]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infcall.c
Fix PR 20345 - call_function_by_hand_dummy: Assertion `tp->thread_fsm == &sm->thread_...
[thirdparty/binutils-gdb.git] / gdb / infcall.c
1 /* Perform an inferior function call, for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "infcall.h"
22 #include "breakpoint.h"
23 #include "tracepoint.h"
24 #include "target.h"
25 #include "regcache.h"
26 #include "inferior.h"
27 #include "infrun.h"
28 #include "block.h"
29 #include "gdbcore.h"
30 #include "language.h"
31 #include "objfiles.h"
32 #include "gdbcmd.h"
33 #include "command.h"
34 #include "dummy-frame.h"
35 #include "ada-lang.h"
36 #include "gdbthread.h"
37 #include "event-top.h"
38 #include "observer.h"
39 #include "top.h"
40 #include "interps.h"
41 #include "thread-fsm.h"
42
43 /* If we can't find a function's name from its address,
44 we print this instead. */
45 #define RAW_FUNCTION_ADDRESS_FORMAT "at 0x%s"
46 #define RAW_FUNCTION_ADDRESS_SIZE (sizeof (RAW_FUNCTION_ADDRESS_FORMAT) \
47 + 2 * sizeof (CORE_ADDR))
48
49 /* NOTE: cagney/2003-04-16: What's the future of this code?
50
51 GDB needs an asynchronous expression evaluator, that means an
52 asynchronous inferior function call implementation, and that in
53 turn means restructuring the code so that it is event driven. */
54
55 /* How you should pass arguments to a function depends on whether it
56 was defined in K&R style or prototype style. If you define a
57 function using the K&R syntax that takes a `float' argument, then
58 callers must pass that argument as a `double'. If you define the
59 function using the prototype syntax, then you must pass the
60 argument as a `float', with no promotion.
61
62 Unfortunately, on certain older platforms, the debug info doesn't
63 indicate reliably how each function was defined. A function type's
64 TYPE_PROTOTYPED flag may be clear, even if the function was defined
65 in prototype style. When calling a function whose TYPE_PROTOTYPED
66 flag is clear, GDB consults this flag to decide what to do.
67
68 For modern targets, it is proper to assume that, if the prototype
69 flag is clear, that can be trusted: `float' arguments should be
70 promoted to `double'. For some older targets, if the prototype
71 flag is clear, that doesn't tell us anything. The default is to
72 trust the debug information; the user can override this behavior
73 with "set coerce-float-to-double 0". */
74
75 static int coerce_float_to_double_p = 1;
76 static void
77 show_coerce_float_to_double_p (struct ui_file *file, int from_tty,
78 struct cmd_list_element *c, const char *value)
79 {
80 fprintf_filtered (file,
81 _("Coercion of floats to doubles "
82 "when calling functions is %s.\n"),
83 value);
84 }
85
86 /* This boolean tells what gdb should do if a signal is received while
87 in a function called from gdb (call dummy). If set, gdb unwinds
88 the stack and restore the context to what as it was before the
89 call.
90
91 The default is to stop in the frame where the signal was received. */
92
93 static int unwind_on_signal_p = 0;
94 static void
95 show_unwind_on_signal_p (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97 {
98 fprintf_filtered (file,
99 _("Unwinding of stack if a signal is "
100 "received while in a call dummy is %s.\n"),
101 value);
102 }
103
104 /* This boolean tells what gdb should do if a std::terminate call is
105 made while in a function called from gdb (call dummy).
106 As the confines of a single dummy stack prohibit out-of-frame
107 handlers from handling a raised exception, and as out-of-frame
108 handlers are common in C++, this can lead to no handler being found
109 by the unwinder, and a std::terminate call. This is a false positive.
110 If set, gdb unwinds the stack and restores the context to what it
111 was before the call.
112
113 The default is to unwind the frame if a std::terminate call is
114 made. */
115
116 static int unwind_on_terminating_exception_p = 1;
117
118 static void
119 show_unwind_on_terminating_exception_p (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c,
121 const char *value)
122
123 {
124 fprintf_filtered (file,
125 _("Unwind stack if a C++ exception is "
126 "unhandled while in a call dummy is %s.\n"),
127 value);
128 }
129
130 /* Perform the standard coercions that are specified
131 for arguments to be passed to C or Ada functions.
132
133 If PARAM_TYPE is non-NULL, it is the expected parameter type.
134 IS_PROTOTYPED is non-zero if the function declaration is prototyped.
135 SP is the stack pointer were additional data can be pushed (updating
136 its value as needed). */
137
138 static struct value *
139 value_arg_coerce (struct gdbarch *gdbarch, struct value *arg,
140 struct type *param_type, int is_prototyped, CORE_ADDR *sp)
141 {
142 const struct builtin_type *builtin = builtin_type (gdbarch);
143 struct type *arg_type = check_typedef (value_type (arg));
144 struct type *type
145 = param_type ? check_typedef (param_type) : arg_type;
146
147 /* Perform any Ada-specific coercion first. */
148 if (current_language->la_language == language_ada)
149 arg = ada_convert_actual (arg, type);
150
151 /* Force the value to the target if we will need its address. At
152 this point, we could allocate arguments on the stack instead of
153 calling malloc if we knew that their addresses would not be
154 saved by the called function. */
155 arg = value_coerce_to_target (arg);
156
157 switch (TYPE_CODE (type))
158 {
159 case TYPE_CODE_REF:
160 {
161 struct value *new_value;
162
163 if (TYPE_CODE (arg_type) == TYPE_CODE_REF)
164 return value_cast_pointers (type, arg, 0);
165
166 /* Cast the value to the reference's target type, and then
167 convert it back to a reference. This will issue an error
168 if the value was not previously in memory - in some cases
169 we should clearly be allowing this, but how? */
170 new_value = value_cast (TYPE_TARGET_TYPE (type), arg);
171 new_value = value_ref (new_value);
172 return new_value;
173 }
174 case TYPE_CODE_INT:
175 case TYPE_CODE_CHAR:
176 case TYPE_CODE_BOOL:
177 case TYPE_CODE_ENUM:
178 /* If we don't have a prototype, coerce to integer type if necessary. */
179 if (!is_prototyped)
180 {
181 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
182 type = builtin->builtin_int;
183 }
184 /* Currently all target ABIs require at least the width of an integer
185 type for an argument. We may have to conditionalize the following
186 type coercion for future targets. */
187 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
188 type = builtin->builtin_int;
189 break;
190 case TYPE_CODE_FLT:
191 if (!is_prototyped && coerce_float_to_double_p)
192 {
193 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_double))
194 type = builtin->builtin_double;
195 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin->builtin_double))
196 type = builtin->builtin_long_double;
197 }
198 break;
199 case TYPE_CODE_FUNC:
200 type = lookup_pointer_type (type);
201 break;
202 case TYPE_CODE_ARRAY:
203 /* Arrays are coerced to pointers to their first element, unless
204 they are vectors, in which case we want to leave them alone,
205 because they are passed by value. */
206 if (current_language->c_style_arrays)
207 if (!TYPE_VECTOR (type))
208 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
209 break;
210 case TYPE_CODE_UNDEF:
211 case TYPE_CODE_PTR:
212 case TYPE_CODE_STRUCT:
213 case TYPE_CODE_UNION:
214 case TYPE_CODE_VOID:
215 case TYPE_CODE_SET:
216 case TYPE_CODE_RANGE:
217 case TYPE_CODE_STRING:
218 case TYPE_CODE_ERROR:
219 case TYPE_CODE_MEMBERPTR:
220 case TYPE_CODE_METHODPTR:
221 case TYPE_CODE_METHOD:
222 case TYPE_CODE_COMPLEX:
223 default:
224 break;
225 }
226
227 return value_cast (type, arg);
228 }
229
230 /* Return the return type of a function with its first instruction exactly at
231 the PC address. Return NULL otherwise. */
232
233 static struct type *
234 find_function_return_type (CORE_ADDR pc)
235 {
236 struct symbol *sym = find_pc_function (pc);
237
238 if (sym != NULL && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) == pc
239 && SYMBOL_TYPE (sym) != NULL)
240 return TYPE_TARGET_TYPE (SYMBOL_TYPE (sym));
241
242 return NULL;
243 }
244
245 /* Determine a function's address and its return type from its value.
