]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infptrace.c
import gdb-1999-07-07 post reformat
[thirdparty/binutils-gdb.git] / gdb / infptrace.c
1 /* Low level Unix child interface to ptrace, for GDB when running under Unix.
2 Copyright 1988, 89, 90, 91, 92, 93, 94, 95, 96, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "target.h"
26 #include "gdb_string.h"
27 #include "wait.h"
28 #include "command.h"
29
30 #ifdef USG
31 #include <sys/types.h>
32 #endif
33
34 #include <sys/param.h>
35 #include <sys/dir.h>
36 #include <signal.h>
37 #include <sys/ioctl.h>
38
39 #ifdef HAVE_PTRACE_H
40 #include <ptrace.h>
41 #else
42 #ifdef HAVE_SYS_PTRACE_H
43 #include <sys/ptrace.h>
44 #endif
45 #endif
46
47 #if !defined (PT_READ_I)
48 #define PT_READ_I 1 /* Read word from text space */
49 #endif
50 #if !defined (PT_READ_D)
51 #define PT_READ_D 2 /* Read word from data space */
52 #endif
53 #if !defined (PT_READ_U)
54 #define PT_READ_U 3 /* Read word from kernel user struct */
55 #endif
56 #if !defined (PT_WRITE_I)
57 #define PT_WRITE_I 4 /* Write word to text space */
58 #endif
59 #if !defined (PT_WRITE_D)
60 #define PT_WRITE_D 5 /* Write word to data space */
61 #endif
62 #if !defined (PT_WRITE_U)
63 #define PT_WRITE_U 6 /* Write word to kernel user struct */
64 #endif
65 #if !defined (PT_CONTINUE)
66 #define PT_CONTINUE 7 /* Continue after signal */
67 #endif
68 #if !defined (PT_STEP)
69 #define PT_STEP 9 /* Set flag for single stepping */
70 #endif
71 #if !defined (PT_KILL)
72 #define PT_KILL 8 /* Send child a SIGKILL signal */
73 #endif
74
75 #ifndef PT_ATTACH
76 #define PT_ATTACH PTRACE_ATTACH
77 #endif
78 #ifndef PT_DETACH
79 #define PT_DETACH PTRACE_DETACH
80 #endif
81
82 #include "gdbcore.h"
83 #ifndef NO_SYS_FILE
84 #include <sys/file.h>
85 #endif
86 #if 0
87 /* Don't think this is used anymore. On the sequent (not sure whether it's
88 dynix or ptx or both), it is included unconditionally by sys/user.h and
89 not protected against multiple inclusion. */
90 #include "gdb_stat.h"
91 #endif
92
93 #if !defined (FETCH_INFERIOR_REGISTERS)
94 #include <sys/user.h> /* Probably need to poke the user structure */
95 #if defined (KERNEL_U_ADDR_BSD)
96 #include <a.out.h> /* For struct nlist */
97 #endif /* KERNEL_U_ADDR_BSD. */
98 #endif /* !FETCH_INFERIOR_REGISTERS */
99
100 #if !defined (CHILD_XFER_MEMORY)
101 static void udot_info PARAMS ((char *, int));
102 #endif
103
104 #if !defined (FETCH_INFERIOR_REGISTERS)
105 static void fetch_register PARAMS ((int));
106 static void store_register PARAMS ((int));
107 #endif
108
109 void _initialize_kernel_u_addr PARAMS ((void));
110 void _initialize_infptrace PARAMS ((void));
111 \f
112
113 /* This function simply calls ptrace with the given arguments.
