]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infcall.c
Copyright updates for 2007.
[thirdparty/binutils-gdb.git] / gdb / infcall.c
1 /* Perform an inferior function call, for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "breakpoint.h"
26 #include "target.h"
27 #include "regcache.h"
28 #include "inferior.h"
29 #include "gdb_assert.h"
30 #include "block.h"
31 #include "gdbcore.h"
32 #include "language.h"
33 #include "objfiles.h"
34 #include "gdbcmd.h"
35 #include "command.h"
36 #include "gdb_string.h"
37 #include "infcall.h"
38 #include "dummy-frame.h"
39
40 /* NOTE: cagney/2003-04-16: What's the future of this code?
41
42 GDB needs an asynchronous expression evaluator, that means an
43 asynchronous inferior function call implementation, and that in
44 turn means restructuring the code so that it is event driven. */
45
46 /* How you should pass arguments to a function depends on whether it
47 was defined in K&R style or prototype style. If you define a
48 function using the K&R syntax that takes a `float' argument, then
49 callers must pass that argument as a `double'. If you define the
50 function using the prototype syntax, then you must pass the
51 argument as a `float', with no promotion.
52
53 Unfortunately, on certain older platforms, the debug info doesn't
54 indicate reliably how each function was defined. A function type's
55 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
56 defined in prototype style. When calling a function whose
57 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults this flag to
58 decide what to do.
59
60 For modern targets, it is proper to assume that, if the prototype
61 flag is clear, that can be trusted: `float' arguments should be
62 promoted to `double'. For some older targets, if the prototype
63 flag is clear, that doesn't tell us anything. The default is to
64 trust the debug information; the user can override this behavior
65 with "set coerce-float-to-double 0". */
66
67 static int coerce_float_to_double_p = 1;
68 static void
69 show_coerce_float_to_double_p (struct ui_file *file, int from_tty,
70 struct cmd_list_element *c, const char *value)
71 {
72 fprintf_filtered (file, _("\
73 Coercion of floats to doubles when calling functions is %s.\n"),
74 value);
75 }
76
77 /* This boolean tells what gdb should do if a signal is received while
78 in a function called from gdb (call dummy). If set, gdb unwinds
79 the stack and restore the context to what as it was before the
80 call.
81
82 The default is to stop in the frame where the signal was received. */
83
84 int unwind_on_signal_p = 0;
85 static void
86 show_unwind_on_signal_p (struct ui_file *file, int from_tty,
87 struct cmd_list_element *c, const char *value)
88 {
89 fprintf_filtered (file, _("\
90 Unwinding of stack if a signal is received while in a call dummy is %s.\n"),
91 value);
92 }
93
94
95 /* Perform the standard coercions that are specified
96 for arguments to be passed to C functions.
97
98 If PARAM_TYPE is non-NULL, it is the expected parameter type.
99 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
100
101 static struct value *
102 value_arg_coerce (struct value *arg, struct type *param_type,
103 int is_prototyped)
104 {
105 struct type *arg_type = check_typedef (value_type (arg));
106 struct type *type
107 = param_type ? check_typedef (param_type) : arg_type;
108
109 switch (TYPE_CODE (type))
110 {
111 case TYPE_CODE_REF:
112 {
113 struct value *new_value;
114
115 if (TYPE_CODE (arg_type) == TYPE_CODE_REF)
116 return value_cast_pointers (type, arg);
117
118 /* Cast the value to the reference's target type, and then
119 convert it back to a reference. This will issue an error
120 if the value was not previously in memory - in some cases
121 we should clearly be allowing this, but how? */
122 new_value = value_cast (TYPE_TARGET_TYPE (type), arg);
123 new_value = value_ref (new_value);
124 return new_value;
125 }
126 case TYPE_CODE_INT:
127 case TYPE_CODE_CHAR:
128 case TYPE_CODE_BOOL:
129 case TYPE_CODE_ENUM:
130 /* If we don't have a prototype, coerce to integer type if necessary. */
131 if (!is_prototyped)
132 {
133 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