246 Calls error() if the function is not valid for calling. */
247
248 CORE_ADDR
249 find_function_addr (struct value *function, struct type **retval_type)
250 {
251 struct type *ftype = check_typedef (value_type (function));
252 struct gdbarch *gdbarch = get_type_arch (ftype);
253 struct type *value_type = NULL;
254 /* Initialize it just to avoid a GCC false warning. */
255 CORE_ADDR funaddr = 0;
256
257 /* If it's a member function, just look at the function
258 part of it. */
259
260 /* Determine address to call. */
261 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
262 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
263 funaddr = value_address (function);
264 else if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
265 {
266 funaddr = value_as_address (function);
267 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
268 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
269 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
270 funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
271 &current_target);
272 }
273 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
274 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
275 {
276 value_type = TYPE_TARGET_TYPE (ftype);
277
278 if (TYPE_GNU_IFUNC (ftype))
279 {
280 funaddr = gnu_ifunc_resolve_addr (gdbarch, funaddr);
281
282 /* Skip querying the function symbol if no RETVAL_TYPE has been
283 asked for. */
284 if (retval_type)
285 value_type = find_function_return_type (funaddr);
286 }
287 }
288 else if (TYPE_CODE (ftype) == TYPE_CODE_INT)
289 {
290 /* Handle the case of functions lacking debugging info.
291 Their values are characters since their addresses are char. */
292 if (TYPE_LENGTH (ftype) == 1)
293 funaddr = value_as_address (value_addr (function));
294 else
295 {
296 /* Handle function descriptors lacking debug info. */
297 int found_descriptor = 0;
298
299 funaddr = 0; /* pacify "gcc -Werror" */
300 if (VALUE_LVAL (function) == lval_memory)
301 {
302 CORE_ADDR nfunaddr;
303
304 funaddr = value_as_address (value_addr (function));
305 nfunaddr = funaddr;
306 funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
307 &current_target);
308 if (funaddr != nfunaddr)
309 found_descriptor = 1;
310 }
311 if (!found_descriptor)
312 /* Handle integer used as address of a function. */
313 funaddr = (CORE_ADDR) value_as_long (function);
314 }
315 }
316 else
317 error (_("Invalid data type for function to be called."));
318
319 if (retval_type != NULL)
320 *retval_type = value_type;
321 return funaddr + gdbarch_deprecated_function_start_offset (gdbarch);
322 }
323
324 /* For CALL_DUMMY_ON_STACK, push a breakpoint sequence that the called
325 function returns to. */
326
327 static CORE_ADDR
328 push_dummy_code (struct gdbarch *gdbarch,
329 CORE_ADDR sp, CORE_ADDR funaddr,
330 struct value **args, int nargs,
331 struct type *value_type,
332 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
333 struct regcache *regcache)
334 {
335 gdb_assert (gdbarch_push_dummy_code_p (gdbarch));
336
337 return gdbarch_push_dummy_code (gdbarch, sp, funaddr,
338 args, nargs, value_type, real_pc, bp_addr,
339 regcache);
340 }
341
342 /* Fetch the name of the function at FUNADDR.
