]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
PR gdb/2424
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51
52 /* Prototypes for local functions */
53
54 static void signals_info (char *, int);
55
56 static void handle_command (char *, int);
57
58 static void sig_print_info (enum target_signal);
59
60 static void sig_print_header (void);
61
62 static void resume_cleanups (void *);
63
64 static int hook_stop_stub (void *);
65
66 static int restore_selected_frame (void *);
67
68 static void build_infrun (void);
69
70 static int follow_fork (void);
71
72 static void set_schedlock_func (char *args, int from_tty,
73 struct cmd_list_element *c);
74
75 struct execution_control_state;
76
77 static int currently_stepping (struct execution_control_state *ecs);
78
79 static void xdb_handle_command (char *args, int from_tty);
80
81 static int prepare_to_proceed (int);
82
83 void _initialize_infrun (void);
84
85 /* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88 int step_stop_if_no_debug = 0;
89 static void
90 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
91 struct cmd_list_element *c, const char *value)
92 {
93 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
94 }
95
96 /* In asynchronous mode, but simulating synchronous execution. */
97
98 int sync_execution = 0;
99
100 /* wait_for_inferior and normal_stop use this to notify the user
101 when the inferior stopped in a different thread than it had been
102 running in. */
103
104 static ptid_t previous_inferior_ptid;
105
106 static int debug_infrun = 0;
107 static void
108 show_debug_infrun (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
112 }
113
114 /* If the program uses ELF-style shared libraries, then calls to
115 functions in shared libraries go through stubs, which live in a
116 table called the PLT (Procedure Linkage Table). The first time the
117 function is called, the stub sends control to the dynamic linker,
118 which looks up the function's real address, patches the stub so
119 that future calls will go directly to the function, and then passes
120 control to the function.
121
122 If we are stepping at the source level, we don't want to see any of
123 this --- we just want to skip over the stub and the dynamic linker.
124 The simple approach is to single-step until control leaves the
125 dynamic linker.
126
127 However, on some systems (e.g., Red Hat's 5.2 distribution) the
128 dynamic linker calls functions in the shared C library, so you
129 can't tell from the PC alone whether the dynamic linker is still
130 running. In this case, we use a step-resume breakpoint to get us
131 past the dynamic linker, as if we were using "next" to step over a
132 function call.
133
134 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
135 linker code or not. Normally, this means we single-step. However,
136 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
137 address where we can place a step-resume breakpoint to get past the
138 linker's symbol resolution function.
139
140 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
141 pretty portable way, by comparing the PC against the address ranges
142 of the dynamic linker's sections.
143
144 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
145 it depends on internal details of the dynamic linker. It's usually
146 not too hard to figure out where to put a breakpoint, but it
147 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
148 sanity checking. If it can't figure things out, returning zero and
149 getting the (possibly confusing) stepping behavior is better than
150 signalling an error, which will obscure the change in the
151 inferior's state. */
152
153 /* This function returns TRUE if pc is the address of an instruction
154 that lies within the dynamic linker (such as the event hook, or the
155 dld itself).
156
157 This function must be used only when a dynamic linker event has
158 been caught, and the inferior is being stepped out of the hook, or
159 undefined results are guaranteed. */
160
161 #ifndef SOLIB_IN_DYNAMIC_LINKER
162 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
163 #endif
164
165
166 /* Convert the #defines into values. This is temporary until wfi control
167 flow is completely sorted out. */
168
169 #ifndef CANNOT_STEP_HW_WATCHPOINTS
170 #define CANNOT_STEP_HW_WATCHPOINTS 0
171 #else
172 #undef CANNOT_STEP_HW_WATCHPOINTS
173 #define CANNOT_STEP_HW_WATCHPOINTS 1
174 #endif
175
176 /* Tables of how to react to signals; the user sets them. */
177
178 static unsigned char *signal_stop;
179 static unsigned char *signal_print;
180 static unsigned char *signal_program;
181
182 #define SET_SIGS(nsigs,sigs,flags) \
183 do { \
184 int signum = (nsigs); \
185 while (signum-- > 0) \
186 if ((sigs)[signum]) \
187 (flags)[signum] = 1; \
188 } while (0)
189
190 #define UNSET_SIGS(nsigs,sigs,flags) \
191 do { \
192 int signum = (nsigs); \
193 while (signum-- > 0) \
194 if ((sigs)[signum]) \
195 (flags)[signum] = 0; \
196 } while (0)
197
198 /* Value to pass to target_resume() to cause all threads to resume */
199
200 #define RESUME_ALL (pid_to_ptid (-1))
201
202 /* Command list pointer for the "stop" placeholder. */
203
204 static struct cmd_list_element *stop_command;
205
206 /* Function inferior was in as of last step command. */
207
208 static struct symbol *step_start_function;
209
210 /* Nonzero if we are presently stepping over a breakpoint.
211
212 If we hit a breakpoint or watchpoint, and then continue,
213 we need to single step the current thread with breakpoints
214 disabled, to avoid hitting the same breakpoint or
215 watchpoint again. And we should step just a single
216 thread and keep other threads stopped, so that
217 other threads don't miss breakpoints while they are removed.
218
219 So, this variable simultaneously means that we need to single
220 step the current thread, keep other threads stopped, and that
221 breakpoints should be removed while we step.
222
223 This variable is set either:
224 - in proceed, when we resume inferior on user's explicit request
225 - in keep_going, if handle_inferior_event decides we need to
226 step over breakpoint.
227
228 The variable is cleared in clear_proceed_status, called every
229 time before we call proceed. The proceed calls wait_for_inferior,
230 which calls handle_inferior_event in a loop, and until
231 wait_for_inferior exits, this variable is changed only by keep_going. */
232
233 static int stepping_over_breakpoint;
234
235 /* Nonzero if we want to give control to the user when we're notified
236 of shared library events by the dynamic linker. */
237 static int stop_on_solib_events;
238 static void
239 show_stop_on_solib_events (struct ui_file *file, int from_tty,
240 struct cmd_list_element *c, const char *value)
241 {
242 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
243 value);
244 }
245
246 /* Nonzero means expecting a trace trap
247 and should stop the inferior and return silently when it happens. */
248
249 int stop_after_trap;
250
251 /* Nonzero means expecting a trap and caller will handle it themselves.
252 It is used after attach, due to attaching to a process;
253 when running in the shell before the child program has been exec'd;
254 and when running some kinds of remote stuff (FIXME?). */
255
256 enum stop_kind stop_soon;
257
258 /* Nonzero if proceed is being used for a "finish" command or a similar
259 situation when stop_registers should be saved. */
260
261 int proceed_to_finish;
262
263 /* Save register contents here when about to pop a stack dummy frame,
264 if-and-only-if proceed_to_finish is set.
265 Thus this contains the return value from the called function (assuming
266 values are returned in a register). */
267
268 struct regcache *stop_registers;
269
270 /* Nonzero after stop if current stack frame should be printed. */
271
272 static int stop_print_frame;
273
274 static struct breakpoint *step_resume_breakpoint = NULL;
275
276 /* This is a cached copy of the pid/waitstatus of the last event
277 returned by target_wait()/deprecated_target_wait_hook(). This
278 information is returned by get_last_target_status(). */
279 static ptid_t target_last_wait_ptid;
280 static struct target_waitstatus target_last_waitstatus;
281
282 /* This is used to remember when a fork, vfork or exec event
283 was caught by a catchpoint, and thus the event is to be
284 followed at the next resume of the inferior, and not
285 immediately. */
286 static struct
287 {
288 enum target_waitkind kind;
289 struct
290 {
291 int parent_pid;
292 int child_pid;
293 }
294 fork_event;
295 char *execd_pathname;
296 }
297 pending_follow;
298
299 static const char follow_fork_mode_child[] = "child";
300 static const char follow_fork_mode_parent[] = "parent";
301
302 static const char *follow_fork_mode_kind_names[] = {
303 follow_fork_mode_child,
304 follow_fork_mode_parent,
305 NULL
306 };
307
308 static const char *follow_fork_mode_string = follow_fork_mode_parent;
309 static void
310 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
311 struct cmd_list_element *c, const char *value)
312 {
313 fprintf_filtered (file, _("\
314 Debugger response to a program call of fork or vfork is \"%s\".\n"),
315 value);
316 }
317 \f
318
319 static int
320 follow_fork (void)
321 {
322 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
323
324 return target_follow_fork (follow_child);
325 }
326
327 void
328 follow_inferior_reset_breakpoints (void)
329 {
330 /* Was there a step_resume breakpoint? (There was if the user
331 did a "next" at the fork() call.) If so, explicitly reset its
332 thread number.
333
334 step_resumes are a form of bp that are made to be per-thread.
335 Since we created the step_resume bp when the parent process
336 was being debugged, and now are switching to the child process,
337 from the breakpoint package's viewpoint, that's a switch of
338 "threads". We must update the bp's notion of which thread
339 it is for, or it'll be ignored when it triggers. */
340
341 if (step_resume_breakpoint)
342 breakpoint_re_set_thread (step_resume_breakpoint);
343
344 /* Reinsert all breakpoints in the child. The user may have set
345 breakpoints after catching the fork, in which case those
346 were never set in the child, but only in the parent. This makes
347 sure the inserted breakpoints match the breakpoint list. */
348
349 breakpoint_re_set ();
350 insert_breakpoints ();
351 }
352
353 /* EXECD_PATHNAME is assumed to be non-NULL. */
354
355 static void
356 follow_exec (int pid, char *execd_pathname)
357 {
358 int saved_pid = pid;
359 struct target_ops *tgt;
360
361 /* This is an exec event that we actually wish to pay attention to.
362 Refresh our symbol table to the newly exec'd program, remove any
363 momentary bp's, etc.
364
365 If there are breakpoints, they aren't really inserted now,
366 since the exec() transformed our inferior into a fresh set
367 of instructions.
368
369 We want to preserve symbolic breakpoints on the list, since
370 we have hopes that they can be reset after the new a.out's
371 symbol table is read.
372
373 However, any "raw" breakpoints must be removed from the list
374 (e.g., the solib bp's), since their address is probably invalid
375 now.
376
377 And, we DON'T want to call delete_breakpoints() here, since
378 that may write the bp's "shadow contents" (the instruction
379 value that was overwritten witha TRAP instruction). Since
380 we now have a new a.out, those shadow contents aren't valid. */
381 update_breakpoints_after_exec ();
382
383 /* If there was one, it's gone now. We cannot truly step-to-next
384 statement through an exec(). */
385 step_resume_breakpoint = NULL;
386 step_range_start = 0;
387 step_range_end = 0;
388
389 /* What is this a.out's name? */
390 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
391
392 /* We've followed the inferior through an exec. Therefore, the
393 inferior has essentially been killed & reborn. */
394
395 gdb_flush (gdb_stdout);
396 generic_mourn_inferior ();
397 /* Because mourn_inferior resets inferior_ptid. */
398 inferior_ptid = pid_to_ptid (saved_pid);
399
400 if (gdb_sysroot && *gdb_sysroot)
401 {
402 char *name = alloca (strlen (gdb_sysroot)
403 + strlen (execd_pathname)
404 + 1);
405 strcpy (name, gdb_sysroot);
406 strcat (name, execd_pathname);
407 execd_pathname = name;
408 }
409
410 /* That a.out is now the one to use. */
411 exec_file_attach (execd_pathname, 0);
412
413 /* And also is where symbols can be found. */
414 symbol_file_add_main (execd_pathname, 0);
415
416 /* Reset the shared library package. This ensures that we get
417 a shlib event when the child reaches "_start", at which point
418 the dld will have had a chance to initialize the child. */
419 no_shared_libraries (NULL, 0);
420 #ifdef SOLIB_CREATE_INFERIOR_HOOK
421 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
422 #else
423 solib_create_inferior_hook ();
424 #endif
425
426 /* Reinsert all breakpoints. (Those which were symbolic have
427 been reset to the proper address in the new a.out, thanks
428 to symbol_file_command...) */
429 insert_breakpoints ();
430
431 /* The next resume of this inferior should bring it to the shlib
432 startup breakpoints. (If the user had also set bp's on
433 "main" from the old (parent) process, then they'll auto-
434 matically get reset there in the new process.) */
435 }
436
437 /* Non-zero if we just simulating a single-step. This is needed
438 because we cannot remove the breakpoints in the inferior process
439 until after the `wait' in `wait_for_inferior'. */
440 static int singlestep_breakpoints_inserted_p = 0;
441
442 /* The thread we inserted single-step breakpoints for. */
443 static ptid_t singlestep_ptid;
444
445 /* PC when we started this single-step. */
446 static CORE_ADDR singlestep_pc;
447
448 /* If another thread hit the singlestep breakpoint, we save the original
449 thread here so that we can resume single-stepping it later. */
450 static ptid_t saved_singlestep_ptid;
451 static int stepping_past_singlestep_breakpoint;
452
453 /* If not equal to null_ptid, this means that after stepping over breakpoint
454 is finished, we need to switch to deferred_step_ptid, and step it.
