]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
Change "set debug symtab-create" to take a verbosity level.
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2013 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "exceptions.h"
28 #include "breakpoint.h"
29 #include "gdb_wait.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "cli/cli-script.h"
33 #include "target.h"
34 #include "gdbthread.h"
35 #include "annotate.h"
36 #include "symfile.h"
37 #include "top.h"
38 #include <signal.h>
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "value.h"
42 #include "observer.h"
43 #include "language.h"
44 #include "solib.h"
45 #include "main.h"
46 #include "dictionary.h"
47 #include "block.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "record-full.h"
53 #include "inline-frame.h"
54 #include "jit.h"
55 #include "tracepoint.h"
56 #include "continuations.h"
57 #include "interps.h"
58 #include "skip.h"
59 #include "probe.h"
60 #include "objfiles.h"
61 #include "completer.h"
62 #include "target-descriptions.h"
63
64 /* Prototypes for local functions */
65
66 static void signals_info (char *, int);
67
68 static void handle_command (char *, int);
69
70 static void sig_print_info (enum gdb_signal);
71
72 static void sig_print_header (void);
73
74 static void resume_cleanups (void *);
75
76 static int hook_stop_stub (void *);
77
78 static int restore_selected_frame (void *);
79
80 static int follow_fork (void);
81
82 static void set_schedlock_func (char *args, int from_tty,
83 struct cmd_list_element *c);
84
85 static int currently_stepping (struct thread_info *tp);
86
87 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
88 void *data);
89
90 static void xdb_handle_command (char *args, int from_tty);
91
92 static int prepare_to_proceed (int);
93
94 static void print_exited_reason (int exitstatus);
95
96 static void print_signal_exited_reason (enum gdb_signal siggnal);
97
98 static void print_no_history_reason (void);
99
100 static void print_signal_received_reason (enum gdb_signal siggnal);
101
102 static void print_end_stepping_range_reason (void);
103
104 void _initialize_infrun (void);
105
106 void nullify_last_target_wait_ptid (void);
107
108 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
109
110 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
111
112 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
113
114 /* When set, stop the 'step' command if we enter a function which has
115 no line number information. The normal behavior is that we step
116 over such function. */
117 int step_stop_if_no_debug = 0;
118 static void
119 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
123 }
124
125 /* In asynchronous mode, but simulating synchronous execution. */
126
127 int sync_execution = 0;
128
129 /* wait_for_inferior and normal_stop use this to notify the user
130 when the inferior stopped in a different thread than it had been
131 running in. */
132
133 static ptid_t previous_inferior_ptid;
134
135 /* If set (default for legacy reasons), when following a fork, GDB
136 will detach from one of the fork branches, child or parent.
137 Exactly which branch is detached depends on 'set follow-fork-mode'
138 setting. */
139
140 static int detach_fork = 1;
141
142 int debug_displaced = 0;
143 static void
144 show_debug_displaced (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146 {
147 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
148 }
149
150 unsigned int debug_infrun = 0;
151 static void
152 show_debug_infrun (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154 {
155 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
156 }
157
158
159 /* Support for disabling address space randomization. */
160
161 int disable_randomization = 1;
162
163 static void
164 show_disable_randomization (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 if (target_supports_disable_randomization ())
168 fprintf_filtered (file,
169 _("Disabling randomization of debuggee's "
170 "virtual address space is %s.\n"),
171 value);
172 else
173 fputs_filtered (_("Disabling randomization of debuggee's "
174 "virtual address space is unsupported on\n"
175 "this platform.\n"), file);
176 }
177
178 static void
179 set_disable_randomization (char *args, int from_tty,
180 struct cmd_list_element *c)
181 {
182 if (!target_supports_disable_randomization ())
183 error (_("Disabling randomization of debuggee's "
184 "virtual address space is unsupported on\n"
185 "this platform."));
186 }
187
188 /* User interface for non-stop mode. */
189
190 int non_stop = 0;
191 static int non_stop_1 = 0;
192
193 static void
194 set_non_stop (char *args, int from_tty,
195 struct cmd_list_element *c)
196 {
197 if (target_has_execution)
198 {
199 non_stop_1 = non_stop;
200 error (_("Cannot change this setting while the inferior is running."));
201 }
202
203 non_stop = non_stop_1;
204 }
205
206 static void
207 show_non_stop (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209 {
210 fprintf_filtered (file,
211 _("Controlling the inferior in non-stop mode is %s.\n"),
212 value);
213 }
214
215 /* "Observer mode" is somewhat like a more extreme version of
216 non-stop, in which all GDB operations that might affect the
217 target's execution have been disabled. */
218
219 int observer_mode = 0;
220 static int observer_mode_1 = 0;
221
222 static void
223 set_observer_mode (char *args, int from_tty,
224 struct cmd_list_element *c)
225 {
226 if (target_has_execution)
227 {
228 observer_mode_1 = observer_mode;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 observer_mode = observer_mode_1;
233
234 may_write_registers = !observer_mode;
235 may_write_memory = !observer_mode;
236 may_insert_breakpoints = !observer_mode;
237 may_insert_tracepoints = !observer_mode;
238 /* We can insert fast tracepoints in or out of observer mode,
239 but enable them if we're going into this mode. */
240 if (observer_mode)
241 may_insert_fast_tracepoints = 1;
242 may_stop = !observer_mode;
243 update_target_permissions ();
244
245 /* Going *into* observer mode we must force non-stop, then
246 going out we leave it that way. */
247 if (observer_mode)
248 {
249 target_async_permitted = 1;
250 pagination_enabled = 0;
251 non_stop = non_stop_1 = 1;
252 }
253
254 if (from_tty)
255 printf_filtered (_("Observer mode is now %s.\n"),
256 (observer_mode ? "on" : "off"));
257 }
258
259 static void
260 show_observer_mode (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
264 }
265
266 /* This updates the value of observer mode based on changes in
267 permissions. Note that we are deliberately ignoring the values of
268 may-write-registers and may-write-memory, since the user may have
269 reason to enable these during a session, for instance to turn on a
270 debugging-related global. */
271
272 void
273 update_observer_mode (void)
274 {
275 int newval;
276
277 newval = (!may_insert_breakpoints
278 && !may_insert_tracepoints
279 && may_insert_fast_tracepoints
280 && !may_stop
281 && non_stop);
282
283 /* Let the user know if things change. */
284 if (newval != observer_mode)
285 printf_filtered (_("Observer mode is now %s.\n"),
286 (newval ? "on" : "off"));
287
288 observer_mode = observer_mode_1 = newval;
289 }
290
291 /* Tables of how to react to signals; the user sets them. */
292
293 static unsigned char *signal_stop;
294 static unsigned char *signal_print;
295 static unsigned char *signal_program;
296
297 /* Table of signals that are registered with "catch signal". A
298 non-zero entry indicates that the signal is caught by some "catch
299 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
300 signals. */
301 static unsigned char *signal_catch;
302
303 /* Table of signals that the target may silently handle.
304 This is automatically determined from the flags above,
305 and simply cached here. */
306 static unsigned char *signal_pass;
307
308 #define SET_SIGS(nsigs,sigs,flags) \
309 do { \
310 int signum = (nsigs); \
311 while (signum-- > 0) \
312 if ((sigs)[signum]) \
313 (flags)[signum] = 1; \
314 } while (0)
315
316 #define UNSET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 0; \
322 } while (0)
323
324 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
325 this function is to avoid exporting `signal_program'. */
326
327 void
328 update_signals_program_target (void)
329 {
330 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
331 }
332
333 /* Value to pass to target_resume() to cause all threads to resume. */
334
335 #define RESUME_ALL minus_one_ptid
336
337 /* Command list pointer for the "stop" placeholder. */
338
339 static struct cmd_list_element *stop_command;
340
341 /* Function inferior was in as of last step command. */
342
343 static struct symbol *step_start_function;
344
345 /* Nonzero if we want to give control to the user when we're notified
346 of shared library events by the dynamic linker. */
347 int stop_on_solib_events;
348
349 /* Enable or disable optional shared library event breakpoints
350 as appropriate when the above flag is changed. */
351
352 static void
353 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
354 {
355 update_solib_breakpoints ();
356 }
357
358 static void
359 show_stop_on_solib_events (struct ui_file *file, int from_tty,
360 struct cmd_list_element *c, const char *value)
361 {
362 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
363 value);
364 }
365
366 /* Nonzero means expecting a trace trap
367 and should stop the inferior and return silently when it happens. */
368
369 int stop_after_trap;
370
371 /* Save register contents here when executing a "finish" command or are
372 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
373 Thus this contains the return value from the called function (assuming
374 values are returned in a register). */
375
376 struct regcache *stop_registers;
377
378 /* Nonzero after stop if current stack frame should be printed. */
379
380 static int stop_print_frame;
381
382 /* This is a cached copy of the pid/waitstatus of the last event
383 returned by target_wait()/deprecated_target_wait_hook(). This
384 information is returned by get_last_target_status(). */
385 static ptid_t target_last_wait_ptid;
386 static struct target_waitstatus target_last_waitstatus;
387
388 static void context_switch (ptid_t ptid);
389
390 void init_thread_stepping_state (struct thread_info *tss);
391
392 static void init_infwait_state (void);
393
394 static const char follow_fork_mode_child[] = "child";
395 static const char follow_fork_mode_parent[] = "parent";
396
397 static const char *const follow_fork_mode_kind_names[] = {
398 follow_fork_mode_child,
399 follow_fork_mode_parent,
400 NULL
401 };
402
403 static const char *follow_fork_mode_string = follow_fork_mode_parent;
404 static void
405 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
406 struct cmd_list_element *c, const char *value)
407 {
408 fprintf_filtered (file,
409 _("Debugger response to a program "
410 "call of fork or vfork is \"%s\".\n"),
411 value);
412 }
413 \f
414
415 /* Tell the target to follow the fork we're stopped at. Returns true
416 if the inferior should be resumed; false, if the target for some
417 reason decided it's best not to resume. */
418
419 static int
420 follow_fork (void)
421 {
422 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
423 int should_resume = 1;
424 struct thread_info *tp;
425
426 /* Copy user stepping state to the new inferior thread. FIXME: the
427 followed fork child thread should have a copy of most of the
428 parent thread structure's run control related fields, not just these.
429 Initialized to avoid "may be used uninitialized" warnings from gcc. */
430 struct breakpoint *step_resume_breakpoint = NULL;
431 struct breakpoint *exception_resume_breakpoint = NULL;
432 CORE_ADDR step_range_start = 0;
433 CORE_ADDR step_range_end = 0;
434 struct frame_id step_frame_id = { 0 };
435
436 if (!non_stop)
437 {
438 ptid_t wait_ptid;
439 struct target_waitstatus wait_status;
440
441 /* Get the last target status returned by target_wait(). */
442 get_last_target_status (&wait_ptid, &wait_status);
443
444 /* If not stopped at a fork event, then there's nothing else to
445 do. */
446 if (wait_status.kind != TARGET_WAITKIND_FORKED
447 && wait_status.kind != TARGET_WAITKIND_VFORKED)
448 return 1;
449
450 /* Check if we switched over from WAIT_PTID, since the event was
451 reported. */
452 if (!ptid_equal (wait_ptid, minus_one_ptid)
453 && !ptid_equal (inferior_ptid, wait_ptid))
454 {
455 /* We did. Switch back to WAIT_PTID thread, to tell the
456 target to follow it (in either direction). We'll
457 afterwards refuse to resume, and inform the user what
458 happened. */
459 switch_to_thread (wait_ptid);
460 should_resume = 0;
461 }
462 }
463
464 tp = inferior_thread ();
465
466 /* If there were any forks/vforks that were caught and are now to be
467 followed, then do so now. */
468 switch (tp->pending_follow.kind)
469 {
470 case TARGET_WAITKIND_FORKED:
471 case TARGET_WAITKIND_VFORKED:
472 {
473 ptid_t parent, child;
474
475 /* If the user did a next/step, etc, over a fork call,
476 preserve the stepping state in the fork child. */
477 if (follow_child && should_resume)
478 {
479 step_resume_breakpoint = clone_momentary_breakpoint
480 (tp->control.step_resume_breakpoint);
481 step_range_start = tp->control.step_range_start;
482 step_range_end = tp->control.step_range_end;
483 step_frame_id = tp->control.step_frame_id;
484 exception_resume_breakpoint
485 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
486
487 /* For now, delete the parent's sr breakpoint, otherwise,
488 parent/child sr breakpoints are considered duplicates,
489 and the child version will not be installed. Remove
490 this when the breakpoints module becomes aware of
491 inferiors and address spaces. */
492 delete_step_resume_breakpoint (tp);
493 tp->control.step_range_start = 0;
494 tp->control.step_range_end = 0;
495 tp->control.step_frame_id = null_frame_id;
496 delete_exception_resume_breakpoint (tp);
497 }
498
499 parent = inferior_ptid;
500 child = tp->pending_follow.value.related_pid;
501
502 /* Tell the target to do whatever is necessary to follow
503 either parent or child. */
504 if (target_follow_fork (follow_child, detach_fork))
505 {
506 /* Target refused to follow, or there's some other reason
507 we shouldn't resume. */
508 should_resume = 0;
509 }
510 else
511 {
512 /* This pending follow fork event is now handled, one way
513 or another. The previous selected thread may be gone
514 from the lists by now, but if it is still around, need
515 to clear the pending follow request. */
516 tp = find_thread_ptid (parent);
517 if (tp)
518 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
519
520 /* This makes sure we don't try to apply the "Switched
521 over from WAIT_PID" logic above. */
522 nullify_last_target_wait_ptid ();
523
524 /* If we followed the child, switch to it... */
525 if (follow_child)
526 {
527 switch_to_thread (child);
528
529 /* ... and preserve the stepping state, in case the
530 user was stepping over the fork call. */
531 if (should_resume)
532 {
533 tp = inferior_thread ();
534 tp->control.step_resume_breakpoint
535 = step_resume_breakpoint;
536 tp->control.step_range_start = step_range_start;
537 tp->control.step_range_end = step_range_end;
538 tp->control.step_frame_id = step_frame_id;
539 tp->control.exception_resume_breakpoint
540 = exception_resume_breakpoint;
541 }
542 else
543 {
544 /* If we get here, it was because we're trying to
545 resume from a fork catchpoint, but, the user
546 has switched threads away from the thread that
547 forked. In that case, the resume command
548 issued is most likely not applicable to the
549 child, so just warn, and refuse to resume. */
550 warning (_("Not resuming: switched threads "
551 "before following fork child.\n"));
552 }
553
554 /* Reset breakpoints in the child as appropriate. */
555 follow_inferior_reset_breakpoints ();
556 }
557 else
558 switch_to_thread (parent);
559 }
560 }
561 break;
562 case TARGET_WAITKIND_SPURIOUS:
563 /* Nothing to follow. */
564 break;
565 default:
566 internal_error (__FILE__, __LINE__,
567 "Unexpected pending_follow.kind %d\n",
568 tp->pending_follow.kind);
569 break;
570 }
571
572 return should_resume;
573 }
574
575 void
576 follow_inferior_reset_breakpoints (void)
577 {
578 struct thread_info *tp = inferior_thread ();
579
580 /* Was there a step_resume breakpoint? (There was if the user
581 did a "next" at the fork() call.) If so, explicitly reset its
582 thread number.
583
584 step_resumes are a form of bp that are made to be per-thread.
585 Since we created the step_resume bp when the parent process
586 was being debugged, and now are switching to the child process,
587 from the breakpoint package's viewpoint, that's a switch of
588 "threads". We must update the bp's notion of which thread
589 it is for, or it'll be ignored when it triggers. */
590
591 if (tp->control.step_resume_breakpoint)
592 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
593
594 if (tp->control.exception_resume_breakpoint)
595 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
596
597 /* Reinsert all breakpoints in the child. The user may have set
598 breakpoints after catching the fork, in which case those
599 were never set in the child, but only in the parent. This makes
600 sure the inserted breakpoints match the breakpoint list. */
601
602 breakpoint_re_set ();
603 insert_breakpoints ();
604 }
605
606 /* The child has exited or execed: resume threads of the parent the
607 user wanted to be executing. */
608
609 static int
610 proceed_after_vfork_done (struct thread_info *thread,
611 void *arg)
612 {
613 int pid = * (int *) arg;
614
615 if (ptid_get_pid (thread->ptid) == pid
616 && is_running (thread->ptid)
617 && !is_executing (thread->ptid)
618 && !thread->stop_requested
619 && thread->suspend.stop_signal == GDB_SIGNAL_0)
620 {
621 if (debug_infrun)
622 fprintf_unfiltered (gdb_stdlog,
623 "infrun: resuming vfork parent thread %s\n",
624 target_pid_to_str (thread->ptid));
625
626 switch_to_thread (thread->ptid);
627 clear_proceed_status ();
628 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
629 }
630
631 return 0;
632 }
633
634 /* Called whenever we notice an exec or exit event, to handle
635 detaching or resuming a vfork parent. */
636
637 static void
638 handle_vfork_child_exec_or_exit (int exec)
639 {
640 struct inferior *inf = current_inferior ();
641
642 if (inf->vfork_parent)
643 {
644 int resume_parent = -1;
645
646 /* This exec or exit marks the end of the shared memory region
647 between the parent and the child. If the user wanted to
648 detach from the parent, now is the time. */
649
650 if (inf->vfork_parent->pending_detach)
651 {
652 struct thread_info *tp;
653 struct cleanup *old_chain;
654 struct program_space *pspace;
655 struct address_space *aspace;
656
657 /* follow-fork child, detach-on-fork on. */
658
659 inf->vfork_parent->pending_detach = 0;
660
661 if (!exec)
662 {
663 /* If we're handling a child exit, then inferior_ptid
664 points at the inferior's pid, not to a thread. */
665 old_chain = save_inferior_ptid ();
666 save_current_program_space ();
667 save_current_inferior ();
668 }
669 else
670 old_chain = save_current_space_and_thread ();
671
672 /* We're letting loose of the parent. */
673 tp = any_live_thread_of_process (inf->vfork_parent->pid);
674 switch_to_thread (tp->ptid);
675
676 /* We're about to detach from the parent, which implicitly
677 removes breakpoints from its address space. There's a
678 catch here: we want to reuse the spaces for the child,
679 but, parent/child are still sharing the pspace at this
680 point, although the exec in reality makes the kernel give
681 the child a fresh set of new pages. The problem here is
682 that the breakpoints module being unaware of this, would
683 likely chose the child process to write to the parent
684 address space. Swapping the child temporarily away from
685 the spaces has the desired effect. Yes, this is "sort
686 of" a hack. */
687
688 pspace = inf->pspace;
689 aspace = inf->aspace;
690 inf->aspace = NULL;
691 inf->pspace = NULL;
692
693 if (debug_infrun || info_verbose)
694 {
695 target_terminal_ours ();
696
697 if (exec)
698 fprintf_filtered (gdb_stdlog,
699 "Detaching vfork parent process "
700 "%d after child exec.\n",
701 inf->vfork_parent->pid);
702 else
703 fprintf_filtered (gdb_stdlog,
704 "Detaching vfork parent process "
705 "%d after child exit.\n",
706 inf->vfork_parent->pid);
707 }
708
709 target_detach (NULL, 0);
710
711 /* Put it back. */
712 inf->pspace = pspace;
713 inf->aspace = aspace;
714
715 do_cleanups (old_chain);
716 }
717 else if (exec)
718 {
719 /* We're staying attached to the parent, so, really give the
720 child a new address space. */
721 inf->pspace = add_program_space (maybe_new_address_space ());
722 inf->aspace = inf->pspace->aspace;
723 inf->removable = 1;
724 set_current_program_space (inf->pspace);
725
726 resume_parent = inf->vfork_parent->pid;
727
728 /* Break the bonds. */
729 inf->vfork_parent->vfork_child = NULL;
730 }
731 else
732 {
733 struct cleanup *old_chain;
734 struct program_space *pspace;
735
736 /* If this is a vfork child exiting, then the pspace and
737 aspaces were shared with the parent. Since we're
738 reporting the process exit, we'll be mourning all that is
739 found in the address space, and switching to null_ptid,
740 preparing to start a new inferior. But, since we don't
741 want to clobber the parent's address/program spaces, we
742 go ahead and create a new one for this exiting
743 inferior. */
744
745 /* Switch to null_ptid, so that clone_program_space doesn't want
746 to read the selected frame of a dead process. */
747 old_chain = save_inferior_ptid ();
748 inferior_ptid = null_ptid;
749
750 /* This inferior is dead, so avoid giving the breakpoints
751 module the option to write through to it (cloning a
752 program space resets breakpoints). */
753 inf->aspace = NULL;
754 inf->pspace = NULL;
755 pspace = add_program_space (maybe_new_address_space ());
756 set_current_program_space (pspace);
757 inf->removable = 1;
758 inf->symfile_flags = SYMFILE_NO_READ;
759 clone_program_space (pspace, inf->vfork_parent->pspace);
760 inf->pspace = pspace;
761 inf->aspace = pspace->aspace;
762
763 /* Put back inferior_ptid. We'll continue mourning this
764 inferior. */
765 do_cleanups (old_chain);
766
767 resume_parent = inf->vfork_parent->pid;
768 /* Break the bonds. */
769 inf->vfork_parent->vfork_child = NULL;
770 }
771
772 inf->vfork_parent = NULL;
773
774 gdb_assert (current_program_space == inf->pspace);
775
776 if (non_stop && resume_parent != -1)
777 {
778 /* If the user wanted the parent to be running, let it go
779 free now. */
780 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
781
782 if (debug_infrun)
783 fprintf_unfiltered (gdb_stdlog,
784 "infrun: resuming vfork parent process %d\n",
785 resume_parent);
786
787 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
788
789 do_cleanups (old_chain);
790 }
791 }
792 }
793
794 /* Enum strings for "set|show follow-exec-mode". */
795
796 static const char follow_exec_mode_new[] = "new";
797 static const char follow_exec_mode_same[] = "same";
798 static const char *const follow_exec_mode_names[] =
799 {
800 follow_exec_mode_new,
801 follow_exec_mode_same,
802 NULL,
803 };
804
805 static const char *follow_exec_mode_string = follow_exec_mode_same;
806 static void
807 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
808 struct cmd_list_element *c, const char *value)
809 {
810 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
811 }
812
813 /* EXECD_PATHNAME is assumed to be non-NULL. */
814
815 static void
816 follow_exec (ptid_t pid, char *execd_pathname)
817 {
818 struct thread_info *th = inferior_thread ();
819 struct inferior *inf = current_inferior ();
820
821 /* This is an exec event that we actually wish to pay attention to.
822 Refresh our symbol table to the newly exec'd program, remove any
823 momentary bp's, etc.
824
825 If there are breakpoints, they aren't really inserted now,
826 since the exec() transformed our inferior into a fresh set
827 of instructions.
828
829 We want to preserve symbolic breakpoints on the list, since
830 we have hopes that they can be reset after the new a.out's
831 symbol table is read.
832
833 However, any "raw" breakpoints must be removed from the list
834 (e.g., the solib bp's), since their address is probably invalid
835 now.
836
837 And, we DON'T want to call delete_breakpoints() here, since
838 that may write the bp's "shadow contents" (the instruction
839 value that was overwritten witha TRAP instruction). Since
840 we now have a new a.out, those shadow contents aren't valid. */
841
842 mark_breakpoints_out ();
843
844 update_breakpoints_after_exec ();
845
846 /* If there was one, it's gone now. We cannot truly step-to-next
847 statement through an exec(). */
848 th->control.step_resume_breakpoint = NULL;
849 th->control.exception_resume_breakpoint = NULL;
850 th->control.step_range_start = 0;
851 th->control.step_range_end = 0;
852
853 /* The target reports the exec event to the main thread, even if
854 some other thread does the exec, and even if the main thread was
855 already stopped --- if debugging in non-stop mode, it's possible
856 the user had the main thread held stopped in the previous image
857 --- release it now. This is the same behavior as step-over-exec
858 with scheduler-locking on in all-stop mode. */
859 th->stop_requested = 0;
860
861 /* What is this a.out's name? */
862 printf_unfiltered (_("%s is executing new program: %s\n"),
863 target_pid_to_str (inferior_ptid),
864 execd_pathname);
865
866 /* We've followed the inferior through an exec. Therefore, the
867 inferior has essentially been killed & reborn. */
868
869 gdb_flush (gdb_stdout);
870
871 breakpoint_init_inferior (inf_execd);
872
873 if (gdb_sysroot && *gdb_sysroot)
874 {
875 char *name = alloca (strlen (gdb_sysroot)
876 + strlen (execd_pathname)
877 + 1);
878
879 strcpy (name, gdb_sysroot);
880 strcat (name, execd_pathname);
881 execd_pathname = name;
882 }
883
884 /* Reset the shared library package. This ensures that we get a
885 shlib event when the child reaches "_start", at which point the
886 dld will have had a chance to initialize the child. */
887 /* Also, loading a symbol file below may trigger symbol lookups, and
888 we don't want those to be satisfied by the libraries of the
889 previous incarnation of this process. */
890 no_shared_libraries (NULL, 0);
891
892 if (follow_exec_mode_string == follow_exec_mode_new)
893 {
894 struct program_space *pspace;
895
896 /* The user wants to keep the old inferior and program spaces
897 around. Create a new fresh one, and switch to it. */
898
899 inf = add_inferior (current_inferior ()->pid);
900 pspace = add_program_space (maybe_new_address_space ());
901 inf->pspace = pspace;
902 inf->aspace = pspace->aspace;
903
904 exit_inferior_num_silent (current_inferior ()->num);
905
906 set_current_inferior (inf);
907 set_current_program_space (pspace);
908 }
909 else
910 {
911 /* The old description may no longer be fit for the new image.
912 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
913 old description; we'll read a new one below. No need to do
914 this on "follow-exec-mode new", as the old inferior stays
915 around (its description is later cleared/refetched on
916 restart). */
917 target_clear_description ();
918 }
919
920 gdb_assert (current_program_space == inf->pspace);
921
922 /* That a.out is now the one to use. */
923 exec_file_attach (execd_pathname, 0);
924
925 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
926 (Position Independent Executable) main symbol file will get applied by
927 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
928 the breakpoints with the zero displacement. */
929
930 symbol_file_add (execd_pathname,
931 (inf->symfile_flags
932 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
933 NULL, 0);
934
935 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
936 set_initial_language ();
937
938 /* If the target can specify a description, read it. Must do this
939 after flipping to the new executable (because the target supplied
940 description must be compatible with the executable's
941 architecture, and the old executable may e.g., be 32-bit, while
942 the new one 64-bit), and before anything involving memory or
943 registers. */
944 target_find_description ();
945
946 solib_create_inferior_hook (0);
947
948 jit_inferior_created_hook ();
949
950 breakpoint_re_set ();
951
952 /* Reinsert all breakpoints. (Those which were symbolic have
953 been reset to the proper address in the new a.out, thanks
954 to symbol_file_command...). */
955 insert_breakpoints ();
956
957 /* The next resume of this inferior should bring it to the shlib
958 startup breakpoints. (If the user had also set bp's on
959 "main" from the old (parent) process, then they'll auto-
960 matically get reset there in the new process.). */
961 }
962
963 /* Non-zero if we just simulating a single-step. This is needed
964 because we cannot remove the breakpoints in the inferior process
965 until after the `wait' in `wait_for_inferior'. */
966 static int singlestep_breakpoints_inserted_p = 0;
967
968 /* The thread we inserted single-step breakpoints for. */
969 static ptid_t singlestep_ptid;
970
971 /* PC when we started this single-step. */
972 static CORE_ADDR singlestep_pc;
973
974 /* If another thread hit the singlestep breakpoint, we save the original
975 thread here so that we can resume single-stepping it later. */
976 static ptid_t saved_singlestep_ptid;
977 static int stepping_past_singlestep_breakpoint;
978
979 /* If not equal to null_ptid, this means that after stepping over breakpoint
980 is finished, we need to switch to deferred_step_ptid, and step it.
981
982 The use case is when one thread has hit a breakpoint, and then the user
983 has switched to another thread and issued 'step'. We need to step over
984 breakpoint in the thread which hit the breakpoint, but then continue
985 stepping the thread user has selected. */
986 static ptid_t deferred_step_ptid;
987 \f
988 /* Displaced stepping. */
989
990 /* In non-stop debugging mode, we must take special care to manage
991 breakpoints properly; in particular, the traditional strategy for
992 stepping a thread past a breakpoint it has hit is unsuitable.
993 'Displaced stepping' is a tactic for stepping one thread past a
994 breakpoint it has hit while ensuring that other threads running
995 concurrently will hit the breakpoint as they should.
996
997 The traditional way to step a thread T off a breakpoint in a
998 multi-threaded program in all-stop mode is as follows:
999
1000 a0) Initially, all threads are stopped, and breakpoints are not
1001 inserted.
1002 a1) We single-step T, leaving breakpoints uninserted.
1003 a2) We insert breakpoints, and resume all threads.
1004
1005 In non-stop debugging, however, this strategy is unsuitable: we
1006 don't want to have to stop all threads in the system in order to
1007 continue or step T past a breakpoint. Instead, we use displaced
1008 stepping:
1009
1010 n0) Initially, T is stopped, other threads are running, and
1011 breakpoints are inserted.
1012 n1) We copy the instruction "under" the breakpoint to a separate
1013 location, outside the main code stream, making any adjustments
1014 to the instruction, register, and memory state as directed by
1015 T's architecture.
1016 n2) We single-step T over the instruction at its new location.
1017 n3) We adjust the resulting register and memory state as directed
1018 by T's architecture. This includes resetting T's PC to point
1019 back into the main instruction stream.
1020 n4) We resume T.
1021
1022 This approach depends on the following gdbarch methods:
1023
1024 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1025 indicate where to copy the instruction, and how much space must
1026 be reserved there. We use these in step n1.
1027
1028 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1029 address, and makes any necessary adjustments to the instruction,
1030 register contents, and memory. We use this in step n1.
1031
1032 - gdbarch_displaced_step_fixup adjusts registers and memory after
1033 we have successfuly single-stepped the instruction, to yield the
1034 same effect the instruction would have had if we had executed it
1035 at its original address. We use this in step n3.
1036
1037 - gdbarch_displaced_step_free_closure provides cleanup.
