]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
Update year range in copyright notice of all files owned by the GDB project.
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63
64 /* Prototypes for local functions */
65
66 static void signals_info (char *, int);
67
68 static void handle_command (char *, int);
69
70 static void sig_print_info (enum gdb_signal);
71
72 static void sig_print_header (void);
73
74 static void resume_cleanups (void *);
75
76 static int hook_stop_stub (void *);
77
78 static int restore_selected_frame (void *);
79
80 static int follow_fork (void);
81
82 static int follow_fork_inferior (int follow_child, int detach_fork);
83
84 static void follow_inferior_reset_breakpoints (void);
85
86 static void set_schedlock_func (char *args, int from_tty,
87 struct cmd_list_element *c);
88
89 static int currently_stepping (struct thread_info *tp);
90
91 static void xdb_handle_command (char *args, int from_tty);
92
93 void _initialize_infrun (void);
94
95 void nullify_last_target_wait_ptid (void);
96
97 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
98
99 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
100
101 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
102
103 /* When set, stop the 'step' command if we enter a function which has
104 no line number information. The normal behavior is that we step
105 over such function. */
106 int step_stop_if_no_debug = 0;
107 static void
108 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
112 }
113
114 /* In asynchronous mode, but simulating synchronous execution. */
115
116 int sync_execution = 0;
117
118 /* proceed and normal_stop use this to notify the user when the
119 inferior stopped in a different thread than it had been running
120 in. */
121
122 static ptid_t previous_inferior_ptid;
123
124 /* If set (default for legacy reasons), when following a fork, GDB
125 will detach from one of the fork branches, child or parent.
126 Exactly which branch is detached depends on 'set follow-fork-mode'
127 setting. */
128
129 static int detach_fork = 1;
130
131 int debug_displaced = 0;
132 static void
133 show_debug_displaced (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c, const char *value)
135 {
136 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
137 }
138
139 unsigned int debug_infrun = 0;
140 static void
141 show_debug_infrun (struct ui_file *file, int from_tty,
142 struct cmd_list_element *c, const char *value)
143 {
144 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
145 }
146
147
148 /* Support for disabling address space randomization. */
149
150 int disable_randomization = 1;
151
152 static void
153 show_disable_randomization (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 if (target_supports_disable_randomization ())
157 fprintf_filtered (file,
158 _("Disabling randomization of debuggee's "
159 "virtual address space is %s.\n"),
160 value);
161 else
162 fputs_filtered (_("Disabling randomization of debuggee's "
163 "virtual address space is unsupported on\n"
164 "this platform.\n"), file);
165 }
166
167 static void
168 set_disable_randomization (char *args, int from_tty,
169 struct cmd_list_element *c)
170 {
171 if (!target_supports_disable_randomization ())
172 error (_("Disabling randomization of debuggee's "
173 "virtual address space is unsupported on\n"
174 "this platform."));
175 }
176
177 /* User interface for non-stop mode. */
178
179 int non_stop = 0;
180 static int non_stop_1 = 0;
181
182 static void
183 set_non_stop (char *args, int from_tty,
184 struct cmd_list_element *c)
185 {
186 if (target_has_execution)
187 {
188 non_stop_1 = non_stop;
189 error (_("Cannot change this setting while the inferior is running."));
190 }
191
192 non_stop = non_stop_1;
193 }
194
195 static void
196 show_non_stop (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198 {
199 fprintf_filtered (file,
200 _("Controlling the inferior in non-stop mode is %s.\n"),
201 value);
202 }
203
204 /* "Observer mode" is somewhat like a more extreme version of
205 non-stop, in which all GDB operations that might affect the
206 target's execution have been disabled. */
207
208 int observer_mode = 0;
209 static int observer_mode_1 = 0;
210
211 static void
212 set_observer_mode (char *args, int from_tty,
213 struct cmd_list_element *c)
214 {
215 if (target_has_execution)
216 {
217 observer_mode_1 = observer_mode;
218 error (_("Cannot change this setting while the inferior is running."));
219 }
220
221 observer_mode = observer_mode_1;
222
223 may_write_registers = !observer_mode;
224 may_write_memory = !observer_mode;
225 may_insert_breakpoints = !observer_mode;
226 may_insert_tracepoints = !observer_mode;
227 /* We can insert fast tracepoints in or out of observer mode,
228 but enable them if we're going into this mode. */
229 if (observer_mode)
230 may_insert_fast_tracepoints = 1;
231 may_stop = !observer_mode;
232 update_target_permissions ();
233
234 /* Going *into* observer mode we must force non-stop, then
235 going out we leave it that way. */
236 if (observer_mode)
237 {
238 pagination_enabled = 0;
239 non_stop = non_stop_1 = 1;
240 }
241
242 if (from_tty)
243 printf_filtered (_("Observer mode is now %s.\n"),
244 (observer_mode ? "on" : "off"));
245 }
246
247 static void
248 show_observer_mode (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250 {
251 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
252 }
253
254 /* This updates the value of observer mode based on changes in
255 permissions. Note that we are deliberately ignoring the values of
256 may-write-registers and may-write-memory, since the user may have
257 reason to enable these during a session, for instance to turn on a
258 debugging-related global. */
259
260 void
261 update_observer_mode (void)
262 {
263 int newval;
264
265 newval = (!may_insert_breakpoints
266 && !may_insert_tracepoints
267 && may_insert_fast_tracepoints
268 && !may_stop
269 && non_stop);
270
271 /* Let the user know if things change. */
272 if (newval != observer_mode)
273 printf_filtered (_("Observer mode is now %s.\n"),
274 (newval ? "on" : "off"));
275
276 observer_mode = observer_mode_1 = newval;
277 }
278
279 /* Tables of how to react to signals; the user sets them. */
280
281 static unsigned char *signal_stop;
282 static unsigned char *signal_print;
283 static unsigned char *signal_program;
284
285 /* Table of signals that are registered with "catch signal". A
286 non-zero entry indicates that the signal is caught by some "catch
287 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
288 signals. */
289 static unsigned char *signal_catch;
290
291 /* Table of signals that the target may silently handle.
292 This is automatically determined from the flags above,
293 and simply cached here. */
294 static unsigned char *signal_pass;
295
296 #define SET_SIGS(nsigs,sigs,flags) \
297 do { \
298 int signum = (nsigs); \
299 while (signum-- > 0) \
300 if ((sigs)[signum]) \
301 (flags)[signum] = 1; \
302 } while (0)
303
304 #define UNSET_SIGS(nsigs,sigs,flags) \
305 do { \
306 int signum = (nsigs); \
307 while (signum-- > 0) \
308 if ((sigs)[signum]) \
309 (flags)[signum] = 0; \
310 } while (0)
311
312 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
313 this function is to avoid exporting `signal_program'. */
314
315 void
316 update_signals_program_target (void)
317 {
318 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
319 }
320
321 /* Value to pass to target_resume() to cause all threads to resume. */
322
323 #define RESUME_ALL minus_one_ptid
324
325 /* Command list pointer for the "stop" placeholder. */
326
327 static struct cmd_list_element *stop_command;
328
329 /* Function inferior was in as of last step command. */
330
331 static struct symbol *step_start_function;
332
333 /* Nonzero if we want to give control to the user when we're notified
334 of shared library events by the dynamic linker. */
335 int stop_on_solib_events;
336
337 /* Enable or disable optional shared library event breakpoints
338 as appropriate when the above flag is changed. */
339
340 static void
341 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
342 {
343 update_solib_breakpoints ();
344 }
345
346 static void
347 show_stop_on_solib_events (struct ui_file *file, int from_tty,
348 struct cmd_list_element *c, const char *value)
349 {
350 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
351 value);
352 }
353
354 /* Nonzero means expecting a trace trap
355 and should stop the inferior and return silently when it happens. */
356
357 int stop_after_trap;
358
359 /* Save register contents here when executing a "finish" command or are
360 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
361 Thus this contains the return value from the called function (assuming
362 values are returned in a register). */
363
364 struct regcache *stop_registers;
365
366 /* Nonzero after stop if current stack frame should be printed. */
367
368 static int stop_print_frame;
369
370 /* This is a cached copy of the pid/waitstatus of the last event
371 returned by target_wait()/deprecated_target_wait_hook(). This
372 information is returned by get_last_target_status(). */
373 static ptid_t target_last_wait_ptid;
374 static struct target_waitstatus target_last_waitstatus;
375
376 static void context_switch (ptid_t ptid);
377
378 void init_thread_stepping_state (struct thread_info *tss);
379
380 static const char follow_fork_mode_child[] = "child";
381 static const char follow_fork_mode_parent[] = "parent";
382
383 static const char *const follow_fork_mode_kind_names[] = {
384 follow_fork_mode_child,
385 follow_fork_mode_parent,
386 NULL
387 };
388
389 static const char *follow_fork_mode_string = follow_fork_mode_parent;
390 static void
391 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
392 struct cmd_list_element *c, const char *value)
393 {
394 fprintf_filtered (file,
395 _("Debugger response to a program "
396 "call of fork or vfork is \"%s\".\n"),
397 value);
398 }
399 \f
400
401 /* Handle changes to the inferior list based on the type of fork,
402 which process is being followed, and whether the other process
403 should be detached. On entry inferior_ptid must be the ptid of
404 the fork parent. At return inferior_ptid is the ptid of the
405 followed inferior. */
406
407 static int
408 follow_fork_inferior (int follow_child, int detach_fork)
409 {
410 int has_vforked;
411 int parent_pid, child_pid;
412
413 has_vforked = (inferior_thread ()->pending_follow.kind
414 == TARGET_WAITKIND_VFORKED);
415 parent_pid = ptid_get_lwp (inferior_ptid);
416 if (parent_pid == 0)
417 parent_pid = ptid_get_pid (inferior_ptid);
418 child_pid
419 = ptid_get_pid (inferior_thread ()->pending_follow.value.related_pid);
420
421 if (has_vforked
422 && !non_stop /* Non-stop always resumes both branches. */
423 && (!target_is_async_p () || sync_execution)
424 && !(follow_child || detach_fork || sched_multi))
425 {
426 /* The parent stays blocked inside the vfork syscall until the
427 child execs or exits. If we don't let the child run, then
428 the parent stays blocked. If we're telling the parent to run
429 in the foreground, the user will not be able to ctrl-c to get
430 back the terminal, effectively hanging the debug session. */
431 fprintf_filtered (gdb_stderr, _("\
432 Can not resume the parent process over vfork in the foreground while\n\
433 holding the child stopped. Try \"set detach-on-fork\" or \
434 \"set schedule-multiple\".\n"));
435 /* FIXME output string > 80 columns. */
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
444 struct cleanup *old_chain;
445
446 /* Before detaching from the child, remove all breakpoints
447 from it. If we forked, then this has already been taken
448 care of by infrun.c. If we vforked however, any
449 breakpoint inserted in the parent is visible in the
450 child, even those added while stopped in a vfork
451 catchpoint. This will remove the breakpoints from the
452 parent also, but they'll be reinserted below. */
453 if (has_vforked)
454 {
455 /* Keep breakpoints list in sync. */
456 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
457 }
458
459 if (info_verbose || debug_infrun)
460 {
461 target_terminal_ours_for_output ();
462 fprintf_filtered (gdb_stdlog,
463 _("Detaching after %s from "
464 "child process %d.\n"),
465 has_vforked ? "vfork" : "fork",
466 child_pid);
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
472 struct cleanup *old_chain;
473
474 /* Add process to GDB's tables. */
475 child_inf = add_inferior (child_pid);
476
477 parent_inf = current_inferior ();
478 child_inf->attach_flag = parent_inf->attach_flag;
479 copy_terminal_info (child_inf, parent_inf);
480 child_inf->gdbarch = parent_inf->gdbarch;
481 copy_inferior_target_desc_info (child_inf, parent_inf);
482
483 old_chain = save_inferior_ptid ();
484 save_current_program_space ();
485
486 inferior_ptid = ptid_build (child_pid, child_pid, 0);
487 add_thread (inferior_ptid);
488 child_inf->symfile_flags = SYMFILE_NO_READ;
489
490 /* If this is a vfork child, then the address-space is
491 shared with the parent. */
492 if (has_vforked)
493 {
494 child_inf->pspace = parent_inf->pspace;
495 child_inf->aspace = parent_inf->aspace;
496
497 /* The parent will be frozen until the child is done
498 with the shared region. Keep track of the
499 parent. */
500 child_inf->vfork_parent = parent_inf;
501 child_inf->pending_detach = 0;
502 parent_inf->vfork_child = child_inf;
503 parent_inf->pending_detach = 0;
504 }
505 else
506 {
507 child_inf->aspace = new_address_space ();
508 child_inf->pspace = add_program_space (child_inf->aspace);
509 child_inf->removable = 1;
510 set_current_program_space (child_inf->pspace);
511 clone_program_space (child_inf->pspace, parent_inf->pspace);
512
513 /* Let the shared library layer (e.g., solib-svr4) learn
514 about this new process, relocate the cloned exec, pull
515 in shared libraries, and install the solib event
516 breakpoint. If a "cloned-VM" event was propagated
517 better throughout the core, this wouldn't be
518 required. */
519 solib_create_inferior_hook (0);
520 }
521
522 do_cleanups (old_chain);
523 }
524
525 if (has_vforked)
526 {
527 struct inferior *parent_inf;
528
529 parent_inf = current_inferior ();
530
531 /* If we detached from the child, then we have to be careful
532 to not insert breakpoints in the parent until the child
533 is done with the shared memory region. However, if we're
534 staying attached to the child, then we can and should
535 insert breakpoints, so that we can debug it. A
536 subsequent child exec or exit is enough to know when does
537 the child stops using the parent's address space. */
538 parent_inf->waiting_for_vfork_done = detach_fork;
539 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
540 }
541 }
542 else
543 {
544 /* Follow the child. */
545 struct inferior *parent_inf, *child_inf;
546 struct program_space *parent_pspace;
547
548 if (info_verbose || debug_infrun)
549 {
550 target_terminal_ours_for_output ();
551 fprintf_filtered (gdb_stdlog,
552 _("Attaching after process %d "
553 "%s to child process %d.\n"),
554 parent_pid,
555 has_vforked ? "vfork" : "fork",
556 child_pid);
557 }
558
559 /* Add the new inferior first, so that the target_detach below
560 doesn't unpush the target. */
561
562 child_inf = add_inferior (child_pid);
563
564 parent_inf = current_inferior ();
565 child_inf->attach_flag = parent_inf->attach_flag;
566 copy_terminal_info (child_inf, parent_inf);
567 child_inf->gdbarch = parent_inf->gdbarch;
568 copy_inferior_target_desc_info (child_inf, parent_inf);
569
570 parent_pspace = parent_inf->pspace;
571
572 /* If we're vforking, we want to hold on to the parent until the
573 child exits or execs. At child exec or exit time we can
574 remove the old breakpoints from the parent and detach or
575 resume debugging it. Otherwise, detach the parent now; we'll
576 want to reuse it's program/address spaces, but we can't set
577 them to the child before removing breakpoints from the
578 parent, otherwise, the breakpoints module could decide to
579 remove breakpoints from the wrong process (since they'd be
580 assigned to the same address space). */
581
582 if (has_vforked)
583 {
584 gdb_assert (child_inf->vfork_parent == NULL);
585 gdb_assert (parent_inf->vfork_child == NULL);
586 child_inf->vfork_parent = parent_inf;
587 child_inf->pending_detach = 0;
588 parent_inf->vfork_child = child_inf;
589 parent_inf->pending_detach = detach_fork;
590 parent_inf->waiting_for_vfork_done = 0;
591 }
592 else if (detach_fork)
593 {
594 if (info_verbose || debug_infrun)
595 {
596 target_terminal_ours_for_output ();
597 fprintf_filtered (gdb_stdlog,
598 _("Detaching after fork from "
599 "child process %d.\n"),
600 child_pid);
601 }
602
603 target_detach (NULL, 0);
604 }
605
606 /* Note that the detach above makes PARENT_INF dangling. */
607
608 /* Add the child thread to the appropriate lists, and switch to
609 this new thread, before cloning the program space, and
610 informing the solib layer about this new process. */
611
612 inferior_ptid = ptid_build (child_pid, child_pid, 0);
613 add_thread (inferior_ptid);
614
615 /* If this is a vfork child, then the address-space is shared
616 with the parent. If we detached from the parent, then we can
617 reuse the parent's program/address spaces. */
618 if (has_vforked || detach_fork)
619 {
620 child_inf->pspace = parent_pspace;
621 child_inf->aspace = child_inf->pspace->aspace;
622 }
623 else
624 {
625 child_inf->aspace = new_address_space ();
626 child_inf->pspace = add_program_space (child_inf->aspace);
627 child_inf->removable = 1;
628 child_inf->symfile_flags = SYMFILE_NO_READ;
629 set_current_program_space (child_inf->pspace);
630 clone_program_space (child_inf->pspace, parent_pspace);
631
632 /* Let the shared library layer (e.g., solib-svr4) learn
633 about this new process, relocate the cloned exec, pull in
634 shared libraries, and install the solib event breakpoint.
635 If a "cloned-VM" event was propagated better throughout
636 the core, this wouldn't be required. */
637 solib_create_inferior_hook (0);
638 }
639 }
640
641 return target_follow_fork (follow_child, detach_fork);
642 }
643
644 /* Tell the target to follow the fork we're stopped at. Returns true
645 if the inferior should be resumed; false, if the target for some
646 reason decided it's best not to resume. */
647
648 static int
649 follow_fork (void)
650 {
651 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
652 int should_resume = 1;
653 struct thread_info *tp;
654
655 /* Copy user stepping state to the new inferior thread. FIXME: the
656 followed fork child thread should have a copy of most of the
657 parent thread structure's run control related fields, not just these.
658 Initialized to avoid "may be used uninitialized" warnings from gcc. */
659 struct breakpoint *step_resume_breakpoint = NULL;
660 struct breakpoint *exception_resume_breakpoint = NULL;
661 CORE_ADDR step_range_start = 0;
662 CORE_ADDR step_range_end = 0;
663 struct frame_id step_frame_id = { 0 };
664 struct interp *command_interp = NULL;
665
666 if (!non_stop)
667 {
668 ptid_t wait_ptid;
669 struct target_waitstatus wait_status;
670
671 /* Get the last target status returned by target_wait(). */
672 get_last_target_status (&wait_ptid, &wait_status);
673
674 /* If not stopped at a fork event, then there's nothing else to
675 do. */
676 if (wait_status.kind != TARGET_WAITKIND_FORKED
677 && wait_status.kind != TARGET_WAITKIND_VFORKED)
678 return 1;
679
680 /* Check if we switched over from WAIT_PTID, since the event was
681 reported. */
682 if (!ptid_equal (wait_ptid, minus_one_ptid)
683 && !ptid_equal (inferior_ptid, wait_ptid))
684 {
685 /* We did. Switch back to WAIT_PTID thread, to tell the
686 target to follow it (in either direction). We'll
687 afterwards refuse to resume, and inform the user what
688 happened. */
689 switch_to_thread (wait_ptid);
690 should_resume = 0;
691 }
692 }
693
694 tp = inferior_thread ();
695
696 /* If there were any forks/vforks that were caught and are now to be
697 followed, then do so now. */
698 switch (tp->pending_follow.kind)
699 {
700 case TARGET_WAITKIND_FORKED:
701 case TARGET_WAITKIND_VFORKED:
702 {
703 ptid_t parent, child;
704
705 /* If the user did a next/step, etc, over a fork call,
706 preserve the stepping state in the fork child. */
707 if (follow_child && should_resume)
708 {
709 step_resume_breakpoint = clone_momentary_breakpoint
710 (tp->control.step_resume_breakpoint);
711 step_range_start = tp->control.step_range_start;
712 step_range_end = tp->control.step_range_end;
713 step_frame_id = tp->control.step_frame_id;
714 exception_resume_breakpoint
715 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
716 command_interp = tp->control.command_interp;
717
718 /* For now, delete the parent's sr breakpoint, otherwise,
719 parent/child sr breakpoints are considered duplicates,
720 and the child version will not be installed. Remove
721 this when the breakpoints module becomes aware of
722 inferiors and address spaces. */
723 delete_step_resume_breakpoint (tp);
724 tp->control.step_range_start = 0;
725 tp->control.step_range_end = 0;
726 tp->control.step_frame_id = null_frame_id;
727 delete_exception_resume_breakpoint (tp);
728 tp->control.command_interp = NULL;
729 }
730
731 parent = inferior_ptid;
732 child = tp->pending_follow.value.related_pid;
733
734 /* Set up inferior(s) as specified by the caller, and tell the
735 target to do whatever is necessary to follow either parent
736 or child. */
737 if (follow_fork_inferior (follow_child, detach_fork))
738 {
739 /* Target refused to follow, or there's some other reason
740 we shouldn't resume. */
741 should_resume = 0;
742 }
743 else
744 {
745 /* This pending follow fork event is now handled, one way
746 or another. The previous selected thread may be gone
747 from the lists by now, but if it is still around, need
748 to clear the pending follow request. */
749 tp = find_thread_ptid (parent);
750 if (tp)
751 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
752
753 /* This makes sure we don't try to apply the "Switched
754 over from WAIT_PID" logic above. */
755 nullify_last_target_wait_ptid ();
756
757 /* If we followed the child, switch to it... */
758 if (follow_child)
759 {
760 switch_to_thread (child);
761
762 /* ... and preserve the stepping state, in case the
763 user was stepping over the fork call. */
764 if (should_resume)
765 {
766 tp = inferior_thread ();
767 tp->control.step_resume_breakpoint
768 = step_resume_breakpoint;
769 tp->control.step_range_start = step_range_start;
770 tp->control.step_range_end = step_range_end;
771 tp->control.step_frame_id = step_frame_id;
772 tp->control.exception_resume_breakpoint
773 = exception_resume_breakpoint;
774 tp->control.command_interp = command_interp;
775 }
776 else
777 {
778 /* If we get here, it was because we're trying to
779 resume from a fork catchpoint, but, the user
780 has switched threads away from the thread that
781 forked. In that case, the resume command
782 issued is most likely not applicable to the
783 child, so just warn, and refuse to resume. */
784 warning (_("Not resuming: switched threads "
785 "before following fork child.\n"));
786 }
787
788 /* Reset breakpoints in the child as appropriate. */
789 follow_inferior_reset_breakpoints ();
790 }
791 else
792 switch_to_thread (parent);
793 }
794 }
795 break;
796 case TARGET_WAITKIND_SPURIOUS:
797 /* Nothing to follow. */
798 break;
799 default:
800 internal_error (__FILE__, __LINE__,
801 "Unexpected pending_follow.kind %d\n",
802 tp->pending_follow.kind);
803 break;
804 }
805
806 return should_resume;
807 }
808
809 static void
810 follow_inferior_reset_breakpoints (void)
811 {
812 struct thread_info *tp = inferior_thread ();
813
814 /* Was there a step_resume breakpoint? (There was if the user
815 did a "next" at the fork() call.) If so, explicitly reset its
816 thread number. Cloned step_resume breakpoints are disabled on
817 creation, so enable it here now that it is associated with the
818 correct thread.
819
820 step_resumes are a form of bp that are made to be per-thread.
821 Since we created the step_resume bp when the parent process
822 was being debugged, and now are switching to the child process,
823 from the breakpoint package's viewpoint, that's a switch of
824 "threads". We must update the bp's notion of which thread
825 it is for, or it'll be ignored when it triggers. */
826
827 if (tp->control.step_resume_breakpoint)
828 {
829 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
830 tp->control.step_resume_breakpoint->loc->enabled = 1;
831 }
832
833 /* Treat exception_resume breakpoints like step_resume breakpoints. */
834 if (tp->control.exception_resume_breakpoint)
835 {
836 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
837 tp->control.exception_resume_breakpoint->loc->enabled = 1;
838 }
839
840 /* Reinsert all breakpoints in the child. The user may have set
841 breakpoints after catching the fork, in which case those
842 were never set in the child, but only in the parent. This makes
843 sure the inserted breakpoints match the breakpoint list. */
844
845 breakpoint_re_set ();
846 insert_breakpoints ();
847 }
848
849 /* The child has exited or execed: resume threads of the parent the
850 user wanted to be executing. */
851
852 static int
853 proceed_after_vfork_done (struct thread_info *thread,
854 void *arg)
855 {
856 int pid = * (int *) arg;
857
858 if (ptid_get_pid (thread->ptid) == pid
859 && is_running (thread->ptid)
860 && !is_executing (thread->ptid)
861 && !thread->stop_requested
862 && thread->suspend.stop_signal == GDB_SIGNAL_0)
863 {
864 if (debug_infrun)
865 fprintf_unfiltered (gdb_stdlog,
866 "infrun: resuming vfork parent thread %s\n",
867 target_pid_to_str (thread->ptid));
868
869 switch_to_thread (thread->ptid);
870 clear_proceed_status (0);
871 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
872 }
873
874 return 0;
875 }
876
877 /* Called whenever we notice an exec or exit event, to handle
878 detaching or resuming a vfork parent. */
879
880 static void
881 handle_vfork_child_exec_or_exit (int exec)
882 {
883 struct inferior *inf = current_inferior ();
884
885 if (inf->vfork_parent)
886 {
887 int resume_parent = -1;
888
889 /* This exec or exit marks the end of the shared memory region
890 between the parent and the child. If the user wanted to
891 detach from the parent, now is the time. */
892
893 if (inf->vfork_parent->pending_detach)
894 {
895 struct thread_info *tp;
896 struct cleanup *old_chain;
897 struct program_space *pspace;
898 struct address_space *aspace;
899
900 /* follow-fork child, detach-on-fork on. */
901
902 inf->vfork_parent->pending_detach = 0;
903
904 if (!exec)
905 {
906 /* If we're handling a child exit, then inferior_ptid
907 points at the inferior's pid, not to a thread. */
908 old_chain = save_inferior_ptid ();
909 save_current_program_space ();
910 save_current_inferior ();
911 }
912 else
913 old_chain = save_current_space_and_thread ();
914
915 /* We're letting loose of the parent. */
916 tp = any_live_thread_of_process (inf->vfork_parent->pid);
917 switch_to_thread (tp->ptid);
918
919 /* We're about to detach from the parent, which implicitly
920 removes breakpoints from its address space. There's a
921 catch here: we want to reuse the spaces for the child,
922 but, parent/child are still sharing the pspace at this
923 point, although the exec in reality makes the kernel give
924 the child a fresh set of new pages. The problem here is
925 that the breakpoints module being unaware of this, would
926 likely chose the child process to write to the parent
927 address space. Swapping the child temporarily away from
928 the spaces has the desired effect. Yes, this is "sort
929 of" a hack. */
930
931 pspace = inf->pspace;
932 aspace = inf->aspace;
933 inf->aspace = NULL;
934 inf->pspace = NULL;
935
936 if (debug_infrun || info_verbose)
937 {
938 target_terminal_ours_for_output ();
939
940 if (exec)
941 {
942 fprintf_filtered (gdb_stdlog,
943 _("Detaching vfork parent process "
944 "%d after child exec.\n"),
945 inf->vfork_parent->pid);
946 }
947 else
948 {
949 fprintf_filtered (gdb_stdlog,
950 _("Detaching vfork parent process "
951 "%d after child exit.\n"),
952 inf->vfork_parent->pid);
953 }
954 }
955
956 target_detach (NULL, 0);
957
958 /* Put it back. */
959 inf->pspace = pspace;
960 inf->aspace = aspace;
961
962 do_cleanups (old_chain);
963 }
964 else if (exec)
965 {
966 /* We're staying attached to the parent, so, really give the
967 child a new address space. */
968 inf->pspace = add_program_space (maybe_new_address_space ());
969 inf->aspace = inf->pspace->aspace;
970 inf->removable = 1;
971 set_current_program_space (inf->pspace);
972
973 resume_parent = inf->vfork_parent->pid;
974
975 /* Break the bonds. */
976 inf->vfork_parent->vfork_child = NULL;
977 }
978 else
979 {
980 struct cleanup *old_chain;
981 struct program_space *pspace;
982
983 /* If this is a vfork child exiting, then the pspace and
984 aspaces were shared with the parent. Since we're
985 reporting the process exit, we'll be mourning all that is
986 found in the address space, and switching to null_ptid,
987 preparing to start a new inferior. But, since we don't
988 want to clobber the parent's address/program spaces, we
989 go ahead and create a new one for this exiting
990 inferior. */
991
992 /* Switch to null_ptid, so that clone_program_space doesn't want
993 to read the selected frame of a dead process. */
994 old_chain = save_inferior_ptid ();
995 inferior_ptid = null_ptid;
996
997 /* This inferior is dead, so avoid giving the breakpoints
998 module the option to write through to it (cloning a
999 program space resets breakpoints). */
1000 inf->aspace = NULL;
1001 inf->pspace = NULL;
1002 pspace = add_program_space (maybe_new_address_space ());
1003 set_current_program_space (pspace);
1004 inf->removable = 1;
1005 inf->symfile_flags = SYMFILE_NO_READ;
1006 clone_program_space (pspace, inf->vfork_parent->pspace);
1007 inf->pspace = pspace;
1008 inf->aspace = pspace->aspace;
1009
1010 /* Put back inferior_ptid. We'll continue mourning this
1011 inferior. */
1012 do_cleanups (old_chain);
1013
1014 resume_parent = inf->vfork_parent->pid;
1015 /* Break the bonds. */
1016 inf->vfork_parent->vfork_child = NULL;
1017 }
1018
1019 inf->vfork_parent = NULL;
1020
1021 gdb_assert (current_program_space == inf->pspace);
1022
1023 if (non_stop && resume_parent != -1)
1024 {
1025 /* If the user wanted the parent to be running, let it go
1026 free now. */
1027 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1028
1029 if (debug_infrun)
1030 fprintf_unfiltered (gdb_stdlog,
1031 "infrun: resuming vfork parent process %d\n",
1032 resume_parent);
1033
1034 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1035
1036 do_cleanups (old_chain);
1037 }
1038 }
1039 }
1040
1041 /* Enum strings for "set|show follow-exec-mode". */
1042
1043 static const char follow_exec_mode_new[] = "new";
1044 static const char follow_exec_mode_same[] = "same";
1045 static const char *const follow_exec_mode_names[] =
1046 {
1047 follow_exec_mode_new,
1048 follow_exec_mode_same,
1049 NULL,
1050 };
1051
1052 static const char *follow_exec_mode_string = follow_exec_mode_same;
1053 static void
1054 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1055 struct cmd_list_element *c, const char *value)
1056 {
1057 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1058 }
1059
1060 /* EXECD_PATHNAME is assumed to be non-NULL. */
1061
1062 static void
1063 follow_exec (ptid_t pid, char *execd_pathname)
1064 {
1065 struct thread_info *th = inferior_thread ();
1066 struct inferior *inf = current_inferior ();
1067
1068 /* This is an exec event that we actually wish to pay attention to.
1069 Refresh our symbol table to the newly exec'd program, remove any
1070 momentary bp's, etc.
1071
1072 If there are breakpoints, they aren't really inserted now,
1073 since the exec() transformed our inferior into a fresh set
1074 of instructions.
1075
1076 We want to preserve symbolic breakpoints on the list, since
1077 we have hopes that they can be reset after the new a.out's
1078 symbol table is read.
1079
1080 However, any "raw" breakpoints must be removed from the list
1081 (e.g., the solib bp's), since their address is probably invalid
1082 now.