455
456 The use case is when one thread has hit a breakpoint, and then the user
457 has switched to another thread and issued 'step'. We need to step over
458 breakpoint in the thread which hit the breakpoint, but then continue
459 stepping the thread user has selected. */
460 static ptid_t deferred_step_ptid;
461 \f
462
463 /* Things to clean up if we QUIT out of resume (). */
464 static void
465 resume_cleanups (void *ignore)
466 {
467 normal_stop ();
468 }
469
470 static const char schedlock_off[] = "off";
471 static const char schedlock_on[] = "on";
472 static const char schedlock_step[] = "step";
473 static const char *scheduler_enums[] = {
474 schedlock_off,
475 schedlock_on,
476 schedlock_step,
477 NULL
478 };
479 static const char *scheduler_mode = schedlock_off;
480 static void
481 show_scheduler_mode (struct ui_file *file, int from_tty,
482 struct cmd_list_element *c, const char *value)
483 {
484 fprintf_filtered (file, _("\
485 Mode for locking scheduler during execution is \"%s\".\n"),
486 value);
487 }
488
489 static void
490 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
491 {
492 if (!target_can_lock_scheduler)
493 {
494 scheduler_mode = schedlock_off;
495 error (_("Target '%s' cannot support this command."), target_shortname);
496 }
497 }
498
499
500 /* Resume the inferior, but allow a QUIT. This is useful if the user
501 wants to interrupt some lengthy single-stepping operation
502 (for child processes, the SIGINT goes to the inferior, and so
503 we get a SIGINT random_signal, but for remote debugging and perhaps
504 other targets, that's not true).
505
506 STEP nonzero if we should step (zero to continue instead).
507 SIG is the signal to give the inferior (zero for none). */
508 void
509 resume (int step, enum target_signal sig)
510 {
511 int should_resume = 1;
512 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
513 QUIT;
514
515 if (debug_infrun)
516 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
517 step, sig);
518
519 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
520
521
522 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
523 over an instruction that causes a page fault without triggering
524 a hardware watchpoint. The kernel properly notices that it shouldn't
525 stop, because the hardware watchpoint is not triggered, but it forgets
526 the step request and continues the program normally.
527 Work around the problem by removing hardware watchpoints if a step is
528 requested, GDB will check for a hardware watchpoint trigger after the
529 step anyway. */
530 if (CANNOT_STEP_HW_WATCHPOINTS && step)
531 remove_hw_watchpoints ();
532
533
534 /* Normally, by the time we reach `resume', the breakpoints are either
535 removed or inserted, as appropriate. The exception is if we're sitting
536 at a permanent breakpoint; we need to step over it, but permanent
537 breakpoints can't be removed. So we have to test for it here. */
538 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
539 {
540 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
541 gdbarch_skip_permanent_breakpoint (current_gdbarch,
542 get_current_regcache ());
543 else
544 error (_("\
545 The program is stopped at a permanent breakpoint, but GDB does not know\n\
546 how to step past a permanent breakpoint on this architecture. Try using\n\
547 a command like `return' or `jump' to continue execution."));
548 }
549
550 if (step && gdbarch_software_single_step_p (current_gdbarch))
551 {
552 /* Do it the hard way, w/temp breakpoints */
553 if (gdbarch_software_single_step (current_gdbarch, get_current_frame ()))
554 {
555 /* ...and don't ask hardware to do it. */
556 step = 0;
557 /* and do not pull these breakpoints until after a `wait' in
558 `wait_for_inferior' */
559 singlestep_breakpoints_inserted_p = 1;
560 singlestep_ptid = inferior_ptid;
561 singlestep_pc = read_pc ();
562 }
563 }
564
565 /* If there were any forks/vforks/execs that were caught and are
566 now to be followed, then do so. */
567 switch (pending_follow.kind)
568 {
569 case TARGET_WAITKIND_FORKED:
570 case TARGET_WAITKIND_VFORKED:
571 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
572 if (follow_fork ())
573 should_resume = 0;
574 break;
575
576 case TARGET_WAITKIND_EXECD:
577 /* follow_exec is called as soon as the exec event is seen. */
578 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
579 break;
580
581 default:
582 break;
583 }
584
585 /* Install inferior's terminal modes. */
586 target_terminal_inferior ();
587
588 if (should_resume)
589 {
590 ptid_t resume_ptid;
591
592 resume_ptid = RESUME_ALL; /* Default */
593
594 /* If STEP is set, it's a request to use hardware stepping
595 facilities. But in that case, we should never
596 use singlestep breakpoint. */
597 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
598
599 if (singlestep_breakpoints_inserted_p
600 && stepping_past_singlestep_breakpoint)
601 {
602 /* The situation here is as follows. In thread T1 we wanted to
603 single-step. Lacking hardware single-stepping we've
604 set breakpoint at the PC of the next instruction -- call it
605 P. After resuming, we've hit that breakpoint in thread T2.
606 Now we've removed original breakpoint, inserted breakpoint
607 at P+1, and try to step to advance T2 past breakpoint.
608 We need to step only T2, as if T1 is allowed to freely run,
609 it can run past P, and if other threads are allowed to run,
610 they can hit breakpoint at P+1, and nested hits of single-step
611 breakpoints is not something we'd want -- that's complicated
612 to support, and has no value. */
613 resume_ptid = inferior_ptid;
614 }
615
616 if ((step || singlestep_breakpoints_inserted_p)
617 && breakpoint_here_p (read_pc ())
618 && !breakpoint_inserted_here_p (read_pc ()))
619 {
620 /* We're stepping, have breakpoint at PC, and it's
621 not inserted. Most likely, proceed has noticed that
622 we have breakpoint and tries to single-step over it,
623 so that it's not hit. In which case, we need to
624 single-step only this thread, and keep others stopped,
625 as they can miss this breakpoint if allowed to run.
626
627 The current code either has all breakpoints inserted,
628 or all removed, so if we let other threads run,
629 we can actually miss any breakpoint, not the one at PC. */
630 resume_ptid = inferior_ptid;
631 }
632
633 if ((scheduler_mode == schedlock_on)
634 || (scheduler_mode == schedlock_step
635 && (step || singlestep_breakpoints_inserted_p)))
636 {
637 /* User-settable 'scheduler' mode requires solo thread resume. */
638 resume_ptid = inferior_ptid;
639 }
640
641 if (gdbarch_cannot_step_breakpoint (current_gdbarch))
642 {
643 /* Most targets can step a breakpoint instruction, thus
644 executing it normally. But if this one cannot, just
645 continue and we will hit it anyway. */
646 if (step && breakpoint_inserted_here_p (read_pc ()))
647 step = 0;
648 }
649 target_resume (resume_ptid, step, sig);
650 }
651
652 discard_cleanups (old_cleanups);
653 }
654 \f
655
656 /* Clear out all variables saying what to do when inferior is continued.
657 First do this, then set the ones you want, then call `proceed'. */
658
659 void
660 clear_proceed_status (void)
661 {
662 stepping_over_breakpoint = 0;
663 step_range_start = 0;
664 step_range_end = 0;
665 step_frame_id = null_frame_id;
666 step_over_calls = STEP_OVER_UNDEBUGGABLE;
667 stop_after_trap = 0;
668 stop_soon = NO_STOP_QUIETLY;
669 proceed_to_finish = 0;
670 breakpoint_proceeded = 1; /* We're about to proceed... */
671
672 if (stop_registers)
673 {
674 regcache_xfree (stop_registers);
675 stop_registers = NULL;
676 }
677
678 /* Discard any remaining commands or status from previous stop. */
679 bpstat_clear (&stop_bpstat);
680 }
681
682 /* This should be suitable for any targets that support threads. */
683
684 static int
685 prepare_to_proceed (int step)
686 {
687 ptid_t wait_ptid;
688 struct target_waitstatus wait_status;
689
690 /* Get the last target status returned by target_wait(). */
691 get_last_target_status (&wait_ptid, &wait_status);
692
693 /* Make sure we were stopped at a breakpoint. */
694 if (wait_status.kind != TARGET_WAITKIND_STOPPED
695 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
696 {
697 return 0;
698 }
699
700 /* Switched over from WAIT_PID. */
701 if (!ptid_equal (wait_ptid, minus_one_ptid)
702 && !ptid_equal (inferior_ptid, wait_ptid)
703 && breakpoint_here_p (read_pc_pid (wait_ptid)))
704 {
705 /* If stepping, remember current thread to switch back to. */
706 if (step)
707 {
708 deferred_step_ptid = inferior_ptid;
709 }
710
711 /* Switch back to WAIT_PID thread. */
712 switch_to_thread (wait_ptid);
713
714 /* We return 1 to indicate that there is a breakpoint here,
715 so we need to step over it before continuing to avoid
716 hitting it straight away. */
717 return 1;
718 }
719
720 return 0;
721 }
722
723 /* Record the pc of the program the last time it stopped. This is
724 just used internally by wait_for_inferior, but need to be preserved
725 over calls to it and cleared when the inferior is started. */
726 static CORE_ADDR prev_pc;
727
728 /* Basic routine for continuing the program in various fashions.
729
730 ADDR is the address to resume at, or -1 for resume where stopped.
731 SIGGNAL is the signal to give it, or 0 for none,
732 or -1 for act according to how it stopped.
733 STEP is nonzero if should trap after one instruction.
734 -1 means return after that and print nothing.
735 You should probably set various step_... variables
736 before calling here, if you are stepping.
737
738 You should call clear_proceed_status before calling proceed. */
739
740 void
741 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
742 {
743 int oneproc = 0;
744
745 if (step > 0)
746 step_start_function = find_pc_function (read_pc ());
747 if (step < 0)
748 stop_after_trap = 1;
749
750 if (addr == (CORE_ADDR) -1)
751 {
752 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
753 /* There is a breakpoint at the address we will resume at,
754 step one instruction before inserting breakpoints so that
755 we do not stop right away (and report a second hit at this
756 breakpoint). */
757 oneproc = 1;
758 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
759 && gdbarch_single_step_through_delay (current_gdbarch,
760 get_current_frame ()))
761 /* We stepped onto an instruction that needs to be stepped
762 again before re-inserting the breakpoint, do so. */
763 oneproc = 1;
764 }
765 else
766 {
767 write_pc (addr);
768 }
769
770 if (debug_infrun)
771 fprintf_unfiltered (gdb_stdlog,
772 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
773 paddr_nz (addr), siggnal, step);
774
775 /* In a multi-threaded task we may select another thread
776 and then continue or step.