1038
1039 The gdbarch_displaced_step_copy_insn and
1040 gdbarch_displaced_step_fixup functions must be written so that
1041 copying an instruction with gdbarch_displaced_step_copy_insn,
1042 single-stepping across the copied instruction, and then applying
1043 gdbarch_displaced_insn_fixup should have the same effects on the
1044 thread's memory and registers as stepping the instruction in place
1045 would have. Exactly which responsibilities fall to the copy and
1046 which fall to the fixup is up to the author of those functions.
1047
1048 See the comments in gdbarch.sh for details.
1049
1050 Note that displaced stepping and software single-step cannot
1051 currently be used in combination, although with some care I think
1052 they could be made to. Software single-step works by placing
1053 breakpoints on all possible subsequent instructions; if the
1054 displaced instruction is a PC-relative jump, those breakpoints
1055 could fall in very strange places --- on pages that aren't
1056 executable, or at addresses that are not proper instruction
1057 boundaries. (We do generally let other threads run while we wait
1058 to hit the software single-step breakpoint, and they might
1059 encounter such a corrupted instruction.) One way to work around
1060 this would be to have gdbarch_displaced_step_copy_insn fully
1061 simulate the effect of PC-relative instructions (and return NULL)
1062 on architectures that use software single-stepping.
1063
1064 In non-stop mode, we can have independent and simultaneous step
1065 requests, so more than one thread may need to simultaneously step
1066 over a breakpoint. The current implementation assumes there is
1067 only one scratch space per process. In this case, we have to
1068 serialize access to the scratch space. If thread A wants to step
1069 over a breakpoint, but we are currently waiting for some other
1070 thread to complete a displaced step, we leave thread A stopped and
1071 place it in the displaced_step_request_queue. Whenever a displaced
1072 step finishes, we pick the next thread in the queue and start a new
1073 displaced step operation on it. See displaced_step_prepare and
1074 displaced_step_fixup for details. */
1075
1076 struct displaced_step_request
1077 {
1078 ptid_t ptid;
1079 struct displaced_step_request *next;
1080 };
1081
1082 /* Per-inferior displaced stepping state. */
1083 struct displaced_step_inferior_state
1084 {
1085 /* Pointer to next in linked list. */
1086 struct displaced_step_inferior_state *next;
1087
1088 /* The process this displaced step state refers to. */
1089 int pid;
1090
1091 /* A queue of pending displaced stepping requests. One entry per
1092 thread that needs to do a displaced step. */
1093 struct displaced_step_request *step_request_queue;
1094
1095 /* If this is not null_ptid, this is the thread carrying out a
1096 displaced single-step in process PID. This thread's state will
1097 require fixing up once it has completed its step. */
1098 ptid_t step_ptid;
1099
1100 /* The architecture the thread had when we stepped it. */
1101 struct gdbarch *step_gdbarch;
1102
1103 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1104 for post-step cleanup. */
1105 struct displaced_step_closure *step_closure;
1106
1107 /* The address of the original instruction, and the copy we
1108 made. */
1109 CORE_ADDR step_original, step_copy;
1110
1111 /* Saved contents of copy area. */
1112 gdb_byte *step_saved_copy;
1113 };
1114
1115 /* The list of states of processes involved in displaced stepping
1116 presently. */
1117 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1118
1119 /* Get the displaced stepping state of process PID. */
1120
1121 static struct displaced_step_inferior_state *
1122 get_displaced_stepping_state (int pid)
1123 {
1124 struct displaced_step_inferior_state *state;
1125
1126 for (state = displaced_step_inferior_states;
1127 state != NULL;
1128 state = state->next)
1129 if (state->pid == pid)
1130 return state;
1131
1132 return NULL;
1133 }
1134
1135 /* Add a new displaced stepping state for process PID to the displaced
1136 stepping state list, or return a pointer to an already existing
1137 entry, if it already exists. Never returns NULL. */
1138
1139 static struct displaced_step_inferior_state *
1140 add_displaced_stepping_state (int pid)
1141 {
1142 struct displaced_step_inferior_state *state;
1143
1144 for (state = displaced_step_inferior_states;
1145 state != NULL;
1146 state = state->next)
1147 if (state->pid == pid)
1148 return state;
1149
1150 state = xcalloc (1, sizeof (*state));
1151 state->pid = pid;
1152 state->next = displaced_step_inferior_states;
1153 displaced_step_inferior_states = state;
1154
1155 return state;
1156 }
1157
1158 /* If inferior is in displaced stepping, and ADDR equals to starting address
1159 of copy area, return corresponding displaced_step_closure. Otherwise,
1160 return NULL. */
1161
1162 struct displaced_step_closure*
1163 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1164 {
1165 struct displaced_step_inferior_state *displaced
1166 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1167
1168 /* If checking the mode of displaced instruction in copy area. */
1169 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1170 && (displaced->step_copy == addr))
1171 return displaced->step_closure;
1172
1173 return NULL;
1174 }
1175
1176 /* Remove the displaced stepping state of process PID. */
1177
1178 static void
1179 remove_displaced_stepping_state (int pid)
1180 {
1181 struct displaced_step_inferior_state *it, **prev_next_p;
1182
1183 gdb_assert (pid != 0);
1184
1185 it = displaced_step_inferior_states;
1186 prev_next_p = &displaced_step_inferior_states;
1187 while (it)
1188 {
1189 if (it->pid == pid)
1190 {
1191 *prev_next_p = it->next;
1192 xfree (it);
1193 return;
1194 }
1195
1196 prev_next_p = &it->next;
1197 it = *prev_next_p;
1198 }
1199 }
1200
1201 static void
1202 infrun_inferior_exit (struct inferior *inf)
1203 {
1204 remove_displaced_stepping_state (inf->pid);
1205 }
1206
1207 /* If ON, and the architecture supports it, GDB will use displaced
1208 stepping to step over breakpoints. If OFF, or if the architecture
1209 doesn't support it, GDB will instead use the traditional
1210 hold-and-step approach. If AUTO (which is the default), GDB will
1211 decide which technique to use to step over breakpoints depending on
1212 which of all-stop or non-stop mode is active --- displaced stepping
1213 in non-stop mode; hold-and-step in all-stop mode. */
1214
1215 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1216
1217 static void
1218 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1219 struct cmd_list_element *c,
1220 const char *value)
1221 {
1222 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1223 fprintf_filtered (file,
1224 _("Debugger's willingness to use displaced stepping "
1225 "to step over breakpoints is %s (currently %s).\n"),
1226 value, non_stop ? "on" : "off");
1227 else
1228 fprintf_filtered (file,
1229 _("Debugger's willingness to use displaced stepping "
1230 "to step over breakpoints is %s.\n"), value);
1231 }
1232
1233 /* Return non-zero if displaced stepping can/should be used to step
1234 over breakpoints. */
1235
1236 static int
1237 use_displaced_stepping (struct gdbarch *gdbarch)
1238 {
1239 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1240 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1241 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1242 && !RECORD_IS_USED);
1243 }
1244
1245 /* Clean out any stray displaced stepping state. */
1246 static void
1247 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1248 {
1249 /* Indicate that there is no cleanup pending. */
1250 displaced->step_ptid = null_ptid;
1251
1252 if (displaced->step_closure)
1253 {
1254 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1255 displaced->step_closure);
1256 displaced->step_closure = NULL;
1257 }
1258 }
1259
1260 static void
1261 displaced_step_clear_cleanup (void *arg)
1262 {
1263 struct displaced_step_inferior_state *state = arg;
1264
1265 displaced_step_clear (state);
1266 }
1267
1268 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1269 void
1270 displaced_step_dump_bytes (struct ui_file *file,
1271 const gdb_byte *buf,
1272 size_t len)
1273 {
1274 int i;
1275
1276 for (i = 0; i < len; i++)
1277 fprintf_unfiltered (file, "%02x ", buf[i]);
1278 fputs_unfiltered ("\n", file);
1279 }
1280
1281 /* Prepare to single-step, using displaced stepping.
1282
1283 Note that we cannot use displaced stepping when we have a signal to
1284 deliver. If we have a signal to deliver and an instruction to step
1285 over, then after the step, there will be no indication from the
1286 target whether the thread entered a signal handler or ignored the
1287 signal and stepped over the instruction successfully --- both cases
1288 result in a simple SIGTRAP. In the first case we mustn't do a
1289 fixup, and in the second case we must --- but we can't tell which.
1290 Comments in the code for 'random signals' in handle_inferior_event
1291 explain how we handle this case instead.
1292
1293 Returns 1 if preparing was successful -- this thread is going to be
1294 stepped now; or 0 if displaced stepping this thread got queued. */
1295 static int
1296 displaced_step_prepare (ptid_t ptid)
1297 {
1298 struct cleanup *old_cleanups, *ignore_cleanups;
1299 struct thread_info *tp = find_thread_ptid (ptid);
1300 struct regcache *regcache = get_thread_regcache (ptid);
1301 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1302 CORE_ADDR original, copy;
1303 ULONGEST len;
1304 struct displaced_step_closure *closure;
1305 struct displaced_step_inferior_state *displaced;
1306 int status;
1307
1308 /* We should never reach this function if the architecture does not
1309 support displaced stepping. */
1310 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1311
1312 /* Disable range stepping while executing in the scratch pad. We
1313 want a single-step even if executing the displaced instruction in
1314 the scratch buffer lands within the stepping range (e.g., a
1315 jump/branch). */
1316 tp->control.may_range_step = 0;
1317
1318 /* We have to displaced step one thread at a time, as we only have
1319 access to a single scratch space per inferior. */
1320
1321 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1322
1323 if (!ptid_equal (displaced->step_ptid, null_ptid))
1324 {
1325 /* Already waiting for a displaced step to finish. Defer this
1326 request and place in queue. */
1327 struct displaced_step_request *req, *new_req;
1328
1329 if (debug_displaced)
1330 fprintf_unfiltered (gdb_stdlog,
1331 "displaced: defering step of %s\n",
1332 target_pid_to_str (ptid));
1333
1334 new_req = xmalloc (sizeof (*new_req));
1335 new_req->ptid = ptid;
1336 new_req->next = NULL;
1337
1338 if (displaced->step_request_queue)
1339 {
1340 for (req = displaced->step_request_queue;
1341 req && req->next;
1342 req = req->next)
1343 ;
1344 req->next = new_req;
1345 }
1346 else
1347 displaced->step_request_queue = new_req;
1348
1349 return 0;
1350 }
1351 else
1352 {
1353 if (debug_displaced)
1354 fprintf_unfiltered (gdb_stdlog,
1355 "displaced: stepping %s now\n",
1356 target_pid_to_str (ptid));
1357 }
1358
1359 displaced_step_clear (displaced);
1360
1361 old_cleanups = save_inferior_ptid ();
1362 inferior_ptid = ptid;
1363
1364 original = regcache_read_pc (regcache);
1365
1366 copy = gdbarch_displaced_step_location (gdbarch);
1367 len = gdbarch_max_insn_length (gdbarch);
1368
1369 /* Save the original contents of the copy area. */
1370 displaced->step_saved_copy = xmalloc (len);
1371 ignore_cleanups = make_cleanup (free_current_contents,
1372 &displaced->step_saved_copy);
1373 status = target_read_memory (copy, displaced->step_saved_copy, len);
1374 if (status != 0)
1375 throw_error (MEMORY_ERROR,
1376 _("Error accessing memory address %s (%s) for "
1377 "displaced-stepping scratch space."),
1378 paddress (gdbarch, copy), safe_strerror (status));
1379 if (debug_displaced)
1380 {
1381 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1382 paddress (gdbarch, copy));
1383 displaced_step_dump_bytes (gdb_stdlog,
1384 displaced->step_saved_copy,
1385 len);
1386 };
1387
1388 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1389 original, copy, regcache);
1390
1391 /* We don't support the fully-simulated case at present. */
1392 gdb_assert (closure);
1393
1394 /* Save the information we need to fix things up if the step
1395 succeeds. */
1396 displaced->step_ptid = ptid;
1397 displaced->step_gdbarch = gdbarch;
1398 displaced->step_closure = closure;
1399 displaced->step_original = original;
1400 displaced->step_copy = copy;
1401
1402 make_cleanup (displaced_step_clear_cleanup, displaced);
1403
1404 /* Resume execution at the copy. */
1405 regcache_write_pc (regcache, copy);
1406
1407 discard_cleanups (ignore_cleanups);
1408
1409 do_cleanups (old_cleanups);
1410
1411 if (debug_displaced)
1412 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1413 paddress (gdbarch, copy));
1414
1415 return 1;
1416 }
1417
1418 static void
1419 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1420 const gdb_byte *myaddr, int len)
1421 {
1422 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1423
1424 inferior_ptid = ptid;
1425 write_memory (memaddr, myaddr, len);
1426 do_cleanups (ptid_cleanup);
1427 }
1428
1429 /* Restore the contents of the copy area for thread PTID. */
1430
1431 static void
1432 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1433 ptid_t ptid)
1434 {
1435 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1436
1437 write_memory_ptid (ptid, displaced->step_copy,
1438 displaced->step_saved_copy, len);
1439 if (debug_displaced)
1440 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1441 target_pid_to_str (ptid),
1442 paddress (displaced->step_gdbarch,
1443 displaced->step_copy));
1444 }
1445
1446 static void
1447 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1448 {
1449 struct cleanup *old_cleanups;
1450 struct displaced_step_inferior_state *displaced
1451 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1452
1453 /* Was any thread of this process doing a displaced step? */
1454 if (displaced == NULL)
1455 return;
1456
1457 /* Was this event for the pid we displaced? */
1458 if (ptid_equal (displaced->step_ptid, null_ptid)
1459 || ! ptid_equal (displaced->step_ptid, event_ptid))
1460 return;
1461
1462 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1463
1464 displaced_step_restore (displaced, displaced->step_ptid);
1465
1466 /* Did the instruction complete successfully? */
1467 if (signal == GDB_SIGNAL_TRAP)
1468 {
1469 /* Fix up the resulting state. */
1470 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1471 displaced->step_closure,
1472 displaced->step_original,
1473 displaced->step_copy,
1474 get_thread_regcache (displaced->step_ptid));
1475 }
1476 else
1477 {
1478 /* Since the instruction didn't complete, all we can do is
1479 relocate the PC. */
1480 struct regcache *regcache = get_thread_regcache (event_ptid);
1481 CORE_ADDR pc = regcache_read_pc (regcache);
1482
1483 pc = displaced->step_original + (pc - displaced->step_copy);
1484 regcache_write_pc (regcache, pc);
1485 }
1486
1487 do_cleanups (old_cleanups);
1488
1489 displaced->step_ptid = null_ptid;
1490
1491 /* Are there any pending displaced stepping requests? If so, run
1492 one now. Leave the state object around, since we're likely to
1493 need it again soon. */
1494 while (displaced->step_request_queue)
1495 {
1496 struct displaced_step_request *head;
1497 ptid_t ptid;
1498 struct regcache *regcache;
1499 struct gdbarch *gdbarch;
1500 CORE_ADDR actual_pc;
1501 struct address_space *aspace;
1502
1503 head = displaced->step_request_queue;
1504 ptid = head->ptid;
1505 displaced->step_request_queue = head->next;
1506 xfree (head);
1507
1508 context_switch (ptid);
1509
1510 regcache = get_thread_regcache (ptid);
1511 actual_pc = regcache_read_pc (regcache);
1512 aspace = get_regcache_aspace (regcache);
1513
1514 if (breakpoint_here_p (aspace, actual_pc))
1515 {
1516 if (debug_displaced)
1517 fprintf_unfiltered (gdb_stdlog,
1518 "displaced: stepping queued %s now\n",
1519 target_pid_to_str (ptid));
1520
1521 displaced_step_prepare (ptid);
1522
1523 gdbarch = get_regcache_arch (regcache);
1524
1525 if (debug_displaced)
1526 {
1527 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1528 gdb_byte buf[4];
1529
1530 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1531 paddress (gdbarch, actual_pc));
1532 read_memory (actual_pc, buf, sizeof (buf));
1533 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1534 }
1535
1536 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1537 displaced->step_closure))
1538 target_resume (ptid, 1, GDB_SIGNAL_0);
1539 else
1540 target_resume (ptid, 0, GDB_SIGNAL_0);
1541
1542 /* Done, we're stepping a thread. */
1543 break;
1544 }
1545 else
1546 {
1547 int step;
1548 struct thread_info *tp = inferior_thread ();
1549
1550 /* The breakpoint we were sitting under has since been
1551 removed. */
1552 tp->control.trap_expected = 0;
1553
1554 /* Go back to what we were trying to do. */
1555 step = currently_stepping (tp);
1556
1557 if (debug_displaced)
1558 fprintf_unfiltered (gdb_stdlog,
1559 "displaced: breakpoint is gone: %s, step(%d)\n",
1560 target_pid_to_str (tp->ptid), step);
1561
1562 target_resume (ptid, step, GDB_SIGNAL_0);
1563 tp->suspend.stop_signal = GDB_SIGNAL_0;
1564
1565 /* This request was discarded. See if there's any other
1566 thread waiting for its turn. */
1567 }
1568 }
1569 }
1570
1571 /* Update global variables holding ptids to hold NEW_PTID if they were
1572 holding OLD_PTID. */
1573 static void
1574 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1575 {
1576 struct displaced_step_request *it;
1577 struct displaced_step_inferior_state *displaced;
1578
1579 if (ptid_equal (inferior_ptid, old_ptid))
1580 inferior_ptid = new_ptid;
1581
1582 if (ptid_equal (singlestep_ptid, old_ptid))
1583 singlestep_ptid = new_ptid;
1584
1585 if (ptid_equal (deferred_step_ptid, old_ptid))
1586 deferred_step_ptid = new_ptid;
1587
1588 for (displaced = displaced_step_inferior_states;
1589 displaced;
1590 displaced = displaced->next)
1591 {
1592 if (ptid_equal (displaced->step_ptid, old_ptid))
1593 displaced->step_ptid = new_ptid;
1594
1595 for (it = displaced->step_request_queue; it; it = it->next)
1596 if (ptid_equal (it->ptid, old_ptid))
1597 it->ptid = new_ptid;
1598 }
1599 }
1600
1601 \f
1602 /* Resuming. */
1603
1604 /* Things to clean up if we QUIT out of resume (). */
1605 static void
1606 resume_cleanups (void *ignore)
1607 {
1608 normal_stop ();
1609 }
1610
1611 static const char schedlock_off[] = "off";
1612 static const char schedlock_on[] = "on";
1613 static const char schedlock_step[] = "step";
1614 static const char *const scheduler_enums[] = {
1615 schedlock_off,
1616 schedlock_on,
1617 schedlock_step,
1618 NULL
1619 };
1620 static const char *scheduler_mode = schedlock_off;
1621 static void
1622 show_scheduler_mode (struct ui_file *file, int from_tty,
1623 struct cmd_list_element *c, const char *value)
1624 {
1625 fprintf_filtered (file,
1626 _("Mode for locking scheduler "
1627 "during execution is \"%s\".\n"),
1628 value);
1629 }
1630
1631 static void
1632 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1633 {
1634 if (!target_can_lock_scheduler)
1635 {
1636 scheduler_mode = schedlock_off;
1637 error (_("Target '%s' cannot support this command."), target_shortname);
1638 }
1639 }
1640
1641 /* True if execution commands resume all threads of all processes by
1642 default; otherwise, resume only threads of the current inferior
1643 process. */
1644 int sched_multi = 0;
1645
1646 /* Try to setup for software single stepping over the specified location.
1647 Return 1 if target_resume() should use hardware single step.
1648
1649 GDBARCH the current gdbarch.
1650 PC the location to step over. */
1651
1652 static int
1653 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1654 {
1655 int hw_step = 1;
1656
1657 if (execution_direction == EXEC_FORWARD
1658 && gdbarch_software_single_step_p (gdbarch)
1659 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1660 {
1661 hw_step = 0;
1662 /* Do not pull these breakpoints until after a `wait' in
1663 `wait_for_inferior'. */
1664 singlestep_breakpoints_inserted_p = 1;
1665 singlestep_ptid = inferior_ptid;
1666 singlestep_pc = pc;
1667 }
1668 return hw_step;
1669 }
1670
1671 /* Return a ptid representing the set of threads that we will proceed,
1672 in the perspective of the user/frontend. We may actually resume
1673 fewer threads at first, e.g., if a thread is stopped at a
1674 breakpoint that needs stepping-off, but that should not be visible
1675 to the user/frontend, and neither should the frontend/user be
1676 allowed to proceed any of the threads that happen to be stopped for
1677 internal run control handling, if a previous command wanted them
1678 resumed. */
1679
1680 ptid_t
1681 user_visible_resume_ptid (int step)
1682 {
1683 /* By default, resume all threads of all processes. */
1684 ptid_t resume_ptid = RESUME_ALL;
1685
1686 /* Maybe resume only all threads of the current process. */
1687 if (!sched_multi && target_supports_multi_process ())
1688 {
1689 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1690 }
1691
1692 /* Maybe resume a single thread after all. */
1693 if (non_stop)
1694 {
1695 /* With non-stop mode on, threads are always handled
1696 individually. */
1697 resume_ptid = inferior_ptid;
1698 }
1699 else if ((scheduler_mode == schedlock_on)
1700 || (scheduler_mode == schedlock_step
1701 && (step || singlestep_breakpoints_inserted_p)))
1702 {
1703 /* User-settable 'scheduler' mode requires solo thread resume. */
1704 resume_ptid = inferior_ptid;
1705 }
1706
1707 return resume_ptid;
1708 }
1709
1710 /* Resume the inferior, but allow a QUIT. This is useful if the user
1711 wants to interrupt some lengthy single-stepping operation
1712 (for child processes, the SIGINT goes to the inferior, and so
1713 we get a SIGINT random_signal, but for remote debugging and perhaps
1714 other targets, that's not true).
1715
1716 STEP nonzero if we should step (zero to continue instead).
1717 SIG is the signal to give the inferior (zero for none). */
1718 void
1719 resume (int step, enum gdb_signal sig)
1720 {
1721 int should_resume = 1;
1722 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1723 struct regcache *regcache = get_current_regcache ();
1724 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1725 struct thread_info *tp = inferior_thread ();
1726 CORE_ADDR pc = regcache_read_pc (regcache);
1727 struct address_space *aspace = get_regcache_aspace (regcache);
1728
1729 QUIT;
1730
1731 if (current_inferior ()->waiting_for_vfork_done)
1732 {
1733 /* Don't try to single-step a vfork parent that is waiting for
1734 the child to get out of the shared memory region (by exec'ing
1735 or exiting). This is particularly important on software
1736 single-step archs, as the child process would trip on the
1737 software single step breakpoint inserted for the parent
1738 process. Since the parent will not actually execute any
1739 instruction until the child is out of the shared region (such
1740 are vfork's semantics), it is safe to simply continue it.
1741 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1742 the parent, and tell it to `keep_going', which automatically
1743 re-sets it stepping. */
1744 if (debug_infrun)
1745 fprintf_unfiltered (gdb_stdlog,
1746 "infrun: resume : clear step\n");
1747 step = 0;
1748 }
1749
1750 if (debug_infrun)
1751 fprintf_unfiltered (gdb_stdlog,
1752 "infrun: resume (step=%d, signal=%s), "
1753 "trap_expected=%d, current thread [%s] at %s\n",
1754 step, gdb_signal_to_symbol_string (sig),
1755 tp->control.trap_expected,
1756 target_pid_to_str (inferior_ptid),
1757 paddress (gdbarch, pc));
1758
1759 /* Normally, by the time we reach `resume', the breakpoints are either
1760 removed or inserted, as appropriate. The exception is if we're sitting
1761 at a permanent breakpoint; we need to step over it, but permanent
1762 breakpoints can't be removed. So we have to test for it here. */
1763 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1764 {
1765 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1766 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1767 else
1768 error (_("\
1769 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1770 how to step past a permanent breakpoint on this architecture. Try using\n\
1771 a command like `return' or `jump' to continue execution."));
1772 }
1773
1774 /* If we have a breakpoint to step over, make sure to do a single
1775 step only. Same if we have software watchpoints. */
1776 if (tp->control.trap_expected || bpstat_should_step ())
1777 tp->control.may_range_step = 0;
1778
1779 /* If enabled, step over breakpoints by executing a copy of the
1780 instruction at a different address.
1781
1782 We can't use displaced stepping when we have a signal to deliver;
1783 the comments for displaced_step_prepare explain why. The
1784 comments in the handle_inferior event for dealing with 'random
1785 signals' explain what we do instead.
1786
1787 We can't use displaced stepping when we are waiting for vfork_done
1788 event, displaced stepping breaks the vfork child similarly as single
1789 step software breakpoint. */
1790 if (use_displaced_stepping (gdbarch)
1791 && (tp->control.trap_expected
1792 || (step && gdbarch_software_single_step_p (gdbarch)))
1793 && sig == GDB_SIGNAL_0
1794 && !current_inferior ()->waiting_for_vfork_done)
1795 {
1796 struct displaced_step_inferior_state *displaced;
1797
1798 if (!displaced_step_prepare (inferior_ptid))
1799 {
1800 /* Got placed in displaced stepping queue. Will be resumed
1801 later when all the currently queued displaced stepping
1802 requests finish. The thread is not executing at this point,
1803 and the call to set_executing will be made later. But we
1804 need to call set_running here, since from frontend point of view,
1805 the thread is running. */
1806 set_running (inferior_ptid, 1);
1807 discard_cleanups (old_cleanups);
1808 return;
1809 }
1810
1811 /* Update pc to reflect the new address from which we will execute
1812 instructions due to displaced stepping. */
1813 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1814
1815 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1816 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1817 displaced->step_closure);
1818 }
1819
1820 /* Do we need to do it the hard way, w/temp breakpoints? */
1821 else if (step)
1822 step = maybe_software_singlestep (gdbarch, pc);
1823
1824 /* Currently, our software single-step implementation leads to different
1825 results than hardware single-stepping in one situation: when stepping
1826 into delivering a signal which has an associated signal handler,
1827 hardware single-step will stop at the first instruction of the handler,
1828 while software single-step will simply skip execution of the handler.
1829
1830 For now, this difference in behavior is accepted since there is no
1831 easy way to actually implement single-stepping into a signal handler
1832 without kernel support.
1833
1834 However, there is one scenario where this difference leads to follow-on
1835 problems: if we're stepping off a breakpoint by removing all breakpoints
1836 and then single-stepping. In this case, the software single-step
1837 behavior means that even if there is a *breakpoint* in the signal
1838 handler, GDB still would not stop.
1839
1840 Fortunately, we can at least fix this particular issue. We detect
1841 here the case where we are about to deliver a signal while software
1842 single-stepping with breakpoints removed. In this situation, we
1843 revert the decisions to remove all breakpoints and insert single-
1844 step breakpoints, and instead we install a step-resume breakpoint
1845 at the current address, deliver the signal without stepping, and
1846 once we arrive back at the step-resume breakpoint, actually step
1847 over the breakpoint we originally wanted to step over. */
1848 if (singlestep_breakpoints_inserted_p
1849 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
1850 {
1851 /* If we have nested signals or a pending signal is delivered
1852 immediately after a handler returns, might might already have
1853 a step-resume breakpoint set on the earlier handler. We cannot
1854 set another step-resume breakpoint; just continue on until the
1855 original breakpoint is hit. */
1856 if (tp->control.step_resume_breakpoint == NULL)
1857 {
1858 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1859 tp->step_after_step_resume_breakpoint = 1;
1860 }
1861
1862 remove_single_step_breakpoints ();
1863 singlestep_breakpoints_inserted_p = 0;
1864
1865 insert_breakpoints ();
1866 tp->control.trap_expected = 0;
1867 }
1868
1869 if (should_resume)
1870 {
1871 ptid_t resume_ptid;
1872
1873 /* If STEP is set, it's a request to use hardware stepping
1874 facilities. But in that case, we should never
1875 use singlestep breakpoint. */
1876 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1877
1878 /* Decide the set of threads to ask the target to resume. Start
1879 by assuming everything will be resumed, than narrow the set
1880 by applying increasingly restricting conditions. */
1881 resume_ptid = user_visible_resume_ptid (step);
1882
1883 /* Maybe resume a single thread after all. */
1884 if (singlestep_breakpoints_inserted_p
1885 && stepping_past_singlestep_breakpoint)
1886 {
1887 /* The situation here is as follows. In thread T1 we wanted to
1888 single-step. Lacking hardware single-stepping we've
1889 set breakpoint at the PC of the next instruction -- call it
1890 P. After resuming, we've hit that breakpoint in thread T2.
1891 Now we've removed original breakpoint, inserted breakpoint
1892 at P+1, and try to step to advance T2 past breakpoint.
1893 We need to step only T2, as if T1 is allowed to freely run,
1894 it can run past P, and if other threads are allowed to run,
1895 they can hit breakpoint at P+1, and nested hits of single-step
1896 breakpoints is not something we'd want -- that's complicated
1897 to support, and has no value. */
1898 resume_ptid = inferior_ptid;
1899 }
1900 else if ((step || singlestep_breakpoints_inserted_p)
1901 && tp->control.trap_expected)
1902 {
1903 /* We're allowing a thread to run past a breakpoint it has
1904 hit, by single-stepping the thread with the breakpoint
1905 removed. In which case, we need to single-step only this
1906 thread, and keep others stopped, as they can miss this
1907 breakpoint if allowed to run.