1083
1084 And, we DON'T want to call delete_breakpoints() here, since
1085 that may write the bp's "shadow contents" (the instruction
1086 value that was overwritten witha TRAP instruction). Since
1087 we now have a new a.out, those shadow contents aren't valid. */
1088
1089 mark_breakpoints_out ();
1090
1091 update_breakpoints_after_exec ();
1092
1093 /* If there was one, it's gone now. We cannot truly step-to-next
1094 statement through an exec(). */
1095 th->control.step_resume_breakpoint = NULL;
1096 th->control.exception_resume_breakpoint = NULL;
1097 th->control.single_step_breakpoints = NULL;
1098 th->control.step_range_start = 0;
1099 th->control.step_range_end = 0;
1100
1101 /* The target reports the exec event to the main thread, even if
1102 some other thread does the exec, and even if the main thread was
1103 already stopped --- if debugging in non-stop mode, it's possible
1104 the user had the main thread held stopped in the previous image
1105 --- release it now. This is the same behavior as step-over-exec
1106 with scheduler-locking on in all-stop mode. */
1107 th->stop_requested = 0;
1108
1109 /* What is this a.out's name? */
1110 printf_unfiltered (_("%s is executing new program: %s\n"),
1111 target_pid_to_str (inferior_ptid),
1112 execd_pathname);
1113
1114 /* We've followed the inferior through an exec. Therefore, the
1115 inferior has essentially been killed & reborn. */
1116
1117 gdb_flush (gdb_stdout);
1118
1119 breakpoint_init_inferior (inf_execd);
1120
1121 if (gdb_sysroot && *gdb_sysroot)
1122 {
1123 char *name = alloca (strlen (gdb_sysroot)
1124 + strlen (execd_pathname)
1125 + 1);
1126
1127 strcpy (name, gdb_sysroot);
1128 strcat (name, execd_pathname);
1129 execd_pathname = name;
1130 }
1131
1132 /* Reset the shared library package. This ensures that we get a
1133 shlib event when the child reaches "_start", at which point the
1134 dld will have had a chance to initialize the child. */
1135 /* Also, loading a symbol file below may trigger symbol lookups, and
1136 we don't want those to be satisfied by the libraries of the
1137 previous incarnation of this process. */
1138 no_shared_libraries (NULL, 0);
1139
1140 if (follow_exec_mode_string == follow_exec_mode_new)
1141 {
1142 struct program_space *pspace;
1143
1144 /* The user wants to keep the old inferior and program spaces
1145 around. Create a new fresh one, and switch to it. */
1146
1147 inf = add_inferior (current_inferior ()->pid);
1148 pspace = add_program_space (maybe_new_address_space ());
1149 inf->pspace = pspace;
1150 inf->aspace = pspace->aspace;
1151
1152 exit_inferior_num_silent (current_inferior ()->num);
1153
1154 set_current_inferior (inf);
1155 set_current_program_space (pspace);
1156 }
1157 else
1158 {
1159 /* The old description may no longer be fit for the new image.
1160 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1161 old description; we'll read a new one below. No need to do
1162 this on "follow-exec-mode new", as the old inferior stays
1163 around (its description is later cleared/refetched on
1164 restart). */
1165 target_clear_description ();
1166 }
1167
1168 gdb_assert (current_program_space == inf->pspace);
1169
1170 /* That a.out is now the one to use. */
1171 exec_file_attach (execd_pathname, 0);
1172
1173 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1174 (Position Independent Executable) main symbol file will get applied by
1175 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1176 the breakpoints with the zero displacement. */
1177
1178 symbol_file_add (execd_pathname,
1179 (inf->symfile_flags
1180 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
1181 NULL, 0);
1182
1183 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1184 set_initial_language ();
1185
1186 /* If the target can specify a description, read it. Must do this
1187 after flipping to the new executable (because the target supplied
1188 description must be compatible with the executable's
1189 architecture, and the old executable may e.g., be 32-bit, while
1190 the new one 64-bit), and before anything involving memory or
1191 registers. */
1192 target_find_description ();
1193
1194 solib_create_inferior_hook (0);
1195
1196 jit_inferior_created_hook ();
1197
1198 breakpoint_re_set ();
1199
1200 /* Reinsert all breakpoints. (Those which were symbolic have
1201 been reset to the proper address in the new a.out, thanks
1202 to symbol_file_command...). */
1203 insert_breakpoints ();
1204
1205 /* The next resume of this inferior should bring it to the shlib
1206 startup breakpoints. (If the user had also set bp's on
1207 "main" from the old (parent) process, then they'll auto-
1208 matically get reset there in the new process.). */
1209 }
1210
1211 /* Info about an instruction that is being stepped over. */
1212
1213 struct step_over_info
1214 {
1215 /* If we're stepping past a breakpoint, this is the address space
1216 and address of the instruction the breakpoint is set at. We'll
1217 skip inserting all breakpoints here. Valid iff ASPACE is
1218 non-NULL. */
1219 struct address_space *aspace;
1220 CORE_ADDR address;
1221
1222 /* The instruction being stepped over triggers a nonsteppable
1223 watchpoint. If true, we'll skip inserting watchpoints. */
1224 int nonsteppable_watchpoint_p;
1225 };
1226
1227 /* The step-over info of the location that is being stepped over.
1228
1229 Note that with async/breakpoint always-inserted mode, a user might
1230 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1231 being stepped over. As setting a new breakpoint inserts all
1232 breakpoints, we need to make sure the breakpoint being stepped over
1233 isn't inserted then. We do that by only clearing the step-over
1234 info when the step-over is actually finished (or aborted).
1235
1236 Presently GDB can only step over one breakpoint at any given time.
1237 Given threads that can't run code in the same address space as the
1238 breakpoint's can't really miss the breakpoint, GDB could be taught
1239 to step-over at most one breakpoint per address space (so this info
1240 could move to the address space object if/when GDB is extended).
1241 The set of breakpoints being stepped over will normally be much
1242 smaller than the set of all breakpoints, so a flag in the
1243 breakpoint location structure would be wasteful. A separate list
1244 also saves complexity and run-time, as otherwise we'd have to go
1245 through all breakpoint locations clearing their flag whenever we
1246 start a new sequence. Similar considerations weigh against storing
1247 this info in the thread object. Plus, not all step overs actually
1248 have breakpoint locations -- e.g., stepping past a single-step
1249 breakpoint, or stepping to complete a non-continuable
1250 watchpoint. */
1251 static struct step_over_info step_over_info;
1252
1253 /* Record the address of the breakpoint/instruction we're currently
1254 stepping over. */
1255
1256 static void
1257 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1258 int nonsteppable_watchpoint_p)
1259 {
1260 step_over_info.aspace = aspace;
1261 step_over_info.address = address;
1262 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1263 }
1264
1265 /* Called when we're not longer stepping over a breakpoint / an
1266 instruction, so all breakpoints are free to be (re)inserted. */
1267
1268 static void
1269 clear_step_over_info (void)
1270 {
1271 step_over_info.aspace = NULL;
1272 step_over_info.address = 0;
1273 step_over_info.nonsteppable_watchpoint_p = 0;
1274 }
1275
1276 /* See infrun.h. */
1277
1278 int
1279 stepping_past_instruction_at (struct address_space *aspace,
1280 CORE_ADDR address)
1281 {
1282 return (step_over_info.aspace != NULL
1283 && breakpoint_address_match (aspace, address,
1284 step_over_info.aspace,
1285 step_over_info.address));
1286 }
1287
1288 /* See infrun.h. */
1289
1290 int
1291 stepping_past_nonsteppable_watchpoint (void)
1292 {
1293 return step_over_info.nonsteppable_watchpoint_p;
1294 }
1295
1296 /* Returns true if step-over info is valid. */
1297
1298 static int
1299 step_over_info_valid_p (void)
1300 {
1301 return (step_over_info.aspace != NULL
1302 || stepping_past_nonsteppable_watchpoint ());
1303 }
1304
1305 \f
1306 /* Displaced stepping. */
1307
1308 /* In non-stop debugging mode, we must take special care to manage
1309 breakpoints properly; in particular, the traditional strategy for
1310 stepping a thread past a breakpoint it has hit is unsuitable.
1311 'Displaced stepping' is a tactic for stepping one thread past a
1312 breakpoint it has hit while ensuring that other threads running
1313 concurrently will hit the breakpoint as they should.
1314
1315 The traditional way to step a thread T off a breakpoint in a
1316 multi-threaded program in all-stop mode is as follows:
1317
1318 a0) Initially, all threads are stopped, and breakpoints are not
1319 inserted.
1320 a1) We single-step T, leaving breakpoints uninserted.
1321 a2) We insert breakpoints, and resume all threads.
1322
1323 In non-stop debugging, however, this strategy is unsuitable: we
1324 don't want to have to stop all threads in the system in order to
1325 continue or step T past a breakpoint. Instead, we use displaced
1326 stepping:
1327
1328 n0) Initially, T is stopped, other threads are running, and
1329 breakpoints are inserted.
1330 n1) We copy the instruction "under" the breakpoint to a separate
1331 location, outside the main code stream, making any adjustments
1332 to the instruction, register, and memory state as directed by
1333 T's architecture.
1334 n2) We single-step T over the instruction at its new location.
1335 n3) We adjust the resulting register and memory state as directed
1336 by T's architecture. This includes resetting T's PC to point
1337 back into the main instruction stream.
1338 n4) We resume T.
1339
1340 This approach depends on the following gdbarch methods:
1341
1342 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1343 indicate where to copy the instruction, and how much space must
1344 be reserved there. We use these in step n1.
1345
1346 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1347 address, and makes any necessary adjustments to the instruction,
1348 register contents, and memory. We use this in step n1.
1349
1350 - gdbarch_displaced_step_fixup adjusts registers and memory after
1351 we have successfuly single-stepped the instruction, to yield the
1352 same effect the instruction would have had if we had executed it
1353 at its original address. We use this in step n3.
1354
1355 - gdbarch_displaced_step_free_closure provides cleanup.
1356
1357 The gdbarch_displaced_step_copy_insn and
1358 gdbarch_displaced_step_fixup functions must be written so that
1359 copying an instruction with gdbarch_displaced_step_copy_insn,
1360 single-stepping across the copied instruction, and then applying
1361 gdbarch_displaced_insn_fixup should have the same effects on the
1362 thread's memory and registers as stepping the instruction in place
1363 would have. Exactly which responsibilities fall to the copy and
1364 which fall to the fixup is up to the author of those functions.
1365
1366 See the comments in gdbarch.sh for details.
1367
1368 Note that displaced stepping and software single-step cannot
1369 currently be used in combination, although with some care I think
1370 they could be made to. Software single-step works by placing
1371 breakpoints on all possible subsequent instructions; if the
1372 displaced instruction is a PC-relative jump, those breakpoints
1373 could fall in very strange places --- on pages that aren't
1374 executable, or at addresses that are not proper instruction
1375 boundaries. (We do generally let other threads run while we wait
1376 to hit the software single-step breakpoint, and they might
1377 encounter such a corrupted instruction.) One way to work around
1378 this would be to have gdbarch_displaced_step_copy_insn fully
1379 simulate the effect of PC-relative instructions (and return NULL)
1380 on architectures that use software single-stepping.
1381
1382 In non-stop mode, we can have independent and simultaneous step
1383 requests, so more than one thread may need to simultaneously step
1384 over a breakpoint. The current implementation assumes there is
1385 only one scratch space per process. In this case, we have to
1386 serialize access to the scratch space. If thread A wants to step
1387 over a breakpoint, but we are currently waiting for some other
1388 thread to complete a displaced step, we leave thread A stopped and
1389 place it in the displaced_step_request_queue. Whenever a displaced
1390 step finishes, we pick the next thread in the queue and start a new
1391 displaced step operation on it. See displaced_step_prepare and
1392 displaced_step_fixup for details. */
1393
1394 struct displaced_step_request
1395 {
1396 ptid_t ptid;
1397 struct displaced_step_request *next;
1398 };
1399
1400 /* Per-inferior displaced stepping state. */
1401 struct displaced_step_inferior_state
1402 {
1403 /* Pointer to next in linked list. */
1404 struct displaced_step_inferior_state *next;
1405
1406 /* The process this displaced step state refers to. */
1407 int pid;
1408
1409 /* A queue of pending displaced stepping requests. One entry per
1410 thread that needs to do a displaced step. */
1411 struct displaced_step_request *step_request_queue;
1412
1413 /* If this is not null_ptid, this is the thread carrying out a
1414 displaced single-step in process PID. This thread's state will
1415 require fixing up once it has completed its step. */
1416 ptid_t step_ptid;
1417
1418 /* The architecture the thread had when we stepped it. */
1419 struct gdbarch *step_gdbarch;
1420
1421 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1422 for post-step cleanup. */
1423 struct displaced_step_closure *step_closure;
1424
1425 /* The address of the original instruction, and the copy we
1426 made. */
1427 CORE_ADDR step_original, step_copy;
1428
1429 /* Saved contents of copy area. */
1430 gdb_byte *step_saved_copy;
1431 };
1432
1433 /* The list of states of processes involved in displaced stepping
1434 presently. */
1435 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1436
1437 /* Get the displaced stepping state of process PID. */
1438
1439 static struct displaced_step_inferior_state *
1440 get_displaced_stepping_state (int pid)
1441 {
1442 struct displaced_step_inferior_state *state;
1443
1444 for (state = displaced_step_inferior_states;
1445 state != NULL;
1446 state = state->next)
1447 if (state->pid == pid)
1448 return state;
1449
1450 return NULL;
1451 }
1452
1453 /* Add a new displaced stepping state for process PID to the displaced
1454 stepping state list, or return a pointer to an already existing
1455 entry, if it already exists. Never returns NULL. */
1456
1457 static struct displaced_step_inferior_state *
1458 add_displaced_stepping_state (int pid)
1459 {
1460 struct displaced_step_inferior_state *state;
1461
1462 for (state = displaced_step_inferior_states;
1463 state != NULL;
1464 state = state->next)
1465 if (state->pid == pid)
1466 return state;
1467
1468 state = xcalloc (1, sizeof (*state));
1469 state->pid = pid;
1470 state->next = displaced_step_inferior_states;
1471 displaced_step_inferior_states = state;
1472
1473 return state;
1474 }
1475
1476 /* If inferior is in displaced stepping, and ADDR equals to starting address
1477 of copy area, return corresponding displaced_step_closure. Otherwise,
1478 return NULL. */
1479
1480 struct displaced_step_closure*
1481 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1482 {
1483 struct displaced_step_inferior_state *displaced
1484 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1485
1486 /* If checking the mode of displaced instruction in copy area. */
1487 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1488 && (displaced->step_copy == addr))
1489 return displaced->step_closure;
1490
1491 return NULL;
1492 }
1493
1494 /* Remove the displaced stepping state of process PID. */
1495
1496 static void
1497 remove_displaced_stepping_state (int pid)
1498 {
1499 struct displaced_step_inferior_state *it, **prev_next_p;
1500
1501 gdb_assert (pid != 0);
1502
1503 it = displaced_step_inferior_states;
1504 prev_next_p = &displaced_step_inferior_states;
1505 while (it)
1506 {
1507 if (it->pid == pid)
1508 {
1509 *prev_next_p = it->next;
1510 xfree (it);
1511 return;
1512 }
1513
1514 prev_next_p = &it->next;
1515 it = *prev_next_p;
1516 }
1517 }
1518
1519 static void
1520 infrun_inferior_exit (struct inferior *inf)
1521 {
1522 remove_displaced_stepping_state (inf->pid);
1523 }
1524
1525 /* If ON, and the architecture supports it, GDB will use displaced
1526 stepping to step over breakpoints. If OFF, or if the architecture
1527 doesn't support it, GDB will instead use the traditional
1528 hold-and-step approach. If AUTO (which is the default), GDB will
1529 decide which technique to use to step over breakpoints depending on
1530 which of all-stop or non-stop mode is active --- displaced stepping
1531 in non-stop mode; hold-and-step in all-stop mode. */
1532
1533 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1534
1535 static void
1536 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1537 struct cmd_list_element *c,
1538 const char *value)
1539 {
1540 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1541 fprintf_filtered (file,
1542 _("Debugger's willingness to use displaced stepping "
1543 "to step over breakpoints is %s (currently %s).\n"),
1544 value, non_stop ? "on" : "off");
1545 else
1546 fprintf_filtered (file,
1547 _("Debugger's willingness to use displaced stepping "
1548 "to step over breakpoints is %s.\n"), value);
1549 }
1550
1551 /* Return non-zero if displaced stepping can/should be used to step
1552 over breakpoints. */
1553
1554 static int
1555 use_displaced_stepping (struct gdbarch *gdbarch)
1556 {
1557 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1558 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1559 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1560 && find_record_target () == NULL);
1561 }
1562
1563 /* Clean out any stray displaced stepping state. */
1564 static void
1565 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1566 {
1567 /* Indicate that there is no cleanup pending. */
1568 displaced->step_ptid = null_ptid;
1569
1570 if (displaced->step_closure)
1571 {
1572 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1573 displaced->step_closure);
1574 displaced->step_closure = NULL;
1575 }
1576 }
1577
1578 static void
1579 displaced_step_clear_cleanup (void *arg)
1580 {
1581 struct displaced_step_inferior_state *state = arg;
1582
1583 displaced_step_clear (state);
1584 }
1585
1586 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1587 void
1588 displaced_step_dump_bytes (struct ui_file *file,
1589 const gdb_byte *buf,
1590 size_t len)
1591 {
1592 int i;
1593
1594 for (i = 0; i < len; i++)
1595 fprintf_unfiltered (file, "%02x ", buf[i]);
1596 fputs_unfiltered ("\n", file);
1597 }
1598
1599 /* Prepare to single-step, using displaced stepping.
1600
1601 Note that we cannot use displaced stepping when we have a signal to
1602 deliver. If we have a signal to deliver and an instruction to step
1603 over, then after the step, there will be no indication from the
1604 target whether the thread entered a signal handler or ignored the
1605 signal and stepped over the instruction successfully --- both cases
1606 result in a simple SIGTRAP. In the first case we mustn't do a
1607 fixup, and in the second case we must --- but we can't tell which.
1608 Comments in the code for 'random signals' in handle_inferior_event
1609 explain how we handle this case instead.
1610
1611 Returns 1 if preparing was successful -- this thread is going to be
1612 stepped now; or 0 if displaced stepping this thread got queued. */
1613 static int
1614 displaced_step_prepare (ptid_t ptid)
1615 {
1616 struct cleanup *old_cleanups, *ignore_cleanups;
1617 struct thread_info *tp = find_thread_ptid (ptid);
1618 struct regcache *regcache = get_thread_regcache (ptid);
1619 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1620 CORE_ADDR original, copy;
1621 ULONGEST len;
1622 struct displaced_step_closure *closure;
1623 struct displaced_step_inferior_state *displaced;
1624 int status;
1625
1626 /* We should never reach this function if the architecture does not
1627 support displaced stepping. */
1628 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1629
1630 /* Disable range stepping while executing in the scratch pad. We
1631 want a single-step even if executing the displaced instruction in
1632 the scratch buffer lands within the stepping range (e.g., a
1633 jump/branch). */
1634 tp->control.may_range_step = 0;
1635
1636 /* We have to displaced step one thread at a time, as we only have
1637 access to a single scratch space per inferior. */
1638
1639 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1640
1641 if (!ptid_equal (displaced->step_ptid, null_ptid))
1642 {
1643 /* Already waiting for a displaced step to finish. Defer this
1644 request and place in queue. */
1645 struct displaced_step_request *req, *new_req;
1646
1647 if (debug_displaced)
1648 fprintf_unfiltered (gdb_stdlog,
1649 "displaced: defering step of %s\n",
1650 target_pid_to_str (ptid));
1651
1652 new_req = xmalloc (sizeof (*new_req));
1653 new_req->ptid = ptid;
1654 new_req->next = NULL;
1655
1656 if (displaced->step_request_queue)
1657 {
1658 for (req = displaced->step_request_queue;
1659 req && req->next;
1660 req = req->next)
1661 ;
1662 req->next = new_req;
1663 }
1664 else
1665 displaced->step_request_queue = new_req;
1666
1667 return 0;
1668 }
1669 else
1670 {
1671 if (debug_displaced)
1672 fprintf_unfiltered (gdb_stdlog,
1673 "displaced: stepping %s now\n",
1674 target_pid_to_str (ptid));
1675 }
1676
1677 displaced_step_clear (displaced);
1678
1679 old_cleanups = save_inferior_ptid ();
1680 inferior_ptid = ptid;
1681
1682 original = regcache_read_pc (regcache);
1683
1684 copy = gdbarch_displaced_step_location (gdbarch);
1685 len = gdbarch_max_insn_length (gdbarch);
1686
1687 /* Save the original contents of the copy area. */
1688 displaced->step_saved_copy = xmalloc (len);
1689 ignore_cleanups = make_cleanup (free_current_contents,
1690 &displaced->step_saved_copy);
1691 status = target_read_memory (copy, displaced->step_saved_copy, len);
1692 if (status != 0)
1693 throw_error (MEMORY_ERROR,
1694 _("Error accessing memory address %s (%s) for "
1695 "displaced-stepping scratch space."),
1696 paddress (gdbarch, copy), safe_strerror (status));
1697 if (debug_displaced)
1698 {
1699 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1700 paddress (gdbarch, copy));
1701 displaced_step_dump_bytes (gdb_stdlog,
1702 displaced->step_saved_copy,
1703 len);
1704 };
1705
1706 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1707 original, copy, regcache);
1708
1709 /* We don't support the fully-simulated case at present. */
1710 gdb_assert (closure);
1711
1712 /* Save the information we need to fix things up if the step
1713 succeeds. */
1714 displaced->step_ptid = ptid;
1715 displaced->step_gdbarch = gdbarch;
1716 displaced->step_closure = closure;
1717 displaced->step_original = original;
1718 displaced->step_copy = copy;
1719
1720 make_cleanup (displaced_step_clear_cleanup, displaced);
1721
1722 /* Resume execution at the copy. */
1723 regcache_write_pc (regcache, copy);
1724
1725 discard_cleanups (ignore_cleanups);
1726
1727 do_cleanups (old_cleanups);
1728
1729 if (debug_displaced)
1730 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1731 paddress (gdbarch, copy));
1732
1733 return 1;
1734 }
1735
1736 static void
1737 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1738 const gdb_byte *myaddr, int len)
1739 {
1740 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1741
1742 inferior_ptid = ptid;
1743 write_memory (memaddr, myaddr, len);
1744 do_cleanups (ptid_cleanup);
1745 }
1746
1747 /* Restore the contents of the copy area for thread PTID. */
1748
1749 static void
1750 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1751 ptid_t ptid)
1752 {
1753 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1754
1755 write_memory_ptid (ptid, displaced->step_copy,
1756 displaced->step_saved_copy, len);
1757 if (debug_displaced)
1758 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1759 target_pid_to_str (ptid),
1760 paddress (displaced->step_gdbarch,
1761 displaced->step_copy));
1762 }
1763
1764 static void
1765 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1766 {
1767 struct cleanup *old_cleanups;
1768 struct displaced_step_inferior_state *displaced
1769 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1770
1771 /* Was any thread of this process doing a displaced step? */
1772 if (displaced == NULL)
1773 return;
1774
1775 /* Was this event for the pid we displaced? */
1776 if (ptid_equal (displaced->step_ptid, null_ptid)
1777 || ! ptid_equal (displaced->step_ptid, event_ptid))
1778 return;
1779
1780 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1781
1782 displaced_step_restore (displaced, displaced->step_ptid);
1783
1784 /* Did the instruction complete successfully? */
1785 if (signal == GDB_SIGNAL_TRAP)
1786 {
1787 /* Fix up the resulting state. */
1788 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1789 displaced->step_closure,
1790 displaced->step_original,
1791 displaced->step_copy,
1792 get_thread_regcache (displaced->step_ptid));
1793 }
1794 else
1795 {
1796 /* Since the instruction didn't complete, all we can do is
1797 relocate the PC. */
1798 struct regcache *regcache = get_thread_regcache (event_ptid);
1799 CORE_ADDR pc = regcache_read_pc (regcache);
1800
1801 pc = displaced->step_original + (pc - displaced->step_copy);
1802 regcache_write_pc (regcache, pc);
1803 }
1804
1805 do_cleanups (old_cleanups);
1806
1807 displaced->step_ptid = null_ptid;
1808
1809 /* Are there any pending displaced stepping requests? If so, run
1810 one now. Leave the state object around, since we're likely to
1811 need it again soon. */
1812 while (displaced->step_request_queue)
1813 {
1814 struct displaced_step_request *head;
1815 ptid_t ptid;
1816 struct regcache *regcache;
1817 struct gdbarch *gdbarch;
1818 CORE_ADDR actual_pc;
1819 struct address_space *aspace;
1820
1821 head = displaced->step_request_queue;
1822 ptid = head->ptid;
1823 displaced->step_request_queue = head->next;
1824 xfree (head);
1825
1826 context_switch (ptid);
1827
1828 regcache = get_thread_regcache (ptid);
1829 actual_pc = regcache_read_pc (regcache);
1830 aspace = get_regcache_aspace (regcache);
1831
1832 if (breakpoint_here_p (aspace, actual_pc))
1833 {
1834 if (debug_displaced)
1835 fprintf_unfiltered (gdb_stdlog,
1836 "displaced: stepping queued %s now\n",
1837 target_pid_to_str (ptid));
1838
1839 displaced_step_prepare (ptid);
1840
1841 gdbarch = get_regcache_arch (regcache);
1842
1843 if (debug_displaced)
1844 {
1845 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1846 gdb_byte buf[4];
1847
1848 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1849 paddress (gdbarch, actual_pc));
1850 read_memory (actual_pc, buf, sizeof (buf));
1851 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1852 }
1853
1854 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1855 displaced->step_closure))
1856 target_resume (ptid, 1, GDB_SIGNAL_0);
1857 else
1858 target_resume (ptid, 0, GDB_SIGNAL_0);
1859
1860 /* Done, we're stepping a thread. */
1861 break;
1862 }
1863 else
1864 {
1865 int step;
1866 struct thread_info *tp = inferior_thread ();
1867
1868 /* The breakpoint we were sitting under has since been
1869 removed. */
1870 tp->control.trap_expected = 0;
1871
1872 /* Go back to what we were trying to do. */
1873 step = currently_stepping (tp);
1874
1875 if (debug_displaced)
1876 fprintf_unfiltered (gdb_stdlog,
1877 "displaced: breakpoint is gone: %s, step(%d)\n",
1878 target_pid_to_str (tp->ptid), step);
1879
1880 target_resume (ptid, step, GDB_SIGNAL_0);
1881 tp->suspend.stop_signal = GDB_SIGNAL_0;
1882
1883 /* This request was discarded. See if there's any other
1884 thread waiting for its turn. */
1885 }
1886 }
1887 }
1888
1889 /* Update global variables holding ptids to hold NEW_PTID if they were
1890 holding OLD_PTID. */
1891 static void
1892 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1893 {
1894 struct displaced_step_request *it;
1895 struct displaced_step_inferior_state *displaced;
1896
1897 if (ptid_equal (inferior_ptid, old_ptid))
1898 inferior_ptid = new_ptid;
1899
1900 for (displaced = displaced_step_inferior_states;
1901 displaced;
1902 displaced = displaced->next)
1903 {
1904 if (ptid_equal (displaced->step_ptid, old_ptid))
1905 displaced->step_ptid = new_ptid;
1906
1907 for (it = displaced->step_request_queue; it; it = it->next)
1908 if (ptid_equal (it->ptid, old_ptid))
1909 it->ptid = new_ptid;
1910 }
1911 }
1912
1913 \f
1914 /* Resuming. */
1915
1916 /* Things to clean up if we QUIT out of resume (). */
1917 static void
1918 resume_cleanups (void *ignore)
1919 {
1920 if (!ptid_equal (inferior_ptid, null_ptid))
1921 delete_single_step_breakpoints (inferior_thread ());
1922
1923 normal_stop ();
1924 }
1925
1926 static const char schedlock_off[] = "off";
1927 static const char schedlock_on[] = "on";
1928 static const char schedlock_step[] = "step";
1929 static const char *const scheduler_enums[] = {
1930 schedlock_off,
1931 schedlock_on,
1932 schedlock_step,
1933 NULL
1934 };
1935 static const char *scheduler_mode = schedlock_off;
1936 static void
1937 show_scheduler_mode (struct ui_file *file, int from_tty,
1938 struct cmd_list_element *c, const char *value)
1939 {
1940 fprintf_filtered (file,
1941 _("Mode for locking scheduler "
1942 "during execution is \"%s\".\n"),
1943 value);
1944 }
1945
1946 static void
1947 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1948 {
1949 if (!target_can_lock_scheduler)
1950 {
1951 scheduler_mode = schedlock_off;
1952 error (_("Target '%s' cannot support this command."), target_shortname);
1953 }
1954 }
1955
1956 /* True if execution commands resume all threads of all processes by
1957 default; otherwise, resume only threads of the current inferior
1958 process. */
1959 int sched_multi = 0;
1960
1961 /* Try to setup for software single stepping over the specified location.
1962 Return 1 if target_resume() should use hardware single step.
1963
1964 GDBARCH the current gdbarch.
1965 PC the location to step over. */
1966
1967 static int
1968 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1969 {
1970 int hw_step = 1;
1971
1972 if (execution_direction == EXEC_FORWARD
1973 && gdbarch_software_single_step_p (gdbarch)
1974 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1975 {
1976 hw_step = 0;
1977 }
1978 return hw_step;
1979 }
1980
1981 ptid_t
1982 user_visible_resume_ptid (int step)
1983 {
1984 /* By default, resume all threads of all processes. */
1985 ptid_t resume_ptid = RESUME_ALL;
1986
1987 /* Maybe resume only all threads of the current process. */
1988 if (!sched_multi && target_supports_multi_process ())
1989 {
1990 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1991 }
1992
1993 /* Maybe resume a single thread after all. */
1994 if (non_stop)
1995 {
1996 /* With non-stop mode on, threads are always handled
1997 individually. */
1998 resume_ptid = inferior_ptid;
1999 }
2000 else if ((scheduler_mode == schedlock_on)
2001 || (scheduler_mode == schedlock_step && step))
2002 {
2003 /* User-settable 'scheduler' mode requires solo thread resume. */
2004 resume_ptid = inferior_ptid;
2005 }
2006
2007 /* We may actually resume fewer threads at first, e.g., if a thread
2008 is stopped at a breakpoint that needs stepping-off, but that
2009 should not be visible to the user/frontend, and neither should
2010 the frontend/user be allowed to proceed any of the threads that
2011 happen to be stopped for internal run control handling, if a
2012 previous command wanted them resumed. */
2013 return resume_ptid;
2014 }
2015
2016 /* Resume the inferior, but allow a QUIT. This is useful if the user
2017 wants to interrupt some lengthy single-stepping operation
2018 (for child processes, the SIGINT goes to the inferior, and so
2019 we get a SIGINT random_signal, but for remote debugging and perhaps
2020 other targets, that's not true).
2021
2022 STEP nonzero if we should step (zero to continue instead).
2023 SIG is the signal to give the inferior (zero for none). */
2024 void
2025 resume (int step, enum gdb_signal sig)
2026 {
2027 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2028 struct regcache *regcache = get_current_regcache ();
2029 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2030 struct thread_info *tp = inferior_thread ();
2031 CORE_ADDR pc = regcache_read_pc (regcache);
2032 struct address_space *aspace = get_regcache_aspace (regcache);
2033 ptid_t resume_ptid;
2034 /* From here on, this represents the caller's step vs continue
2035 request, while STEP represents what we'll actually request the
2036 target to do. STEP can decay from a step to a continue, if e.g.,
2037 we need to implement single-stepping with breakpoints (software
2038 single-step). When deciding whether "set scheduler-locking step"
2039 applies, it's the callers intention that counts. */
2040 const int entry_step = step;
2041
2042 tp->stepped_breakpoint = 0;
2043
2044 QUIT;
2045
2046 if (current_inferior ()->waiting_for_vfork_done)
2047 {
2048 /* Don't try to single-step a vfork parent that is waiting for
2049 the child to get out of the shared memory region (by exec'ing
2050 or exiting). This is particularly important on software
2051 single-step archs, as the child process would trip on the
2052 software single step breakpoint inserted for the parent
2053 process. Since the parent will not actually execute any
2054 instruction until the child is out of the shared region (such
2055 are vfork's semantics), it is safe to simply continue it.