777
778 But if the old thread was stopped at a breakpoint, it
779 will immediately cause another breakpoint stop without
780 any execution (i.e. it will report a breakpoint hit
781 incorrectly). So we must step over it first.
782
783 prepare_to_proceed checks the current thread against the thread
784 that reported the most recent event. If a step-over is required
785 it returns TRUE and sets the current thread to the old thread. */
786 if (prepare_to_proceed (step))
787 oneproc = 1;
788
789 if (oneproc)
790 /* We will get a trace trap after one instruction.
791 Continue it automatically and insert breakpoints then. */
792 stepping_over_breakpoint = 1;
793 else
794 insert_breakpoints ();
795
796 if (siggnal != TARGET_SIGNAL_DEFAULT)
797 stop_signal = siggnal;
798 /* If this signal should not be seen by program,
799 give it zero. Used for debugging signals. */
800 else if (!signal_program[stop_signal])
801 stop_signal = TARGET_SIGNAL_0;
802
803 annotate_starting ();
804
805 /* Make sure that output from GDB appears before output from the
806 inferior. */
807 gdb_flush (gdb_stdout);
808
809 /* Refresh prev_pc value just prior to resuming. This used to be
810 done in stop_stepping, however, setting prev_pc there did not handle
811 scenarios such as inferior function calls or returning from
812 a function via the return command. In those cases, the prev_pc
813 value was not set properly for subsequent commands. The prev_pc value
814 is used to initialize the starting line number in the ecs. With an
815 invalid value, the gdb next command ends up stopping at the position
816 represented by the next line table entry past our start position.
817 On platforms that generate one line table entry per line, this
818 is not a problem. However, on the ia64, the compiler generates
819 extraneous line table entries that do not increase the line number.
820 When we issue the gdb next command on the ia64 after an inferior call
821 or a return command, we often end up a few instructions forward, still
822 within the original line we started.
823
824 An attempt was made to have init_execution_control_state () refresh
825 the prev_pc value before calculating the line number. This approach
826 did not work because on platforms that use ptrace, the pc register
827 cannot be read unless the inferior is stopped. At that point, we
828 are not guaranteed the inferior is stopped and so the read_pc ()
829 call can fail. Setting the prev_pc value here ensures the value is
830 updated correctly when the inferior is stopped. */
831 prev_pc = read_pc ();
832
833 /* Resume inferior. */
834 resume (oneproc || step || bpstat_should_step (), stop_signal);
835
836 /* Wait for it to stop (if not standalone)
837 and in any case decode why it stopped, and act accordingly. */
838 /* Do this only if we are not using the event loop, or if the target
839 does not support asynchronous execution. */
840 if (!target_can_async_p ())
841 {
842 wait_for_inferior (0);
843 normal_stop ();
844 }
845 }
846 \f
847
848 /* Start remote-debugging of a machine over a serial link. */
849
850 void
851 start_remote (int from_tty)
852 {
853 init_thread_list ();
854 init_wait_for_inferior ();
855 stop_soon = STOP_QUIETLY_REMOTE;
856 stepping_over_breakpoint = 0;
857
858 /* Always go on waiting for the target, regardless of the mode. */
859 /* FIXME: cagney/1999-09-23: At present it isn't possible to
860 indicate to wait_for_inferior that a target should timeout if
861 nothing is returned (instead of just blocking). Because of this,
862 targets expecting an immediate response need to, internally, set
863 things up so that the target_wait() is forced to eventually
864 timeout. */
865 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
866 differentiate to its caller what the state of the target is after
867 the initial open has been performed. Here we're assuming that
868 the target has stopped. It should be possible to eventually have
869 target_open() return to the caller an indication that the target
870 is currently running and GDB state should be set to the same as
871 for an async run. */
872 wait_for_inferior (0);
873
874 /* Now that the inferior has stopped, do any bookkeeping like
875 loading shared libraries. We want to do this before normal_stop,
876 so that the displayed frame is up to date. */
877 post_create_inferior (&current_target, from_tty);
878
879 normal_stop ();
880 }
881
882 /* Initialize static vars when a new inferior begins. */
883
884 void
885 init_wait_for_inferior (void)
886 {
887 /* These are meaningless until the first time through wait_for_inferior. */
888 prev_pc = 0;
889
890 breakpoint_init_inferior (inf_starting);
891
892 /* Don't confuse first call to proceed(). */
893 stop_signal = TARGET_SIGNAL_0;
894
895 /* The first resume is not following a fork/vfork/exec. */
896 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
897
898 clear_proceed_status ();
899
900 stepping_past_singlestep_breakpoint = 0;
901 deferred_step_ptid = null_ptid;
902
903 target_last_wait_ptid = minus_one_ptid;
904 }
905 \f
906 /* This enum encodes possible reasons for doing a target_wait, so that
907 wfi can call target_wait in one place. (Ultimately the call will be
908 moved out of the infinite loop entirely.) */
909
910 enum infwait_states
911 {
912 infwait_normal_state,
913 infwait_thread_hop_state,
914 infwait_step_watch_state,
915 infwait_nonstep_watch_state
916 };
917
918 /* Why did the inferior stop? Used to print the appropriate messages
919 to the interface from within handle_inferior_event(). */
920 enum inferior_stop_reason
921 {
922 /* Step, next, nexti, stepi finished. */
923 END_STEPPING_RANGE,
924 /* Inferior terminated by signal. */
925 SIGNAL_EXITED,
926 /* Inferior exited. */
927 EXITED,
928 /* Inferior received signal, and user asked to be notified. */
929 SIGNAL_RECEIVED
930 };
931
932 /* This structure contains what used to be local variables in
933 wait_for_inferior. Probably many of them can return to being
934 locals in handle_inferior_event. */
935
936 struct execution_control_state
937 {
938 struct target_waitstatus ws;
939 struct target_waitstatus *wp;
940 /* Should we step over breakpoint next time keep_going
941 is called? */
942 int stepping_over_breakpoint;
943 int random_signal;
944 CORE_ADDR stop_func_start;
945 CORE_ADDR stop_func_end;
946 char *stop_func_name;
947 struct symtab_and_line sal;
948 int current_line;
949 struct symtab *current_symtab;
950 int handling_longjmp; /* FIXME */
951 ptid_t ptid;
952 ptid_t saved_inferior_ptid;
953 int step_after_step_resume_breakpoint;
954 int stepping_through_solib_after_catch;
955 bpstat stepping_through_solib_catchpoints;
956 int new_thread_event;
957 struct target_waitstatus tmpstatus;
958 enum infwait_states infwait_state;
959 ptid_t waiton_ptid;
960 int wait_some_more;
961 };
962
963 void init_execution_control_state (struct execution_control_state *ecs);
964
965 void handle_inferior_event (struct execution_control_state *ecs);
966
967 static void step_into_function (struct execution_control_state *ecs);
968 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
969 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
970 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
971 struct frame_id sr_id);
972 static void stop_stepping (struct execution_control_state *ecs);
973 static void prepare_to_wait (struct execution_control_state *ecs);
974 static void keep_going (struct execution_control_state *ecs);
975 static void print_stop_reason (enum inferior_stop_reason stop_reason,
976 int stop_info);
977
978 /* Wait for control to return from inferior to debugger.
979
980 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
981 as if they were SIGTRAP signals. This can be useful during
982 the startup sequence on some targets such as HP/UX, where
983 we receive an EXEC event instead of the expected SIGTRAP.
984
985 If inferior gets a signal, we may decide to start it up again
986 instead of returning. That is why there is a loop in this function.
987 When this function actually returns it means the inferior
988 should be left stopped and GDB should read more commands. */
989
990 void
991 wait_for_inferior (int treat_exec_as_sigtrap)
992 {
993 struct cleanup *old_cleanups;
994 struct execution_control_state ecss;
995 struct execution_control_state *ecs;
996
997 if (debug_infrun)
998 fprintf_unfiltered
999 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1000 treat_exec_as_sigtrap);
1001
1002 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
1003 &step_resume_breakpoint);
1004
1005 /* wfi still stays in a loop, so it's OK just to take the address of
1006 a local to get the ecs pointer. */
1007 ecs = &ecss;
1008
1009 /* Fill in with reasonable starting values. */
1010 init_execution_control_state (ecs);
1011
1012 /* We'll update this if & when we switch to a new thread. */
1013 previous_inferior_ptid = inferior_ptid;
1014
1015 overlay_cache_invalid = 1;
1016
1017 /* We have to invalidate the registers BEFORE calling target_wait
1018 because they can be loaded from the target while in target_wait.
1019 This makes remote debugging a bit more efficient for those
1020 targets that provide critical registers as part of their normal
1021 status mechanism. */
1022
1023 registers_changed ();
1024
1025 while (1)
1026 {
1027 if (deprecated_target_wait_hook)
1028 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
1029 else
1030 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1031
1032 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1033 {
1034 xfree (ecs->ws.value.execd_pathname);
1035 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1036 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1037 }
1038
1039 /* Now figure out what to do with the result of the result. */
1040 handle_inferior_event (ecs);
1041
1042 if (!ecs->wait_some_more)
1043 break;
1044 }
1045 do_cleanups (old_cleanups);
1046 }
1047
1048 /* Asynchronous version of wait_for_inferior. It is called by the
1049 event loop whenever a change of state is detected on the file
1050 descriptor corresponding to the target. It can be called more than
1051 once to complete a single execution command. In such cases we need
1052 to keep the state in a global variable ASYNC_ECSS. If it is the
1053 last time that this function is called for a single execution
1054 command, then report to the user that the inferior has stopped, and
1055 do the necessary cleanups. */
1056
1057 struct execution_control_state async_ecss;
1058 struct execution_control_state *async_ecs;
1059
1060 void
1061 fetch_inferior_event (void *client_data)
1062 {
1063 static struct cleanup *old_cleanups;
1064
1065 async_ecs = &async_ecss;
1066
1067 if (!async_ecs->wait_some_more)
1068 {
1069 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1070 &step_resume_breakpoint);
1071
1072 /* Fill in with reasonable starting values. */
1073 init_execution_control_state (async_ecs);
1074
1075 /* We'll update this if & when we switch to a new thread. */
1076 previous_inferior_ptid = inferior_ptid;
1077
1078 overlay_cache_invalid = 1;
1079
1080 /* We have to invalidate the registers BEFORE calling target_wait
1081 because they can be loaded from the target while in target_wait.