1908
1909 The current code actually removes all breakpoints when
1910 doing this, not just the one being stepped over, so if we
1911 let other threads run, we can actually miss any
1912 breakpoint, not just the one at PC. */
1913 resume_ptid = inferior_ptid;
1914 }
1915
1916 if (gdbarch_cannot_step_breakpoint (gdbarch))
1917 {
1918 /* Most targets can step a breakpoint instruction, thus
1919 executing it normally. But if this one cannot, just
1920 continue and we will hit it anyway. */
1921 if (step && breakpoint_inserted_here_p (aspace, pc))
1922 step = 0;
1923 }
1924
1925 if (debug_displaced
1926 && use_displaced_stepping (gdbarch)
1927 && tp->control.trap_expected)
1928 {
1929 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1930 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1931 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1932 gdb_byte buf[4];
1933
1934 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1935 paddress (resume_gdbarch, actual_pc));
1936 read_memory (actual_pc, buf, sizeof (buf));
1937 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1938 }
1939
1940 if (tp->control.may_range_step)
1941 {
1942 /* If we're resuming a thread with the PC out of the step
1943 range, then we're doing some nested/finer run control
1944 operation, like stepping the thread out of the dynamic
1945 linker or the displaced stepping scratch pad. We
1946 shouldn't have allowed a range step then. */
1947 gdb_assert (pc_in_thread_step_range (pc, tp));
1948 }
1949
1950 /* Install inferior's terminal modes. */
1951 target_terminal_inferior ();
1952
1953 /* Avoid confusing the next resume, if the next stop/resume
1954 happens to apply to another thread. */
1955 tp->suspend.stop_signal = GDB_SIGNAL_0;
1956
1957 /* Advise target which signals may be handled silently. If we have
1958 removed breakpoints because we are stepping over one (which can
1959 happen only if we are not using displaced stepping), we need to
1960 receive all signals to avoid accidentally skipping a breakpoint
1961 during execution of a signal handler. */
1962 if ((step || singlestep_breakpoints_inserted_p)
1963 && tp->control.trap_expected
1964 && !use_displaced_stepping (gdbarch))
1965 target_pass_signals (0, NULL);
1966 else
1967 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
1968
1969 target_resume (resume_ptid, step, sig);
1970 }
1971
1972 discard_cleanups (old_cleanups);
1973 }
1974 \f
1975 /* Proceeding. */
1976
1977 /* Clear out all variables saying what to do when inferior is continued.
1978 First do this, then set the ones you want, then call `proceed'. */
1979
1980 static void
1981 clear_proceed_status_thread (struct thread_info *tp)
1982 {
1983 if (debug_infrun)
1984 fprintf_unfiltered (gdb_stdlog,
1985 "infrun: clear_proceed_status_thread (%s)\n",
1986 target_pid_to_str (tp->ptid));
1987
1988 tp->control.trap_expected = 0;
1989 tp->control.step_range_start = 0;
1990 tp->control.step_range_end = 0;
1991 tp->control.may_range_step = 0;
1992 tp->control.step_frame_id = null_frame_id;
1993 tp->control.step_stack_frame_id = null_frame_id;
1994 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1995 tp->stop_requested = 0;
1996
1997 tp->control.stop_step = 0;
1998
1999 tp->control.proceed_to_finish = 0;
2000
2001 /* Discard any remaining commands or status from previous stop. */
2002 bpstat_clear (&tp->control.stop_bpstat);
2003 }
2004
2005 static int
2006 clear_proceed_status_callback (struct thread_info *tp, void *data)
2007 {
2008 if (is_exited (tp->ptid))
2009 return 0;
2010
2011 clear_proceed_status_thread (tp);
2012 return 0;
2013 }
2014
2015 void
2016 clear_proceed_status (void)
2017 {
2018 if (!non_stop)
2019 {
2020 /* In all-stop mode, delete the per-thread status of all
2021 threads, even if inferior_ptid is null_ptid, there may be
2022 threads on the list. E.g., we may be launching a new
2023 process, while selecting the executable. */
2024 iterate_over_threads (clear_proceed_status_callback, NULL);
2025 }
2026
2027 if (!ptid_equal (inferior_ptid, null_ptid))
2028 {
2029 struct inferior *inferior;
2030
2031 if (non_stop)
2032 {
2033 /* If in non-stop mode, only delete the per-thread status of
2034 the current thread. */
2035 clear_proceed_status_thread (inferior_thread ());
2036 }
2037
2038 inferior = current_inferior ();
2039 inferior->control.stop_soon = NO_STOP_QUIETLY;
2040 }
2041
2042 stop_after_trap = 0;
2043
2044 observer_notify_about_to_proceed ();
2045
2046 if (stop_registers)
2047 {
2048 regcache_xfree (stop_registers);
2049 stop_registers = NULL;
2050 }
2051 }
2052
2053 /* Check the current thread against the thread that reported the most recent
2054 event. If a step-over is required return TRUE and set the current thread
2055 to the old thread. Otherwise return FALSE.
2056
2057 This should be suitable for any targets that support threads. */
2058
2059 static int
2060 prepare_to_proceed (int step)
2061 {
2062 ptid_t wait_ptid;
2063 struct target_waitstatus wait_status;
2064 int schedlock_enabled;
2065
2066 /* With non-stop mode on, threads are always handled individually. */
2067 gdb_assert (! non_stop);
2068
2069 /* Get the last target status returned by target_wait(). */
2070 get_last_target_status (&wait_ptid, &wait_status);
2071
2072 /* Make sure we were stopped at a breakpoint. */
2073 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2074 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2075 && wait_status.value.sig != GDB_SIGNAL_ILL
2076 && wait_status.value.sig != GDB_SIGNAL_SEGV
2077 && wait_status.value.sig != GDB_SIGNAL_EMT))
2078 {
2079 return 0;
2080 }
2081
2082 schedlock_enabled = (scheduler_mode == schedlock_on
2083 || (scheduler_mode == schedlock_step
2084 && step));
2085
2086 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2087 if (schedlock_enabled)
2088 return 0;
2089
2090 /* Don't switch over if we're about to resume some other process
2091 other than WAIT_PTID's, and schedule-multiple is off. */
2092 if (!sched_multi
2093 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2094 return 0;
2095
2096 /* Switched over from WAIT_PID. */
2097 if (!ptid_equal (wait_ptid, minus_one_ptid)
2098 && !ptid_equal (inferior_ptid, wait_ptid))
2099 {
2100 struct regcache *regcache = get_thread_regcache (wait_ptid);
2101
2102 if (breakpoint_here_p (get_regcache_aspace (regcache),
2103 regcache_read_pc (regcache)))
2104 {
2105 /* If stepping, remember current thread to switch back to. */
2106 if (step)
2107 deferred_step_ptid = inferior_ptid;
2108
2109 /* Switch back to WAIT_PID thread. */
2110 switch_to_thread (wait_ptid);
2111
2112 if (debug_infrun)
2113 fprintf_unfiltered (gdb_stdlog,
2114 "infrun: prepare_to_proceed (step=%d), "
2115 "switched to [%s]\n",
2116 step, target_pid_to_str (inferior_ptid));
2117
2118 /* We return 1 to indicate that there is a breakpoint here,
2119 so we need to step over it before continuing to avoid
2120 hitting it straight away. */
2121 return 1;
2122 }
2123 }
2124
2125 return 0;
2126 }
2127
2128 /* Basic routine for continuing the program in various fashions.
2129
2130 ADDR is the address to resume at, or -1 for resume where stopped.
2131 SIGGNAL is the signal to give it, or 0 for none,
2132 or -1 for act according to how it stopped.
2133 STEP is nonzero if should trap after one instruction.
2134 -1 means return after that and print nothing.
2135 You should probably set various step_... variables
2136 before calling here, if you are stepping.
2137
2138 You should call clear_proceed_status before calling proceed. */
2139
2140 void
2141 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2142 {
2143 struct regcache *regcache;
2144 struct gdbarch *gdbarch;
2145 struct thread_info *tp;
2146 CORE_ADDR pc;
2147 struct address_space *aspace;
2148 /* GDB may force the inferior to step due to various reasons. */
2149 int force_step = 0;
2150
2151 /* If we're stopped at a fork/vfork, follow the branch set by the
2152 "set follow-fork-mode" command; otherwise, we'll just proceed
2153 resuming the current thread. */
2154 if (!follow_fork ())
2155 {
2156 /* The target for some reason decided not to resume. */
2157 normal_stop ();
2158 if (target_can_async_p ())
2159 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2160 return;
2161 }
2162
2163 /* We'll update this if & when we switch to a new thread. */
2164 previous_inferior_ptid = inferior_ptid;
2165
2166 regcache = get_current_regcache ();
2167 gdbarch = get_regcache_arch (regcache);
2168 aspace = get_regcache_aspace (regcache);
2169 pc = regcache_read_pc (regcache);
2170
2171 if (step > 0)
2172 step_start_function = find_pc_function (pc);
2173 if (step < 0)
2174 stop_after_trap = 1;
2175
2176 if (addr == (CORE_ADDR) -1)
2177 {
2178 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2179 && execution_direction != EXEC_REVERSE)
2180 /* There is a breakpoint at the address we will resume at,
2181 step one instruction before inserting breakpoints so that
2182 we do not stop right away (and report a second hit at this
2183 breakpoint).
2184
2185 Note, we don't do this in reverse, because we won't
2186 actually be executing the breakpoint insn anyway.
2187 We'll be (un-)executing the previous instruction. */
2188
2189 force_step = 1;
2190 else if (gdbarch_single_step_through_delay_p (gdbarch)
2191 && gdbarch_single_step_through_delay (gdbarch,
2192 get_current_frame ()))
2193 /* We stepped onto an instruction that needs to be stepped
2194 again before re-inserting the breakpoint, do so. */
2195 force_step = 1;
2196 }
2197 else
2198 {
2199 regcache_write_pc (regcache, addr);
2200 }
2201
2202 if (debug_infrun)
2203 fprintf_unfiltered (gdb_stdlog,
2204 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2205 paddress (gdbarch, addr),
2206 gdb_signal_to_symbol_string (siggnal), step);
2207
2208 if (non_stop)
2209 /* In non-stop, each thread is handled individually. The context
2210 must already be set to the right thread here. */
2211 ;
2212 else
2213 {
2214 /* In a multi-threaded task we may select another thread and
2215 then continue or step.
2216
2217 But if the old thread was stopped at a breakpoint, it will
2218 immediately cause another breakpoint stop without any
2219 execution (i.e. it will report a breakpoint hit incorrectly).
2220 So we must step over it first.
2221
2222 prepare_to_proceed checks the current thread against the
2223 thread that reported the most recent event. If a step-over
2224 is required it returns TRUE and sets the current thread to
2225 the old thread. */
2226 if (prepare_to_proceed (step))
2227 force_step = 1;
2228 }
2229
2230 /* prepare_to_proceed may change the current thread. */
2231 tp = inferior_thread ();
2232
2233 if (force_step)
2234 {
2235 tp->control.trap_expected = 1;
2236 /* If displaced stepping is enabled, we can step over the
2237 breakpoint without hitting it, so leave all breakpoints
2238 inserted. Otherwise we need to disable all breakpoints, step
2239 one instruction, and then re-add them when that step is
2240 finished. */
2241 if (!use_displaced_stepping (gdbarch))
2242 remove_breakpoints ();
2243 }
2244
2245 /* We can insert breakpoints if we're not trying to step over one,
2246 or if we are stepping over one but we're using displaced stepping
2247 to do so. */
2248 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2249 insert_breakpoints ();
2250
2251 if (!non_stop)
2252 {
2253 /* Pass the last stop signal to the thread we're resuming,
2254 irrespective of whether the current thread is the thread that
2255 got the last event or not. This was historically GDB's
2256 behaviour before keeping a stop_signal per thread. */
2257
2258 struct thread_info *last_thread;
2259 ptid_t last_ptid;
2260 struct target_waitstatus last_status;
2261
2262 get_last_target_status (&last_ptid, &last_status);
2263 if (!ptid_equal (inferior_ptid, last_ptid)
2264 && !ptid_equal (last_ptid, null_ptid)
2265 && !ptid_equal (last_ptid, minus_one_ptid))
2266 {
2267 last_thread = find_thread_ptid (last_ptid);
2268 if (last_thread)
2269 {
2270 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2271 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2272 }
2273 }
2274 }
2275
2276 if (siggnal != GDB_SIGNAL_DEFAULT)
2277 tp->suspend.stop_signal = siggnal;
2278 /* If this signal should not be seen by program,
2279 give it zero. Used for debugging signals. */
2280 else if (!signal_program[tp->suspend.stop_signal])
2281 tp->suspend.stop_signal = GDB_SIGNAL_0;
2282
2283 annotate_starting ();
2284
2285 /* Make sure that output from GDB appears before output from the
2286 inferior. */
2287 gdb_flush (gdb_stdout);
2288
2289 /* Refresh prev_pc value just prior to resuming. This used to be
2290 done in stop_stepping, however, setting prev_pc there did not handle
2291 scenarios such as inferior function calls or returning from
2292 a function via the return command. In those cases, the prev_pc
2293 value was not set properly for subsequent commands. The prev_pc value
2294 is used to initialize the starting line number in the ecs. With an
2295 invalid value, the gdb next command ends up stopping at the position
2296 represented by the next line table entry past our start position.
2297 On platforms that generate one line table entry per line, this
2298 is not a problem. However, on the ia64, the compiler generates
2299 extraneous line table entries that do not increase the line number.
2300 When we issue the gdb next command on the ia64 after an inferior call
2301 or a return command, we often end up a few instructions forward, still
2302 within the original line we started.
2303
2304 An attempt was made to refresh the prev_pc at the same time the
2305 execution_control_state is initialized (for instance, just before
2306 waiting for an inferior event). But this approach did not work
2307 because of platforms that use ptrace, where the pc register cannot
2308 be read unless the inferior is stopped. At that point, we are not
2309 guaranteed the inferior is stopped and so the regcache_read_pc() call
2310 can fail. Setting the prev_pc value here ensures the value is updated
2311 correctly when the inferior is stopped. */
2312 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2313
2314 /* Fill in with reasonable starting values. */
2315 init_thread_stepping_state (tp);
2316
2317 /* Reset to normal state. */
2318 init_infwait_state ();
2319
2320 /* Resume inferior. */
2321 resume (force_step || step || bpstat_should_step (),
2322 tp->suspend.stop_signal);
2323
2324 /* Wait for it to stop (if not standalone)
2325 and in any case decode why it stopped, and act accordingly. */
2326 /* Do this only if we are not using the event loop, or if the target
2327 does not support asynchronous execution. */
2328 if (!target_can_async_p ())
2329 {
2330 wait_for_inferior ();
2331 normal_stop ();
2332 }
2333 }
2334 \f
2335
2336 /* Start remote-debugging of a machine over a serial link. */
2337
2338 void
2339 start_remote (int from_tty)
2340 {
2341 struct inferior *inferior;
2342
2343 inferior = current_inferior ();
2344 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2345
2346 /* Always go on waiting for the target, regardless of the mode. */
2347 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2348 indicate to wait_for_inferior that a target should timeout if
2349 nothing is returned (instead of just blocking). Because of this,
2350 targets expecting an immediate response need to, internally, set
2351 things up so that the target_wait() is forced to eventually
2352 timeout. */
2353 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2354 differentiate to its caller what the state of the target is after
2355 the initial open has been performed. Here we're assuming that
2356 the target has stopped. It should be possible to eventually have
2357 target_open() return to the caller an indication that the target
2358 is currently running and GDB state should be set to the same as
2359 for an async run. */
2360 wait_for_inferior ();
2361
2362 /* Now that the inferior has stopped, do any bookkeeping like
2363 loading shared libraries. We want to do this before normal_stop,
2364 so that the displayed frame is up to date. */
2365 post_create_inferior (&current_target, from_tty);
2366
2367 normal_stop ();
2368 }
2369
2370 /* Initialize static vars when a new inferior begins. */
2371
2372 void
2373 init_wait_for_inferior (void)
2374 {
2375 /* These are meaningless until the first time through wait_for_inferior. */
2376
2377 breakpoint_init_inferior (inf_starting);
2378
2379 clear_proceed_status ();
2380
2381 stepping_past_singlestep_breakpoint = 0;
2382 deferred_step_ptid = null_ptid;
2383
2384 target_last_wait_ptid = minus_one_ptid;
2385
2386 previous_inferior_ptid = inferior_ptid;
2387 init_infwait_state ();
2388
2389 /* Discard any skipped inlined frames. */
2390 clear_inline_frame_state (minus_one_ptid);
2391 }
2392
2393 \f
2394 /* This enum encodes possible reasons for doing a target_wait, so that
2395 wfi can call target_wait in one place. (Ultimately the call will be
2396 moved out of the infinite loop entirely.) */
2397
2398 enum infwait_states
2399 {
2400 infwait_normal_state,
2401 infwait_thread_hop_state,
2402 infwait_step_watch_state,
2403 infwait_nonstep_watch_state
2404 };
2405
2406 /* The PTID we'll do a target_wait on.*/
2407 ptid_t waiton_ptid;
2408
2409 /* Current inferior wait state. */
2410 static enum infwait_states infwait_state;
2411
2412 /* Data to be passed around while handling an event. This data is
2413 discarded between events. */
2414 struct execution_control_state
2415 {
2416 ptid_t ptid;
2417 /* The thread that got the event, if this was a thread event; NULL
2418 otherwise. */
2419 struct thread_info *event_thread;
2420
2421 struct target_waitstatus ws;
2422 int random_signal;
2423 int stop_func_filled_in;
2424 CORE_ADDR stop_func_start;
2425 CORE_ADDR stop_func_end;
2426 const char *stop_func_name;
2427 int wait_some_more;
2428 };
2429
2430 static void handle_inferior_event (struct execution_control_state *ecs);
2431
2432 static void handle_step_into_function (struct gdbarch *gdbarch,
2433 struct execution_control_state *ecs);
2434 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2435 struct execution_control_state *ecs);
2436 static void check_exception_resume (struct execution_control_state *,
2437 struct frame_info *);
2438
2439 static void stop_stepping (struct execution_control_state *ecs);
2440 static void prepare_to_wait (struct execution_control_state *ecs);
2441 static void keep_going (struct execution_control_state *ecs);
2442 static void process_event_stop_test (struct execution_control_state *ecs);
2443 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
2444
2445 /* Callback for iterate over threads. If the thread is stopped, but
2446 the user/frontend doesn't know about that yet, go through
2447 normal_stop, as if the thread had just stopped now. ARG points at
2448 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2449 ptid_is_pid(PTID) is true, applies to all threads of the process
2450 pointed at by PTID. Otherwise, apply only to the thread pointed by
2451 PTID. */
2452
2453 static int
2454 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2455 {
2456 ptid_t ptid = * (ptid_t *) arg;
2457
2458 if ((ptid_equal (info->ptid, ptid)
2459 || ptid_equal (minus_one_ptid, ptid)
2460 || (ptid_is_pid (ptid)
2461 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2462 && is_running (info->ptid)
2463 && !is_executing (info->ptid))
2464 {
2465 struct cleanup *old_chain;
2466 struct execution_control_state ecss;
2467 struct execution_control_state *ecs = &ecss;
2468
2469 memset (ecs, 0, sizeof (*ecs));
2470
2471 old_chain = make_cleanup_restore_current_thread ();
2472
2473 /* Go through handle_inferior_event/normal_stop, so we always
2474 have consistent output as if the stop event had been
2475 reported. */
2476 ecs->ptid = info->ptid;
2477 ecs->event_thread = find_thread_ptid (info->ptid);
2478 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2479 ecs->ws.value.sig = GDB_SIGNAL_0;
2480
2481 handle_inferior_event (ecs);
2482
2483 if (!ecs->wait_some_more)
2484 {
2485 struct thread_info *tp;
2486
2487 normal_stop ();
2488
2489 /* Finish off the continuations. */
2490 tp = inferior_thread ();
2491 do_all_intermediate_continuations_thread (tp, 1);
2492 do_all_continuations_thread (tp, 1);
2493 }
2494
2495 do_cleanups (old_chain);
2496 }
2497
2498 return 0;
2499 }
2500
2501 /* This function is attached as a "thread_stop_requested" observer.
2502 Cleanup local state that assumed the PTID was to be resumed, and
2503 report the stop to the frontend. */
2504
2505 static void
2506 infrun_thread_stop_requested (ptid_t ptid)
2507 {
2508 struct displaced_step_inferior_state *displaced;
2509
2510 /* PTID was requested to stop. Remove it from the displaced
2511 stepping queue, so we don't try to resume it automatically. */
2512
2513 for (displaced = displaced_step_inferior_states;
2514 displaced;
2515 displaced = displaced->next)
2516 {
2517 struct displaced_step_request *it, **prev_next_p;
2518
2519 it = displaced->step_request_queue;
2520 prev_next_p = &displaced->step_request_queue;
2521 while (it)
2522 {
2523 if (ptid_match (it->ptid, ptid))
2524 {
2525 *prev_next_p = it->next;
2526 it->next = NULL;
2527 xfree (it);
2528 }
2529 else
2530 {
2531 prev_next_p = &it->next;
2532 }
2533
2534 it = *prev_next_p;
2535 }
2536 }
2537
2538 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2539 }
2540
2541 static void
2542 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2543 {
2544 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2545 nullify_last_target_wait_ptid ();
2546 }
2547
2548 /* Callback for iterate_over_threads. */
2549
2550 static int
2551 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2552 {
2553 if (is_exited (info->ptid))
2554 return 0;
2555
2556 delete_step_resume_breakpoint (info);
2557 delete_exception_resume_breakpoint (info);
2558 return 0;
2559 }
2560
2561 /* In all-stop, delete the step resume breakpoint of any thread that
2562 had one. In non-stop, delete the step resume breakpoint of the
2563 thread that just stopped. */
2564
2565 static void
2566 delete_step_thread_step_resume_breakpoint (void)
2567 {
2568 if (!target_has_execution
2569 || ptid_equal (inferior_ptid, null_ptid))
2570 /* If the inferior has exited, we have already deleted the step
2571 resume breakpoints out of GDB's lists. */
2572 return;
2573
2574 if (non_stop)
2575 {
2576 /* If in non-stop mode, only delete the step-resume or
2577 longjmp-resume breakpoint of the thread that just stopped
2578 stepping. */
2579 struct thread_info *tp = inferior_thread ();
2580
2581 delete_step_resume_breakpoint (tp);
2582 delete_exception_resume_breakpoint (tp);
2583 }
2584 else
2585 /* In all-stop mode, delete all step-resume and longjmp-resume
2586 breakpoints of any thread that had them. */
2587 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2588 }
2589
2590 /* A cleanup wrapper. */
2591
2592 static void
2593 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2594 {
2595 delete_step_thread_step_resume_breakpoint ();
2596 }
2597
2598 /* Pretty print the results of target_wait, for debugging purposes. */
2599
2600 static void
2601 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2602 const struct target_waitstatus *ws)
2603 {
2604 char *status_string = target_waitstatus_to_string (ws);
2605 struct ui_file *tmp_stream = mem_fileopen ();
2606 char *text;
2607
2608 /* The text is split over several lines because it was getting too long.
2609 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2610 output as a unit; we want only one timestamp printed if debug_timestamp
2611 is set. */
2612
2613 fprintf_unfiltered (tmp_stream,
2614 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
2615 if (ptid_get_pid (waiton_ptid) != -1)
2616 fprintf_unfiltered (tmp_stream,
2617 " [%s]", target_pid_to_str (waiton_ptid));
2618 fprintf_unfiltered (tmp_stream, ", status) =\n");
2619 fprintf_unfiltered (tmp_stream,
2620 "infrun: %d [%s],\n",
2621 ptid_get_pid (result_ptid),
2622 target_pid_to_str (result_ptid));
2623 fprintf_unfiltered (tmp_stream,
2624 "infrun: %s\n",
2625 status_string);
2626
2627 text = ui_file_xstrdup (tmp_stream, NULL);
2628
2629 /* This uses %s in part to handle %'s in the text, but also to avoid
2630 a gcc error: the format attribute requires a string literal. */
2631 fprintf_unfiltered (gdb_stdlog, "%s", text);
2632
2633 xfree (status_string);
2634 xfree (text);
2635 ui_file_delete (tmp_stream);
2636 }
2637
2638 /* Prepare and stabilize the inferior for detaching it. E.g.,
2639 detaching while a thread is displaced stepping is a recipe for
2640 crashing it, as nothing would readjust the PC out of the scratch
2641 pad. */
2642
2643 void
2644 prepare_for_detach (void)
2645 {
2646 struct inferior *inf = current_inferior ();
2647 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2648 struct cleanup *old_chain_1;
2649 struct displaced_step_inferior_state *displaced;
2650
2651 displaced = get_displaced_stepping_state (inf->pid);
2652
2653 /* Is any thread of this process displaced stepping? If not,
2654 there's nothing else to do. */
2655 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2656 return;
2657
2658 if (debug_infrun)
2659 fprintf_unfiltered (gdb_stdlog,
2660 "displaced-stepping in-process while detaching");
2661
2662 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2663 inf->detaching = 1;
2664
2665 while (!ptid_equal (displaced->step_ptid, null_ptid))
2666 {
2667 struct cleanup *old_chain_2;
2668 struct execution_control_state ecss;
2669 struct execution_control_state *ecs;
2670
2671 ecs = &ecss;
2672 memset (ecs, 0, sizeof (*ecs));
2673
2674 overlay_cache_invalid = 1;
2675
2676 if (deprecated_target_wait_hook)
2677 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2678 else
2679 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2680
2681 if (debug_infrun)
2682 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2683
2684 /* If an error happens while handling the event, propagate GDB's
2685 knowledge of the executing state to the frontend/user running
2686 state. */
2687 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2688 &minus_one_ptid);
2689
2690 /* Now figure out what to do with the result of the result. */
2691 handle_inferior_event (ecs);
2692
2693 /* No error, don't finish the state yet. */
2694 discard_cleanups (old_chain_2);
2695
2696 /* Breakpoints and watchpoints are not installed on the target
2697 at this point, and signals are passed directly to the
2698 inferior, so this must mean the process is gone. */
2699 if (!ecs->wait_some_more)
2700 {
2701 discard_cleanups (old_chain_1);
2702 error (_("Program exited while detaching"));
2703 }
2704 }
2705
2706 discard_cleanups (old_chain_1);
2707 }
2708
2709 /* Wait for control to return from inferior to debugger.
2710
2711 If inferior gets a signal, we may decide to start it up again
2712 instead of returning. That is why there is a loop in this function.
2713 When this function actually returns it means the inferior
2714 should be left stopped and GDB should read more commands. */
2715
2716 void
2717 wait_for_inferior (void)
2718 {
2719 struct cleanup *old_cleanups;
2720
2721 if (debug_infrun)
2722 fprintf_unfiltered
2723 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2724
2725 old_cleanups =
2726 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2727
2728 while (1)
2729 {
2730 struct execution_control_state ecss;
2731 struct execution_control_state *ecs = &ecss;
2732 struct cleanup *old_chain;
2733
2734 memset (ecs, 0, sizeof (*ecs));
2735
2736 overlay_cache_invalid = 1;
2737
2738 if (deprecated_target_wait_hook)
2739 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2740 else
2741 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2742
2743 if (debug_infrun)
2744 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2745
2746 /* If an error happens while handling the event, propagate GDB's
2747 knowledge of the executing state to the frontend/user running
2748 state. */
2749 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2750
2751 /* Now figure out what to do with the result of the result. */
2752 handle_inferior_event (ecs);
2753
2754 /* No error, don't finish the state yet. */
2755 discard_cleanups (old_chain);
2756
2757 if (!ecs->wait_some_more)
2758 break;
2759 }
2760
2761 do_cleanups (old_cleanups);
2762 }
2763
2764 /* Asynchronous version of wait_for_inferior. It is called by the
2765 event loop whenever a change of state is detected on the file
2766 descriptor corresponding to the target. It can be called more than
2767 once to complete a single execution command. In such cases we need
2768 to keep the state in a global variable ECSS. If it is the last time
2769 that this function is called for a single execution command, then
2770 report to the user that the inferior has stopped, and do the
2771 necessary cleanups. */
2772
2773 void
2774 fetch_inferior_event (void *client_data)
2775 {
2776 struct execution_control_state ecss;
2777 struct execution_control_state *ecs = &ecss;
2778 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2779 struct cleanup *ts_old_chain;
2780 int was_sync = sync_execution;
2781 int cmd_done = 0;
2782
2783 memset (ecs, 0, sizeof (*ecs));
2784
2785 /* We're handling a live event, so make sure we're doing live
2786 debugging. If we're looking at traceframes while the target is
2787 running, we're going to need to get back to that mode after
2788 handling the event. */
2789 if (non_stop)
2790 {
2791 make_cleanup_restore_current_traceframe ();
2792 set_current_traceframe (-1);
2793 }
2794
2795 if (non_stop)
2796 /* In non-stop mode, the user/frontend should not notice a thread
2797 switch due to internal events. Make sure we reverse to the
2798 user selected thread and frame after handling the event and
2799 running any breakpoint commands. */
2800 make_cleanup_restore_current_thread ();
2801
2802 overlay_cache_invalid = 1;
2803
2804 make_cleanup_restore_integer (&execution_direction);
2805 execution_direction = target_execution_direction ();
2806
2807 if (deprecated_target_wait_hook)
2808 ecs->ptid =
2809 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2810 else
2811 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2812
2813 if (debug_infrun)
2814 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2815
2816 /* If an error happens while handling the event, propagate GDB's
2817 knowledge of the executing state to the frontend/user running
2818 state. */
2819 if (!non_stop)
2820 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2821 else
2822 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2823
2824 /* Get executed before make_cleanup_restore_current_thread above to apply
2825 still for the thread which has thrown the exception. */
2826 make_bpstat_clear_actions_cleanup ();
2827
2828 /* Now figure out what to do with the result of the result. */
2829 handle_inferior_event (ecs);
2830
2831 if (!ecs->wait_some_more)
2832 {
2833 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2834
2835 delete_step_thread_step_resume_breakpoint ();
2836
2837 /* We may not find an inferior if this was a process exit. */
2838 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2839 normal_stop ();
2840
2841 if (target_has_execution
2842 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2843 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2844 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2845 && ecs->event_thread->step_multi
2846 && ecs->event_thread->control.stop_step)
2847 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2848 else
2849 {
2850 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2851 cmd_done = 1;
2852 }
2853 }
2854
2855 /* No error, don't finish the thread states yet. */
2856 discard_cleanups (ts_old_chain);
2857
2858 /* Revert thread and frame. */
2859 do_cleanups (old_chain);
2860
2861 /* If the inferior was in sync execution mode, and now isn't,
2862 restore the prompt (a synchronous execution command has finished,
2863 and we're ready for input). */
2864 if (interpreter_async && was_sync && !sync_execution)
2865 display_gdb_prompt (0);
2866
2867 if (cmd_done
2868 && !was_sync
2869 && exec_done_display_p
2870 && (ptid_equal (inferior_ptid, null_ptid)
2871 || !is_running (inferior_ptid)))
2872 printf_unfiltered (_("completed.\n"));
2873 }
2874
2875 /* Record the frame and location we're currently stepping through. */
2876 void
2877 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2878 {
2879 struct thread_info *tp = inferior_thread ();
2880
2881 tp->control.step_frame_id = get_frame_id (frame);
2882 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2883
2884 tp->current_symtab = sal.symtab;
2885 tp->current_line = sal.line;
2886 }
2887
2888 /* Clear context switchable stepping state. */
2889
2890 void
2891 init_thread_stepping_state (struct thread_info *tss)
2892 {
2893 tss->stepping_over_breakpoint = 0;
2894 tss->step_after_step_resume_breakpoint = 0;
2895 }
2896
2897 /* Return the cached copy of the last pid/waitstatus returned by
2898 target_wait()/deprecated_target_wait_hook(). The data is actually
2899 cached by handle_inferior_event(), which gets called immediately
2900 after target_wait()/deprecated_target_wait_hook(). */
2901
2902 void
2903 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2904 {
2905 *ptidp = target_last_wait_ptid;
2906 *status = target_last_waitstatus;
2907 }
2908
2909 void
2910 nullify_last_target_wait_ptid (void)
2911 {
2912 target_last_wait_ptid = minus_one_ptid;
2913 }
2914
2915 /* Switch thread contexts. */
2916
2917 static void
2918 context_switch (ptid_t ptid)
2919 {
2920 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2921 {
2922 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2923 target_pid_to_str (inferior_ptid));
2924 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2925 target_pid_to_str (ptid));
2926 }
2927
2928 switch_to_thread (ptid);
2929 }
2930
2931 static void
2932 adjust_pc_after_break (struct execution_control_state *ecs)
2933 {
2934 struct regcache *regcache;
2935 struct gdbarch *gdbarch;
2936 struct address_space *aspace;
2937 CORE_ADDR breakpoint_pc;
2938
2939 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2940 we aren't, just return.