2056 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2057 the parent, and tell it to `keep_going', which automatically
2058 re-sets it stepping. */
2059 if (debug_infrun)
2060 fprintf_unfiltered (gdb_stdlog,
2061 "infrun: resume : clear step\n");
2062 step = 0;
2063 }
2064
2065 if (debug_infrun)
2066 fprintf_unfiltered (gdb_stdlog,
2067 "infrun: resume (step=%d, signal=%s), "
2068 "trap_expected=%d, current thread [%s] at %s\n",
2069 step, gdb_signal_to_symbol_string (sig),
2070 tp->control.trap_expected,
2071 target_pid_to_str (inferior_ptid),
2072 paddress (gdbarch, pc));
2073
2074 /* Normally, by the time we reach `resume', the breakpoints are either
2075 removed or inserted, as appropriate. The exception is if we're sitting
2076 at a permanent breakpoint; we need to step over it, but permanent
2077 breakpoints can't be removed. So we have to test for it here. */
2078 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2079 {
2080 if (sig != GDB_SIGNAL_0)
2081 {
2082 /* We have a signal to pass to the inferior. The resume
2083 may, or may not take us to the signal handler. If this
2084 is a step, we'll need to stop in the signal handler, if
2085 there's one, (if the target supports stepping into
2086 handlers), or in the next mainline instruction, if
2087 there's no handler. If this is a continue, we need to be
2088 sure to run the handler with all breakpoints inserted.
2089 In all cases, set a breakpoint at the current address
2090 (where the handler returns to), and once that breakpoint
2091 is hit, resume skipping the permanent breakpoint. If
2092 that breakpoint isn't hit, then we've stepped into the
2093 signal handler (or hit some other event). We'll delete
2094 the step-resume breakpoint then. */
2095
2096 if (debug_infrun)
2097 fprintf_unfiltered (gdb_stdlog,
2098 "infrun: resume: skipping permanent breakpoint, "
2099 "deliver signal first\n");
2100
2101 clear_step_over_info ();
2102 tp->control.trap_expected = 0;
2103
2104 if (tp->control.step_resume_breakpoint == NULL)
2105 {
2106 /* Set a "high-priority" step-resume, as we don't want
2107 user breakpoints at PC to trigger (again) when this
2108 hits. */
2109 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2110 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2111
2112 tp->step_after_step_resume_breakpoint = step;
2113 }
2114
2115 insert_breakpoints ();
2116 }
2117 else
2118 {
2119 /* There's no signal to pass, we can go ahead and skip the
2120 permanent breakpoint manually. */
2121 if (debug_infrun)
2122 fprintf_unfiltered (gdb_stdlog,
2123 "infrun: resume: skipping permanent breakpoint\n");
2124 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2125 /* Update pc to reflect the new address from which we will
2126 execute instructions. */
2127 pc = regcache_read_pc (regcache);
2128
2129 if (step)
2130 {
2131 /* We've already advanced the PC, so the stepping part
2132 is done. Now we need to arrange for a trap to be
2133 reported to handle_inferior_event. Set a breakpoint
2134 at the current PC, and run to it. Don't update
2135 prev_pc, because if we end in
2136 switch_back_to_stepping, we want the "expected thread
2137 advanced also" branch to be taken. IOW, we don't
2138 want this thread to step further from PC
2139 (overstep). */
2140 insert_single_step_breakpoint (gdbarch, aspace, pc);
2141 insert_breakpoints ();
2142
2143 tp->suspend.stop_signal = GDB_SIGNAL_0;
2144 /* We're continuing with all breakpoints inserted. It's
2145 safe to let the target bypass signals. */
2146 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2147 /* ... and safe to let other threads run, according to
2148 schedlock. */
2149 resume_ptid = user_visible_resume_ptid (entry_step);
2150 target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2151 discard_cleanups (old_cleanups);
2152 return;
2153 }
2154 }
2155 }
2156
2157 /* If we have a breakpoint to step over, make sure to do a single
2158 step only. Same if we have software watchpoints. */
2159 if (tp->control.trap_expected || bpstat_should_step ())
2160 tp->control.may_range_step = 0;
2161
2162 /* If enabled, step over breakpoints by executing a copy of the
2163 instruction at a different address.
2164
2165 We can't use displaced stepping when we have a signal to deliver;
2166 the comments for displaced_step_prepare explain why. The
2167 comments in the handle_inferior event for dealing with 'random
2168 signals' explain what we do instead.
2169
2170 We can't use displaced stepping when we are waiting for vfork_done
2171 event, displaced stepping breaks the vfork child similarly as single
2172 step software breakpoint. */
2173 if (use_displaced_stepping (gdbarch)
2174 && tp->control.trap_expected
2175 && sig == GDB_SIGNAL_0
2176 && !current_inferior ()->waiting_for_vfork_done)
2177 {
2178 struct displaced_step_inferior_state *displaced;
2179
2180 if (!displaced_step_prepare (inferior_ptid))
2181 {
2182 /* Got placed in displaced stepping queue. Will be resumed
2183 later when all the currently queued displaced stepping
2184 requests finish. The thread is not executing at this
2185 point, and the call to set_executing will be made later.
2186 But we need to call set_running here, since from the
2187 user/frontend's point of view, threads were set running.
2188 Unless we're calling an inferior function, as in that
2189 case we pretend the inferior doesn't run at all. */
2190 if (!tp->control.in_infcall)
2191 set_running (user_visible_resume_ptid (entry_step), 1);
2192 discard_cleanups (old_cleanups);
2193 return;
2194 }
2195
2196 /* Update pc to reflect the new address from which we will execute
2197 instructions due to displaced stepping. */
2198 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2199
2200 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2201 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2202 displaced->step_closure);
2203 }
2204
2205 /* Do we need to do it the hard way, w/temp breakpoints? */
2206 else if (step)
2207 step = maybe_software_singlestep (gdbarch, pc);
2208
2209 /* Currently, our software single-step implementation leads to different
2210 results than hardware single-stepping in one situation: when stepping
2211 into delivering a signal which has an associated signal handler,
2212 hardware single-step will stop at the first instruction of the handler,
2213 while software single-step will simply skip execution of the handler.
2214
2215 For now, this difference in behavior is accepted since there is no
2216 easy way to actually implement single-stepping into a signal handler
2217 without kernel support.
2218
2219 However, there is one scenario where this difference leads to follow-on
2220 problems: if we're stepping off a breakpoint by removing all breakpoints
2221 and then single-stepping. In this case, the software single-step
2222 behavior means that even if there is a *breakpoint* in the signal
2223 handler, GDB still would not stop.
2224
2225 Fortunately, we can at least fix this particular issue. We detect
2226 here the case where we are about to deliver a signal while software
2227 single-stepping with breakpoints removed. In this situation, we
2228 revert the decisions to remove all breakpoints and insert single-
2229 step breakpoints, and instead we install a step-resume breakpoint
2230 at the current address, deliver the signal without stepping, and
2231 once we arrive back at the step-resume breakpoint, actually step
2232 over the breakpoint we originally wanted to step over. */
2233 if (thread_has_single_step_breakpoints_set (tp)
2234 && sig != GDB_SIGNAL_0
2235 && step_over_info_valid_p ())
2236 {
2237 /* If we have nested signals or a pending signal is delivered
2238 immediately after a handler returns, might might already have
2239 a step-resume breakpoint set on the earlier handler. We cannot
2240 set another step-resume breakpoint; just continue on until the
2241 original breakpoint is hit. */
2242 if (tp->control.step_resume_breakpoint == NULL)
2243 {
2244 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2245 tp->step_after_step_resume_breakpoint = 1;
2246 }
2247
2248 delete_single_step_breakpoints (tp);
2249
2250 clear_step_over_info ();
2251 tp->control.trap_expected = 0;
2252
2253 insert_breakpoints ();
2254 }
2255
2256 /* If STEP is set, it's a request to use hardware stepping
2257 facilities. But in that case, we should never
2258 use singlestep breakpoint. */
2259 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2260
2261 /* Decide the set of threads to ask the target to resume. Start
2262 by assuming everything will be resumed, than narrow the set
2263 by applying increasingly restricting conditions. */
2264 resume_ptid = user_visible_resume_ptid (entry_step);
2265
2266 /* Even if RESUME_PTID is a wildcard, and we end up resuming less
2267 (e.g., we might need to step over a breakpoint), from the
2268 user/frontend's point of view, all threads in RESUME_PTID are now
2269 running. Unless we're calling an inferior function, as in that
2270 case pretend we inferior doesn't run at all. */
2271 if (!tp->control.in_infcall)
2272 set_running (resume_ptid, 1);
2273
2274 /* Maybe resume a single thread after all. */
2275 if ((step || thread_has_single_step_breakpoints_set (tp))
2276 && tp->control.trap_expected)
2277 {
2278 /* We're allowing a thread to run past a breakpoint it has
2279 hit, by single-stepping the thread with the breakpoint
2280 removed. In which case, we need to single-step only this
2281 thread, and keep others stopped, as they can miss this
2282 breakpoint if allowed to run. */
2283 resume_ptid = inferior_ptid;
2284 }
2285
2286 if (execution_direction != EXEC_REVERSE
2287 && step && breakpoint_inserted_here_p (aspace, pc))
2288 {
2289 /* The only case we currently need to step a breakpoint
2290 instruction is when we have a signal to deliver. See
2291 handle_signal_stop where we handle random signals that could
2292 take out us out of the stepping range. Normally, in that
2293 case we end up continuing (instead of stepping) over the
2294 signal handler with a breakpoint at PC, but there are cases
2295 where we should _always_ single-step, even if we have a
2296 step-resume breakpoint, like when a software watchpoint is
2297 set. Assuming single-stepping and delivering a signal at the
2298 same time would takes us to the signal handler, then we could
2299 have removed the breakpoint at PC to step over it. However,
2300 some hardware step targets (like e.g., Mac OS) can't step
2301 into signal handlers, and for those, we need to leave the
2302 breakpoint at PC inserted, as otherwise if the handler
2303 recurses and executes PC again, it'll miss the breakpoint.
2304 So we leave the breakpoint inserted anyway, but we need to
2305 record that we tried to step a breakpoint instruction, so
2306 that adjust_pc_after_break doesn't end up confused. */
2307 gdb_assert (sig != GDB_SIGNAL_0);
2308
2309 tp->stepped_breakpoint = 1;
2310
2311 /* Most targets can step a breakpoint instruction, thus
2312 executing it normally. But if this one cannot, just
2313 continue and we will hit it anyway. */
2314 if (gdbarch_cannot_step_breakpoint (gdbarch))
2315 step = 0;
2316 }
2317
2318 if (debug_displaced
2319 && use_displaced_stepping (gdbarch)
2320 && tp->control.trap_expected)
2321 {
2322 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
2323 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2324 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2325 gdb_byte buf[4];
2326
2327 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2328 paddress (resume_gdbarch, actual_pc));
2329 read_memory (actual_pc, buf, sizeof (buf));
2330 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2331 }
2332
2333 if (tp->control.may_range_step)
2334 {
2335 /* If we're resuming a thread with the PC out of the step
2336 range, then we're doing some nested/finer run control
2337 operation, like stepping the thread out of the dynamic
2338 linker or the displaced stepping scratch pad. We
2339 shouldn't have allowed a range step then. */
2340 gdb_assert (pc_in_thread_step_range (pc, tp));
2341 }
2342
2343 /* Install inferior's terminal modes. */
2344 target_terminal_inferior ();
2345
2346 /* Avoid confusing the next resume, if the next stop/resume
2347 happens to apply to another thread. */
2348 tp->suspend.stop_signal = GDB_SIGNAL_0;
2349
2350 /* Advise target which signals may be handled silently. If we have
2351 removed breakpoints because we are stepping over one (in any
2352 thread), we need to receive all signals to avoid accidentally
2353 skipping a breakpoint during execution of a signal handler. */
2354 if (step_over_info_valid_p ())
2355 target_pass_signals (0, NULL);
2356 else
2357 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2358
2359 target_resume (resume_ptid, step, sig);
2360
2361 discard_cleanups (old_cleanups);
2362 }
2363 \f
2364 /* Proceeding. */
2365
2366 /* Clear out all variables saying what to do when inferior is continued.
2367 First do this, then set the ones you want, then call `proceed'. */
2368
2369 static void
2370 clear_proceed_status_thread (struct thread_info *tp)
2371 {
2372 if (debug_infrun)
2373 fprintf_unfiltered (gdb_stdlog,
2374 "infrun: clear_proceed_status_thread (%s)\n",
2375 target_pid_to_str (tp->ptid));
2376
2377 /* If this signal should not be seen by program, give it zero.
2378 Used for debugging signals. */
2379 if (!signal_pass_state (tp->suspend.stop_signal))
2380 tp->suspend.stop_signal = GDB_SIGNAL_0;
2381
2382 tp->control.trap_expected = 0;
2383 tp->control.step_range_start = 0;
2384 tp->control.step_range_end = 0;
2385 tp->control.may_range_step = 0;
2386 tp->control.step_frame_id = null_frame_id;
2387 tp->control.step_stack_frame_id = null_frame_id;
2388 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2389 tp->stop_requested = 0;
2390
2391 tp->control.stop_step = 0;
2392
2393 tp->control.proceed_to_finish = 0;
2394
2395 tp->control.command_interp = NULL;
2396
2397 /* Discard any remaining commands or status from previous stop. */
2398 bpstat_clear (&tp->control.stop_bpstat);
2399 }
2400
2401 void
2402 clear_proceed_status (int step)
2403 {
2404 if (!non_stop)
2405 {
2406 struct thread_info *tp;
2407 ptid_t resume_ptid;
2408
2409 resume_ptid = user_visible_resume_ptid (step);
2410
2411 /* In all-stop mode, delete the per-thread status of all threads
2412 we're about to resume, implicitly and explicitly. */
2413 ALL_NON_EXITED_THREADS (tp)
2414 {
2415 if (!ptid_match (tp->ptid, resume_ptid))
2416 continue;
2417 clear_proceed_status_thread (tp);
2418 }
2419 }
2420
2421 if (!ptid_equal (inferior_ptid, null_ptid))
2422 {
2423 struct inferior *inferior;
2424
2425 if (non_stop)
2426 {
2427 /* If in non-stop mode, only delete the per-thread status of
2428 the current thread. */
2429 clear_proceed_status_thread (inferior_thread ());
2430 }
2431
2432 inferior = current_inferior ();
2433 inferior->control.stop_soon = NO_STOP_QUIETLY;
2434 }
2435
2436 stop_after_trap = 0;
2437
2438 clear_step_over_info ();
2439
2440 observer_notify_about_to_proceed ();
2441
2442 if (stop_registers)
2443 {
2444 regcache_xfree (stop_registers);
2445 stop_registers = NULL;
2446 }
2447 }
2448
2449 /* Returns true if TP is still stopped at a breakpoint that needs
2450 stepping-over in order to make progress. If the breakpoint is gone
2451 meanwhile, we can skip the whole step-over dance. */
2452
2453 static int
2454 thread_still_needs_step_over (struct thread_info *tp)
2455 {
2456 if (tp->stepping_over_breakpoint)
2457 {
2458 struct regcache *regcache = get_thread_regcache (tp->ptid);
2459
2460 if (breakpoint_here_p (get_regcache_aspace (regcache),
2461 regcache_read_pc (regcache))
2462 == ordinary_breakpoint_here)
2463 return 1;
2464
2465 tp->stepping_over_breakpoint = 0;
2466 }
2467
2468 return 0;
2469 }
2470
2471 /* Returns true if scheduler locking applies. STEP indicates whether
2472 we're about to do a step/next-like command to a thread. */
2473
2474 static int
2475 schedlock_applies (int step)
2476 {
2477 return (scheduler_mode == schedlock_on
2478 || (scheduler_mode == schedlock_step
2479 && step));
2480 }
2481
2482 /* Look a thread other than EXCEPT that has previously reported a
2483 breakpoint event, and thus needs a step-over in order to make
2484 progress. Returns NULL is none is found. STEP indicates whether
2485 we're about to step the current thread, in order to decide whether
2486 "set scheduler-locking step" applies. */
2487
2488 static struct thread_info *
2489 find_thread_needs_step_over (int step, struct thread_info *except)
2490 {
2491 struct thread_info *tp, *current;
2492
2493 /* With non-stop mode on, threads are always handled individually. */
2494 gdb_assert (! non_stop);
2495
2496 current = inferior_thread ();
2497
2498 /* If scheduler locking applies, we can avoid iterating over all
2499 threads. */
2500 if (schedlock_applies (step))
2501 {
2502 if (except != current
2503 && thread_still_needs_step_over (current))
2504 return current;
2505
2506 return NULL;
2507 }
2508
2509 ALL_NON_EXITED_THREADS (tp)
2510 {
2511 /* Ignore the EXCEPT thread. */
2512 if (tp == except)
2513 continue;
2514 /* Ignore threads of processes we're not resuming. */
2515 if (!sched_multi
2516 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
2517 continue;
2518
2519 if (thread_still_needs_step_over (tp))
2520 return tp;
2521 }
2522
2523 return NULL;
2524 }
2525
2526 /* Basic routine for continuing the program in various fashions.
2527
2528 ADDR is the address to resume at, or -1 for resume where stopped.
2529 SIGGNAL is the signal to give it, or 0 for none,
2530 or -1 for act according to how it stopped.
2531 STEP is nonzero if should trap after one instruction.
2532 -1 means return after that and print nothing.
2533 You should probably set various step_... variables
2534 before calling here, if you are stepping.
2535
2536 You should call clear_proceed_status before calling proceed. */
2537
2538 void
2539 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2540 {
2541 struct regcache *regcache;
2542 struct gdbarch *gdbarch;
2543 struct thread_info *tp;
2544 CORE_ADDR pc;
2545 struct address_space *aspace;
2546
2547 /* If we're stopped at a fork/vfork, follow the branch set by the
2548 "set follow-fork-mode" command; otherwise, we'll just proceed
2549 resuming the current thread. */
2550 if (!follow_fork ())
2551 {
2552 /* The target for some reason decided not to resume. */
2553 normal_stop ();
2554 if (target_can_async_p ())
2555 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2556 return;
2557 }
2558
2559 /* We'll update this if & when we switch to a new thread. */
2560 previous_inferior_ptid = inferior_ptid;
2561
2562 regcache = get_current_regcache ();
2563 gdbarch = get_regcache_arch (regcache);
2564 aspace = get_regcache_aspace (regcache);
2565 pc = regcache_read_pc (regcache);
2566 tp = inferior_thread ();
2567
2568 if (step > 0)
2569 step_start_function = find_pc_function (pc);
2570 if (step < 0)
2571 stop_after_trap = 1;
2572
2573 /* Fill in with reasonable starting values. */
2574 init_thread_stepping_state (tp);
2575
2576 if (addr == (CORE_ADDR) -1)
2577 {
2578 if (pc == stop_pc
2579 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2580 && execution_direction != EXEC_REVERSE)
2581 /* There is a breakpoint at the address we will resume at,
2582 step one instruction before inserting breakpoints so that
2583 we do not stop right away (and report a second hit at this
2584 breakpoint).
2585
2586 Note, we don't do this in reverse, because we won't
2587 actually be executing the breakpoint insn anyway.
2588 We'll be (un-)executing the previous instruction. */
2589 tp->stepping_over_breakpoint = 1;
2590 else if (gdbarch_single_step_through_delay_p (gdbarch)
2591 && gdbarch_single_step_through_delay (gdbarch,
2592 get_current_frame ()))
2593 /* We stepped onto an instruction that needs to be stepped
2594 again before re-inserting the breakpoint, do so. */
2595 tp->stepping_over_breakpoint = 1;
2596 }
2597 else
2598 {
2599 regcache_write_pc (regcache, addr);
2600 }
2601
2602 if (siggnal != GDB_SIGNAL_DEFAULT)
2603 tp->suspend.stop_signal = siggnal;
2604
2605 /* Record the interpreter that issued the execution command that
2606 caused this thread to resume. If the top level interpreter is
2607 MI/async, and the execution command was a CLI command
2608 (next/step/etc.), we'll want to print stop event output to the MI
2609 console channel (the stepped-to line, etc.), as if the user
2610 entered the execution command on a real GDB console. */
2611 inferior_thread ()->control.command_interp = command_interp ();
2612
2613 if (debug_infrun)
2614 fprintf_unfiltered (gdb_stdlog,
2615 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2616 paddress (gdbarch, addr),
2617 gdb_signal_to_symbol_string (siggnal), step);
2618
2619 if (non_stop)
2620 /* In non-stop, each thread is handled individually. The context
2621 must already be set to the right thread here. */
2622 ;
2623 else
2624 {
2625 struct thread_info *step_over;
2626
2627 /* In a multi-threaded task we may select another thread and
2628 then continue or step.
2629
2630 But if the old thread was stopped at a breakpoint, it will
2631 immediately cause another breakpoint stop without any
2632 execution (i.e. it will report a breakpoint hit incorrectly).
2633 So we must step over it first.
2634
2635 Look for a thread other than the current (TP) that reported a
2636 breakpoint hit and hasn't been resumed yet since. */
2637 step_over = find_thread_needs_step_over (step, tp);
2638 if (step_over != NULL)
2639 {
2640 if (debug_infrun)
2641 fprintf_unfiltered (gdb_stdlog,
2642 "infrun: need to step-over [%s] first\n",
2643 target_pid_to_str (step_over->ptid));
2644
2645 /* Store the prev_pc for the stepping thread too, needed by
2646 switch_back_to_stepping thread. */
2647 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2648 switch_to_thread (step_over->ptid);
2649 tp = step_over;
2650 }
2651 }
2652
2653 /* If we need to step over a breakpoint, and we're not using
2654 displaced stepping to do so, insert all breakpoints (watchpoints,
2655 etc.) but the one we're stepping over, step one instruction, and
2656 then re-insert the breakpoint when that step is finished. */
2657 if (tp->stepping_over_breakpoint && !use_displaced_stepping (gdbarch))
2658 {
2659 struct regcache *regcache = get_current_regcache ();
2660
2661 set_step_over_info (get_regcache_aspace (regcache),
2662 regcache_read_pc (regcache), 0);
2663 }
2664 else
2665 clear_step_over_info ();
2666
2667 insert_breakpoints ();
2668
2669 tp->control.trap_expected = tp->stepping_over_breakpoint;
2670
2671 annotate_starting ();
2672
2673 /* Make sure that output from GDB appears before output from the
2674 inferior. */
2675 gdb_flush (gdb_stdout);
2676
2677 /* Refresh prev_pc value just prior to resuming. This used to be
2678 done in stop_waiting, however, setting prev_pc there did not handle
2679 scenarios such as inferior function calls or returning from
2680 a function via the return command. In those cases, the prev_pc
2681 value was not set properly for subsequent commands. The prev_pc value
2682 is used to initialize the starting line number in the ecs. With an
2683 invalid value, the gdb next command ends up stopping at the position
2684 represented by the next line table entry past our start position.
2685 On platforms that generate one line table entry per line, this
2686 is not a problem. However, on the ia64, the compiler generates
2687 extraneous line table entries that do not increase the line number.
2688 When we issue the gdb next command on the ia64 after an inferior call
2689 or a return command, we often end up a few instructions forward, still
2690 within the original line we started.
2691
2692 An attempt was made to refresh the prev_pc at the same time the
2693 execution_control_state is initialized (for instance, just before
2694 waiting for an inferior event). But this approach did not work
2695 because of platforms that use ptrace, where the pc register cannot
2696 be read unless the inferior is stopped. At that point, we are not
2697 guaranteed the inferior is stopped and so the regcache_read_pc() call
2698 can fail. Setting the prev_pc value here ensures the value is updated
2699 correctly when the inferior is stopped. */
2700 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2701
2702 /* Resume inferior. */
2703 resume (tp->control.trap_expected || step || bpstat_should_step (),
2704 tp->suspend.stop_signal);
2705
2706 /* Wait for it to stop (if not standalone)
2707 and in any case decode why it stopped, and act accordingly. */
2708 /* Do this only if we are not using the event loop, or if the target
2709 does not support asynchronous execution. */
2710 if (!target_can_async_p ())
2711 {
2712 wait_for_inferior ();
2713 normal_stop ();
2714 }
2715 }
2716 \f
2717
2718 /* Start remote-debugging of a machine over a serial link. */
2719
2720 void
2721 start_remote (int from_tty)
2722 {
2723 struct inferior *inferior;
2724
2725 inferior = current_inferior ();
2726 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2727
2728 /* Always go on waiting for the target, regardless of the mode. */
2729 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2730 indicate to wait_for_inferior that a target should timeout if
2731 nothing is returned (instead of just blocking). Because of this,
2732 targets expecting an immediate response need to, internally, set
2733 things up so that the target_wait() is forced to eventually
2734 timeout. */
2735 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2736 differentiate to its caller what the state of the target is after
2737 the initial open has been performed. Here we're assuming that
2738 the target has stopped. It should be possible to eventually have
2739 target_open() return to the caller an indication that the target
2740 is currently running and GDB state should be set to the same as
2741 for an async run. */
2742 wait_for_inferior ();
2743
2744 /* Now that the inferior has stopped, do any bookkeeping like
2745 loading shared libraries. We want to do this before normal_stop,
2746 so that the displayed frame is up to date. */
2747 post_create_inferior (&current_target, from_tty);
2748
2749 normal_stop ();
2750 }
2751
2752 /* Initialize static vars when a new inferior begins. */
2753
2754 void
2755 init_wait_for_inferior (void)
2756 {
2757 /* These are meaningless until the first time through wait_for_inferior. */
2758
2759 breakpoint_init_inferior (inf_starting);
2760
2761 clear_proceed_status (0);
2762
2763 target_last_wait_ptid = minus_one_ptid;
2764
2765 previous_inferior_ptid = inferior_ptid;
2766
2767 /* Discard any skipped inlined frames. */
2768 clear_inline_frame_state (minus_one_ptid);
2769 }
2770
2771 \f
2772 /* Data to be passed around while handling an event. This data is
2773 discarded between events. */
2774 struct execution_control_state
2775 {
2776 ptid_t ptid;
2777 /* The thread that got the event, if this was a thread event; NULL
2778 otherwise. */
2779 struct thread_info *event_thread;
2780
2781 struct target_waitstatus ws;
2782 int stop_func_filled_in;
2783 CORE_ADDR stop_func_start;
2784 CORE_ADDR stop_func_end;
2785 const char *stop_func_name;
2786 int wait_some_more;
2787
2788 /* True if the event thread hit the single-step breakpoint of
2789 another thread. Thus the event doesn't cause a stop, the thread
2790 needs to be single-stepped past the single-step breakpoint before
2791 we can switch back to the original stepping thread. */
2792 int hit_singlestep_breakpoint;
2793 };
2794
2795 static void handle_inferior_event (struct execution_control_state *ecs);
2796
2797 static void handle_step_into_function (struct gdbarch *gdbarch,
2798 struct execution_control_state *ecs);
2799 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2800 struct execution_control_state *ecs);
2801 static void handle_signal_stop (struct execution_control_state *ecs);
2802 static void check_exception_resume (struct execution_control_state *,
2803 struct frame_info *);
2804
2805 static void end_stepping_range (struct execution_control_state *ecs);
2806 static void stop_waiting (struct execution_control_state *ecs);
2807 static void prepare_to_wait (struct execution_control_state *ecs);
2808 static void keep_going (struct execution_control_state *ecs);
2809 static void process_event_stop_test (struct execution_control_state *ecs);
2810 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
2811
2812 /* Callback for iterate over threads. If the thread is stopped, but
2813 the user/frontend doesn't know about that yet, go through
2814 normal_stop, as if the thread had just stopped now. ARG points at
2815 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2816 ptid_is_pid(PTID) is true, applies to all threads of the process
2817 pointed at by PTID. Otherwise, apply only to the thread pointed by
2818 PTID. */
2819
2820 static int
2821 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2822 {
2823 ptid_t ptid = * (ptid_t *) arg;
2824
2825 if ((ptid_equal (info->ptid, ptid)
2826 || ptid_equal (minus_one_ptid, ptid)
2827 || (ptid_is_pid (ptid)
2828 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2829 && is_running (info->ptid)
2830 && !is_executing (info->ptid))
2831 {
2832 struct cleanup *old_chain;
2833 struct execution_control_state ecss;
2834 struct execution_control_state *ecs = &ecss;
2835
2836 memset (ecs, 0, sizeof (*ecs));
2837
2838 old_chain = make_cleanup_restore_current_thread ();
2839
2840 overlay_cache_invalid = 1;
2841 /* Flush target cache before starting to handle each event.
2842 Target was running and cache could be stale. This is just a
2843 heuristic. Running threads may modify target memory, but we
2844 don't get any event. */
2845 target_dcache_invalidate ();
2846
2847 /* Go through handle_inferior_event/normal_stop, so we always
2848 have consistent output as if the stop event had been
2849 reported. */
2850 ecs->ptid = info->ptid;
2851 ecs->event_thread = find_thread_ptid (info->ptid);
2852 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2853 ecs->ws.value.sig = GDB_SIGNAL_0;
2854
2855 handle_inferior_event (ecs);
2856
2857 if (!ecs->wait_some_more)
2858 {
2859 struct thread_info *tp;
2860
2861 normal_stop ();
2862
2863 /* Finish off the continuations. */
2864 tp = inferior_thread ();
2865 do_all_intermediate_continuations_thread (tp, 1);
2866 do_all_continuations_thread (tp, 1);
2867 }
2868
2869 do_cleanups (old_chain);
2870 }
2871
2872 return 0;
2873 }
2874
2875 /* This function is attached as a "thread_stop_requested" observer.
2876 Cleanup local state that assumed the PTID was to be resumed, and
2877 report the stop to the frontend. */
2878
2879 static void
2880 infrun_thread_stop_requested (ptid_t ptid)
2881 {
2882 struct displaced_step_inferior_state *displaced;
2883
2884 /* PTID was requested to stop. Remove it from the displaced
2885 stepping queue, so we don't try to resume it automatically. */
2886
2887 for (displaced = displaced_step_inferior_states;
2888 displaced;
2889 displaced = displaced->next)
2890 {
2891 struct displaced_step_request *it, **prev_next_p;
2892
2893 it = displaced->step_request_queue;
2894 prev_next_p = &displaced->step_request_queue;
2895 while (it)
2896 {
2897 if (ptid_match (it->ptid, ptid))
2898 {
2899 *prev_next_p = it->next;
2900 it->next = NULL;
2901 xfree (it);
2902 }
2903 else
2904 {
2905 prev_next_p = &it->next;
2906 }
2907
2908 it = *prev_next_p;
2909 }
2910 }
2911
2912 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2913 }
2914
2915 static void
2916 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2917 {
2918 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2919 nullify_last_target_wait_ptid ();
2920 }
2921
2922 /* Delete the step resume, single-step and longjmp/exception resume
2923 breakpoints of TP. */
2924
2925 static void
2926 delete_thread_infrun_breakpoints (struct thread_info *tp)
2927 {
2928 delete_step_resume_breakpoint (tp);
2929 delete_exception_resume_breakpoint (tp);
2930 delete_single_step_breakpoints (tp);
2931 }
2932
2933 /* If the target still has execution, call FUNC for each thread that
2934 just stopped. In all-stop, that's all the non-exited threads; in
2935 non-stop, that's the current thread, only. */
2936
2937 typedef void (*for_each_just_stopped_thread_callback_func)
2938 (struct thread_info *tp);
2939
2940 static void
2941 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
2942 {
2943 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
2944 return;
2945
2946 if (non_stop)
2947 {
2948 /* If in non-stop mode, only the current thread stopped. */
2949 func (inferior_thread ());
2950 }
2951 else
2952 {
2953 struct thread_info *tp;
2954
2955 /* In all-stop mode, all threads have stopped. */
2956 ALL_NON_EXITED_THREADS (tp)
2957 {
2958 func (tp);
2959 }
2960 }
2961 }
2962
2963 /* Delete the step resume and longjmp/exception resume breakpoints of
2964 the threads that just stopped. */
2965
2966 static void
2967 delete_just_stopped_threads_infrun_breakpoints (void)
2968 {
2969 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
2970 }
2971
2972 /* Delete the single-step breakpoints of the threads that just
2973 stopped. */
2974
2975 static void
2976 delete_just_stopped_threads_single_step_breakpoints (void)
2977 {
2978 for_each_just_stopped_thread (delete_single_step_breakpoints);
2979 }
2980
2981 /* A cleanup wrapper. */
2982
2983 static void
2984 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
2985 {
2986 delete_just_stopped_threads_infrun_breakpoints ();
2987 }
2988
2989 /* Pretty print the results of target_wait, for debugging purposes. */
2990
2991 static void
2992 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2993 const struct target_waitstatus *ws)
2994 {
2995 char *status_string = target_waitstatus_to_string (ws);
2996 struct ui_file *tmp_stream = mem_fileopen ();
2997 char *text;
2998
2999 /* The text is split over several lines because it was getting too long.