1082 This makes remote debugging a bit more efficient for those
1083 targets that provide critical registers as part of their normal
1084 status mechanism. */
1085
1086 registers_changed ();
1087 }
1088
1089 if (deprecated_target_wait_hook)
1090 async_ecs->ptid =
1091 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1092 else
1093 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1094
1095 /* Now figure out what to do with the result of the result. */
1096 handle_inferior_event (async_ecs);
1097
1098 if (!async_ecs->wait_some_more)
1099 {
1100 /* Do only the cleanups that have been added by this
1101 function. Let the continuations for the commands do the rest,
1102 if there are any. */
1103 do_exec_cleanups (old_cleanups);
1104 normal_stop ();
1105 if (step_multi && stop_step)
1106 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1107 else
1108 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1109 }
1110 }
1111
1112 /* Prepare an execution control state for looping through a
1113 wait_for_inferior-type loop. */
1114
1115 void
1116 init_execution_control_state (struct execution_control_state *ecs)
1117 {
1118 ecs->stepping_over_breakpoint = 0;
1119 ecs->random_signal = 0;
1120 ecs->step_after_step_resume_breakpoint = 0;
1121 ecs->handling_longjmp = 0; /* FIXME */
1122 ecs->stepping_through_solib_after_catch = 0;
1123 ecs->stepping_through_solib_catchpoints = NULL;
1124 ecs->sal = find_pc_line (prev_pc, 0);
1125 ecs->current_line = ecs->sal.line;
1126 ecs->current_symtab = ecs->sal.symtab;
1127 ecs->infwait_state = infwait_normal_state;
1128 ecs->waiton_ptid = pid_to_ptid (-1);
1129 ecs->wp = &(ecs->ws);
1130 }
1131
1132 /* Return the cached copy of the last pid/waitstatus returned by
1133 target_wait()/deprecated_target_wait_hook(). The data is actually
1134 cached by handle_inferior_event(), which gets called immediately
1135 after target_wait()/deprecated_target_wait_hook(). */
1136
1137 void
1138 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1139 {
1140 *ptidp = target_last_wait_ptid;
1141 *status = target_last_waitstatus;
1142 }
1143
1144 void
1145 nullify_last_target_wait_ptid (void)
1146 {
1147 target_last_wait_ptid = minus_one_ptid;
1148 }
1149
1150 /* Switch thread contexts, maintaining "infrun state". */
1151
1152 static void
1153 context_switch (struct execution_control_state *ecs)
1154 {
1155 /* Caution: it may happen that the new thread (or the old one!)
1156 is not in the thread list. In this case we must not attempt
1157 to "switch context", or we run the risk that our context may
1158 be lost. This may happen as a result of the target module
1159 mishandling thread creation. */
1160
1161 if (debug_infrun)
1162 {
1163 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1164 target_pid_to_str (inferior_ptid));
1165 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1166 target_pid_to_str (ecs->ptid));
1167 }
1168
1169 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1170 { /* Perform infrun state context switch: */
1171 /* Save infrun state for the old thread. */
1172 save_infrun_state (inferior_ptid, prev_pc,
1173 stepping_over_breakpoint, step_resume_breakpoint,
1174 step_range_start,
1175 step_range_end, &step_frame_id,
1176 ecs->handling_longjmp, ecs->stepping_over_breakpoint,
1177 ecs->stepping_through_solib_after_catch,
1178 ecs->stepping_through_solib_catchpoints,
1179 ecs->current_line, ecs->current_symtab);
1180
1181 /* Load infrun state for the new thread. */
1182 load_infrun_state (ecs->ptid, &prev_pc,
1183 &stepping_over_breakpoint, &step_resume_breakpoint,
1184 &step_range_start,
1185 &step_range_end, &step_frame_id,
1186 &ecs->handling_longjmp, &ecs->stepping_over_breakpoint,
1187 &ecs->stepping_through_solib_after_catch,
1188 &ecs->stepping_through_solib_catchpoints,
1189 &ecs->current_line, &ecs->current_symtab);
1190 }
1191
1192 switch_to_thread (ecs->ptid);
1193 }
1194
1195 static void
1196 adjust_pc_after_break (struct execution_control_state *ecs)
1197 {
1198 CORE_ADDR breakpoint_pc;
1199
1200 /* If this target does not decrement the PC after breakpoints, then
1201 we have nothing to do. */
1202 if (gdbarch_decr_pc_after_break (current_gdbarch) == 0)
1203 return;
1204
1205 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1206 we aren't, just return.
1207
1208 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1209 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1210 implemented by software breakpoints should be handled through the normal
1211 breakpoint layer.
1212
1213 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1214 different signals (SIGILL or SIGEMT for instance), but it is less
1215 clear where the PC is pointing afterwards. It may not match
1216 gdbarch_decr_pc_after_break. I don't know any specific target that
1217 generates these signals at breakpoints (the code has been in GDB since at
1218 least 1992) so I can not guess how to handle them here.
1219
1220 In earlier versions of GDB, a target with
1221 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1222 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1223 target with both of these set in GDB history, and it seems unlikely to be
1224 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1225
1226 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1227 return;
1228
1229 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1230 return;
1231
1232 /* Find the location where (if we've hit a breakpoint) the
1233 breakpoint would be. */
1234 breakpoint_pc = read_pc_pid (ecs->ptid) - gdbarch_decr_pc_after_break
1235 (current_gdbarch);
1236
1237 /* Check whether there actually is a software breakpoint inserted
1238 at that location. */
1239 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1240 {
1241 /* When using hardware single-step, a SIGTRAP is reported for both
1242 a completed single-step and a software breakpoint. Need to
1243 differentiate between the two, as the latter needs adjusting
1244 but the former does not.
1245
1246 The SIGTRAP can be due to a completed hardware single-step only if
1247 - we didn't insert software single-step breakpoints
1248 - the thread to be examined is still the current thread
1249 - this thread is currently being stepped
1250
1251 If any of these events did not occur, we must have stopped due
1252 to hitting a software breakpoint, and have to back up to the
1253 breakpoint address.
1254
1255 As a special case, we could have hardware single-stepped a
1256 software breakpoint. In this case (prev_pc == breakpoint_pc),
1257 we also need to back up to the breakpoint address. */
1258
1259 if (singlestep_breakpoints_inserted_p
1260 || !ptid_equal (ecs->ptid, inferior_ptid)
1261 || !currently_stepping (ecs)
1262 || prev_pc == breakpoint_pc)
1263 write_pc_pid (breakpoint_pc, ecs->ptid);
1264 }
1265 }
1266
1267 /* Given an execution control state that has been freshly filled in
1268 by an event from the inferior, figure out what it means and take
1269 appropriate action. */
1270
1271 void
1272 handle_inferior_event (struct execution_control_state *ecs)
1273 {
1274 int sw_single_step_trap_p = 0;
1275 int stopped_by_watchpoint;
1276 int stepped_after_stopped_by_watchpoint = 0;
1277
1278 /* Cache the last pid/waitstatus. */
1279 target_last_wait_ptid = ecs->ptid;
1280 target_last_waitstatus = *ecs->wp;
1281
1282 /* Always clear state belonging to the previous time we stopped. */
1283 stop_stack_dummy = 0;
1284
1285 adjust_pc_after_break (ecs);
1286
1287 switch (ecs->infwait_state)
1288 {
1289 case infwait_thread_hop_state:
1290 if (debug_infrun)
1291 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1292 /* Cancel the waiton_ptid. */
1293 ecs->waiton_ptid = pid_to_ptid (-1);
1294 break;
1295
1296 case infwait_normal_state:
1297 if (debug_infrun)
1298 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1299 break;
1300
1301 case infwait_step_watch_state:
1302 if (debug_infrun)
1303 fprintf_unfiltered (gdb_stdlog,
1304 "infrun: infwait_step_watch_state\n");
1305
1306 stepped_after_stopped_by_watchpoint = 1;
1307 break;
1308
1309 case infwait_nonstep_watch_state:
1310 if (debug_infrun)
1311 fprintf_unfiltered (gdb_stdlog,
1312 "infrun: infwait_nonstep_watch_state\n");
1313 insert_breakpoints ();
1314
1315 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1316 handle things like signals arriving and other things happening
1317 in combination correctly? */
1318 stepped_after_stopped_by_watchpoint = 1;
1319 break;
1320
1321 default:
1322 internal_error (__FILE__, __LINE__, _("bad switch"));
1323 }
1324 ecs->infwait_state = infwait_normal_state;
1325
1326 reinit_frame_cache ();
1327
1328 /* If it's a new process, add it to the thread database */
1329
1330 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1331 && !ptid_equal (ecs->ptid, minus_one_ptid)
1332 && !in_thread_list (ecs->ptid));
1333
1334 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1335 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1336 add_thread (ecs->ptid);
1337
1338 switch (ecs->ws.kind)
1339 {
1340 case TARGET_WAITKIND_LOADED:
1341 if (debug_infrun)
1342 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1343 /* Ignore gracefully during startup of the inferior, as it might
1344 be the shell which has just loaded some objects, otherwise
1345 add the symbols for the newly loaded objects. Also ignore at
1346 the beginning of an attach or remote session; we will query
1347 the full list of libraries once the connection is
1348 established. */
1349 if (stop_soon == NO_STOP_QUIETLY)
1350 {
1351 /* Remove breakpoints, SOLIB_ADD might adjust
1352 breakpoint addresses via breakpoint_re_set. */
1353 remove_breakpoints ();
1354
1355 /* Check for any newly added shared libraries if we're
1356 supposed to be adding them automatically. Switch
1357 terminal for any messages produced by
1358 breakpoint_re_set. */
1359 target_terminal_ours_for_output ();
1360 /* NOTE: cagney/2003-11-25: Make certain that the target
1361 stack's section table is kept up-to-date. Architectures,
1362 (e.g., PPC64), use the section table to perform
1363 operations such as address => section name and hence
1364 require the table to contain all sections (including
1365 those found in shared libraries). */
1366 /* NOTE: cagney/2003-11-25: Pass current_target and not
1367 exec_ops to SOLIB_ADD. This is because current GDB is
1368 only tooled to propagate section_table changes out from
1369 the "current_target" (see target_resize_to_sections), and
1370 not up from the exec stratum. This, of course, isn't
1371 right. "infrun.c" should only interact with the
1372 exec/process stratum, instead relying on the target stack
1373 to propagate relevant changes (stop, section table
1374 changed, ...) up to other layers. */
1375 #ifdef SOLIB_ADD
1376 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1377 #else
1378 solib_add (NULL, 0, &current_target, auto_solib_add);
1379 #endif
1380 target_terminal_inferior ();
1381
1382 /* If requested, stop when the dynamic linker notifies
1383 gdb of events. This allows the user to get control
1384 and place breakpoints in initializer routines for
1385 dynamically loaded objects (among other things). */
1386 if (stop_on_solib_events)
1387 {
1388 stop_stepping (ecs);
1389 return;
1390 }
1391
1392 /* NOTE drow/2007-05-11: This might be a good place to check
1393 for "catch load". */
1394
1395 /* Reinsert breakpoints and continue. */
1396 insert_breakpoints ();
1397 }
1398
1399 /* If we are skipping through a shell, or through shared library
1400 loading that we aren't interested in, resume the program. If
1401 we're running the program normally, also resume. But stop if
1402 we're attaching or setting up a remote connection. */
1403 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1404 {
1405 resume (0, TARGET_SIGNAL_0);
1406 prepare_to_wait (ecs);
1407 return;
1408 }
1409
1410 break;
1411
1412 case TARGET_WAITKIND_SPURIOUS:
1413 if (debug_infrun)
1414 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1415 resume (0, TARGET_SIGNAL_0);
1416 prepare_to_wait (ecs);
1417 return;
1418
1419 case TARGET_WAITKIND_EXITED:
1420 if (debug_infrun)
1421 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1422 target_terminal_ours (); /* Must do this before mourn anyway */
1423 print_stop_reason (EXITED, ecs->ws.value.integer);
1424
1425 /* Record the exit code in the convenience variable $_exitcode, so
1426 that the user can inspect this again later. */
1427 set_internalvar (lookup_internalvar ("_exitcode"),
1428 value_from_longest (builtin_type_int,
1429 (LONGEST) ecs->ws.value.integer));
1430 gdb_flush (gdb_stdout);
1431 target_mourn_inferior ();
1432 singlestep_breakpoints_inserted_p = 0;
1433 stop_print_frame = 0;
1434 stop_stepping (ecs);
1435 return;
1436
1437 case TARGET_WAITKIND_SIGNALLED:
1438 if (debug_infrun)
1439 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1440 stop_print_frame = 0;
1441 stop_signal = ecs->ws.value.sig;
1442 target_terminal_ours (); /* Must do this before mourn anyway */
