]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infptrace.c
* tm-rs6000.h (AIX_BUGGY_PTRACE_CALL): Zap, we think we fixed it.
[thirdparty/binutils-gdb.git] / gdb / infptrace.c
1 /* Low level Unix child interface to ptrace, for GDB when running under Unix.
2 Copyright 1988, 1989, 1990, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "target.h"
24
25 #ifdef USG
26 #include <sys/types.h>
27 #endif
28
29 #include <sys/param.h>
30 #include <sys/dir.h>
31 #include <signal.h>
32 #include <sys/ioctl.h>
33 #ifndef USG
34 #ifdef PTRACE_IN_WRONG_PLACE
35 #include <ptrace.h>
36 #else
37 #include <sys/ptrace.h>
38 #endif
39 #endif
40
41 #if !defined (PT_KILL)
42 #define PT_KILL 8
43 #define PT_STEP 9
44 #define PT_CONTINUE 7
45 #define PT_READ_U 3
46 #define PT_WRITE_U 6
47 #define PT_READ_I 1
48 #define PT_READ_D 2
49 #define PT_WRITE_I 4
50 #define PT_WRITE_D 5
51 #endif /* No PT_KILL. */
52
53 #ifndef PT_ATTACH
54 #define PT_ATTACH PTRACE_ATTACH
55 #endif
56 #ifndef PT_DETACH
57 #define PT_DETACH PTRACE_DETACH
58 #endif
59
60 #include "gdbcore.h"
61 #ifndef NO_SYS_FILE
62 #include <sys/file.h>
63 #endif
64 #include <sys/stat.h>
65
66 #if !defined (FETCH_INFERIOR_REGISTERS)
67 #include <sys/user.h> /* Probably need to poke the user structure */
68 #if defined (KERNEL_U_ADDR_BSD)
69 #include <a.out.h> /* For struct nlist */
70 #endif /* KERNEL_U_ADDR_BSD. */
71 #endif /* !FETCH_INFERIOR_REGISTERS */
72
73 \f
74 /* This function simply calls ptrace with the given arguments.
75 It exists so that all calls to ptrace are isolated in this
76 machine-dependent file. */
77 int
78 call_ptrace (request, pid, addr, data)
79 int request, pid;
80 PTRACE_ARG3_TYPE addr;
81 int data;
82 {
83 return ptrace (request, pid, addr, data);
84 }
85
86 #ifdef DEBUG_PTRACE
87 /* For the rest of the file, use an extra level of indirection */
88 /* This lets us breakpoint usefully on call_ptrace. */
89 #define ptrace call_ptrace
90 #endif
91
92 /* This is used when GDB is exiting. It gives less chance of error.*/
93
94 void
95 kill_inferior_fast ()
96 {
97 if (inferior_pid == 0)
98 return;
99 ptrace (PT_KILL, inferior_pid, (PTRACE_ARG3_TYPE) 0, 0);
100 wait ((int *)0);
101 }
102
103 void
104 kill_inferior ()
105 {
106 kill_inferior_fast ();
107 target_mourn_inferior ();
108 }
109
110 /* Resume execution of the inferior process.
111 If STEP is nonzero, single-step it.
112 If SIGNAL is nonzero, give it that signal. */
113
114 void
115 child_resume (step, signal)
116 int step;
117 int signal;
118 {
119 errno = 0;
120
121 /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
122 it was. (If GDB wanted it to start some other way, we have already
123 written a new PC value to the child.)
124
125 If this system does not support PT_STEP, a higher level function will
126 have called single_step() to transmute the step request into a
127 continue request (by setting breakpoints on all possible successor
128 instructions), so we don't have to worry about that here. */
129
130 if (step)
131 ptrace (PT_STEP, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal);
132 else
133 ptrace (PT_CONTINUE, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal);
134
135 if (errno)
136 perror_with_name ("ptrace");
137 }
138 \f
139 #ifdef ATTACH_DETACH
140 /* Nonzero if we are debugging an attached process rather than
141 an inferior. */
142 extern int attach_flag;
143
144 /* Start debugging the process whose number is PID. */
145 int
146 attach (pid)
147 int pid;
148 {
149 errno = 0;
150 ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0);
151 if (errno)
152 perror_with_name ("ptrace");
153 attach_flag = 1;
154 return pid;
155 }
156
157 /* Stop debugging the process whose number is PID
158 and continue it with signal number SIGNAL.