343 This is used in printing an error message for call_function_by_hand.
344 BUF is used to print FUNADDR in hex if the function name cannot be
345 determined. It must be large enough to hold formatted result of
346 RAW_FUNCTION_ADDRESS_FORMAT. */
347
348 static const char *
349 get_function_name (CORE_ADDR funaddr, char *buf, int buf_size)
350 {
351 {
352 struct symbol *symbol = find_pc_function (funaddr);
353
354 if (symbol)
355 return SYMBOL_PRINT_NAME (symbol);
356 }
357
358 {
359 /* Try the minimal symbols. */
360 struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (funaddr);
361
362 if (msymbol.minsym)
363 return MSYMBOL_PRINT_NAME (msymbol.minsym);
364 }
365
366 {
367 char *tmp = xstrprintf (_(RAW_FUNCTION_ADDRESS_FORMAT),
368 hex_string (funaddr));
369
370 gdb_assert (strlen (tmp) + 1 <= buf_size);
371 strcpy (buf, tmp);
372 xfree (tmp);
373 return buf;
374 }
375 }
376
377 /* All the meta data necessary to extract the call's return value. */
378
379 struct call_return_meta_info
380 {
381 /* The caller frame's architecture. */
382 struct gdbarch *gdbarch;
383
384 /* The called function. */
385 struct value *function;
386
387 /* The return value's type. */
388 struct type *value_type;
389
390 /* Are we returning a value using a structure return or a normal
391 value return? */
392 int struct_return_p;
393
394 /* If using a structure return, this is the structure's address. */
395 CORE_ADDR struct_addr;
396
397 /* Whether stack temporaries are enabled. */
398 int stack_temporaries_enabled;
399 };
400
401 /* Extract the called function's return value. */
402
403 static struct value *
404 get_call_return_value (struct call_return_meta_info *ri)
405 {
406 struct value *retval = NULL;
407 int stack_temporaries = thread_stack_temporaries_enabled_p (inferior_ptid);
408
409 if (TYPE_CODE (ri->value_type) == TYPE_CODE_VOID)
410 retval = allocate_value (ri->value_type);
411 else if (ri->struct_return_p)
412 {
413 if (stack_temporaries)
414 {
415 retval = value_from_contents_and_address (ri->value_type, NULL,
416 ri->struct_addr);
417 push_thread_stack_temporary (inferior_ptid, retval);
418 }
419 else
420 {
421 retval = allocate_value (ri->value_type);
422 read_value_memory (retval, 0, 1, ri->struct_addr,
423 value_contents_raw (retval),
424 TYPE_LENGTH (ri->value_type));
425 }
426 }
427 else
428 {
429 retval = allocate_value (ri->value_type);
430 gdbarch_return_value (ri->gdbarch, ri->function, ri->value_type,
431 get_current_regcache (),
432 value_contents_raw (retval), NULL);
433 if (stack_temporaries && class_or_union_p (ri->value_type))
434 {
435 /* Values of class type returned in registers are copied onto
436 the stack and their lval_type set to lval_memory. This is
437 required because further evaluation of the expression
438 could potentially invoke methods on the return value
439 requiring GDB to evaluate the "this" pointer. To evaluate
440 the this pointer, GDB needs the memory address of the
441 value. */
442 value_force_lval (retval, ri->struct_addr);
443 push_thread_stack_temporary (inferior_ptid, retval);
444 }
445 }
446
447 gdb_assert (retval != NULL);
448 return retval;
449 }
450
451 /* Data for the FSM that manages an infcall. It's main job is to
452 record the called function's return value. */
453
454 struct call_thread_fsm
455 {
456 /* The base class. */
457 struct thread_fsm thread_fsm;
458
459 /* All the info necessary to be able to extract the return
460 value. */
461 struct call_return_meta_info return_meta_info;
462
463 /* The called function's return value. This is extracted from the
464 target before the dummy frame is popped. */
465 struct value *return_value;
466
467 /* The top level that started the infcall (and is synchronously
468 waiting for it to end). */
469 struct ui *waiting_ui;
470 };
471
472 static int call_thread_fsm_should_stop (struct thread_fsm *self,
473 struct thread_info *thread);
474 static int call_thread_fsm_should_notify_stop (struct thread_fsm *self);
475
476 /* call_thread_fsm's vtable. */
477
478 static struct thread_fsm_ops call_thread_fsm_ops =
479 {
480 NULL, /*dtor */
481 NULL, /* clean_up */
482 call_thread_fsm_should_stop,
483 NULL, /* return_value */
484 NULL, /* async_reply_reason*/
485 call_thread_fsm_should_notify_stop,
486 };
487
488 /* Allocate a new call_thread_fsm object. */
489
490 static struct call_thread_fsm *
491 new_call_thread_fsm (struct ui *waiting_ui, struct interp *cmd_interp,
492 struct gdbarch *gdbarch, struct value *function,
493 struct type *value_type,
494 int struct_return_p, CORE_ADDR struct_addr)
495 {
496 struct call_thread_fsm *sm;
497
498 sm = XCNEW (struct call_thread_fsm);
499 thread_fsm_ctor (&sm->thread_fsm, &call_thread_fsm_ops, cmd_interp);
500
501 sm->return_meta_info.gdbarch = gdbarch;
502 sm->return_meta_info.function = function;
503 sm->return_meta_info.value_type = value_type;
504 sm->return_meta_info.struct_return_p = struct_return_p;
505 sm->return_meta_info.struct_addr = struct_addr;
506
507 sm->waiting_ui = waiting_ui;
508
509 return sm;
510 }
511
512 /* Implementation of should_stop method for infcalls. */
513
514 static int
515 call_thread_fsm_should_stop (struct thread_fsm *self,
516 struct thread_info *thread)
517 {
518 struct call_thread_fsm *f = (struct call_thread_fsm *) self;
519
520 if (stop_stack_dummy == STOP_STACK_DUMMY)
521 {
522 struct cleanup *old_chain;
523
524 /* Done. */
525 thread_fsm_set_finished (self);
526
527 /* Stash the return value before the dummy frame is popped and
528 registers are restored to what they were before the
529 call.. */
530 f->return_value = get_call_return_value (&f->return_meta_info);
531
532 /* Break out of wait_sync_command_done. */
533 old_chain = make_cleanup_restore_current_ui ();
534 current_ui = f->waiting_ui;
535 target_terminal_ours ();
536 f->waiting_ui->prompt_state = PROMPT_NEEDED;
537
538 /* This restores the previous UI. */
539 do_cleanups (old_chain);
540 }
541
542 return 1;
543 }
544
545 /* Implementation of should_notify_stop method for infcalls. */
546
547 static int
548 call_thread_fsm_should_notify_stop (struct thread_fsm *self)
549 {
550 if (thread_fsm_finished_p (self))
551 {
552 /* Infcall succeeded. Be silent and proceed with evaluating the
553 expression. */
554 return 0;
555 }
556
557 /* Something wrong happened. E.g., an unexpected breakpoint
558 triggered, or a signal was intercepted. Notify the stop. */
559 return 1;
560 }
561
562 /* Subroutine of call_function_by_hand to simplify it.
563 Start up the inferior and wait for it to stop.
564 Return the exception if there's an error, or an exception with
565 reason >= 0 if there's no error.