1443
1444 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1445 reach here unless the inferior is dead. However, for years
1446 target_kill() was called here, which hints that fatal signals aren't
1447 really fatal on some systems. If that's true, then some changes
1448 may be needed. */
1449 target_mourn_inferior ();
1450
1451 print_stop_reason (SIGNAL_EXITED, stop_signal);
1452 singlestep_breakpoints_inserted_p = 0;
1453 stop_stepping (ecs);
1454 return;
1455
1456 /* The following are the only cases in which we keep going;
1457 the above cases end in a continue or goto. */
1458 case TARGET_WAITKIND_FORKED:
1459 case TARGET_WAITKIND_VFORKED:
1460 if (debug_infrun)
1461 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1462 stop_signal = TARGET_SIGNAL_TRAP;
1463 pending_follow.kind = ecs->ws.kind;
1464
1465 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1466 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1467
1468 if (!ptid_equal (ecs->ptid, inferior_ptid))
1469 {
1470 context_switch (ecs);
1471 reinit_frame_cache ();
1472 }
1473
1474 stop_pc = read_pc ();
1475
1476 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1477
1478 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1479
1480 /* If no catchpoint triggered for this, then keep going. */
1481 if (ecs->random_signal)
1482 {
1483 stop_signal = TARGET_SIGNAL_0;
1484 keep_going (ecs);
1485 return;
1486 }
1487 goto process_event_stop_test;
1488
1489 case TARGET_WAITKIND_EXECD:
1490 if (debug_infrun)
1491 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1492 stop_signal = TARGET_SIGNAL_TRAP;
1493
1494 pending_follow.execd_pathname =
1495 savestring (ecs->ws.value.execd_pathname,
1496 strlen (ecs->ws.value.execd_pathname));
1497
1498 /* This causes the eventpoints and symbol table to be reset. Must
1499 do this now, before trying to determine whether to stop. */
1500 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1501 xfree (pending_follow.execd_pathname);
1502
1503 stop_pc = read_pc_pid (ecs->ptid);
1504 ecs->saved_inferior_ptid = inferior_ptid;
1505 inferior_ptid = ecs->ptid;
1506
1507 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1508
1509 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1510 inferior_ptid = ecs->saved_inferior_ptid;
1511
1512 if (!ptid_equal (ecs->ptid, inferior_ptid))
1513 {
1514 context_switch (ecs);
1515 reinit_frame_cache ();
1516 }
1517
1518 /* If no catchpoint triggered for this, then keep going. */
1519 if (ecs->random_signal)
1520 {
1521 stop_signal = TARGET_SIGNAL_0;
1522 keep_going (ecs);
1523 return;
1524 }
1525 goto process_event_stop_test;
1526
1527 /* Be careful not to try to gather much state about a thread
1528 that's in a syscall. It's frequently a losing proposition. */
1529 case TARGET_WAITKIND_SYSCALL_ENTRY:
1530 if (debug_infrun)
1531 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1532 resume (0, TARGET_SIGNAL_0);
1533 prepare_to_wait (ecs);
1534 return;
1535
1536 /* Before examining the threads further, step this thread to
1537 get it entirely out of the syscall. (We get notice of the
1538 event when the thread is just on the verge of exiting a
1539 syscall. Stepping one instruction seems to get it back
1540 into user code.) */
1541 case TARGET_WAITKIND_SYSCALL_RETURN:
1542 if (debug_infrun)
1543 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1544 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1545 prepare_to_wait (ecs);
1546 return;
1547
1548 case TARGET_WAITKIND_STOPPED:
1549 if (debug_infrun)
1550 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1551 stop_signal = ecs->ws.value.sig;
1552 break;
1553
1554 /* We had an event in the inferior, but we are not interested
1555 in handling it at this level. The lower layers have already
1556 done what needs to be done, if anything.
1557
1558 One of the possible circumstances for this is when the
1559 inferior produces output for the console. The inferior has
1560 not stopped, and we are ignoring the event. Another possible
1561 circumstance is any event which the lower level knows will be
1562 reported multiple times without an intervening resume. */
1563 case TARGET_WAITKIND_IGNORE:
1564 if (debug_infrun)
1565 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1566 prepare_to_wait (ecs);
1567 return;
1568 }
1569
1570 /* We may want to consider not doing a resume here in order to give
1571 the user a chance to play with the new thread. It might be good
1572 to make that a user-settable option. */
1573
1574 /* At this point, all threads are stopped (happens automatically in
1575 either the OS or the native code). Therefore we need to continue
1576 all threads in order to make progress. */
1577 if (ecs->new_thread_event)
1578 {
1579 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1580 prepare_to_wait (ecs);
1581 return;
1582 }
1583
1584 stop_pc = read_pc_pid (ecs->ptid);
1585
1586 if (debug_infrun)
1587 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1588
1589 if (stepping_past_singlestep_breakpoint)
1590 {
1591 gdb_assert (singlestep_breakpoints_inserted_p);
1592 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1593 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1594
1595 stepping_past_singlestep_breakpoint = 0;
1596
1597 /* We've either finished single-stepping past the single-step
1598 breakpoint, or stopped for some other reason. It would be nice if
1599 we could tell, but we can't reliably. */
1600 if (stop_signal == TARGET_SIGNAL_TRAP)
1601 {
1602 if (debug_infrun)
1603 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1604 /* Pull the single step breakpoints out of the target. */
1605 remove_single_step_breakpoints ();
1606 singlestep_breakpoints_inserted_p = 0;
1607
1608 ecs->random_signal = 0;
1609
1610 ecs->ptid = saved_singlestep_ptid;
1611 context_switch (ecs);
1612 if (deprecated_context_hook)
1613 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1614
1615 resume (1, TARGET_SIGNAL_0);
1616 prepare_to_wait (ecs);
1617 return;
1618 }
1619 }
1620
1621 stepping_past_singlestep_breakpoint = 0;
1622
1623 if (!ptid_equal (deferred_step_ptid, null_ptid))
1624 {
1625 /* If we stopped for some other reason than single-stepping, ignore
1626 the fact that we were supposed to switch back. */
1627 if (stop_signal == TARGET_SIGNAL_TRAP)
1628 {
1629 if (debug_infrun)
1630 fprintf_unfiltered (gdb_stdlog,
1631 "infrun: handling deferred step\n");
1632
1633 /* Pull the single step breakpoints out of the target. */
1634 if (singlestep_breakpoints_inserted_p)
1635 {
1636 remove_single_step_breakpoints ();
1637 singlestep_breakpoints_inserted_p = 0;
1638 }
1639
1640 /* Note: We do not call context_switch at this point, as the
1641 context is already set up for stepping the original thread. */
1642 switch_to_thread (deferred_step_ptid);
1643 deferred_step_ptid = null_ptid;
1644 /* Suppress spurious "Switching to ..." message. */
1645 previous_inferior_ptid = inferior_ptid;
1646
1647 resume (1, TARGET_SIGNAL_0);
1648 prepare_to_wait (ecs);
1649 return;
1650 }
1651
1652 deferred_step_ptid = null_ptid;
1653 }
1654
1655 /* See if a thread hit a thread-specific breakpoint that was meant for
1656 another thread. If so, then step that thread past the breakpoint,
1657 and continue it. */
1658
1659 if (stop_signal == TARGET_SIGNAL_TRAP)
1660 {
1661 int thread_hop_needed = 0;
1662
1663 /* Check if a regular breakpoint has been hit before checking
1664 for a potential single step breakpoint. Otherwise, GDB will
1665 not see this breakpoint hit when stepping onto breakpoints. */
1666 if (regular_breakpoint_inserted_here_p (stop_pc))
1667 {
1668 ecs->random_signal = 0;
1669 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1670 thread_hop_needed = 1;
1671 }
1672 else if (singlestep_breakpoints_inserted_p)
1673 {
1674 /* We have not context switched yet, so this should be true
1675 no matter which thread hit the singlestep breakpoint. */
1676 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1677 if (debug_infrun)
1678 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1679 "trap for %s\n",
1680 target_pid_to_str (ecs->ptid));
1681
1682 ecs->random_signal = 0;
1683 /* The call to in_thread_list is necessary because PTIDs sometimes
1684 change when we go from single-threaded to multi-threaded. If
1685 the singlestep_ptid is still in the list, assume that it is
1686 really different from ecs->ptid. */
1687 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1688 && in_thread_list (singlestep_ptid))
1689 {
1690 /* If the PC of the thread we were trying to single-step
1691 has changed, discard this event (which we were going
1692 to ignore anyway), and pretend we saw that thread
1693 trap. This prevents us continuously moving the
1694 single-step breakpoint forward, one instruction at a
1695 time. If the PC has changed, then the thread we were
1696 trying to single-step has trapped or been signalled,
1697 but the event has not been reported to GDB yet.
1698
1699 There might be some cases where this loses signal
1700 information, if a signal has arrived at exactly the
1701 same time that the PC changed, but this is the best
1702 we can do with the information available. Perhaps we
1703 should arrange to report all events for all threads
1704 when they stop, or to re-poll the remote looking for
1705 this particular thread (i.e. temporarily enable
1706 schedlock). */
1707 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1708 {
1709 if (debug_infrun)
1710 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1711 " but expected thread advanced also\n");
1712
1713 /* The current context still belongs to
1714 singlestep_ptid. Don't swap here, since that's
1715 the context we want to use. Just fudge our
1716 state and continue. */
1717 ecs->ptid = singlestep_ptid;
1718 stop_pc = read_pc_pid (ecs->ptid);
1719 }
1720 else
1721 {
1722 if (debug_infrun)
1723 fprintf_unfiltered (gdb_stdlog,
1724 "infrun: unexpected thread\n");
1725
1726 thread_hop_needed = 1;
1727 stepping_past_singlestep_breakpoint = 1;
1728 saved_singlestep_ptid = singlestep_ptid;
1729 }
1730 }
1731 }
1732
1733 if (thread_hop_needed)
1734 {
1735 int remove_status;
1736
1737 if (debug_infrun)
1738 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1739
1740 /* Saw a breakpoint, but it was hit by the wrong thread.
1741 Just continue. */
1742
1743 if (singlestep_breakpoints_inserted_p)
1744 {
1745 /* Pull the single step breakpoints out of the target. */
1746 remove_single_step_breakpoints ();
1747 singlestep_breakpoints_inserted_p = 0;
1748 }
1749
1750 remove_status = remove_breakpoints ();
1751 /* Did we fail to remove breakpoints? If so, try
1752 to set the PC past the bp. (There's at least
1753 one situation in which we can fail to remove
1754 the bp's: On HP-UX's that use ttrace, we can't
1755 change the address space of a vforking child
1756 process until the child exits (well, okay, not
1757 then either :-) or execs. */
1758 if (remove_status != 0)
1759 error (_("Cannot step over breakpoint hit in wrong thread"));
1760 else
1761 { /* Single step */
1762 if (!ptid_equal (inferior_ptid, ecs->ptid))
1763 context_switch (ecs);
1764 ecs->waiton_ptid = ecs->ptid;
1765 ecs->wp = &(ecs->ws);
1766 ecs->stepping_over_breakpoint = 1;
1767
1768 ecs->infwait_state = infwait_thread_hop_state;
1769 keep_going (ecs);
1770 registers_changed ();
1771 return;
1772 }
1773 }
1774 else if (singlestep_breakpoints_inserted_p)
1775 {
1776 sw_single_step_trap_p = 1;
1777 ecs->random_signal = 0;
1778 }
1779 }
1780 else
1781 ecs->random_signal = 1;
1782
1783 /* See if something interesting happened to the non-current thread. If
1784 so, then switch to that thread. */
1785 if (!ptid_equal (ecs->ptid, inferior_ptid))
1786 {
1787 if (debug_infrun)
1788 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1789
1790 context_switch (ecs);
1791
1792 if (deprecated_context_hook)
1793 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1794 }
1795
1796 if (singlestep_breakpoints_inserted_p)
1797 {
1798 /* Pull the single step breakpoints out of the target. */
1799 remove_single_step_breakpoints ();
1800 singlestep_breakpoints_inserted_p = 0;
1801 }
1802
1803 if (stepped_after_stopped_by_watchpoint)
1804 stopped_by_watchpoint = 0;
1805 else
1806 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
1807
1808 /* If necessary, step over this watchpoint. We'll be back to display
1809 it in a moment. */
1810 if (stopped_by_watchpoint
1811 && (HAVE_STEPPABLE_WATCHPOINT
1812 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
1813 {
1814 if (debug_infrun)
1815 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1816
1817 /* At this point, we are stopped at an instruction which has
1818 attempted to write to a piece of memory under control of
1819 a watchpoint. The instruction hasn't actually executed
1820 yet. If we were to evaluate the watchpoint expression
1821 now, we would get the old value, and therefore no change
1822 would seem to have occurred.
