE_ADDR nfunaddr;
301
302 funaddr = value_as_address (value_addr (function));
303 nfunaddr = funaddr;
304 funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
305 &current_target);
306 if (funaddr != nfunaddr)
307 found_descriptor = 1;
308 }
309 if (!found_descriptor)
310 /* Handle integer used as address of a function. */
311 funaddr = (CORE_ADDR) value_as_long (function);
312 }
313 }
314 else
315 error (_("Invalid data type for function to be called."));
316
317 if (retval_type != NULL)
318 *retval_type = value_type;
319 return funaddr + gdbarch_deprecated_function_start_offset (gdbarch);
320 }
321
322 /* For CALL_DUMMY_ON_STACK, push a breakpoint sequence that the called
323 function returns to. */
324
325 static CORE_ADDR
326 push_dummy_code (struct gdbarch *gdbarch,
327 CORE_ADDR sp, CORE_ADDR funaddr,
328 struct value **args, int nargs,
329 struct type *value_type,
330 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
331 struct regcache *regcache)
332 {
333 gdb_assert (gdbarch_push_dummy_code_p (gdbarch));
334
335 return gdbarch_push_dummy_code (gdbarch, sp, funaddr,
336 args, nargs, value_type, real_pc, bp_addr,
337 regcache);
338 }
339
340 /* Fetch the name of the function at FUNADDR.
341 This is used in printing an error message for call_function_by_hand.
342 BUF is used to print FUNADDR in hex if the function name cannot be
343 determined. It must be large enough to hold formatted result of
344 RAW_FUNCTION_ADDRESS_FORMAT. */
345
346 static const char *
347 get_function_name (CORE_ADDR funaddr, char *buf, int buf_size)
348 {
349 {
350 struct symbol *symbol = find_pc_function (funaddr);
351
352 if (symbol)
353 return SYMBOL_PRINT_NAME (symbol);
354 }
355
356 {
357 /* Try the minimal symbols. */
358 struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (funaddr);
359
360 if (msymbol.minsym)
361 return MSYMBOL_PRINT_NAME (msymbol.minsym);
362 }
363
364 {
365 char *tmp = xstrprintf (_(RAW_FUNCTION_ADDRESS_FORMAT),
366 hex_string (funaddr));
367
368 gdb_assert (strlen (tmp) + 1 <= buf_size);
369 strcpy (buf, tmp);
370 xfree (tmp);
371 return buf;
372 }
373 }
374
375 /* Subroutine of call_function_by_hand to simplify it.
376 Start up the inferior and wait for it to stop.
377 Return the exception if there's an error, or an exception with
378 reason >= 0 if there's no error.
379
380 This is done inside a TRY_CATCH so the caller needn't worry about
381 thrown errors. The caller should rethrow if there's an error. */
382
383 static struct gdb_exception
384 run_inferior_call (struct thread_info *call_thread, CORE_ADDR real_pc)
385 {
386 struct gdb_exception caught_error = exception_none;
387 int saved_in_infcall = call_thread->control.in_infcall;
388 ptid_t call_thread_ptid = call_thread->ptid;
389 int saved_sync_execution = sync_execution;
390 int was_running = call_thread->state == THREAD_RUNNING;
391
392 /* Infcalls run synchronously, in the foreground. */
393 if (target_can_async_p ())
394 sync_execution = 1;
395
396 call_thread->control.in_infcall = 1;
397
398 clear_proceed_status (0);
399
400 disable_watchpoints_before_interactive_call_start ();
401
402 /* We want to print return value, please... */
403 call_thread->control.proceed_to_finish = 1;
404
405 TRY
406 {
407 int was_sync = sync_execution;
408
409 proceed (real_pc, GDB_SIGNAL_0);
410
411 /* Inferior function calls are always synchronous, even if the
412 target supports asynchronous execution. Do here what
413 `proceed' itself does in sync mode. */
414 if (target_can_async_p ())
415 {
416 wait_for_inferior ();
417 normal_stop ();
418 /* If GDB was previously in sync execution mode, then ensure
419 that it remains so. normal_stop calls
420 async_enable_stdin, so reset it again here. In other
421 cases, stdin will be re-enabled by
422 inferior_event_handler, when an exception is thrown. */
423 if (was_sync)
424 async_disable_stdin ();
425 }
426 }
427 CATCH (e, RETURN_MASK_ALL)
428 {
429 caught_error = e;
430 }
431 END_CATCH
432
433 /* At this point the current thread may have changed. Refresh
434 CALL_THREAD as it could be invalid if its thread has exited. */
435 call_thread = find_thread_ptid (call_thread_ptid);
436
437 /* If the infcall does NOT succeed, normal_stop will have already
438 finished the thread states. However, on success, normal_stop
439 defers here, so that we can set back the thread states to what
440 they were before the call. Note that we must also finish the
441 state of new threads that might have spawned while the call was
442 running. The main cases to handle are:
443
444 - "(gdb) print foo ()", or any other command that evaluates an
445 expression at the prompt. (The thread was marked stopped before.)