566
567 This is done inside a TRY_CATCH so the caller needn't worry about
568 thrown errors. The caller should rethrow if there's an error. */
569
570 static struct gdb_exception
571 run_inferior_call (struct call_thread_fsm *sm,
572 struct thread_info *call_thread, CORE_ADDR real_pc)
573 {
574 struct gdb_exception caught_error = exception_none;
575 int saved_in_infcall = call_thread->control.in_infcall;
576 ptid_t call_thread_ptid = call_thread->ptid;
577 enum prompt_state saved_prompt_state = current_ui->prompt_state;
578 int was_running = call_thread->state == THREAD_RUNNING;
579 int saved_ui_async = current_ui->async;
580
581 /* Infcalls run synchronously, in the foreground. */
582 current_ui->prompt_state = PROMPT_BLOCKED;
583 /* So that we don't print the prompt prematurely in
584 fetch_inferior_event. */
585 current_ui->async = 0;
586
587 delete_file_handler (current_ui->input_fd);
588
589 call_thread->control.in_infcall = 1;
590
591 clear_proceed_status (0);
592
593 /* Associate the FSM with the thread after clear_proceed_status
594 (otherwise it'd clear this FSM), and before anything throws, so
595 we don't leak it (and any resources it manages). */
596 call_thread->thread_fsm = &sm->thread_fsm;
597
598 disable_watchpoints_before_interactive_call_start ();
599
600 /* We want to print return value, please... */
601 call_thread->control.proceed_to_finish = 1;
602
603 TRY
604 {
605 proceed (real_pc, GDB_SIGNAL_0);
606
607 /* Inferior function calls are always synchronous, even if the
608 target supports asynchronous execution. */
609 wait_sync_command_done ();
610 }
611 CATCH (e, RETURN_MASK_ALL)
612 {
613 caught_error = e;
614 }
615 END_CATCH
616
617 /* If GDB has the prompt blocked before, then ensure that it remains
618 so. normal_stop calls async_enable_stdin, so reset the prompt
619 state again here. In other cases, stdin will be re-enabled by
620 inferior_event_handler, when an exception is thrown. */
621 current_ui->prompt_state = saved_prompt_state;
622 if (current_ui->prompt_state == PROMPT_BLOCKED)
623 delete_file_handler (current_ui->input_fd);
624 else
625 ui_register_input_event_handler (current_ui);
626 current_ui->async = saved_ui_async;
627
628 /* At this point the current thread may have changed. Refresh
629 CALL_THREAD as it could be invalid if its thread has exited. */
630 call_thread = find_thread_ptid (call_thread_ptid);
631
632 /* If the infcall does NOT succeed, normal_stop will have already
633 finished the thread states. However, on success, normal_stop
634 defers here, so that we can set back the thread states to what
635 they were before the call. Note that we must also finish the
636 state of new threads that might have spawned while the call was
637 running. The main cases to handle are:
638
639 - "(gdb) print foo ()", or any other command that evaluates an
640 expression at the prompt. (The thread was marked stopped before.)
641
642 - "(gdb) break foo if return_false()" or similar cases where we
643 do an infcall while handling an event (while the thread is still
644 marked running). In this example, whether the condition
645 evaluates true and thus we'll present a user-visible stop is
646 decided elsewhere. */
647 if (!was_running
648 && ptid_equal (call_thread_ptid, inferior_ptid)
649 && stop_stack_dummy == STOP_STACK_DUMMY)
650 finish_thread_state (user_visible_resume_ptid (0));
651
652 enable_watchpoints_after_interactive_call_stop ();
653
654 /* Call breakpoint_auto_delete on the current contents of the bpstat
655 of inferior call thread.
656 If all error()s out of proceed ended up calling normal_stop
657 (and perhaps they should; it already does in the special case
658 of error out of resume()), then we wouldn't need this. */
659 if (caught_error.reason < 0)
660 {
661 if (call_thread != NULL)
662 breakpoint_auto_delete (call_thread->control.stop_bpstat);
663 }
664
665 if (call_thread != NULL)
666 call_thread->control.in_infcall = saved_in_infcall;
667
668 return caught_error;
669 }
670
671 /* A cleanup function that calls delete_std_terminate_breakpoint. */
672 static void
673 cleanup_delete_std_terminate_breakpoint (void *ignore)
674 {
675 delete_std_terminate_breakpoint ();
676 }
677
678 /* See infcall.h. */
679
680 struct value *
681 call_function_by_hand (struct value *function, int nargs, struct value **args)
682 {
683 return call_function_by_hand_dummy (function, nargs, args, NULL, NULL);
684 }
685
686 /* All this stuff with a dummy frame may seem unnecessarily complicated
687 (why not just save registers in GDB?). The purpose of pushing a dummy
688 frame which looks just like a real frame is so that if you call a
689 function and then hit a breakpoint (get a signal, etc), "backtrace"
690 will look right. Whether the backtrace needs to actually show the
691 stack at the time the inferior function was called is debatable, but
692 it certainly needs to not display garbage. So if you are contemplating
693 making dummy frames be different from normal frames, consider that. */
694
695 /* Perform a function call in the inferior.
696 ARGS is a vector of values of arguments (NARGS of them).
697 FUNCTION is a value, the function to be called.
698 Returns a value representing what the function returned.
699 May fail to return, if a breakpoint or signal is hit
700 during the execution of the function.
701
702 ARGS is modified to contain coerced values. */
703
704 struct value *
705 call_function_by_hand_dummy (struct value *function,
706 int nargs, struct value **args,
707 dummy_frame_dtor_ftype *dummy_dtor,
708 void *dummy_dtor_data)
709 {
710 CORE_ADDR sp;
711 struct type *values_type, *target_values_type;
712 unsigned char struct_return = 0, hidden_first_param_p = 0;
713 CORE_ADDR struct_addr = 0;
714 struct infcall_control_state *inf_status;
715 struct cleanup *inf_status_cleanup;
716 struct infcall_suspend_state *caller_state;
717 CORE_ADDR funaddr;
718 CORE_ADDR real_pc;
719 struct type *ftype = check_typedef (value_type (function));
720 CORE_ADDR bp_addr;
721 struct frame_id dummy_id;
722 struct cleanup *args_cleanup;
723 struct frame_info *frame;
724 struct gdbarch *gdbarch;
725 struct cleanup *terminate_bp_cleanup;
726 ptid_t call_thread_ptid;
727 struct gdb_exception e;
728 char name_buf[RAW_FUNCTION_ADDRESS_SIZE];
729 int stack_temporaries = thread_stack_temporaries_enabled_p (inferior_ptid);
730
731 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
732 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
733
734 if (!target_has_execution)
735 noprocess ();
736
737 if (get_traceframe_number () >= 0)
738 error (_("May not call functions while looking at trace frames."));
739
740 if (execution_direction == EXEC_REVERSE)
741 error (_("Cannot call functions in reverse mode."));
742
743 frame = get_current_frame ();
744 gdbarch = get_frame_arch (frame);
745
746 if (!gdbarch_push_dummy_call_p (gdbarch))
747 error (_("This target does not support function calls."));
748
749 /* A cleanup for the inferior status.