2941
2942 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2943 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2944 implemented by software breakpoints should be handled through the normal
2945 breakpoint layer.
2946
2947 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2948 different signals (SIGILL or SIGEMT for instance), but it is less
2949 clear where the PC is pointing afterwards. It may not match
2950 gdbarch_decr_pc_after_break. I don't know any specific target that
2951 generates these signals at breakpoints (the code has been in GDB since at
2952 least 1992) so I can not guess how to handle them here.
2953
2954 In earlier versions of GDB, a target with
2955 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2956 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2957 target with both of these set in GDB history, and it seems unlikely to be
2958 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2959
2960 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2961 return;
2962
2963 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
2964 return;
2965
2966 /* In reverse execution, when a breakpoint is hit, the instruction
2967 under it has already been de-executed. The reported PC always
2968 points at the breakpoint address, so adjusting it further would
2969 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2970 architecture:
2971
2972 B1 0x08000000 : INSN1
2973 B2 0x08000001 : INSN2
2974 0x08000002 : INSN3
2975 PC -> 0x08000003 : INSN4
2976
2977 Say you're stopped at 0x08000003 as above. Reverse continuing
2978 from that point should hit B2 as below. Reading the PC when the
2979 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2980 been de-executed already.
2981
2982 B1 0x08000000 : INSN1
2983 B2 PC -> 0x08000001 : INSN2
2984 0x08000002 : INSN3
2985 0x08000003 : INSN4
2986
2987 We can't apply the same logic as for forward execution, because
2988 we would wrongly adjust the PC to 0x08000000, since there's a
2989 breakpoint at PC - 1. We'd then report a hit on B1, although
2990 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2991 behaviour. */
2992 if (execution_direction == EXEC_REVERSE)
2993 return;
2994
2995 /* If this target does not decrement the PC after breakpoints, then
2996 we have nothing to do. */
2997 regcache = get_thread_regcache (ecs->ptid);
2998 gdbarch = get_regcache_arch (regcache);
2999 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
3000 return;
3001
3002 aspace = get_regcache_aspace (regcache);
3003
3004 /* Find the location where (if we've hit a breakpoint) the
3005 breakpoint would be. */
3006 breakpoint_pc = regcache_read_pc (regcache)
3007 - gdbarch_decr_pc_after_break (gdbarch);
3008
3009 /* Check whether there actually is a software breakpoint inserted at
3010 that location.
3011
3012 If in non-stop mode, a race condition is possible where we've
3013 removed a breakpoint, but stop events for that breakpoint were
3014 already queued and arrive later. To suppress those spurious
3015 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3016 and retire them after a number of stop events are reported. */
3017 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3018 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3019 {
3020 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
3021
3022 if (RECORD_IS_USED)
3023 record_full_gdb_operation_disable_set ();
3024
3025 /* When using hardware single-step, a SIGTRAP is reported for both
3026 a completed single-step and a software breakpoint. Need to
3027 differentiate between the two, as the latter needs adjusting
3028 but the former does not.
3029
3030 The SIGTRAP can be due to a completed hardware single-step only if
3031 - we didn't insert software single-step breakpoints
3032 - the thread to be examined is still the current thread
3033 - this thread is currently being stepped
3034
3035 If any of these events did not occur, we must have stopped due
3036 to hitting a software breakpoint, and have to back up to the
3037 breakpoint address.
3038
3039 As a special case, we could have hardware single-stepped a
3040 software breakpoint. In this case (prev_pc == breakpoint_pc),
3041 we also need to back up to the breakpoint address. */
3042
3043 if (singlestep_breakpoints_inserted_p
3044 || !ptid_equal (ecs->ptid, inferior_ptid)
3045 || !currently_stepping (ecs->event_thread)
3046 || ecs->event_thread->prev_pc == breakpoint_pc)
3047 regcache_write_pc (regcache, breakpoint_pc);
3048
3049 do_cleanups (old_cleanups);
3050 }
3051 }
3052
3053 static void
3054 init_infwait_state (void)
3055 {
3056 waiton_ptid = pid_to_ptid (-1);
3057 infwait_state = infwait_normal_state;
3058 }
3059
3060 static int
3061 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3062 {
3063 for (frame = get_prev_frame (frame);
3064 frame != NULL;
3065 frame = get_prev_frame (frame))
3066 {
3067 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3068 return 1;
3069 if (get_frame_type (frame) != INLINE_FRAME)
3070 break;
3071 }
3072
3073 return 0;
3074 }
3075
3076 /* Auxiliary function that handles syscall entry/return events.
3077 It returns 1 if the inferior should keep going (and GDB
3078 should ignore the event), or 0 if the event deserves to be
3079 processed. */
3080
3081 static int
3082 handle_syscall_event (struct execution_control_state *ecs)
3083 {
3084 struct regcache *regcache;
3085 int syscall_number;
3086
3087 if (!ptid_equal (ecs->ptid, inferior_ptid))
3088 context_switch (ecs->ptid);
3089
3090 regcache = get_thread_regcache (ecs->ptid);
3091 syscall_number = ecs->ws.value.syscall_number;
3092 stop_pc = regcache_read_pc (regcache);
3093
3094 if (catch_syscall_enabled () > 0
3095 && catching_syscall_number (syscall_number) > 0)
3096 {
3097 enum bpstat_signal_value sval;
3098
3099 if (debug_infrun)
3100 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3101 syscall_number);
3102
3103 ecs->event_thread->control.stop_bpstat
3104 = bpstat_stop_status (get_regcache_aspace (regcache),
3105 stop_pc, ecs->ptid, &ecs->ws);
3106
3107 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3108 GDB_SIGNAL_0);
3109 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
3110
3111 if (!ecs->random_signal)
3112 {
3113 /* Catchpoint hit. */
3114 return 0;
3115 }
3116 }
3117
3118 /* If no catchpoint triggered for this, then keep going. */
3119 keep_going (ecs);
3120 return 1;
3121 }
3122
3123 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3124
3125 static void
3126 fill_in_stop_func (struct gdbarch *gdbarch,
3127 struct execution_control_state *ecs)
3128 {
3129 if (!ecs->stop_func_filled_in)
3130 {
3131 /* Don't care about return value; stop_func_start and stop_func_name
3132 will both be 0 if it doesn't work. */
3133 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3134 &ecs->stop_func_start, &ecs->stop_func_end);
3135 ecs->stop_func_start
3136 += gdbarch_deprecated_function_start_offset (gdbarch);
3137
3138 ecs->stop_func_filled_in = 1;
3139 }
3140 }
3141
3142 /* Given an execution control state that has been freshly filled in
3143 by an event from the inferior, figure out what it means and take
3144 appropriate action. */
3145
3146 static void
3147 handle_inferior_event (struct execution_control_state *ecs)
3148 {
3149 struct frame_info *frame;
3150 struct gdbarch *gdbarch;
3151 int stopped_by_watchpoint;
3152 int stepped_after_stopped_by_watchpoint = 0;
3153 enum stop_kind stop_soon;
3154
3155 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3156 {
3157 /* We had an event in the inferior, but we are not interested in
3158 handling it at this level. The lower layers have already
3159 done what needs to be done, if anything.
3160
3161 One of the possible circumstances for this is when the
3162 inferior produces output for the console. The inferior has
3163 not stopped, and we are ignoring the event. Another possible
3164 circumstance is any event which the lower level knows will be
3165 reported multiple times without an intervening resume. */
3166 if (debug_infrun)
3167 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3168 prepare_to_wait (ecs);
3169 return;
3170 }
3171
3172 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3173 && target_can_async_p () && !sync_execution)
3174 {
3175 /* There were no unwaited-for children left in the target, but,
3176 we're not synchronously waiting for events either. Just
3177 ignore. Otherwise, if we were running a synchronous
3178 execution command, we need to cancel it and give the user
3179 back the terminal. */
3180 if (debug_infrun)
3181 fprintf_unfiltered (gdb_stdlog,
3182 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3183 prepare_to_wait (ecs);
3184 return;
3185 }
3186
3187 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3188 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3189 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3190 {
3191 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3192
3193 gdb_assert (inf);
3194 stop_soon = inf->control.stop_soon;
3195 }
3196 else
3197 stop_soon = NO_STOP_QUIETLY;
3198
3199 /* Cache the last pid/waitstatus. */
3200 target_last_wait_ptid = ecs->ptid;
3201 target_last_waitstatus = ecs->ws;
3202
3203 /* Always clear state belonging to the previous time we stopped. */
3204 stop_stack_dummy = STOP_NONE;
3205
3206 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3207 {
3208 /* No unwaited-for children left. IOW, all resumed children
3209 have exited. */
3210 if (debug_infrun)
3211 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3212
3213 stop_print_frame = 0;
3214 stop_stepping (ecs);
3215 return;
3216 }
3217
3218 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3219 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3220 {
3221 ecs->event_thread = find_thread_ptid (ecs->ptid);
3222 /* If it's a new thread, add it to the thread database. */
3223 if (ecs->event_thread == NULL)
3224 ecs->event_thread = add_thread (ecs->ptid);
3225
3226 /* Disable range stepping. If the next step request could use a
3227 range, this will be end up re-enabled then. */
3228 ecs->event_thread->control.may_range_step = 0;
3229 }
3230
3231 /* Dependent on valid ECS->EVENT_THREAD. */
3232 adjust_pc_after_break (ecs);
3233
3234 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3235 reinit_frame_cache ();
3236
3237 breakpoint_retire_moribund ();
3238
3239 /* First, distinguish signals caused by the debugger from signals
3240 that have to do with the program's own actions. Note that
3241 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3242 on the operating system version. Here we detect when a SIGILL or
3243 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3244 something similar for SIGSEGV, since a SIGSEGV will be generated
3245 when we're trying to execute a breakpoint instruction on a
3246 non-executable stack. This happens for call dummy breakpoints
3247 for architectures like SPARC that place call dummies on the
3248 stack. */
3249 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3250 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3251 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3252 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3253 {
3254 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3255
3256 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3257 regcache_read_pc (regcache)))
3258 {
3259 if (debug_infrun)
3260 fprintf_unfiltered (gdb_stdlog,
3261 "infrun: Treating signal as SIGTRAP\n");
3262 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3263 }
3264 }
3265
3266 /* Mark the non-executing threads accordingly. In all-stop, all
3267 threads of all processes are stopped when we get any event
3268 reported. In non-stop mode, only the event thread stops. If
3269 we're handling a process exit in non-stop mode, there's nothing
3270 to do, as threads of the dead process are gone, and threads of
3271 any other process were left running. */
3272 if (!non_stop)
3273 set_executing (minus_one_ptid, 0);
3274 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3275 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3276 set_executing (ecs->ptid, 0);
3277
3278 switch (infwait_state)
3279 {
3280 case infwait_thread_hop_state:
3281 if (debug_infrun)
3282 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3283 break;
3284
3285 case infwait_normal_state:
3286 if (debug_infrun)
3287 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3288 break;
3289
3290 case infwait_step_watch_state:
3291 if (debug_infrun)
3292 fprintf_unfiltered (gdb_stdlog,
3293 "infrun: infwait_step_watch_state\n");
3294
3295 stepped_after_stopped_by_watchpoint = 1;
3296 break;
3297
3298 case infwait_nonstep_watch_state:
3299 if (debug_infrun)
3300 fprintf_unfiltered (gdb_stdlog,
3301 "infrun: infwait_nonstep_watch_state\n");
3302 insert_breakpoints ();
3303
3304 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3305 handle things like signals arriving and other things happening
3306 in combination correctly? */
3307 stepped_after_stopped_by_watchpoint = 1;
3308 break;
3309
3310 default:
3311 internal_error (__FILE__, __LINE__, _("bad switch"));
3312 }
3313
3314 infwait_state = infwait_normal_state;
3315 waiton_ptid = pid_to_ptid (-1);
3316
3317 switch (ecs->ws.kind)
3318 {
3319 case TARGET_WAITKIND_LOADED:
3320 if (debug_infrun)
3321 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3322 /* Ignore gracefully during startup of the inferior, as it might
3323 be the shell which has just loaded some objects, otherwise
3324 add the symbols for the newly loaded objects. Also ignore at
3325 the beginning of an attach or remote session; we will query
3326 the full list of libraries once the connection is
3327 established. */
3328 if (stop_soon == NO_STOP_QUIETLY)
3329 {
3330 struct regcache *regcache;
3331 enum bpstat_signal_value sval;
3332
3333 if (!ptid_equal (ecs->ptid, inferior_ptid))
3334 context_switch (ecs->ptid);
3335 regcache = get_thread_regcache (ecs->ptid);
3336
3337 handle_solib_event ();
3338
3339 ecs->event_thread->control.stop_bpstat
3340 = bpstat_stop_status (get_regcache_aspace (regcache),
3341 stop_pc, ecs->ptid, &ecs->ws);
3342
3343 sval
3344 = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3345 GDB_SIGNAL_0);
3346 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
3347
3348 if (!ecs->random_signal)
3349 {
3350 /* A catchpoint triggered. */
3351 process_event_stop_test (ecs);
3352 return;
3353 }
3354
3355 /* If requested, stop when the dynamic linker notifies
3356 gdb of events. This allows the user to get control
3357 and place breakpoints in initializer routines for
3358 dynamically loaded objects (among other things). */
3359 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3360 if (stop_on_solib_events)
3361 {
3362 /* Make sure we print "Stopped due to solib-event" in
3363 normal_stop. */
3364 stop_print_frame = 1;
3365
3366 stop_stepping (ecs);
3367 return;
3368 }
3369 }
3370
3371 /* If we are skipping through a shell, or through shared library
3372 loading that we aren't interested in, resume the program. If
3373 we're running the program normally, also resume. But stop if
3374 we're attaching or setting up a remote connection. */
3375 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3376 {
3377 if (!ptid_equal (ecs->ptid, inferior_ptid))
3378 context_switch (ecs->ptid);
3379
3380 /* Loading of shared libraries might have changed breakpoint
3381 addresses. Make sure new breakpoints are inserted. */
3382 if (stop_soon == NO_STOP_QUIETLY
3383 && !breakpoints_always_inserted_mode ())
3384 insert_breakpoints ();
3385 resume (0, GDB_SIGNAL_0);
3386 prepare_to_wait (ecs);
3387 return;
3388 }
3389
3390 break;
3391
3392 case TARGET_WAITKIND_SPURIOUS:
3393 if (debug_infrun)
3394 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3395 if (!ptid_equal (ecs->ptid, inferior_ptid))
3396 context_switch (ecs->ptid);
3397 resume (0, GDB_SIGNAL_0);
3398 prepare_to_wait (ecs);
3399 return;
3400
3401 case TARGET_WAITKIND_EXITED:
3402 case TARGET_WAITKIND_SIGNALLED:
3403 if (debug_infrun)
3404 {
3405 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3406 fprintf_unfiltered (gdb_stdlog,
3407 "infrun: TARGET_WAITKIND_EXITED\n");
3408 else
3409 fprintf_unfiltered (gdb_stdlog,
3410 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3411 }
3412
3413 inferior_ptid = ecs->ptid;
3414 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3415 set_current_program_space (current_inferior ()->pspace);
3416 handle_vfork_child_exec_or_exit (0);
3417 target_terminal_ours (); /* Must do this before mourn anyway. */
3418
3419 /* Clearing any previous state of convenience variables. */
3420 clear_exit_convenience_vars ();
3421
3422 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3423 {
3424 /* Record the exit code in the convenience variable $_exitcode, so
3425 that the user can inspect this again later. */
3426 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3427 (LONGEST) ecs->ws.value.integer);
3428
3429 /* Also record this in the inferior itself. */
3430 current_inferior ()->has_exit_code = 1;
3431 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3432
3433 print_exited_reason (ecs->ws.value.integer);
3434 }
3435 else
3436 {
3437 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3438 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3439
3440 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3441 {
3442 /* Set the value of the internal variable $_exitsignal,
3443 which holds the signal uncaught by the inferior. */
3444 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3445 gdbarch_gdb_signal_to_target (gdbarch,
3446 ecs->ws.value.sig));
3447 }
3448 else
3449 {
3450 /* We don't have access to the target's method used for
3451 converting between signal numbers (GDB's internal
3452 representation <-> target's representation).
3453 Therefore, we cannot do a good job at displaying this
3454 information to the user. It's better to just warn
3455 her about it (if infrun debugging is enabled), and
3456 give up. */
3457 if (debug_infrun)
3458 fprintf_filtered (gdb_stdlog, _("\
3459 Cannot fill $_exitsignal with the correct signal number.\n"));
3460 }
3461
3462 print_signal_exited_reason (ecs->ws.value.sig);
3463 }
3464
3465 gdb_flush (gdb_stdout);
3466 target_mourn_inferior ();
3467 singlestep_breakpoints_inserted_p = 0;
3468 cancel_single_step_breakpoints ();
3469 stop_print_frame = 0;
3470 stop_stepping (ecs);
3471 return;
3472
3473 /* The following are the only cases in which we keep going;
3474 the above cases end in a continue or goto. */
3475 case TARGET_WAITKIND_FORKED:
3476 case TARGET_WAITKIND_VFORKED:
3477 if (debug_infrun)
3478 {
3479 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3480 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3481 else
3482 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3483 }
3484
3485 /* Check whether the inferior is displaced stepping. */
3486 {
3487 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3488 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3489 struct displaced_step_inferior_state *displaced
3490 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3491
3492 /* If checking displaced stepping is supported, and thread
3493 ecs->ptid is displaced stepping. */
3494 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3495 {
3496 struct inferior *parent_inf
3497 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3498 struct regcache *child_regcache;
3499 CORE_ADDR parent_pc;
3500
3501 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3502 indicating that the displaced stepping of syscall instruction
3503 has been done. Perform cleanup for parent process here. Note
3504 that this operation also cleans up the child process for vfork,
3505 because their pages are shared. */
3506 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3507
3508 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3509 {
3510 /* Restore scratch pad for child process. */
3511 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3512 }
3513
3514 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3515 the child's PC is also within the scratchpad. Set the child's PC
3516 to the parent's PC value, which has already been fixed up.
3517 FIXME: we use the parent's aspace here, although we're touching
3518 the child, because the child hasn't been added to the inferior
3519 list yet at this point. */
3520
3521 child_regcache
3522 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3523 gdbarch,
3524 parent_inf->aspace);
3525 /* Read PC value of parent process. */
3526 parent_pc = regcache_read_pc (regcache);
3527
3528 if (debug_displaced)
3529 fprintf_unfiltered (gdb_stdlog,
3530 "displaced: write child pc from %s to %s\n",
3531 paddress (gdbarch,
3532 regcache_read_pc (child_regcache)),
3533 paddress (gdbarch, parent_pc));
3534
3535 regcache_write_pc (child_regcache, parent_pc);
3536 }
3537 }
3538
3539 if (!ptid_equal (ecs->ptid, inferior_ptid))
3540 context_switch (ecs->ptid);
3541
3542 /* Immediately detach breakpoints from the child before there's
3543 any chance of letting the user delete breakpoints from the
3544 breakpoint lists. If we don't do this early, it's easy to
3545 leave left over traps in the child, vis: "break foo; catch
3546 fork; c; <fork>; del; c; <child calls foo>". We only follow
3547 the fork on the last `continue', and by that time the
3548 breakpoint at "foo" is long gone from the breakpoint table.
3549 If we vforked, then we don't need to unpatch here, since both
3550 parent and child are sharing the same memory pages; we'll
3551 need to unpatch at follow/detach time instead to be certain
3552 that new breakpoints added between catchpoint hit time and
3553 vfork follow are detached. */
3554 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3555 {
3556 /* This won't actually modify the breakpoint list, but will
3557 physically remove the breakpoints from the child. */
3558 detach_breakpoints (ecs->ws.value.related_pid);
3559 }
3560
3561 if (singlestep_breakpoints_inserted_p)
3562 {
3563 /* Pull the single step breakpoints out of the target. */
3564 remove_single_step_breakpoints ();
3565 singlestep_breakpoints_inserted_p = 0;
3566 }
3567
3568 /* In case the event is caught by a catchpoint, remember that
3569 the event is to be followed at the next resume of the thread,
3570 and not immediately. */
3571 ecs->event_thread->pending_follow = ecs->ws;
3572
3573 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3574
3575 ecs->event_thread->control.stop_bpstat
3576 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3577 stop_pc, ecs->ptid, &ecs->ws);
3578
3579 /* Note that we're interested in knowing the bpstat actually
3580 causes a stop, not just if it may explain the signal.
3581 Software watchpoints, for example, always appear in the
3582 bpstat. */
3583 ecs->random_signal
3584 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3585
3586 /* If no catchpoint triggered for this, then keep going. */
3587 if (ecs->random_signal)
3588 {
3589 ptid_t parent;
3590 ptid_t child;
3591 int should_resume;
3592 int follow_child
3593 = (follow_fork_mode_string == follow_fork_mode_child);
3594
3595 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3596
3597 should_resume = follow_fork ();
3598
3599 parent = ecs->ptid;
3600 child = ecs->ws.value.related_pid;
3601
3602 /* In non-stop mode, also resume the other branch. */
3603 if (non_stop && !detach_fork)
3604 {
3605 if (follow_child)
3606 switch_to_thread (parent);
3607 else
3608 switch_to_thread (child);
3609
3610 ecs->event_thread = inferior_thread ();
3611 ecs->ptid = inferior_ptid;
3612 keep_going (ecs);
3613 }
3614
3615 if (follow_child)
3616 switch_to_thread (child);
3617 else
3618 switch_to_thread (parent);
3619
3620 ecs->event_thread = inferior_thread ();
3621 ecs->ptid = inferior_ptid;
3622
3623 if (should_resume)
3624 keep_going (ecs);
3625 else
3626 stop_stepping (ecs);
3627 return;
3628 }
3629 process_event_stop_test (ecs);
3630 return;
3631
3632 case TARGET_WAITKIND_VFORK_DONE:
3633 /* Done with the shared memory region. Re-insert breakpoints in
3634 the parent, and keep going. */
3635
3636 if (debug_infrun)
3637 fprintf_unfiltered (gdb_stdlog,
3638 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3639
3640 if (!ptid_equal (ecs->ptid, inferior_ptid))
3641 context_switch (ecs->ptid);
3642
3643 current_inferior ()->waiting_for_vfork_done = 0;
3644 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3645 /* This also takes care of reinserting breakpoints in the
3646 previously locked inferior. */
3647 keep_going (ecs);
3648 return;
3649
3650 case TARGET_WAITKIND_EXECD:
3651 if (debug_infrun)
3652 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3653
3654 if (!ptid_equal (ecs->ptid, inferior_ptid))
3655 context_switch (ecs->ptid);
3656
3657 singlestep_breakpoints_inserted_p = 0;
3658 cancel_single_step_breakpoints ();
3659
3660 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3661
3662 /* Do whatever is necessary to the parent branch of the vfork. */
3663 handle_vfork_child_exec_or_exit (1);
3664
3665 /* This causes the eventpoints and symbol table to be reset.
3666 Must do this now, before trying to determine whether to
3667 stop. */
3668 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3669
3670 ecs->event_thread->control.stop_bpstat
3671 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3672 stop_pc, ecs->ptid, &ecs->ws);
3673 ecs->random_signal
3674 = (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3675 GDB_SIGNAL_0)
3676 == BPSTAT_SIGNAL_NO);
3677
3678 /* Note that this may be referenced from inside
3679 bpstat_stop_status above, through inferior_has_execd. */
3680 xfree (ecs->ws.value.execd_pathname);
3681 ecs->ws.value.execd_pathname = NULL;
3682
3683 /* If no catchpoint triggered for this, then keep going. */
3684 if (ecs->random_signal)
3685 {
3686 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3687 keep_going (ecs);
3688 return;
3689 }
3690 process_event_stop_test (ecs);
3691 return;
3692
3693 /* Be careful not to try to gather much state about a thread
3694 that's in a syscall. It's frequently a losing proposition. */
3695 case TARGET_WAITKIND_SYSCALL_ENTRY:
3696 if (debug_infrun)
3697 fprintf_unfiltered (gdb_stdlog,
3698 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3699 /* Getting the current syscall number. */
3700 if (handle_syscall_event (ecs) == 0)
3701 process_event_stop_test (ecs);
3702 return;
3703
3704 /* Before examining the threads further, step this thread to
3705 get it entirely out of the syscall. (We get notice of the
3706 event when the thread is just on the verge of exiting a
3707 syscall. Stepping one instruction seems to get it back
3708 into user code.) */
3709 case TARGET_WAITKIND_SYSCALL_RETURN:
3710 if (debug_infrun)
3711 fprintf_unfiltered (gdb_stdlog,
3712 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3713 if (handle_syscall_event (ecs) == 0)
3714 process_event_stop_test (ecs);
3715 return;
3716
3717 case TARGET_WAITKIND_STOPPED:
3718 if (debug_infrun)
3719 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3720 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3721 break;
3722
3723 case TARGET_WAITKIND_NO_HISTORY:
3724 if (debug_infrun)
3725 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3726 /* Reverse execution: target ran out of history info. */
3727
3728 /* Pull the single step breakpoints out of the target. */
3729 if (singlestep_breakpoints_inserted_p)
3730 {
3731 if (!ptid_equal (ecs->ptid, inferior_ptid))
3732 context_switch (ecs->ptid);
3733 remove_single_step_breakpoints ();
3734 singlestep_breakpoints_inserted_p = 0;
3735 }
3736 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3737 print_no_history_reason ();
3738 stop_stepping (ecs);
3739 return;
3740 }
3741
3742 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3743 {
3744 /* Do we need to clean up the state of a thread that has
3745 completed a displaced single-step? (Doing so usually affects
3746 the PC, so do it here, before we set stop_pc.) */
3747 displaced_step_fixup (ecs->ptid,
3748 ecs->event_thread->suspend.stop_signal);
3749
3750 /* If we either finished a single-step or hit a breakpoint, but
3751 the user wanted this thread to be stopped, pretend we got a
3752 SIG0 (generic unsignaled stop). */
3753
3754 if (ecs->event_thread->stop_requested
3755 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3756 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3757 }
3758
3759 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3760
3761 if (debug_infrun)
3762 {
3763 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3764 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3765 struct cleanup *old_chain = save_inferior_ptid ();
3766
3767 inferior_ptid = ecs->ptid;
3768
3769 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3770 paddress (gdbarch, stop_pc));
3771 if (target_stopped_by_watchpoint ())
3772 {
3773 CORE_ADDR addr;
3774
3775 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3776
3777 if (target_stopped_data_address (&current_target, &addr))
3778 fprintf_unfiltered (gdb_stdlog,
3779 "infrun: stopped data address = %s\n",
3780 paddress (gdbarch, addr));
3781 else
3782 fprintf_unfiltered (gdb_stdlog,
3783 "infrun: (no data address available)\n");
3784 }
3785
3786 do_cleanups (old_chain);
3787 }
3788
3789 if (stepping_past_singlestep_breakpoint)
3790 {
3791 gdb_assert (singlestep_breakpoints_inserted_p);
3792 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3793 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3794
3795 stepping_past_singlestep_breakpoint = 0;
3796
3797 /* We've either finished single-stepping past the single-step
3798 breakpoint, or stopped for some other reason. It would be nice if
3799 we could tell, but we can't reliably. */
3800 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3801 {
3802 if (debug_infrun)
3803 fprintf_unfiltered (gdb_stdlog,
3804 "infrun: stepping_past_"
3805 "singlestep_breakpoint\n");
3806 /* Pull the single step breakpoints out of the target. */
3807 if (!ptid_equal (ecs->ptid, inferior_ptid))
3808 context_switch (ecs->ptid);
3809 remove_single_step_breakpoints ();
3810 singlestep_breakpoints_inserted_p = 0;
3811
3812 ecs->event_thread->control.trap_expected = 0;
3813
3814 context_switch (saved_singlestep_ptid);
3815 if (deprecated_context_hook)
3816 deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
3817
3818 resume (1, GDB_SIGNAL_0);
3819 prepare_to_wait (ecs);
3820 return;
3821 }
3822 }
3823
3824 if (!ptid_equal (deferred_step_ptid, null_ptid))
3825 {
3826 /* In non-stop mode, there's never a deferred_step_ptid set. */
3827 gdb_assert (!non_stop);
3828
3829 /* If we stopped for some other reason than single-stepping, ignore
3830 the fact that we were supposed to switch back. */
3831 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3832 {
3833 if (debug_infrun)
3834 fprintf_unfiltered (gdb_stdlog,
3835 "infrun: handling deferred step\n");
3836
3837 /* Pull the single step breakpoints out of the target. */
3838 if (singlestep_breakpoints_inserted_p)
3839 {
3840 if (!ptid_equal (ecs->ptid, inferior_ptid))
3841 context_switch (ecs->ptid);
3842 remove_single_step_breakpoints ();
3843 singlestep_breakpoints_inserted_p = 0;
3844 }
3845
3846 ecs->event_thread->control.trap_expected = 0;
3847
3848 context_switch (deferred_step_ptid);
3849 deferred_step_ptid = null_ptid;
3850 /* Suppress spurious "Switching to ..." message. */
3851 previous_inferior_ptid = inferior_ptid;
3852
3853 resume (1, GDB_SIGNAL_0);
3854 prepare_to_wait (ecs);
3855 return;
3856 }
3857
3858 deferred_step_ptid = null_ptid;
3859 }
3860
3861 /* See if a thread hit a thread-specific breakpoint that was meant for
3862 another thread. If so, then step that thread past the breakpoint,
3863 and continue it. */
3864
3865 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3866 {
3867 int thread_hop_needed = 0;
3868 struct address_space *aspace =
3869 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3870
3871 /* Check if a regular breakpoint has been hit before checking
3872 for a potential single step breakpoint. Otherwise, GDB will
3873 not see this breakpoint hit when stepping onto breakpoints. */
3874 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3875 {
3876 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3877 thread_hop_needed = 1;
3878 }
3879 else if (singlestep_breakpoints_inserted_p)
3880 {
3881 /* We have not context switched yet, so this should be true
3882 no matter which thread hit the singlestep breakpoint. */
3883 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3884 if (debug_infrun)
3885 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3886 "trap for %s\n",
3887 target_pid_to_str (ecs->ptid));
3888
3889 /* The call to in_thread_list is necessary because PTIDs sometimes
3890 change when we go from single-threaded to multi-threaded. If
3891 the singlestep_ptid is still in the list, assume that it is
3892 really different from ecs->ptid. */
3893 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3894 && in_thread_list (singlestep_ptid))
3895 {
3896 /* If the PC of the thread we were trying to single-step
3897 has changed, discard this event (which we were going
3898 to ignore anyway), and pretend we saw that thread
3899 trap. This prevents us continuously moving the
3900 single-step breakpoint forward, one instruction at a
3901 time. If the PC has changed, then the thread we were
3902 trying to single-step has trapped or been signalled,
3903 but the event has not been reported to GDB yet.