159 SIGNAL = 0 means just continue it. */
160
161 void
162 detach (signal)
163 int signal;
164 {
165 errno = 0;
166 ptrace (PT_DETACH, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal);
167 if (errno)
168 perror_with_name ("ptrace");
169 attach_flag = 0;
170 }
171 #endif /* ATTACH_DETACH */
172 \f
173 #if !defined (FETCH_INFERIOR_REGISTERS)
174
175 /* KERNEL_U_ADDR is the amount to subtract from u.u_ar0
176 to get the offset in the core file of the register values. */
177 #if defined (KERNEL_U_ADDR_BSD)
178 /* Get kernel_u_addr using BSD-style nlist(). */
179 CORE_ADDR kernel_u_addr;
180
181 void
182 _initialize_kernel_u_addr ()
183 {
184 struct nlist names[2];
185
186 names[0].n_un.n_name = "_u";
187 names[1].n_un.n_name = NULL;
188 if (nlist ("/vmunix", names) == 0)
189 kernel_u_addr = names[0].n_value;
190 else
191 fatal ("Unable to get kernel u area address.");
192 }
193 #endif /* KERNEL_U_ADDR_BSD. */
194
195 #if defined (KERNEL_U_ADDR_HPUX)
196 /* Get kernel_u_addr using HPUX-style nlist(). */
197 CORE_ADDR kernel_u_addr;
198
199 struct hpnlist {
200 char * n_name;
201 long n_value;
202 unsigned char n_type;
203 unsigned char n_length;
204 short n_almod;
205 short n_unused;
206 };
207 static struct hpnlist nl[] = {{ "_u", -1, }, { (char *) 0, }};
208
209 /* read the value of the u area from the hp-ux kernel */
210 void _initialize_kernel_u_addr ()
211 {
212 nlist ("/hp-ux", &nl);
213 kernel_u_addr = nl[0].n_value;
214 }
215 #endif /* KERNEL_U_ADDR_HPUX. */
216
217 #if !defined (offsetof)
218 #define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
219 #endif
220
221 /* U_REGS_OFFSET is the offset of the registers within the u area. */
222 #if !defined (U_REGS_OFFSET)
223 #define U_REGS_OFFSET \
224 ptrace (PT_READ_U, inferior_pid, \
225 (PTRACE_ARG3_TYPE) (offsetof (struct user, u_ar0)), 0) \
226 - KERNEL_U_ADDR
227 #endif
228
229 /* Registers we shouldn't try to fetch. */
230 #if !defined (CANNOT_FETCH_REGISTER)
231 #define CANNOT_FETCH_REGISTER(regno) 0
232 #endif
233
234 /* Fetch one register. */
235
236 static void
237 fetch_register (regno)
238 int regno;
239 {
240 register unsigned int regaddr;
241 char buf[MAX_REGISTER_RAW_SIZE];
242 char mess[128]; /* For messages */
243 register int i;
244
245 /* Offset of registers within the u area. */
246 unsigned int offset;
247
248 if (CANNOT_FETCH_REGISTER (regno))
249 {
250 bzero (buf, REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
251 supply_register (regno, buf);
252 return;
253 }
254
255 offset = U_REGS_OFFSET;
256
257 regaddr = register_addr (regno, offset);
258 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
259 {
260 errno = 0;
261 *(int *) &buf[i] = ptrace (PT_READ_U, inferior_pid,
262 (PTRACE_ARG3_TYPE) regaddr, 0);
263 regaddr += sizeof (int);
264 if (errno != 0)
265 {
266 sprintf (mess, "reading register %s (#%d)", reg_names[regno], regno);
267 perror_with_name (mess);
268 }
269 }
270 supply_register (regno, buf);
271 }
272
273
274 /* Fetch all registers, or just one, from the child process. */
275
276 void
277 fetch_inferior_registers (regno)
278 int regno;
279 {
280 if (regno == -1)
281 for (regno = 0; regno < NUM_REGS; regno++)
282 fetch_register (regno);
283 else
284 fetch_register (regno);
285 }
286
287 /* Registers we shouldn't try to store. */
288 #if !defined (CANNOT_STORE_REGISTER)
289 #define CANNOT_STORE_REGISTER(regno) 0
290 #endif
291
292 /* Store our register values back into the inferior.