750 This is only needed while we're preparing the inferior function call. */
751 inf_status = save_infcall_control_state ();
752 inf_status_cleanup
753 = make_cleanup_restore_infcall_control_state (inf_status);
754
755 /* Save the caller's registers and other state associated with the
756 inferior itself so that they can be restored once the
757 callee returns. To allow nested calls the registers are (further
758 down) pushed onto a dummy frame stack. Include a cleanup (which
759 is tossed once the regcache has been pushed). */
760 caller_state = save_infcall_suspend_state ();
761 make_cleanup_restore_infcall_suspend_state (caller_state);
762
763 /* Ensure that the initial SP is correctly aligned. */
764 {
765 CORE_ADDR old_sp = get_frame_sp (frame);
766
767 if (gdbarch_frame_align_p (gdbarch))
768 {
769 sp = gdbarch_frame_align (gdbarch, old_sp);
770 /* NOTE: cagney/2003-08-13: Skip the "red zone". For some
771 ABIs, a function can use memory beyond the inner most stack
772 address. AMD64 called that region the "red zone". Skip at
773 least the "red zone" size before allocating any space on
774 the stack. */
775 if (gdbarch_inner_than (gdbarch, 1, 2))
776 sp -= gdbarch_frame_red_zone_size (gdbarch);
777 else
778 sp += gdbarch_frame_red_zone_size (gdbarch);
779 /* Still aligned? */
780 gdb_assert (sp == gdbarch_frame_align (gdbarch, sp));
781 /* NOTE: cagney/2002-09-18:
782
783 On a RISC architecture, a void parameterless generic dummy
784 frame (i.e., no parameters, no result) typically does not
785 need to push anything the stack and hence can leave SP and
786 FP. Similarly, a frameless (possibly leaf) function does
787 not push anything on the stack and, hence, that too can
788 leave FP and SP unchanged. As a consequence, a sequence of
789 void parameterless generic dummy frame calls to frameless
790 functions will create a sequence of effectively identical
791 frames (SP, FP and TOS and PC the same). This, not
792 suprisingly, results in what appears to be a stack in an
793 infinite loop --- when GDB tries to find a generic dummy
794 frame on the internal dummy frame stack, it will always
795 find the first one.
796
797 To avoid this problem, the code below always grows the
798 stack. That way, two dummy frames can never be identical.
799 It does burn a few bytes of stack but that is a small price
800 to pay :-). */
801 if (sp == old_sp)
802 {
803 if (gdbarch_inner_than (gdbarch, 1, 2))
804 /* Stack grows down. */
805 sp = gdbarch_frame_align (gdbarch, old_sp - 1);
806 else
807 /* Stack grows up. */
808 sp = gdbarch_frame_align (gdbarch, old_sp + 1);
809 }
810 /* SP may have underflown address zero here from OLD_SP. Memory access
811 functions will probably fail in such case but that is a target's
812 problem. */
813 }
814 else
815 /* FIXME: cagney/2002-09-18: Hey, you loose!
816
817 Who knows how badly aligned the SP is!
818
819 If the generic dummy frame ends up empty (because nothing is
820 pushed) GDB won't be able to correctly perform back traces.
821 If a target is having trouble with backtraces, first thing to
822 do is add FRAME_ALIGN() to the architecture vector. If that
823 fails, try dummy_id().
824
825 If the ABI specifies a "Red Zone" (see the doco) the code
826 below will quietly trash it. */
827 sp = old_sp;
828
829 /* Skip over the stack temporaries that might have been generated during
830 the evaluation of an expression. */
831 if (stack_temporaries)
832 {
833 struct value *lastval;
834
835 lastval = get_last_thread_stack_temporary (inferior_ptid);
836 if (lastval != NULL)
837 {
838 CORE_ADDR lastval_addr = value_address (lastval);
839
840 if (gdbarch_inner_than (gdbarch, 1, 2))
841 {
842 gdb_assert (sp >= lastval_addr);
843 sp = lastval_addr;
844 }
845 else
846 {
847 gdb_assert (sp <= lastval_addr);
848 sp = lastval_addr + TYPE_LENGTH (value_type (lastval));
849 }
850
851 if (gdbarch_frame_align_p (gdbarch))
852 sp = gdbarch_frame_align (gdbarch, sp);
853 }
854 }
855 }
856
857 funaddr = find_function_addr (function, &values_type);
858 if (!values_type)
859 values_type = builtin_type (gdbarch)->builtin_int;
860
861 values_type = check_typedef (values_type);
862
863 /* Are we returning a value using a structure return (passing a
864 hidden argument pointing to storage) or a normal value return?
865 There are two cases: language-mandated structure return and
866 target ABI structure return. The variable STRUCT_RETURN only
867 describes the latter. The language version is handled by passing
868 the return location as the first parameter to the function,
869 even preceding "this". This is different from the target
870 ABI version, which is target-specific; for instance, on ia64
871 the first argument is passed in out0 but the hidden structure
872 return pointer would normally be passed in r8. */
873
874 if (gdbarch_return_in_first_hidden_param_p (gdbarch, values_type))
875 {
876 hidden_first_param_p = 1;
877
878 /* Tell the target specific argument pushing routine not to
879 expect a value. */
880 target_values_type = builtin_type (gdbarch)->builtin_void;
881 }
882 else
883 {
884 struct_return = using_struct_return (gdbarch, function, values_type);
885 target_values_type = values_type;
886 }
887
888 observer_notify_inferior_call_pre (inferior_ptid, funaddr);
889
890 /* Determine the location of the breakpoint (and possibly other
891 stuff) that the called function will return to. The SPARC, for a
892 function returning a structure or union, needs to make space for
893 not just the breakpoint but also an extra word containing the
894 size (?) of the structure being passed. */
895
896 switch (gdbarch_call_dummy_location (gdbarch))
897 {
898 case ON_STACK:
899 {
900 const gdb_byte *bp_bytes;
901 CORE_ADDR bp_addr_as_address;
902 int bp_size;
903
904 /* Be careful BP_ADDR is in inferior PC encoding while
905 BP_ADDR_AS_ADDRESS is a plain memory address. */
906
907 sp = push_dummy_code (gdbarch, sp, funaddr, args, nargs,
908 target_values_type, &real_pc, &bp_addr,
909 get_current_regcache ());
910
911 /* Write a legitimate instruction at the point where the infcall
912 breakpoint is going to be inserted. While this instruction
913 is never going to be executed, a user investigating the
914 memory from GDB would see this instruction instead of random
915 uninitialized bytes. We chose the breakpoint instruction
916 as it may look as the most logical one to the user and also
917 valgrind 3.7.0 needs it for proper vgdb inferior calls.
918
919 If software breakpoints are unsupported for this target we
920 leave the user visible memory content uninitialized. */
921
922 bp_addr_as_address = bp_addr;
923 bp_bytes = gdbarch_breakpoint_from_pc (gdbarch, &bp_addr_as_address,
924 &bp_size);
925 if (bp_bytes != NULL)
926 write_memory (bp_addr_as_address, bp_bytes, bp_size);
927 }
928 break;
929 case AT_ENTRY_POINT:
930 {
931 CORE_ADDR dummy_addr;
932
933 real_pc = funaddr;
934 dummy_addr = entry_point_address ();
935
936 /* A call dummy always consists of just a single breakpoint, so
937 its address is the same as the address of the dummy.