3000 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3001 output as a unit; we want only one timestamp printed if debug_timestamp
3002 is set. */
3003
3004 fprintf_unfiltered (tmp_stream,
3005 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
3006 if (ptid_get_pid (waiton_ptid) != -1)
3007 fprintf_unfiltered (tmp_stream,
3008 " [%s]", target_pid_to_str (waiton_ptid));
3009 fprintf_unfiltered (tmp_stream, ", status) =\n");
3010 fprintf_unfiltered (tmp_stream,
3011 "infrun: %d [%s],\n",
3012 ptid_get_pid (result_ptid),
3013 target_pid_to_str (result_ptid));
3014 fprintf_unfiltered (tmp_stream,
3015 "infrun: %s\n",
3016 status_string);
3017
3018 text = ui_file_xstrdup (tmp_stream, NULL);
3019
3020 /* This uses %s in part to handle %'s in the text, but also to avoid
3021 a gcc error: the format attribute requires a string literal. */
3022 fprintf_unfiltered (gdb_stdlog, "%s", text);
3023
3024 xfree (status_string);
3025 xfree (text);
3026 ui_file_delete (tmp_stream);
3027 }
3028
3029 /* Prepare and stabilize the inferior for detaching it. E.g.,
3030 detaching while a thread is displaced stepping is a recipe for
3031 crashing it, as nothing would readjust the PC out of the scratch
3032 pad. */
3033
3034 void
3035 prepare_for_detach (void)
3036 {
3037 struct inferior *inf = current_inferior ();
3038 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3039 struct cleanup *old_chain_1;
3040 struct displaced_step_inferior_state *displaced;
3041
3042 displaced = get_displaced_stepping_state (inf->pid);
3043
3044 /* Is any thread of this process displaced stepping? If not,
3045 there's nothing else to do. */
3046 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3047 return;
3048
3049 if (debug_infrun)
3050 fprintf_unfiltered (gdb_stdlog,
3051 "displaced-stepping in-process while detaching");
3052
3053 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3054 inf->detaching = 1;
3055
3056 while (!ptid_equal (displaced->step_ptid, null_ptid))
3057 {
3058 struct cleanup *old_chain_2;
3059 struct execution_control_state ecss;
3060 struct execution_control_state *ecs;
3061
3062 ecs = &ecss;
3063 memset (ecs, 0, sizeof (*ecs));
3064
3065 overlay_cache_invalid = 1;
3066 /* Flush target cache before starting to handle each event.
3067 Target was running and cache could be stale. This is just a
3068 heuristic. Running threads may modify target memory, but we
3069 don't get any event. */
3070 target_dcache_invalidate ();
3071
3072 if (deprecated_target_wait_hook)
3073 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
3074 else
3075 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
3076
3077 if (debug_infrun)
3078 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3079
3080 /* If an error happens while handling the event, propagate GDB's
3081 knowledge of the executing state to the frontend/user running
3082 state. */
3083 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3084 &minus_one_ptid);
3085
3086 /* Now figure out what to do with the result of the result. */
3087 handle_inferior_event (ecs);
3088
3089 /* No error, don't finish the state yet. */
3090 discard_cleanups (old_chain_2);
3091
3092 /* Breakpoints and watchpoints are not installed on the target
3093 at this point, and signals are passed directly to the
3094 inferior, so this must mean the process is gone. */
3095 if (!ecs->wait_some_more)
3096 {
3097 discard_cleanups (old_chain_1);
3098 error (_("Program exited while detaching"));
3099 }
3100 }
3101
3102 discard_cleanups (old_chain_1);
3103 }
3104
3105 /* Wait for control to return from inferior to debugger.
3106
3107 If inferior gets a signal, we may decide to start it up again
3108 instead of returning. That is why there is a loop in this function.
3109 When this function actually returns it means the inferior
3110 should be left stopped and GDB should read more commands. */
3111
3112 void
3113 wait_for_inferior (void)
3114 {
3115 struct cleanup *old_cleanups;
3116
3117 if (debug_infrun)
3118 fprintf_unfiltered
3119 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3120
3121 old_cleanups
3122 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3123 NULL);
3124
3125 while (1)
3126 {
3127 struct execution_control_state ecss;
3128 struct execution_control_state *ecs = &ecss;
3129 struct cleanup *old_chain;
3130 ptid_t waiton_ptid = minus_one_ptid;
3131
3132 memset (ecs, 0, sizeof (*ecs));
3133
3134 overlay_cache_invalid = 1;
3135
3136 /* Flush target cache before starting to handle each event.
3137 Target was running and cache could be stale. This is just a
3138 heuristic. Running threads may modify target memory, but we
3139 don't get any event. */
3140 target_dcache_invalidate ();
3141
3142 if (deprecated_target_wait_hook)
3143 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
3144 else
3145 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
3146
3147 if (debug_infrun)
3148 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3149
3150 /* If an error happens while handling the event, propagate GDB's
3151 knowledge of the executing state to the frontend/user running
3152 state. */
3153 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3154
3155 /* Now figure out what to do with the result of the result. */
3156 handle_inferior_event (ecs);
3157
3158 /* No error, don't finish the state yet. */
3159 discard_cleanups (old_chain);
3160
3161 if (!ecs->wait_some_more)
3162 break;
3163 }
3164
3165 do_cleanups (old_cleanups);
3166 }
3167
3168 /* Cleanup that reinstalls the readline callback handler, if the
3169 target is running in the background. If while handling the target
3170 event something triggered a secondary prompt, like e.g., a
3171 pagination prompt, we'll have removed the callback handler (see
3172 gdb_readline_wrapper_line). Need to do this as we go back to the
3173 event loop, ready to process further input. Note this has no
3174 effect if the handler hasn't actually been removed, because calling
3175 rl_callback_handler_install resets the line buffer, thus losing
3176 input. */
3177
3178 static void
3179 reinstall_readline_callback_handler_cleanup (void *arg)
3180 {
3181 if (async_command_editing_p && !sync_execution)
3182 gdb_rl_callback_handler_reinstall ();
3183 }
3184
3185 /* Asynchronous version of wait_for_inferior. It is called by the
3186 event loop whenever a change of state is detected on the file
3187 descriptor corresponding to the target. It can be called more than
3188 once to complete a single execution command. In such cases we need
3189 to keep the state in a global variable ECSS. If it is the last time
3190 that this function is called for a single execution command, then
3191 report to the user that the inferior has stopped, and do the
3192 necessary cleanups. */
3193
3194 void
3195 fetch_inferior_event (void *client_data)
3196 {
3197 struct execution_control_state ecss;
3198 struct execution_control_state *ecs = &ecss;
3199 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3200 struct cleanup *ts_old_chain;
3201 int was_sync = sync_execution;
3202 int cmd_done = 0;
3203 ptid_t waiton_ptid = minus_one_ptid;
3204
3205 memset (ecs, 0, sizeof (*ecs));
3206
3207 /* End up with readline processing input, if necessary. */
3208 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3209
3210 /* We're handling a live event, so make sure we're doing live
3211 debugging. If we're looking at traceframes while the target is
3212 running, we're going to need to get back to that mode after
3213 handling the event. */
3214 if (non_stop)
3215 {
3216 make_cleanup_restore_current_traceframe ();
3217 set_current_traceframe (-1);
3218 }
3219
3220 if (non_stop)
3221 /* In non-stop mode, the user/frontend should not notice a thread
3222 switch due to internal events. Make sure we reverse to the
3223 user selected thread and frame after handling the event and
3224 running any breakpoint commands. */
3225 make_cleanup_restore_current_thread ();
3226
3227 overlay_cache_invalid = 1;
3228 /* Flush target cache before starting to handle each event. Target
3229 was running and cache could be stale. This is just a heuristic.
3230 Running threads may modify target memory, but we don't get any
3231 event. */
3232 target_dcache_invalidate ();
3233
3234 make_cleanup_restore_integer (&execution_direction);
3235 execution_direction = target_execution_direction ();
3236
3237 if (deprecated_target_wait_hook)
3238 ecs->ptid =
3239 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
3240 else
3241 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
3242
3243 if (debug_infrun)
3244 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3245
3246 /* If an error happens while handling the event, propagate GDB's
3247 knowledge of the executing state to the frontend/user running
3248 state. */
3249 if (!non_stop)
3250 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3251 else
3252 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3253
3254 /* Get executed before make_cleanup_restore_current_thread above to apply
3255 still for the thread which has thrown the exception. */
3256 make_bpstat_clear_actions_cleanup ();
3257
3258 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3259
3260 /* Now figure out what to do with the result of the result. */
3261 handle_inferior_event (ecs);
3262
3263 if (!ecs->wait_some_more)
3264 {
3265 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3266
3267 delete_just_stopped_threads_infrun_breakpoints ();
3268
3269 /* We may not find an inferior if this was a process exit. */
3270 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3271 normal_stop ();
3272
3273 if (target_has_execution
3274 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
3275 && ecs->ws.kind != TARGET_WAITKIND_EXITED
3276 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3277 && ecs->event_thread->step_multi
3278 && ecs->event_thread->control.stop_step)
3279 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
3280 else
3281 {
3282 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3283 cmd_done = 1;
3284 }
3285 }
3286
3287 /* No error, don't finish the thread states yet. */
3288 discard_cleanups (ts_old_chain);
3289
3290 /* Revert thread and frame. */
3291 do_cleanups (old_chain);
3292
3293 /* If the inferior was in sync execution mode, and now isn't,
3294 restore the prompt (a synchronous execution command has finished,
3295 and we're ready for input). */
3296 if (interpreter_async && was_sync && !sync_execution)
3297 observer_notify_sync_execution_done ();
3298
3299 if (cmd_done
3300 && !was_sync
3301 && exec_done_display_p
3302 && (ptid_equal (inferior_ptid, null_ptid)
3303 || !is_running (inferior_ptid)))
3304 printf_unfiltered (_("completed.\n"));
3305 }
3306
3307 /* Record the frame and location we're currently stepping through. */
3308 void
3309 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3310 {
3311 struct thread_info *tp = inferior_thread ();
3312
3313 tp->control.step_frame_id = get_frame_id (frame);
3314 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3315
3316 tp->current_symtab = sal.symtab;
3317 tp->current_line = sal.line;
3318 }
3319
3320 /* Clear context switchable stepping state. */
3321
3322 void
3323 init_thread_stepping_state (struct thread_info *tss)
3324 {
3325 tss->stepped_breakpoint = 0;
3326 tss->stepping_over_breakpoint = 0;
3327 tss->stepping_over_watchpoint = 0;
3328 tss->step_after_step_resume_breakpoint = 0;
3329 }
3330
3331 /* Set the cached copy of the last ptid/waitstatus. */
3332
3333 static void
3334 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3335 {
3336 target_last_wait_ptid = ptid;
3337 target_last_waitstatus = status;
3338 }
3339
3340 /* Return the cached copy of the last pid/waitstatus returned by
3341 target_wait()/deprecated_target_wait_hook(). The data is actually
3342 cached by handle_inferior_event(), which gets called immediately
3343 after target_wait()/deprecated_target_wait_hook(). */
3344
3345 void
3346 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
3347 {
3348 *ptidp = target_last_wait_ptid;
3349 *status = target_last_waitstatus;
3350 }
3351
3352 void
3353 nullify_last_target_wait_ptid (void)
3354 {
3355 target_last_wait_ptid = minus_one_ptid;
3356 }
3357
3358 /* Switch thread contexts. */
3359
3360 static void
3361 context_switch (ptid_t ptid)
3362 {
3363 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
3364 {
3365 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3366 target_pid_to_str (inferior_ptid));
3367 fprintf_unfiltered (gdb_stdlog, "to %s\n",
3368 target_pid_to_str (ptid));
3369 }
3370
3371 switch_to_thread (ptid);
3372 }
3373
3374 static void
3375 adjust_pc_after_break (struct execution_control_state *ecs)
3376 {
3377 struct regcache *regcache;
3378 struct gdbarch *gdbarch;
3379 struct address_space *aspace;
3380 CORE_ADDR breakpoint_pc, decr_pc;
3381
3382 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3383 we aren't, just return.
3384
3385 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
3386 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3387 implemented by software breakpoints should be handled through the normal
3388 breakpoint layer.
3389
3390 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3391 different signals (SIGILL or SIGEMT for instance), but it is less
3392 clear where the PC is pointing afterwards. It may not match
3393 gdbarch_decr_pc_after_break. I don't know any specific target that
3394 generates these signals at breakpoints (the code has been in GDB since at
3395 least 1992) so I can not guess how to handle them here.
3396
3397 In earlier versions of GDB, a target with
3398 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
3399 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3400 target with both of these set in GDB history, and it seems unlikely to be
3401 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
3402
3403 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
3404 return;
3405
3406 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
3407 return;
3408
3409 /* In reverse execution, when a breakpoint is hit, the instruction
3410 under it has already been de-executed. The reported PC always
3411 points at the breakpoint address, so adjusting it further would
3412 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3413 architecture:
3414
3415 B1 0x08000000 : INSN1
3416 B2 0x08000001 : INSN2
3417 0x08000002 : INSN3
3418 PC -> 0x08000003 : INSN4
3419
3420 Say you're stopped at 0x08000003 as above. Reverse continuing
3421 from that point should hit B2 as below. Reading the PC when the
3422 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3423 been de-executed already.
3424
3425 B1 0x08000000 : INSN1
3426 B2 PC -> 0x08000001 : INSN2
3427 0x08000002 : INSN3
3428 0x08000003 : INSN4
3429
3430 We can't apply the same logic as for forward execution, because
3431 we would wrongly adjust the PC to 0x08000000, since there's a
3432 breakpoint at PC - 1. We'd then report a hit on B1, although
3433 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3434 behaviour. */
3435 if (execution_direction == EXEC_REVERSE)
3436 return;
3437
3438 /* If this target does not decrement the PC after breakpoints, then
3439 we have nothing to do. */
3440 regcache = get_thread_regcache (ecs->ptid);
3441 gdbarch = get_regcache_arch (regcache);
3442
3443 decr_pc = target_decr_pc_after_break (gdbarch);
3444 if (decr_pc == 0)
3445 return;
3446
3447 aspace = get_regcache_aspace (regcache);
3448
3449 /* Find the location where (if we've hit a breakpoint) the
3450 breakpoint would be. */
3451 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
3452
3453 /* Check whether there actually is a software breakpoint inserted at
3454 that location.
3455
3456 If in non-stop mode, a race condition is possible where we've
3457 removed a breakpoint, but stop events for that breakpoint were
3458 already queued and arrive later. To suppress those spurious
3459 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3460 and retire them after a number of stop events are reported. */
3461 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3462 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3463 {
3464 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
3465
3466 if (record_full_is_used ())
3467 record_full_gdb_operation_disable_set ();
3468
3469 /* When using hardware single-step, a SIGTRAP is reported for both
3470 a completed single-step and a software breakpoint. Need to
3471 differentiate between the two, as the latter needs adjusting
3472 but the former does not.
3473
3474 The SIGTRAP can be due to a completed hardware single-step only if
3475 - we didn't insert software single-step breakpoints
3476 - the thread to be examined is still the current thread
3477 - this thread is currently being stepped
3478
3479 If any of these events did not occur, we must have stopped due
3480 to hitting a software breakpoint, and have to back up to the
3481 breakpoint address.
3482
3483 As a special case, we could have hardware single-stepped a
3484 software breakpoint. In this case (prev_pc == breakpoint_pc),
3485 we also need to back up to the breakpoint address. */
3486
3487 if (thread_has_single_step_breakpoints_set (ecs->event_thread)
3488 || !ptid_equal (ecs->ptid, inferior_ptid)
3489 || !currently_stepping (ecs->event_thread)
3490 || (ecs->event_thread->stepped_breakpoint
3491 && ecs->event_thread->prev_pc == breakpoint_pc))
3492 regcache_write_pc (regcache, breakpoint_pc);
3493
3494 do_cleanups (old_cleanups);
3495 }
3496 }
3497
3498 static int
3499 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3500 {
3501 for (frame = get_prev_frame (frame);
3502 frame != NULL;
3503 frame = get_prev_frame (frame))
3504 {
3505 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3506 return 1;
3507 if (get_frame_type (frame) != INLINE_FRAME)
3508 break;
3509 }
3510
3511 return 0;
3512 }
3513
3514 /* Auxiliary function that handles syscall entry/return events.
3515 It returns 1 if the inferior should keep going (and GDB
3516 should ignore the event), or 0 if the event deserves to be
3517 processed. */
3518
3519 static int
3520 handle_syscall_event (struct execution_control_state *ecs)
3521 {
3522 struct regcache *regcache;
3523 int syscall_number;
3524
3525 if (!ptid_equal (ecs->ptid, inferior_ptid))
3526 context_switch (ecs->ptid);
3527
3528 regcache = get_thread_regcache (ecs->ptid);
3529 syscall_number = ecs->ws.value.syscall_number;
3530 stop_pc = regcache_read_pc (regcache);
3531
3532 if (catch_syscall_enabled () > 0
3533 && catching_syscall_number (syscall_number) > 0)
3534 {
3535 if (debug_infrun)
3536 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3537 syscall_number);
3538
3539 ecs->event_thread->control.stop_bpstat
3540 = bpstat_stop_status (get_regcache_aspace (regcache),
3541 stop_pc, ecs->ptid, &ecs->ws);
3542
3543 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3544 {
3545 /* Catchpoint hit. */
3546 return 0;
3547 }
3548 }
3549
3550 /* If no catchpoint triggered for this, then keep going. */
3551 keep_going (ecs);
3552 return 1;
3553 }
3554
3555 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3556
3557 static void
3558 fill_in_stop_func (struct gdbarch *gdbarch,
3559 struct execution_control_state *ecs)
3560 {
3561 if (!ecs->stop_func_filled_in)
3562 {
3563 /* Don't care about return value; stop_func_start and stop_func_name
3564 will both be 0 if it doesn't work. */
3565 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3566 &ecs->stop_func_start, &ecs->stop_func_end);
3567 ecs->stop_func_start
3568 += gdbarch_deprecated_function_start_offset (gdbarch);
3569
3570 if (gdbarch_skip_entrypoint_p (gdbarch))
3571 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
3572 ecs->stop_func_start);
3573
3574 ecs->stop_func_filled_in = 1;
3575 }
3576 }
3577
3578
3579 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
3580
3581 static enum stop_kind
3582 get_inferior_stop_soon (ptid_t ptid)
3583 {
3584 struct inferior *inf = find_inferior_ptid (ptid);
3585
3586 gdb_assert (inf != NULL);
3587 return inf->control.stop_soon;
3588 }
3589
3590 /* Given an execution control state that has been freshly filled in by
3591 an event from the inferior, figure out what it means and take
3592 appropriate action.
3593
3594 The alternatives are:
3595
3596 1) stop_waiting and return; to really stop and return to the
3597 debugger.
3598
3599 2) keep_going and return; to wait for the next event (set
3600 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3601 once). */
3602
3603 static void
3604 handle_inferior_event (struct execution_control_state *ecs)
3605 {
3606 enum stop_kind stop_soon;
3607
3608 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3609 {
3610 /* We had an event in the inferior, but we are not interested in
3611 handling it at this level. The lower layers have already
3612 done what needs to be done, if anything.
3613
3614 One of the possible circumstances for this is when the
3615 inferior produces output for the console. The inferior has
3616 not stopped, and we are ignoring the event. Another possible
3617 circumstance is any event which the lower level knows will be
3618 reported multiple times without an intervening resume. */
3619 if (debug_infrun)
3620 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3621 prepare_to_wait (ecs);
3622 return;
3623 }
3624
3625 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3626 && target_can_async_p () && !sync_execution)
3627 {
3628 /* There were no unwaited-for children left in the target, but,
3629 we're not synchronously waiting for events either. Just
3630 ignore. Otherwise, if we were running a synchronous
3631 execution command, we need to cancel it and give the user
3632 back the terminal. */
3633 if (debug_infrun)
3634 fprintf_unfiltered (gdb_stdlog,
3635 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3636 prepare_to_wait (ecs);
3637 return;
3638 }
3639
3640 /* Cache the last pid/waitstatus. */
3641 set_last_target_status (ecs->ptid, ecs->ws);
3642
3643 /* Always clear state belonging to the previous time we stopped. */
3644 stop_stack_dummy = STOP_NONE;
3645
3646 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3647 {
3648 /* No unwaited-for children left. IOW, all resumed children
3649 have exited. */
3650 if (debug_infrun)
3651 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3652
3653 stop_print_frame = 0;
3654 stop_waiting (ecs);
3655 return;
3656 }
3657
3658 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3659 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3660 {
3661 ecs->event_thread = find_thread_ptid (ecs->ptid);
3662 /* If it's a new thread, add it to the thread database. */
3663 if (ecs->event_thread == NULL)
3664 ecs->event_thread = add_thread (ecs->ptid);
3665
3666 /* Disable range stepping. If the next step request could use a
3667 range, this will be end up re-enabled then. */
3668 ecs->event_thread->control.may_range_step = 0;
3669 }
3670
3671 /* Dependent on valid ECS->EVENT_THREAD. */
3672 adjust_pc_after_break (ecs);
3673
3674 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3675 reinit_frame_cache ();
3676
3677 breakpoint_retire_moribund ();
3678
3679 /* First, distinguish signals caused by the debugger from signals
3680 that have to do with the program's own actions. Note that
3681 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3682 on the operating system version. Here we detect when a SIGILL or
3683 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3684 something similar for SIGSEGV, since a SIGSEGV will be generated
3685 when we're trying to execute a breakpoint instruction on a
3686 non-executable stack. This happens for call dummy breakpoints
3687 for architectures like SPARC that place call dummies on the
3688 stack. */
3689 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3690 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3691 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3692 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3693 {
3694 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3695
3696 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3697 regcache_read_pc (regcache)))
3698 {
3699 if (debug_infrun)
3700 fprintf_unfiltered (gdb_stdlog,
3701 "infrun: Treating signal as SIGTRAP\n");
3702 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3703 }
3704 }
3705
3706 /* Mark the non-executing threads accordingly. In all-stop, all
3707 threads of all processes are stopped when we get any event
3708 reported. In non-stop mode, only the event thread stops. If
3709 we're handling a process exit in non-stop mode, there's nothing
3710 to do, as threads of the dead process are gone, and threads of
3711 any other process were left running. */
3712 if (!non_stop)
3713 set_executing (minus_one_ptid, 0);
3714 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3715 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3716 set_executing (ecs->ptid, 0);
3717
3718 switch (ecs->ws.kind)
3719 {
3720 case TARGET_WAITKIND_LOADED:
3721 if (debug_infrun)
3722 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3723 if (!ptid_equal (ecs->ptid, inferior_ptid))
3724 context_switch (ecs->ptid);
3725 /* Ignore gracefully during startup of the inferior, as it might
3726 be the shell which has just loaded some objects, otherwise
3727 add the symbols for the newly loaded objects. Also ignore at
3728 the beginning of an attach or remote session; we will query
3729 the full list of libraries once the connection is
3730 established. */
3731
3732 stop_soon = get_inferior_stop_soon (ecs->ptid);
3733 if (stop_soon == NO_STOP_QUIETLY)
3734 {
3735 struct regcache *regcache;
3736
3737 regcache = get_thread_regcache (ecs->ptid);
3738
3739 handle_solib_event ();
3740
3741 ecs->event_thread->control.stop_bpstat
3742 = bpstat_stop_status (get_regcache_aspace (regcache),
3743 stop_pc, ecs->ptid, &ecs->ws);
3744
3745 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3746 {
3747 /* A catchpoint triggered. */
3748 process_event_stop_test (ecs);
3749 return;
3750 }
3751
3752 /* If requested, stop when the dynamic linker notifies
3753 gdb of events. This allows the user to get control
3754 and place breakpoints in initializer routines for
3755 dynamically loaded objects (among other things). */
3756 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3757 if (stop_on_solib_events)
3758 {
3759 /* Make sure we print "Stopped due to solib-event" in
3760 normal_stop. */
3761 stop_print_frame = 1;
3762
3763 stop_waiting (ecs);
3764 return;
3765 }
3766 }
3767
3768 /* If we are skipping through a shell, or through shared library
3769 loading that we aren't interested in, resume the program. If
3770 we're running the program normally, also resume. */
3771 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3772 {
3773 /* Loading of shared libraries might have changed breakpoint
3774 addresses. Make sure new breakpoints are inserted. */
3775 if (stop_soon == NO_STOP_QUIETLY)
3776 insert_breakpoints ();
3777 resume (0, GDB_SIGNAL_0);
3778 prepare_to_wait (ecs);
3779 return;
3780 }
3781
3782 /* But stop if we're attaching or setting up a remote
3783 connection. */
3784 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3785 || stop_soon == STOP_QUIETLY_REMOTE)
3786 {
3787 if (debug_infrun)
3788 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3789 stop_waiting (ecs);
3790 return;
3791 }
3792
3793 internal_error (__FILE__, __LINE__,
3794 _("unhandled stop_soon: %d"), (int) stop_soon);
3795
3796 case TARGET_WAITKIND_SPURIOUS:
3797 if (debug_infrun)
3798 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3799 if (!ptid_equal (ecs->ptid, inferior_ptid))
3800 context_switch (ecs->ptid);
3801 resume (0, GDB_SIGNAL_0);
3802 prepare_to_wait (ecs);
3803 return;
3804
3805 case TARGET_WAITKIND_EXITED:
3806 case TARGET_WAITKIND_SIGNALLED:
3807 if (debug_infrun)
3808 {
3809 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3810 fprintf_unfiltered (gdb_stdlog,
3811 "infrun: TARGET_WAITKIND_EXITED\n");
3812 else
3813 fprintf_unfiltered (gdb_stdlog,
3814 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3815 }
3816
3817 inferior_ptid = ecs->ptid;
3818 set_current_inferior (find_inferior_ptid (ecs->ptid));
3819 set_current_program_space (current_inferior ()->pspace);
3820 handle_vfork_child_exec_or_exit (0);
3821 target_terminal_ours (); /* Must do this before mourn anyway. */
3822
3823 /* Clearing any previous state of convenience variables. */
3824 clear_exit_convenience_vars ();
3825
3826 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3827 {
3828 /* Record the exit code in the convenience variable $_exitcode, so
3829 that the user can inspect this again later. */
3830 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3831 (LONGEST) ecs->ws.value.integer);
3832
3833 /* Also record this in the inferior itself. */
3834 current_inferior ()->has_exit_code = 1;
3835 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3836
3837 /* Support the --return-child-result option. */
3838 return_child_result_value = ecs->ws.value.integer;
3839
3840 observer_notify_exited (ecs->ws.value.integer);
3841 }
3842 else
3843 {
3844 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3845 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3846
3847 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3848 {
3849 /* Set the value of the internal variable $_exitsignal,
3850 which holds the signal uncaught by the inferior. */
3851 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3852 gdbarch_gdb_signal_to_target (gdbarch,
3853 ecs->ws.value.sig));
3854 }
3855 else
3856 {
3857 /* We don't have access to the target's method used for
3858 converting between signal numbers (GDB's internal
3859 representation <-> target's representation).
3860 Therefore, we cannot do a good job at displaying this
3861 information to the user. It's better to just warn
3862 her about it (if infrun debugging is enabled), and
3863 give up. */
3864 if (debug_infrun)
3865 fprintf_filtered (gdb_stdlog, _("\
3866 Cannot fill $_exitsignal with the correct signal number.\n"));
3867 }
3868
3869 observer_notify_signal_exited (ecs->ws.value.sig);
3870 }
3871
3872 gdb_flush (gdb_stdout);
3873 target_mourn_inferior ();
3874 stop_print_frame = 0;
3875 stop_waiting (ecs);
3876 return;
3877
3878 /* The following are the only cases in which we keep going;
3879 the above cases end in a continue or goto. */
3880 case TARGET_WAITKIND_FORKED:
3881 case TARGET_WAITKIND_VFORKED:
3882 if (debug_infrun)
3883 {
3884 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3885 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3886 else
3887 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3888 }
3889
3890 /* Check whether the inferior is displaced stepping. */
3891 {
3892 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3893 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3894 struct displaced_step_inferior_state *displaced
3895 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3896
3897 /* If checking displaced stepping is supported, and thread
3898 ecs->ptid is displaced stepping. */
3899 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3900 {
3901 struct inferior *parent_inf
3902 = find_inferior_ptid (ecs->ptid);
3903 struct regcache *child_regcache;
3904 CORE_ADDR parent_pc;
3905
3906 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3907 indicating that the displaced stepping of syscall instruction
3908 has been done. Perform cleanup for parent process here. Note
3909 that this operation also cleans up the child process for vfork,
3910 because their pages are shared. */
3911 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3912
3913 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3914 {
3915 /* Restore scratch pad for child process. */
3916 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3917 }
3918
3919 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3920 the child's PC is also within the scratchpad. Set the child's PC
3921 to the parent's PC value, which has already been fixed up.
3922 FIXME: we use the parent's aspace here, although we're touching
3923 the child, because the child hasn't been added to the inferior
3924 list yet at this point. */
3925
3926 child_regcache
3927 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3928 gdbarch,
3929 parent_inf->aspace);
3930 /* Read PC value of parent process. */
3931 parent_pc = regcache_read_pc (regcache);
3932
3933 if (debug_displaced)
3934 fprintf_unfiltered (gdb_stdlog,
3935 "displaced: write child pc from %s to %s\n",
3936 paddress (gdbarch,
3937 regcache_read_pc (child_regcache)),
3938 paddress (gdbarch, parent_pc));
3939
3940 regcache_write_pc (child_regcache, parent_pc);
3941 }
3942 }
3943
3944 if (!ptid_equal (ecs->ptid, inferior_ptid))
3945 context_switch (ecs->ptid);
3946
3947 /* Immediately detach breakpoints from the child before there's
3948 any chance of letting the user delete breakpoints from the
3949 breakpoint lists. If we don't do this early, it's easy to
3950 leave left over traps in the child, vis: "break foo; catch
3951 fork; c; <fork>; del; c; <child calls foo>". We only follow
3952 the fork on the last `continue', and by that time the
3953 breakpoint at "foo" is long gone from the breakpoint table.
3954 If we vforked, then we don't need to unpatch here, since both
3955 parent and child are sharing the same memory pages; we'll
3956 need to unpatch at follow/detach time instead to be certain
3957 that new breakpoints added between catchpoint hit time and
3958 vfork follow are detached. */
3959 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3960 {
3961 /* This won't actually modify the breakpoint list, but will
3962 physically remove the breakpoints from the child. */
3963 detach_breakpoints (ecs->ws.value.related_pid);
3964 }
3965
3966 delete_just_stopped_threads_single_step_breakpoints ();
3967
3968 /* In case the event is caught by a catchpoint, remember that
3969 the event is to be followed at the next resume of the thread,
3970 and not immediately. */
3971 ecs->event_thread->pending_follow = ecs->ws;
3972
3973 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3974
3975 ecs->event_thread->control.stop_bpstat
3976 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3977 stop_pc, ecs->ptid, &ecs->ws);
3978
3979 /* If no catchpoint triggered for this, then keep going. Note
3980 that we're interested in knowing the bpstat actually causes a
3981 stop, not just if it may explain the signal. Software
3982 watchpoints, for example, always appear in the bpstat. */
3983 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3984 {
3985 ptid_t parent;
3986 ptid_t child;
3987 int should_resume;
3988 int follow_child
3989 = (follow_fork_mode_string == follow_fork_mode_child);
3990
3991 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3992
3993 should_resume = follow_fork ();
3994
3995 parent = ecs->ptid;
3996 child = ecs->ws.value.related_pid;
3997
3998 /* In non-stop mode, also resume the other branch. */
3999 if (non_stop && !detach_fork)
4000 {
4001 if (follow_child)
4002 switch_to_thread (parent);
4003 else
4004 switch_to_thread (child);
4005
4006 ecs->event_thread = inferior_thread ();
4007 ecs->ptid = inferior_ptid;
4008 keep_going (ecs);
4009 }
4010
4011 if (follow_child)
4012 switch_to_thread (child);
4013 else
4014 switch_to_thread (parent);
4015
4016 ecs->event_thread = inferior_thread ();
4017 ecs->ptid = inferior_ptid;
4018
4019 if (should_resume)
4020 keep_going (ecs);
4021 else
4022 stop_waiting (ecs);
4023 return;
4024 }
4025 process_event_stop_test (ecs);
4026 return;
4027
4028 case TARGET_WAITKIND_VFORK_DONE:
4029 /* Done with the shared memory region. Re-insert breakpoints in
4030 the parent, and keep going. */
4031
4032 if (debug_infrun)
4033 fprintf_unfiltered (gdb_stdlog,
4034 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
4035
4036 if (!ptid_equal (ecs->ptid, inferior_ptid))
4037 context_switch (ecs->ptid);
4038
4039 current_inferior ()->waiting_for_vfork_done = 0;
4040 current_inferior ()->pspace->breakpoints_not_allowed = 0;
4041 /* This also takes care of reinserting breakpoints in the
4042 previously locked inferior. */
4043 keep_going (ecs);
4044 return;
4045
4046 case TARGET_WAITKIND_EXECD:
4047 if (debug_infrun)
4048 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
4049
4050 if (!ptid_equal (ecs->ptid, inferior_ptid))
4051 context_switch (ecs->ptid);
4052
4053 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4054
4055 /* Do whatever is necessary to the parent branch of the vfork. */
4056 handle_vfork_child_exec_or_exit (1);
4057
4058 /* This causes the eventpoints and symbol table to be reset.