134 type = builtin_type_int;
135 }
136 /* Currently all target ABIs require at least the width of an integer
137 type for an argument. We may have to conditionalize the following
138 type coercion for future targets. */
139 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
140 type = builtin_type_int;
141 break;
142 case TYPE_CODE_FLT:
143 if (!is_prototyped && coerce_float_to_double_p)
144 {
145 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
146 type = builtin_type_double;
147 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
148 type = builtin_type_long_double;
149 }
150 break;
151 case TYPE_CODE_FUNC:
152 type = lookup_pointer_type (type);
153 break;
154 case TYPE_CODE_ARRAY:
155 /* Arrays are coerced to pointers to their first element, unless
156 they are vectors, in which case we want to leave them alone,
157 because they are passed by value. */
158 if (current_language->c_style_arrays)
159 if (!TYPE_VECTOR (type))
160 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
161 break;
162 case TYPE_CODE_UNDEF:
163 case TYPE_CODE_PTR:
164 case TYPE_CODE_STRUCT:
165 case TYPE_CODE_UNION:
166 case TYPE_CODE_VOID:
167 case TYPE_CODE_SET:
168 case TYPE_CODE_RANGE:
169 case TYPE_CODE_STRING:
170 case TYPE_CODE_BITSTRING:
171 case TYPE_CODE_ERROR:
172 case TYPE_CODE_MEMBERPTR:
173 case TYPE_CODE_METHODPTR:
174 case TYPE_CODE_METHOD:
175 case TYPE_CODE_COMPLEX:
176 default:
177 break;
178 }
179
180 return value_cast (type, arg);
181 }
182
183 /* Determine a function's address and its return type from its value.
184 Calls error() if the function is not valid for calling. */
185
186 CORE_ADDR
187 find_function_addr (struct value *function, struct type **retval_type)
188 {
189 struct type *ftype = check_typedef (value_type (function));
190 enum type_code code = TYPE_CODE (ftype);
191 struct type *value_type;
192 CORE_ADDR funaddr;
193
194 /* If it's a member function, just look at the function
195 part of it. */
196
197 /* Determine address to call. */
198 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
199 {
200 funaddr = VALUE_ADDRESS (function);
201 value_type = TYPE_TARGET_TYPE (ftype);
202 }
203 else if (code == TYPE_CODE_PTR)
204 {
205 funaddr = value_as_address (function);
206 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
207 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
208 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
209 {
210 funaddr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
211 funaddr,
212 &current_target);
213 value_type = TYPE_TARGET_TYPE (ftype);
214 }
215 else
216 value_type = builtin_type_int;
217 }
218 else if (code == TYPE_CODE_INT)
219 {
220 /* Handle the case of functions lacking debugging info.
221 Their values are characters since their addresses are char */
222 if (TYPE_LENGTH (ftype) == 1)
223 funaddr = value_as_address (value_addr (function));
224 else
225 /* Handle integer used as address of a function. */
226 funaddr = (CORE_ADDR) value_as_long (function);
227
228 value_type = builtin_type_int;
229 }
230 else
231 error (_("Invalid data type for function to be called."));
232
233 if (retval_type != NULL)
234 *retval_type = value_type;
235 return funaddr + DEPRECATED_FUNCTION_START_OFFSET;
236 }
237
238 /* Call breakpoint_auto_delete on the current contents of the bpstat
239 pointed to by arg (which is really a bpstat *). */
240
241 static void
242 breakpoint_auto_delete_contents (void *arg)
243 {
244 breakpoint_auto_delete (*(bpstat *) arg);
245 }
246
247 static CORE_ADDR
248 generic_push_dummy_code (struct gdbarch *gdbarch,
249 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
250 struct value **args, int nargs,
251 struct type *value_type,
252 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
253 {
254 /* Something here to findout the size of a breakpoint and then
255 allocate space for it on the stack. */
256 int bplen;
257 /* This code assumes frame align. */
258 gdb_assert (gdbarch_frame_align_p (gdbarch));
259 /* Force the stack's alignment. The intent is to ensure that the SP
260 is aligned to at least a breakpoint instruction's boundary. */
261 sp = gdbarch_frame_align (gdbarch, sp);