3904
3905 There might be some cases where this loses signal
3906 information, if a signal has arrived at exactly the
3907 same time that the PC changed, but this is the best
3908 we can do with the information available. Perhaps we
3909 should arrange to report all events for all threads
3910 when they stop, or to re-poll the remote looking for
3911 this particular thread (i.e. temporarily enable
3912 schedlock). */
3913
3914 CORE_ADDR new_singlestep_pc
3915 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3916
3917 if (new_singlestep_pc != singlestep_pc)
3918 {
3919 enum gdb_signal stop_signal;
3920
3921 if (debug_infrun)
3922 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3923 " but expected thread advanced also\n");
3924
3925 /* The current context still belongs to
3926 singlestep_ptid. Don't swap here, since that's
3927 the context we want to use. Just fudge our
3928 state and continue. */
3929 stop_signal = ecs->event_thread->suspend.stop_signal;
3930 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3931 ecs->ptid = singlestep_ptid;
3932 ecs->event_thread = find_thread_ptid (ecs->ptid);
3933 ecs->event_thread->suspend.stop_signal = stop_signal;
3934 stop_pc = new_singlestep_pc;
3935 }
3936 else
3937 {
3938 if (debug_infrun)
3939 fprintf_unfiltered (gdb_stdlog,
3940 "infrun: unexpected thread\n");
3941
3942 thread_hop_needed = 1;
3943 stepping_past_singlestep_breakpoint = 1;
3944 saved_singlestep_ptid = singlestep_ptid;
3945 }
3946 }
3947 }
3948
3949 if (thread_hop_needed)
3950 {
3951 struct regcache *thread_regcache;
3952 int remove_status = 0;
3953
3954 if (debug_infrun)
3955 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3956
3957 /* Switch context before touching inferior memory, the
3958 previous thread may have exited. */
3959 if (!ptid_equal (inferior_ptid, ecs->ptid))
3960 context_switch (ecs->ptid);
3961
3962 /* Saw a breakpoint, but it was hit by the wrong thread.
3963 Just continue. */
3964
3965 if (singlestep_breakpoints_inserted_p)
3966 {
3967 /* Pull the single step breakpoints out of the target. */
3968 remove_single_step_breakpoints ();
3969 singlestep_breakpoints_inserted_p = 0;
3970 }
3971
3972 /* If the arch can displace step, don't remove the
3973 breakpoints. */
3974 thread_regcache = get_thread_regcache (ecs->ptid);
3975 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3976 remove_status = remove_breakpoints ();
3977
3978 /* Did we fail to remove breakpoints? If so, try
3979 to set the PC past the bp. (There's at least
3980 one situation in which we can fail to remove
3981 the bp's: On HP-UX's that use ttrace, we can't
3982 change the address space of a vforking child
3983 process until the child exits (well, okay, not
3984 then either :-) or execs. */
3985 if (remove_status != 0)
3986 error (_("Cannot step over breakpoint hit in wrong thread"));
3987 else
3988 { /* Single step */
3989 if (!non_stop)
3990 {
3991 /* Only need to require the next event from this
3992 thread in all-stop mode. */
3993 waiton_ptid = ecs->ptid;
3994 infwait_state = infwait_thread_hop_state;
3995 }
3996
3997 ecs->event_thread->stepping_over_breakpoint = 1;
3998 keep_going (ecs);
3999 return;
4000 }
4001 }
4002 }
4003
4004 /* See if something interesting happened to the non-current thread. If
4005 so, then switch to that thread. */
4006 if (!ptid_equal (ecs->ptid, inferior_ptid))
4007 {
4008 if (debug_infrun)
4009 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
4010
4011 context_switch (ecs->ptid);
4012
4013 if (deprecated_context_hook)
4014 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
4015 }
4016
4017 /* At this point, get hold of the now-current thread's frame. */
4018 frame = get_current_frame ();
4019 gdbarch = get_frame_arch (frame);
4020
4021 if (singlestep_breakpoints_inserted_p)
4022 {
4023 /* Pull the single step breakpoints out of the target. */
4024 remove_single_step_breakpoints ();
4025 singlestep_breakpoints_inserted_p = 0;
4026 }
4027
4028 if (stepped_after_stopped_by_watchpoint)
4029 stopped_by_watchpoint = 0;
4030 else
4031 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4032
4033 /* If necessary, step over this watchpoint. We'll be back to display
4034 it in a moment. */
4035 if (stopped_by_watchpoint
4036 && (target_have_steppable_watchpoint
4037 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4038 {
4039 /* At this point, we are stopped at an instruction which has
4040 attempted to write to a piece of memory under control of
4041 a watchpoint. The instruction hasn't actually executed
4042 yet. If we were to evaluate the watchpoint expression
4043 now, we would get the old value, and therefore no change
4044 would seem to have occurred.
4045
4046 In order to make watchpoints work `right', we really need
4047 to complete the memory write, and then evaluate the
4048 watchpoint expression. We do this by single-stepping the
4049 target.
4050
4051 It may not be necessary to disable the watchpoint to stop over
4052 it. For example, the PA can (with some kernel cooperation)
4053 single step over a watchpoint without disabling the watchpoint.
4054
4055 It is far more common to need to disable a watchpoint to step
4056 the inferior over it. If we have non-steppable watchpoints,
4057 we must disable the current watchpoint; it's simplest to
4058 disable all watchpoints and breakpoints. */
4059 int hw_step = 1;
4060
4061 if (!target_have_steppable_watchpoint)
4062 {
4063 remove_breakpoints ();
4064 /* See comment in resume why we need to stop bypassing signals
4065 while breakpoints have been removed. */
4066 target_pass_signals (0, NULL);
4067 }
4068 /* Single step */
4069 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4070 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
4071 waiton_ptid = ecs->ptid;
4072 if (target_have_steppable_watchpoint)
4073 infwait_state = infwait_step_watch_state;
4074 else
4075 infwait_state = infwait_nonstep_watch_state;
4076 prepare_to_wait (ecs);
4077 return;
4078 }
4079
4080 ecs->event_thread->stepping_over_breakpoint = 0;
4081 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4082 ecs->event_thread->control.stop_step = 0;
4083 stop_print_frame = 1;
4084 stopped_by_random_signal = 0;
4085
4086 /* Hide inlined functions starting here, unless we just performed stepi or
4087 nexti. After stepi and nexti, always show the innermost frame (not any
4088 inline function call sites). */
4089 if (ecs->event_thread->control.step_range_end != 1)
4090 {
4091 struct address_space *aspace =
4092 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4093
4094 /* skip_inline_frames is expensive, so we avoid it if we can
4095 determine that the address is one where functions cannot have
4096 been inlined. This improves performance with inferiors that
4097 load a lot of shared libraries, because the solib event
4098 breakpoint is defined as the address of a function (i.e. not
4099 inline). Note that we have to check the previous PC as well
4100 as the current one to catch cases when we have just
4101 single-stepped off a breakpoint prior to reinstating it.
4102 Note that we're assuming that the code we single-step to is
4103 not inline, but that's not definitive: there's nothing
4104 preventing the event breakpoint function from containing
4105 inlined code, and the single-step ending up there. If the
4106 user had set a breakpoint on that inlined code, the missing
4107 skip_inline_frames call would break things. Fortunately
4108 that's an extremely unlikely scenario. */
4109 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4110 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4111 && ecs->event_thread->control.trap_expected
4112 && pc_at_non_inline_function (aspace,
4113 ecs->event_thread->prev_pc,
4114 &ecs->ws)))
4115 {
4116 skip_inline_frames (ecs->ptid);
4117
4118 /* Re-fetch current thread's frame in case that invalidated
4119 the frame cache. */
4120 frame = get_current_frame ();
4121 gdbarch = get_frame_arch (frame);
4122 }
4123 }
4124
4125 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4126 && ecs->event_thread->control.trap_expected
4127 && gdbarch_single_step_through_delay_p (gdbarch)
4128 && currently_stepping (ecs->event_thread))
4129 {
4130 /* We're trying to step off a breakpoint. Turns out that we're
4131 also on an instruction that needs to be stepped multiple
4132 times before it's been fully executing. E.g., architectures
4133 with a delay slot. It needs to be stepped twice, once for
4134 the instruction and once for the delay slot. */
4135 int step_through_delay
4136 = gdbarch_single_step_through_delay (gdbarch, frame);
4137
4138 if (debug_infrun && step_through_delay)
4139 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4140 if (ecs->event_thread->control.step_range_end == 0
4141 && step_through_delay)
4142 {
4143 /* The user issued a continue when stopped at a breakpoint.
4144 Set up for another trap and get out of here. */
4145 ecs->event_thread->stepping_over_breakpoint = 1;
4146 keep_going (ecs);
4147 return;
4148 }
4149 else if (step_through_delay)
4150 {
4151 /* The user issued a step when stopped at a breakpoint.
4152 Maybe we should stop, maybe we should not - the delay
4153 slot *might* correspond to a line of source. In any
4154 case, don't decide that here, just set
4155 ecs->stepping_over_breakpoint, making sure we
4156 single-step again before breakpoints are re-inserted. */
4157 ecs->event_thread->stepping_over_breakpoint = 1;
4158 }
4159 }
4160
4161 /* Look at the cause of the stop, and decide what to do.
4162 The alternatives are:
4163 1) stop_stepping and return; to really stop and return to the debugger,
4164 2) keep_going and return to start up again
4165 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
4166 3) set ecs->random_signal to 1, and the decision between 1 and 2
4167 will be made according to the signal handling tables. */
4168
4169 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4170 && stop_after_trap)
4171 {
4172 if (debug_infrun)
4173 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4174 stop_print_frame = 0;
4175 stop_stepping (ecs);
4176 return;
4177 }
4178
4179 /* This is originated from start_remote(), start_inferior() and
4180 shared libraries hook functions. */
4181 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4182 {
4183 if (debug_infrun)
4184 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4185 stop_stepping (ecs);
4186 return;
4187 }
4188
4189 /* This originates from attach_command(). We need to overwrite
4190 the stop_signal here, because some kernels don't ignore a
4191 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4192 See more comments in inferior.h. On the other hand, if we
4193 get a non-SIGSTOP, report it to the user - assume the backend
4194 will handle the SIGSTOP if it should show up later.
4195
4196 Also consider that the attach is complete when we see a
4197 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4198 target extended-remote report it instead of a SIGSTOP
4199 (e.g. gdbserver). We already rely on SIGTRAP being our
4200 signal, so this is no exception.
4201
4202 Also consider that the attach is complete when we see a
4203 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4204 the target to stop all threads of the inferior, in case the
4205 low level attach operation doesn't stop them implicitly. If
4206 they weren't stopped implicitly, then the stub will report a
4207 GDB_SIGNAL_0, meaning: stopped for no particular reason
4208 other than GDB's request. */
4209 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4210 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4211 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4212 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4213 {
4214 stop_stepping (ecs);
4215 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4216 return;
4217 }
4218
4219 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4220 handles this event. */
4221 ecs->event_thread->control.stop_bpstat
4222 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4223 stop_pc, ecs->ptid, &ecs->ws);
4224
4225 /* Following in case break condition called a
4226 function. */
4227 stop_print_frame = 1;
4228
4229 /* This is where we handle "moribund" watchpoints. Unlike
4230 software breakpoints traps, hardware watchpoint traps are
4231 always distinguishable from random traps. If no high-level
4232 watchpoint is associated with the reported stop data address
4233 anymore, then the bpstat does not explain the signal ---
4234 simply make sure to ignore it if `stopped_by_watchpoint' is
4235 set. */
4236
4237 if (debug_infrun
4238 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4239 && (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4240 GDB_SIGNAL_TRAP)
4241 == BPSTAT_SIGNAL_NO)
4242 && stopped_by_watchpoint)
4243 fprintf_unfiltered (gdb_stdlog,
4244 "infrun: no user watchpoint explains "
4245 "watchpoint SIGTRAP, ignoring\n");
4246
4247 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4248 at one stage in the past included checks for an inferior
4249 function call's call dummy's return breakpoint. The original
4250 comment, that went with the test, read:
4251
4252 ``End of a stack dummy. Some systems (e.g. Sony news) give
4253 another signal besides SIGTRAP, so check here as well as
4254 above.''
4255
4256 If someone ever tries to get call dummys on a
4257 non-executable stack to work (where the target would stop
4258 with something like a SIGSEGV), then those tests might need
4259 to be re-instated. Given, however, that the tests were only
4260 enabled when momentary breakpoints were not being used, I
4261 suspect that it won't be the case.
4262
4263 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4264 be necessary for call dummies on a non-executable stack on
4265 SPARC. */
4266
4267 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4268 ecs->random_signal
4269 = !((bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4270 GDB_SIGNAL_TRAP)
4271 != BPSTAT_SIGNAL_NO)
4272 || stopped_by_watchpoint
4273 || ecs->event_thread->control.trap_expected
4274 || (ecs->event_thread->control.step_range_end
4275 && (ecs->event_thread->control.step_resume_breakpoint
4276 == NULL)));
4277 else
4278 {
4279 enum bpstat_signal_value sval;
4280
4281 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4282 ecs->event_thread->suspend.stop_signal);
4283 ecs->random_signal = (sval == BPSTAT_SIGNAL_NO);
4284
4285 if (sval == BPSTAT_SIGNAL_HIDE)
4286 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4287 }
4288
4289 /* For the program's own signals, act according to
4290 the signal handling tables. */
4291
4292 if (ecs->random_signal)
4293 {
4294 /* Signal not for debugging purposes. */
4295 int printed = 0;
4296 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4297 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
4298
4299 if (debug_infrun)
4300 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4301 gdb_signal_to_symbol_string (stop_signal));
4302
4303 stopped_by_random_signal = 1;
4304
4305 if (signal_print[ecs->event_thread->suspend.stop_signal])
4306 {
4307 printed = 1;
4308 target_terminal_ours_for_output ();
4309 print_signal_received_reason
4310 (ecs->event_thread->suspend.stop_signal);
4311 }
4312 /* Always stop on signals if we're either just gaining control
4313 of the program, or the user explicitly requested this thread
4314 to remain stopped. */
4315 if (stop_soon != NO_STOP_QUIETLY
4316 || ecs->event_thread->stop_requested
4317 || (!inf->detaching
4318 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4319 {
4320 stop_stepping (ecs);
4321 return;
4322 }
4323 /* If not going to stop, give terminal back
4324 if we took it away. */
4325 else if (printed)
4326 target_terminal_inferior ();
4327
4328 /* Clear the signal if it should not be passed. */
4329 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4330 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4331
4332 if (ecs->event_thread->prev_pc == stop_pc
4333 && ecs->event_thread->control.trap_expected
4334 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4335 {
4336 /* We were just starting a new sequence, attempting to
4337 single-step off of a breakpoint and expecting a SIGTRAP.
4338 Instead this signal arrives. This signal will take us out
4339 of the stepping range so GDB needs to remember to, when
4340 the signal handler returns, resume stepping off that
4341 breakpoint. */
4342 /* To simplify things, "continue" is forced to use the same
4343 code paths as single-step - set a breakpoint at the
4344 signal return address and then, once hit, step off that
4345 breakpoint. */
4346 if (debug_infrun)
4347 fprintf_unfiltered (gdb_stdlog,
4348 "infrun: signal arrived while stepping over "
4349 "breakpoint\n");
4350
4351 insert_hp_step_resume_breakpoint_at_frame (frame);
4352 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4353 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4354 ecs->event_thread->control.trap_expected = 0;
4355 keep_going (ecs);
4356 return;
4357 }
4358
4359 if (ecs->event_thread->control.step_range_end != 0
4360 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4361 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
4362 && frame_id_eq (get_stack_frame_id (frame),
4363 ecs->event_thread->control.step_stack_frame_id)
4364 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4365 {
4366 /* The inferior is about to take a signal that will take it
4367 out of the single step range. Set a breakpoint at the
4368 current PC (which is presumably where the signal handler
4369 will eventually return) and then allow the inferior to
4370 run free.
4371
4372 Note that this is only needed for a signal delivered
4373 while in the single-step range. Nested signals aren't a
4374 problem as they eventually all return. */
4375 if (debug_infrun)
4376 fprintf_unfiltered (gdb_stdlog,
4377 "infrun: signal may take us out of "
4378 "single-step range\n");
4379
4380 insert_hp_step_resume_breakpoint_at_frame (frame);
4381 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4382 ecs->event_thread->control.trap_expected = 0;
4383 keep_going (ecs);
4384 return;
4385 }
4386
4387 /* Note: step_resume_breakpoint may be non-NULL. This occures
4388 when either there's a nested signal, or when there's a
4389 pending signal enabled just as the signal handler returns
4390 (leaving the inferior at the step-resume-breakpoint without
4391 actually executing it). Either way continue until the
4392 breakpoint is really hit. */
4393
4394 if (!switch_back_to_stepped_thread (ecs))
4395 {
4396 if (debug_infrun)
4397 fprintf_unfiltered (gdb_stdlog,
4398 "infrun: random signal, keep going\n");
4399
4400 keep_going (ecs);
4401 }
4402 return;
4403 }
4404
4405 process_event_stop_test (ecs);
4406 }
4407
4408 /* Come here when we've got some debug event / signal we can explain
4409 (IOW, not a random signal), and test whether it should cause a
4410 stop, or whether we should resume the inferior (transparently).
4411 E.g., could be a breakpoint whose condition evaluates false; we
4412 could be still stepping within the line; etc. */
4413
4414 static void
4415 process_event_stop_test (struct execution_control_state *ecs)
4416 {
4417 struct symtab_and_line stop_pc_sal;
4418 struct frame_info *frame;
4419 struct gdbarch *gdbarch;
4420 CORE_ADDR jmp_buf_pc;
4421 struct bpstat_what what;
4422
4423 /* Handle cases caused by hitting a breakpoint. */
4424
4425 frame = get_current_frame ();
4426 gdbarch = get_frame_arch (frame);
4427
4428 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4429
4430 if (what.call_dummy)
4431 {
4432 stop_stack_dummy = what.call_dummy;
4433 }
4434
4435 /* If we hit an internal event that triggers symbol changes, the
4436 current frame will be invalidated within bpstat_what (e.g., if we
4437 hit an internal solib event). Re-fetch it. */
4438 frame = get_current_frame ();
4439 gdbarch = get_frame_arch (frame);
4440
4441 switch (what.main_action)
4442 {
4443 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4444 /* If we hit the breakpoint at longjmp while stepping, we
4445 install a momentary breakpoint at the target of the
4446 jmp_buf. */
4447
4448 if (debug_infrun)
4449 fprintf_unfiltered (gdb_stdlog,
4450 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4451
4452 ecs->event_thread->stepping_over_breakpoint = 1;
4453
4454 if (what.is_longjmp)
4455 {
4456 struct value *arg_value;
4457
4458 /* If we set the longjmp breakpoint via a SystemTap probe,
4459 then use it to extract the arguments. The destination PC
4460 is the third argument to the probe. */
4461 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4462 if (arg_value)
4463 jmp_buf_pc = value_as_address (arg_value);
4464 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4465 || !gdbarch_get_longjmp_target (gdbarch,
4466 frame, &jmp_buf_pc))
4467 {
4468 if (debug_infrun)
4469 fprintf_unfiltered (gdb_stdlog,
4470 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4471 "(!gdbarch_get_longjmp_target)\n");
4472 keep_going (ecs);
4473 return;
4474 }
4475
4476 /* Insert a breakpoint at resume address. */
4477 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4478 }
4479 else
4480 check_exception_resume (ecs, frame);
4481 keep_going (ecs);
4482 return;
4483
4484 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4485 {
4486 struct frame_info *init_frame;
4487
4488 /* There are several cases to consider.
4489
4490 1. The initiating frame no longer exists. In this case we
4491 must stop, because the exception or longjmp has gone too
4492 far.
4493
4494 2. The initiating frame exists, and is the same as the
4495 current frame. We stop, because the exception or longjmp
4496 has been caught.
4497
4498 3. The initiating frame exists and is different from the
4499 current frame. This means the exception or longjmp has
4500 been caught beneath the initiating frame, so keep going.
4501
4502 4. longjmp breakpoint has been placed just to protect
4503 against stale dummy frames and user is not interested in
4504 stopping around longjmps. */
4505
4506 if (debug_infrun)
4507 fprintf_unfiltered (gdb_stdlog,
4508 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4509
4510 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4511 != NULL);
4512 delete_exception_resume_breakpoint (ecs->event_thread);
4513
4514 if (what.is_longjmp)
4515 {
4516 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
4517
4518 if (!frame_id_p (ecs->event_thread->initiating_frame))
4519 {
4520 /* Case 4. */
4521 keep_going (ecs);
4522 return;
4523 }
4524 }
4525
4526 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4527
4528 if (init_frame)
4529 {
4530 struct frame_id current_id
4531 = get_frame_id (get_current_frame ());
4532 if (frame_id_eq (current_id,
4533 ecs->event_thread->initiating_frame))
4534 {
4535 /* Case 2. Fall through. */
4536 }
4537 else
4538 {
4539 /* Case 3. */
4540 keep_going (ecs);
4541 return;
4542 }
4543 }
4544
4545 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4546 exists. */
4547 delete_step_resume_breakpoint (ecs->event_thread);
4548
4549 ecs->event_thread->control.stop_step = 1;
4550 print_end_stepping_range_reason ();
4551 stop_stepping (ecs);
4552 }
4553 return;
4554
4555 case BPSTAT_WHAT_SINGLE:
4556 if (debug_infrun)
4557 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4558 ecs->event_thread->stepping_over_breakpoint = 1;
4559 /* Still need to check other stuff, at least the case where we
4560 are stepping and step out of the right range. */
4561 break;
4562
4563 case BPSTAT_WHAT_STEP_RESUME:
4564 if (debug_infrun)
4565 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4566
4567 delete_step_resume_breakpoint (ecs->event_thread);
4568 if (ecs->event_thread->control.proceed_to_finish
4569 && execution_direction == EXEC_REVERSE)
4570 {
4571 struct thread_info *tp = ecs->event_thread;
4572
4573 /* We are finishing a function in reverse, and just hit the
4574 step-resume breakpoint at the start address of the
4575 function, and we're almost there -- just need to back up
4576 by one more single-step, which should take us back to the
4577 function call. */
4578 tp->control.step_range_start = tp->control.step_range_end = 1;
4579 keep_going (ecs);
4580 return;
4581 }
4582 fill_in_stop_func (gdbarch, ecs);
4583 if (stop_pc == ecs->stop_func_start
4584 && execution_direction == EXEC_REVERSE)
4585 {
4586 /* We are stepping over a function call in reverse, and just
4587 hit the step-resume breakpoint at the start address of
4588 the function. Go back to single-stepping, which should
4589 take us back to the function call. */
4590 ecs->event_thread->stepping_over_breakpoint = 1;
4591 keep_going (ecs);
4592 return;
4593 }
4594 break;
4595
4596 case BPSTAT_WHAT_STOP_NOISY:
4597 if (debug_infrun)
4598 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4599 stop_print_frame = 1;
4600
4601 /* We are about to nuke the step_resume_breakpointt via the
4602 cleanup chain, so no need to worry about it here. */
4603
4604 stop_stepping (ecs);
4605 return;
4606
4607 case BPSTAT_WHAT_STOP_SILENT:
4608 if (debug_infrun)
4609 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4610 stop_print_frame = 0;
4611
4612 /* We are about to nuke the step_resume_breakpoin via the
4613 cleanup chain, so no need to worry about it here. */
4614
4615 stop_stepping (ecs);
4616 return;
4617
4618 case BPSTAT_WHAT_HP_STEP_RESUME:
4619 if (debug_infrun)
4620 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4621
4622 delete_step_resume_breakpoint (ecs->event_thread);
4623 if (ecs->event_thread->step_after_step_resume_breakpoint)
4624 {
4625 /* Back when the step-resume breakpoint was inserted, we
4626 were trying to single-step off a breakpoint. Go back to
4627 doing that. */
4628 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4629 ecs->event_thread->stepping_over_breakpoint = 1;
4630 keep_going (ecs);
4631 return;
4632 }
4633 break;
4634
4635 case BPSTAT_WHAT_KEEP_CHECKING:
4636 break;
4637 }
4638
4639 /* We come here if we hit a breakpoint but should not stop for it.
4640 Possibly we also were stepping and should stop for that. So fall
4641 through and test for stepping. But, if not stepping, do not
4642 stop. */
4643
4644 /* In all-stop mode, if we're currently stepping but have stopped in
4645 some other thread, we need to switch back to the stepped thread. */
4646 if (switch_back_to_stepped_thread (ecs))
4647 return;
4648
4649 if (ecs->event_thread->control.step_resume_breakpoint)
4650 {
4651 if (debug_infrun)
4652 fprintf_unfiltered (gdb_stdlog,
4653 "infrun: step-resume breakpoint is inserted\n");
4654
4655 /* Having a step-resume breakpoint overrides anything
4656 else having to do with stepping commands until
4657 that breakpoint is reached. */
4658 keep_going (ecs);
4659 return;
4660 }
4661
4662 if (ecs->event_thread->control.step_range_end == 0)
4663 {
4664 if (debug_infrun)
4665 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4666 /* Likewise if we aren't even stepping. */
4667 keep_going (ecs);
4668 return;
4669 }
4670
4671 /* Re-fetch current thread's frame in case the code above caused
4672 the frame cache to be re-initialized, making our FRAME variable
4673 a dangling pointer. */
4674 frame = get_current_frame ();
4675 gdbarch = get_frame_arch (frame);
4676 fill_in_stop_func (gdbarch, ecs);
4677
4678 /* If stepping through a line, keep going if still within it.
4679
4680 Note that step_range_end is the address of the first instruction
4681 beyond the step range, and NOT the address of the last instruction
4682 within it!
4683
4684 Note also that during reverse execution, we may be stepping
4685 through a function epilogue and therefore must detect when
4686 the current-frame changes in the middle of a line. */
4687
4688 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4689 && (execution_direction != EXEC_REVERSE
4690 || frame_id_eq (get_frame_id (frame),
4691 ecs->event_thread->control.step_frame_id)))
4692 {
4693 if (debug_infrun)
4694 fprintf_unfiltered
4695 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4696 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4697 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4698
4699 /* Tentatively re-enable range stepping; `resume' disables it if
4700 necessary (e.g., if we're stepping over a breakpoint or we
4701 have software watchpoints). */
4702 ecs->event_thread->control.may_range_step = 1;
4703
4704 /* When stepping backward, stop at beginning of line range
4705 (unless it's the function entry point, in which case
4706 keep going back to the call point). */
4707 if (stop_pc == ecs->event_thread->control.step_range_start
4708 && stop_pc != ecs->stop_func_start
4709 && execution_direction == EXEC_REVERSE)
4710 {
4711 ecs->event_thread->control.stop_step = 1;
4712 print_end_stepping_range_reason ();
4713 stop_stepping (ecs);
4714 }
4715 else
4716 keep_going (ecs);
4717
4718 return;
4719 }
4720
4721 /* We stepped out of the stepping range. */
4722
4723 /* If we are stepping at the source level and entered the runtime
4724 loader dynamic symbol resolution code...
4725
4726 EXEC_FORWARD: we keep on single stepping until we exit the run
4727 time loader code and reach the callee's address.