4059 Must do this now, before trying to determine whether to
4060 stop. */
4061 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
4062
4063 ecs->event_thread->control.stop_bpstat
4064 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4065 stop_pc, ecs->ptid, &ecs->ws);
4066
4067 /* Note that this may be referenced from inside
4068 bpstat_stop_status above, through inferior_has_execd. */
4069 xfree (ecs->ws.value.execd_pathname);
4070 ecs->ws.value.execd_pathname = NULL;
4071
4072 /* If no catchpoint triggered for this, then keep going. */
4073 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4074 {
4075 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4076 keep_going (ecs);
4077 return;
4078 }
4079 process_event_stop_test (ecs);
4080 return;
4081
4082 /* Be careful not to try to gather much state about a thread
4083 that's in a syscall. It's frequently a losing proposition. */
4084 case TARGET_WAITKIND_SYSCALL_ENTRY:
4085 if (debug_infrun)
4086 fprintf_unfiltered (gdb_stdlog,
4087 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
4088 /* Getting the current syscall number. */
4089 if (handle_syscall_event (ecs) == 0)
4090 process_event_stop_test (ecs);
4091 return;
4092
4093 /* Before examining the threads further, step this thread to
4094 get it entirely out of the syscall. (We get notice of the
4095 event when the thread is just on the verge of exiting a
4096 syscall. Stepping one instruction seems to get it back
4097 into user code.) */
4098 case TARGET_WAITKIND_SYSCALL_RETURN:
4099 if (debug_infrun)
4100 fprintf_unfiltered (gdb_stdlog,
4101 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
4102 if (handle_syscall_event (ecs) == 0)
4103 process_event_stop_test (ecs);
4104 return;
4105
4106 case TARGET_WAITKIND_STOPPED:
4107 if (debug_infrun)
4108 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4109 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4110 handle_signal_stop (ecs);
4111 return;
4112
4113 case TARGET_WAITKIND_NO_HISTORY:
4114 if (debug_infrun)
4115 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
4116 /* Reverse execution: target ran out of history info. */
4117
4118 delete_just_stopped_threads_single_step_breakpoints ();
4119 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4120 observer_notify_no_history ();
4121 stop_waiting (ecs);
4122 return;
4123 }
4124 }
4125
4126 /* Come here when the program has stopped with a signal. */
4127
4128 static void
4129 handle_signal_stop (struct execution_control_state *ecs)
4130 {
4131 struct frame_info *frame;
4132 struct gdbarch *gdbarch;
4133 int stopped_by_watchpoint;
4134 enum stop_kind stop_soon;
4135 int random_signal;
4136
4137 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
4138
4139 /* Do we need to clean up the state of a thread that has
4140 completed a displaced single-step? (Doing so usually affects
4141 the PC, so do it here, before we set stop_pc.) */
4142 displaced_step_fixup (ecs->ptid,
4143 ecs->event_thread->suspend.stop_signal);
4144
4145 /* If we either finished a single-step or hit a breakpoint, but
4146 the user wanted this thread to be stopped, pretend we got a
4147 SIG0 (generic unsignaled stop). */
4148 if (ecs->event_thread->stop_requested
4149 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4150 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4151
4152 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4153
4154 if (debug_infrun)
4155 {
4156 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4157 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4158 struct cleanup *old_chain = save_inferior_ptid ();
4159
4160 inferior_ptid = ecs->ptid;
4161
4162 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
4163 paddress (gdbarch, stop_pc));
4164 if (target_stopped_by_watchpoint ())
4165 {
4166 CORE_ADDR addr;
4167
4168 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
4169
4170 if (target_stopped_data_address (&current_target, &addr))
4171 fprintf_unfiltered (gdb_stdlog,
4172 "infrun: stopped data address = %s\n",
4173 paddress (gdbarch, addr));
4174 else
4175 fprintf_unfiltered (gdb_stdlog,
4176 "infrun: (no data address available)\n");
4177 }
4178
4179 do_cleanups (old_chain);
4180 }
4181
4182 /* This is originated from start_remote(), start_inferior() and
4183 shared libraries hook functions. */
4184 stop_soon = get_inferior_stop_soon (ecs->ptid);
4185 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4186 {
4187 if (!ptid_equal (ecs->ptid, inferior_ptid))
4188 context_switch (ecs->ptid);
4189 if (debug_infrun)
4190 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4191 stop_print_frame = 1;
4192 stop_waiting (ecs);
4193 return;
4194 }
4195
4196 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4197 && stop_after_trap)
4198 {
4199 if (!ptid_equal (ecs->ptid, inferior_ptid))
4200 context_switch (ecs->ptid);
4201 if (debug_infrun)
4202 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4203 stop_print_frame = 0;
4204 stop_waiting (ecs);
4205 return;
4206 }
4207
4208 /* This originates from attach_command(). We need to overwrite
4209 the stop_signal here, because some kernels don't ignore a
4210 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4211 See more comments in inferior.h. On the other hand, if we
4212 get a non-SIGSTOP, report it to the user - assume the backend
4213 will handle the SIGSTOP if it should show up later.
4214
4215 Also consider that the attach is complete when we see a
4216 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4217 target extended-remote report it instead of a SIGSTOP
4218 (e.g. gdbserver). We already rely on SIGTRAP being our
4219 signal, so this is no exception.
4220
4221 Also consider that the attach is complete when we see a
4222 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4223 the target to stop all threads of the inferior, in case the
4224 low level attach operation doesn't stop them implicitly. If
4225 they weren't stopped implicitly, then the stub will report a
4226 GDB_SIGNAL_0, meaning: stopped for no particular reason
4227 other than GDB's request. */
4228 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4229 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4230 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4231 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4232 {
4233 stop_print_frame = 1;
4234 stop_waiting (ecs);
4235 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4236 return;
4237 }
4238
4239 /* See if something interesting happened to the non-current thread. If
4240 so, then switch to that thread. */
4241 if (!ptid_equal (ecs->ptid, inferior_ptid))
4242 {
4243 if (debug_infrun)
4244 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
4245
4246 context_switch (ecs->ptid);
4247
4248 if (deprecated_context_hook)
4249 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
4250 }
4251
4252 /* At this point, get hold of the now-current thread's frame. */
4253 frame = get_current_frame ();
4254 gdbarch = get_frame_arch (frame);
4255
4256 /* Pull the single step breakpoints out of the target. */
4257 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4258 {
4259 struct regcache *regcache;
4260 struct address_space *aspace;
4261 CORE_ADDR pc;
4262
4263 regcache = get_thread_regcache (ecs->ptid);
4264 aspace = get_regcache_aspace (regcache);
4265 pc = regcache_read_pc (regcache);
4266
4267 /* However, before doing so, if this single-step breakpoint was
4268 actually for another thread, set this thread up for moving
4269 past it. */
4270 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
4271 aspace, pc))
4272 {
4273 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4274 {
4275 if (debug_infrun)
4276 {
4277 fprintf_unfiltered (gdb_stdlog,
4278 "infrun: [%s] hit another thread's "
4279 "single-step breakpoint\n",
4280 target_pid_to_str (ecs->ptid));
4281 }
4282 ecs->hit_singlestep_breakpoint = 1;
4283 }
4284 }
4285 else
4286 {
4287 if (debug_infrun)
4288 {
4289 fprintf_unfiltered (gdb_stdlog,
4290 "infrun: [%s] hit its "
4291 "single-step breakpoint\n",
4292 target_pid_to_str (ecs->ptid));
4293 }
4294 }
4295 }
4296 delete_just_stopped_threads_single_step_breakpoints ();
4297
4298 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4299 && ecs->event_thread->control.trap_expected
4300 && ecs->event_thread->stepping_over_watchpoint)
4301 stopped_by_watchpoint = 0;
4302 else
4303 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4304
4305 /* If necessary, step over this watchpoint. We'll be back to display
4306 it in a moment. */
4307 if (stopped_by_watchpoint
4308 && (target_have_steppable_watchpoint
4309 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4310 {
4311 /* At this point, we are stopped at an instruction which has
4312 attempted to write to a piece of memory under control of
4313 a watchpoint. The instruction hasn't actually executed
4314 yet. If we were to evaluate the watchpoint expression
4315 now, we would get the old value, and therefore no change
4316 would seem to have occurred.
4317
4318 In order to make watchpoints work `right', we really need
4319 to complete the memory write, and then evaluate the
4320 watchpoint expression. We do this by single-stepping the
4321 target.
4322
4323 It may not be necessary to disable the watchpoint to step over
4324 it. For example, the PA can (with some kernel cooperation)
4325 single step over a watchpoint without disabling the watchpoint.
4326
4327 It is far more common to need to disable a watchpoint to step
4328 the inferior over it. If we have non-steppable watchpoints,
4329 we must disable the current watchpoint; it's simplest to
4330 disable all watchpoints.
4331
4332 Any breakpoint at PC must also be stepped over -- if there's
4333 one, it will have already triggered before the watchpoint
4334 triggered, and we either already reported it to the user, or
4335 it didn't cause a stop and we called keep_going. In either
4336 case, if there was a breakpoint at PC, we must be trying to
4337 step past it. */
4338 ecs->event_thread->stepping_over_watchpoint = 1;
4339 keep_going (ecs);
4340 return;
4341 }
4342
4343 ecs->event_thread->stepping_over_breakpoint = 0;
4344 ecs->event_thread->stepping_over_watchpoint = 0;
4345 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4346 ecs->event_thread->control.stop_step = 0;
4347 stop_print_frame = 1;
4348 stopped_by_random_signal = 0;
4349
4350 /* Hide inlined functions starting here, unless we just performed stepi or
4351 nexti. After stepi and nexti, always show the innermost frame (not any
4352 inline function call sites). */
4353 if (ecs->event_thread->control.step_range_end != 1)
4354 {
4355 struct address_space *aspace =
4356 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4357
4358 /* skip_inline_frames is expensive, so we avoid it if we can
4359 determine that the address is one where functions cannot have
4360 been inlined. This improves performance with inferiors that
4361 load a lot of shared libraries, because the solib event
4362 breakpoint is defined as the address of a function (i.e. not
4363 inline). Note that we have to check the previous PC as well
4364 as the current one to catch cases when we have just
4365 single-stepped off a breakpoint prior to reinstating it.
4366 Note that we're assuming that the code we single-step to is
4367 not inline, but that's not definitive: there's nothing
4368 preventing the event breakpoint function from containing
4369 inlined code, and the single-step ending up there. If the
4370 user had set a breakpoint on that inlined code, the missing
4371 skip_inline_frames call would break things. Fortunately
4372 that's an extremely unlikely scenario. */
4373 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4374 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4375 && ecs->event_thread->control.trap_expected
4376 && pc_at_non_inline_function (aspace,
4377 ecs->event_thread->prev_pc,
4378 &ecs->ws)))
4379 {
4380 skip_inline_frames (ecs->ptid);
4381
4382 /* Re-fetch current thread's frame in case that invalidated
4383 the frame cache. */
4384 frame = get_current_frame ();
4385 gdbarch = get_frame_arch (frame);
4386 }
4387 }
4388
4389 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4390 && ecs->event_thread->control.trap_expected
4391 && gdbarch_single_step_through_delay_p (gdbarch)
4392 && currently_stepping (ecs->event_thread))
4393 {
4394 /* We're trying to step off a breakpoint. Turns out that we're
4395 also on an instruction that needs to be stepped multiple
4396 times before it's been fully executing. E.g., architectures
4397 with a delay slot. It needs to be stepped twice, once for
4398 the instruction and once for the delay slot. */
4399 int step_through_delay
4400 = gdbarch_single_step_through_delay (gdbarch, frame);
4401
4402 if (debug_infrun && step_through_delay)
4403 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4404 if (ecs->event_thread->control.step_range_end == 0
4405 && step_through_delay)
4406 {
4407 /* The user issued a continue when stopped at a breakpoint.
4408 Set up for another trap and get out of here. */
4409 ecs->event_thread->stepping_over_breakpoint = 1;
4410 keep_going (ecs);
4411 return;
4412 }
4413 else if (step_through_delay)
4414 {
4415 /* The user issued a step when stopped at a breakpoint.
4416 Maybe we should stop, maybe we should not - the delay
4417 slot *might* correspond to a line of source. In any
4418 case, don't decide that here, just set
4419 ecs->stepping_over_breakpoint, making sure we
4420 single-step again before breakpoints are re-inserted. */
4421 ecs->event_thread->stepping_over_breakpoint = 1;
4422 }
4423 }
4424
4425 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4426 handles this event. */
4427 ecs->event_thread->control.stop_bpstat
4428 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4429 stop_pc, ecs->ptid, &ecs->ws);
4430
4431 /* Following in case break condition called a
4432 function. */
4433 stop_print_frame = 1;
4434
4435 /* This is where we handle "moribund" watchpoints. Unlike
4436 software breakpoints traps, hardware watchpoint traps are
4437 always distinguishable from random traps. If no high-level
4438 watchpoint is associated with the reported stop data address
4439 anymore, then the bpstat does not explain the signal ---
4440 simply make sure to ignore it if `stopped_by_watchpoint' is
4441 set. */
4442
4443 if (debug_infrun
4444 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4445 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4446 GDB_SIGNAL_TRAP)
4447 && stopped_by_watchpoint)
4448 fprintf_unfiltered (gdb_stdlog,
4449 "infrun: no user watchpoint explains "
4450 "watchpoint SIGTRAP, ignoring\n");
4451
4452 /* NOTE: cagney/2003-03-29: These checks for a random signal
4453 at one stage in the past included checks for an inferior
4454 function call's call dummy's return breakpoint. The original
4455 comment, that went with the test, read:
4456
4457 ``End of a stack dummy. Some systems (e.g. Sony news) give
4458 another signal besides SIGTRAP, so check here as well as
4459 above.''
4460
4461 If someone ever tries to get call dummys on a
4462 non-executable stack to work (where the target would stop
4463 with something like a SIGSEGV), then those tests might need
4464 to be re-instated. Given, however, that the tests were only
4465 enabled when momentary breakpoints were not being used, I
4466 suspect that it won't be the case.
4467
4468 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4469 be necessary for call dummies on a non-executable stack on
4470 SPARC. */
4471
4472 /* See if the breakpoints module can explain the signal. */
4473 random_signal
4474 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4475 ecs->event_thread->suspend.stop_signal);
4476
4477 /* If not, perhaps stepping/nexting can. */
4478 if (random_signal)
4479 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4480 && currently_stepping (ecs->event_thread));
4481
4482 /* Perhaps the thread hit a single-step breakpoint of _another_
4483 thread. Single-step breakpoints are transparent to the
4484 breakpoints module. */
4485 if (random_signal)
4486 random_signal = !ecs->hit_singlestep_breakpoint;
4487
4488 /* No? Perhaps we got a moribund watchpoint. */
4489 if (random_signal)
4490 random_signal = !stopped_by_watchpoint;
4491
4492 /* For the program's own signals, act according to
4493 the signal handling tables. */
4494
4495 if (random_signal)
4496 {
4497 /* Signal not for debugging purposes. */
4498 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4499 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
4500
4501 if (debug_infrun)
4502 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4503 gdb_signal_to_symbol_string (stop_signal));
4504
4505 stopped_by_random_signal = 1;
4506
4507 /* Always stop on signals if we're either just gaining control
4508 of the program, or the user explicitly requested this thread
4509 to remain stopped. */
4510 if (stop_soon != NO_STOP_QUIETLY
4511 || ecs->event_thread->stop_requested
4512 || (!inf->detaching
4513 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4514 {
4515 stop_waiting (ecs);
4516 return;
4517 }
4518
4519 /* Notify observers the signal has "handle print" set. Note we
4520 returned early above if stopping; normal_stop handles the
4521 printing in that case. */
4522 if (signal_print[ecs->event_thread->suspend.stop_signal])
4523 {
4524 /* The signal table tells us to print about this signal. */
4525 target_terminal_ours_for_output ();
4526 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
4527 target_terminal_inferior ();
4528 }
4529
4530 /* Clear the signal if it should not be passed. */
4531 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4532 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4533
4534 if (ecs->event_thread->prev_pc == stop_pc
4535 && ecs->event_thread->control.trap_expected
4536 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4537 {
4538 /* We were just starting a new sequence, attempting to
4539 single-step off of a breakpoint and expecting a SIGTRAP.
4540 Instead this signal arrives. This signal will take us out
4541 of the stepping range so GDB needs to remember to, when
4542 the signal handler returns, resume stepping off that
4543 breakpoint. */
4544 /* To simplify things, "continue" is forced to use the same
4545 code paths as single-step - set a breakpoint at the
4546 signal return address and then, once hit, step off that
4547 breakpoint. */
4548 if (debug_infrun)
4549 fprintf_unfiltered (gdb_stdlog,
4550 "infrun: signal arrived while stepping over "
4551 "breakpoint\n");
4552
4553 insert_hp_step_resume_breakpoint_at_frame (frame);
4554 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4555 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4556 ecs->event_thread->control.trap_expected = 0;
4557
4558 /* If we were nexting/stepping some other thread, switch to
4559 it, so that we don't continue it, losing control. */
4560 if (!switch_back_to_stepped_thread (ecs))
4561 keep_going (ecs);
4562 return;
4563 }
4564
4565 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4566 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4567 || ecs->event_thread->control.step_range_end == 1)
4568 && frame_id_eq (get_stack_frame_id (frame),
4569 ecs->event_thread->control.step_stack_frame_id)
4570 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4571 {
4572 /* The inferior is about to take a signal that will take it
4573 out of the single step range. Set a breakpoint at the
4574 current PC (which is presumably where the signal handler
4575 will eventually return) and then allow the inferior to
4576 run free.
4577
4578 Note that this is only needed for a signal delivered
4579 while in the single-step range. Nested signals aren't a
4580 problem as they eventually all return. */
4581 if (debug_infrun)
4582 fprintf_unfiltered (gdb_stdlog,
4583 "infrun: signal may take us out of "
4584 "single-step range\n");
4585
4586 insert_hp_step_resume_breakpoint_at_frame (frame);
4587 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4588 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4589 ecs->event_thread->control.trap_expected = 0;
4590 keep_going (ecs);
4591 return;
4592 }
4593
4594 /* Note: step_resume_breakpoint may be non-NULL. This occures
4595 when either there's a nested signal, or when there's a
4596 pending signal enabled just as the signal handler returns
4597 (leaving the inferior at the step-resume-breakpoint without
4598 actually executing it). Either way continue until the
4599 breakpoint is really hit. */
4600
4601 if (!switch_back_to_stepped_thread (ecs))
4602 {
4603 if (debug_infrun)
4604 fprintf_unfiltered (gdb_stdlog,
4605 "infrun: random signal, keep going\n");
4606
4607 keep_going (ecs);
4608 }
4609 return;
4610 }
4611
4612 process_event_stop_test (ecs);
4613 }
4614
4615 /* Come here when we've got some debug event / signal we can explain
4616 (IOW, not a random signal), and test whether it should cause a
4617 stop, or whether we should resume the inferior (transparently).
4618 E.g., could be a breakpoint whose condition evaluates false; we
4619 could be still stepping within the line; etc. */
4620
4621 static void
4622 process_event_stop_test (struct execution_control_state *ecs)
4623 {
4624 struct symtab_and_line stop_pc_sal;
4625 struct frame_info *frame;
4626 struct gdbarch *gdbarch;
4627 CORE_ADDR jmp_buf_pc;
4628 struct bpstat_what what;
4629
4630 /* Handle cases caused by hitting a breakpoint. */
4631
4632 frame = get_current_frame ();
4633 gdbarch = get_frame_arch (frame);
4634
4635 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4636
4637 if (what.call_dummy)
4638 {
4639 stop_stack_dummy = what.call_dummy;
4640 }
4641
4642 /* If we hit an internal event that triggers symbol changes, the
4643 current frame will be invalidated within bpstat_what (e.g., if we
4644 hit an internal solib event). Re-fetch it. */
4645 frame = get_current_frame ();
4646 gdbarch = get_frame_arch (frame);
4647
4648 switch (what.main_action)
4649 {
4650 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4651 /* If we hit the breakpoint at longjmp while stepping, we
4652 install a momentary breakpoint at the target of the
4653 jmp_buf. */
4654
4655 if (debug_infrun)
4656 fprintf_unfiltered (gdb_stdlog,
4657 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4658
4659 ecs->event_thread->stepping_over_breakpoint = 1;
4660
4661 if (what.is_longjmp)
4662 {
4663 struct value *arg_value;
4664
4665 /* If we set the longjmp breakpoint via a SystemTap probe,
4666 then use it to extract the arguments. The destination PC
4667 is the third argument to the probe. */
4668 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4669 if (arg_value)
4670 {
4671 jmp_buf_pc = value_as_address (arg_value);
4672 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
4673 }
4674 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4675 || !gdbarch_get_longjmp_target (gdbarch,
4676 frame, &jmp_buf_pc))
4677 {
4678 if (debug_infrun)
4679 fprintf_unfiltered (gdb_stdlog,
4680 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4681 "(!gdbarch_get_longjmp_target)\n");
4682 keep_going (ecs);
4683 return;
4684 }
4685
4686 /* Insert a breakpoint at resume address. */
4687 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4688 }
4689 else
4690 check_exception_resume (ecs, frame);
4691 keep_going (ecs);
4692 return;
4693
4694 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4695 {
4696 struct frame_info *init_frame;
4697
4698 /* There are several cases to consider.
4699
4700 1. The initiating frame no longer exists. In this case we
4701 must stop, because the exception or longjmp has gone too
4702 far.
4703
4704 2. The initiating frame exists, and is the same as the
4705 current frame. We stop, because the exception or longjmp
4706 has been caught.
4707
4708 3. The initiating frame exists and is different from the
4709 current frame. This means the exception or longjmp has
4710 been caught beneath the initiating frame, so keep going.
4711
4712 4. longjmp breakpoint has been placed just to protect
4713 against stale dummy frames and user is not interested in
4714 stopping around longjmps. */
4715
4716 if (debug_infrun)
4717 fprintf_unfiltered (gdb_stdlog,
4718 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4719
4720 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4721 != NULL);
4722 delete_exception_resume_breakpoint (ecs->event_thread);
4723
4724 if (what.is_longjmp)
4725 {
4726 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
4727
4728 if (!frame_id_p (ecs->event_thread->initiating_frame))
4729 {
4730 /* Case 4. */
4731 keep_going (ecs);
4732 return;
4733 }
4734 }
4735
4736 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4737
4738 if (init_frame)
4739 {
4740 struct frame_id current_id
4741 = get_frame_id (get_current_frame ());
4742 if (frame_id_eq (current_id,
4743 ecs->event_thread->initiating_frame))
4744 {
4745 /* Case 2. Fall through. */
4746 }
4747 else
4748 {
4749 /* Case 3. */
4750 keep_going (ecs);
4751 return;
4752 }
4753 }
4754
4755 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4756 exists. */
4757 delete_step_resume_breakpoint (ecs->event_thread);
4758
4759 end_stepping_range (ecs);
4760 }
4761 return;
4762
4763 case BPSTAT_WHAT_SINGLE:
4764 if (debug_infrun)
4765 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4766 ecs->event_thread->stepping_over_breakpoint = 1;
4767 /* Still need to check other stuff, at least the case where we
4768 are stepping and step out of the right range. */
4769 break;
4770
4771 case BPSTAT_WHAT_STEP_RESUME:
4772 if (debug_infrun)
4773 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4774
4775 delete_step_resume_breakpoint (ecs->event_thread);
4776 if (ecs->event_thread->control.proceed_to_finish
4777 && execution_direction == EXEC_REVERSE)
4778 {
4779 struct thread_info *tp = ecs->event_thread;
4780
4781 /* We are finishing a function in reverse, and just hit the
4782 step-resume breakpoint at the start address of the
4783 function, and we're almost there -- just need to back up
4784 by one more single-step, which should take us back to the
4785 function call. */
4786 tp->control.step_range_start = tp->control.step_range_end = 1;
4787 keep_going (ecs);
4788 return;
4789 }
4790 fill_in_stop_func (gdbarch, ecs);
4791 if (stop_pc == ecs->stop_func_start
4792 && execution_direction == EXEC_REVERSE)
4793 {
4794 /* We are stepping over a function call in reverse, and just
4795 hit the step-resume breakpoint at the start address of
4796 the function. Go back to single-stepping, which should
4797 take us back to the function call. */
4798 ecs->event_thread->stepping_over_breakpoint = 1;
4799 keep_going (ecs);
4800 return;
4801 }
4802 break;
4803
4804 case BPSTAT_WHAT_STOP_NOISY:
4805 if (debug_infrun)
4806 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4807 stop_print_frame = 1;
4808
4809 /* Assume the thread stopped for a breapoint. We'll still check
4810 whether a/the breakpoint is there when the thread is next
4811 resumed. */
4812 ecs->event_thread->stepping_over_breakpoint = 1;
4813
4814 stop_waiting (ecs);
4815 return;
4816
4817 case BPSTAT_WHAT_STOP_SILENT:
4818 if (debug_infrun)
4819 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4820 stop_print_frame = 0;
4821
4822 /* Assume the thread stopped for a breapoint. We'll still check
4823 whether a/the breakpoint is there when the thread is next
4824 resumed. */
4825 ecs->event_thread->stepping_over_breakpoint = 1;
4826 stop_waiting (ecs);
4827 return;
4828
4829 case BPSTAT_WHAT_HP_STEP_RESUME:
4830 if (debug_infrun)
4831 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4832
4833 delete_step_resume_breakpoint (ecs->event_thread);
4834 if (ecs->event_thread->step_after_step_resume_breakpoint)
4835 {
4836 /* Back when the step-resume breakpoint was inserted, we
4837 were trying to single-step off a breakpoint. Go back to
4838 doing that. */
4839 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4840 ecs->event_thread->stepping_over_breakpoint = 1;
4841 keep_going (ecs);
4842 return;
4843 }
4844 break;
4845
4846 case BPSTAT_WHAT_KEEP_CHECKING:
4847 break;
4848 }
4849
4850 /* If we stepped a permanent breakpoint and we had a high priority
4851 step-resume breakpoint for the address we stepped, but we didn't
4852 hit it, then we must have stepped into the signal handler. The
4853 step-resume was only necessary to catch the case of _not_
4854 stepping into the handler, so delete it, and fall through to
4855 checking whether the step finished. */
4856 if (ecs->event_thread->stepped_breakpoint)
4857 {
4858 struct breakpoint *sr_bp
4859 = ecs->event_thread->control.step_resume_breakpoint;
4860
4861 if (sr_bp->loc->permanent
4862 && sr_bp->type == bp_hp_step_resume
4863 && sr_bp->loc->address == ecs->event_thread->prev_pc)
4864 {
4865 if (debug_infrun)
4866 fprintf_unfiltered (gdb_stdlog,
4867 "infrun: stepped permanent breakpoint, stopped in "
4868 "handler\n");
4869 delete_step_resume_breakpoint (ecs->event_thread);
4870 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4871 }
4872 }
4873
4874 /* We come here if we hit a breakpoint but should not stop for it.
4875 Possibly we also were stepping and should stop for that. So fall
4876 through and test for stepping. But, if not stepping, do not
4877 stop. */
4878
4879 /* In all-stop mode, if we're currently stepping but have stopped in
4880 some other thread, we need to switch back to the stepped thread. */
4881 if (switch_back_to_stepped_thread (ecs))
4882 return;
4883
4884 if (ecs->event_thread->control.step_resume_breakpoint)
4885 {
4886 if (debug_infrun)
4887 fprintf_unfiltered (gdb_stdlog,
4888 "infrun: step-resume breakpoint is inserted\n");
4889
4890 /* Having a step-resume breakpoint overrides anything
4891 else having to do with stepping commands until
4892 that breakpoint is reached. */
4893 keep_going (ecs);
4894 return;
4895 }
4896
4897 if (ecs->event_thread->control.step_range_end == 0)
4898 {
4899 if (debug_infrun)
4900 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4901 /* Likewise if we aren't even stepping. */
4902 keep_going (ecs);
4903 return;
4904 }
4905
4906 /* Re-fetch current thread's frame in case the code above caused
4907 the frame cache to be re-initialized, making our FRAME variable
4908 a dangling pointer. */
4909 frame = get_current_frame ();
4910 gdbarch = get_frame_arch (frame);
4911 fill_in_stop_func (gdbarch, ecs);
4912
4913 /* If stepping through a line, keep going if still within it.
4914
4915 Note that step_range_end is the address of the first instruction
4916 beyond the step range, and NOT the address of the last instruction
4917 within it!
4918
4919 Note also that during reverse execution, we may be stepping
4920 through a function epilogue and therefore must detect when
4921 the current-frame changes in the middle of a line. */
4922
4923 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4924 && (execution_direction != EXEC_REVERSE
4925 || frame_id_eq (get_frame_id (frame),
4926 ecs->event_thread->control.step_frame_id)))
4927 {
4928 if (debug_infrun)
4929 fprintf_unfiltered
4930 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4931 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4932 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4933
4934 /* Tentatively re-enable range stepping; `resume' disables it if
4935 necessary (e.g., if we're stepping over a breakpoint or we
4936 have software watchpoints). */
4937 ecs->event_thread->control.may_range_step = 1;
4938
4939 /* When stepping backward, stop at beginning of line range
4940 (unless it's the function entry point, in which case
4941 keep going back to the call point). */
4942 if (stop_pc == ecs->event_thread->control.step_range_start
4943 && stop_pc != ecs->stop_func_start
4944 && execution_direction == EXEC_REVERSE)
4945 end_stepping_range (ecs);
4946 else
4947 keep_going (ecs);
4948
4949 return;
4950 }
4951
4952 /* We stepped out of the stepping range. */
4953
4954 /* If we are stepping at the source level and entered the runtime
4955 loader dynamic symbol resolution code...
4956
4957 EXEC_FORWARD: we keep on single stepping until we exit the run
4958 time loader code and reach the callee's address.