262 /* Allocate space for, and then position the breakpoint on the
263 stack. */
264 if (gdbarch_inner_than (gdbarch, 1, 2))
265 {
266 CORE_ADDR bppc = sp;
267 gdbarch_breakpoint_from_pc (gdbarch, &bppc, &bplen);
268 sp = gdbarch_frame_align (gdbarch, sp - bplen);
269 (*bp_addr) = sp;
270 /* Should the breakpoint size/location be re-computed here? */
271 }
272 else
273 {
274 (*bp_addr) = sp;
275 gdbarch_breakpoint_from_pc (gdbarch, bp_addr, &bplen);
276 sp = gdbarch_frame_align (gdbarch, sp + bplen);
277 }
278 /* Inferior resumes at the function entry point. */
279 (*real_pc) = funaddr;
280 return sp;
281 }
282
283 /* For CALL_DUMMY_ON_STACK, push a breakpoint sequence that the called
284 function returns to. */
285
286 static CORE_ADDR
287 push_dummy_code (struct gdbarch *gdbarch,
288 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
289 struct value **args, int nargs,
290 struct type *value_type,
291 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
292 {
293 if (gdbarch_push_dummy_code_p (gdbarch))
294 return gdbarch_push_dummy_code (gdbarch, sp, funaddr, using_gcc,
295 args, nargs, value_type, real_pc, bp_addr);
296 else
297 return generic_push_dummy_code (gdbarch, sp, funaddr, using_gcc,
298 args, nargs, value_type, real_pc, bp_addr);
299 }
300
301 /* All this stuff with a dummy frame may seem unnecessarily complicated
302 (why not just save registers in GDB?). The purpose of pushing a dummy
303 frame which looks just like a real frame is so that if you call a
304 function and then hit a breakpoint (get a signal, etc), "backtrace"
305 will look right. Whether the backtrace needs to actually show the
306 stack at the time the inferior function was called is debatable, but
307 it certainly needs to not display garbage. So if you are contemplating
308 making dummy frames be different from normal frames, consider that. */
309
310 /* Perform a function call in the inferior.
311 ARGS is a vector of values of arguments (NARGS of them).
312 FUNCTION is a value, the function to be called.
313 Returns a value representing what the function returned.
314 May fail to return, if a breakpoint or signal is hit
315 during the execution of the function.
316
317 ARGS is modified to contain coerced values. */
318
319 struct value *
320 call_function_by_hand (struct value *function, int nargs, struct value **args)
321 {
322 CORE_ADDR sp;
323 CORE_ADDR dummy_addr;
324 struct type *values_type;
325 unsigned char struct_return;
326 CORE_ADDR struct_addr = 0;
327 struct regcache *retbuf;
328 struct cleanup *retbuf_cleanup;
329 struct inferior_status *inf_status;
330 struct cleanup *inf_status_cleanup;
331 CORE_ADDR funaddr;
332 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
333 CORE_ADDR real_pc;
334 struct type *ftype = check_typedef (value_type (function));
335 CORE_ADDR bp_addr;
336 struct regcache *caller_regcache;
337 struct cleanup *caller_regcache_cleanup;
338 struct frame_id dummy_id;
339
340 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
341 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
342
343 if (!target_has_execution)
344 noprocess ();
345
346 if (!gdbarch_push_dummy_call_p (current_gdbarch))
347 error (_("This target does not support function calls"));
348
349 /* Create a cleanup chain that contains the retbuf (buffer
350 containing the register values). This chain is create BEFORE the
351 inf_status chain so that the inferior status can cleaned up
352 (restored or discarded) without having the retbuf freed. */
353 retbuf = regcache_xmalloc (current_gdbarch);
354 retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
355
356 /* A cleanup for the inferior status. Create this AFTER the retbuf
357 so that this can be discarded or applied without interfering with
358 the regbuf. */
359 inf_status = save_inferior_status (1);
360 inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
361
362 /* Save the caller's registers so that they can be restored once the
363 callee returns. To allow nested calls the registers are (further
364 down) pushed onto a dummy frame stack. Include a cleanup (which
365 is tossed once the regcache has been pushed). */
366 caller_regcache = frame_save_as_regcache (get_current_frame ());