1823
1824 In order to make watchpoints work `right', we really need
1825 to complete the memory write, and then evaluate the
1826 watchpoint expression. We do this by single-stepping the
1827 target.
1828
1829 It may not be necessary to disable the watchpoint to stop over
1830 it. For example, the PA can (with some kernel cooperation)
1831 single step over a watchpoint without disabling the watchpoint.
1832
1833 It is far more common to need to disable a watchpoint to step
1834 the inferior over it. If we have non-steppable watchpoints,
1835 we must disable the current watchpoint; it's simplest to
1836 disable all watchpoints and breakpoints. */
1837
1838 if (!HAVE_STEPPABLE_WATCHPOINT)
1839 remove_breakpoints ();
1840 registers_changed ();
1841 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1842 ecs->waiton_ptid = ecs->ptid;
1843 if (HAVE_STEPPABLE_WATCHPOINT)
1844 ecs->infwait_state = infwait_step_watch_state;
1845 else
1846 ecs->infwait_state = infwait_nonstep_watch_state;
1847 prepare_to_wait (ecs);
1848 return;
1849 }
1850
1851 ecs->stop_func_start = 0;
1852 ecs->stop_func_end = 0;
1853 ecs->stop_func_name = 0;
1854 /* Don't care about return value; stop_func_start and stop_func_name
1855 will both be 0 if it doesn't work. */
1856 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1857 &ecs->stop_func_start, &ecs->stop_func_end);
1858 ecs->stop_func_start
1859 += gdbarch_deprecated_function_start_offset (current_gdbarch);
1860 ecs->stepping_over_breakpoint = 0;
1861 bpstat_clear (&stop_bpstat);
1862 stop_step = 0;
1863 stop_print_frame = 1;
1864 ecs->random_signal = 0;
1865 stopped_by_random_signal = 0;
1866
1867 if (stop_signal == TARGET_SIGNAL_TRAP
1868 && stepping_over_breakpoint
1869 && gdbarch_single_step_through_delay_p (current_gdbarch)
1870 && currently_stepping (ecs))
1871 {
1872 /* We're trying to step off a breakpoint. Turns out that we're
1873 also on an instruction that needs to be stepped multiple
1874 times before it's been fully executing. E.g., architectures
1875 with a delay slot. It needs to be stepped twice, once for
1876 the instruction and once for the delay slot. */
1877 int step_through_delay
1878 = gdbarch_single_step_through_delay (current_gdbarch,
1879 get_current_frame ());
1880 if (debug_infrun && step_through_delay)
1881 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1882 if (step_range_end == 0 && step_through_delay)
1883 {
1884 /* The user issued a continue when stopped at a breakpoint.
1885 Set up for another trap and get out of here. */
1886 ecs->stepping_over_breakpoint = 1;
1887 keep_going (ecs);
1888 return;
1889 }
1890 else if (step_through_delay)
1891 {
1892 /* The user issued a step when stopped at a breakpoint.
1893 Maybe we should stop, maybe we should not - the delay
1894 slot *might* correspond to a line of source. In any
1895 case, don't decide that here, just set
1896 ecs->stepping_over_breakpoint, making sure we
1897 single-step again before breakpoints are re-inserted. */
1898 ecs->stepping_over_breakpoint = 1;
1899 }
1900 }
1901
1902 /* Look at the cause of the stop, and decide what to do.
1903 The alternatives are:
1904 1) break; to really stop and return to the debugger,
1905 2) drop through to start up again
1906 (set ecs->stepping_over_breakpoint to 1 to single step once)
1907 3) set ecs->random_signal to 1, and the decision between 1 and 2
1908 will be made according to the signal handling tables. */
1909
1910 /* First, distinguish signals caused by the debugger from signals
1911 that have to do with the program's own actions. Note that
1912 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1913 on the operating system version. Here we detect when a SIGILL or
1914 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1915 something similar for SIGSEGV, since a SIGSEGV will be generated
1916 when we're trying to execute a breakpoint instruction on a
1917 non-executable stack. This happens for call dummy breakpoints
1918 for architectures like SPARC that place call dummies on the
1919 stack. */
1920
1921 if (stop_signal == TARGET_SIGNAL_TRAP
1922 || (breakpoint_inserted_here_p (stop_pc)
1923 && (stop_signal == TARGET_SIGNAL_ILL
1924 || stop_signal == TARGET_SIGNAL_SEGV
1925 || stop_signal == TARGET_SIGNAL_EMT))
1926 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
1927 || stop_soon == STOP_QUIETLY_REMOTE)
1928 {
1929 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1930 {
1931 if (debug_infrun)
1932 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1933 stop_print_frame = 0;
1934 stop_stepping (ecs);
1935 return;
1936 }
1937
1938 /* This is originated from start_remote(), start_inferior() and
1939 shared libraries hook functions. */
1940 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
1941 {
1942 if (debug_infrun)
1943 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1944 stop_stepping (ecs);
1945 return;
1946 }
1947
1948 /* This originates from attach_command(). We need to overwrite
1949 the stop_signal here, because some kernels don't ignore a
1950 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1951 See more comments in inferior.h. */
1952 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1953 {
1954 stop_stepping (ecs);
1955 if (stop_signal == TARGET_SIGNAL_STOP)
1956 stop_signal = TARGET_SIGNAL_0;
1957 return;
1958 }
1959
1960 /* See if there is a breakpoint at the current PC. */
1961 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1962
1963 /* Following in case break condition called a
1964 function. */
1965 stop_print_frame = 1;
1966
1967 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1968 at one stage in the past included checks for an inferior
1969 function call's call dummy's return breakpoint. The original
1970 comment, that went with the test, read:
1971
1972 ``End of a stack dummy. Some systems (e.g. Sony news) give
1973 another signal besides SIGTRAP, so check here as well as
1974 above.''
1975
1976 If someone ever tries to get get call dummys on a
1977 non-executable stack to work (where the target would stop
1978 with something like a SIGSEGV), then those tests might need
1979 to be re-instated. Given, however, that the tests were only
1980 enabled when momentary breakpoints were not being used, I
1981 suspect that it won't be the case.
1982
1983 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1984 be necessary for call dummies on a non-executable stack on
1985 SPARC. */
1986
1987 if (stop_signal == TARGET_SIGNAL_TRAP)
1988 ecs->random_signal
1989 = !(bpstat_explains_signal (stop_bpstat)
1990 || stepping_over_breakpoint
1991 || (step_range_end && step_resume_breakpoint == NULL));
1992 else
1993 {
1994 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1995 if (!ecs->random_signal)
1996 stop_signal = TARGET_SIGNAL_TRAP;
1997 }
1998 }
1999
2000 /* When we reach this point, we've pretty much decided
2001 that the reason for stopping must've been a random
2002 (unexpected) signal. */
2003
2004 else
2005 ecs->random_signal = 1;
2006
2007 process_event_stop_test:
2008 /* For the program's own signals, act according to
2009 the signal handling tables. */
2010
2011 if (ecs->random_signal)
2012 {
2013 /* Signal not for debugging purposes. */
2014 int printed = 0;
2015
2016 if (debug_infrun)
2017 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
2018
2019 stopped_by_random_signal = 1;
2020
2021 if (signal_print[stop_signal])
2022 {
2023 printed = 1;
2024 target_terminal_ours_for_output ();
2025 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2026 }
2027 if (signal_stop[stop_signal])
2028 {
2029 stop_stepping (ecs);
2030 return;
2031 }
2032 /* If not going to stop, give terminal back
2033 if we took it away. */
2034 else if (printed)
2035 target_terminal_inferior ();
2036
2037 /* Clear the signal if it should not be passed. */
2038 if (signal_program[stop_signal] == 0)
2039 stop_signal = TARGET_SIGNAL_0;
2040
2041 if (prev_pc == read_pc ()
2042 && breakpoint_here_p (read_pc ())
2043 && !breakpoint_inserted_here_p (read_pc ())
2044 && step_resume_breakpoint == NULL)
2045 {
2046 /* We were just starting a new sequence, attempting to
2047 single-step off of a breakpoint and expecting a SIGTRAP.
2048 Intead this signal arrives. This signal will take us out
2049 of the stepping range so GDB needs to remember to, when
2050 the signal handler returns, resume stepping off that
2051 breakpoint. */
2052 /* To simplify things, "continue" is forced to use the same
2053 code paths as single-step - set a breakpoint at the
2054 signal return address and then, once hit, step off that
2055 breakpoint. */
2056
2057 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2058 ecs->step_after_step_resume_breakpoint = 1;
2059 keep_going (ecs);
2060 return;
2061 }
2062
2063 if (step_range_end != 0
2064 && stop_signal != TARGET_SIGNAL_0
2065 && stop_pc >= step_range_start && stop_pc < step_range_end
2066 && frame_id_eq (get_frame_id (get_current_frame ()),
2067 step_frame_id)
2068 && step_resume_breakpoint == NULL)
2069 {
2070 /* The inferior is about to take a signal that will take it
2071 out of the single step range. Set a breakpoint at the
2072 current PC (which is presumably where the signal handler
2073 will eventually return) and then allow the inferior to
2074 run free.
2075
2076 Note that this is only needed for a signal delivered
2077 while in the single-step range. Nested signals aren't a
2078 problem as they eventually all return. */
2079 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2080 keep_going (ecs);
2081 return;
2082 }
2083
2084 /* Note: step_resume_breakpoint may be non-NULL. This occures
2085 when either there's a nested signal, or when there's a
2086 pending signal enabled just as the signal handler returns
2087 (leaving the inferior at the step-resume-breakpoint without
2088 actually executing it). Either way continue until the
2089 breakpoint is really hit. */
2090 keep_going (ecs);
2091 return;
2092 }
2093
2094 /* Handle cases caused by hitting a breakpoint. */
2095 {
2096 CORE_ADDR jmp_buf_pc;
2097 struct bpstat_what what;
2098
2099 what = bpstat_what (stop_bpstat);
2100
2101 if (what.call_dummy)
2102 {
2103 stop_stack_dummy = 1;
2104 }
2105
2106 switch (what.main_action)
2107 {
2108 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2109 /* If we hit the breakpoint at longjmp, disable it for the
2110 duration of this command. Then, install a temporary
2111 breakpoint at the target of the jmp_buf. */
2112 if (debug_infrun)
2113 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2114 disable_longjmp_breakpoint ();
2115 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2116 || !gdbarch_get_longjmp_target (current_gdbarch,
2117 get_current_frame (), &jmp_buf_pc))
2118 {
2119 keep_going (ecs);
2120 return;
2121 }
2122
2123 /* Need to blow away step-resume breakpoint, as it
2124 interferes with us */
2125 if (step_resume_breakpoint != NULL)
2126 {
2127 delete_step_resume_breakpoint (&step_resume_breakpoint);
2128 }
2129
2130 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2131 ecs->handling_longjmp = 1; /* FIXME */
2132 keep_going (ecs);
2133 return;
2134
2135 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2136 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2137 if (debug_infrun)
2138 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2139 disable_longjmp_breakpoint ();
2140 ecs->handling_longjmp = 0; /* FIXME */
2141 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2142 break;
2143 /* else fallthrough */
2144
2145 case BPSTAT_WHAT_SINGLE:
2146 if (debug_infrun)
2147 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2148 ecs->stepping_over_breakpoint = 1;
2149 /* Still need to check other stuff, at least the case
2150 where we are stepping and step out of the right range. */
2151 break;
2152
2153 case BPSTAT_WHAT_STOP_NOISY:
2154 if (debug_infrun)
2155 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2156 stop_print_frame = 1;
2157
2158 /* We are about to nuke the step_resume_breakpointt via the
2159 cleanup chain, so no need to worry about it here. */
2160
2161 stop_stepping (ecs);
2162 return;
2163
2164 case BPSTAT_WHAT_STOP_SILENT:
2165 if (debug_infrun)
2166 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2167 stop_print_frame = 0;
2168
2169 /* We are about to nuke the step_resume_breakpoin via the
2170 cleanup chain, so no need to worry about it here. */
2171
2172 stop_stepping (ecs);
2173 return;
2174
2175 case BPSTAT_WHAT_STEP_RESUME:
2176 /* This proably demands a more elegant solution, but, yeah
2177 right...