938
939 The actual breakpoint is inserted separatly so there is no need to
940 write that out. */
941 bp_addr = dummy_addr;
942 break;
943 }
944 default:
945 internal_error (__FILE__, __LINE__, _("bad switch"));
946 }
947
948 if (nargs < TYPE_NFIELDS (ftype))
949 error (_("Too few arguments in function call."));
950
951 {
952 int i;
953
954 for (i = nargs - 1; i >= 0; i--)
955 {
956 int prototyped;
957 struct type *param_type;
958
959 /* FIXME drow/2002-05-31: Should just always mark methods as
960 prototyped. Can we respect TYPE_VARARGS? Probably not. */
961 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
962 prototyped = 1;
963 else if (i < TYPE_NFIELDS (ftype))
964 prototyped = TYPE_PROTOTYPED (ftype);
965 else
966 prototyped = 0;
967
968 if (i < TYPE_NFIELDS (ftype))
969 param_type = TYPE_FIELD_TYPE (ftype, i);
970 else
971 param_type = NULL;
972
973 args[i] = value_arg_coerce (gdbarch, args[i],
974 param_type, prototyped, &sp);
975
976 if (param_type != NULL && language_pass_by_reference (param_type))
977 args[i] = value_addr (args[i]);
978 }
979 }
980
981 /* Reserve space for the return structure to be written on the
982 stack, if necessary. Make certain that the value is correctly
983 aligned.
984
985 While evaluating expressions, we reserve space on the stack for
986 return values of class type even if the language ABI and the target
987 ABI do not require that the return value be passed as a hidden first
988 argument. This is because we want to store the return value as an
989 on-stack temporary while the expression is being evaluated. This
990 enables us to have chained function calls in expressions.
991
992 Keeping the return values as on-stack temporaries while the expression
993 is being evaluated is OK because the thread is stopped until the
994 expression is completely evaluated. */
995
996 if (struct_return || hidden_first_param_p
997 || (stack_temporaries && class_or_union_p (values_type)))
998 {
999 if (gdbarch_inner_than (gdbarch, 1, 2))
1000 {
1001 /* Stack grows downward. Align STRUCT_ADDR and SP after
1002 making space for the return value. */
1003 sp -= TYPE_LENGTH (values_type);
1004 if (gdbarch_frame_align_p (gdbarch))
1005 sp = gdbarch_frame_align (gdbarch, sp);
1006 struct_addr = sp;
1007 }
1008 else
1009 {
1010 /* Stack grows upward. Align the frame, allocate space, and
1011 then again, re-align the frame??? */
1012 if (gdbarch_frame_align_p (gdbarch))
1013 sp = gdbarch_frame_align (gdbarch, sp);
1014 struct_addr = sp;
1015 sp += TYPE_LENGTH (values_type);
1016 if (gdbarch_frame_align_p (gdbarch))
1017 sp = gdbarch_frame_align (gdbarch, sp);
1018 }
1019 }
1020
1021 if (hidden_first_param_p)
1022 {
1023 struct value **new_args;
1024
1025 /* Add the new argument to the front of the argument list. */
1026 new_args = XNEWVEC (struct value *, nargs + 1);
1027 new_args[0] = value_from_pointer (lookup_pointer_type (values_type),
1028 struct_addr);
1029 memcpy (&new_args[1], &args[0], sizeof (struct value *) * nargs);
1030 args = new_args;
1031 nargs++;
1032 args_cleanup = make_cleanup (xfree, args);
1033 }
1034 else
1035 args_cleanup = make_cleanup (null_cleanup, NULL);
1036
1037 /* Create the dummy stack frame. Pass in the call dummy address as,
1038 presumably, the ABI code knows where, in the call dummy, the
1039 return address should be pointed. */
1040 sp = gdbarch_push_dummy_call (gdbarch, function, get_current_regcache (),
1041 bp_addr, nargs, args,
1042 sp, struct_return, struct_addr);
1043
1044 do_cleanups (args_cleanup);
1045
1046 /* Set up a frame ID for the dummy frame so we can pass it to
1047 set_momentary_breakpoint. We need to give the breakpoint a frame
1048 ID so that the breakpoint code can correctly re-identify the
1049 dummy breakpoint. */
1050 /* Sanity. The exact same SP value is returned by PUSH_DUMMY_CALL,
1051 saved as the dummy-frame TOS, and used by dummy_id to form
1052 the frame ID's stack address. */
1053 dummy_id = frame_id_build (sp, bp_addr);
1054
1055 /* Create a momentary breakpoint at the return address of the
1056 inferior. That way it breaks when it returns. */
1057
1058 {
1059 struct breakpoint *bpt, *longjmp_b;
1060 struct symtab_and_line sal;
1061
1062 init_sal (&sal); /* initialize to zeroes */
1063 sal.pspace = current_program_space;
1064 sal.pc = bp_addr;
1065 sal.section = find_pc_overlay (sal.pc);
1066 /* Sanity. The exact same SP value is returned by
1067 PUSH_DUMMY_CALL, saved as the dummy-frame TOS, and used by
1068 dummy_id to form the frame ID's stack address. */
1069 bpt = set_momentary_breakpoint (gdbarch, sal, dummy_id, bp_call_dummy);
1070
1071 /* set_momentary_breakpoint invalidates FRAME. */
1072 frame = NULL;
1073
1074 bpt->disposition = disp_del;
1075 gdb_assert (bpt->related_breakpoint == bpt);
1076
1077 longjmp_b = set_longjmp_breakpoint_for_call_dummy ();
1078 if (longjmp_b)
1079 {
1080 /* Link BPT into the chain of LONGJMP_B. */
1081 bpt->related_breakpoint = longjmp_b;
1082 while (longjmp_b->related_breakpoint != bpt->related_breakpoint)
1083 longjmp_b = longjmp_b->related_breakpoint;
1084 longjmp_b->related_breakpoint = bpt;
1085 }
1086 }
1087
1088 /* Create a breakpoint in std::terminate.