293 If REGNO is -1, do this for all registers.
294 Otherwise, REGNO specifies which register (so we can save time). */
295
296 void
297 store_inferior_registers (regno)
298 int regno;
299 {
300 register unsigned int regaddr;
301 char buf[80];
302 extern char registers[];
303 register int i;
304
305 unsigned int offset = U_REGS_OFFSET;
306
307 if (regno >= 0)
308 {
309 regaddr = register_addr (regno, offset);
310 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(int))
311 {
312 errno = 0;
313 ptrace (PT_WRITE_U, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
314 *(int *) &registers[REGISTER_BYTE (regno) + i]);
315 if (errno != 0)
316 {
317 sprintf (buf, "writing register number %d(%d)", regno, i);
318 perror_with_name (buf);
319 }
320 regaddr += sizeof(int);
321 }
322 }
323 else
324 {
325 for (regno = 0; regno < NUM_REGS; regno++)
326 {
327 if (CANNOT_STORE_REGISTER (regno))
328 continue;
329 regaddr = register_addr (regno, offset);
330 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(int))
331 {
332 errno = 0;
333 ptrace (PT_WRITE_U, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
334 *(int *) &registers[REGISTER_BYTE (regno) + i]);
335 if (errno != 0)
336 {
337 sprintf (buf, "writing register number %d(%d)", regno, i);
338 perror_with_name (buf);
339 }
340 regaddr += sizeof(int);
341 }
342 }
343 }
344 }
345 #endif /* !defined (FETCH_INFERIOR_REGISTERS). */
346 \f
347 /* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
348 in the NEW_SUN_PTRACE case.
349 It ought to be straightforward. But it appears that writing did
350 not write the data that I specified. I cannot understand where
351 it got the data that it actually did write. */
352
353 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR
354 to debugger memory starting at MYADDR. Copy to inferior if
355 WRITE is nonzero.
356
357 Returns the length copied, which is either the LEN argument or zero.
358 This xfer function does not do partial moves, since child_ops
359 doesn't allow memory operations to cross below us in the target stack
360 anyway. */
361
362 int
363 child_xfer_memory (memaddr, myaddr, len, write, target)
364 CORE_ADDR memaddr;
365 char *myaddr;
366 int len;
367 int write;
368 struct target_ops *target; /* ignored */
369 {
370 register int i;
371 /* Round starting address down to longword boundary. */
372 register CORE_ADDR addr = memaddr & - sizeof (int);
373 /* Round ending address up; get number of longwords that makes. */
374 register int count
375 = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
376 /* Allocate buffer of that many longwords. */
377 register int *buffer = (int *) alloca (count * sizeof (int));
378
379 if (write)
380 {
381 /* Fill start and end extra bytes of buffer with existing memory data. */
382
383 if (addr != memaddr || len < (int)sizeof (int)) {
384 /* Need part of initial word -- fetch it. */
385 buffer[0] = ptrace (PT_READ_I, inferior_pid, (PTRACE_ARG3_TYPE) addr,
386 0);
387 }
388
389 if (count > 1) /* FIXME, avoid if even boundary */
390 {
391 buffer[count - 1]
392 = ptrace (PT_READ_I, inferior_pid,
393 (PTRACE_ARG3_TYPE) (addr + (count - 1) * sizeof (int)),
394 0);
395 }
396
397 /* Copy data to be written over corresponding part of buffer */
398
399 memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
400
401 /* Write the entire buffer. */
402
403 for (i = 0; i < count; i++, addr += sizeof (int))
404 {
405 errno = 0;
406 ptrace (PT_WRITE_D, inferior_pid, (PTRACE_ARG3_TYPE) addr,
407 buffer[i]);
408 if (errno)
409 {
410 /* Using the appropriate one (I or D) is necessary for
411 Gould NP1, at least. */
412 errno = 0;
413 ptrace (PT_WRITE_I, inferior_pid, (PTRACE_ARG3_TYPE) addr,
414 buffer[i]);
415 }
416 if (errno)
417 return 0;
418 }
419 }
420 else
421 {
422 /* Read all the longwords */
423 for (i = 0; i < count; i++, addr += sizeof (int))
424 {
425 errno = 0;
426 buffer[i] = ptrace (PT_READ_I, inferior_pid,
427 (PTRACE_ARG3_TYPE) addr, 0);
428 if (errno)
429 return 0;
430 QUIT;
431 }
432
433 /* Copy appropriate bytes out of the buffer. */
434 memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
435 }
436 return len;
437 }