4728
4729 EXEC_REVERSE: we've already executed the callee (backward), and
4730 the runtime loader code is handled just like any other
4731 undebuggable function call. Now we need only keep stepping
4732 backward through the trampoline code, and that's handled further
4733 down, so there is nothing for us to do here. */
4734
4735 if (execution_direction != EXEC_REVERSE
4736 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4737 && in_solib_dynsym_resolve_code (stop_pc))
4738 {
4739 CORE_ADDR pc_after_resolver =
4740 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4741
4742 if (debug_infrun)
4743 fprintf_unfiltered (gdb_stdlog,
4744 "infrun: stepped into dynsym resolve code\n");
4745
4746 if (pc_after_resolver)
4747 {
4748 /* Set up a step-resume breakpoint at the address
4749 indicated by SKIP_SOLIB_RESOLVER. */
4750 struct symtab_and_line sr_sal;
4751
4752 init_sal (&sr_sal);
4753 sr_sal.pc = pc_after_resolver;
4754 sr_sal.pspace = get_frame_program_space (frame);
4755
4756 insert_step_resume_breakpoint_at_sal (gdbarch,
4757 sr_sal, null_frame_id);
4758 }
4759
4760 keep_going (ecs);
4761 return;
4762 }
4763
4764 if (ecs->event_thread->control.step_range_end != 1
4765 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4766 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4767 && get_frame_type (frame) == SIGTRAMP_FRAME)
4768 {
4769 if (debug_infrun)
4770 fprintf_unfiltered (gdb_stdlog,
4771 "infrun: stepped into signal trampoline\n");
4772 /* The inferior, while doing a "step" or "next", has ended up in
4773 a signal trampoline (either by a signal being delivered or by
4774 the signal handler returning). Just single-step until the
4775 inferior leaves the trampoline (either by calling the handler
4776 or returning). */
4777 keep_going (ecs);
4778 return;
4779 }
4780
4781 /* If we're in the return path from a shared library trampoline,
4782 we want to proceed through the trampoline when stepping. */
4783 /* macro/2012-04-25: This needs to come before the subroutine
4784 call check below as on some targets return trampolines look
4785 like subroutine calls (MIPS16 return thunks). */
4786 if (gdbarch_in_solib_return_trampoline (gdbarch,
4787 stop_pc, ecs->stop_func_name)
4788 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4789 {
4790 /* Determine where this trampoline returns. */
4791 CORE_ADDR real_stop_pc;
4792
4793 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4794
4795 if (debug_infrun)
4796 fprintf_unfiltered (gdb_stdlog,
4797 "infrun: stepped into solib return tramp\n");
4798
4799 /* Only proceed through if we know where it's going. */
4800 if (real_stop_pc)
4801 {
4802 /* And put the step-breakpoint there and go until there. */
4803 struct symtab_and_line sr_sal;
4804
4805 init_sal (&sr_sal); /* initialize to zeroes */
4806 sr_sal.pc = real_stop_pc;
4807 sr_sal.section = find_pc_overlay (sr_sal.pc);
4808 sr_sal.pspace = get_frame_program_space (frame);
4809
4810 /* Do not specify what the fp should be when we stop since
4811 on some machines the prologue is where the new fp value
4812 is established. */
4813 insert_step_resume_breakpoint_at_sal (gdbarch,
4814 sr_sal, null_frame_id);
4815
4816 /* Restart without fiddling with the step ranges or
4817 other state. */
4818 keep_going (ecs);
4819 return;
4820 }
4821 }
4822
4823 /* Check for subroutine calls. The check for the current frame
4824 equalling the step ID is not necessary - the check of the
4825 previous frame's ID is sufficient - but it is a common case and
4826 cheaper than checking the previous frame's ID.
4827
4828 NOTE: frame_id_eq will never report two invalid frame IDs as
4829 being equal, so to get into this block, both the current and
4830 previous frame must have valid frame IDs. */
4831 /* The outer_frame_id check is a heuristic to detect stepping
4832 through startup code. If we step over an instruction which
4833 sets the stack pointer from an invalid value to a valid value,
4834 we may detect that as a subroutine call from the mythical
4835 "outermost" function. This could be fixed by marking
4836 outermost frames as !stack_p,code_p,special_p. Then the
4837 initial outermost frame, before sp was valid, would
4838 have code_addr == &_start. See the comment in frame_id_eq
4839 for more. */
4840 if (!frame_id_eq (get_stack_frame_id (frame),
4841 ecs->event_thread->control.step_stack_frame_id)
4842 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4843 ecs->event_thread->control.step_stack_frame_id)
4844 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4845 outer_frame_id)
4846 || step_start_function != find_pc_function (stop_pc))))
4847 {
4848 CORE_ADDR real_stop_pc;
4849
4850 if (debug_infrun)
4851 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4852
4853 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4854 || ((ecs->event_thread->control.step_range_end == 1)
4855 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4856 ecs->stop_func_start)))
4857 {
4858 /* I presume that step_over_calls is only 0 when we're
4859 supposed to be stepping at the assembly language level
4860 ("stepi"). Just stop. */
4861 /* Also, maybe we just did a "nexti" inside a prolog, so we
4862 thought it was a subroutine call but it was not. Stop as
4863 well. FENN */
4864 /* And this works the same backward as frontward. MVS */
4865 ecs->event_thread->control.stop_step = 1;
4866 print_end_stepping_range_reason ();
4867 stop_stepping (ecs);
4868 return;
4869 }
4870
4871 /* Reverse stepping through solib trampolines. */
4872
4873 if (execution_direction == EXEC_REVERSE
4874 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4875 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4876 || (ecs->stop_func_start == 0
4877 && in_solib_dynsym_resolve_code (stop_pc))))
4878 {
4879 /* Any solib trampoline code can be handled in reverse
4880 by simply continuing to single-step. We have already
4881 executed the solib function (backwards), and a few
4882 steps will take us back through the trampoline to the
4883 caller. */
4884 keep_going (ecs);
4885 return;
4886 }
4887
4888 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4889 {
4890 /* We're doing a "next".
4891
4892 Normal (forward) execution: set a breakpoint at the
4893 callee's return address (the address at which the caller
4894 will resume).
4895
4896 Reverse (backward) execution. set the step-resume
4897 breakpoint at the start of the function that we just
4898 stepped into (backwards), and continue to there. When we
4899 get there, we'll need to single-step back to the caller. */
4900
4901 if (execution_direction == EXEC_REVERSE)
4902 {
4903 /* If we're already at the start of the function, we've either
4904 just stepped backward into a single instruction function,
4905 or stepped back out of a signal handler to the first instruction
4906 of the function. Just keep going, which will single-step back
4907 to the caller. */
4908 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
4909 {
4910 struct symtab_and_line sr_sal;
4911
4912 /* Normal function call return (static or dynamic). */
4913 init_sal (&sr_sal);
4914 sr_sal.pc = ecs->stop_func_start;
4915 sr_sal.pspace = get_frame_program_space (frame);
4916 insert_step_resume_breakpoint_at_sal (gdbarch,
4917 sr_sal, null_frame_id);
4918 }
4919 }
4920 else
4921 insert_step_resume_breakpoint_at_caller (frame);
4922
4923 keep_going (ecs);
4924 return;
4925 }
4926
4927 /* If we are in a function call trampoline (a stub between the
4928 calling routine and the real function), locate the real
4929 function. That's what tells us (a) whether we want to step
4930 into it at all, and (b) what prologue we want to run to the
4931 end of, if we do step into it. */
4932 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4933 if (real_stop_pc == 0)
4934 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4935 if (real_stop_pc != 0)
4936 ecs->stop_func_start = real_stop_pc;
4937
4938 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4939 {
4940 struct symtab_and_line sr_sal;
4941
4942 init_sal (&sr_sal);
4943 sr_sal.pc = ecs->stop_func_start;
4944 sr_sal.pspace = get_frame_program_space (frame);
4945
4946 insert_step_resume_breakpoint_at_sal (gdbarch,
4947 sr_sal, null_frame_id);
4948 keep_going (ecs);
4949 return;
4950 }
4951
4952 /* If we have line number information for the function we are
4953 thinking of stepping into and the function isn't on the skip
4954 list, step into it.
4955
4956 If there are several symtabs at that PC (e.g. with include
4957 files), just want to know whether *any* of them have line
4958 numbers. find_pc_line handles this. */
4959 {
4960 struct symtab_and_line tmp_sal;
4961
4962 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4963 if (tmp_sal.line != 0
4964 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4965 &tmp_sal))
4966 {
4967 if (execution_direction == EXEC_REVERSE)
4968 handle_step_into_function_backward (gdbarch, ecs);
4969 else
4970 handle_step_into_function (gdbarch, ecs);
4971 return;
4972 }
4973 }
4974
4975 /* If we have no line number and the step-stop-if-no-debug is
4976 set, we stop the step so that the user has a chance to switch
4977 in assembly mode. */
4978 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4979 && step_stop_if_no_debug)
4980 {
4981 ecs->event_thread->control.stop_step = 1;
4982 print_end_stepping_range_reason ();
4983 stop_stepping (ecs);
4984 return;
4985 }
4986
4987 if (execution_direction == EXEC_REVERSE)
4988 {
4989 /* If we're already at the start of the function, we've either just
4990 stepped backward into a single instruction function without line
4991 number info, or stepped back out of a signal handler to the first
4992 instruction of the function without line number info. Just keep
4993 going, which will single-step back to the caller. */
4994 if (ecs->stop_func_start != stop_pc)
4995 {
4996 /* Set a breakpoint at callee's start address.
4997 From there we can step once and be back in the caller. */
4998 struct symtab_and_line sr_sal;
4999
5000 init_sal (&sr_sal);
5001 sr_sal.pc = ecs->stop_func_start;
5002 sr_sal.pspace = get_frame_program_space (frame);
5003 insert_step_resume_breakpoint_at_sal (gdbarch,
5004 sr_sal, null_frame_id);
5005 }
5006 }
5007 else
5008 /* Set a breakpoint at callee's return address (the address
5009 at which the caller will resume). */
5010 insert_step_resume_breakpoint_at_caller (frame);
5011
5012 keep_going (ecs);
5013 return;
5014 }
5015
5016 /* Reverse stepping through solib trampolines. */
5017
5018 if (execution_direction == EXEC_REVERSE
5019 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5020 {
5021 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5022 || (ecs->stop_func_start == 0
5023 && in_solib_dynsym_resolve_code (stop_pc)))
5024 {
5025 /* Any solib trampoline code can be handled in reverse
5026 by simply continuing to single-step. We have already
5027 executed the solib function (backwards), and a few
5028 steps will take us back through the trampoline to the
5029 caller. */
5030 keep_going (ecs);
5031 return;
5032 }
5033 else if (in_solib_dynsym_resolve_code (stop_pc))
5034 {
5035 /* Stepped backward into the solib dynsym resolver.
5036 Set a breakpoint at its start and continue, then
5037 one more step will take us out. */
5038 struct symtab_and_line sr_sal;
5039
5040 init_sal (&sr_sal);
5041 sr_sal.pc = ecs->stop_func_start;
5042 sr_sal.pspace = get_frame_program_space (frame);
5043 insert_step_resume_breakpoint_at_sal (gdbarch,
5044 sr_sal, null_frame_id);
5045 keep_going (ecs);
5046 return;
5047 }
5048 }
5049
5050 stop_pc_sal = find_pc_line (stop_pc, 0);
5051
5052 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5053 the trampoline processing logic, however, there are some trampolines
5054 that have no names, so we should do trampoline handling first. */
5055 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5056 && ecs->stop_func_name == NULL
5057 && stop_pc_sal.line == 0)
5058 {
5059 if (debug_infrun)
5060 fprintf_unfiltered (gdb_stdlog,
5061 "infrun: stepped into undebuggable function\n");
5062
5063 /* The inferior just stepped into, or returned to, an
5064 undebuggable function (where there is no debugging information
5065 and no line number corresponding to the address where the
5066 inferior stopped). Since we want to skip this kind of code,
5067 we keep going until the inferior returns from this
5068 function - unless the user has asked us not to (via
5069 set step-mode) or we no longer know how to get back
5070 to the call site. */
5071 if (step_stop_if_no_debug
5072 || !frame_id_p (frame_unwind_caller_id (frame)))
5073 {
5074 /* If we have no line number and the step-stop-if-no-debug
5075 is set, we stop the step so that the user has a chance to
5076 switch in assembly mode. */
5077 ecs->event_thread->control.stop_step = 1;
5078 print_end_stepping_range_reason ();
5079 stop_stepping (ecs);
5080 return;
5081 }
5082 else
5083 {
5084 /* Set a breakpoint at callee's return address (the address
5085 at which the caller will resume). */
5086 insert_step_resume_breakpoint_at_caller (frame);
5087 keep_going (ecs);
5088 return;
5089 }
5090 }
5091
5092 if (ecs->event_thread->control.step_range_end == 1)
5093 {
5094 /* It is stepi or nexti. We always want to stop stepping after
5095 one instruction. */
5096 if (debug_infrun)
5097 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5098 ecs->event_thread->control.stop_step = 1;
5099 print_end_stepping_range_reason ();
5100 stop_stepping (ecs);
5101 return;
5102 }
5103
5104 if (stop_pc_sal.line == 0)
5105 {
5106 /* We have no line number information. That means to stop
5107 stepping (does this always happen right after one instruction,
5108 when we do "s" in a function with no line numbers,
5109 or can this happen as a result of a return or longjmp?). */
5110 if (debug_infrun)
5111 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5112 ecs->event_thread->control.stop_step = 1;
5113 print_end_stepping_range_reason ();
5114 stop_stepping (ecs);
5115 return;
5116 }
5117
5118 /* Look for "calls" to inlined functions, part one. If the inline
5119 frame machinery detected some skipped call sites, we have entered
5120 a new inline function. */
5121
5122 if (frame_id_eq (get_frame_id (get_current_frame ()),
5123 ecs->event_thread->control.step_frame_id)
5124 && inline_skipped_frames (ecs->ptid))
5125 {
5126 struct symtab_and_line call_sal;
5127
5128 if (debug_infrun)
5129 fprintf_unfiltered (gdb_stdlog,
5130 "infrun: stepped into inlined function\n");
5131
5132 find_frame_sal (get_current_frame (), &call_sal);
5133
5134 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5135 {
5136 /* For "step", we're going to stop. But if the call site
5137 for this inlined function is on the same source line as
5138 we were previously stepping, go down into the function
5139 first. Otherwise stop at the call site. */
5140
5141 if (call_sal.line == ecs->event_thread->current_line
5142 && call_sal.symtab == ecs->event_thread->current_symtab)
5143 step_into_inline_frame (ecs->ptid);
5144
5145 ecs->event_thread->control.stop_step = 1;
5146 print_end_stepping_range_reason ();
5147 stop_stepping (ecs);
5148 return;
5149 }
5150 else
5151 {
5152 /* For "next", we should stop at the call site if it is on a
5153 different source line. Otherwise continue through the
5154 inlined function. */
5155 if (call_sal.line == ecs->event_thread->current_line
5156 && call_sal.symtab == ecs->event_thread->current_symtab)
5157 keep_going (ecs);
5158 else
5159 {
5160 ecs->event_thread->control.stop_step = 1;
5161 print_end_stepping_range_reason ();
5162 stop_stepping (ecs);
5163 }
5164 return;
5165 }
5166 }
5167
5168 /* Look for "calls" to inlined functions, part two. If we are still
5169 in the same real function we were stepping through, but we have
5170 to go further up to find the exact frame ID, we are stepping
5171 through a more inlined call beyond its call site. */
5172
5173 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5174 && !frame_id_eq (get_frame_id (get_current_frame ()),
5175 ecs->event_thread->control.step_frame_id)
5176 && stepped_in_from (get_current_frame (),
5177 ecs->event_thread->control.step_frame_id))
5178 {
5179 if (debug_infrun)
5180 fprintf_unfiltered (gdb_stdlog,
5181 "infrun: stepping through inlined function\n");
5182
5183 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5184 keep_going (ecs);
5185 else
5186 {
5187 ecs->event_thread->control.stop_step = 1;
5188 print_end_stepping_range_reason ();
5189 stop_stepping (ecs);
5190 }
5191 return;
5192 }
5193
5194 if ((stop_pc == stop_pc_sal.pc)
5195 && (ecs->event_thread->current_line != stop_pc_sal.line
5196 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5197 {
5198 /* We are at the start of a different line. So stop. Note that
5199 we don't stop if we step into the middle of a different line.
5200 That is said to make things like for (;;) statements work
5201 better. */
5202 if (debug_infrun)
5203 fprintf_unfiltered (gdb_stdlog,
5204 "infrun: stepped to a different line\n");
5205 ecs->event_thread->control.stop_step = 1;
5206 print_end_stepping_range_reason ();
5207 stop_stepping (ecs);
5208 return;
5209 }
5210
5211 /* We aren't done stepping.
5212
5213 Optimize by setting the stepping range to the line.
5214 (We might not be in the original line, but if we entered a
5215 new line in mid-statement, we continue stepping. This makes
5216 things like for(;;) statements work better.) */
5217
5218 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5219 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5220 ecs->event_thread->control.may_range_step = 1;
5221 set_step_info (frame, stop_pc_sal);
5222
5223 if (debug_infrun)
5224 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5225 keep_going (ecs);
5226 }
5227
5228 /* In all-stop mode, if we're currently stepping but have stopped in
5229 some other thread, we may need to switch back to the stepped
5230 thread. Returns true we set the inferior running, false if we left
5231 it stopped (and the event needs further processing). */
5232
5233 static int
5234 switch_back_to_stepped_thread (struct execution_control_state *ecs)
5235 {
5236 if (!non_stop)
5237 {
5238 struct thread_info *tp;
5239
5240 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
5241 ecs->event_thread);
5242 if (tp)
5243 {
5244 /* However, if the current thread is blocked on some internal
5245 breakpoint, and we simply need to step over that breakpoint
5246 to get it going again, do that first. */
5247 if ((ecs->event_thread->control.trap_expected
5248 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5249 || ecs->event_thread->stepping_over_breakpoint)
5250 {
5251 keep_going (ecs);
5252 return 1;
5253 }
5254
5255 /* If the stepping thread exited, then don't try to switch
5256 back and resume it, which could fail in several different
5257 ways depending on the target. Instead, just keep going.
5258
5259 We can find a stepping dead thread in the thread list in
5260 two cases:
5261
5262 - The target supports thread exit events, and when the
5263 target tries to delete the thread from the thread list,
5264 inferior_ptid pointed at the exiting thread. In such
5265 case, calling delete_thread does not really remove the
5266 thread from the list; instead, the thread is left listed,
5267 with 'exited' state.
5268
5269 - The target's debug interface does not support thread
5270 exit events, and so we have no idea whatsoever if the
5271 previously stepping thread is still alive. For that
5272 reason, we need to synchronously query the target
5273 now. */
5274 if (is_exited (tp->ptid)
5275 || !target_thread_alive (tp->ptid))
5276 {
5277 if (debug_infrun)
5278 fprintf_unfiltered (gdb_stdlog,
5279 "infrun: not switching back to "
5280 "stepped thread, it has vanished\n");
5281
5282 delete_thread (tp->ptid);
5283 keep_going (ecs);
5284 return 1;
5285 }
5286
5287 /* Otherwise, we no longer expect a trap in the current thread.
5288 Clear the trap_expected flag before switching back -- this is
5289 what keep_going would do as well, if we called it. */
5290 ecs->event_thread->control.trap_expected = 0;
5291
5292 if (debug_infrun)
5293 fprintf_unfiltered (gdb_stdlog,
5294 "infrun: switching back to stepped thread\n");
5295
5296 ecs->event_thread = tp;
5297 ecs->ptid = tp->ptid;
5298 context_switch (ecs->ptid);
5299 keep_going (ecs);
5300 return 1;
5301 }
5302 }
5303 return 0;
5304 }
5305
5306 /* Is thread TP in the middle of single-stepping? */
5307
5308 static int
5309 currently_stepping (struct thread_info *tp)
5310 {
5311 return ((tp->control.step_range_end
5312 && tp->control.step_resume_breakpoint == NULL)
5313 || tp->control.trap_expected
5314 || bpstat_should_step ());
5315 }
5316
5317 /* Returns true if any thread *but* the one passed in "data" is in the
5318 middle of stepping or of handling a "next". */
5319
5320 static int
5321 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5322 {
5323 if (tp == data)
5324 return 0;
5325
5326 return (tp->control.step_range_end
5327 || tp->control.trap_expected);
5328 }
5329
5330 /* Inferior has stepped into a subroutine call with source code that
5331 we should not step over. Do step to the first line of code in
5332 it. */
5333
5334 static void
5335 handle_step_into_function (struct gdbarch *gdbarch,
5336 struct execution_control_state *ecs)
5337 {
5338 struct symtab *s;
5339 struct symtab_and_line stop_func_sal, sr_sal;
5340
5341 fill_in_stop_func (gdbarch, ecs);
5342
5343 s = find_pc_symtab (stop_pc);
5344 if (s && s->language != language_asm)
5345 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5346 ecs->stop_func_start);
5347
5348 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5349 /* Use the step_resume_break to step until the end of the prologue,
5350 even if that involves jumps (as it seems to on the vax under
5351 4.2). */
5352 /* If the prologue ends in the middle of a source line, continue to
5353 the end of that source line (if it is still within the function).
5354 Otherwise, just go to end of prologue. */
5355 if (stop_func_sal.end
5356 && stop_func_sal.pc != ecs->stop_func_start
5357 && stop_func_sal.end < ecs->stop_func_end)
5358 ecs->stop_func_start = stop_func_sal.end;
5359
5360 /* Architectures which require breakpoint adjustment might not be able
5361 to place a breakpoint at the computed address. If so, the test
5362 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5363 ecs->stop_func_start to an address at which a breakpoint may be
5364 legitimately placed.
5365
5366 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5367 made, GDB will enter an infinite loop when stepping through
5368 optimized code consisting of VLIW instructions which contain
5369 subinstructions corresponding to different source lines. On
5370 FR-V, it's not permitted to place a breakpoint on any but the
5371 first subinstruction of a VLIW instruction. When a breakpoint is
5372 set, GDB will adjust the breakpoint address to the beginning of
5373 the VLIW instruction. Thus, we need to make the corresponding
5374 adjustment here when computing the stop address. */
5375
5376 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5377 {
5378 ecs->stop_func_start
5379 = gdbarch_adjust_breakpoint_address (gdbarch,
5380 ecs->stop_func_start);
5381 }
5382
5383 if (ecs->stop_func_start == stop_pc)
5384 {
5385 /* We are already there: stop now. */
5386 ecs->event_thread->control.stop_step = 1;
5387 print_end_stepping_range_reason ();
5388 stop_stepping (ecs);
5389 return;
5390 }
5391 else
5392 {
5393 /* Put the step-breakpoint there and go until there. */
5394 init_sal (&sr_sal); /* initialize to zeroes */
5395 sr_sal.pc = ecs->stop_func_start;
5396 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5397 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5398
5399 /* Do not specify what the fp should be when we stop since on
5400 some machines the prologue is where the new fp value is
5401 established. */
5402 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5403
5404 /* And make sure stepping stops right away then. */
5405 ecs->event_thread->control.step_range_end
5406 = ecs->event_thread->control.step_range_start;
5407 }
5408 keep_going (ecs);
5409 }
5410
5411 /* Inferior has stepped backward into a subroutine call with source
5412 code that we should not step over. Do step to the beginning of the
5413 last line of code in it. */
5414
5415 static void
5416 handle_step_into_function_backward (struct gdbarch *gdbarch,
5417 struct execution_control_state *ecs)
5418 {
5419 struct symtab *s;
5420 struct symtab_and_line stop_func_sal;
5421
5422 fill_in_stop_func (gdbarch, ecs);
5423
5424 s = find_pc_symtab (stop_pc);
5425 if (s && s->language != language_asm)
5426 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5427 ecs->stop_func_start);
5428
5429 stop_func_sal = find_pc_line (stop_pc, 0);
5430
5431 /* OK, we're just going to keep stepping here. */
5432 if (stop_func_sal.pc == stop_pc)
5433 {
5434 /* We're there already. Just stop stepping now. */
5435 ecs->event_thread->control.stop_step = 1;
5436 print_end_stepping_range_reason ();
5437 stop_stepping (ecs);
5438 }
5439 else
5440 {
5441 /* Else just reset the step range and keep going.
5442 No step-resume breakpoint, they don't work for
5443 epilogues, which can have multiple entry paths. */
5444 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5445 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5446 keep_going (ecs);
5447 }
5448 return;
5449 }
5450
5451 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5452 This is used to both functions and to skip over code. */
5453
5454 static void
5455 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5456 struct symtab_and_line sr_sal,
5457 struct frame_id sr_id,
5458 enum bptype sr_type)
5459 {
5460 /* There should never be more than one step-resume or longjmp-resume
5461 breakpoint per thread, so we should never be setting a new
5462 step_resume_breakpoint when one is already active. */
5463 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5464 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5465
5466 if (debug_infrun)
5467 fprintf_unfiltered (gdb_stdlog,
5468 "infrun: inserting step-resume breakpoint at %s\n",
5469 paddress (gdbarch, sr_sal.pc));
5470
5471 inferior_thread ()->control.step_resume_breakpoint
5472 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5473 }
5474
5475 void
5476 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5477 struct symtab_and_line sr_sal,
5478 struct frame_id sr_id)
5479 {
5480 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5481 sr_sal, sr_id,
5482 bp_step_resume);
5483 }
5484
5485 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5486 This is used to skip a potential signal handler.
5487
5488 This is called with the interrupted function's frame. The signal
5489 handler, when it returns, will resume the interrupted function at
5490 RETURN_FRAME.pc. */
5491
5492 static void
5493 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5494 {
5495 struct symtab_and_line sr_sal;
5496 struct gdbarch *gdbarch;
5497
5498 gdb_assert (return_frame != NULL);
5499 init_sal (&sr_sal); /* initialize to zeros */
5500
5501 gdbarch = get_frame_arch (return_frame);
5502 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5503 sr_sal.section = find_pc_overlay (sr_sal.pc);
5504 sr_sal.pspace = get_frame_program_space (return_frame);
5505
5506 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5507 get_stack_frame_id (return_frame),
5508 bp_hp_step_resume);
5509 }
5510
5511 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5512 is used to skip a function after stepping into it (for "next" or if
5513 the called function has no debugging information).
5514
5515 The current function has almost always been reached by single
5516 stepping a call or return instruction. NEXT_FRAME belongs to the
5517 current function, and the breakpoint will be set at the caller's
5518 resume address.
5519
5520 This is a separate function rather than reusing
5521 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5522 get_prev_frame, which may stop prematurely (see the implementation
5523 of frame_unwind_caller_id for an example). */
5524
5525 static void
5526 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5527 {
5528 struct symtab_and_line sr_sal;
5529 struct gdbarch *gdbarch;
5530
5531 /* We shouldn't have gotten here if we don't know where the call site
5532 is. */
5533 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5534
5535 init_sal (&sr_sal); /* initialize to zeros */
5536
5537 gdbarch = frame_unwind_caller_arch (next_frame);
5538 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5539 frame_unwind_caller_pc (next_frame));
5540 sr_sal.section = find_pc_overlay (sr_sal.pc);
5541 sr_sal.pspace = frame_unwind_program_space (next_frame);
5542
5543 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5544 frame_unwind_caller_id (next_frame));
5545 }
5546
5547 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5548 new breakpoint at the target of a jmp_buf. The handling of
5549 longjmp-resume uses the same mechanisms used for handling
5550 "step-resume" breakpoints. */
5551
5552 static void
5553 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5554 {
5555 /* There should never be more than one longjmp-resume breakpoint per
5556 thread, so we should never be setting a new
5557 longjmp_resume_breakpoint when one is already active. */
5558 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5559
5560 if (debug_infrun)
5561 fprintf_unfiltered (gdb_stdlog,
5562 "infrun: inserting longjmp-resume breakpoint at %s\n",
5563 paddress (gdbarch, pc));
5564
5565 inferior_thread ()->control.exception_resume_breakpoint =
5566 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5567 }
5568
5569 /* Insert an exception resume breakpoint. TP is the thread throwing
5570 the exception. The block B is the block of the unwinder debug hook
5571 function. FRAME is the frame corresponding to the call to this
5572 function. SYM is the symbol of the function argument holding the
5573 target PC of the exception. */
5574
5575 static void
5576 insert_exception_resume_breakpoint (struct thread_info *tp,
5577 struct block *b,
5578 struct frame_info *frame,
5579 struct symbol *sym)
5580 {
5581 volatile struct gdb_exception e;
5582
5583 /* We want to ignore errors here. */
5584 TRY_CATCH (e, RETURN_MASK_ERROR)
5585 {
5586 struct symbol *vsym;
5587 struct value *value;
5588 CORE_ADDR handler;
5589 struct breakpoint *bp;
5590
5591 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5592 value = read_var_value (vsym, frame);
5593 /* If the value was optimized out, revert to the old behavior. */
5594 if (! value_optimized_out (value))
5595 {
5596 handler = value_as_address (value);
5597
5598 if (debug_infrun)
5599 fprintf_unfiltered (gdb_stdlog,
5600 "infrun: exception resume at %lx\n",
5601 (unsigned long) handler);
5602
5603 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5604 handler, bp_exception_resume);
5605
5606 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5607 frame = NULL;
5608
5609 bp->thread = tp->num;
5610 inferior_thread ()->control.exception_resume_breakpoint = bp;
5611 }
5612 }
5613 }
5614
5615 /* A helper for check_exception_resume that sets an
5616 exception-breakpoint based on a SystemTap probe. */
5617
5618 static void
5619 insert_exception_resume_from_probe (struct thread_info *tp,
5620 const struct probe *probe,
5621 struct frame_info *frame)
5622 {
5623 struct value *arg_value;
5624 CORE_ADDR handler;
5625 struct breakpoint *bp;
5626
5627 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5628 if (!arg_value)
5629 return;
5630
5631 handler = value_as_address (arg_value);
5632
5633 if (debug_infrun)
5634 fprintf_unfiltered (gdb_stdlog,
5635 "infrun: exception resume at %s\n",
5636 paddress (get_objfile_arch (probe->objfile),
5637 handler));
5638
5639 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5640 handler, bp_exception_resume);
5641 bp->thread = tp->num;
5642 inferior_thread ()->control.exception_resume_breakpoint = bp;
5643 }
5644
5645 /* This is called when an exception has been intercepted. Check to
5646 see whether the exception's destination is of interest, and if so,
5647 set an exception resume breakpoint there. */
5648
5649 static void
5650 check_exception_resume (struct execution_control_state *ecs,
5651 struct frame_info *frame)
5652 {
5653 volatile struct gdb_exception e;
5654 const struct probe *probe;
5655 struct symbol *func;
5656
5657 /* First see if this exception unwinding breakpoint was set via a
5658 SystemTap probe point. If so, the probe has two arguments: the
5659 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5660 set a breakpoint there. */
5661 probe = find_probe_by_pc (get_frame_pc (frame));
5662 if (probe)
5663 {
5664 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
5665 return;
5666 }
5667
5668 func = get_frame_function (frame);
5669 if (!func)
5670 return;
5671
5672 TRY_CATCH (e, RETURN_MASK_ERROR)
5673 {
5674 struct block *b;
5675 struct block_iterator iter;
5676 struct symbol *sym;
5677 int argno = 0;
5678
5679 /* The exception breakpoint is a thread-specific breakpoint on
5680 the unwinder's debug hook, declared as:
5681
5682 void _Unwind_DebugHook (void *cfa, void *handler);
5683
5684 The CFA argument indicates the frame to which control is
5685 about to be transferred. HANDLER is the destination PC.