1089 If a C++ exception is raised in the dummy-frame, and the
1090 exception handler is (normally, and expected to be) out-of-frame,
1091 the default C++ handler will (wrongly) be called in an inferior
1092 function call. This is wrong, as an exception can be normally
1093 and legally handled out-of-frame. The confines of the dummy frame
1094 prevent the unwinder from finding the correct handler (or any
1095 handler, unless it is in-frame). The default handler calls
1096 std::terminate. This will kill the inferior. Assert that
1097 terminate should never be called in an inferior function
1098 call. Place a momentary breakpoint in the std::terminate function
1099 and if triggered in the call, rewind. */
1100 if (unwind_on_terminating_exception_p)
1101 set_std_terminate_breakpoint ();
1102
1103 /* Discard both inf_status and caller_state cleanups.
1104 From this point on we explicitly restore the associated state
1105 or discard it. */
1106 discard_cleanups (inf_status_cleanup);
1107
1108 /* Everything's ready, push all the info needed to restore the
1109 caller (and identify the dummy-frame) onto the dummy-frame
1110 stack. */
1111 dummy_frame_push (caller_state, &dummy_id, inferior_ptid);
1112 if (dummy_dtor != NULL)
1113 register_dummy_frame_dtor (dummy_id, inferior_ptid,
1114 dummy_dtor, dummy_dtor_data);
1115
1116 /* Register a clean-up for unwind_on_terminating_exception_breakpoint. */
1117 terminate_bp_cleanup = make_cleanup (cleanup_delete_std_terminate_breakpoint,
1118 NULL);
1119
1120 /* - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP -
1121 If you're looking to implement asynchronous dummy-frames, then
1122 just below is the place to chop this function in two.. */
1123
1124 /* TP is invalid after run_inferior_call returns, so enclose this
1125 in a block so that it's only in scope during the time it's valid. */
1126 {
1127 struct thread_info *tp = inferior_thread ();
1128 struct thread_fsm *saved_sm;
1129 struct call_thread_fsm *sm;
1130
1131 /* Save the current FSM. We'll override it. */
1132 saved_sm = tp->thread_fsm;
1133 tp->thread_fsm = NULL;
1134
1135 /* Save this thread's ptid, we need it later but the thread
1136 may have exited. */
1137 call_thread_ptid = tp->ptid;
1138
1139 /* Run the inferior until it stops. */
1140
1141 /* Create the FSM used to manage the infcall. It tells infrun to
1142 not report the stop to the user, and captures the return value
1143 before the dummy frame is popped. run_inferior_call registers
1144 it with the thread ASAP. */
1145 sm = new_call_thread_fsm (current_ui, command_interp (),
1146 gdbarch, function,
1147 values_type,
1148 struct_return || hidden_first_param_p,
1149 struct_addr);
1150
1151 e = run_inferior_call (sm, tp, real_pc);
1152
1153 observer_notify_inferior_call_post (call_thread_ptid, funaddr);
1154
1155 tp = find_thread_ptid (call_thread_ptid);
1156 if (tp != NULL)
1157 {
1158 /* The FSM should still be the same. */
1159 gdb_assert (tp->thread_fsm == &sm->thread_fsm);
1160
1161 if (thread_fsm_finished_p (tp->thread_fsm))
1162 {
1163 struct value *retval;
1164
1165 /* The inferior call is successful. Pop the dummy frame,
1166 which runs its destructors and restores the inferior's
1167 suspend state, and restore the inferior control
1168 state. */
1169 dummy_frame_pop (dummy_id, call_thread_ptid);
1170 restore_infcall_control_state (inf_status);
1171
1172 /* Get the return value. */
1173 retval = sm->return_value;
1174
1175 /* Clean up / destroy the call FSM, and restore the
1176 original one. */
1177 thread_fsm_clean_up (tp->thread_fsm, tp);
1178 thread_fsm_delete (tp->thread_fsm);
1179 tp->thread_fsm = saved_sm;
1180
1181 maybe_remove_breakpoints ();
1182
1183 do_cleanups (terminate_bp_cleanup);
1184 gdb_assert (retval != NULL);
1185 return retval;
1186 }
1187
1188 /* Didn't complete. Restore previous state machine, and
1189 handle the error. */
1190 tp->thread_fsm = saved_sm;
1191 }
1192 }
1193
1194 /* Rethrow an error if we got one trying to run the inferior. */
1195
1196 if (e.reason < 0)
1197 {
1198 const char *name = get_function_name (funaddr,
1199 name_buf, sizeof (name_buf));
1200
1201 discard_infcall_control_state (inf_status);
1202
1203 /* We could discard the dummy frame here if the program exited,
1204 but it will get garbage collected the next time the program is
1205 run anyway. */
1206
1207 switch (e.reason)
1208 {
1209 case RETURN_ERROR:
1210 throw_error (e.error, _("%s\n\
1211 An error occurred while in a function called from GDB.\n\
1212 Evaluation of the expression containing the function\n\
1213 (%s) will be abandoned.\n\
1214 When the function is done executing, GDB will silently stop."),
1215 e.message, name);
1216 case RETURN_QUIT:
1217 default:
1218 throw_exception (e);
1219 }
1220 }
1221
1222 /* If the program has exited, or we stopped at a different thread,
1223 exit and inform the user. */
1224
1225 if (! target_has_execution)
1226 {
1227 const char *name = get_function_name (funaddr,
1228 name_buf, sizeof (name_buf));
1229
1230 /* If we try to restore the inferior status,
1231 we'll crash as the inferior is no longer running. */
1232 discard_infcall_control_state (inf_status);
1233
1234 /* We could discard the dummy frame here given that the program exited,
1235 but it will get garbage collected the next time the program is
1236 run anyway. */
1237
1238 error (_("The program being debugged exited while in a function "
1239 "called from GDB.\n"
1240 "Evaluation of the expression containing the function\n"
1241 "(%s) will be abandoned."),
1242 name);
1243 }
1244
1245 if (! ptid_equal (call_thread_ptid, inferior_ptid))
1246 {
1247 const char *name = get_function_name (funaddr,
1248 name_buf, sizeof (name_buf));
1249
1250 /* We've switched threads. This can happen if another thread gets a
1251 signal or breakpoint while our thread was running.