367 caller_regcache_cleanup = make_cleanup_regcache_xfree (caller_regcache);
368
369 /* Ensure that the initial SP is correctly aligned. */
370 {
371 CORE_ADDR old_sp = read_sp ();
372 if (gdbarch_frame_align_p (current_gdbarch))
373 {
374 sp = gdbarch_frame_align (current_gdbarch, old_sp);
375 /* NOTE: cagney/2003-08-13: Skip the "red zone". For some
376 ABIs, a function can use memory beyond the inner most stack
377 address. AMD64 called that region the "red zone". Skip at
378 least the "red zone" size before allocating any space on
379 the stack. */
380 if (INNER_THAN (1, 2))
381 sp -= gdbarch_frame_red_zone_size (current_gdbarch);
382 else
383 sp += gdbarch_frame_red_zone_size (current_gdbarch);
384 /* Still aligned? */
385 gdb_assert (sp == gdbarch_frame_align (current_gdbarch, sp));
386 /* NOTE: cagney/2002-09-18:
387
388 On a RISC architecture, a void parameterless generic dummy
389 frame (i.e., no parameters, no result) typically does not
390 need to push anything the stack and hence can leave SP and
391 FP. Similarly, a frameless (possibly leaf) function does
392 not push anything on the stack and, hence, that too can
393 leave FP and SP unchanged. As a consequence, a sequence of
394 void parameterless generic dummy frame calls to frameless
395 functions will create a sequence of effectively identical
396 frames (SP, FP and TOS and PC the same). This, not
397 suprisingly, results in what appears to be a stack in an
398 infinite loop --- when GDB tries to find a generic dummy
399 frame on the internal dummy frame stack, it will always
400 find the first one.
401
402 To avoid this problem, the code below always grows the
403 stack. That way, two dummy frames can never be identical.
404 It does burn a few bytes of stack but that is a small price
405 to pay :-). */
406 if (sp == old_sp)
407 {
408 if (INNER_THAN (1, 2))
409 /* Stack grows down. */
410 sp = gdbarch_frame_align (current_gdbarch, old_sp - 1);
411 else
412 /* Stack grows up. */
413 sp = gdbarch_frame_align (current_gdbarch, old_sp + 1);
414 }
415 gdb_assert ((INNER_THAN (1, 2) && sp <= old_sp)
416 || (INNER_THAN (2, 1) && sp >= old_sp));
417 }
418 else
419 /* FIXME: cagney/2002-09-18: Hey, you loose!
420
421 Who knows how badly aligned the SP is!
422
423 If the generic dummy frame ends up empty (because nothing is
424 pushed) GDB won't be able to correctly perform back traces.
425 If a target is having trouble with backtraces, first thing to
426 do is add FRAME_ALIGN() to the architecture vector. If that
427 fails, try unwind_dummy_id().
428
429 If the ABI specifies a "Red Zone" (see the doco) the code
430 below will quietly trash it. */
431 sp = old_sp;
432 }
433
434 funaddr = find_function_addr (function, &values_type);
435 CHECK_TYPEDEF (values_type);
436
437 {
438 struct block *b = block_for_pc (funaddr);
439 /* If compiled without -g, assume GCC 2. */
440 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
441 }
442
443 /* Are we returning a value using a structure return or a normal
444 value return? */
445
446 struct_return = using_struct_return (values_type, using_gcc);
447
448 /* Determine the location of the breakpoint (and possibly other
449 stuff) that the called function will return to. The SPARC, for a
450 function returning a structure or union, needs to make space for
451 not just the breakpoint but also an extra word containing the
452 size (?) of the structure being passed. */
453
454 /* The actual breakpoint (at BP_ADDR) is inserted separatly so there
455 is no need to write that out. */
456
457 switch (CALL_DUMMY_LOCATION)
458 {
459 case ON_STACK:
460 /* "dummy_addr" is here just to keep old targets happy. New
461 targets return that same information via "sp" and "bp_addr". */
462 if (INNER_THAN (1, 2))
463 {
464 sp = push_dummy_code (current_gdbarch, sp, funaddr,
465 using_gcc, args, nargs, values_type,
466 &real_pc, &bp_addr);
467 dummy_addr = sp;
468 }
469 else
470 {
471 dummy_addr = sp;
472 sp = push_dummy_code (current_gdbarch, sp, funaddr,
473 using_gcc, args, nargs, values_type,
474 &real_pc, &bp_addr);
475 }
476 break;
477 case AT_ENTRY_POINT:
478 real_pc = funaddr;