114 It exists so that all calls to ptrace are isolated in this
115 machine-dependent file. */
116 int
117 call_ptrace (request, pid, addr, data)
118 int request, pid;
119 PTRACE_ARG3_TYPE addr;
120 int data;
121 {
122 int pt_status = 0;
123
124 #if 0
125 int saved_errno;
126
127 printf ("call_ptrace(request=%d, pid=%d, addr=0x%x, data=0x%x)",
128 request, pid, addr, data);
129 #endif
130 #if defined(PT_SETTRC)
131 /* If the parent can be told to attach to us, try to do it. */
132 if (request == PT_SETTRC)
133 {
134 errno = 0;
135 pt_status = ptrace (PT_SETTRC, pid, addr, data
136 #if defined (FIVE_ARG_PTRACE)
137 /* Deal with HPUX 8.0 braindamage. We never use the
138 calls which require the fifth argument. */
139 ,0
140 #endif
141 );
142
143 if (errno)
144 perror_with_name ("ptrace");
145 #if 0
146 printf (" = %d\n", pt_status);
147 #endif
148 if (pt_status < 0)
149 return pt_status;
150 else
151 return parent_attach_all (pid, addr, data);
152 }
153 #endif
154
155 #if defined(PT_CONTIN1)
156 /* On HPUX, PT_CONTIN1 is a form of continue that preserves pending
157 signals. If it's available, use it. */
158 if (request == PT_CONTINUE)
159 request = PT_CONTIN1;
160 #endif
161
162 #if defined(PT_SINGLE1)
163 /* On HPUX, PT_SINGLE1 is a form of step that preserves pending
164 signals. If it's available, use it. */
165 if (request == PT_STEP)
166 request = PT_SINGLE1;
167 #endif
168
169 #if 0
170 saved_errno = errno;
171 errno = 0;
172 #endif
173 pt_status = ptrace (request, pid, addr, data
174 #if defined (FIVE_ARG_PTRACE)
175 /* Deal with HPUX 8.0 braindamage. We never use the
176 calls which require the fifth argument. */
177 ,0
178 #endif
179 );
180 #if 0
181 if (errno)
182 printf (" [errno = %d]", errno);
183
184 errno = saved_errno;
185 printf (" = 0x%x\n", pt_status);
186 #endif
187 return pt_status;
188 }
189
190
191 #if defined (DEBUG_PTRACE) || defined (FIVE_ARG_PTRACE)
192 /* For the rest of the file, use an extra level of indirection */
193 /* This lets us breakpoint usefully on call_ptrace. */
194 #define ptrace call_ptrace
195 #endif
196
197 /* Wait for a process to finish, possibly running a target-specific
198 hook before returning. */
199
200 int
201 ptrace_wait (pid, status)
202 int pid;
203 int *status;
204 {
205 int wstate;
206
207 wstate = wait (status);
208 target_post_wait (wstate, *status);
209 return wstate;
210 }
211
212 void
213 kill_inferior ()
214 {
215 int status;
216
217 if (inferior_pid == 0)
218 return;
219
220 /* This once used to call "kill" to kill the inferior just in case
221 the inferior was still running. As others have noted in the past
222 (kingdon) there shouldn't be any way to get here if the inferior
223 is still running -- else there's a major problem elsewere in gdb
224 and it needs to be fixed.
225
226 The kill call causes problems under hpux10, so it's been removed;
227 if this causes problems we'll deal with them as they arise. */
228 ptrace (PT_KILL, inferior_pid, (PTRACE_ARG3_TYPE) 0, 0);
229 ptrace_wait (0, &status);
230 target_mourn_inferior ();
231 }
232
233 #ifndef CHILD_RESUME
234
235 /* Resume execution of the inferior process.
236 If STEP is nonzero, single-step it.
237 If SIGNAL is nonzero, give it that signal. */
238
239 void
240 child_resume (pid, step, signal)
241 int pid;
242 int step;
243 enum target_signal signal;
244 {
245 errno = 0;
246
247 if (pid == -1)
248 /* Resume all threads. */
249 /* I think this only gets used in the non-threaded case, where "resume
250 all threads" and "resume inferior_pid" are the same. */
251 pid = inferior_pid;
252
253 /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
254 it was. (If GDB wanted it to start some other way, we have already
255 written a new PC value to the child.)