4959
4960 EXEC_REVERSE: we've already executed the callee (backward), and
4961 the runtime loader code is handled just like any other
4962 undebuggable function call. Now we need only keep stepping
4963 backward through the trampoline code, and that's handled further
4964 down, so there is nothing for us to do here. */
4965
4966 if (execution_direction != EXEC_REVERSE
4967 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4968 && in_solib_dynsym_resolve_code (stop_pc))
4969 {
4970 CORE_ADDR pc_after_resolver =
4971 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4972
4973 if (debug_infrun)
4974 fprintf_unfiltered (gdb_stdlog,
4975 "infrun: stepped into dynsym resolve code\n");
4976
4977 if (pc_after_resolver)
4978 {
4979 /* Set up a step-resume breakpoint at the address
4980 indicated by SKIP_SOLIB_RESOLVER. */
4981 struct symtab_and_line sr_sal;
4982
4983 init_sal (&sr_sal);
4984 sr_sal.pc = pc_after_resolver;
4985 sr_sal.pspace = get_frame_program_space (frame);
4986
4987 insert_step_resume_breakpoint_at_sal (gdbarch,
4988 sr_sal, null_frame_id);
4989 }
4990
4991 keep_going (ecs);
4992 return;
4993 }
4994
4995 if (ecs->event_thread->control.step_range_end != 1
4996 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4997 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4998 && get_frame_type (frame) == SIGTRAMP_FRAME)
4999 {
5000 if (debug_infrun)
5001 fprintf_unfiltered (gdb_stdlog,
5002 "infrun: stepped into signal trampoline\n");
5003 /* The inferior, while doing a "step" or "next", has ended up in
5004 a signal trampoline (either by a signal being delivered or by
5005 the signal handler returning). Just single-step until the
5006 inferior leaves the trampoline (either by calling the handler
5007 or returning). */
5008 keep_going (ecs);
5009 return;
5010 }
5011
5012 /* If we're in the return path from a shared library trampoline,
5013 we want to proceed through the trampoline when stepping. */
5014 /* macro/2012-04-25: This needs to come before the subroutine
5015 call check below as on some targets return trampolines look
5016 like subroutine calls (MIPS16 return thunks). */
5017 if (gdbarch_in_solib_return_trampoline (gdbarch,
5018 stop_pc, ecs->stop_func_name)
5019 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5020 {
5021 /* Determine where this trampoline returns. */
5022 CORE_ADDR real_stop_pc;
5023
5024 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5025
5026 if (debug_infrun)
5027 fprintf_unfiltered (gdb_stdlog,
5028 "infrun: stepped into solib return tramp\n");
5029
5030 /* Only proceed through if we know where it's going. */
5031 if (real_stop_pc)
5032 {
5033 /* And put the step-breakpoint there and go until there. */
5034 struct symtab_and_line sr_sal;
5035
5036 init_sal (&sr_sal); /* initialize to zeroes */
5037 sr_sal.pc = real_stop_pc;
5038 sr_sal.section = find_pc_overlay (sr_sal.pc);
5039 sr_sal.pspace = get_frame_program_space (frame);
5040
5041 /* Do not specify what the fp should be when we stop since
5042 on some machines the prologue is where the new fp value
5043 is established. */
5044 insert_step_resume_breakpoint_at_sal (gdbarch,
5045 sr_sal, null_frame_id);
5046
5047 /* Restart without fiddling with the step ranges or
5048 other state. */
5049 keep_going (ecs);
5050 return;
5051 }
5052 }
5053
5054 /* Check for subroutine calls. The check for the current frame
5055 equalling the step ID is not necessary - the check of the
5056 previous frame's ID is sufficient - but it is a common case and
5057 cheaper than checking the previous frame's ID.
5058
5059 NOTE: frame_id_eq will never report two invalid frame IDs as
5060 being equal, so to get into this block, both the current and
5061 previous frame must have valid frame IDs. */
5062 /* The outer_frame_id check is a heuristic to detect stepping
5063 through startup code. If we step over an instruction which
5064 sets the stack pointer from an invalid value to a valid value,
5065 we may detect that as a subroutine call from the mythical
5066 "outermost" function. This could be fixed by marking
5067 outermost frames as !stack_p,code_p,special_p. Then the
5068 initial outermost frame, before sp was valid, would
5069 have code_addr == &_start. See the comment in frame_id_eq
5070 for more. */
5071 if (!frame_id_eq (get_stack_frame_id (frame),
5072 ecs->event_thread->control.step_stack_frame_id)
5073 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
5074 ecs->event_thread->control.step_stack_frame_id)
5075 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
5076 outer_frame_id)
5077 || step_start_function != find_pc_function (stop_pc))))
5078 {
5079 CORE_ADDR real_stop_pc;
5080
5081 if (debug_infrun)
5082 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
5083
5084 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
5085 {
5086 /* I presume that step_over_calls is only 0 when we're
5087 supposed to be stepping at the assembly language level
5088 ("stepi"). Just stop. */
5089 /* And this works the same backward as frontward. MVS */
5090 end_stepping_range (ecs);
5091 return;
5092 }
5093
5094 /* Reverse stepping through solib trampolines. */
5095
5096 if (execution_direction == EXEC_REVERSE
5097 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
5098 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5099 || (ecs->stop_func_start == 0
5100 && in_solib_dynsym_resolve_code (stop_pc))))
5101 {
5102 /* Any solib trampoline code can be handled in reverse
5103 by simply continuing to single-step. We have already
5104 executed the solib function (backwards), and a few
5105 steps will take us back through the trampoline to the
5106 caller. */
5107 keep_going (ecs);
5108 return;
5109 }
5110
5111 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5112 {
5113 /* We're doing a "next".
5114
5115 Normal (forward) execution: set a breakpoint at the
5116 callee's return address (the address at which the caller
5117 will resume).
5118
5119 Reverse (backward) execution. set the step-resume
5120 breakpoint at the start of the function that we just
5121 stepped into (backwards), and continue to there. When we
5122 get there, we'll need to single-step back to the caller. */
5123
5124 if (execution_direction == EXEC_REVERSE)
5125 {
5126 /* If we're already at the start of the function, we've either
5127 just stepped backward into a single instruction function,
5128 or stepped back out of a signal handler to the first instruction
5129 of the function. Just keep going, which will single-step back
5130 to the caller. */
5131 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
5132 {
5133 struct symtab_and_line sr_sal;
5134
5135 /* Normal function call return (static or dynamic). */
5136 init_sal (&sr_sal);
5137 sr_sal.pc = ecs->stop_func_start;
5138 sr_sal.pspace = get_frame_program_space (frame);
5139 insert_step_resume_breakpoint_at_sal (gdbarch,
5140 sr_sal, null_frame_id);
5141 }
5142 }
5143 else
5144 insert_step_resume_breakpoint_at_caller (frame);
5145
5146 keep_going (ecs);
5147 return;
5148 }
5149
5150 /* If we are in a function call trampoline (a stub between the
5151 calling routine and the real function), locate the real
5152 function. That's what tells us (a) whether we want to step
5153 into it at all, and (b) what prologue we want to run to the
5154 end of, if we do step into it. */
5155 real_stop_pc = skip_language_trampoline (frame, stop_pc);
5156 if (real_stop_pc == 0)
5157 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5158 if (real_stop_pc != 0)
5159 ecs->stop_func_start = real_stop_pc;
5160
5161 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
5162 {
5163 struct symtab_and_line sr_sal;
5164
5165 init_sal (&sr_sal);
5166 sr_sal.pc = ecs->stop_func_start;
5167 sr_sal.pspace = get_frame_program_space (frame);
5168
5169 insert_step_resume_breakpoint_at_sal (gdbarch,
5170 sr_sal, null_frame_id);
5171 keep_going (ecs);
5172 return;
5173 }
5174
5175 /* If we have line number information for the function we are
5176 thinking of stepping into and the function isn't on the skip
5177 list, step into it.
5178
5179 If there are several symtabs at that PC (e.g. with include
5180 files), just want to know whether *any* of them have line
5181 numbers. find_pc_line handles this. */
5182 {
5183 struct symtab_and_line tmp_sal;
5184
5185 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
5186 if (tmp_sal.line != 0
5187 && !function_name_is_marked_for_skip (ecs->stop_func_name,
5188 &tmp_sal))
5189 {
5190 if (execution_direction == EXEC_REVERSE)
5191 handle_step_into_function_backward (gdbarch, ecs);
5192 else
5193 handle_step_into_function (gdbarch, ecs);
5194 return;
5195 }
5196 }
5197
5198 /* If we have no line number and the step-stop-if-no-debug is
5199 set, we stop the step so that the user has a chance to switch
5200 in assembly mode. */
5201 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5202 && step_stop_if_no_debug)
5203 {
5204 end_stepping_range (ecs);
5205 return;
5206 }
5207
5208 if (execution_direction == EXEC_REVERSE)
5209 {
5210 /* If we're already at the start of the function, we've either just
5211 stepped backward into a single instruction function without line
5212 number info, or stepped back out of a signal handler to the first
5213 instruction of the function without line number info. Just keep
5214 going, which will single-step back to the caller. */
5215 if (ecs->stop_func_start != stop_pc)
5216 {
5217 /* Set a breakpoint at callee's start address.
5218 From there we can step once and be back in the caller. */
5219 struct symtab_and_line sr_sal;
5220
5221 init_sal (&sr_sal);
5222 sr_sal.pc = ecs->stop_func_start;
5223 sr_sal.pspace = get_frame_program_space (frame);
5224 insert_step_resume_breakpoint_at_sal (gdbarch,
5225 sr_sal, null_frame_id);
5226 }
5227 }
5228 else
5229 /* Set a breakpoint at callee's return address (the address
5230 at which the caller will resume). */
5231 insert_step_resume_breakpoint_at_caller (frame);
5232
5233 keep_going (ecs);
5234 return;
5235 }
5236
5237 /* Reverse stepping through solib trampolines. */
5238
5239 if (execution_direction == EXEC_REVERSE
5240 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5241 {
5242 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5243 || (ecs->stop_func_start == 0
5244 && in_solib_dynsym_resolve_code (stop_pc)))
5245 {
5246 /* Any solib trampoline code can be handled in reverse
5247 by simply continuing to single-step. We have already
5248 executed the solib function (backwards), and a few
5249 steps will take us back through the trampoline to the
5250 caller. */
5251 keep_going (ecs);
5252 return;
5253 }
5254 else if (in_solib_dynsym_resolve_code (stop_pc))
5255 {
5256 /* Stepped backward into the solib dynsym resolver.
5257 Set a breakpoint at its start and continue, then
5258 one more step will take us out. */
5259 struct symtab_and_line sr_sal;
5260
5261 init_sal (&sr_sal);
5262 sr_sal.pc = ecs->stop_func_start;
5263 sr_sal.pspace = get_frame_program_space (frame);
5264 insert_step_resume_breakpoint_at_sal (gdbarch,
5265 sr_sal, null_frame_id);
5266 keep_going (ecs);
5267 return;
5268 }
5269 }
5270
5271 stop_pc_sal = find_pc_line (stop_pc, 0);
5272
5273 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5274 the trampoline processing logic, however, there are some trampolines
5275 that have no names, so we should do trampoline handling first. */
5276 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5277 && ecs->stop_func_name == NULL
5278 && stop_pc_sal.line == 0)
5279 {
5280 if (debug_infrun)
5281 fprintf_unfiltered (gdb_stdlog,
5282 "infrun: stepped into undebuggable function\n");
5283
5284 /* The inferior just stepped into, or returned to, an
5285 undebuggable function (where there is no debugging information
5286 and no line number corresponding to the address where the
5287 inferior stopped). Since we want to skip this kind of code,
5288 we keep going until the inferior returns from this
5289 function - unless the user has asked us not to (via
5290 set step-mode) or we no longer know how to get back
5291 to the call site. */
5292 if (step_stop_if_no_debug
5293 || !frame_id_p (frame_unwind_caller_id (frame)))
5294 {
5295 /* If we have no line number and the step-stop-if-no-debug
5296 is set, we stop the step so that the user has a chance to
5297 switch in assembly mode. */
5298 end_stepping_range (ecs);
5299 return;
5300 }
5301 else
5302 {
5303 /* Set a breakpoint at callee's return address (the address
5304 at which the caller will resume). */
5305 insert_step_resume_breakpoint_at_caller (frame);
5306 keep_going (ecs);
5307 return;
5308 }
5309 }
5310
5311 if (ecs->event_thread->control.step_range_end == 1)
5312 {
5313 /* It is stepi or nexti. We always want to stop stepping after
5314 one instruction. */
5315 if (debug_infrun)
5316 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5317 end_stepping_range (ecs);
5318 return;
5319 }
5320
5321 if (stop_pc_sal.line == 0)
5322 {
5323 /* We have no line number information. That means to stop
5324 stepping (does this always happen right after one instruction,
5325 when we do "s" in a function with no line numbers,
5326 or can this happen as a result of a return or longjmp?). */
5327 if (debug_infrun)
5328 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5329 end_stepping_range (ecs);
5330 return;
5331 }
5332
5333 /* Look for "calls" to inlined functions, part one. If the inline
5334 frame machinery detected some skipped call sites, we have entered
5335 a new inline function. */
5336
5337 if (frame_id_eq (get_frame_id (get_current_frame ()),
5338 ecs->event_thread->control.step_frame_id)
5339 && inline_skipped_frames (ecs->ptid))
5340 {
5341 struct symtab_and_line call_sal;
5342
5343 if (debug_infrun)
5344 fprintf_unfiltered (gdb_stdlog,
5345 "infrun: stepped into inlined function\n");
5346
5347 find_frame_sal (get_current_frame (), &call_sal);
5348
5349 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5350 {
5351 /* For "step", we're going to stop. But if the call site
5352 for this inlined function is on the same source line as
5353 we were previously stepping, go down into the function
5354 first. Otherwise stop at the call site. */
5355
5356 if (call_sal.line == ecs->event_thread->current_line
5357 && call_sal.symtab == ecs->event_thread->current_symtab)
5358 step_into_inline_frame (ecs->ptid);
5359
5360 end_stepping_range (ecs);
5361 return;
5362 }
5363 else
5364 {
5365 /* For "next", we should stop at the call site if it is on a
5366 different source line. Otherwise continue through the
5367 inlined function. */
5368 if (call_sal.line == ecs->event_thread->current_line
5369 && call_sal.symtab == ecs->event_thread->current_symtab)
5370 keep_going (ecs);
5371 else
5372 end_stepping_range (ecs);
5373 return;
5374 }
5375 }
5376
5377 /* Look for "calls" to inlined functions, part two. If we are still
5378 in the same real function we were stepping through, but we have
5379 to go further up to find the exact frame ID, we are stepping
5380 through a more inlined call beyond its call site. */
5381
5382 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5383 && !frame_id_eq (get_frame_id (get_current_frame ()),
5384 ecs->event_thread->control.step_frame_id)
5385 && stepped_in_from (get_current_frame (),
5386 ecs->event_thread->control.step_frame_id))
5387 {
5388 if (debug_infrun)
5389 fprintf_unfiltered (gdb_stdlog,
5390 "infrun: stepping through inlined function\n");
5391
5392 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5393 keep_going (ecs);
5394 else
5395 end_stepping_range (ecs);
5396 return;
5397 }
5398
5399 if ((stop_pc == stop_pc_sal.pc)
5400 && (ecs->event_thread->current_line != stop_pc_sal.line
5401 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5402 {
5403 /* We are at the start of a different line. So stop. Note that
5404 we don't stop if we step into the middle of a different line.
5405 That is said to make things like for (;;) statements work
5406 better. */
5407 if (debug_infrun)
5408 fprintf_unfiltered (gdb_stdlog,
5409 "infrun: stepped to a different line\n");
5410 end_stepping_range (ecs);
5411 return;
5412 }
5413
5414 /* We aren't done stepping.
5415
5416 Optimize by setting the stepping range to the line.
5417 (We might not be in the original line, but if we entered a
5418 new line in mid-statement, we continue stepping. This makes
5419 things like for(;;) statements work better.) */
5420
5421 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5422 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5423 ecs->event_thread->control.may_range_step = 1;
5424 set_step_info (frame, stop_pc_sal);
5425
5426 if (debug_infrun)
5427 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5428 keep_going (ecs);
5429 }
5430
5431 /* In all-stop mode, if we're currently stepping but have stopped in
5432 some other thread, we may need to switch back to the stepped
5433 thread. Returns true we set the inferior running, false if we left
5434 it stopped (and the event needs further processing). */
5435
5436 static int
5437 switch_back_to_stepped_thread (struct execution_control_state *ecs)
5438 {
5439 if (!non_stop)
5440 {
5441 struct thread_info *tp;
5442 struct thread_info *stepping_thread;
5443 struct thread_info *step_over;
5444
5445 /* If any thread is blocked on some internal breakpoint, and we
5446 simply need to step over that breakpoint to get it going
5447 again, do that first. */
5448
5449 /* However, if we see an event for the stepping thread, then we
5450 know all other threads have been moved past their breakpoints
5451 already. Let the caller check whether the step is finished,
5452 etc., before deciding to move it past a breakpoint. */
5453 if (ecs->event_thread->control.step_range_end != 0)
5454 return 0;
5455
5456 /* Check if the current thread is blocked on an incomplete
5457 step-over, interrupted by a random signal. */
5458 if (ecs->event_thread->control.trap_expected
5459 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5460 {
5461 if (debug_infrun)
5462 {
5463 fprintf_unfiltered (gdb_stdlog,
5464 "infrun: need to finish step-over of [%s]\n",
5465 target_pid_to_str (ecs->event_thread->ptid));
5466 }
5467 keep_going (ecs);
5468 return 1;
5469 }
5470
5471 /* Check if the current thread is blocked by a single-step
5472 breakpoint of another thread. */
5473 if (ecs->hit_singlestep_breakpoint)
5474 {
5475 if (debug_infrun)
5476 {
5477 fprintf_unfiltered (gdb_stdlog,
5478 "infrun: need to step [%s] over single-step "
5479 "breakpoint\n",
5480 target_pid_to_str (ecs->ptid));
5481 }
5482 keep_going (ecs);
5483 return 1;
5484 }
5485
5486 /* Otherwise, we no longer expect a trap in the current thread.
5487 Clear the trap_expected flag before switching back -- this is
5488 what keep_going does as well, if we call it. */
5489 ecs->event_thread->control.trap_expected = 0;
5490
5491 /* Likewise, clear the signal if it should not be passed. */
5492 if (!signal_program[ecs->event_thread->suspend.stop_signal])
5493 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5494
5495 /* If scheduler locking applies even if not stepping, there's no
5496 need to walk over threads. Above we've checked whether the
5497 current thread is stepping. If some other thread not the
5498 event thread is stepping, then it must be that scheduler
5499 locking is not in effect. */
5500 if (schedlock_applies (0))
5501 return 0;
5502
5503 /* Look for the stepping/nexting thread, and check if any other
5504 thread other than the stepping thread needs to start a
5505 step-over. Do all step-overs before actually proceeding with
5506 step/next/etc. */
5507 stepping_thread = NULL;
5508 step_over = NULL;
5509 ALL_NON_EXITED_THREADS (tp)
5510 {
5511 /* Ignore threads of processes we're not resuming. */
5512 if (!sched_multi
5513 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
5514 continue;
5515
5516 /* When stepping over a breakpoint, we lock all threads
5517 except the one that needs to move past the breakpoint.
5518 If a non-event thread has this set, the "incomplete
5519 step-over" check above should have caught it earlier. */
5520 gdb_assert (!tp->control.trap_expected);
5521
5522 /* Did we find the stepping thread? */
5523 if (tp->control.step_range_end)
5524 {
5525 /* Yep. There should only one though. */
5526 gdb_assert (stepping_thread == NULL);
5527
5528 /* The event thread is handled at the top, before we
5529 enter this loop. */
5530 gdb_assert (tp != ecs->event_thread);
5531
5532 /* If some thread other than the event thread is
5533 stepping, then scheduler locking can't be in effect,
5534 otherwise we wouldn't have resumed the current event
5535 thread in the first place. */
5536 gdb_assert (!schedlock_applies (currently_stepping (tp)));
5537
5538 stepping_thread = tp;
5539 }
5540 else if (thread_still_needs_step_over (tp))
5541 {
5542 step_over = tp;
5543
5544 /* At the top we've returned early if the event thread
5545 is stepping. If some other thread not the event
5546 thread is stepping, then scheduler locking can't be
5547 in effect, and we can resume this thread. No need to
5548 keep looking for the stepping thread then. */
5549 break;
5550 }
5551 }
5552
5553 if (step_over != NULL)
5554 {
5555 tp = step_over;
5556 if (debug_infrun)
5557 {
5558 fprintf_unfiltered (gdb_stdlog,
5559 "infrun: need to step-over [%s]\n",
5560 target_pid_to_str (tp->ptid));
5561 }
5562
5563 /* Only the stepping thread should have this set. */
5564 gdb_assert (tp->control.step_range_end == 0);
5565
5566 ecs->ptid = tp->ptid;
5567 ecs->event_thread = tp;
5568 switch_to_thread (ecs->ptid);
5569 keep_going (ecs);
5570 return 1;
5571 }
5572
5573 if (stepping_thread != NULL)
5574 {
5575 struct frame_info *frame;
5576 struct gdbarch *gdbarch;
5577
5578 tp = stepping_thread;
5579
5580 /* If the stepping thread exited, then don't try to switch
5581 back and resume it, which could fail in several different
5582 ways depending on the target. Instead, just keep going.
5583
5584 We can find a stepping dead thread in the thread list in
5585 two cases:
5586
5587 - The target supports thread exit events, and when the
5588 target tries to delete the thread from the thread list,
5589 inferior_ptid pointed at the exiting thread. In such
5590 case, calling delete_thread does not really remove the
5591 thread from the list; instead, the thread is left listed,
5592 with 'exited' state.
5593
5594 - The target's debug interface does not support thread
5595 exit events, and so we have no idea whatsoever if the
5596 previously stepping thread is still alive. For that
5597 reason, we need to synchronously query the target
5598 now. */
5599 if (is_exited (tp->ptid)
5600 || !target_thread_alive (tp->ptid))
5601 {
5602 if (debug_infrun)
5603 fprintf_unfiltered (gdb_stdlog,
5604 "infrun: not switching back to "
5605 "stepped thread, it has vanished\n");
5606
5607 delete_thread (tp->ptid);
5608 keep_going (ecs);
5609 return 1;
5610 }
5611
5612 if (debug_infrun)
5613 fprintf_unfiltered (gdb_stdlog,
5614 "infrun: switching back to stepped thread\n");
5615
5616 ecs->event_thread = tp;
5617 ecs->ptid = tp->ptid;
5618 context_switch (ecs->ptid);
5619
5620 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5621 frame = get_current_frame ();
5622 gdbarch = get_frame_arch (frame);
5623
5624 /* If the PC of the thread we were trying to single-step has
5625 changed, then that thread has trapped or been signaled,
5626 but the event has not been reported to GDB yet. Re-poll
5627 the target looking for this particular thread's event
5628 (i.e. temporarily enable schedlock) by:
5629
5630 - setting a break at the current PC
5631 - resuming that particular thread, only (by setting
5632 trap expected)
5633
5634 This prevents us continuously moving the single-step
5635 breakpoint forward, one instruction at a time,
5636 overstepping. */
5637
5638 if (stop_pc != tp->prev_pc)
5639 {
5640 if (debug_infrun)
5641 fprintf_unfiltered (gdb_stdlog,
5642 "infrun: expected thread advanced also\n");
5643
5644 /* Clear the info of the previous step-over, as it's no
5645 longer valid. It's what keep_going would do too, if
5646 we called it. Must do this before trying to insert
5647 the sss breakpoint, otherwise if we were previously
5648 trying to step over this exact address in another
5649 thread, the breakpoint ends up not installed. */
5650 clear_step_over_info ();
5651
5652 insert_single_step_breakpoint (get_frame_arch (frame),
5653 get_frame_address_space (frame),
5654 stop_pc);
5655 ecs->event_thread->control.trap_expected = 1;
5656
5657 resume (0, GDB_SIGNAL_0);
5658 prepare_to_wait (ecs);
5659 }
5660 else
5661 {
5662 if (debug_infrun)
5663 fprintf_unfiltered (gdb_stdlog,
5664 "infrun: expected thread still "
5665 "hasn't advanced\n");
5666 keep_going (ecs);
5667 }
5668
5669 return 1;
5670 }
5671 }
5672 return 0;
5673 }
5674
5675 /* Is thread TP in the middle of single-stepping? */
5676
5677 static int
5678 currently_stepping (struct thread_info *tp)
5679 {
5680 return ((tp->control.step_range_end
5681 && tp->control.step_resume_breakpoint == NULL)
5682 || tp->control.trap_expected
5683 || tp->stepped_breakpoint
5684 || bpstat_should_step ());
5685 }
5686
5687 /* Inferior has stepped into a subroutine call with source code that
5688 we should not step over. Do step to the first line of code in
5689 it. */
5690
5691 static void
5692 handle_step_into_function (struct gdbarch *gdbarch,
5693 struct execution_control_state *ecs)
5694 {
5695 struct compunit_symtab *cust;
5696 struct symtab_and_line stop_func_sal, sr_sal;
5697
5698 fill_in_stop_func (gdbarch, ecs);
5699
5700 cust = find_pc_compunit_symtab (stop_pc);
5701 if (cust != NULL && compunit_language (cust) != language_asm)
5702 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5703 ecs->stop_func_start);
5704
5705 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5706 /* Use the step_resume_break to step until the end of the prologue,
5707 even if that involves jumps (as it seems to on the vax under
5708 4.2). */
5709 /* If the prologue ends in the middle of a source line, continue to
5710 the end of that source line (if it is still within the function).
5711 Otherwise, just go to end of prologue. */
5712 if (stop_func_sal.end
5713 && stop_func_sal.pc != ecs->stop_func_start
5714 && stop_func_sal.end < ecs->stop_func_end)
5715 ecs->stop_func_start = stop_func_sal.end;
5716
5717 /* Architectures which require breakpoint adjustment might not be able
5718 to place a breakpoint at the computed address. If so, the test
5719 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5720 ecs->stop_func_start to an address at which a breakpoint may be
5721 legitimately placed.
5722
5723 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5724 made, GDB will enter an infinite loop when stepping through
5725 optimized code consisting of VLIW instructions which contain
5726 subinstructions corresponding to different source lines. On
5727 FR-V, it's not permitted to place a breakpoint on any but the
5728 first subinstruction of a VLIW instruction. When a breakpoint is
5729 set, GDB will adjust the breakpoint address to the beginning of
5730 the VLIW instruction. Thus, we need to make the corresponding
5731 adjustment here when computing the stop address. */
5732
5733 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5734 {
5735 ecs->stop_func_start
5736 = gdbarch_adjust_breakpoint_address (gdbarch,
5737 ecs->stop_func_start);
5738 }
5739
5740 if (ecs->stop_func_start == stop_pc)
5741 {
5742 /* We are already there: stop now. */
5743 end_stepping_range (ecs);
5744 return;
5745 }
5746 else
5747 {
5748 /* Put the step-breakpoint there and go until there. */
5749 init_sal (&sr_sal); /* initialize to zeroes */
5750 sr_sal.pc = ecs->stop_func_start;
5751 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5752 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5753
5754 /* Do not specify what the fp should be when we stop since on
5755 some machines the prologue is where the new fp value is
5756 established. */
5757 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5758
5759 /* And make sure stepping stops right away then. */
5760 ecs->event_thread->control.step_range_end
5761 = ecs->event_thread->control.step_range_start;
5762 }
5763 keep_going (ecs);
5764 }
5765
5766 /* Inferior has stepped backward into a subroutine call with source
5767 code that we should not step over. Do step to the beginning of the
5768 last line of code in it. */
5769
5770 static void
5771 handle_step_into_function_backward (struct gdbarch *gdbarch,
5772 struct execution_control_state *ecs)
5773 {
5774 struct compunit_symtab *cust;
5775 struct symtab_and_line stop_func_sal;
5776
5777 fill_in_stop_func (gdbarch, ecs);
5778
5779 cust = find_pc_compunit_symtab (stop_pc);
5780 if (cust != NULL && compunit_language (cust) != language_asm)
5781 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5782 ecs->stop_func_start);
5783
5784 stop_func_sal = find_pc_line (stop_pc, 0);
5785
5786 /* OK, we're just going to keep stepping here. */
5787 if (stop_func_sal.pc == stop_pc)
5788 {
5789 /* We're there already. Just stop stepping now. */
5790 end_stepping_range (ecs);
5791 }
5792 else
5793 {
5794 /* Else just reset the step range and keep going.
5795 No step-resume breakpoint, they don't work for
5796 epilogues, which can have multiple entry paths. */
5797 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5798 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5799 keep_going (ecs);
5800 }
5801 return;
5802 }
5803
5804 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5805 This is used to both functions and to skip over code. */
5806
5807 static void
5808 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5809 struct symtab_and_line sr_sal,
5810 struct frame_id sr_id,
5811 enum bptype sr_type)
5812 {
5813 /* There should never be more than one step-resume or longjmp-resume
5814 breakpoint per thread, so we should never be setting a new
5815 step_resume_breakpoint when one is already active. */
5816 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5817 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5818
5819 if (debug_infrun)
5820 fprintf_unfiltered (gdb_stdlog,
5821 "infrun: inserting step-resume breakpoint at %s\n",
5822 paddress (gdbarch, sr_sal.pc));
5823
5824 inferior_thread ()->control.step_resume_breakpoint
5825 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5826 }
5827
5828 void
5829 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5830 struct symtab_and_line sr_sal,
5831 struct frame_id sr_id)
5832 {
5833 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5834 sr_sal, sr_id,
5835 bp_step_resume);
5836 }
5837
5838 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5839 This is used to skip a potential signal handler.
5840
5841 This is called with the interrupted function's frame. The signal
5842 handler, when it returns, will resume the interrupted function at
5843 RETURN_FRAME.pc. */
5844
5845 static void
5846 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5847 {
5848 struct symtab_and_line sr_sal;
5849 struct gdbarch *gdbarch;
5850
5851 gdb_assert (return_frame != NULL);
5852 init_sal (&sr_sal); /* initialize to zeros */
5853
5854 gdbarch = get_frame_arch (return_frame);
5855 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5856 sr_sal.section = find_pc_overlay (sr_sal.pc);
5857 sr_sal.pspace = get_frame_program_space (return_frame);
5858
5859 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5860 get_stack_frame_id (return_frame),
5861 bp_hp_step_resume);
5862 }
5863
5864 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5865 is used to skip a function after stepping into it (for "next" or if
5866 the called function has no debugging information).
5867
5868 The current function has almost always been reached by single
5869 stepping a call or return instruction. NEXT_FRAME belongs to the
5870 current function, and the breakpoint will be set at the caller's
5871 resume address.