479 dummy_addr = entry_point_address ();
480 /* Make certain that the address points at real code, and not a
481 function descriptor. */
482 dummy_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
483 dummy_addr,
484 &current_target);
485 /* A call dummy always consists of just a single breakpoint, so
486 it's address is the same as the address of the dummy. */
487 bp_addr = dummy_addr;
488 break;
489 case AT_SYMBOL:
490 /* Some executables define a symbol __CALL_DUMMY_ADDRESS whose
491 address is the location where the breakpoint should be
492 placed. Once all targets are using the overhauled frame code
493 this can be deleted - ON_STACK is a better option. */
494 {
495 struct minimal_symbol *sym;
496
497 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
498 real_pc = funaddr;
499 if (sym)
500 dummy_addr = SYMBOL_VALUE_ADDRESS (sym);
501 else
502 dummy_addr = entry_point_address ();
503 /* Make certain that the address points at real code, and not
504 a function descriptor. */
505 dummy_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
506 dummy_addr,
507 &current_target);
508 /* A call dummy always consists of just a single breakpoint,
509 so it's address is the same as the address of the dummy. */
510 bp_addr = dummy_addr;
511 break;
512 }
513 default:
514 internal_error (__FILE__, __LINE__, _("bad switch"));
515 }
516
517 if (nargs < TYPE_NFIELDS (ftype))
518 error (_("too few arguments in function call"));
519
520 {
521 int i;
522 for (i = nargs - 1; i >= 0; i--)
523 {
524 int prototyped;
525 struct type *param_type;
526
527 /* FIXME drow/2002-05-31: Should just always mark methods as
528 prototyped. Can we respect TYPE_VARARGS? Probably not. */
529 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
530 prototyped = 1;
531 else if (i < TYPE_NFIELDS (ftype))
532 prototyped = TYPE_PROTOTYPED (ftype);
533 else
534 prototyped = 0;
535
536 if (i < TYPE_NFIELDS (ftype))
537 param_type = TYPE_FIELD_TYPE (ftype, i);
538 else
539 param_type = NULL;
540
541 args[i] = value_arg_coerce (args[i], param_type, prototyped);
542
543 /* elz: this code is to handle the case in which the function
544 to be called has a pointer to function as parameter and the
545 corresponding actual argument is the address of a function
546 and not a pointer to function variable. In aCC compiled
547 code, the calls through pointers to functions (in the body
548 of the function called by hand) are made via
549 $$dyncall_external which requires some registers setting,
550 this is taken care of if we call via a function pointer
551 variable, but not via a function address. In cc this is
552 not a problem. */
553
554 if (using_gcc == 0)
555 {
556 if (param_type != NULL && TYPE_CODE (ftype) != TYPE_CODE_METHOD)
557 {
558 /* if this parameter is a pointer to function. */
559 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
560 if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC)
561 /* elz: FIXME here should go the test about the
562 compiler used to compile the target. We want to
563 issue the error message only if the compiler
564 used was HP's aCC. If we used HP's cc, then
565 there is no problem and no need to return at
566 this point. */
567 /* Go see if the actual parameter is a variable of
568 type pointer to function or just a function. */
569 if (VALUE_LVAL (args[i]) == not_lval)
570 {
571 char *arg_name;
572 /* NOTE: cagney/2005-01-02: THIS IS BOGUS. */
573 if (find_pc_partial_function ((CORE_ADDR) value_contents (args[i])[0], &arg_name, NULL, NULL))
574 error (_("\
575 You cannot use function <%s> as argument. \n\
576 You must use a pointer to function type variable. Command ignored."), arg_name);
577 }
578 }
579 }
580 }
581 }
582
583 if (DEPRECATED_REG_STRUCT_HAS_ADDR_P ())
584 {
585 int i;
586 /* This is a machine like the sparc, where we may need to pass a
587 pointer to the structure, not the structure itself. */
588 for (i = nargs - 1; i >= 0; i--)
589 {
590 struct type *arg_type = check_typedef (value_type (args[i]));
591 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
592 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
593 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