256
257 If this system does not support PT_STEP, a higher level function will
258 have called single_step() to transmute the step request into a
259 continue request (by setting breakpoints on all possible successor
260 instructions), so we don't have to worry about that here. */
261
262 if (step)
263 {
264 if (SOFTWARE_SINGLE_STEP_P)
265 abort (); /* Make sure this doesn't happen. */
266 else
267 ptrace (PT_STEP, pid, (PTRACE_ARG3_TYPE) 1,
268 target_signal_to_host (signal));
269 }
270 else
271 ptrace (PT_CONTINUE, pid, (PTRACE_ARG3_TYPE) 1,
272 target_signal_to_host (signal));
273
274 if (errno)
275 perror_with_name ("ptrace");
276 }
277 #endif /* CHILD_RESUME */
278 \f
279
280 #ifdef ATTACH_DETACH
281 /* Start debugging the process whose number is PID. */
282 int
283 attach (pid)
284 int pid;
285 {
286 errno = 0;
287 ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0);
288 if (errno)
289 perror_with_name ("ptrace");
290 attach_flag = 1;
291 return pid;
292 }
293
294 /* Stop debugging the process whose number is PID
295 and continue it with signal number SIGNAL.
296 SIGNAL = 0 means just continue it. */
297
298 void
299 detach (signal)
300 int signal;
301 {
302 errno = 0;
303 ptrace (PT_DETACH, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal);
304 if (errno)
305 perror_with_name ("ptrace");
306 attach_flag = 0;
307 }
308 #endif /* ATTACH_DETACH */
309 \f
310 /* Default the type of the ptrace transfer to int. */
311 #ifndef PTRACE_XFER_TYPE
312 #define PTRACE_XFER_TYPE int
313 #endif
314
315 /* KERNEL_U_ADDR is the amount to subtract from u.u_ar0
316 to get the offset in the core file of the register values. */
317 #if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS)
318 /* Get kernel_u_addr using BSD-style nlist(). */
319 CORE_ADDR kernel_u_addr;
320 #endif /* KERNEL_U_ADDR_BSD. */
321
322 void
323 _initialize_kernel_u_addr ()
324 {
325 #if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS)
326 struct nlist names[2];
327
328 names[0].n_un.n_name = "_u";
329 names[1].n_un.n_name = NULL;
330 if (nlist ("/vmunix", names) == 0)
331 kernel_u_addr = names[0].n_value;
332 else
333 fatal ("Unable to get kernel u area address.");
334 #endif /* KERNEL_U_ADDR_BSD. */
335 }
336
337 #if !defined (FETCH_INFERIOR_REGISTERS)
338
339 #if !defined (offsetof)
340 #define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
341 #endif
342
343 /* U_REGS_OFFSET is the offset of the registers within the u area. */
344 #if !defined (U_REGS_OFFSET)
345 #define U_REGS_OFFSET \
346 ptrace (PT_READ_U, inferior_pid, \
347 (PTRACE_ARG3_TYPE) (offsetof (struct user, u_ar0)), 0) \
348 - KERNEL_U_ADDR
349 #endif
350
351 /* Registers we shouldn't try to fetch. */
352 #if !defined (CANNOT_FETCH_REGISTER)
353 #define CANNOT_FETCH_REGISTER(regno) 0
354 #endif
355
356 /* Fetch one register. */
357
358 static void
359 fetch_register (regno)
360 int regno;
361 {
362 /* This isn't really an address. But ptrace thinks of it as one. */
363 CORE_ADDR regaddr;
364 char mess[128]; /* For messages */
365 register int i;
366 unsigned int offset; /* Offset of registers within the u area. */
367 char buf[MAX_REGISTER_RAW_SIZE];
368
369 if (CANNOT_FETCH_REGISTER (regno))
370 {
371 memset (buf, '\0', REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
372 supply_register (regno, buf);
373 return;
374 }
375
376 offset = U_REGS_OFFSET;
377
378 regaddr = register_addr (regno, offset);
379 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
380 {
381 errno = 0;
382 *(PTRACE_XFER_TYPE *) & buf[i] = ptrace (PT_READ_U, inferior_pid,
383 (PTRACE_ARG3_TYPE) regaddr, 0);
384 regaddr += sizeof (PTRACE_XFER_TYPE);
385 if (errno != 0)
386 {
387 sprintf (mess, "reading register %s (#%d)", REGISTER_NAME (regno), regno);
388 perror_with_name (mess);
389 }
390 }
391 supply_register (regno, buf);
392 }
393
394
395 /* Fetch register values from the inferior.