446
447 - "(gdb) break foo if return_false()" or similar cases where we
448 do an infcall while handling an event (while the thread is still
449 marked running). In this example, whether the condition
450 evaluates true and thus we'll present a user-visible stop is
451 decided elsewhere. */
452 if (!was_running
453 && ptid_equal (call_thread_ptid, inferior_ptid)
454 && stop_stack_dummy == STOP_STACK_DUMMY)
455 finish_thread_state (user_visible_resume_ptid (0));
456
457 enable_watchpoints_after_interactive_call_stop ();
458
459 /* Call breakpoint_auto_delete on the current contents of the bpstat
460 of inferior call thread.
461 If all error()s out of proceed ended up calling normal_stop
462 (and perhaps they should; it already does in the special case
463 of error out of resume()), then we wouldn't need this. */
464 if (caught_error.reason < 0)
465 {
466 if (call_thread != NULL)
467 breakpoint_auto_delete (call_thread->control.stop_bpstat);
468 }
469
470 if (call_thread != NULL)
471 call_thread->control.in_infcall = saved_in_infcall;
472
473 sync_execution = saved_sync_execution;
474
475 return caught_error;
476 }
477
478 /* A cleanup function that calls delete_std_terminate_breakpoint. */
479 static void
480 cleanup_delete_std_terminate_breakpoint (void *ignore)
481 {
482 delete_std_terminate_breakpoint ();
483 }
484
485 /* See infcall.h. */
486
487 struct value *
488 call_function_by_hand (struct value *function, int nargs, struct value **args)
489 {
490 return call_function_by_hand_dummy (function, nargs, args, NULL, NULL);
491 }
492
493 /* Data for dummy_frame_context_saver. Structure can be freed only
494 after both dummy_frame_context_saver_dtor and
495 dummy_frame_context_saver_drop have been called for it. */
496
497 struct dummy_frame_context_saver
498 {
499 /* Inferior registers fetched before associated dummy_frame got freed
500 and before any other destructors of associated dummy_frame got called.
501 It is initialized to NULL. */
502 struct regcache *retbuf;
503
504 /* It is 1 if this dummy_frame_context_saver_drop has been already
505 called. */
506 int drop_done;
507 };
508
509 /* Free struct dummy_frame_context_saver. */
510
511 static void
512 dummy_frame_context_saver_free (struct dummy_frame_context_saver *saver)
513 {
514 regcache_xfree (saver->retbuf);
515 xfree (saver);
516 }
517
518 /* Destructor for associated dummy_frame. */
519
520 static void
521 dummy_frame_context_saver_dtor (void *data_voidp, int registers_valid)
522 {
523 struct dummy_frame_context_saver *data = data_voidp;
524
525 gdb_assert (data->retbuf == NULL);
526
527 if (data->drop_done)
528 dummy_frame_context_saver_free (data);
529 else if (registers_valid)
530 data->retbuf = regcache_dup (get_current_regcache ());
531 }
532
533 /* Caller is no longer interested in this
534 struct dummy_frame_context_saver. After its associated dummy_frame
535 gets freed struct dummy_frame_context_saver can be also freed. */
536
537 void
538 dummy_frame_context_saver_drop (struct dummy_frame_context_saver *saver)
539 {
540 saver->drop_done = 1;
541
542 if (!find_dummy_frame_dtor (dummy_frame_context_saver_dtor, saver))
543 dummy_frame_context_saver_free (saver);
544 }
545
546 /* Stub dummy_frame_context_saver_drop compatible with make_cleanup. */
547
548 void
549 dummy_frame_context_saver_cleanup (void *data)
550 {
551 struct dummy_frame_context_saver *saver = data;
552
553 dummy_frame_context_saver_drop (saver);
554 }
555
556 /* Fetch RETBUF field of possibly opaque DTOR_DATA.
557 RETBUF must not be NULL. */
558
559 struct regcache *
560 dummy_frame_context_saver_get_regs (struct dummy_frame_context_saver *saver)
561 {
562 gdb_assert (saver->retbuf != NULL);
563 return saver->retbuf;
564 }
565
566 /* Register provider of inferior registers at the time DUMMY_ID frame of
567 PTID gets freed (before inferior registers get restored to those
568 before dummy_frame). */
569
570 struct dummy_frame_context_saver *
571 dummy_frame_context_saver_setup (struct frame_id dummy_id, ptid_t ptid)
572 {
573 struct dummy_frame_context_saver *saver;
574
575 saver = xmalloc (sizeof (*saver));
576 saver->retbuf = NULL;
577 saver->drop_done = 0;
578 register_dummy_frame_dtor (dummy_id, inferior_ptid,
579 dummy_frame_context_saver_dtor, saver);
580 return saver;
581 }
582
583 /* All this stuff with a dummy frame may seem unnecessarily complicated
584 (why not just save registers in GDB?). The purpose of pushing a dummy
585 frame which looks just like a real frame is so that if you call a
586 function and then hit a breakpoint (get a signal, etc), "backtrace"
587 will look right. Whether the backtrace needs to actually show the
588 stack at the time the inferior function was called is debatable, but
589 it certainly needs to not display garbage. So if you are contemplating
590 making dummy frames be different from normal frames, consider that. */
591
592 /* Perform a function call in the inferior.