594 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
595 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
596 || TYPE_CODE (arg_type) == TYPE_CODE_SET
597 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
598 && TYPE_LENGTH (arg_type) > 8)
599 )
600 && DEPRECATED_REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
601 {
602 CORE_ADDR addr;
603 int len; /* = TYPE_LENGTH (arg_type); */
604 int aligned_len;
605 arg_type = check_typedef (value_enclosing_type (args[i]));
606 len = TYPE_LENGTH (arg_type);
607
608 aligned_len = len;
609 if (INNER_THAN (1, 2))
610 {
611 /* stack grows downward */
612 sp -= aligned_len;
613 /* ... so the address of the thing we push is the
614 stack pointer after we push it. */
615 addr = sp;
616 }
617 else
618 {
619 /* The stack grows up, so the address of the thing
620 we push is the stack pointer before we push it. */
621 addr = sp;
622 sp += aligned_len;
623 }
624 /* Push the structure. */
625 write_memory (addr, value_contents_all (args[i]), len);
626 /* The value we're going to pass is the address of the
627 thing we just pushed. */
628 /*args[i] = value_from_longest (lookup_pointer_type (values_type),
629 (LONGEST) addr); */
630 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
631 addr);
632 }
633 }
634 }
635
636
637 /* Reserve space for the return structure to be written on the
638 stack, if necessary. Make certain that the value is correctly
639 aligned. */
640
641 if (struct_return)
642 {
643 int len = TYPE_LENGTH (values_type);
644 if (INNER_THAN (1, 2))
645 {
646 /* Stack grows downward. Align STRUCT_ADDR and SP after
647 making space for the return value. */
648 sp -= len;
649 if (gdbarch_frame_align_p (current_gdbarch))
650 sp = gdbarch_frame_align (current_gdbarch, sp);
651 struct_addr = sp;
652 }
653 else
654 {
655 /* Stack grows upward. Align the frame, allocate space, and
656 then again, re-align the frame??? */
657 if (gdbarch_frame_align_p (current_gdbarch))
658 sp = gdbarch_frame_align (current_gdbarch, sp);
659 struct_addr = sp;
660 sp += len;
661 if (gdbarch_frame_align_p (current_gdbarch))
662 sp = gdbarch_frame_align (current_gdbarch, sp);
663 }
664 }
665
666 /* Create the dummy stack frame. Pass in the call dummy address as,
667 presumably, the ABI code knows where, in the call dummy, the
668 return address should be pointed. */
669 sp = gdbarch_push_dummy_call (current_gdbarch, function, current_regcache,
670 bp_addr, nargs, args, sp, struct_return,
671 struct_addr);
672
673 /* Set up a frame ID for the dummy frame so we can pass it to
674 set_momentary_breakpoint. We need to give the breakpoint a frame
675 ID so that the breakpoint code can correctly re-identify the
676 dummy breakpoint. */
677 /* Sanity. The exact same SP value is returned by PUSH_DUMMY_CALL,
678 saved as the dummy-frame TOS, and used by unwind_dummy_id to form
679 the frame ID's stack address. */
680 dummy_id = frame_id_build (sp, bp_addr);
681
682 /* Create a momentary breakpoint at the return address of the
683 inferior. That way it breaks when it returns. */
684
685 {
686 struct breakpoint *bpt;
687 struct symtab_and_line sal;
688 init_sal (&sal); /* initialize to zeroes */
689 sal.pc = bp_addr;
690 sal.section = find_pc_overlay (sal.pc);
691 /* Sanity. The exact same SP value is returned by
692 PUSH_DUMMY_CALL, saved as the dummy-frame TOS, and used by
693 unwind_dummy_id to form the frame ID's stack address. */
694 bpt = set_momentary_breakpoint (sal, dummy_id, bp_call_dummy);
695 bpt->disposition = disp_del;
696 }
697
698 /* Everything's ready, push all the info needed to restore the
699 caller (and identify the dummy-frame) onto the dummy-frame
700 stack. */
701 dummy_frame_push (caller_regcache, &dummy_id);
702 discard_cleanups (caller_regcache_cleanup);
703
704 /* - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP -
705 If you're looking to implement asynchronous dummy-frames, then
706 just below is the place to chop this function in two.. */
707
708 /* Now proceed, having reached the desired place. */
709 clear_proceed_status ();
710
711 /* Execute a "stack dummy", a piece of code stored in the stack by
712 the debugger to be executed in the inferior.