5686
5687 We ignore the CFA and set a temporary breakpoint at HANDLER.
5688 This is not extremely efficient but it avoids issues in gdb
5689 with computing the DWARF CFA, and it also works even in weird
5690 cases such as throwing an exception from inside a signal
5691 handler. */
5692
5693 b = SYMBOL_BLOCK_VALUE (func);
5694 ALL_BLOCK_SYMBOLS (b, iter, sym)
5695 {
5696 if (!SYMBOL_IS_ARGUMENT (sym))
5697 continue;
5698
5699 if (argno == 0)
5700 ++argno;
5701 else
5702 {
5703 insert_exception_resume_breakpoint (ecs->event_thread,
5704 b, frame, sym);
5705 break;
5706 }
5707 }
5708 }
5709 }
5710
5711 static void
5712 stop_stepping (struct execution_control_state *ecs)
5713 {
5714 if (debug_infrun)
5715 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5716
5717 /* Let callers know we don't want to wait for the inferior anymore. */
5718 ecs->wait_some_more = 0;
5719 }
5720
5721 /* Called when we should continue running the inferior, because the
5722 current event doesn't cause a user visible stop. This does the
5723 resuming part; waiting for the next event is done elsewhere. */
5724
5725 static void
5726 keep_going (struct execution_control_state *ecs)
5727 {
5728 /* Make sure normal_stop is called if we get a QUIT handled before
5729 reaching resume. */
5730 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5731
5732 /* Save the pc before execution, to compare with pc after stop. */
5733 ecs->event_thread->prev_pc
5734 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5735
5736 if (ecs->event_thread->control.trap_expected
5737 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5738 {
5739 /* We haven't yet gotten our trap, and either: intercepted a
5740 non-signal event (e.g., a fork); or took a signal which we
5741 are supposed to pass through to the inferior. Simply
5742 continue. */
5743 discard_cleanups (old_cleanups);
5744 resume (currently_stepping (ecs->event_thread),
5745 ecs->event_thread->suspend.stop_signal);
5746 }
5747 else
5748 {
5749 /* Either the trap was not expected, but we are continuing
5750 anyway (if we got a signal, the user asked it be passed to
5751 the child)
5752 -- or --
5753 We got our expected trap, but decided we should resume from
5754 it.
5755
5756 We're going to run this baby now!
5757
5758 Note that insert_breakpoints won't try to re-insert
5759 already inserted breakpoints. Therefore, we don't
5760 care if breakpoints were already inserted, or not. */
5761
5762 if (ecs->event_thread->stepping_over_breakpoint)
5763 {
5764 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5765
5766 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5767 {
5768 /* Since we can't do a displaced step, we have to remove
5769 the breakpoint while we step it. To keep things
5770 simple, we remove them all. */
5771 remove_breakpoints ();
5772 }
5773 }
5774 else
5775 {
5776 volatile struct gdb_exception e;
5777
5778 /* Stop stepping if inserting breakpoints fails. */
5779 TRY_CATCH (e, RETURN_MASK_ERROR)
5780 {
5781 insert_breakpoints ();
5782 }
5783 if (e.reason < 0)
5784 {
5785 exception_print (gdb_stderr, e);
5786 stop_stepping (ecs);
5787 return;
5788 }
5789 }
5790
5791 ecs->event_thread->control.trap_expected
5792 = ecs->event_thread->stepping_over_breakpoint;
5793
5794 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
5795 explicitly specifies that such a signal should be delivered
5796 to the target program). Typically, that would occur when a
5797 user is debugging a target monitor on a simulator: the target
5798 monitor sets a breakpoint; the simulator encounters this
5799 breakpoint and halts the simulation handing control to GDB;
5800 GDB, noting that the stop address doesn't map to any known
5801 breakpoint, returns control back to the simulator; the
5802 simulator then delivers the hardware equivalent of a
5803 GDB_SIGNAL_TRAP to the program being debugged. */
5804 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5805 && !signal_program[ecs->event_thread->suspend.stop_signal])
5806 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5807
5808 discard_cleanups (old_cleanups);
5809 resume (currently_stepping (ecs->event_thread),
5810 ecs->event_thread->suspend.stop_signal);
5811 }
5812
5813 prepare_to_wait (ecs);
5814 }
5815
5816 /* This function normally comes after a resume, before
5817 handle_inferior_event exits. It takes care of any last bits of
5818 housekeeping, and sets the all-important wait_some_more flag. */
5819
5820 static void
5821 prepare_to_wait (struct execution_control_state *ecs)
5822 {
5823 if (debug_infrun)
5824 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5825
5826 /* This is the old end of the while loop. Let everybody know we
5827 want to wait for the inferior some more and get called again
5828 soon. */
5829 ecs->wait_some_more = 1;
5830 }
5831
5832 /* Several print_*_reason functions to print why the inferior has stopped.
5833 We always print something when the inferior exits, or receives a signal.
5834 The rest of the cases are dealt with later on in normal_stop and
5835 print_it_typical. Ideally there should be a call to one of these
5836 print_*_reason functions functions from handle_inferior_event each time
5837 stop_stepping is called. */
5838
5839 /* Print why the inferior has stopped.
5840 We are done with a step/next/si/ni command, print why the inferior has
5841 stopped. For now print nothing. Print a message only if not in the middle
5842 of doing a "step n" operation for n > 1. */
5843
5844 static void
5845 print_end_stepping_range_reason (void)
5846 {
5847 if ((!inferior_thread ()->step_multi
5848 || !inferior_thread ()->control.stop_step)
5849 && ui_out_is_mi_like_p (current_uiout))
5850 ui_out_field_string (current_uiout, "reason",
5851 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5852 }
5853
5854 /* The inferior was terminated by a signal, print why it stopped. */
5855
5856 static void
5857 print_signal_exited_reason (enum gdb_signal siggnal)
5858 {
5859 struct ui_out *uiout = current_uiout;
5860
5861 annotate_signalled ();
5862 if (ui_out_is_mi_like_p (uiout))
5863 ui_out_field_string
5864 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5865 ui_out_text (uiout, "\nProgram terminated with signal ");
5866 annotate_signal_name ();
5867 ui_out_field_string (uiout, "signal-name",
5868 gdb_signal_to_name (siggnal));
5869 annotate_signal_name_end ();
5870 ui_out_text (uiout, ", ");
5871 annotate_signal_string ();
5872 ui_out_field_string (uiout, "signal-meaning",
5873 gdb_signal_to_string (siggnal));
5874 annotate_signal_string_end ();
5875 ui_out_text (uiout, ".\n");
5876 ui_out_text (uiout, "The program no longer exists.\n");
5877 }
5878
5879 /* The inferior program is finished, print why it stopped. */
5880
5881 static void
5882 print_exited_reason (int exitstatus)
5883 {
5884 struct inferior *inf = current_inferior ();
5885 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5886 struct ui_out *uiout = current_uiout;
5887
5888 annotate_exited (exitstatus);
5889 if (exitstatus)
5890 {
5891 if (ui_out_is_mi_like_p (uiout))
5892 ui_out_field_string (uiout, "reason",
5893 async_reason_lookup (EXEC_ASYNC_EXITED));
5894 ui_out_text (uiout, "[Inferior ");
5895 ui_out_text (uiout, plongest (inf->num));
5896 ui_out_text (uiout, " (");
5897 ui_out_text (uiout, pidstr);
5898 ui_out_text (uiout, ") exited with code ");
5899 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5900 ui_out_text (uiout, "]\n");
5901 }
5902 else
5903 {
5904 if (ui_out_is_mi_like_p (uiout))
5905 ui_out_field_string
5906 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5907 ui_out_text (uiout, "[Inferior ");
5908 ui_out_text (uiout, plongest (inf->num));
5909 ui_out_text (uiout, " (");
5910 ui_out_text (uiout, pidstr);
5911 ui_out_text (uiout, ") exited normally]\n");
5912 }
5913 /* Support the --return-child-result option. */
5914 return_child_result_value = exitstatus;
5915 }
5916
5917 /* Signal received, print why the inferior has stopped. The signal table
5918 tells us to print about it. */
5919
5920 static void
5921 print_signal_received_reason (enum gdb_signal siggnal)
5922 {
5923 struct ui_out *uiout = current_uiout;
5924
5925 annotate_signal ();
5926
5927 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5928 {
5929 struct thread_info *t = inferior_thread ();
5930
5931 ui_out_text (uiout, "\n[");
5932 ui_out_field_string (uiout, "thread-name",
5933 target_pid_to_str (t->ptid));
5934 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5935 ui_out_text (uiout, " stopped");
5936 }
5937 else
5938 {
5939 ui_out_text (uiout, "\nProgram received signal ");
5940 annotate_signal_name ();
5941 if (ui_out_is_mi_like_p (uiout))
5942 ui_out_field_string
5943 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5944 ui_out_field_string (uiout, "signal-name",
5945 gdb_signal_to_name (siggnal));
5946 annotate_signal_name_end ();
5947 ui_out_text (uiout, ", ");
5948 annotate_signal_string ();
5949 ui_out_field_string (uiout, "signal-meaning",
5950 gdb_signal_to_string (siggnal));
5951 annotate_signal_string_end ();
5952 }
5953 ui_out_text (uiout, ".\n");
5954 }
5955
5956 /* Reverse execution: target ran out of history info, print why the inferior
5957 has stopped. */
5958
5959 static void
5960 print_no_history_reason (void)
5961 {
5962 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5963 }
5964
5965 /* Here to return control to GDB when the inferior stops for real.
5966 Print appropriate messages, remove breakpoints, give terminal our modes.
5967
5968 STOP_PRINT_FRAME nonzero means print the executing frame
5969 (pc, function, args, file, line number and line text).
5970 BREAKPOINTS_FAILED nonzero means stop was due to error
5971 attempting to insert breakpoints. */
5972
5973 void
5974 normal_stop (void)
5975 {
5976 struct target_waitstatus last;
5977 ptid_t last_ptid;
5978 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5979
5980 get_last_target_status (&last_ptid, &last);
5981
5982 /* If an exception is thrown from this point on, make sure to
5983 propagate GDB's knowledge of the executing state to the
5984 frontend/user running state. A QUIT is an easy exception to see
5985 here, so do this before any filtered output. */
5986 if (!non_stop)
5987 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5988 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5989 && last.kind != TARGET_WAITKIND_EXITED
5990 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5991 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5992
5993 /* In non-stop mode, we don't want GDB to switch threads behind the
5994 user's back, to avoid races where the user is typing a command to
5995 apply to thread x, but GDB switches to thread y before the user
5996 finishes entering the command. */
5997
5998 /* As with the notification of thread events, we want to delay
5999 notifying the user that we've switched thread context until
6000 the inferior actually stops.
6001
6002 There's no point in saying anything if the inferior has exited.
6003 Note that SIGNALLED here means "exited with a signal", not
6004 "received a signal". */
6005 if (!non_stop
6006 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
6007 && target_has_execution
6008 && last.kind != TARGET_WAITKIND_SIGNALLED
6009 && last.kind != TARGET_WAITKIND_EXITED
6010 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6011 {
6012 target_terminal_ours_for_output ();
6013 printf_filtered (_("[Switching to %s]\n"),
6014 target_pid_to_str (inferior_ptid));
6015 annotate_thread_changed ();
6016 previous_inferior_ptid = inferior_ptid;
6017 }
6018
6019 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6020 {
6021 gdb_assert (sync_execution || !target_can_async_p ());
6022
6023 target_terminal_ours_for_output ();
6024 printf_filtered (_("No unwaited-for children left.\n"));
6025 }
6026
6027 if (!breakpoints_always_inserted_mode () && target_has_execution)
6028 {
6029 if (remove_breakpoints ())
6030 {
6031 target_terminal_ours_for_output ();
6032 printf_filtered (_("Cannot remove breakpoints because "
6033 "program is no longer writable.\nFurther "
6034 "execution is probably impossible.\n"));
6035 }
6036 }
6037
6038 /* If an auto-display called a function and that got a signal,
6039 delete that auto-display to avoid an infinite recursion. */
6040
6041 if (stopped_by_random_signal)
6042 disable_current_display ();
6043
6044 /* Don't print a message if in the middle of doing a "step n"
6045 operation for n > 1 */
6046 if (target_has_execution
6047 && last.kind != TARGET_WAITKIND_SIGNALLED
6048 && last.kind != TARGET_WAITKIND_EXITED
6049 && inferior_thread ()->step_multi
6050 && inferior_thread ()->control.stop_step)
6051 goto done;
6052
6053 target_terminal_ours ();
6054 async_enable_stdin ();
6055
6056 /* Set the current source location. This will also happen if we
6057 display the frame below, but the current SAL will be incorrect
6058 during a user hook-stop function. */
6059 if (has_stack_frames () && !stop_stack_dummy)
6060 set_current_sal_from_frame (get_current_frame (), 1);
6061
6062 /* Let the user/frontend see the threads as stopped. */
6063 do_cleanups (old_chain);
6064
6065 /* Look up the hook_stop and run it (CLI internally handles problem
6066 of stop_command's pre-hook not existing). */
6067 if (stop_command)
6068 catch_errors (hook_stop_stub, stop_command,
6069 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6070
6071 if (!has_stack_frames ())
6072 goto done;
6073
6074 if (last.kind == TARGET_WAITKIND_SIGNALLED
6075 || last.kind == TARGET_WAITKIND_EXITED)
6076 goto done;
6077
6078 /* Select innermost stack frame - i.e., current frame is frame 0,
6079 and current location is based on that.
6080 Don't do this on return from a stack dummy routine,
6081 or if the program has exited. */
6082
6083 if (!stop_stack_dummy)
6084 {
6085 select_frame (get_current_frame ());
6086
6087 /* Print current location without a level number, if
6088 we have changed functions or hit a breakpoint.
6089 Print source line if we have one.
6090 bpstat_print() contains the logic deciding in detail
6091 what to print, based on the event(s) that just occurred. */
6092
6093 /* If --batch-silent is enabled then there's no need to print the current
6094 source location, and to try risks causing an error message about
6095 missing source files. */
6096 if (stop_print_frame && !batch_silent)
6097 {
6098 int bpstat_ret;
6099 int source_flag;
6100 int do_frame_printing = 1;
6101 struct thread_info *tp = inferior_thread ();
6102
6103 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
6104 switch (bpstat_ret)
6105 {
6106 case PRINT_UNKNOWN:
6107 /* FIXME: cagney/2002-12-01: Given that a frame ID does
6108 (or should) carry around the function and does (or
6109 should) use that when doing a frame comparison. */
6110 if (tp->control.stop_step
6111 && frame_id_eq (tp->control.step_frame_id,
6112 get_frame_id (get_current_frame ()))
6113 && step_start_function == find_pc_function (stop_pc))
6114 source_flag = SRC_LINE; /* Finished step, just
6115 print source line. */
6116 else
6117 source_flag = SRC_AND_LOC; /* Print location and
6118 source line. */
6119 break;
6120 case PRINT_SRC_AND_LOC:
6121 source_flag = SRC_AND_LOC; /* Print location and
6122 source line. */
6123 break;
6124 case PRINT_SRC_ONLY:
6125 source_flag = SRC_LINE;
6126 break;
6127 case PRINT_NOTHING:
6128 source_flag = SRC_LINE; /* something bogus */
6129 do_frame_printing = 0;
6130 break;
6131 default:
6132 internal_error (__FILE__, __LINE__, _("Unknown value."));
6133 }
6134
6135 /* The behavior of this routine with respect to the source
6136 flag is:
6137 SRC_LINE: Print only source line
6138 LOCATION: Print only location
6139 SRC_AND_LOC: Print location and source line. */
6140 if (do_frame_printing)
6141 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6142
6143 /* Display the auto-display expressions. */
6144 do_displays ();
6145 }
6146 }
6147
6148 /* Save the function value return registers, if we care.
6149 We might be about to restore their previous contents. */
6150 if (inferior_thread ()->control.proceed_to_finish
6151 && execution_direction != EXEC_REVERSE)
6152 {
6153 /* This should not be necessary. */
6154 if (stop_registers)
6155 regcache_xfree (stop_registers);
6156
6157 /* NB: The copy goes through to the target picking up the value of
6158 all the registers. */
6159 stop_registers = regcache_dup (get_current_regcache ());
6160 }
6161
6162 if (stop_stack_dummy == STOP_STACK_DUMMY)
6163 {
6164 /* Pop the empty frame that contains the stack dummy.
6165 This also restores inferior state prior to the call
6166 (struct infcall_suspend_state). */
6167 struct frame_info *frame = get_current_frame ();
6168
6169 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6170 frame_pop (frame);
6171 /* frame_pop() calls reinit_frame_cache as the last thing it
6172 does which means there's currently no selected frame. We
6173 don't need to re-establish a selected frame if the dummy call
6174 returns normally, that will be done by
6175 restore_infcall_control_state. However, we do have to handle
6176 the case where the dummy call is returning after being
6177 stopped (e.g. the dummy call previously hit a breakpoint).
6178 We can't know which case we have so just always re-establish
6179 a selected frame here. */
6180 select_frame (get_current_frame ());
6181 }
6182
6183 done:
6184 annotate_stopped ();
6185
6186 /* Suppress the stop observer if we're in the middle of:
6187
6188 - a step n (n > 1), as there still more steps to be done.
6189
6190 - a "finish" command, as the observer will be called in
6191 finish_command_continuation, so it can include the inferior
6192 function's return value.
6193
6194 - calling an inferior function, as we pretend we inferior didn't
6195 run at all. The return value of the call is handled by the
6196 expression evaluator, through call_function_by_hand. */
6197
6198 if (!target_has_execution
6199 || last.kind == TARGET_WAITKIND_SIGNALLED
6200 || last.kind == TARGET_WAITKIND_EXITED
6201 || last.kind == TARGET_WAITKIND_NO_RESUMED
6202 || (!(inferior_thread ()->step_multi
6203 && inferior_thread ()->control.stop_step)
6204 && !(inferior_thread ()->control.stop_bpstat
6205 && inferior_thread ()->control.proceed_to_finish)
6206 && !inferior_thread ()->control.in_infcall))
6207 {
6208 if (!ptid_equal (inferior_ptid, null_ptid))
6209 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6210 stop_print_frame);
6211 else
6212 observer_notify_normal_stop (NULL, stop_print_frame);
6213 }
6214
6215 if (target_has_execution)
6216 {
6217 if (last.kind != TARGET_WAITKIND_SIGNALLED
6218 && last.kind != TARGET_WAITKIND_EXITED)
6219 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6220 Delete any breakpoint that is to be deleted at the next stop. */
6221 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6222 }
6223
6224 /* Try to get rid of automatically added inferiors that are no
6225 longer needed. Keeping those around slows down things linearly.
6226 Note that this never removes the current inferior. */
6227 prune_inferiors ();
6228 }
6229
6230 static int
6231 hook_stop_stub (void *cmd)
6232 {
6233 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6234 return (0);
6235 }
6236 \f
6237 int
6238 signal_stop_state (int signo)
6239 {
6240 return signal_stop[signo];
6241 }
6242
6243 int
6244 signal_print_state (int signo)
6245 {
6246 return signal_print[signo];
6247 }
6248
6249 int
6250 signal_pass_state (int signo)
6251 {
6252 return signal_program[signo];
6253 }
6254
6255 static void
6256 signal_cache_update (int signo)
6257 {
6258 if (signo == -1)
6259 {
6260 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6261 signal_cache_update (signo);
6262
6263 return;
6264 }
6265
6266 signal_pass[signo] = (signal_stop[signo] == 0
6267 && signal_print[signo] == 0
6268 && signal_program[signo] == 1
6269 && signal_catch[signo] == 0);
6270 }
6271
6272 int
6273 signal_stop_update (int signo, int state)
6274 {
6275 int ret = signal_stop[signo];
6276
6277 signal_stop[signo] = state;
6278 signal_cache_update (signo);
6279 return ret;
6280 }
6281
6282 int
6283 signal_print_update (int signo, int state)
6284 {
6285 int ret = signal_print[signo];
6286
6287 signal_print[signo] = state;
6288 signal_cache_update (signo);
6289 return ret;
6290 }
6291
6292 int
6293 signal_pass_update (int signo, int state)
6294 {
6295 int ret = signal_program[signo];
6296
6297 signal_program[signo] = state;
6298 signal_cache_update (signo);
6299 return ret;
6300 }
6301
6302 /* Update the global 'signal_catch' from INFO and notify the
6303 target. */
6304
6305 void
6306 signal_catch_update (const unsigned int *info)
6307 {
6308 int i;
6309
6310 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6311 signal_catch[i] = info[i] > 0;
6312 signal_cache_update (-1);
6313 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6314 }
6315
6316 static void
6317 sig_print_header (void)
6318 {
6319 printf_filtered (_("Signal Stop\tPrint\tPass "
6320 "to program\tDescription\n"));
6321 }
6322
6323 static void
6324 sig_print_info (enum gdb_signal oursig)
6325 {
6326 const char *name = gdb_signal_to_name (oursig);
6327 int name_padding = 13 - strlen (name);
6328
6329 if (name_padding <= 0)
6330 name_padding = 0;
6331
6332 printf_filtered ("%s", name);
6333 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6334 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6335 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6336 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6337 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6338 }
6339
6340 /* Specify how various signals in the inferior should be handled. */
6341
6342 static void
6343 handle_command (char *args, int from_tty)
6344 {
6345 char **argv;
6346 int digits, wordlen;
6347 int sigfirst, signum, siglast;
6348 enum gdb_signal oursig;
6349 int allsigs;
6350 int nsigs;
6351 unsigned char *sigs;
6352 struct cleanup *old_chain;
6353
6354 if (args == NULL)
6355 {
6356 error_no_arg (_("signal to handle"));
6357 }
6358
6359 /* Allocate and zero an array of flags for which signals to handle. */
6360
6361 nsigs = (int) GDB_SIGNAL_LAST;
6362 sigs = (unsigned char *) alloca (nsigs);
6363 memset (sigs, 0, nsigs);
6364
6365 /* Break the command line up into args. */
6366
6367 argv = gdb_buildargv (args);
6368 old_chain = make_cleanup_freeargv (argv);
6369
6370 /* Walk through the args, looking for signal oursigs, signal names, and
6371 actions. Signal numbers and signal names may be interspersed with
6372 actions, with the actions being performed for all signals cumulatively
6373 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6374
6375 while (*argv != NULL)
6376 {
6377 wordlen = strlen (*argv);
6378 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6379 {;
6380 }
6381 allsigs = 0;
6382 sigfirst = siglast = -1;
6383
6384 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6385 {
6386 /* Apply action to all signals except those used by the
6387 debugger. Silently skip those. */
6388 allsigs = 1;
6389 sigfirst = 0;
6390 siglast = nsigs - 1;
6391 }
6392 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6393 {
6394 SET_SIGS (nsigs, sigs, signal_stop);
6395 SET_SIGS (nsigs, sigs, signal_print);
6396 }
6397 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6398 {
6399 UNSET_SIGS (nsigs, sigs, signal_program);
6400 }
6401 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6402 {
6403 SET_SIGS (nsigs, sigs, signal_print);
6404 }
6405 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6406 {
6407 SET_SIGS (nsigs, sigs, signal_program);
6408 }
6409 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6410 {
6411 UNSET_SIGS (nsigs, sigs, signal_stop);
6412 }
6413 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6414 {
6415 SET_SIGS (nsigs, sigs, signal_program);
6416 }
6417 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6418 {
6419 UNSET_SIGS (nsigs, sigs, signal_print);
6420 UNSET_SIGS (nsigs, sigs, signal_stop);
6421 }
6422 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6423 {
6424 UNSET_SIGS (nsigs, sigs, signal_program);
6425 }
6426 else if (digits > 0)
6427 {
6428 /* It is numeric. The numeric signal refers to our own
6429 internal signal numbering from target.h, not to host/target
6430 signal number. This is a feature; users really should be
6431 using symbolic names anyway, and the common ones like
6432 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6433
6434 sigfirst = siglast = (int)
6435 gdb_signal_from_command (atoi (*argv));
6436 if ((*argv)[digits] == '-')
6437 {
6438 siglast = (int)
6439 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6440 }
6441 if (sigfirst > siglast)
6442 {
6443 /* Bet he didn't figure we'd think of this case... */
6444 signum = sigfirst;
6445 sigfirst = siglast;
6446 siglast = signum;
6447 }
6448 }
6449 else
6450 {
6451 oursig = gdb_signal_from_name (*argv);
6452 if (oursig != GDB_SIGNAL_UNKNOWN)
6453 {
6454 sigfirst = siglast = (int) oursig;
6455 }
6456 else
6457 {
6458 /* Not a number and not a recognized flag word => complain. */
6459 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6460 }
6461 }
6462
6463 /* If any signal numbers or symbol names were found, set flags for
6464 which signals to apply actions to. */
6465
6466 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6467 {
6468 switch ((enum gdb_signal) signum)
6469 {
6470 case GDB_SIGNAL_TRAP:
6471 case GDB_SIGNAL_INT:
6472 if (!allsigs && !sigs[signum])
6473 {
6474 if (query (_("%s is used by the debugger.\n\
6475 Are you sure you want to change it? "),
6476 gdb_signal_to_name ((enum gdb_signal) signum)))
6477 {
6478 sigs[signum] = 1;
6479 }
6480 else
6481 {
6482 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6483 gdb_flush (gdb_stdout);
6484 }
6485 }
6486 break;
6487 case GDB_SIGNAL_0:
6488 case GDB_SIGNAL_DEFAULT:
6489 case GDB_SIGNAL_UNKNOWN:
6490 /* Make sure that "all" doesn't print these. */
6491 break;
6492 default:
6493 sigs[signum] = 1;
6494 break;
6495 }
6496 }
6497
6498 argv++;
6499 }
6500
6501 for (signum = 0; signum < nsigs; signum++)
6502 if (sigs[signum])
6503 {
6504 signal_cache_update (-1);
6505 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6506 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6507
6508 if (from_tty)
6509 {
6510 /* Show the results. */
6511 sig_print_header ();
6512 for (; signum < nsigs; signum++)
6513 if (sigs[signum])
6514 sig_print_info (signum);
6515 }
6516
6517 break;
6518 }
6519
6520 do_cleanups (old_chain);
6521 }
6522
6523 /* Complete the "handle" command. */
6524
6525 static VEC (char_ptr) *
6526 handle_completer (struct cmd_list_element *ignore,
6527 const char *text, const char *word)
6528 {
6529 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6530 static const char * const keywords[] =
6531 {
6532 "all",
6533 "stop",
6534 "ignore",
6535 "print",
6536 "pass",
6537 "nostop",
6538 "noignore",
6539 "noprint",
6540 "nopass",
6541 NULL,
6542 };
6543
6544 vec_signals = signal_completer (ignore, text, word);
6545 vec_keywords = complete_on_enum (keywords, word, word);
6546
6547 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6548 VEC_free (char_ptr, vec_signals);
6549 VEC_free (char_ptr, vec_keywords);
6550 return return_val;
6551 }
6552
6553 static void
6554 xdb_handle_command (char *args, int from_tty)
6555 {
6556 char **argv;
6557 struct cleanup *old_chain;
6558
6559 if (args == NULL)
6560 error_no_arg (_("xdb command"));
6561
6562 /* Break the command line up into args. */
6563
6564 argv = gdb_buildargv (args);
6565 old_chain = make_cleanup_freeargv (argv);
6566 if (argv[1] != (char *) NULL)
6567 {
6568 char *argBuf;
6569 int bufLen;
6570
6571 bufLen = strlen (argv[0]) + 20;
6572 argBuf = (char *) xmalloc (bufLen);
6573 if (argBuf)
6574 {
6575 int validFlag = 1;
6576 enum gdb_signal oursig;
6577
6578 oursig = gdb_signal_from_name (argv[0]);
6579 memset (argBuf, 0, bufLen);
6580 if (strcmp (argv[1], "Q") == 0)
6581 sprintf (argBuf, "%s %s", argv[0], "noprint");
6582 else
6583 {
6584 if (strcmp (argv[1], "s") == 0)
6585 {
6586 if (!signal_stop[oursig])
6587 sprintf (argBuf, "%s %s", argv[0], "stop");
6588 else
6589 sprintf (argBuf, "%s %s", argv[0], "nostop");
6590 }
6591 else if (strcmp (argv[1], "i") == 0)
6592 {
6593 if (!signal_program[oursig])
6594 sprintf (argBuf, "%s %s", argv[0], "pass");
6595 else
6596 sprintf (argBuf, "%s %s", argv[0], "nopass");
6597 }
6598 else if (strcmp (argv[1], "r") == 0)
6599 {
6600 if (!signal_print[oursig])
6601 sprintf (argBuf, "%s %s", argv[0], "print");
6602 else
6603 sprintf (argBuf, "%s %s", argv[0], "noprint");
6604 }
6605 else
6606 validFlag = 0;
6607 }
6608 if (validFlag)
6609 handle_command (argBuf, from_tty);
6610 else
6611 printf_filtered (_("Invalid signal handling flag.\n"));
6612 if (argBuf)
6613 xfree (argBuf);
6614 }
6615 }
6616 do_cleanups (old_chain);
6617 }
6618
6619 enum gdb_signal
6620 gdb_signal_from_command (int num)
6621 {
6622 if (num >= 1 && num <= 15)
6623 return (enum gdb_signal) num;
6624 error (_("Only signals 1-15 are valid as numeric signals.\n\
6625 Use \"info signals\" for a list of symbolic signals."));
6626 }
6627
6628 /* Print current contents of the tables set by the handle command.