593 ARGS is a vector of values of arguments (NARGS of them).
594 FUNCTION is a value, the function to be called.
595 Returns a value representing what the function returned.
596 May fail to return, if a breakpoint or signal is hit
597 during the execution of the function.
598
599 ARGS is modified to contain coerced values. */
600
601 struct value *
602 call_function_by_hand_dummy (struct value *function,
603 int nargs, struct value **args,
604 dummy_frame_dtor_ftype *dummy_dtor,
605 void *dummy_dtor_data)
606 {
607 CORE_ADDR sp;
608 struct type *values_type, *target_values_type;
609 unsigned char struct_return = 0, hidden_first_param_p = 0;
610 CORE_ADDR struct_addr = 0;
611 struct infcall_control_state *inf_status;
612 struct cleanup *inf_status_cleanup;
613 struct infcall_suspend_state *caller_state;
614 CORE_ADDR funaddr;
615 CORE_ADDR real_pc;
616 struct type *ftype = check_typedef (value_type (function));
617 CORE_ADDR bp_addr;
618 struct frame_id dummy_id;
619 struct cleanup *args_cleanup;
620 struct frame_info *frame;
621 struct gdbarch *gdbarch;
622 struct cleanup *terminate_bp_cleanup;
623 ptid_t call_thread_ptid;
624 struct gdb_exception e;
625 char name_buf[RAW_FUNCTION_ADDRESS_SIZE];
626 int stack_temporaries = thread_stack_temporaries_enabled_p (inferior_ptid);
627 struct dummy_frame_context_saver *context_saver;
628 struct cleanup *context_saver_cleanup;
629
630 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
631 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
632
633 if (!target_has_execution)
634 noprocess ();
635
636 if (get_traceframe_number () >= 0)
637 error (_("May not call functions while looking at trace frames."));
638
639 if (execution_direction == EXEC_REVERSE)
640 error (_("Cannot call functions in reverse mode."));
641
642 frame = get_current_frame ();
643 gdbarch = get_frame_arch (frame);
644
645 if (!gdbarch_push_dummy_call_p (gdbarch))
646 error (_("This target does not support function calls."));
647
648 /* A cleanup for the inferior status.
649 This is only needed while we're preparing the inferior function call. */
650 inf_status = save_infcall_control_state ();
651 inf_status_cleanup
652 = make_cleanup_restore_infcall_control_state (inf_status);
653
654 /* Save the caller's registers and other state associated with the
655 inferior itself so that they can be restored once the
656 callee returns. To allow nested calls the registers are (further
657 down) pushed onto a dummy frame stack. Include a cleanup (which
658 is tossed once the regcache has been pushed). */
659 caller_state = save_infcall_suspend_state ();
660 make_cleanup_restore_infcall_suspend_state (caller_state);
661
662 /* Ensure that the initial SP is correctly aligned. */
663 {
664 CORE_ADDR old_sp = get_frame_sp (frame);
665
666 if (gdbarch_frame_align_p (gdbarch))
667 {
668 sp = gdbarch_frame_align (gdbarch, old_sp);
669 /* NOTE: cagney/2003-08-13: Skip the "red zone". For some
670 ABIs, a function can use memory beyond the inner most stack
671 address. AMD64 called that region the "red zone". Skip at
672 least the "red zone" size before allocating any space on
673 the stack. */
674 if (gdbarch_inner_than (gdbarch, 1, 2))
675 sp -= gdbarch_frame_red_zone_size (gdbarch);
676 else
677 sp += gdbarch_frame_red_zone_size (gdbarch);
678 /* Still aligned? */
679 gdb_assert (sp == gdbarch_frame_align (gdbarch, sp));
680 /* NOTE: cagney/2002-09-18:
681
682 On a RISC architecture, a void parameterless generic dummy
683 frame (i.e., no parameters, no result) typically does not
684 need to push anything the stack and hence can leave SP and
685 FP. Similarly, a frameless (possibly leaf) function does
686 not push anything on the stack and, hence, that too can
687 leave FP and SP unchanged. As a consequence, a sequence of
688 void parameterless generic dummy frame calls to frameless
689 functions will create a sequence of effectively identical
690 frames (SP, FP and TOS and PC the same). This, not
691 suprisingly, results in what appears to be a stack in an
692 infinite loop --- when GDB tries to find a generic dummy
693 frame on the internal dummy frame stack, it will always
694 find the first one.
695
696 To avoid this problem, the code below always grows the
697 stack. That way, two dummy frames can never be identical.