5872
5873 This is a separate function rather than reusing
5874 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5875 get_prev_frame, which may stop prematurely (see the implementation
5876 of frame_unwind_caller_id for an example). */
5877
5878 static void
5879 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5880 {
5881 struct symtab_and_line sr_sal;
5882 struct gdbarch *gdbarch;
5883
5884 /* We shouldn't have gotten here if we don't know where the call site
5885 is. */
5886 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5887
5888 init_sal (&sr_sal); /* initialize to zeros */
5889
5890 gdbarch = frame_unwind_caller_arch (next_frame);
5891 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5892 frame_unwind_caller_pc (next_frame));
5893 sr_sal.section = find_pc_overlay (sr_sal.pc);
5894 sr_sal.pspace = frame_unwind_program_space (next_frame);
5895
5896 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5897 frame_unwind_caller_id (next_frame));
5898 }
5899
5900 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5901 new breakpoint at the target of a jmp_buf. The handling of
5902 longjmp-resume uses the same mechanisms used for handling
5903 "step-resume" breakpoints. */
5904
5905 static void
5906 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5907 {
5908 /* There should never be more than one longjmp-resume breakpoint per
5909 thread, so we should never be setting a new
5910 longjmp_resume_breakpoint when one is already active. */
5911 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5912
5913 if (debug_infrun)
5914 fprintf_unfiltered (gdb_stdlog,
5915 "infrun: inserting longjmp-resume breakpoint at %s\n",
5916 paddress (gdbarch, pc));
5917
5918 inferior_thread ()->control.exception_resume_breakpoint =
5919 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5920 }
5921
5922 /* Insert an exception resume breakpoint. TP is the thread throwing
5923 the exception. The block B is the block of the unwinder debug hook
5924 function. FRAME is the frame corresponding to the call to this
5925 function. SYM is the symbol of the function argument holding the
5926 target PC of the exception. */
5927
5928 static void
5929 insert_exception_resume_breakpoint (struct thread_info *tp,
5930 const struct block *b,
5931 struct frame_info *frame,
5932 struct symbol *sym)
5933 {
5934 volatile struct gdb_exception e;
5935
5936 /* We want to ignore errors here. */
5937 TRY_CATCH (e, RETURN_MASK_ERROR)
5938 {
5939 struct symbol *vsym;
5940 struct value *value;
5941 CORE_ADDR handler;
5942 struct breakpoint *bp;
5943
5944 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5945 value = read_var_value (vsym, frame);
5946 /* If the value was optimized out, revert to the old behavior. */
5947 if (! value_optimized_out (value))
5948 {
5949 handler = value_as_address (value);
5950
5951 if (debug_infrun)
5952 fprintf_unfiltered (gdb_stdlog,
5953 "infrun: exception resume at %lx\n",
5954 (unsigned long) handler);
5955
5956 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5957 handler, bp_exception_resume);
5958
5959 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5960 frame = NULL;
5961
5962 bp->thread = tp->num;
5963 inferior_thread ()->control.exception_resume_breakpoint = bp;
5964 }
5965 }
5966 }
5967
5968 /* A helper for check_exception_resume that sets an
5969 exception-breakpoint based on a SystemTap probe. */
5970
5971 static void
5972 insert_exception_resume_from_probe (struct thread_info *tp,
5973 const struct bound_probe *probe,
5974 struct frame_info *frame)
5975 {
5976 struct value *arg_value;
5977 CORE_ADDR handler;
5978 struct breakpoint *bp;
5979
5980 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5981 if (!arg_value)
5982 return;
5983
5984 handler = value_as_address (arg_value);
5985
5986 if (debug_infrun)
5987 fprintf_unfiltered (gdb_stdlog,
5988 "infrun: exception resume at %s\n",
5989 paddress (get_objfile_arch (probe->objfile),
5990 handler));
5991
5992 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5993 handler, bp_exception_resume);
5994 bp->thread = tp->num;
5995 inferior_thread ()->control.exception_resume_breakpoint = bp;
5996 }
5997
5998 /* This is called when an exception has been intercepted. Check to
5999 see whether the exception's destination is of interest, and if so,
6000 set an exception resume breakpoint there. */
6001
6002 static void
6003 check_exception_resume (struct execution_control_state *ecs,
6004 struct frame_info *frame)
6005 {
6006 volatile struct gdb_exception e;
6007 struct bound_probe probe;
6008 struct symbol *func;
6009
6010 /* First see if this exception unwinding breakpoint was set via a
6011 SystemTap probe point. If so, the probe has two arguments: the
6012 CFA and the HANDLER. We ignore the CFA, extract the handler, and
6013 set a breakpoint there. */
6014 probe = find_probe_by_pc (get_frame_pc (frame));
6015 if (probe.probe)
6016 {
6017 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
6018 return;
6019 }
6020
6021 func = get_frame_function (frame);
6022 if (!func)
6023 return;
6024
6025 TRY_CATCH (e, RETURN_MASK_ERROR)
6026 {
6027 const struct block *b;
6028 struct block_iterator iter;
6029 struct symbol *sym;
6030 int argno = 0;
6031
6032 /* The exception breakpoint is a thread-specific breakpoint on
6033 the unwinder's debug hook, declared as:
6034
6035 void _Unwind_DebugHook (void *cfa, void *handler);
6036
6037 The CFA argument indicates the frame to which control is
6038 about to be transferred. HANDLER is the destination PC.
6039
6040 We ignore the CFA and set a temporary breakpoint at HANDLER.
6041 This is not extremely efficient but it avoids issues in gdb
6042 with computing the DWARF CFA, and it also works even in weird
6043 cases such as throwing an exception from inside a signal
6044 handler. */
6045
6046 b = SYMBOL_BLOCK_VALUE (func);
6047 ALL_BLOCK_SYMBOLS (b, iter, sym)
6048 {
6049 if (!SYMBOL_IS_ARGUMENT (sym))
6050 continue;
6051
6052 if (argno == 0)
6053 ++argno;
6054 else
6055 {
6056 insert_exception_resume_breakpoint (ecs->event_thread,
6057 b, frame, sym);
6058 break;
6059 }
6060 }
6061 }
6062 }
6063
6064 static void
6065 stop_waiting (struct execution_control_state *ecs)
6066 {
6067 if (debug_infrun)
6068 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
6069
6070 clear_step_over_info ();
6071
6072 /* Let callers know we don't want to wait for the inferior anymore. */
6073 ecs->wait_some_more = 0;
6074 }
6075
6076 /* Called when we should continue running the inferior, because the
6077 current event doesn't cause a user visible stop. This does the
6078 resuming part; waiting for the next event is done elsewhere. */
6079
6080 static void
6081 keep_going (struct execution_control_state *ecs)
6082 {
6083 /* Make sure normal_stop is called if we get a QUIT handled before
6084 reaching resume. */
6085 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
6086
6087 /* Save the pc before execution, to compare with pc after stop. */
6088 ecs->event_thread->prev_pc
6089 = regcache_read_pc (get_thread_regcache (ecs->ptid));
6090
6091 if (ecs->event_thread->control.trap_expected
6092 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
6093 {
6094 /* We haven't yet gotten our trap, and either: intercepted a
6095 non-signal event (e.g., a fork); or took a signal which we
6096 are supposed to pass through to the inferior. Simply
6097 continue. */
6098 discard_cleanups (old_cleanups);
6099 resume (currently_stepping (ecs->event_thread),
6100 ecs->event_thread->suspend.stop_signal);
6101 }
6102 else
6103 {
6104 volatile struct gdb_exception e;
6105 struct regcache *regcache = get_current_regcache ();
6106 int remove_bp;
6107 int remove_wps;
6108
6109 /* Either the trap was not expected, but we are continuing
6110 anyway (if we got a signal, the user asked it be passed to
6111 the child)
6112 -- or --
6113 We got our expected trap, but decided we should resume from
6114 it.
6115
6116 We're going to run this baby now!
6117
6118 Note that insert_breakpoints won't try to re-insert
6119 already inserted breakpoints. Therefore, we don't
6120 care if breakpoints were already inserted, or not. */
6121
6122 /* If we need to step over a breakpoint, and we're not using
6123 displaced stepping to do so, insert all breakpoints
6124 (watchpoints, etc.) but the one we're stepping over, step one
6125 instruction, and then re-insert the breakpoint when that step
6126 is finished. */
6127
6128 remove_bp = (ecs->hit_singlestep_breakpoint
6129 || thread_still_needs_step_over (ecs->event_thread));
6130 remove_wps = (ecs->event_thread->stepping_over_watchpoint
6131 && !target_have_steppable_watchpoint);
6132
6133 if (remove_bp && !use_displaced_stepping (get_regcache_arch (regcache)))
6134 {
6135 set_step_over_info (get_regcache_aspace (regcache),
6136 regcache_read_pc (regcache), remove_wps);
6137 }
6138 else if (remove_wps)
6139 set_step_over_info (NULL, 0, remove_wps);
6140 else
6141 clear_step_over_info ();
6142
6143 /* Stop stepping if inserting breakpoints fails. */
6144 TRY_CATCH (e, RETURN_MASK_ERROR)
6145 {
6146 insert_breakpoints ();
6147 }
6148 if (e.reason < 0)
6149 {
6150 exception_print (gdb_stderr, e);
6151 stop_waiting (ecs);
6152 return;
6153 }
6154
6155 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
6156
6157 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
6158 explicitly specifies that such a signal should be delivered
6159 to the target program). Typically, that would occur when a
6160 user is debugging a target monitor on a simulator: the target
6161 monitor sets a breakpoint; the simulator encounters this
6162 breakpoint and halts the simulation handing control to GDB;
6163 GDB, noting that the stop address doesn't map to any known
6164 breakpoint, returns control back to the simulator; the
6165 simulator then delivers the hardware equivalent of a
6166 GDB_SIGNAL_TRAP to the program being debugged. */
6167 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6168 && !signal_program[ecs->event_thread->suspend.stop_signal])
6169 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6170
6171 discard_cleanups (old_cleanups);
6172 resume (currently_stepping (ecs->event_thread),
6173 ecs->event_thread->suspend.stop_signal);
6174 }
6175
6176 prepare_to_wait (ecs);
6177 }
6178
6179 /* This function normally comes after a resume, before
6180 handle_inferior_event exits. It takes care of any last bits of
6181 housekeeping, and sets the all-important wait_some_more flag. */
6182
6183 static void
6184 prepare_to_wait (struct execution_control_state *ecs)
6185 {
6186 if (debug_infrun)
6187 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
6188
6189 /* This is the old end of the while loop. Let everybody know we
6190 want to wait for the inferior some more and get called again
6191 soon. */
6192 ecs->wait_some_more = 1;
6193 }
6194
6195 /* We are done with the step range of a step/next/si/ni command.
6196 Called once for each n of a "step n" operation. */
6197
6198 static void
6199 end_stepping_range (struct execution_control_state *ecs)
6200 {
6201 ecs->event_thread->control.stop_step = 1;
6202 stop_waiting (ecs);
6203 }
6204
6205 /* Several print_*_reason functions to print why the inferior has stopped.
6206 We always print something when the inferior exits, or receives a signal.
6207 The rest of the cases are dealt with later on in normal_stop and
6208 print_it_typical. Ideally there should be a call to one of these
6209 print_*_reason functions functions from handle_inferior_event each time
6210 stop_waiting is called.
6211
6212 Note that we don't call these directly, instead we delegate that to
6213 the interpreters, through observers. Interpreters then call these
6214 with whatever uiout is right. */
6215
6216 void
6217 print_end_stepping_range_reason (struct ui_out *uiout)
6218 {
6219 /* For CLI-like interpreters, print nothing. */
6220
6221 if (ui_out_is_mi_like_p (uiout))
6222 {
6223 ui_out_field_string (uiout, "reason",
6224 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
6225 }
6226 }
6227
6228 void
6229 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
6230 {
6231 annotate_signalled ();
6232 if (ui_out_is_mi_like_p (uiout))
6233 ui_out_field_string
6234 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
6235 ui_out_text (uiout, "\nProgram terminated with signal ");
6236 annotate_signal_name ();
6237 ui_out_field_string (uiout, "signal-name",
6238 gdb_signal_to_name (siggnal));
6239 annotate_signal_name_end ();
6240 ui_out_text (uiout, ", ");
6241 annotate_signal_string ();
6242 ui_out_field_string (uiout, "signal-meaning",
6243 gdb_signal_to_string (siggnal));
6244 annotate_signal_string_end ();
6245 ui_out_text (uiout, ".\n");
6246 ui_out_text (uiout, "The program no longer exists.\n");
6247 }
6248
6249 void
6250 print_exited_reason (struct ui_out *uiout, int exitstatus)
6251 {
6252 struct inferior *inf = current_inferior ();
6253 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
6254
6255 annotate_exited (exitstatus);
6256 if (exitstatus)
6257 {
6258 if (ui_out_is_mi_like_p (uiout))
6259 ui_out_field_string (uiout, "reason",
6260 async_reason_lookup (EXEC_ASYNC_EXITED));
6261 ui_out_text (uiout, "[Inferior ");
6262 ui_out_text (uiout, plongest (inf->num));
6263 ui_out_text (uiout, " (");
6264 ui_out_text (uiout, pidstr);
6265 ui_out_text (uiout, ") exited with code ");
6266 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
6267 ui_out_text (uiout, "]\n");
6268 }
6269 else
6270 {
6271 if (ui_out_is_mi_like_p (uiout))
6272 ui_out_field_string
6273 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6274 ui_out_text (uiout, "[Inferior ");
6275 ui_out_text (uiout, plongest (inf->num));
6276 ui_out_text (uiout, " (");
6277 ui_out_text (uiout, pidstr);
6278 ui_out_text (uiout, ") exited normally]\n");
6279 }
6280 }
6281
6282 void
6283 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
6284 {
6285 annotate_signal ();
6286
6287 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
6288 {
6289 struct thread_info *t = inferior_thread ();
6290
6291 ui_out_text (uiout, "\n[");
6292 ui_out_field_string (uiout, "thread-name",
6293 target_pid_to_str (t->ptid));
6294 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
6295 ui_out_text (uiout, " stopped");
6296 }
6297 else
6298 {
6299 ui_out_text (uiout, "\nProgram received signal ");
6300 annotate_signal_name ();
6301 if (ui_out_is_mi_like_p (uiout))
6302 ui_out_field_string
6303 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
6304 ui_out_field_string (uiout, "signal-name",
6305 gdb_signal_to_name (siggnal));
6306 annotate_signal_name_end ();
6307 ui_out_text (uiout, ", ");
6308 annotate_signal_string ();
6309 ui_out_field_string (uiout, "signal-meaning",
6310 gdb_signal_to_string (siggnal));
6311 annotate_signal_string_end ();
6312 }
6313 ui_out_text (uiout, ".\n");
6314 }
6315
6316 void
6317 print_no_history_reason (struct ui_out *uiout)
6318 {
6319 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
6320 }
6321
6322 /* Print current location without a level number, if we have changed
6323 functions or hit a breakpoint. Print source line if we have one.
6324 bpstat_print contains the logic deciding in detail what to print,
6325 based on the event(s) that just occurred. */
6326
6327 void
6328 print_stop_event (struct target_waitstatus *ws)
6329 {
6330 int bpstat_ret;
6331 int source_flag;
6332 int do_frame_printing = 1;
6333 struct thread_info *tp = inferior_thread ();
6334
6335 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
6336 switch (bpstat_ret)
6337 {
6338 case PRINT_UNKNOWN:
6339 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
6340 should) carry around the function and does (or should) use
6341 that when doing a frame comparison. */
6342 if (tp->control.stop_step
6343 && frame_id_eq (tp->control.step_frame_id,
6344 get_frame_id (get_current_frame ()))
6345 && step_start_function == find_pc_function (stop_pc))
6346 {
6347 /* Finished step, just print source line. */
6348 source_flag = SRC_LINE;
6349 }
6350 else
6351 {
6352 /* Print location and source line. */
6353 source_flag = SRC_AND_LOC;
6354 }
6355 break;
6356 case PRINT_SRC_AND_LOC:
6357 /* Print location and source line. */
6358 source_flag = SRC_AND_LOC;
6359 break;
6360 case PRINT_SRC_ONLY:
6361 source_flag = SRC_LINE;
6362 break;
6363 case PRINT_NOTHING:
6364 /* Something bogus. */
6365 source_flag = SRC_LINE;
6366 do_frame_printing = 0;
6367 break;
6368 default:
6369 internal_error (__FILE__, __LINE__, _("Unknown value."));
6370 }
6371
6372 /* The behavior of this routine with respect to the source
6373 flag is:
6374 SRC_LINE: Print only source line
6375 LOCATION: Print only location
6376 SRC_AND_LOC: Print location and source line. */
6377 if (do_frame_printing)
6378 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6379
6380 /* Display the auto-display expressions. */
6381 do_displays ();
6382 }
6383
6384 /* Here to return control to GDB when the inferior stops for real.
6385 Print appropriate messages, remove breakpoints, give terminal our modes.
6386
6387 STOP_PRINT_FRAME nonzero means print the executing frame
6388 (pc, function, args, file, line number and line text).
6389 BREAKPOINTS_FAILED nonzero means stop was due to error
6390 attempting to insert breakpoints. */
6391
6392 void
6393 normal_stop (void)
6394 {
6395 struct target_waitstatus last;
6396 ptid_t last_ptid;
6397 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6398
6399 get_last_target_status (&last_ptid, &last);
6400
6401 /* If an exception is thrown from this point on, make sure to
6402 propagate GDB's knowledge of the executing state to the
6403 frontend/user running state. A QUIT is an easy exception to see
6404 here, so do this before any filtered output. */
6405 if (!non_stop)
6406 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
6407 else if (last.kind != TARGET_WAITKIND_SIGNALLED
6408 && last.kind != TARGET_WAITKIND_EXITED
6409 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6410 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
6411
6412 /* As we're presenting a stop, and potentially removing breakpoints,
6413 update the thread list so we can tell whether there are threads
6414 running on the target. With target remote, for example, we can
6415 only learn about new threads when we explicitly update the thread
6416 list. Do this before notifying the interpreters about signal
6417 stops, end of stepping ranges, etc., so that the "new thread"
6418 output is emitted before e.g., "Program received signal FOO",
6419 instead of after. */
6420 update_thread_list ();
6421
6422 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
6423 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
6424
6425 /* As with the notification of thread events, we want to delay
6426 notifying the user that we've switched thread context until
6427 the inferior actually stops.
6428
6429 There's no point in saying anything if the inferior has exited.
6430 Note that SIGNALLED here means "exited with a signal", not
6431 "received a signal".
6432
6433 Also skip saying anything in non-stop mode. In that mode, as we
6434 don't want GDB to switch threads behind the user's back, to avoid
6435 races where the user is typing a command to apply to thread x,
6436 but GDB switches to thread y before the user finishes entering
6437 the command, fetch_inferior_event installs a cleanup to restore
6438 the current thread back to the thread the user had selected right
6439 after this event is handled, so we're not really switching, only
6440 informing of a stop. */
6441 if (!non_stop
6442 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
6443 && target_has_execution
6444 && last.kind != TARGET_WAITKIND_SIGNALLED
6445 && last.kind != TARGET_WAITKIND_EXITED
6446 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6447 {
6448 target_terminal_ours_for_output ();
6449 printf_filtered (_("[Switching to %s]\n"),
6450 target_pid_to_str (inferior_ptid));
6451 annotate_thread_changed ();
6452 previous_inferior_ptid = inferior_ptid;
6453 }
6454
6455 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6456 {
6457 gdb_assert (sync_execution || !target_can_async_p ());
6458
6459 target_terminal_ours_for_output ();
6460 printf_filtered (_("No unwaited-for children left.\n"));
6461 }
6462
6463 /* Note: this depends on the update_thread_list call above. */
6464 if (!breakpoints_should_be_inserted_now () && target_has_execution)
6465 {
6466 if (remove_breakpoints ())
6467 {
6468 target_terminal_ours_for_output ();
6469 printf_filtered (_("Cannot remove breakpoints because "
6470 "program is no longer writable.\nFurther "
6471 "execution is probably impossible.\n"));
6472 }
6473 }
6474
6475 /* If an auto-display called a function and that got a signal,
6476 delete that auto-display to avoid an infinite recursion. */
6477
6478 if (stopped_by_random_signal)
6479 disable_current_display ();
6480
6481 /* Notify observers if we finished a "step"-like command, etc. */
6482 if (target_has_execution
6483 && last.kind != TARGET_WAITKIND_SIGNALLED
6484 && last.kind != TARGET_WAITKIND_EXITED
6485 && inferior_thread ()->control.stop_step)
6486 {
6487 /* But not if in the middle of doing a "step n" operation for
6488 n > 1 */
6489 if (inferior_thread ()->step_multi)
6490 goto done;
6491
6492 observer_notify_end_stepping_range ();
6493 }
6494
6495 target_terminal_ours ();
6496 async_enable_stdin ();
6497
6498 /* Set the current source location. This will also happen if we
6499 display the frame below, but the current SAL will be incorrect
6500 during a user hook-stop function. */
6501 if (has_stack_frames () && !stop_stack_dummy)
6502 set_current_sal_from_frame (get_current_frame ());
6503
6504 /* Let the user/frontend see the threads as stopped, but do nothing
6505 if the thread was running an infcall. We may be e.g., evaluating
6506 a breakpoint condition. In that case, the thread had state
6507 THREAD_RUNNING before the infcall, and shall remain set to
6508 running, all without informing the user/frontend about state
6509 transition changes. If this is actually a call command, then the
6510 thread was originally already stopped, so there's no state to
6511 finish either. */
6512 if (target_has_execution && inferior_thread ()->control.in_infcall)
6513 discard_cleanups (old_chain);
6514 else
6515 do_cleanups (old_chain);
6516
6517 /* Look up the hook_stop and run it (CLI internally handles problem
6518 of stop_command's pre-hook not existing). */
6519 if (stop_command)
6520 catch_errors (hook_stop_stub, stop_command,
6521 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6522
6523 if (!has_stack_frames ())
6524 goto done;
6525
6526 if (last.kind == TARGET_WAITKIND_SIGNALLED
6527 || last.kind == TARGET_WAITKIND_EXITED)
6528 goto done;
6529
6530 /* Select innermost stack frame - i.e., current frame is frame 0,
6531 and current location is based on that.
6532 Don't do this on return from a stack dummy routine,
6533 or if the program has exited. */
6534
6535 if (!stop_stack_dummy)
6536 {
6537 select_frame (get_current_frame ());
6538
6539 /* If --batch-silent is enabled then there's no need to print the current
6540 source location, and to try risks causing an error message about
6541 missing source files. */
6542 if (stop_print_frame && !batch_silent)
6543 print_stop_event (&last);
6544 }
6545
6546 /* Save the function value return registers, if we care.
6547 We might be about to restore their previous contents. */
6548 if (inferior_thread ()->control.proceed_to_finish
6549 && execution_direction != EXEC_REVERSE)
6550 {
6551 /* This should not be necessary. */
6552 if (stop_registers)
6553 regcache_xfree (stop_registers);
6554
6555 /* NB: The copy goes through to the target picking up the value of
6556 all the registers. */
6557 stop_registers = regcache_dup (get_current_regcache ());
6558 }
6559
6560 if (stop_stack_dummy == STOP_STACK_DUMMY)
6561 {
6562 /* Pop the empty frame that contains the stack dummy.
6563 This also restores inferior state prior to the call
6564 (struct infcall_suspend_state). */
6565 struct frame_info *frame = get_current_frame ();
6566
6567 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6568 frame_pop (frame);
6569 /* frame_pop() calls reinit_frame_cache as the last thing it
6570 does which means there's currently no selected frame. We
6571 don't need to re-establish a selected frame if the dummy call
6572 returns normally, that will be done by
6573 restore_infcall_control_state. However, we do have to handle
6574 the case where the dummy call is returning after being
6575 stopped (e.g. the dummy call previously hit a breakpoint).
6576 We can't know which case we have so just always re-establish
6577 a selected frame here. */
6578 select_frame (get_current_frame ());
6579 }
6580
6581 done:
6582 annotate_stopped ();
6583
6584 /* Suppress the stop observer if we're in the middle of:
6585
6586 - a step n (n > 1), as there still more steps to be done.
6587
6588 - a "finish" command, as the observer will be called in
6589 finish_command_continuation, so it can include the inferior
6590 function's return value.
6591
6592 - calling an inferior function, as we pretend we inferior didn't
6593 run at all. The return value of the call is handled by the
6594 expression evaluator, through call_function_by_hand. */
6595
6596 if (!target_has_execution
6597 || last.kind == TARGET_WAITKIND_SIGNALLED
6598 || last.kind == TARGET_WAITKIND_EXITED
6599 || last.kind == TARGET_WAITKIND_NO_RESUMED
6600 || (!(inferior_thread ()->step_multi
6601 && inferior_thread ()->control.stop_step)
6602 && !(inferior_thread ()->control.stop_bpstat
6603 && inferior_thread ()->control.proceed_to_finish)
6604 && !inferior_thread ()->control.in_infcall))
6605 {
6606 if (!ptid_equal (inferior_ptid, null_ptid))
6607 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6608 stop_print_frame);
6609 else
6610 observer_notify_normal_stop (NULL, stop_print_frame);
6611 }
6612
6613 if (target_has_execution)
6614 {
6615 if (last.kind != TARGET_WAITKIND_SIGNALLED
6616 && last.kind != TARGET_WAITKIND_EXITED)
6617 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6618 Delete any breakpoint that is to be deleted at the next stop. */
6619 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6620 }
6621
6622 /* Try to get rid of automatically added inferiors that are no
6623 longer needed. Keeping those around slows down things linearly.
6624 Note that this never removes the current inferior. */
6625 prune_inferiors ();
6626 }
6627
6628 static int
6629 hook_stop_stub (void *cmd)
6630 {
6631 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6632 return (0);
6633 }
6634 \f
6635 int
6636 signal_stop_state (int signo)
6637 {
6638 return signal_stop[signo];
6639 }
6640
6641 int
6642 signal_print_state (int signo)
6643 {
6644 return signal_print[signo];
6645 }
6646
6647 int
6648 signal_pass_state (int signo)
6649 {
6650 return signal_program[signo];
6651 }
6652
6653 static void
6654 signal_cache_update (int signo)
6655 {
6656 if (signo == -1)
6657 {
6658 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6659 signal_cache_update (signo);
6660
6661 return;
6662 }
6663
6664 signal_pass[signo] = (signal_stop[signo] == 0
6665 && signal_print[signo] == 0
6666 && signal_program[signo] == 1
6667 && signal_catch[signo] == 0);
6668 }
6669
6670 int
6671 signal_stop_update (int signo, int state)
6672 {
6673 int ret = signal_stop[signo];
6674
6675 signal_stop[signo] = state;
6676 signal_cache_update (signo);
6677 return ret;
6678 }
6679
6680 int
6681 signal_print_update (int signo, int state)
6682 {
6683 int ret = signal_print[signo];
6684
6685 signal_print[signo] = state;
6686 signal_cache_update (signo);
6687 return ret;
6688 }
6689
6690 int
6691 signal_pass_update (int signo, int state)
6692 {
6693 int ret = signal_program[signo];
6694
6695 signal_program[signo] = state;
6696 signal_cache_update (signo);
6697 return ret;
6698 }
6699
6700 /* Update the global 'signal_catch' from INFO and notify the
6701 target. */
6702
6703 void
6704 signal_catch_update (const unsigned int *info)
6705 {
6706 int i;
6707
6708 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6709 signal_catch[i] = info[i] > 0;
6710 signal_cache_update (-1);
6711 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6712 }
6713
6714 static void
6715 sig_print_header (void)
6716 {
6717 printf_filtered (_("Signal Stop\tPrint\tPass "
6718 "to program\tDescription\n"));
6719 }
6720
6721 static void
6722 sig_print_info (enum gdb_signal oursig)
6723 {
6724 const char *name = gdb_signal_to_name (oursig);
6725 int name_padding = 13 - strlen (name);
6726
6727 if (name_padding <= 0)
6728 name_padding = 0;
6729
6730 printf_filtered ("%s", name);
6731 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6732 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6733 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6734 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6735 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6736 }
6737
6738 /* Specify how various signals in the inferior should be handled. */
6739
6740 static void
6741 handle_command (char *args, int from_tty)
6742 {
6743 char **argv;
6744 int digits, wordlen;
6745 int sigfirst, signum, siglast;
6746 enum gdb_signal oursig;
6747 int allsigs;
6748 int nsigs;
6749 unsigned char *sigs;
6750 struct cleanup *old_chain;
6751
6752 if (args == NULL)
6753 {
6754 error_no_arg (_("signal to handle"));
6755 }
6756
6757 /* Allocate and zero an array of flags for which signals to handle. */
6758
6759 nsigs = (int) GDB_SIGNAL_LAST;
6760 sigs = (unsigned char *) alloca (nsigs);
6761 memset (sigs, 0, nsigs);
6762
6763 /* Break the command line up into args. */
6764
6765 argv = gdb_buildargv (args);
6766 old_chain = make_cleanup_freeargv (argv);
6767
6768 /* Walk through the args, looking for signal oursigs, signal names, and
6769 actions. Signal numbers and signal names may be interspersed with
6770 actions, with the actions being performed for all signals cumulatively
6771 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6772
6773 while (*argv != NULL)
6774 {
6775 wordlen = strlen (*argv);
6776 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6777 {;
6778 }
6779 allsigs = 0;
6780 sigfirst = siglast = -1;
6781
6782 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6783 {
6784 /* Apply action to all signals except those used by the
6785 debugger. Silently skip those. */
6786 allsigs = 1;
6787 sigfirst = 0;
6788 siglast = nsigs - 1;
6789 }
6790 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6791 {
6792 SET_SIGS (nsigs, sigs, signal_stop);
6793 SET_SIGS (nsigs, sigs, signal_print);
6794 }
6795 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6796 {
6797 UNSET_SIGS (nsigs, sigs, signal_program);
6798 }
6799 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6800 {
6801 SET_SIGS (nsigs, sigs, signal_print);
6802 }
6803 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6804 {
6805 SET_SIGS (nsigs, sigs, signal_program);
6806 }
6807 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6808 {
6809 UNSET_SIGS (nsigs, sigs, signal_stop);
6810 }
6811 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6812 {
6813 SET_SIGS (nsigs, sigs, signal_program);
6814 }
6815 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6816 {
6817 UNSET_SIGS (nsigs, sigs, signal_print);
6818 UNSET_SIGS (nsigs, sigs, signal_stop);
6819 }
6820 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6821 {
6822 UNSET_SIGS (nsigs, sigs, signal_program);
6823 }
6824 else if (digits > 0)
6825 {
6826 /* It is numeric. The numeric signal refers to our own
6827 internal signal numbering from target.h, not to host/target
6828 signal number. This is a feature; users really should be
6829 using symbolic names anyway, and the common ones like
6830 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6831
6832 sigfirst = siglast = (int)
6833 gdb_signal_from_command (atoi (*argv));
6834 if ((*argv)[digits] == '-')
6835 {
6836 siglast = (int)
6837 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6838 }
6839 if (sigfirst > siglast)
6840 {
6841 /* Bet he didn't figure we'd think of this case... */
6842 signum = sigfirst;
6843 sigfirst = siglast;
6844 siglast = signum;
6845 }
6846 }
6847 else
6848 {
6849 oursig = gdb_signal_from_name (*argv);
6850 if (oursig != GDB_SIGNAL_UNKNOWN)
6851 {
6852 sigfirst = siglast = (int) oursig;
6853 }
6854 else
6855 {
6856 /* Not a number and not a recognized flag word => complain. */
6857 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6858 }
6859 }
6860
6861 /* If any signal numbers or symbol names were found, set flags for
6862 which signals to apply actions to. */
6863
6864 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6865 {
6866 switch ((enum gdb_signal) signum)
6867 {
6868 case GDB_SIGNAL_TRAP:
6869 case GDB_SIGNAL_INT:
6870 if (!allsigs && !sigs[signum])
6871 {
6872 if (query (_("%s is used by the debugger.\n\
6873 Are you sure you want to change it? "),
6874 gdb_signal_to_name ((enum gdb_signal) signum)))
6875 {
6876 sigs[signum] = 1;
6877 }
6878 else
6879 {
6880 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6881 gdb_flush (gdb_stdout);
6882 }
6883 }
6884 break;
6885 case GDB_SIGNAL_0:
6886 case GDB_SIGNAL_DEFAULT:
6887 case GDB_SIGNAL_UNKNOWN:
6888 /* Make sure that "all" doesn't print these. */
6889 break;
6890 default:
6891 sigs[signum] = 1;
6892 break;
6893 }
6894 }
6895
6896 argv++;
6897 }
6898
6899 for (signum = 0; signum < nsigs; signum++)
6900 if (sigs[signum])
6901 {
6902 signal_cache_update (-1);
6903 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6904 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6905
6906 if (from_tty)
6907 {
6908 /* Show the results. */
6909 sig_print_header ();
6910 for (; signum < nsigs; signum++)
6911 if (sigs[signum])
6912 sig_print_info (signum);
6913 }
6914
6915 break;
6916 }
6917
6918 do_cleanups (old_chain);
6919 }
6920
6921 /* Complete the "handle" command. */
6922
6923 static VEC (char_ptr) *
6924 handle_completer (struct cmd_list_element *ignore,
6925 const char *text, const char *word)
6926 {
6927 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6928 static const char * const keywords[] =
6929 {
6930 "all",
6931 "stop",
6932 "ignore",
6933 "print",
6934 "pass",
6935 "nostop",
6936 "noignore",
6937 "noprint",
6938 "nopass",
6939 NULL,
6940 };
6941
6942 vec_signals = signal_completer (ignore, text, word);
6943 vec_keywords = complete_on_enum (keywords, word, word);
6944
6945 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6946 VEC_free (char_ptr, vec_signals);
6947 VEC_free (char_ptr, vec_keywords);
6948 return return_val;
6949 }
6950
6951 static void
6952 xdb_handle_command (char *args, int from_tty)
6953 {
6954 char **argv;
6955 struct cleanup *old_chain;
6956
6957 if (args == NULL)
6958 error_no_arg (_("xdb command"));
6959
6960 /* Break the command line up into args. */
6961
6962 argv = gdb_buildargv (args);
6963 old_chain = make_cleanup_freeargv (argv);
6964 if (argv[1] != (char *) NULL)
6965 {
6966 char *argBuf;
6967 int bufLen;
6968
6969 bufLen = strlen (argv[0]) + 20;
6970 argBuf = (char *) xmalloc (bufLen);
6971 if (argBuf)
6972 {
6973 int validFlag = 1;
6974 enum gdb_signal oursig;
6975
6976 oursig = gdb_signal_from_name (argv[0]);
6977 memset (argBuf, 0, bufLen);
6978 if (strcmp (argv[1], "Q") == 0)
6979 sprintf (argBuf, "%s %s", argv[0], "noprint");
6980 else
6981 {
6982 if (strcmp (argv[1], "s") == 0)
6983 {
6984 if (!signal_stop[oursig])
6985 sprintf (argBuf, "%s %s", argv[0], "stop");
6986 else
6987 sprintf (argBuf, "%s %s", argv[0], "nostop");
6988 }
6989 else if (strcmp (argv[1], "i") == 0)
6990 {
6991 if (!signal_program[oursig])
6992 sprintf (argBuf, "%s %s", argv[0], "pass");
6993 else
6994 sprintf (argBuf, "%s %s", argv[0], "nopass");
6995 }
6996 else if (strcmp (argv[1], "r") == 0)
6997 {
6998 if (!signal_print[oursig])
6999 sprintf (argBuf, "%s %s", argv[0], "print");
7000 else
7001 sprintf (argBuf, "%s %s", argv[0], "noprint");
7002 }
7003 else
7004 validFlag = 0;
7005 }
7006 if (validFlag)
7007 handle_command (argBuf, from_tty);
7008 else
7009 printf_filtered (_("Invalid signal handling flag.\n"));
7010 if (argBuf)
7011 xfree (argBuf);
7012 }
7013 }
7014 do_cleanups (old_chain);
7015 }
7016
7017 enum gdb_signal
7018 gdb_signal_from_command (int num)
7019 {
7020 if (num >= 1 && num <= 15)
7021 return (enum gdb_signal) num;
7022 error (_("Only signals 1-15 are valid as numeric signals.\n\
7023 Use \"info signals\" for a list of symbolic signals."));
7024 }
7025
7026 /* Print current contents of the tables set by the handle command.