396 If REGNO is negative, do this for all registers.
397 Otherwise, REGNO specifies which register (so we can save time). */
398
399 void
400 fetch_inferior_registers (regno)
401 int regno;
402 {
403 if (regno >= 0)
404 {
405 fetch_register (regno);
406 }
407 else
408 {
409 for (regno = 0; regno < ARCH_NUM_REGS; regno++)
410 {
411 fetch_register (regno);
412 }
413 }
414 }
415
416 /* Registers we shouldn't try to store. */
417 #if !defined (CANNOT_STORE_REGISTER)
418 #define CANNOT_STORE_REGISTER(regno) 0
419 #endif
420
421 /* Store one register. */
422
423 static void
424 store_register (regno)
425 int regno;
426 {
427 /* This isn't really an address. But ptrace thinks of it as one. */
428 CORE_ADDR regaddr;
429 char mess[128]; /* For messages */
430 register int i;
431 unsigned int offset; /* Offset of registers within the u area. */
432
433 if (CANNOT_STORE_REGISTER (regno))
434 {
435 return;
436 }
437
438 offset = U_REGS_OFFSET;
439
440 regaddr = register_addr (regno, offset);
441 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
442 {
443 errno = 0;
444 ptrace (PT_WRITE_U, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
445 *(PTRACE_XFER_TYPE *) & registers[REGISTER_BYTE (regno) + i]);
446 regaddr += sizeof (PTRACE_XFER_TYPE);
447 if (errno != 0)
448 {
449 sprintf (mess, "writing register %s (#%d)", REGISTER_NAME (regno), regno);
450 perror_with_name (mess);
451 }
452 }
453 }
454
455 /* Store our register values back into the inferior.
456 If REGNO is negative, do this for all registers.
457 Otherwise, REGNO specifies which register (so we can save time). */
458
459 void
460 store_inferior_registers (regno)
461 int regno;
462 {
463 if (regno >= 0)
464 {
465 store_register (regno);
466 }
467 else
468 {
469 for (regno = 0; regno < ARCH_NUM_REGS; regno++)
470 {
471 store_register (regno);
472 }
473 }
474 }
475 #endif /* !defined (FETCH_INFERIOR_REGISTERS). */
476 \f
477
478 #if !defined (CHILD_XFER_MEMORY)
479 /* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
480 in the NEW_SUN_PTRACE case.