698 It does burn a few bytes of stack but that is a small price
699 to pay :-). */
700 if (sp == old_sp)
701 {
702 if (gdbarch_inner_than (gdbarch, 1, 2))
703 /* Stack grows down. */
704 sp = gdbarch_frame_align (gdbarch, old_sp - 1);
705 else
706 /* Stack grows up. */
707 sp = gdbarch_frame_align (gdbarch, old_sp + 1);
708 }
709 /* SP may have underflown address zero here from OLD_SP. Memory access
710 functions will probably fail in such case but that is a target's
711 problem. */
712 }
713 else
714 /* FIXME: cagney/2002-09-18: Hey, you loose!
715
716 Who knows how badly aligned the SP is!
717
718 If the generic dummy frame ends up empty (because nothing is
719 pushed) GDB won't be able to correctly perform back traces.
720 If a target is having trouble with backtraces, first thing to
721 do is add FRAME_ALIGN() to the architecture vector. If that
722 fails, try dummy_id().
723
724 If the ABI specifies a "Red Zone" (see the doco) the code
725 below will quietly trash it. */
726 sp = old_sp;
727
728 /* Skip over the stack temporaries that might have been generated during
729 the evaluation of an expression. */
730 if (stack_temporaries)
731 {
732 struct value *lastval;
733
734 lastval = get_last_thread_stack_temporary (inferior_ptid);
735 if (lastval != NULL)
736 {
737 CORE_ADDR lastval_addr = value_address (lastval);
738
739 if (gdbarch_inner_than (gdbarch, 1, 2))
740 {
741 gdb_assert (sp >= lastval_addr);
742 sp = lastval_addr;
743 }
744 else
745 {
746 gdb_assert (sp <= lastval_addr);
747 sp = lastval_addr + TYPE_LENGTH (value_type (lastval));
748 }
749
750 if (gdbarch_frame_align_p (gdbarch))
751 sp = gdbarch_frame_align (gdbarch, sp);
752 }
753 }
754 }
755
756 funaddr = find_function_addr (function, &values_type);
757 if (!values_type)
758 values_type = builtin_type (gdbarch)->builtin_int;
759
760 values_type = check_typedef (values_type);
761
762 /* Are we returning a value using a structure return (passing a
763 hidden argument pointing to storage) or a normal value return?
764 There are two cases: language-mandated structure return and
765 target ABI structure return. The variable STRUCT_RETURN only
766 describes the latter. The language version is handled by passing
767 the return location as the first parameter to the function,
768 even preceding "this". This is different from the target
769 ABI version, which is target-specific; for instance, on ia64
770 the first argument is passed in out0 but the hidden structure
771 return pointer would normally be passed in r8. */
772
773 if (gdbarch_return_in_first_hidden_param_p (gdbarch, values_type))
774 {
775 hidden_first_param_p = 1;
776
777 /* Tell the target specific argument pushing routine not to
778 expect a value. */
779 target_values_type = builtin_type (gdbarch)->builtin_void;
780 }
781 else
782 {
783 struct_return = using_struct_return (gdbarch, function, values_type);
784 target_values_type = values_type;
785 }
786
787 observer_notify_inferior_call_pre (inferior_ptid, funaddr);
788
789 /* Determine the location of the breakpoint (and possibly other
790 stuff) that the called function will return to. The SPARC, for a
791 function returning a structure or union, needs to make space for
792 not just the breakpoint but also an extra word containing the
793 size (?) of the structure being passed. */
794
795 switch (gdbarch_call_dummy_location (gdbarch))
796 {
797 case ON_STACK:
798 {
799 const gdb_byte *bp_bytes;
800 CORE_ADDR bp_addr_as_address;
801 int bp_size;
802
803 /* Be careful BP_ADDR is in inferior PC encoding while
804 BP_ADDR_AS_ADDRESS is a plain memory address. */
805
806 sp = push_dummy_code (gdbarch, sp, funaddr, args, nargs,
807 target_values_type, &real_pc, &bp_addr,
808 get_current_regcache ());
809
810 /* Write a legitimate instruction at the point where the infcall
811 breakpoint is going to be inserted. While this instruction
812 is never going to be executed, a user investigating the
813 memory from GDB would see this instruction instead of random
814 uninitialized bytes. We chose the breakpoint instruction
815 as it may look as the most logical one to the user and also
816 valgrind 3.7.0 needs it for proper vgdb inferior calls.
817
818 If software breakpoints are unsupported for this target we
819 leave the user visible memory content uninitialized. */
820
821 bp_addr_as_address = bp_addr;
822 bp_bytes = gdbarch_breakpoint_from_pc (gdbarch, &bp_addr_as_address,
823 &bp_size);
824 if (bp_bytes != NULL)
825 write_memory (bp_addr_as_address, bp_bytes, bp_size);
826 }
827 break;
828 case AT_ENTRY_POINT:
829 {
830 CORE_ADDR dummy_addr;
831
832 real_pc = funaddr;
833 dummy_addr = entry_point_address ();
834
835 /* A call dummy always consists of just a single breakpoint, so
836 its address is the same as the address of the dummy.