713
714 The dummy's frame is automatically popped whenever that break is
715 hit. If that is the first time the program stops,
716 call_function_by_hand returns to its caller with that frame
717 already gone and sets RC to 0.
718
719 Otherwise, set RC to a non-zero value. If the called function
720 receives a random signal, we do not allow the user to continue
721 executing it as this may not work. The dummy frame is poped and
722 we return 1. If we hit a breakpoint, we leave the frame in place
723 and return 2 (the frame will eventually be popped when we do hit
724 the dummy end breakpoint). */
725
726 {
727 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
728 int saved_async = 0;
729
730 /* If all error()s out of proceed ended up calling normal_stop
731 (and perhaps they should; it already does in the special case
732 of error out of resume()), then we wouldn't need this. */
733 make_cleanup (breakpoint_auto_delete_contents, &stop_bpstat);
734
735 disable_watchpoints_before_interactive_call_start ();
736 proceed_to_finish = 1; /* We want stop_registers, please... */
737
738 if (target_can_async_p ())
739 saved_async = target_async_mask (0);
740
741 proceed (real_pc, TARGET_SIGNAL_0, 0);
742
743 if (saved_async)
744 target_async_mask (saved_async);
745
746 enable_watchpoints_after_interactive_call_stop ();
747
748 discard_cleanups (old_cleanups);
749 }
750
751 if (stopped_by_random_signal || !stop_stack_dummy)
752 {
753 /* Find the name of the function we're about to complain about. */
754 const char *name = NULL;
755 {
756 struct symbol *symbol = find_pc_function (funaddr);
757 if (symbol)
758 name = SYMBOL_PRINT_NAME (symbol);
759 else
760 {
761 /* Try the minimal symbols. */
762 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
763 if (msymbol)
764 name = SYMBOL_PRINT_NAME (msymbol);
765 }
766 if (name == NULL)
767 {
768 /* Can't use a cleanup here. It is discarded, instead use
769 an alloca. */
770 char *tmp = xstrprintf ("at %s", hex_string (funaddr));
771 char *a = alloca (strlen (tmp) + 1);
772 strcpy (a, tmp);
773 xfree (tmp);
774 name = a;
775 }
776 }
777 if (stopped_by_random_signal)
778 {
779 /* We stopped inside the FUNCTION because of a random
780 signal. Further execution of the FUNCTION is not
781 allowed. */
782
783 if (unwind_on_signal_p)
784 {
785 /* The user wants the context restored. */
786
787 /* We must get back to the frame we were before the
788 dummy call. */
789 frame_pop (get_current_frame ());
790
791 /* FIXME: Insert a bunch of wrap_here; name can be very
792 long if it's a C++ name with arguments and stuff. */
793 error (_("\
794 The program being debugged was signaled while in a function called from GDB.\n\
795 GDB has restored the context to what it was before the call.\n\
796 To change this behavior use \"set unwindonsignal off\"\n\
797 Evaluation of the expression containing the function (%s) will be abandoned."),
798 name);
799 }
800 else
801 {
802 /* The user wants to stay in the frame where we stopped
803 (default).*/
804 /* If we restored the inferior status (via the cleanup),
805 we would print a spurious error message (Unable to
806 restore previously selected frame), would write the
807 registers from the inf_status (which is wrong), and
808 would do other wrong things. */
809 discard_cleanups (inf_status_cleanup);
810 discard_inferior_status (inf_status);
811 /* FIXME: Insert a bunch of wrap_here; name can be very
812 long if it's a C++ name with arguments and stuff. */
813 error (_("\
814 The program being debugged was signaled while in a function called from GDB.\n\
815 GDB remains in the frame where the signal was received.\n\
816 To change this behavior use \"set unwindonsignal on\"\n\
817 Evaluation of the expression containing the function (%s) will be abandoned."),
818 name);
819 }
820 }
821
822 if (!stop_stack_dummy)
823 {
824 /* We hit a breakpoint inside the FUNCTION. */
825 /* If we restored the inferior status (via the cleanup), we
826 would print a spurious error message (Unable to restore
827 previously selected frame), would write the registers
828 from the inf_status (which is wrong), and would do other
829 wrong things. */
830 discard_cleanups (inf_status_cleanup);
831 discard_inferior_status (inf_status);
832 /* The following error message used to say "The expression
833 which contained the function call has been discarded."