2178
2179 This function's use of the simple variable
2180 step_resume_breakpoint doesn't seem to accomodate
2181 simultaneously active step-resume bp's, although the
2182 breakpoint list certainly can.
2183
2184 If we reach here and step_resume_breakpoint is already
2185 NULL, then apparently we have multiple active
2186 step-resume bp's. We'll just delete the breakpoint we
2187 stopped at, and carry on.
2188
2189 Correction: what the code currently does is delete a
2190 step-resume bp, but it makes no effort to ensure that
2191 the one deleted is the one currently stopped at. MVS */
2192
2193 if (debug_infrun)
2194 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2195
2196 if (step_resume_breakpoint == NULL)
2197 {
2198 step_resume_breakpoint =
2199 bpstat_find_step_resume_breakpoint (stop_bpstat);
2200 }
2201 delete_step_resume_breakpoint (&step_resume_breakpoint);
2202 if (ecs->step_after_step_resume_breakpoint)
2203 {
2204 /* Back when the step-resume breakpoint was inserted, we
2205 were trying to single-step off a breakpoint. Go back
2206 to doing that. */
2207 ecs->step_after_step_resume_breakpoint = 0;
2208 ecs->stepping_over_breakpoint = 1;
2209 keep_going (ecs);
2210 return;
2211 }
2212 break;
2213
2214 case BPSTAT_WHAT_CHECK_SHLIBS:
2215 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2216 {
2217 if (debug_infrun)
2218 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2219 /* Remove breakpoints, we eventually want to step over the
2220 shlib event breakpoint, and SOLIB_ADD might adjust
2221 breakpoint addresses via breakpoint_re_set. */
2222 remove_breakpoints ();
2223
2224 /* Check for any newly added shared libraries if we're
2225 supposed to be adding them automatically. Switch
2226 terminal for any messages produced by
2227 breakpoint_re_set. */
2228 target_terminal_ours_for_output ();
2229 /* NOTE: cagney/2003-11-25: Make certain that the target
2230 stack's section table is kept up-to-date. Architectures,
2231 (e.g., PPC64), use the section table to perform
2232 operations such as address => section name and hence
2233 require the table to contain all sections (including
2234 those found in shared libraries). */
2235 /* NOTE: cagney/2003-11-25: Pass current_target and not
2236 exec_ops to SOLIB_ADD. This is because current GDB is
2237 only tooled to propagate section_table changes out from
2238 the "current_target" (see target_resize_to_sections), and
2239 not up from the exec stratum. This, of course, isn't
2240 right. "infrun.c" should only interact with the
2241 exec/process stratum, instead relying on the target stack
2242 to propagate relevant changes (stop, section table
2243 changed, ...) up to other layers. */
2244 #ifdef SOLIB_ADD
2245 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2246 #else
2247 solib_add (NULL, 0, &current_target, auto_solib_add);
2248 #endif
2249 target_terminal_inferior ();
2250
2251 /* If requested, stop when the dynamic linker notifies
2252 gdb of events. This allows the user to get control
2253 and place breakpoints in initializer routines for
2254 dynamically loaded objects (among other things). */
2255 if (stop_on_solib_events || stop_stack_dummy)
2256 {
2257 stop_stepping (ecs);
2258 return;
2259 }
2260
2261 /* If we stopped due to an explicit catchpoint, then the
2262 (see above) call to SOLIB_ADD pulled in any symbols
2263 from a newly-loaded library, if appropriate.
2264
2265 We do want the inferior to stop, but not where it is
2266 now, which is in the dynamic linker callback. Rather,
2267 we would like it stop in the user's program, just after
2268 the call that caused this catchpoint to trigger. That
2269 gives the user a more useful vantage from which to
2270 examine their program's state. */
2271 else if (what.main_action
2272 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2273 {
2274 /* ??rehrauer: If I could figure out how to get the
2275 right return PC from here, we could just set a temp
2276 breakpoint and resume. I'm not sure we can without
2277 cracking open the dld's shared libraries and sniffing
2278 their unwind tables and text/data ranges, and that's
2279 not a terribly portable notion.
2280
2281 Until that time, we must step the inferior out of the
2282 dld callback, and also out of the dld itself (and any
2283 code or stubs in libdld.sl, such as "shl_load" and
2284 friends) until we reach non-dld code. At that point,
2285 we can stop stepping. */
2286 bpstat_get_triggered_catchpoints (stop_bpstat,
2287 &ecs->
2288 stepping_through_solib_catchpoints);
2289 ecs->stepping_through_solib_after_catch = 1;
2290
2291 /* Be sure to lift all breakpoints, so the inferior does
2292 actually step past this point... */
2293 ecs->stepping_over_breakpoint = 1;
2294 break;
2295 }
2296 else
2297 {
2298 /* We want to step over this breakpoint, then keep going. */
2299 ecs->stepping_over_breakpoint = 1;
2300 break;
2301 }
2302 }
2303 break;
2304
2305 case BPSTAT_WHAT_LAST:
2306 /* Not a real code, but listed here to shut up gcc -Wall. */
2307
2308 case BPSTAT_WHAT_KEEP_CHECKING:
2309 break;
2310 }
2311 }
2312
2313 /* We come here if we hit a breakpoint but should not
2314 stop for it. Possibly we also were stepping
2315 and should stop for that. So fall through and
2316 test for stepping. But, if not stepping,
2317 do not stop. */
2318
2319 /* Are we stepping to get the inferior out of the dynamic linker's
2320 hook (and possibly the dld itself) after catching a shlib
2321 event? */
2322 if (ecs->stepping_through_solib_after_catch)
2323 {
2324 #if defined(SOLIB_ADD)
2325 /* Have we reached our destination? If not, keep going. */
2326 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2327 {
2328 if (debug_infrun)
2329 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2330 ecs->stepping_over_breakpoint = 1;
2331 keep_going (ecs);
2332 return;
2333 }
2334 #endif
2335 if (debug_infrun)
2336 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2337 /* Else, stop and report the catchpoint(s) whose triggering
2338 caused us to begin stepping. */
2339 ecs->stepping_through_solib_after_catch = 0;
2340 bpstat_clear (&stop_bpstat);
2341 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2342 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2343 stop_print_frame = 1;
2344 stop_stepping (ecs);
2345 return;
2346 }
2347
2348 if (step_resume_breakpoint)
2349 {
2350 if (debug_infrun)
2351 fprintf_unfiltered (gdb_stdlog,
2352 "infrun: step-resume breakpoint is inserted\n");
2353
2354 /* Having a step-resume breakpoint overrides anything
2355 else having to do with stepping commands until
2356 that breakpoint is reached. */
2357 keep_going (ecs);
2358 return;
2359 }
2360
2361 if (step_range_end == 0)
2362 {
2363 if (debug_infrun)
2364 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2365 /* Likewise if we aren't even stepping. */
2366 keep_going (ecs);
2367 return;
2368 }
2369
2370 /* If stepping through a line, keep going if still within it.
2371
2372 Note that step_range_end is the address of the first instruction
2373 beyond the step range, and NOT the address of the last instruction
2374 within it! */
2375 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2376 {
2377 if (debug_infrun)
2378 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2379 paddr_nz (step_range_start),
2380 paddr_nz (step_range_end));
2381 keep_going (ecs);
2382 return;
2383 }
2384
2385 /* We stepped out of the stepping range. */
2386
2387 /* If we are stepping at the source level and entered the runtime
2388 loader dynamic symbol resolution code, we keep on single stepping
2389 until we exit the run time loader code and reach the callee's
2390 address. */
2391 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2392 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2393 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2394 #else
2395 && in_solib_dynsym_resolve_code (stop_pc)
2396 #endif
2397 )
2398 {
2399 CORE_ADDR pc_after_resolver =
2400 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2401
2402 if (debug_infrun)
2403 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2404
2405 if (pc_after_resolver)
2406 {
2407 /* Set up a step-resume breakpoint at the address
2408 indicated by SKIP_SOLIB_RESOLVER. */
2409 struct symtab_and_line sr_sal;
2410 init_sal (&sr_sal);
2411 sr_sal.pc = pc_after_resolver;
2412
2413 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2414 }
2415
2416 keep_going (ecs);
2417 return;
2418 }
2419
2420 if (step_range_end != 1
2421 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2422 || step_over_calls == STEP_OVER_ALL)
2423 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2424 {
2425 if (debug_infrun)
2426 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2427 /* The inferior, while doing a "step" or "next", has ended up in
2428 a signal trampoline (either by a signal being delivered or by
2429 the signal handler returning). Just single-step until the
2430 inferior leaves the trampoline (either by calling the handler
2431 or returning). */
2432 keep_going (ecs);
2433 return;
2434 }
2435
2436 /* Check for subroutine calls. The check for the current frame
2437 equalling the step ID is not necessary - the check of the
2438 previous frame's ID is sufficient - but it is a common case and
2439 cheaper than checking the previous frame's ID.
2440
2441 NOTE: frame_id_eq will never report two invalid frame IDs as
2442 being equal, so to get into this block, both the current and
2443 previous frame must have valid frame IDs. */
2444 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2445 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2446 {
2447 CORE_ADDR real_stop_pc;
2448
2449 if (debug_infrun)
2450 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2451
2452 if ((step_over_calls == STEP_OVER_NONE)
2453 || ((step_range_end == 1)
2454 && in_prologue (prev_pc, ecs->stop_func_start)))
2455 {
2456 /* I presume that step_over_calls is only 0 when we're
2457 supposed to be stepping at the assembly language level
2458 ("stepi"). Just stop. */
2459 /* Also, maybe we just did a "nexti" inside a prolog, so we
2460 thought it was a subroutine call but it was not. Stop as
2461 well. FENN */
2462 stop_step = 1;
2463 print_stop_reason (END_STEPPING_RANGE, 0);
2464 stop_stepping (ecs);
2465 return;
2466 }
2467
2468 if (step_over_calls == STEP_OVER_ALL)
2469 {
2470 /* We're doing a "next", set a breakpoint at callee's return
2471 address (the address at which the caller will
2472 resume). */
2473 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2474 keep_going (ecs);
2475 return;
2476 }
2477
2478 /* If we are in a function call trampoline (a stub between the
2479 calling routine and the real function), locate the real
2480 function. That's what tells us (a) whether we want to step
2481 into it at all, and (b) what prologue we want to run to the
2482 end of, if we do step into it. */
2483 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
2484 if (real_stop_pc == 0)
2485 real_stop_pc = gdbarch_skip_trampoline_code
2486 (current_gdbarch, get_current_frame (), stop_pc);
2487 if (real_stop_pc != 0)
2488 ecs->stop_func_start = real_stop_pc;
2489
2490 if (
2491 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2492 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2493 #else
2494 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2495 #endif
2496 )
2497 {
2498 struct symtab_and_line sr_sal;
2499 init_sal (&sr_sal);
2500 sr_sal.pc = ecs->stop_func_start;
2501
2502 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2503 keep_going (ecs);
2504 return;
2505 }
2506
2507 /* If we have line number information for the function we are
2508 thinking of stepping into, step into it.