837
838 The actual breakpoint is inserted separatly so there is no need to
839 write that out. */
840 bp_addr = dummy_addr;
841 break;
842 }
843 default:
844 internal_error (__FILE__, __LINE__, _("bad switch"));
845 }
846
847 if (nargs < TYPE_NFIELDS (ftype))
848 error (_("Too few arguments in function call."));
849
850 {
851 int i;
852
853 for (i = nargs - 1; i >= 0; i--)
854 {
855 int prototyped;
856 struct type *param_type;
857
858 /* FIXME drow/2002-05-31: Should just always mark methods as
859 prototyped. Can we respect TYPE_VARARGS? Probably not. */
860 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
861 prototyped = 1;
862 else if (i < TYPE_NFIELDS (ftype))
863 prototyped = TYPE_PROTOTYPED (ftype);
864 else
865 prototyped = 0;
866
867 if (i < TYPE_NFIELDS (ftype))
868 param_type = TYPE_FIELD_TYPE (ftype, i);
869 else
870 param_type = NULL;
871
872 args[i] = value_arg_coerce (gdbarch, args[i],
873 param_type, prototyped, &sp);
874
875 if (param_type != NULL && language_pass_by_reference (param_type))
876 args[i] = value_addr (args[i]);
877 }
878 }
879
880 /* Reserve space for the return structure to be written on the
881 stack, if necessary. Make certain that the value is correctly
882 aligned.
883
884 While evaluating expressions, we reserve space on the stack for
885 return values of class type even if the language ABI and the target
886 ABI do not require that the return value be passed as a hidden first
887 argument. This is because we want to store the return value as an
888 on-stack temporary while the expression is being evaluated. This
889 enables us to have chained function calls in expressions.
890
891 Keeping the return values as on-stack temporaries while the expression
892 is being evaluated is OK because the thread is stopped until the
893 expression is completely evaluated. */
894
895 if (struct_return || hidden_first_param_p
896 || (stack_temporaries && class_or_union_p (values_type)))
897 {
898 if (gdbarch_inner_than (gdbarch, 1, 2))
899 {
900 /* Stack grows downward. Align STRUCT_ADDR and SP after
901 making space for the return value. */
902 sp -= TYPE_LENGTH (values_type);
903 if (gdbarch_frame_align_p (gdbarch))
904 sp = gdbarch_frame_align (gdbarch, sp);
905 struct_addr = sp;
906 }
907 else
908 {
909 /* Stack grows upward. Align the frame, allocate space, and
910 then again, re-align the frame??? */
911 if (gdbarch_frame_align_p (gdbarch))
912 sp = gdbarch_frame_align (gdbarch, sp);
913 struct_addr = sp;
914 sp += TYPE_LENGTH (values_type);
915 if (gdbarch_frame_align_p (gdbarch))
916 sp = gdbarch_frame_align (gdbarch, sp);
917 }
918 }
919
920 if (hidden_first_param_p)
921 {
922 struct value **new_args;
923
924 /* Add the new argument to the front of the argument list. */
925 new_args = xmalloc (sizeof (struct value *) * (nargs + 1));
926 new_args[0] = value_from_pointer (lookup_pointer_type (values_type),
927 struct_addr);
928 memcpy (&new_args[1], &args[0], sizeof (struct value *) * nargs);
929 args = new_args;
930 nargs++;
931 args_cleanup = make_cleanup (xfree, args);
932 }
933 else
934 args_cleanup = make_cleanup (null_cleanup, NULL);
935
936 /* Create the dummy stack frame. Pass in the call dummy address as,
937 presumably, the ABI code knows where, in the call dummy, the
938 return address should be pointed. */
939 sp = gdbarch_push_dummy_call (gdbarch, function, get_current_regcache (),
940 bp_addr, nargs, args,
941 sp, struct_return, struct_addr);
942
943 do_cleanups (args_cleanup);
944
945 /* Set up a frame ID for the dummy frame so we can pass it to
946 set_momentary_breakpoint. We need to give the breakpoint a frame
947 ID so that the breakpoint code can correctly re-identify the
948 dummy breakpoint. */
949 /* Sanity. The exact same SP value is returned by PUSH_DUMMY_CALL,
950 saved as the dummy-frame TOS, and used by dummy_id to form
951 the frame ID's stack address. */
952 dummy_id = frame_id_build (sp, bp_addr);
953
954 /* Create a momentary breakpoint at the return address of the
955 inferior. That way it breaks when it returns. */
956
957 {
958 struct breakpoint *bpt, *longjmp_b;
959 struct symtab_and_line sal;
960
961 init_sal (&sal); /* initialize to zeroes */
962 sal.pspace = current_program_space;
963 sal.pc = bp_addr;
964 sal.section = find_pc_overlay (sal.pc);
965 /* Sanity. The exact same SP value is returned by
966 PUSH_DUMMY_CALL, saved as the dummy-frame TOS, and used by
967 dummy_id to form the frame ID's stack address. */
968 bpt = set_momentary_breakpoint (gdbarch, sal, dummy_id, bp_call_dummy);
969
970 /* set_momentary_breakpoint invalidates FRAME. */
971 frame = NULL;
972
973 bpt->disposition = disp_del;
974 gdb_assert (bpt->related_breakpoint == bpt);
975
976 longjmp_b = set_longjmp_breakpoint_for_call_dummy ();
977 if (longjmp_b)
978 {
979 /* Link BPT into the chain of LONGJMP_B. */
980 bpt->related_breakpoint = longjmp_b;
981 while (longjmp_b->related_breakpoint != bpt->related_breakpoint)
982 longjmp_b = longjmp_b->related_breakpoint;
983 longjmp_b->related_breakpoint = bpt;
984 }
985 }
986
987 /* Create a breakpoint in std::terminate.