6629 It is possible we should just be printing signals actually used
6630 by the current target (but for things to work right when switching
6631 targets, all signals should be in the signal tables). */
6632
6633 static void
6634 signals_info (char *signum_exp, int from_tty)
6635 {
6636 enum gdb_signal oursig;
6637
6638 sig_print_header ();
6639
6640 if (signum_exp)
6641 {
6642 /* First see if this is a symbol name. */
6643 oursig = gdb_signal_from_name (signum_exp);
6644 if (oursig == GDB_SIGNAL_UNKNOWN)
6645 {
6646 /* No, try numeric. */
6647 oursig =
6648 gdb_signal_from_command (parse_and_eval_long (signum_exp));
6649 }
6650 sig_print_info (oursig);
6651 return;
6652 }
6653
6654 printf_filtered ("\n");
6655 /* These ugly casts brought to you by the native VAX compiler. */
6656 for (oursig = GDB_SIGNAL_FIRST;
6657 (int) oursig < (int) GDB_SIGNAL_LAST;
6658 oursig = (enum gdb_signal) ((int) oursig + 1))
6659 {
6660 QUIT;
6661
6662 if (oursig != GDB_SIGNAL_UNKNOWN
6663 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
6664 sig_print_info (oursig);
6665 }
6666
6667 printf_filtered (_("\nUse the \"handle\" command "
6668 "to change these tables.\n"));
6669 }
6670
6671 /* Check if it makes sense to read $_siginfo from the current thread
6672 at this point. If not, throw an error. */
6673
6674 static void
6675 validate_siginfo_access (void)
6676 {
6677 /* No current inferior, no siginfo. */
6678 if (ptid_equal (inferior_ptid, null_ptid))
6679 error (_("No thread selected."));
6680
6681 /* Don't try to read from a dead thread. */
6682 if (is_exited (inferior_ptid))
6683 error (_("The current thread has terminated"));
6684
6685 /* ... or from a spinning thread. */
6686 if (is_running (inferior_ptid))
6687 error (_("Selected thread is running."));
6688 }
6689
6690 /* The $_siginfo convenience variable is a bit special. We don't know
6691 for sure the type of the value until we actually have a chance to
6692 fetch the data. The type can change depending on gdbarch, so it is
6693 also dependent on which thread you have selected.
6694
6695 1. making $_siginfo be an internalvar that creates a new value on
6696 access.
6697
6698 2. making the value of $_siginfo be an lval_computed value. */
6699
6700 /* This function implements the lval_computed support for reading a
6701 $_siginfo value. */
6702
6703 static void
6704 siginfo_value_read (struct value *v)
6705 {
6706 LONGEST transferred;
6707
6708 validate_siginfo_access ();
6709
6710 transferred =
6711 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6712 NULL,
6713 value_contents_all_raw (v),
6714 value_offset (v),
6715 TYPE_LENGTH (value_type (v)));
6716
6717 if (transferred != TYPE_LENGTH (value_type (v)))
6718 error (_("Unable to read siginfo"));
6719 }
6720
6721 /* This function implements the lval_computed support for writing a
6722 $_siginfo value. */
6723
6724 static void
6725 siginfo_value_write (struct value *v, struct value *fromval)
6726 {
6727 LONGEST transferred;
6728
6729 validate_siginfo_access ();
6730
6731 transferred = target_write (&current_target,
6732 TARGET_OBJECT_SIGNAL_INFO,
6733 NULL,
6734 value_contents_all_raw (fromval),
6735 value_offset (v),
6736 TYPE_LENGTH (value_type (fromval)));
6737
6738 if (transferred != TYPE_LENGTH (value_type (fromval)))
6739 error (_("Unable to write siginfo"));
6740 }
6741
6742 static const struct lval_funcs siginfo_value_funcs =
6743 {
6744 siginfo_value_read,
6745 siginfo_value_write
6746 };
6747
6748 /* Return a new value with the correct type for the siginfo object of
6749 the current thread using architecture GDBARCH. Return a void value
6750 if there's no object available. */
6751
6752 static struct value *
6753 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6754 void *ignore)
6755 {
6756 if (target_has_stack
6757 && !ptid_equal (inferior_ptid, null_ptid)
6758 && gdbarch_get_siginfo_type_p (gdbarch))
6759 {
6760 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6761
6762 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6763 }
6764
6765 return allocate_value (builtin_type (gdbarch)->builtin_void);
6766 }
6767
6768 \f
6769 /* infcall_suspend_state contains state about the program itself like its
6770 registers and any signal it received when it last stopped.
6771 This state must be restored regardless of how the inferior function call
6772 ends (either successfully, or after it hits a breakpoint or signal)
6773 if the program is to properly continue where it left off. */
6774
6775 struct infcall_suspend_state
6776 {
6777 struct thread_suspend_state thread_suspend;
6778 #if 0 /* Currently unused and empty structures are not valid C. */
6779 struct inferior_suspend_state inferior_suspend;
6780 #endif
6781
6782 /* Other fields: */
6783 CORE_ADDR stop_pc;
6784 struct regcache *registers;
6785
6786 /* Format of SIGINFO_DATA or NULL if it is not present. */
6787 struct gdbarch *siginfo_gdbarch;
6788
6789 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6790 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6791 content would be invalid. */
6792 gdb_byte *siginfo_data;
6793 };
6794
6795 struct infcall_suspend_state *
6796 save_infcall_suspend_state (void)
6797 {
6798 struct infcall_suspend_state *inf_state;
6799 struct thread_info *tp = inferior_thread ();
6800 #if 0
6801 struct inferior *inf = current_inferior ();
6802 #endif
6803 struct regcache *regcache = get_current_regcache ();
6804 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6805 gdb_byte *siginfo_data = NULL;
6806
6807 if (gdbarch_get_siginfo_type_p (gdbarch))
6808 {
6809 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6810 size_t len = TYPE_LENGTH (type);
6811 struct cleanup *back_to;
6812
6813 siginfo_data = xmalloc (len);
6814 back_to = make_cleanup (xfree, siginfo_data);
6815
6816 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6817 siginfo_data, 0, len) == len)
6818 discard_cleanups (back_to);
6819 else
6820 {
6821 /* Errors ignored. */
6822 do_cleanups (back_to);
6823 siginfo_data = NULL;
6824 }
6825 }
6826
6827 inf_state = XZALLOC (struct infcall_suspend_state);
6828
6829 if (siginfo_data)
6830 {
6831 inf_state->siginfo_gdbarch = gdbarch;
6832 inf_state->siginfo_data = siginfo_data;
6833 }
6834
6835 inf_state->thread_suspend = tp->suspend;
6836 #if 0 /* Currently unused and empty structures are not valid C. */
6837 inf_state->inferior_suspend = inf->suspend;
6838 #endif
6839
6840 /* run_inferior_call will not use the signal due to its `proceed' call with
6841 GDB_SIGNAL_0 anyway. */
6842 tp->suspend.stop_signal = GDB_SIGNAL_0;
6843
6844 inf_state->stop_pc = stop_pc;
6845
6846 inf_state->registers = regcache_dup (regcache);
6847
6848 return inf_state;
6849 }
6850
6851 /* Restore inferior session state to INF_STATE. */
6852
6853 void
6854 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6855 {
6856 struct thread_info *tp = inferior_thread ();
6857 #if 0
6858 struct inferior *inf = current_inferior ();
6859 #endif
6860 struct regcache *regcache = get_current_regcache ();
6861 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6862
6863 tp->suspend = inf_state->thread_suspend;
6864 #if 0 /* Currently unused and empty structures are not valid C. */
6865 inf->suspend = inf_state->inferior_suspend;
6866 #endif
6867
6868 stop_pc = inf_state->stop_pc;
6869
6870 if (inf_state->siginfo_gdbarch == gdbarch)
6871 {
6872 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6873
6874 /* Errors ignored. */
6875 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6876 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
6877 }
6878
6879 /* The inferior can be gone if the user types "print exit(0)"
6880 (and perhaps other times). */
6881 if (target_has_execution)
6882 /* NB: The register write goes through to the target. */
6883 regcache_cpy (regcache, inf_state->registers);
6884
6885 discard_infcall_suspend_state (inf_state);
6886 }
6887
6888 static void
6889 do_restore_infcall_suspend_state_cleanup (void *state)
6890 {
6891 restore_infcall_suspend_state (state);
6892 }
6893
6894 struct cleanup *
6895 make_cleanup_restore_infcall_suspend_state
6896 (struct infcall_suspend_state *inf_state)
6897 {
6898 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6899 }
6900
6901 void
6902 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6903 {
6904 regcache_xfree (inf_state->registers);
6905 xfree (inf_state->siginfo_data);
6906 xfree (inf_state);
6907 }
6908
6909 struct regcache *
6910 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6911 {
6912 return inf_state->registers;
6913 }
6914
6915 /* infcall_control_state contains state regarding gdb's control of the
6916 inferior itself like stepping control. It also contains session state like
6917 the user's currently selected frame. */
6918
6919 struct infcall_control_state
6920 {
6921 struct thread_control_state thread_control;
6922 struct inferior_control_state inferior_control;
6923
6924 /* Other fields: */
6925 enum stop_stack_kind stop_stack_dummy;
6926 int stopped_by_random_signal;
6927 int stop_after_trap;
6928
6929 /* ID if the selected frame when the inferior function call was made. */
6930 struct frame_id selected_frame_id;
6931 };
6932
6933 /* Save all of the information associated with the inferior<==>gdb
6934 connection. */
6935
6936 struct infcall_control_state *
6937 save_infcall_control_state (void)
6938 {
6939 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6940 struct thread_info *tp = inferior_thread ();
6941 struct inferior *inf = current_inferior ();
6942
6943 inf_status->thread_control = tp->control;
6944 inf_status->inferior_control = inf->control;
6945
6946 tp->control.step_resume_breakpoint = NULL;
6947 tp->control.exception_resume_breakpoint = NULL;
6948
6949 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6950 chain. If caller's caller is walking the chain, they'll be happier if we
6951 hand them back the original chain when restore_infcall_control_state is
6952 called. */
6953 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6954
6955 /* Other fields: */
6956 inf_status->stop_stack_dummy = stop_stack_dummy;
6957 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6958 inf_status->stop_after_trap = stop_after_trap;
6959
6960 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6961
6962 return inf_status;
6963 }
6964
6965 static int
6966 restore_selected_frame (void *args)
6967 {
6968 struct frame_id *fid = (struct frame_id *) args;
6969 struct frame_info *frame;
6970
6971 frame = frame_find_by_id (*fid);
6972
6973 /* If inf_status->selected_frame_id is NULL, there was no previously
6974 selected frame. */
6975 if (frame == NULL)
6976 {
6977 warning (_("Unable to restore previously selected frame."));
6978 return 0;
6979 }
6980
6981 select_frame (frame);
6982
6983 return (1);
6984 }
6985
6986 /* Restore inferior session state to INF_STATUS. */
6987
6988 void
6989 restore_infcall_control_state (struct infcall_control_state *inf_status)
6990 {
6991 struct thread_info *tp = inferior_thread ();
6992 struct inferior *inf = current_inferior ();
6993
6994 if (tp->control.step_resume_breakpoint)
6995 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6996
6997 if (tp->control.exception_resume_breakpoint)
6998 tp->control.exception_resume_breakpoint->disposition
6999 = disp_del_at_next_stop;
7000
7001 /* Handle the bpstat_copy of the chain. */
7002 bpstat_clear (&tp->control.stop_bpstat);
7003
7004 tp->control = inf_status->thread_control;
7005 inf->control = inf_status->inferior_control;
7006
7007 /* Other fields: */
7008 stop_stack_dummy = inf_status->stop_stack_dummy;
7009 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7010 stop_after_trap = inf_status->stop_after_trap;
7011
7012 if (target_has_stack)
7013 {
7014 /* The point of catch_errors is that if the stack is clobbered,
7015 walking the stack might encounter a garbage pointer and
7016 error() trying to dereference it. */
7017 if (catch_errors
7018 (restore_selected_frame, &inf_status->selected_frame_id,
7019 "Unable to restore previously selected frame:\n",
7020 RETURN_MASK_ERROR) == 0)
7021 /* Error in restoring the selected frame. Select the innermost
7022 frame. */
7023 select_frame (get_current_frame ());
7024 }
7025
7026 xfree (inf_status);
7027 }
7028
7029 static void
7030 do_restore_infcall_control_state_cleanup (void *sts)
7031 {
7032 restore_infcall_control_state (sts);
7033 }
7034
7035 struct cleanup *
7036 make_cleanup_restore_infcall_control_state
7037 (struct infcall_control_state *inf_status)
7038 {
7039 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
7040 }
7041
7042 void
7043 discard_infcall_control_state (struct infcall_control_state *inf_status)
7044 {
7045 if (inf_status->thread_control.step_resume_breakpoint)
7046 inf_status->thread_control.step_resume_breakpoint->disposition
7047 = disp_del_at_next_stop;
7048
7049 if (inf_status->thread_control.exception_resume_breakpoint)
7050 inf_status->thread_control.exception_resume_breakpoint->disposition
7051 = disp_del_at_next_stop;
7052
7053 /* See save_infcall_control_state for info on stop_bpstat. */
7054 bpstat_clear (&inf_status->thread_control.stop_bpstat);
7055
7056 xfree (inf_status);
7057 }
7058 \f
7059 int
7060 ptid_match (ptid_t ptid, ptid_t filter)
7061 {
7062 if (ptid_equal (filter, minus_one_ptid))
7063 return 1;
7064 if (ptid_is_pid (filter)
7065 && ptid_get_pid (ptid) == ptid_get_pid (filter))
7066 return 1;
7067 else if (ptid_equal (ptid, filter))
7068 return 1;
7069
7070 return 0;
7071 }
7072
7073 /* restore_inferior_ptid() will be used by the cleanup machinery
7074 to restore the inferior_ptid value saved in a call to
7075 save_inferior_ptid(). */
7076
7077 static void
7078 restore_inferior_ptid (void *arg)
7079 {
7080 ptid_t *saved_ptid_ptr = arg;
7081
7082 inferior_ptid = *saved_ptid_ptr;
7083 xfree (arg);
7084 }
7085
7086 /* Save the value of inferior_ptid so that it may be restored by a
7087 later call to do_cleanups(). Returns the struct cleanup pointer
7088 needed for later doing the cleanup. */
7089
7090 struct cleanup *
7091 save_inferior_ptid (void)
7092 {
7093 ptid_t *saved_ptid_ptr;
7094
7095 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7096 *saved_ptid_ptr = inferior_ptid;
7097 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7098 }
7099
7100 /* See inferior.h. */
7101
7102 void
7103 clear_exit_convenience_vars (void)
7104 {
7105 clear_internalvar (lookup_internalvar ("_exitsignal"));
7106 clear_internalvar (lookup_internalvar ("_exitcode"));
7107 }
7108 \f
7109
7110 /* User interface for reverse debugging:
7111 Set exec-direction / show exec-direction commands
7112 (returns error unless target implements to_set_exec_direction method). */
7113
7114 int execution_direction = EXEC_FORWARD;
7115 static const char exec_forward[] = "forward";
7116 static const char exec_reverse[] = "reverse";
7117 static const char *exec_direction = exec_forward;
7118 static const char *const exec_direction_names[] = {
7119 exec_forward,
7120 exec_reverse,
7121 NULL
7122 };
7123
7124 static void
7125 set_exec_direction_func (char *args, int from_tty,
7126 struct cmd_list_element *cmd)
7127 {
7128 if (target_can_execute_reverse)
7129 {
7130 if (!strcmp (exec_direction, exec_forward))
7131 execution_direction = EXEC_FORWARD;
7132 else if (!strcmp (exec_direction, exec_reverse))
7133 execution_direction = EXEC_REVERSE;
7134 }
7135 else
7136 {
7137 exec_direction = exec_forward;
7138 error (_("Target does not support this operation."));
7139 }
7140 }
7141
7142 static void
7143 show_exec_direction_func (struct ui_file *out, int from_tty,
7144 struct cmd_list_element *cmd, const char *value)
7145 {
7146 switch (execution_direction) {
7147 case EXEC_FORWARD:
7148 fprintf_filtered (out, _("Forward.\n"));
7149 break;
7150 case EXEC_REVERSE:
7151 fprintf_filtered (out, _("Reverse.\n"));
7152 break;
7153 default:
7154 internal_error (__FILE__, __LINE__,
7155 _("bogus execution_direction value: %d"),
7156 (int) execution_direction);
7157 }
7158 }
7159
7160 static void
7161 show_schedule_multiple (struct ui_file *file, int from_tty,
7162 struct cmd_list_element *c, const char *value)
7163 {
7164 fprintf_filtered (file, _("Resuming the execution of threads "
7165 "of all processes is %s.\n"), value);
7166 }
7167
7168 /* Implementation of `siginfo' variable. */
7169
7170 static const struct internalvar_funcs siginfo_funcs =
7171 {
7172 siginfo_make_value,
7173 NULL,
7174 NULL
7175 };
7176
7177 void
7178 _initialize_infrun (void)
7179 {
7180 int i;
7181 int numsigs;
7182 struct cmd_list_element *c;
7183
7184 add_info ("signals", signals_info, _("\
7185 What debugger does when program gets various signals.\n\
7186 Specify a signal as argument to print info on that signal only."));
7187 add_info_alias ("handle", "signals", 0);
7188
7189 c = add_com ("handle", class_run, handle_command, _("\
7190 Specify how to handle signals.\n\
7191 Usage: handle SIGNAL [ACTIONS]\n\
7192 Args are signals and actions to apply to those signals.\n\
7193 If no actions are specified, the current settings for the specified signals\n\
7194 will be displayed instead.\n\
7195 \n\
7196 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7197 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7198 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7199 The special arg \"all\" is recognized to mean all signals except those\n\
7200 used by the debugger, typically SIGTRAP and SIGINT.\n\
7201 \n\
7202 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7203 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7204 Stop means reenter debugger if this signal happens (implies print).\n\
7205 Print means print a message if this signal happens.\n\
7206 Pass means let program see this signal; otherwise program doesn't know.\n\
7207 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7208 Pass and Stop may be combined.\n\
7209 \n\
7210 Multiple signals may be specified. Signal numbers and signal names\n\
7211 may be interspersed with actions, with the actions being performed for\n\
7212 all signals cumulatively specified."));
7213 set_cmd_completer (c, handle_completer);
7214
7215 if (xdb_commands)
7216 {
7217 add_com ("lz", class_info, signals_info, _("\
7218 What debugger does when program gets various signals.\n\
7219 Specify a signal as argument to print info on that signal only."));
7220 add_com ("z", class_run, xdb_handle_command, _("\
7221 Specify how to handle a signal.\n\
7222 Args are signals and actions to apply to those signals.\n\
7223 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7224 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7225 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7226 The special arg \"all\" is recognized to mean all signals except those\n\
7227 used by the debugger, typically SIGTRAP and SIGINT.\n\
7228 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7229 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7230 nopass), \"Q\" (noprint)\n\
7231 Stop means reenter debugger if this signal happens (implies print).\n\
7232 Print means print a message if this signal happens.\n\
7233 Pass means let program see this signal; otherwise program doesn't know.\n\
7234 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7235 Pass and Stop may be combined."));
7236 }
7237
7238 if (!dbx_commands)
7239 stop_command = add_cmd ("stop", class_obscure,
7240 not_just_help_class_command, _("\
7241 There is no `stop' command, but you can set a hook on `stop'.\n\
7242 This allows you to set a list of commands to be run each time execution\n\
7243 of the program stops."), &cmdlist);
7244
7245 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7246 Set inferior debugging."), _("\
7247 Show inferior debugging."), _("\
7248 When non-zero, inferior specific debugging is enabled."),
7249 NULL,
7250 show_debug_infrun,
7251 &setdebuglist, &showdebuglist);
7252
7253 add_setshow_boolean_cmd ("displaced", class_maintenance,
7254 &debug_displaced, _("\
7255 Set displaced stepping debugging."), _("\
7256 Show displaced stepping debugging."), _("\
7257 When non-zero, displaced stepping specific debugging is enabled."),
7258 NULL,
7259 show_debug_displaced,
7260 &setdebuglist, &showdebuglist);
7261
7262 add_setshow_boolean_cmd ("non-stop", no_class,
7263 &non_stop_1, _("\
7264 Set whether gdb controls the inferior in non-stop mode."), _("\
7265 Show whether gdb controls the inferior in non-stop mode."), _("\
7266 When debugging a multi-threaded program and this setting is\n\
7267 off (the default, also called all-stop mode), when one thread stops\n\
7268 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7269 all other threads in the program while you interact with the thread of\n\
7270 interest. When you continue or step a thread, you can allow the other\n\
7271 threads to run, or have them remain stopped, but while you inspect any\n\
7272 thread's state, all threads stop.\n\
7273 \n\
7274 In non-stop mode, when one thread stops, other threads can continue\n\
7275 to run freely. You'll be able to step each thread independently,\n\
7276 leave it stopped or free to run as needed."),
7277 set_non_stop,
7278 show_non_stop,
7279 &setlist,
7280 &showlist);
7281
7282 numsigs = (int) GDB_SIGNAL_LAST;
7283 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7284 signal_print = (unsigned char *)
7285 xmalloc (sizeof (signal_print[0]) * numsigs);
7286 signal_program = (unsigned char *)
7287 xmalloc (sizeof (signal_program[0]) * numsigs);
7288 signal_catch = (unsigned char *)
7289 xmalloc (sizeof (signal_catch[0]) * numsigs);
7290 signal_pass = (unsigned char *)
7291 xmalloc (sizeof (signal_program[0]) * numsigs);
7292 for (i = 0; i < numsigs; i++)
7293 {
7294 signal_stop[i] = 1;
7295 signal_print[i] = 1;
7296 signal_program[i] = 1;
7297 signal_catch[i] = 0;
7298 }
7299
7300 /* Signals caused by debugger's own actions
7301 should not be given to the program afterwards. */
7302 signal_program[GDB_SIGNAL_TRAP] = 0;
7303 signal_program[GDB_SIGNAL_INT] = 0;
7304
7305 /* Signals that are not errors should not normally enter the debugger. */
7306 signal_stop[GDB_SIGNAL_ALRM] = 0;
7307 signal_print[GDB_SIGNAL_ALRM] = 0;
7308 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7309 signal_print[GDB_SIGNAL_VTALRM] = 0;
7310 signal_stop[GDB_SIGNAL_PROF] = 0;
7311 signal_print[GDB_SIGNAL_PROF] = 0;
7312 signal_stop[GDB_SIGNAL_CHLD] = 0;
7313 signal_print[GDB_SIGNAL_CHLD] = 0;
7314 signal_stop[GDB_SIGNAL_IO] = 0;
7315 signal_print[GDB_SIGNAL_IO] = 0;
7316 signal_stop[GDB_SIGNAL_POLL] = 0;
7317 signal_print[GDB_SIGNAL_POLL] = 0;
7318 signal_stop[GDB_SIGNAL_URG] = 0;
7319 signal_print[GDB_SIGNAL_URG] = 0;
7320 signal_stop[GDB_SIGNAL_WINCH] = 0;
7321 signal_print[GDB_SIGNAL_WINCH] = 0;
7322 signal_stop[GDB_SIGNAL_PRIO] = 0;
7323 signal_print[GDB_SIGNAL_PRIO] = 0;
7324
7325 /* These signals are used internally by user-level thread
7326 implementations. (See signal(5) on Solaris.) Like the above
7327 signals, a healthy program receives and handles them as part of
7328 its normal operation. */
7329 signal_stop[GDB_SIGNAL_LWP] = 0;
7330 signal_print[GDB_SIGNAL_LWP] = 0;
7331 signal_stop[GDB_SIGNAL_WAITING] = 0;
7332 signal_print[GDB_SIGNAL_WAITING] = 0;
7333 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7334 signal_print[GDB_SIGNAL_CANCEL] = 0;
7335
7336 /* Update cached state. */
7337 signal_cache_update (-1);
7338
7339 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7340 &stop_on_solib_events, _("\
7341 Set stopping for shared library events."), _("\
7342 Show stopping for shared library events."), _("\
7343 If nonzero, gdb will give control to the user when the dynamic linker\n\
7344 notifies gdb of shared library events. The most common event of interest\n\
7345 to the user would be loading/unloading of a new library."),
7346 set_stop_on_solib_events,
7347 show_stop_on_solib_events,
7348 &setlist, &showlist);
7349
7350 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7351 follow_fork_mode_kind_names,
7352 &follow_fork_mode_string, _("\
7353 Set debugger response to a program call of fork or vfork."), _("\
7354 Show debugger response to a program call of fork or vfork."), _("\
7355 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7356 parent - the original process is debugged after a fork\n\
7357 child - the new process is debugged after a fork\n\
7358 The unfollowed process will continue to run.\n\
7359 By default, the debugger will follow the parent process."),
7360 NULL,
7361 show_follow_fork_mode_string,
7362 &setlist, &showlist);
7363
7364 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7365 follow_exec_mode_names,
7366 &follow_exec_mode_string, _("\
7367 Set debugger response to a program call of exec."), _("\
7368 Show debugger response to a program call of exec."), _("\
7369 An exec call replaces the program image of a process.\n\
7370 \n\
7371 follow-exec-mode can be:\n\
7372 \n\
7373 new - the debugger creates a new inferior and rebinds the process\n\
7374 to this new inferior. The program the process was running before\n\
7375 the exec call can be restarted afterwards by restarting the original\n\
7376 inferior.\n\
7377 \n\
7378 same - the debugger keeps the process bound to the same inferior.\n\
7379 The new executable image replaces the previous executable loaded in\n\
7380 the inferior. Restarting the inferior after the exec call restarts\n\
7381 the executable the process was running after the exec call.\n\
7382 \n\
7383 By default, the debugger will use the same inferior."),
7384 NULL,
7385 show_follow_exec_mode_string,
7386 &setlist, &showlist);
7387
7388 add_setshow_enum_cmd ("scheduler-locking", class_run,
7389 scheduler_enums, &scheduler_mode, _("\
7390 Set mode for locking scheduler during execution."), _("\
7391 Show mode for locking scheduler during execution."), _("\
7392 off == no locking (threads may preempt at any time)\n\
7393 on == full locking (no thread except the current thread may run)\n\
7394 step == scheduler locked during every single-step operation.\n\
7395 In this mode, no other thread may run during a step command.\n\
7396 Other threads may run while stepping over a function call ('next')."),
7397 set_schedlock_func, /* traps on target vector */
7398 show_scheduler_mode,
7399 &setlist, &showlist);
7400
7401 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7402 Set mode for resuming threads of all processes."), _("\
7403 Show mode for resuming threads of all processes."), _("\
7404 When on, execution commands (such as 'continue' or 'next') resume all\n\
7405 threads of all processes. When off (which is the default), execution\n\
7406 commands only resume the threads of the current process. The set of\n\
7407 threads that are resumed is further refined by the scheduler-locking\n\
7408 mode (see help set scheduler-locking)."),
7409 NULL,
7410 show_schedule_multiple,
7411 &setlist, &showlist);
7412
7413 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7414 Set mode of the step operation."), _("\
7415 Show mode of the step operation."), _("\
7416 When set, doing a step over a function without debug line information\n\
7417 will stop at the first instruction of that function. Otherwise, the\n\
7418 function is skipped and the step command stops at a different source line."),
7419 NULL,
7420 show_step_stop_if_no_debug,
7421 &setlist, &showlist);
7422
7423 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7424 &can_use_displaced_stepping, _("\
7425 Set debugger's willingness to use displaced stepping."), _("\
7426 Show debugger's willingness to use displaced stepping."), _("\
7427 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7428 supported by the target architecture. If off, gdb will not use displaced\n\
7429 stepping to step over breakpoints, even if such is supported by the target\n\
7430 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7431 if the target architecture supports it and non-stop mode is active, but will not\n\
7432 use it in all-stop mode (see help set non-stop)."),
7433 NULL,
7434 show_can_use_displaced_stepping,
7435 &setlist, &showlist);
7436
7437 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7438 &exec_direction, _("Set direction of execution.\n\
7439 Options are 'forward' or 'reverse'."),
7440 _("Show direction of execution (forward/reverse)."),
7441 _("Tells gdb whether to execute forward or backward."),
7442 set_exec_direction_func, show_exec_direction_func,
7443 &setlist, &showlist);
7444
7445 /* Set/show detach-on-fork: user-settable mode. */
7446
7447 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7448 Set whether gdb will detach the child of a fork."), _("\
7449 Show whether gdb will detach the child of a fork."), _("\
7450 Tells gdb whether to detach the child of a fork."),
7451 NULL, NULL, &setlist, &showlist);
7452
7453 /* Set/show disable address space randomization mode. */
7454
7455 add_setshow_boolean_cmd ("disable-randomization", class_support,
7456 &disable_randomization, _("\
7457 Set disabling of debuggee's virtual address space randomization."), _("\
7458 Show disabling of debuggee's virtual address space randomization."), _("\
7459 When this mode is on (which is the default), randomization of the virtual\n\
7460 address space is disabled. Standalone programs run with the randomization\n\
7461 enabled by default on some platforms."),
7462 &set_disable_randomization,
7463 &show_disable_randomization,
7464 &setlist, &showlist);
7465
7466 /* ptid initializations */
7467 inferior_ptid = null_ptid;
7468 target_last_wait_ptid = minus_one_ptid;
7469
7470 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7471 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7472 observer_attach_thread_exit (infrun_thread_thread_exit);
7473 observer_attach_inferior_exit (infrun_inferior_exit);
7474
7475 /* Explicitly create without lookup, since that tries to create a
7476 value with a void typed value, and when we get here, gdbarch
7477 isn't initialized yet. At this point, we're quite sure there
7478 isn't another convenience variable of the same name. */
7479 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7480
7481 add_setshow_boolean_cmd ("observer", no_class,
7482 &observer_mode_1, _("\
7483 Set whether gdb controls the inferior in observer mode."), _("\
7484 Show whether gdb controls the inferior in observer mode."), _("\
7485 In observer mode, GDB can get data from the inferior, but not\n\
7486 affect its execution. Registers and memory may not be changed,\n\
7487 breakpoints may not be set, and the program cannot be interrupted\n\
7488 or signalled."),
7489 set_observer_mode,
7490 show_observer_mode,
7491 &setlist,
7492 &showlist);
7493 }