1252 There's no point in restoring the inferior status,
1253 we're in a different thread. */
1254 discard_infcall_control_state (inf_status);
1255 /* Keep the dummy frame record, if the user switches back to the
1256 thread with the hand-call, we'll need it. */
1257 if (stopped_by_random_signal)
1258 error (_("\
1259 The program received a signal in another thread while\n\
1260 making a function call from GDB.\n\
1261 Evaluation of the expression containing the function\n\
1262 (%s) will be abandoned.\n\
1263 When the function is done executing, GDB will silently stop."),
1264 name);
1265 else
1266 error (_("\
1267 The program stopped in another thread while making a function call from GDB.\n\
1268 Evaluation of the expression containing the function\n\
1269 (%s) will be abandoned.\n\
1270 When the function is done executing, GDB will silently stop."),
1271 name);
1272 }
1273
1274 {
1275 /* Make a copy as NAME may be in an objfile freed by dummy_frame_pop. */
1276 char *name = xstrdup (get_function_name (funaddr,
1277 name_buf, sizeof (name_buf)));
1278 make_cleanup (xfree, name);
1279
1280
1281 if (stopped_by_random_signal)
1282 {
1283 /* We stopped inside the FUNCTION because of a random
1284 signal. Further execution of the FUNCTION is not
1285 allowed. */
1286
1287 if (unwind_on_signal_p)
1288 {
1289 /* The user wants the context restored. */
1290
1291 /* We must get back to the frame we were before the
1292 dummy call. */
1293 dummy_frame_pop (dummy_id, call_thread_ptid);
1294
1295 /* We also need to restore inferior status to that before the
1296 dummy call. */
1297 restore_infcall_control_state (inf_status);
1298
1299 /* FIXME: Insert a bunch of wrap_here; name can be very
1300 long if it's a C++ name with arguments and stuff. */
1301 error (_("\
1302 The program being debugged was signaled while in a function called from GDB.\n\
1303 GDB has restored the context to what it was before the call.\n\
1304 To change this behavior use \"set unwindonsignal off\".\n\
1305 Evaluation of the expression containing the function\n\
1306 (%s) will be abandoned."),
1307 name);
1308 }
1309 else
1310 {
1311 /* The user wants to stay in the frame where we stopped
1312 (default).
1313 Discard inferior status, we're not at the same point
1314 we started at. */
1315 discard_infcall_control_state (inf_status);
1316
1317 /* FIXME: Insert a bunch of wrap_here; name can be very
1318 long if it's a C++ name with arguments and stuff. */
1319 error (_("\
1320 The program being debugged was signaled while in a function called from GDB.\n\
1321 GDB remains in the frame where the signal was received.\n\
1322 To change this behavior use \"set unwindonsignal on\".\n\
1323 Evaluation of the expression containing the function\n\
1324 (%s) will be abandoned.\n\
1325 When the function is done executing, GDB will silently stop."),
1326 name);
1327 }
1328 }
1329
1330 if (stop_stack_dummy == STOP_STD_TERMINATE)
1331 {
1332 /* We must get back to the frame we were before the dummy
1333 call. */
1334 dummy_frame_pop (dummy_id, call_thread_ptid);
1335
1336 /* We also need to restore inferior status to that before
1337 the dummy call. */
1338 restore_infcall_control_state (inf_status);
1339
1340 error (_("\
1341 The program being debugged entered a std::terminate call, most likely\n\
1342 caused by an unhandled C++ exception. GDB blocked this call in order\n\
1343 to prevent the program from being terminated, and has restored the\n\
1344 context to its original state before the call.\n\
1345 To change this behaviour use \"set unwind-on-terminating-exception off\".\n\
1346 Evaluation of the expression containing the function (%s)\n\
1347 will be abandoned."),
1348 name);
1349 }
1350 else if (stop_stack_dummy == STOP_NONE)
1351 {
1352
1353 /* We hit a breakpoint inside the FUNCTION.
1354 Keep the dummy frame, the user may want to examine its state.
1355 Discard inferior status, we're not at the same point
1356 we started at. */
1357 discard_infcall_control_state (inf_status);
1358
1359 /* The following error message used to say "The expression
1360 which contained the function call has been discarded."
1361 It is a hard concept to explain in a few words. Ideally,
1362 GDB would be able to resume evaluation of the expression
1363 when the function finally is done executing. Perhaps
1364 someday this will be implemented (it would not be easy). */
1365 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1366 a C++ name with arguments and stuff. */
1367 error (_("\
1368 The program being debugged stopped while in a function called from GDB.\n\
1369 Evaluation of the expression containing the function\n\
1370 (%s) will be abandoned.\n\
1371 When the function is done executing, GDB will silently stop."),
1372 name);
1373 }
1374
1375 }
1376
1377 /* The above code errors out, so ... */
1378 gdb_assert_not_reached ("... should not be here");
1379 }
1380 \f
1381
1382 /* Provide a prototype to silence -Wmissing-prototypes. */
1383 void _initialize_infcall (void);
1384
1385 void
1386 _initialize_infcall (void)
1387 {
1388 add_setshow_boolean_cmd ("coerce-float-to-double", class_obscure,
1389 &coerce_float_to_double_p, _("\
1390 Set coercion of floats to doubles when calling functions."), _("\
1391 Show coercion of floats to doubles when calling functions"), _("\
1392 Variables of type float should generally be converted to doubles before\n\
1393 calling an unprototyped function, and left alone when calling a prototyped\n\
1394 function. However, some older debug info formats do not provide enough\n\
1395 information to determine that a function is prototyped. If this flag is\n\
1396 set, GDB will perform the conversion for a function it considers\n\
1397 unprototyped.\n\
1398 The default is to perform the conversion.\n"),
1399 NULL,
1400 show_coerce_float_to_double_p,
1401 &setlist, &showlist);
1402
1403 add_setshow_boolean_cmd ("unwindonsignal", no_class,
1404 &unwind_on_signal_p, _("\
1405 Set unwinding of stack if a signal is received while in a call dummy."), _("\
1406 Show unwinding of stack if a signal is received while in a call dummy."), _("\
1407 The unwindonsignal lets the user determine what gdb should do if a signal\n\
1408 is received while in a function called from gdb (call dummy). If set, gdb\n\
1409 unwinds the stack and restore the context to what as it was before the call.\n\
1410 The default is to stop in the frame where the signal was received."),
1411 NULL,
1412 show_unwind_on_signal_p,
1413 &setlist, &showlist);
1414
1415 add_setshow_boolean_cmd ("unwind-on-terminating-exception", no_class,
1416 &unwind_on_terminating_exception_p, _("\
1417 Set unwinding of stack if std::terminate is called while in call dummy."), _("\
1418 Show unwinding of stack if std::terminate() is called while in a call dummy."),
1419 _("\
1420 The unwind on terminating exception flag lets the user determine\n\
1421 what gdb should do if a std::terminate() call is made from the\n\
1422 default exception handler. If set, gdb unwinds the stack and restores\n\
1423 the context to what it was before the call. If unset, gdb allows the\n\
1424 std::terminate call to proceed.\n\
1425 The default is to unwind the frame."),
1426 NULL,
1427 show_unwind_on_terminating_exception_p,
1428 &setlist, &showlist);
1429
1430 }