481 It ought to be straightforward. But it appears that writing did
482 not write the data that I specified. I cannot understand where
483 it got the data that it actually did write. */
484
485 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR
486 to debugger memory starting at MYADDR. Copy to inferior if
487 WRITE is nonzero.
488
489 Returns the length copied, which is either the LEN argument or zero.
490 This xfer function does not do partial moves, since child_ops
491 doesn't allow memory operations to cross below us in the target stack
492 anyway. */
493
494 int
495 child_xfer_memory (memaddr, myaddr, len, write, target)
496 CORE_ADDR memaddr;
497 char *myaddr;
498 int len;
499 int write;
500 struct target_ops *target; /* ignored */
501 {
502 register int i;
503 /* Round starting address down to longword boundary. */
504 register CORE_ADDR addr = memaddr & -sizeof (PTRACE_XFER_TYPE);
505 /* Round ending address up; get number of longwords that makes. */
506 register int count
507 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
508 / sizeof (PTRACE_XFER_TYPE);
509 /* Allocate buffer of that many longwords. */
510 register PTRACE_XFER_TYPE *buffer
511 = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
512
513 if (write)
514 {
515 /* Fill start and end extra bytes of buffer with existing memory data. */
516
517 if (addr != memaddr || len < (int) sizeof (PTRACE_XFER_TYPE))
518 {
519 /* Need part of initial word -- fetch it. */
520 buffer[0] = ptrace (PT_READ_I, inferior_pid, (PTRACE_ARG3_TYPE) addr,
521 0);
522 }
523
524 if (count > 1) /* FIXME, avoid if even boundary */
525 {
526 buffer[count - 1]
527 = ptrace (PT_READ_I, inferior_pid,
528 ((PTRACE_ARG3_TYPE)
529 (addr + (count - 1) * sizeof (PTRACE_XFER_TYPE))),
530 0);
531 }
532
533 /* Copy data to be written over corresponding part of buffer */
534
535 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
536 myaddr,
537 len);
538
539 /* Write the entire buffer. */
540
541 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
542 {
543 errno = 0;
544 ptrace (PT_WRITE_D, inferior_pid, (PTRACE_ARG3_TYPE) addr,
545 buffer[i]);
546 if (errno)
547 {
548 /* Using the appropriate one (I or D) is necessary for
549 Gould NP1, at least. */
550 errno = 0;
551 ptrace (PT_WRITE_I, inferior_pid, (PTRACE_ARG3_TYPE) addr,
552 buffer[i]);
553 }
554 if (errno)
555 return 0;
556 }
557 #ifdef CLEAR_INSN_CACHE
558 CLEAR_INSN_CACHE ();
559 #endif
560 }
561 else
562 {
563 /* Read all the longwords */
564 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
565 {
566 errno = 0;
567 buffer[i] = ptrace (PT_READ_I, inferior_pid,
568 (PTRACE_ARG3_TYPE) addr, 0);
569 if (errno)
570 return 0;
571 QUIT;
572 }
573
574 /* Copy appropriate bytes out of the buffer. */
575 memcpy (myaddr,
576 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
577 len);
578 }
579 return len;
580 }
581 \f
582
583 static void
584 udot_info (dummy1, dummy2)
585 char *dummy1;
586 int dummy2;
587 {
588 #if defined (KERNEL_U_SIZE)
589 int udot_off; /* Offset into user struct */
590 int udot_val; /* Value from user struct at udot_off */
591 char mess[128]; /* For messages */
592 #endif
593
594 if (!target_has_execution)
595 {
596 error ("The program is not being run.");
597 }
598
599 #if !defined (KERNEL_U_SIZE)
600
601 /* Adding support for this command is easy. Typically you just add a
602 routine, called "kernel_u_size" that returns the size of the user
603 struct, to the appropriate *-nat.c file and then add to the native
604 config file "#define KERNEL_U_SIZE kernel_u_size()" */
605 error ("Don't know how large ``struct user'' is in this version of gdb.");
606
607 #else
608
609 for (udot_off = 0; udot_off < KERNEL_U_SIZE; udot_off += sizeof (udot_val))
610 {
611 if ((udot_off % 24) == 0)
612 {
613 if (udot_off > 0)
614 {
615 printf_filtered ("\n");
616 }
617 printf_filtered ("%04x:", udot_off);
618 }
619 udot_val = ptrace (PT_READ_U, inferior_pid, (PTRACE_ARG3_TYPE) udot_off, 0);
620 if (errno != 0)
621 {
622 sprintf (mess, "\nreading user struct at offset 0x%x", udot_off);
623 perror_with_name (mess);
624 }
625 /* Avoid using nonportable (?) "*" in print specs */
626 printf_filtered (sizeof (int) == 4 ? " 0x%08x" : " 0x%16x", udot_val);
627 }
628 printf_filtered ("\n");
629
630 #endif
631 }
632 #endif /* !defined (CHILD_XFER_MEMORY). */
633 \f
634
635 void
636 _initialize_infptrace ()
637 {
638 #if !defined (CHILD_XFER_MEMORY)
639 add_info ("udot", udot_info,
640 "Print contents of kernel ``struct user'' for current child.");
641 #endif
642 }