988 If a C++ exception is raised in the dummy-frame, and the
989 exception handler is (normally, and expected to be) out-of-frame,
990 the default C++ handler will (wrongly) be called in an inferior
991 function call. This is wrong, as an exception can be normally
992 and legally handled out-of-frame. The confines of the dummy frame
993 prevent the unwinder from finding the correct handler (or any
994 handler, unless it is in-frame). The default handler calls
995 std::terminate. This will kill the inferior. Assert that
996 terminate should never be called in an inferior function
997 call. Place a momentary breakpoint in the std::terminate function
998 and if triggered in the call, rewind. */
999 if (unwind_on_terminating_exception_p)
1000 set_std_terminate_breakpoint ();
1001
1002 /* Discard both inf_status and caller_state cleanups.
1003 From this point on we explicitly restore the associated state
1004 or discard it. */
1005 discard_cleanups (inf_status_cleanup);
1006
1007 /* Everything's ready, push all the info needed to restore the
1008 caller (and identify the dummy-frame) onto the dummy-frame
1009 stack. */
1010 dummy_frame_push (caller_state, &dummy_id, inferior_ptid);
1011 if (dummy_dtor != NULL)
1012 register_dummy_frame_dtor (dummy_id, inferior_ptid,
1013 dummy_dtor, dummy_dtor_data);
1014
1015 /* dummy_frame_context_saver_setup must be called last so that its
1016 saving of inferior registers gets called first (before possible
1017 DUMMY_DTOR destructor). */
1018 context_saver = dummy_frame_context_saver_setup (dummy_id, inferior_ptid);
1019 context_saver_cleanup = make_cleanup (dummy_frame_context_saver_cleanup,
1020 context_saver);
1021
1022 /* Register a clean-up for unwind_on_terminating_exception_breakpoint. */
1023 terminate_bp_cleanup = make_cleanup (cleanup_delete_std_terminate_breakpoint,
1024 NULL);
1025
1026 /* - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP -
1027 If you're looking to implement asynchronous dummy-frames, then
1028 just below is the place to chop this function in two.. */
1029
1030 /* TP is invalid after run_inferior_call returns, so enclose this
1031 in a block so that it's only in scope during the time it's valid. */
1032 {
1033 struct thread_info *tp = inferior_thread ();
1034
1035 /* Save this thread's ptid, we need it later but the thread
1036 may have exited. */
1037 call_thread_ptid = tp->ptid;
1038
1039 /* Run the inferior until it stops. */
1040
1041 e = run_inferior_call (tp, real_pc);
1042 }
1043
1044 observer_notify_inferior_call_post (call_thread_ptid, funaddr);
1045
1046 /* Rethrow an error if we got one trying to run the inferior. */
1047
1048 if (e.reason < 0)
1049 {
1050 const char *name = get_function_name (funaddr,
1051 name_buf, sizeof (name_buf));
1052
1053 discard_infcall_control_state (inf_status);
1054
1055 /* We could discard the dummy frame here if the program exited,
1056 but it will get garbage collected the next time the program is
1057 run anyway. */
1058
1059 switch (e.reason)
1060 {
1061 case RETURN_ERROR:
1062 throw_error (e.error, _("%s\n\
1063 An error occurred while in a function called from GDB.\n\
1064 Evaluation of the expression containing the function\n\
1065 (%s) will be abandoned.\n\
1066 When the function is done executing, GDB will silently stop."),
1067 e.message, name);
1068 case RETURN_QUIT:
1069 default:
1070 throw_exception (e);
1071 }
1072 }
1073
1074 /* If the program has exited, or we stopped at a different thread,
1075 exit and inform the user. */
1076
1077 if (! target_has_execution)
1078 {
1079 const char *name = get_function_name (funaddr,
1080 name_buf, sizeof (name_buf));
1081
1082 /* If we try to restore the inferior status,
1083 we'll crash as the inferior is no longer running. */
1084 discard_infcall_control_state (inf_status);
1085
1086 /* We could discard the dummy frame here given that the program exited,
1087 but it will get garbage collected the next time the program is
1088 run anyway. */
1089
1090 error (_("The program being debugged exited while in a function "
1091 "called from GDB.\n"
1092 "Evaluation of the expression containing the function\n"
1093 "(%s) will be abandoned."),
1094 name);
1095 }
1096
1097 if (! ptid_equal (call_thread_ptid, inferior_ptid))
1098 {
1099 const char *name = get_function_name (funaddr,
1100 name_buf, sizeof (name_buf));
1101
1102 /* We've switched threads. This can happen if another thread gets a
1103 signal or breakpoint while our thread was running.