834 It is a hard concept to explain in a few words. Ideally,
835 GDB would be able to resume evaluation of the expression
836 when the function finally is done executing. Perhaps
837 someday this will be implemented (it would not be easy). */
838 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
839 a C++ name with arguments and stuff. */
840 error (_("\
841 The program being debugged stopped while in a function called from GDB.\n\
842 When the function (%s) is done executing, GDB will silently\n\
843 stop (instead of continuing to evaluate the expression containing\n\
844 the function call)."), name);
845 }
846
847 /* The above code errors out, so ... */
848 internal_error (__FILE__, __LINE__, _("... should not be here"));
849 }
850
851 /* If we get here the called FUNCTION run to completion. */
852
853 /* On normal return, the stack dummy has been popped already. */
854 regcache_cpy_no_passthrough (retbuf, stop_registers);
855
856 /* Restore the inferior status, via its cleanup. At this stage,
857 leave the RETBUF alone. */
858 do_cleanups (inf_status_cleanup);
859
860 /* Figure out the value returned by the function. */
861 {
862 struct value *retval = NULL;
863
864 if (TYPE_CODE (values_type) == TYPE_CODE_VOID)
865 {
866 /* If the function returns void, don't bother fetching the
867 return value. */
868 retval = allocate_value (values_type);
869 }
870 else
871 {
872 struct gdbarch *arch = current_gdbarch;
873
874 switch (gdbarch_return_value (arch, values_type, NULL, NULL, NULL))
875 {
876 case RETURN_VALUE_REGISTER_CONVENTION:
877 case RETURN_VALUE_ABI_RETURNS_ADDRESS:
878 case RETURN_VALUE_ABI_PRESERVES_ADDRESS:
879 retval = allocate_value (values_type);
880 gdbarch_return_value (current_gdbarch, values_type, retbuf,
881 value_contents_raw (retval), NULL);
882 break;
883 case RETURN_VALUE_STRUCT_CONVENTION:
884 retval = value_at (values_type, struct_addr);
885 break;
886 }
887 }
888
889 do_cleanups (retbuf_cleanup);
890
891 gdb_assert(retval);
892 return retval;
893 }
894 }
895 \f
896
897 /* Provide a prototype to silence -Wmissing-prototypes. */
898 void _initialize_infcall (void);
899
900 void
901 _initialize_infcall (void)
902 {
903 add_setshow_boolean_cmd ("coerce-float-to-double", class_obscure,
904 &coerce_float_to_double_p, _("\
905 Set coercion of floats to doubles when calling functions."), _("\
906 Show coercion of floats to doubles when calling functions"), _("\
907 Variables of type float should generally be converted to doubles before\n\
908 calling an unprototyped function, and left alone when calling a prototyped\n\
909 function. However, some older debug info formats do not provide enough\n\
910 information to determine that a function is prototyped. If this flag is\n\
911 set, GDB will perform the conversion for a function it considers\n\
912 unprototyped.\n\
913 The default is to perform the conversion.\n"),
914 NULL,
915 show_coerce_float_to_double_p,
916 &setlist, &showlist);
917
918 add_setshow_boolean_cmd ("unwindonsignal", no_class,
919 &unwind_on_signal_p, _("\
920 Set unwinding of stack if a signal is received while in a call dummy."), _("\
921 Show unwinding of stack if a signal is received while in a call dummy."), _("\
922 The unwindonsignal lets the user determine what gdb should do if a signal\n\
923 is received while in a function called from gdb (call dummy). If set, gdb\n\
924 unwinds the stack and restore the context to what as it was before the call.\n\
925 The default is to stop in the frame where the signal was received."),
926 NULL,
927 show_unwind_on_signal_p,
928 &setlist, &showlist);
929 }