7027 It is possible we should just be printing signals actually used
7028 by the current target (but for things to work right when switching
7029 targets, all signals should be in the signal tables). */
7030
7031 static void
7032 signals_info (char *signum_exp, int from_tty)
7033 {
7034 enum gdb_signal oursig;
7035
7036 sig_print_header ();
7037
7038 if (signum_exp)
7039 {
7040 /* First see if this is a symbol name. */
7041 oursig = gdb_signal_from_name (signum_exp);
7042 if (oursig == GDB_SIGNAL_UNKNOWN)
7043 {
7044 /* No, try numeric. */
7045 oursig =
7046 gdb_signal_from_command (parse_and_eval_long (signum_exp));
7047 }
7048 sig_print_info (oursig);
7049 return;
7050 }
7051
7052 printf_filtered ("\n");
7053 /* These ugly casts brought to you by the native VAX compiler. */
7054 for (oursig = GDB_SIGNAL_FIRST;
7055 (int) oursig < (int) GDB_SIGNAL_LAST;
7056 oursig = (enum gdb_signal) ((int) oursig + 1))
7057 {
7058 QUIT;
7059
7060 if (oursig != GDB_SIGNAL_UNKNOWN
7061 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
7062 sig_print_info (oursig);
7063 }
7064
7065 printf_filtered (_("\nUse the \"handle\" command "
7066 "to change these tables.\n"));
7067 }
7068
7069 /* Check if it makes sense to read $_siginfo from the current thread
7070 at this point. If not, throw an error. */
7071
7072 static void
7073 validate_siginfo_access (void)
7074 {
7075 /* No current inferior, no siginfo. */
7076 if (ptid_equal (inferior_ptid, null_ptid))
7077 error (_("No thread selected."));
7078
7079 /* Don't try to read from a dead thread. */
7080 if (is_exited (inferior_ptid))
7081 error (_("The current thread has terminated"));
7082
7083 /* ... or from a spinning thread. */
7084 if (is_running (inferior_ptid))
7085 error (_("Selected thread is running."));
7086 }
7087
7088 /* The $_siginfo convenience variable is a bit special. We don't know
7089 for sure the type of the value until we actually have a chance to
7090 fetch the data. The type can change depending on gdbarch, so it is
7091 also dependent on which thread you have selected.
7092
7093 1. making $_siginfo be an internalvar that creates a new value on
7094 access.
7095
7096 2. making the value of $_siginfo be an lval_computed value. */
7097
7098 /* This function implements the lval_computed support for reading a
7099 $_siginfo value. */
7100
7101 static void
7102 siginfo_value_read (struct value *v)
7103 {
7104 LONGEST transferred;
7105
7106 validate_siginfo_access ();
7107
7108 transferred =
7109 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
7110 NULL,
7111 value_contents_all_raw (v),
7112 value_offset (v),
7113 TYPE_LENGTH (value_type (v)));
7114
7115 if (transferred != TYPE_LENGTH (value_type (v)))
7116 error (_("Unable to read siginfo"));
7117 }
7118
7119 /* This function implements the lval_computed support for writing a
7120 $_siginfo value. */
7121
7122 static void
7123 siginfo_value_write (struct value *v, struct value *fromval)
7124 {
7125 LONGEST transferred;
7126
7127 validate_siginfo_access ();
7128
7129 transferred = target_write (&current_target,
7130 TARGET_OBJECT_SIGNAL_INFO,
7131 NULL,
7132 value_contents_all_raw (fromval),
7133 value_offset (v),
7134 TYPE_LENGTH (value_type (fromval)));
7135
7136 if (transferred != TYPE_LENGTH (value_type (fromval)))
7137 error (_("Unable to write siginfo"));
7138 }
7139
7140 static const struct lval_funcs siginfo_value_funcs =
7141 {
7142 siginfo_value_read,
7143 siginfo_value_write
7144 };
7145
7146 /* Return a new value with the correct type for the siginfo object of
7147 the current thread using architecture GDBARCH. Return a void value
7148 if there's no object available. */
7149
7150 static struct value *
7151 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
7152 void *ignore)
7153 {
7154 if (target_has_stack
7155 && !ptid_equal (inferior_ptid, null_ptid)
7156 && gdbarch_get_siginfo_type_p (gdbarch))
7157 {
7158 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7159
7160 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
7161 }
7162
7163 return allocate_value (builtin_type (gdbarch)->builtin_void);
7164 }
7165
7166 \f
7167 /* infcall_suspend_state contains state about the program itself like its
7168 registers and any signal it received when it last stopped.
7169 This state must be restored regardless of how the inferior function call
7170 ends (either successfully, or after it hits a breakpoint or signal)
7171 if the program is to properly continue where it left off. */
7172
7173 struct infcall_suspend_state
7174 {
7175 struct thread_suspend_state thread_suspend;
7176 #if 0 /* Currently unused and empty structures are not valid C. */
7177 struct inferior_suspend_state inferior_suspend;
7178 #endif
7179
7180 /* Other fields: */
7181 CORE_ADDR stop_pc;
7182 struct regcache *registers;
7183
7184 /* Format of SIGINFO_DATA or NULL if it is not present. */
7185 struct gdbarch *siginfo_gdbarch;
7186
7187 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
7188 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
7189 content would be invalid. */
7190 gdb_byte *siginfo_data;
7191 };
7192
7193 struct infcall_suspend_state *
7194 save_infcall_suspend_state (void)
7195 {
7196 struct infcall_suspend_state *inf_state;
7197 struct thread_info *tp = inferior_thread ();
7198 #if 0
7199 struct inferior *inf = current_inferior ();
7200 #endif
7201 struct regcache *regcache = get_current_regcache ();
7202 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7203 gdb_byte *siginfo_data = NULL;
7204
7205 if (gdbarch_get_siginfo_type_p (gdbarch))
7206 {
7207 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7208 size_t len = TYPE_LENGTH (type);
7209 struct cleanup *back_to;
7210
7211 siginfo_data = xmalloc (len);
7212 back_to = make_cleanup (xfree, siginfo_data);
7213
7214 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7215 siginfo_data, 0, len) == len)
7216 discard_cleanups (back_to);
7217 else
7218 {
7219 /* Errors ignored. */
7220 do_cleanups (back_to);
7221 siginfo_data = NULL;
7222 }
7223 }
7224
7225 inf_state = XCNEW (struct infcall_suspend_state);
7226
7227 if (siginfo_data)
7228 {
7229 inf_state->siginfo_gdbarch = gdbarch;
7230 inf_state->siginfo_data = siginfo_data;
7231 }
7232
7233 inf_state->thread_suspend = tp->suspend;
7234 #if 0 /* Currently unused and empty structures are not valid C. */
7235 inf_state->inferior_suspend = inf->suspend;
7236 #endif
7237
7238 /* run_inferior_call will not use the signal due to its `proceed' call with
7239 GDB_SIGNAL_0 anyway. */
7240 tp->suspend.stop_signal = GDB_SIGNAL_0;
7241
7242 inf_state->stop_pc = stop_pc;
7243
7244 inf_state->registers = regcache_dup (regcache);
7245
7246 return inf_state;
7247 }
7248
7249 /* Restore inferior session state to INF_STATE. */
7250
7251 void
7252 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
7253 {
7254 struct thread_info *tp = inferior_thread ();
7255 #if 0
7256 struct inferior *inf = current_inferior ();
7257 #endif
7258 struct regcache *regcache = get_current_regcache ();
7259 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7260
7261 tp->suspend = inf_state->thread_suspend;
7262 #if 0 /* Currently unused and empty structures are not valid C. */
7263 inf->suspend = inf_state->inferior_suspend;
7264 #endif
7265
7266 stop_pc = inf_state->stop_pc;
7267
7268 if (inf_state->siginfo_gdbarch == gdbarch)
7269 {
7270 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7271
7272 /* Errors ignored. */
7273 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7274 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
7275 }
7276
7277 /* The inferior can be gone if the user types "print exit(0)"
7278 (and perhaps other times). */
7279 if (target_has_execution)
7280 /* NB: The register write goes through to the target. */
7281 regcache_cpy (regcache, inf_state->registers);
7282
7283 discard_infcall_suspend_state (inf_state);
7284 }
7285
7286 static void
7287 do_restore_infcall_suspend_state_cleanup (void *state)
7288 {
7289 restore_infcall_suspend_state (state);
7290 }
7291
7292 struct cleanup *
7293 make_cleanup_restore_infcall_suspend_state
7294 (struct infcall_suspend_state *inf_state)
7295 {
7296 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
7297 }
7298
7299 void
7300 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
7301 {
7302 regcache_xfree (inf_state->registers);
7303 xfree (inf_state->siginfo_data);
7304 xfree (inf_state);
7305 }
7306
7307 struct regcache *
7308 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
7309 {
7310 return inf_state->registers;
7311 }
7312
7313 /* infcall_control_state contains state regarding gdb's control of the
7314 inferior itself like stepping control. It also contains session state like
7315 the user's currently selected frame. */
7316
7317 struct infcall_control_state
7318 {
7319 struct thread_control_state thread_control;
7320 struct inferior_control_state inferior_control;
7321
7322 /* Other fields: */
7323 enum stop_stack_kind stop_stack_dummy;
7324 int stopped_by_random_signal;
7325 int stop_after_trap;
7326
7327 /* ID if the selected frame when the inferior function call was made. */
7328 struct frame_id selected_frame_id;
7329 };
7330
7331 /* Save all of the information associated with the inferior<==>gdb
7332 connection. */
7333
7334 struct infcall_control_state *
7335 save_infcall_control_state (void)
7336 {
7337 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
7338 struct thread_info *tp = inferior_thread ();
7339 struct inferior *inf = current_inferior ();
7340
7341 inf_status->thread_control = tp->control;
7342 inf_status->inferior_control = inf->control;
7343
7344 tp->control.step_resume_breakpoint = NULL;
7345 tp->control.exception_resume_breakpoint = NULL;
7346
7347 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
7348 chain. If caller's caller is walking the chain, they'll be happier if we
7349 hand them back the original chain when restore_infcall_control_state is
7350 called. */
7351 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
7352
7353 /* Other fields: */
7354 inf_status->stop_stack_dummy = stop_stack_dummy;
7355 inf_status->stopped_by_random_signal = stopped_by_random_signal;
7356 inf_status->stop_after_trap = stop_after_trap;
7357
7358 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
7359
7360 return inf_status;
7361 }
7362
7363 static int
7364 restore_selected_frame (void *args)
7365 {
7366 struct frame_id *fid = (struct frame_id *) args;
7367 struct frame_info *frame;
7368
7369 frame = frame_find_by_id (*fid);
7370
7371 /* If inf_status->selected_frame_id is NULL, there was no previously
7372 selected frame. */
7373 if (frame == NULL)
7374 {
7375 warning (_("Unable to restore previously selected frame."));
7376 return 0;
7377 }
7378
7379 select_frame (frame);
7380
7381 return (1);
7382 }
7383
7384 /* Restore inferior session state to INF_STATUS. */
7385
7386 void
7387 restore_infcall_control_state (struct infcall_control_state *inf_status)
7388 {
7389 struct thread_info *tp = inferior_thread ();
7390 struct inferior *inf = current_inferior ();
7391
7392 if (tp->control.step_resume_breakpoint)
7393 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7394
7395 if (tp->control.exception_resume_breakpoint)
7396 tp->control.exception_resume_breakpoint->disposition
7397 = disp_del_at_next_stop;
7398
7399 /* Handle the bpstat_copy of the chain. */
7400 bpstat_clear (&tp->control.stop_bpstat);
7401
7402 tp->control = inf_status->thread_control;
7403 inf->control = inf_status->inferior_control;
7404
7405 /* Other fields: */
7406 stop_stack_dummy = inf_status->stop_stack_dummy;
7407 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7408 stop_after_trap = inf_status->stop_after_trap;
7409
7410 if (target_has_stack)
7411 {
7412 /* The point of catch_errors is that if the stack is clobbered,
7413 walking the stack might encounter a garbage pointer and
7414 error() trying to dereference it. */
7415 if (catch_errors
7416 (restore_selected_frame, &inf_status->selected_frame_id,
7417 "Unable to restore previously selected frame:\n",
7418 RETURN_MASK_ERROR) == 0)
7419 /* Error in restoring the selected frame. Select the innermost
7420 frame. */
7421 select_frame (get_current_frame ());
7422 }
7423
7424 xfree (inf_status);
7425 }
7426
7427 static void
7428 do_restore_infcall_control_state_cleanup (void *sts)
7429 {
7430 restore_infcall_control_state (sts);
7431 }
7432
7433 struct cleanup *
7434 make_cleanup_restore_infcall_control_state
7435 (struct infcall_control_state *inf_status)
7436 {
7437 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
7438 }
7439
7440 void
7441 discard_infcall_control_state (struct infcall_control_state *inf_status)
7442 {
7443 if (inf_status->thread_control.step_resume_breakpoint)
7444 inf_status->thread_control.step_resume_breakpoint->disposition
7445 = disp_del_at_next_stop;
7446
7447 if (inf_status->thread_control.exception_resume_breakpoint)
7448 inf_status->thread_control.exception_resume_breakpoint->disposition
7449 = disp_del_at_next_stop;
7450
7451 /* See save_infcall_control_state for info on stop_bpstat. */
7452 bpstat_clear (&inf_status->thread_control.stop_bpstat);
7453
7454 xfree (inf_status);
7455 }
7456 \f
7457 /* restore_inferior_ptid() will be used by the cleanup machinery
7458 to restore the inferior_ptid value saved in a call to
7459 save_inferior_ptid(). */
7460
7461 static void
7462 restore_inferior_ptid (void *arg)
7463 {
7464 ptid_t *saved_ptid_ptr = arg;
7465
7466 inferior_ptid = *saved_ptid_ptr;
7467 xfree (arg);
7468 }
7469
7470 /* Save the value of inferior_ptid so that it may be restored by a
7471 later call to do_cleanups(). Returns the struct cleanup pointer
7472 needed for later doing the cleanup. */
7473
7474 struct cleanup *
7475 save_inferior_ptid (void)
7476 {
7477 ptid_t *saved_ptid_ptr;
7478
7479 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7480 *saved_ptid_ptr = inferior_ptid;
7481 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7482 }
7483
7484 /* See infrun.h. */
7485
7486 void
7487 clear_exit_convenience_vars (void)
7488 {
7489 clear_internalvar (lookup_internalvar ("_exitsignal"));
7490 clear_internalvar (lookup_internalvar ("_exitcode"));
7491 }
7492 \f
7493
7494 /* User interface for reverse debugging:
7495 Set exec-direction / show exec-direction commands
7496 (returns error unless target implements to_set_exec_direction method). */
7497
7498 int execution_direction = EXEC_FORWARD;
7499 static const char exec_forward[] = "forward";
7500 static const char exec_reverse[] = "reverse";
7501 static const char *exec_direction = exec_forward;
7502 static const char *const exec_direction_names[] = {
7503 exec_forward,
7504 exec_reverse,
7505 NULL
7506 };
7507
7508 static void
7509 set_exec_direction_func (char *args, int from_tty,
7510 struct cmd_list_element *cmd)
7511 {
7512 if (target_can_execute_reverse)
7513 {
7514 if (!strcmp (exec_direction, exec_forward))
7515 execution_direction = EXEC_FORWARD;
7516 else if (!strcmp (exec_direction, exec_reverse))
7517 execution_direction = EXEC_REVERSE;
7518 }
7519 else
7520 {
7521 exec_direction = exec_forward;
7522 error (_("Target does not support this operation."));
7523 }
7524 }
7525
7526 static void
7527 show_exec_direction_func (struct ui_file *out, int from_tty,
7528 struct cmd_list_element *cmd, const char *value)
7529 {
7530 switch (execution_direction) {
7531 case EXEC_FORWARD:
7532 fprintf_filtered (out, _("Forward.\n"));
7533 break;
7534 case EXEC_REVERSE:
7535 fprintf_filtered (out, _("Reverse.\n"));
7536 break;
7537 default:
7538 internal_error (__FILE__, __LINE__,
7539 _("bogus execution_direction value: %d"),
7540 (int) execution_direction);
7541 }
7542 }
7543
7544 static void
7545 show_schedule_multiple (struct ui_file *file, int from_tty,
7546 struct cmd_list_element *c, const char *value)
7547 {
7548 fprintf_filtered (file, _("Resuming the execution of threads "
7549 "of all processes is %s.\n"), value);
7550 }
7551
7552 /* Implementation of `siginfo' variable. */
7553
7554 static const struct internalvar_funcs siginfo_funcs =
7555 {
7556 siginfo_make_value,
7557 NULL,
7558 NULL
7559 };
7560
7561 void
7562 _initialize_infrun (void)
7563 {
7564 int i;
7565 int numsigs;
7566 struct cmd_list_element *c;
7567
7568 add_info ("signals", signals_info, _("\
7569 What debugger does when program gets various signals.\n\
7570 Specify a signal as argument to print info on that signal only."));
7571 add_info_alias ("handle", "signals", 0);
7572
7573 c = add_com ("handle", class_run, handle_command, _("\
7574 Specify how to handle signals.\n\
7575 Usage: handle SIGNAL [ACTIONS]\n\
7576 Args are signals and actions to apply to those signals.\n\
7577 If no actions are specified, the current settings for the specified signals\n\
7578 will be displayed instead.\n\
7579 \n\
7580 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7581 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7582 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7583 The special arg \"all\" is recognized to mean all signals except those\n\
7584 used by the debugger, typically SIGTRAP and SIGINT.\n\
7585 \n\
7586 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7587 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7588 Stop means reenter debugger if this signal happens (implies print).\n\
7589 Print means print a message if this signal happens.\n\
7590 Pass means let program see this signal; otherwise program doesn't know.\n\
7591 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7592 Pass and Stop may be combined.\n\
7593 \n\
7594 Multiple signals may be specified. Signal numbers and signal names\n\
7595 may be interspersed with actions, with the actions being performed for\n\
7596 all signals cumulatively specified."));
7597 set_cmd_completer (c, handle_completer);
7598
7599 if (xdb_commands)
7600 {
7601 add_com ("lz", class_info, signals_info, _("\
7602 What debugger does when program gets various signals.\n\
7603 Specify a signal as argument to print info on that signal only."));
7604 add_com ("z", class_run, xdb_handle_command, _("\
7605 Specify how to handle a signal.\n\
7606 Args are signals and actions to apply to those signals.\n\
7607 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7608 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7609 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7610 The special arg \"all\" is recognized to mean all signals except those\n\
7611 used by the debugger, typically SIGTRAP and SIGINT.\n\
7612 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7613 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7614 nopass), \"Q\" (noprint)\n\
7615 Stop means reenter debugger if this signal happens (implies print).\n\
7616 Print means print a message if this signal happens.\n\
7617 Pass means let program see this signal; otherwise program doesn't know.\n\
7618 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7619 Pass and Stop may be combined."));
7620 }
7621
7622 if (!dbx_commands)
7623 stop_command = add_cmd ("stop", class_obscure,
7624 not_just_help_class_command, _("\
7625 There is no `stop' command, but you can set a hook on `stop'.\n\
7626 This allows you to set a list of commands to be run each time execution\n\
7627 of the program stops."), &cmdlist);
7628
7629 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7630 Set inferior debugging."), _("\
7631 Show inferior debugging."), _("\
7632 When non-zero, inferior specific debugging is enabled."),
7633 NULL,
7634 show_debug_infrun,
7635 &setdebuglist, &showdebuglist);
7636
7637 add_setshow_boolean_cmd ("displaced", class_maintenance,
7638 &debug_displaced, _("\
7639 Set displaced stepping debugging."), _("\
7640 Show displaced stepping debugging."), _("\
7641 When non-zero, displaced stepping specific debugging is enabled."),
7642 NULL,
7643 show_debug_displaced,
7644 &setdebuglist, &showdebuglist);
7645
7646 add_setshow_boolean_cmd ("non-stop", no_class,
7647 &non_stop_1, _("\
7648 Set whether gdb controls the inferior in non-stop mode."), _("\
7649 Show whether gdb controls the inferior in non-stop mode."), _("\
7650 When debugging a multi-threaded program and this setting is\n\
7651 off (the default, also called all-stop mode), when one thread stops\n\
7652 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7653 all other threads in the program while you interact with the thread of\n\
7654 interest. When you continue or step a thread, you can allow the other\n\
7655 threads to run, or have them remain stopped, but while you inspect any\n\
7656 thread's state, all threads stop.\n\
7657 \n\
7658 In non-stop mode, when one thread stops, other threads can continue\n\
7659 to run freely. You'll be able to step each thread independently,\n\
7660 leave it stopped or free to run as needed."),
7661 set_non_stop,
7662 show_non_stop,
7663 &setlist,
7664 &showlist);
7665
7666 numsigs = (int) GDB_SIGNAL_LAST;
7667 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7668 signal_print = (unsigned char *)
7669 xmalloc (sizeof (signal_print[0]) * numsigs);
7670 signal_program = (unsigned char *)
7671 xmalloc (sizeof (signal_program[0]) * numsigs);
7672 signal_catch = (unsigned char *)
7673 xmalloc (sizeof (signal_catch[0]) * numsigs);
7674 signal_pass = (unsigned char *)
7675 xmalloc (sizeof (signal_pass[0]) * numsigs);
7676 for (i = 0; i < numsigs; i++)
7677 {
7678 signal_stop[i] = 1;
7679 signal_print[i] = 1;
7680 signal_program[i] = 1;
7681 signal_catch[i] = 0;
7682 }
7683
7684 /* Signals caused by debugger's own actions
7685 should not be given to the program afterwards. */
7686 signal_program[GDB_SIGNAL_TRAP] = 0;
7687 signal_program[GDB_SIGNAL_INT] = 0;
7688
7689 /* Signals that are not errors should not normally enter the debugger. */
7690 signal_stop[GDB_SIGNAL_ALRM] = 0;
7691 signal_print[GDB_SIGNAL_ALRM] = 0;
7692 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7693 signal_print[GDB_SIGNAL_VTALRM] = 0;
7694 signal_stop[GDB_SIGNAL_PROF] = 0;
7695 signal_print[GDB_SIGNAL_PROF] = 0;
7696 signal_stop[GDB_SIGNAL_CHLD] = 0;
7697 signal_print[GDB_SIGNAL_CHLD] = 0;
7698 signal_stop[GDB_SIGNAL_IO] = 0;
7699 signal_print[GDB_SIGNAL_IO] = 0;
7700 signal_stop[GDB_SIGNAL_POLL] = 0;
7701 signal_print[GDB_SIGNAL_POLL] = 0;
7702 signal_stop[GDB_SIGNAL_URG] = 0;
7703 signal_print[GDB_SIGNAL_URG] = 0;
7704 signal_stop[GDB_SIGNAL_WINCH] = 0;
7705 signal_print[GDB_SIGNAL_WINCH] = 0;
7706 signal_stop[GDB_SIGNAL_PRIO] = 0;
7707 signal_print[GDB_SIGNAL_PRIO] = 0;
7708
7709 /* These signals are used internally by user-level thread
7710 implementations. (See signal(5) on Solaris.) Like the above
7711 signals, a healthy program receives and handles them as part of
7712 its normal operation. */
7713 signal_stop[GDB_SIGNAL_LWP] = 0;
7714 signal_print[GDB_SIGNAL_LWP] = 0;
7715 signal_stop[GDB_SIGNAL_WAITING] = 0;
7716 signal_print[GDB_SIGNAL_WAITING] = 0;
7717 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7718 signal_print[GDB_SIGNAL_CANCEL] = 0;
7719
7720 /* Update cached state. */
7721 signal_cache_update (-1);
7722
7723 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7724 &stop_on_solib_events, _("\
7725 Set stopping for shared library events."), _("\
7726 Show stopping for shared library events."), _("\
7727 If nonzero, gdb will give control to the user when the dynamic linker\n\
7728 notifies gdb of shared library events. The most common event of interest\n\
7729 to the user would be loading/unloading of a new library."),
7730 set_stop_on_solib_events,
7731 show_stop_on_solib_events,
7732 &setlist, &showlist);
7733
7734 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7735 follow_fork_mode_kind_names,
7736 &follow_fork_mode_string, _("\
7737 Set debugger response to a program call of fork or vfork."), _("\
7738 Show debugger response to a program call of fork or vfork."), _("\
7739 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7740 parent - the original process is debugged after a fork\n\
7741 child - the new process is debugged after a fork\n\
7742 The unfollowed process will continue to run.\n\
7743 By default, the debugger will follow the parent process."),
7744 NULL,
7745 show_follow_fork_mode_string,
7746 &setlist, &showlist);
7747
7748 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7749 follow_exec_mode_names,
7750 &follow_exec_mode_string, _("\
7751 Set debugger response to a program call of exec."), _("\
7752 Show debugger response to a program call of exec."), _("\
7753 An exec call replaces the program image of a process.\n\
7754 \n\
7755 follow-exec-mode can be:\n\
7756 \n\
7757 new - the debugger creates a new inferior and rebinds the process\n\
7758 to this new inferior. The program the process was running before\n\
7759 the exec call can be restarted afterwards by restarting the original\n\
7760 inferior.\n\
7761 \n\
7762 same - the debugger keeps the process bound to the same inferior.\n\
7763 The new executable image replaces the previous executable loaded in\n\
7764 the inferior. Restarting the inferior after the exec call restarts\n\
7765 the executable the process was running after the exec call.\n\
7766 \n\
7767 By default, the debugger will use the same inferior."),
7768 NULL,
7769 show_follow_exec_mode_string,
7770 &setlist, &showlist);
7771
7772 add_setshow_enum_cmd ("scheduler-locking", class_run,
7773 scheduler_enums, &scheduler_mode, _("\
7774 Set mode for locking scheduler during execution."), _("\
7775 Show mode for locking scheduler during execution."), _("\
7776 off == no locking (threads may preempt at any time)\n\
7777 on == full locking (no thread except the current thread may run)\n\
7778 step == scheduler locked during every single-step operation.\n\
7779 In this mode, no other thread may run during a step command.\n\
7780 Other threads may run while stepping over a function call ('next')."),
7781 set_schedlock_func, /* traps on target vector */
7782 show_scheduler_mode,
7783 &setlist, &showlist);
7784
7785 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7786 Set mode for resuming threads of all processes."), _("\
7787 Show mode for resuming threads of all processes."), _("\
7788 When on, execution commands (such as 'continue' or 'next') resume all\n\
7789 threads of all processes. When off (which is the default), execution\n\
7790 commands only resume the threads of the current process. The set of\n\
7791 threads that are resumed is further refined by the scheduler-locking\n\
7792 mode (see help set scheduler-locking)."),
7793 NULL,
7794 show_schedule_multiple,
7795 &setlist, &showlist);
7796
7797 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7798 Set mode of the step operation."), _("\
7799 Show mode of the step operation."), _("\
7800 When set, doing a step over a function without debug line information\n\
7801 will stop at the first instruction of that function. Otherwise, the\n\
7802 function is skipped and the step command stops at a different source line."),
7803 NULL,
7804 show_step_stop_if_no_debug,
7805 &setlist, &showlist);
7806
7807 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7808 &can_use_displaced_stepping, _("\
7809 Set debugger's willingness to use displaced stepping."), _("\
7810 Show debugger's willingness to use displaced stepping."), _("\
7811 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7812 supported by the target architecture. If off, gdb will not use displaced\n\
7813 stepping to step over breakpoints, even if such is supported by the target\n\
7814 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7815 if the target architecture supports it and non-stop mode is active, but will not\n\
7816 use it in all-stop mode (see help set non-stop)."),
7817 NULL,
7818 show_can_use_displaced_stepping,
7819 &setlist, &showlist);
7820
7821 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7822 &exec_direction, _("Set direction of execution.\n\
7823 Options are 'forward' or 'reverse'."),
7824 _("Show direction of execution (forward/reverse)."),
7825 _("Tells gdb whether to execute forward or backward."),
7826 set_exec_direction_func, show_exec_direction_func,
7827 &setlist, &showlist);
7828
7829 /* Set/show detach-on-fork: user-settable mode. */
7830
7831 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7832 Set whether gdb will detach the child of a fork."), _("\
7833 Show whether gdb will detach the child of a fork."), _("\
7834 Tells gdb whether to detach the child of a fork."),
7835 NULL, NULL, &setlist, &showlist);
7836
7837 /* Set/show disable address space randomization mode. */
7838
7839 add_setshow_boolean_cmd ("disable-randomization", class_support,
7840 &disable_randomization, _("\
7841 Set disabling of debuggee's virtual address space randomization."), _("\
7842 Show disabling of debuggee's virtual address space randomization."), _("\
7843 When this mode is on (which is the default), randomization of the virtual\n\
7844 address space is disabled. Standalone programs run with the randomization\n\
7845 enabled by default on some platforms."),
7846 &set_disable_randomization,
7847 &show_disable_randomization,
7848 &setlist, &showlist);
7849
7850 /* ptid initializations */
7851 inferior_ptid = null_ptid;
7852 target_last_wait_ptid = minus_one_ptid;
7853
7854 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7855 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7856 observer_attach_thread_exit (infrun_thread_thread_exit);
7857 observer_attach_inferior_exit (infrun_inferior_exit);
7858
7859 /* Explicitly create without lookup, since that tries to create a
7860 value with a void typed value, and when we get here, gdbarch
7861 isn't initialized yet. At this point, we're quite sure there
7862 isn't another convenience variable of the same name. */
7863 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7864
7865 add_setshow_boolean_cmd ("observer", no_class,
7866 &observer_mode_1, _("\
7867 Set whether gdb controls the inferior in observer mode."), _("\
7868 Show whether gdb controls the inferior in observer mode."), _("\
7869 In observer mode, GDB can get data from the inferior, but not\n\
7870 affect its execution. Registers and memory may not be changed,\n\
7871 breakpoints may not be set, and the program cannot be interrupted\n\
7872 or signalled."),
7873 set_observer_mode,
7874 show_observer_mode,
7875 &setlist,
7876 &showlist);
7877 }