1104 There's no point in restoring the inferior status,
1105 we're in a different thread. */
1106 discard_infcall_control_state (inf_status);
1107 /* Keep the dummy frame record, if the user switches back to the
1108 thread with the hand-call, we'll need it. */
1109 if (stopped_by_random_signal)
1110 error (_("\
1111 The program received a signal in another thread while\n\
1112 making a function call from GDB.\n\
1113 Evaluation of the expression containing the function\n\
1114 (%s) will be abandoned.\n\
1115 When the function is done executing, GDB will silently stop."),
1116 name);
1117 else
1118 error (_("\
1119 The program stopped in another thread while making a function call from GDB.\n\
1120 Evaluation of the expression containing the function\n\
1121 (%s) will be abandoned.\n\
1122 When the function is done executing, GDB will silently stop."),
1123 name);
1124 }
1125
1126 if (stopped_by_random_signal || stop_stack_dummy != STOP_STACK_DUMMY)
1127 {
1128 /* Make a copy as NAME may be in an objfile freed by dummy_frame_pop. */
1129 char *name = xstrdup (get_function_name (funaddr,
1130 name_buf, sizeof (name_buf)));
1131 make_cleanup (xfree, name);
1132
1133
1134 if (stopped_by_random_signal)
1135 {
1136 /* We stopped inside the FUNCTION because of a random
1137 signal. Further execution of the FUNCTION is not
1138 allowed. */
1139
1140 if (unwind_on_signal_p)
1141 {
1142 /* The user wants the context restored. */
1143
1144 /* We must get back to the frame we were before the
1145 dummy call. */
1146 dummy_frame_pop (dummy_id, call_thread_ptid);
1147
1148 /* We also need to restore inferior status to that before the
1149 dummy call. */
1150 restore_infcall_control_state (inf_status);
1151
1152 /* FIXME: Insert a bunch of wrap_here; name can be very
1153 long if it's a C++ name with arguments and stuff. */
1154 error (_("\
1155 The program being debugged was signaled while in a function called from GDB.\n\
1156 GDB has restored the context to what it was before the call.\n\
1157 To change this behavior use \"set unwindonsignal off\".\n\
1158 Evaluation of the expression containing the function\n\
1159 (%s) will be abandoned."),
1160 name);
1161 }
1162 else
1163 {
1164 /* The user wants to stay in the frame where we stopped
1165 (default).
1166 Discard inferior status, we're not at the same point
1167 we started at. */
1168 discard_infcall_control_state (inf_status);
1169
1170 /* FIXME: Insert a bunch of wrap_here; name can be very
1171 long if it's a C++ name with arguments and stuff. */
1172 error (_("\
1173 The program being debugged was signaled while in a function called from GDB.\n\
1174 GDB remains in the frame where the signal was received.\n\
1175 To change this behavior use \"set unwindonsignal on\".\n\
1176 Evaluation of the expression containing the function\n\
1177 (%s) will be abandoned.\n\
1178 When the function is done executing, GDB will silently stop."),
1179 name);
1180 }
1181 }
1182
1183 if (stop_stack_dummy == STOP_STD_TERMINATE)
1184 {
1185 /* We must get back to the frame we were before the dummy
1186 call. */
1187 dummy_frame_pop (dummy_id, call_thread_ptid);
1188
1189 /* We also need to restore inferior status to that before
1190 the dummy call. */
1191 restore_infcall_control_state (inf_status);
1192
1193 error (_("\
1194 The program being debugged entered a std::terminate call, most likely\n\
1195 caused by an unhandled C++ exception. GDB blocked this call in order\n\
1196 to prevent the program from being terminated, and has restored the\n\
1197 context to its original state before the call.\n\
1198 To change this behaviour use \"set unwind-on-terminating-exception off\".\n\
1199 Evaluation of the expression containing the function (%s)\n\
1200 will be abandoned."),
1201 name);
1202 }
1203 else if (stop_stack_dummy == STOP_NONE)
1204 {
1205
1206 /* We hit a breakpoint inside the FUNCTION.
1207 Keep the dummy frame, the user may want to examine its state.
1208 Discard inferior status, we're not at the same point
1209 we started at. */
1210 discard_infcall_control_state (inf_status);
1211
1212 /* The following error message used to say "The expression
1213 which contained the function call has been discarded."
1214 It is a hard concept to explain in a few words. Ideally,
1215 GDB would be able to resume evaluation of the expression
1216 when the function finally is done executing. Perhaps
1217 someday this will be implemented (it would not be easy). */
1218 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1219 a C++ name with arguments and stuff. */
1220 error (_("\
1221 The program being debugged stopped while in a function called from GDB.\n\
1222 Evaluation of the expression containing the function\n\
1223 (%s) will be abandoned.\n\
1224 When the function is done executing, GDB will silently stop."),
1225 name);
1226 }
1227
1228 /* The above code errors out, so ... */
1229 internal_error (__FILE__, __LINE__, _("... should not be here"));
1230 }
1231
1232 do_cleanups (terminate_bp_cleanup);
1233
1234 /* If we get here the called FUNCTION ran to completion,
1235 and the dummy frame has already been popped. */
1236
1237 {
1238 struct value *retval = NULL;
1239
1240 /* Inferior call is successful. Restore the inferior status.
1241 At this stage, leave the RETBUF alone. */
1242 restore_infcall_control_state (inf_status);
1243
1244 if (TYPE_CODE (values_type) == TYPE_CODE_VOID)
1245 retval = allocate_value (values_type);
1246 else if (struct_return || hidden_first_param_p)
1247 {
1248 if (stack_temporaries)
1249 {
1250 retval = value_from_contents_and_address (values_type, NULL,
1251 struct_addr);
1252 push_thread_stack_temporary (inferior_ptid, retval);
1253 }
1254 else
1255 {
1256 retval = allocate_value (values_type);
1257 read_value_memory (retval, 0, 1, struct_addr,
1258 value_contents_raw (retval),
1259 TYPE_LENGTH (values_type));
1260 }
1261 }
1262 else
1263 {
1264 retval = allocate_value (values_type);
1265 gdbarch_return_value (gdbarch, function, values_type,
1266 dummy_frame_context_saver_get_regs (context_saver),
1267 value_contents_raw (retval), NULL);
1268 if (stack_temporaries && class_or_union_p (values_type))
1269 {
1270 /* Values of class type returned in registers are copied onto
1271 the stack and their lval_type set to lval_memory. This is
1272 required because further evaluation of the expression
1273 could potentially invoke methods on the return value
1274 requiring GDB to evaluate the "this" pointer. To evaluate
1275 the this pointer, GDB needs the memory address of the
1276 value. */
1277 value_force_lval (retval, struct_addr);
1278 push_thread_stack_temporary (inferior_ptid, retval);
1279 }
1280 }
1281
1282 do_cleanups (context_saver_cleanup);
1283
1284 gdb_assert (retval);
1285 return retval;
1286 }
1287 }
1288 \f
1289
1290 /* Provide a prototype to silence -Wmissing-prototypes. */
1291 void _initialize_infcall (void);
1292
1293 void
1294 _initialize_infcall (void)
1295 {
1296 add_setshow_boolean_cmd ("coerce-float-to-double", class_obscure,
1297 &coerce_float_to_double_p, _("\
1298 Set coercion of floats to doubles when calling functions."), _("\
1299 Show coercion of floats to doubles when calling functions"), _("\
1300 Variables of type float should generally be converted to doubles before\n\
1301 calling an unprototyped function, and left alone when calling a prototyped\n\
1302 function. However, some older debug info formats do not provide enough\n\
1303 information to determine that a function is prototyped. If this flag is\n\
1304 set, GDB will perform the conversion for a function it considers\n\
1305 unprototyped.\n\
1306 The default is to perform the conversion.\n"),
1307 NULL,
1308 show_coerce_float_to_double_p,
1309 &setlist, &showlist);
1310
1311 add_setshow_boolean_cmd ("unwindonsignal", no_class,
1312 &unwind_on_signal_p, _("\
1313 Set unwinding of stack if a signal is received while in a call dummy."), _("\
1314 Show unwinding of stack if a signal is received while in a call dummy."), _("\
1315 The unwindonsignal lets the user determine what gdb should do if a signal\n\
1316 is received while in a function called from gdb (call dummy). If set, gdb\n\
1317 unwinds the stack and restore the context to what as it was before the call.\n\
1318 The default is to stop in the frame where the signal was received."),
1319 NULL,
1320 show_unwind_on_signal_p,
1321 &setlist, &showlist);
1322
1323 add_setshow_boolean_cmd ("unwind-on-terminating-exception", no_class,
1324 &unwind_on_terminating_exception_p, _("\
1325 Set unwinding of stack if std::terminate is called while in call dummy."), _("\
1326 Show unwinding of stack if std::terminate() is called while in a call dummy."),
1327 _("\
1328 The unwind on terminating exception flag lets the user determine\n\
1329 what gdb should do if a std::terminate() call is made from the\n\
1330 default exception handler. If set, gdb unwinds the stack and restores\n\
1331 the context to what it was before the call. If unset, gdb allows the\n\
1332 std::terminate call to proceed.\n\
1333 The default is to unwind the frame."),
1334 NULL,
1335 show_unwind_on_terminating_exception_p,
1336 &setlist, &showlist);
1337
1338 }