2509
2510 If there are several symtabs at that PC (e.g. with include
2511 files), just want to know whether *any* of them have line
2512 numbers. find_pc_line handles this. */
2513 {
2514 struct symtab_and_line tmp_sal;
2515
2516 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2517 if (tmp_sal.line != 0)
2518 {
2519 step_into_function (ecs);
2520 return;
2521 }
2522 }
2523
2524 /* If we have no line number and the step-stop-if-no-debug is
2525 set, we stop the step so that the user has a chance to switch
2526 in assembly mode. */
2527 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2528 {
2529 stop_step = 1;
2530 print_stop_reason (END_STEPPING_RANGE, 0);
2531 stop_stepping (ecs);
2532 return;
2533 }
2534
2535 /* Set a breakpoint at callee's return address (the address at
2536 which the caller will resume). */
2537 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2538 keep_going (ecs);
2539 return;
2540 }
2541
2542 /* If we're in the return path from a shared library trampoline,
2543 we want to proceed through the trampoline when stepping. */
2544 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
2545 stop_pc, ecs->stop_func_name))
2546 {
2547 /* Determine where this trampoline returns. */
2548 CORE_ADDR real_stop_pc;
2549 real_stop_pc = gdbarch_skip_trampoline_code
2550 (current_gdbarch, get_current_frame (), stop_pc);
2551
2552 if (debug_infrun)
2553 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2554
2555 /* Only proceed through if we know where it's going. */
2556 if (real_stop_pc)
2557 {
2558 /* And put the step-breakpoint there and go until there. */
2559 struct symtab_and_line sr_sal;
2560
2561 init_sal (&sr_sal); /* initialize to zeroes */
2562 sr_sal.pc = real_stop_pc;
2563 sr_sal.section = find_pc_overlay (sr_sal.pc);
2564
2565 /* Do not specify what the fp should be when we stop since
2566 on some machines the prologue is where the new fp value
2567 is established. */
2568 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2569
2570 /* Restart without fiddling with the step ranges or
2571 other state. */
2572 keep_going (ecs);
2573 return;
2574 }
2575 }
2576
2577 ecs->sal = find_pc_line (stop_pc, 0);
2578
2579 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2580 the trampoline processing logic, however, there are some trampolines
2581 that have no names, so we should do trampoline handling first. */
2582 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2583 && ecs->stop_func_name == NULL
2584 && ecs->sal.line == 0)
2585 {
2586 if (debug_infrun)
2587 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2588
2589 /* The inferior just stepped into, or returned to, an
2590 undebuggable function (where there is no debugging information
2591 and no line number corresponding to the address where the
2592 inferior stopped). Since we want to skip this kind of code,
2593 we keep going until the inferior returns from this
2594 function - unless the user has asked us not to (via
2595 set step-mode) or we no longer know how to get back
2596 to the call site. */
2597 if (step_stop_if_no_debug
2598 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2599 {
2600 /* If we have no line number and the step-stop-if-no-debug
2601 is set, we stop the step so that the user has a chance to
2602 switch in assembly mode. */
2603 stop_step = 1;
2604 print_stop_reason (END_STEPPING_RANGE, 0);
2605 stop_stepping (ecs);
2606 return;
2607 }
2608 else
2609 {
2610 /* Set a breakpoint at callee's return address (the address
2611 at which the caller will resume). */
2612 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2613 keep_going (ecs);
2614 return;
2615 }
2616 }
2617
2618 if (step_range_end == 1)
2619 {
2620 /* It is stepi or nexti. We always want to stop stepping after
2621 one instruction. */
2622 if (debug_infrun)
2623 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2624 stop_step = 1;
2625 print_stop_reason (END_STEPPING_RANGE, 0);
2626 stop_stepping (ecs);
2627 return;
2628 }
2629
2630 if (ecs->sal.line == 0)
2631 {
2632 /* We have no line number information. That means to stop
2633 stepping (does this always happen right after one instruction,
2634 when we do "s" in a function with no line numbers,
2635 or can this happen as a result of a return or longjmp?). */
2636 if (debug_infrun)
2637 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2638 stop_step = 1;
2639 print_stop_reason (END_STEPPING_RANGE, 0);
2640 stop_stepping (ecs);
2641 return;
2642 }
2643
2644 if ((stop_pc == ecs->sal.pc)
2645 && (ecs->current_line != ecs->sal.line
2646 || ecs->current_symtab != ecs->sal.symtab))
2647 {
2648 /* We are at the start of a different line. So stop. Note that
2649 we don't stop if we step into the middle of a different line.
2650 That is said to make things like for (;;) statements work
2651 better. */
2652 if (debug_infrun)
2653 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2654 stop_step = 1;
2655 print_stop_reason (END_STEPPING_RANGE, 0);
2656 stop_stepping (ecs);
2657 return;
2658 }
2659
2660 /* We aren't done stepping.
2661
2662 Optimize by setting the stepping range to the line.
2663 (We might not be in the original line, but if we entered a
2664 new line in mid-statement, we continue stepping. This makes
2665 things like for(;;) statements work better.) */
2666
2667 step_range_start = ecs->sal.pc;
2668 step_range_end = ecs->sal.end;
2669 step_frame_id = get_frame_id (get_current_frame ());
2670 ecs->current_line = ecs->sal.line;
2671 ecs->current_symtab = ecs->sal.symtab;
2672
2673 /* In the case where we just stepped out of a function into the
2674 middle of a line of the caller, continue stepping, but
2675 step_frame_id must be modified to current frame */
2676 #if 0
2677 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2678 generous. It will trigger on things like a step into a frameless
2679 stackless leaf function. I think the logic should instead look
2680 at the unwound frame ID has that should give a more robust
2681 indication of what happened. */
2682 if (step - ID == current - ID)
2683 still stepping in same function;
2684 else if (step - ID == unwind (current - ID))
2685 stepped into a function;
2686 else
2687 stepped out of a function;
2688 /* Of course this assumes that the frame ID unwind code is robust
2689 and we're willing to introduce frame unwind logic into this
2690 function. Fortunately, those days are nearly upon us. */
2691 #endif
2692 {
2693 struct frame_info *frame = get_current_frame ();
2694 struct frame_id current_frame = get_frame_id (frame);
2695 if (!(frame_id_inner (get_frame_arch (frame), current_frame,
2696 step_frame_id)))
2697 step_frame_id = current_frame;
2698 }
2699
2700 if (debug_infrun)
2701 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2702 keep_going (ecs);
2703 }
2704
2705 /* Are we in the middle of stepping? */
2706
2707 static int
2708 currently_stepping (struct execution_control_state *ecs)
2709 {
2710 return ((!ecs->handling_longjmp
2711 && ((step_range_end && step_resume_breakpoint == NULL)
2712 || stepping_over_breakpoint))
2713 || ecs->stepping_through_solib_after_catch
2714 || bpstat_should_step ());
2715 }
2716
2717 /* Subroutine call with source code we should not step over. Do step
2718 to the first line of code in it. */
2719
2720 static void
2721 step_into_function (struct execution_control_state *ecs)
2722 {
2723 struct symtab *s;
2724 struct symtab_and_line sr_sal;
2725
2726 s = find_pc_symtab (stop_pc);
2727 if (s && s->language != language_asm)
2728 ecs->stop_func_start = gdbarch_skip_prologue
2729 (current_gdbarch, ecs->stop_func_start);
2730
2731 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2732 /* Use the step_resume_break to step until the end of the prologue,
2733 even if that involves jumps (as it seems to on the vax under
2734 4.2). */
2735 /* If the prologue ends in the middle of a source line, continue to
2736 the end of that source line (if it is still within the function).
2737 Otherwise, just go to end of prologue. */
2738 if (ecs->sal.end
2739 && ecs->sal.pc != ecs->stop_func_start
2740 && ecs->sal.end < ecs->stop_func_end)
2741 ecs->stop_func_start = ecs->sal.end;
2742
2743 /* Architectures which require breakpoint adjustment might not be able
2744 to place a breakpoint at the computed address. If so, the test
2745 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2746 ecs->stop_func_start to an address at which a breakpoint may be
2747 legitimately placed.
2748
2749 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2750 made, GDB will enter an infinite loop when stepping through
2751 optimized code consisting of VLIW instructions which contain
2752 subinstructions corresponding to different source lines. On
2753 FR-V, it's not permitted to place a breakpoint on any but the
2754 first subinstruction of a VLIW instruction. When a breakpoint is
2755 set, GDB will adjust the breakpoint address to the beginning of
2756 the VLIW instruction. Thus, we need to make the corresponding
2757 adjustment here when computing the stop address. */
2758
2759 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2760 {
2761 ecs->stop_func_start
2762 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2763 ecs->stop_func_start);
2764 }
2765
2766 if (ecs->stop_func_start == stop_pc)
2767 {
2768 /* We are already there: stop now. */
2769 stop_step = 1;
2770 print_stop_reason (END_STEPPING_RANGE, 0);
2771 stop_stepping (ecs);
2772 return;
2773 }
2774 else
2775 {
2776 /* Put the step-breakpoint there and go until there. */
2777 init_sal (&sr_sal); /* initialize to zeroes */
2778 sr_sal.pc = ecs->stop_func_start;
2779 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2780
2781 /* Do not specify what the fp should be when we stop since on
2782 some machines the prologue is where the new fp value is
2783 established. */
2784 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2785
2786 /* And make sure stepping stops right away then. */
2787 step_range_end = step_range_start;
2788 }
2789 keep_going (ecs);
2790 }
2791
2792 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
2793 This is used to both functions and to skip over code. */
2794
2795 static void
2796 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2797 struct frame_id sr_id)
2798 {
2799 /* There should never be more than one step-resume breakpoint per
2800 thread, so we should never be setting a new
2801 step_resume_breakpoint when one is already active. */
2802 gdb_assert (step_resume_breakpoint == NULL);
2803
2804 if (debug_infrun)
2805 fprintf_unfiltered (gdb_stdlog,
2806 "infrun: inserting step-resume breakpoint at 0x%s\n",
2807 paddr_nz (sr_sal.pc));
2808
2809 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2810 bp_step_resume);
2811 }
2812
2813 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
2814 to skip a potential signal handler.
2815
2816 This is called with the interrupted function's frame. The signal
2817 handler, when it returns, will resume the interrupted function at
2818 RETURN_FRAME.pc. */
2819
2820 static void
2821 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2822 {
2823 struct symtab_and_line sr_sal;
2824
2825 gdb_assert (return_frame != NULL);
2826 init_sal (&sr_sal); /* initialize to zeros */
2827
2828 sr_sal.pc = gdbarch_addr_bits_remove
2829 (current_gdbarch, get_frame_pc (return_frame));
2830 sr_sal.section = find_pc_overlay (sr_sal.pc);
2831
2832 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2833 }
2834
2835 /* Similar to insert_step_resume_breakpoint_at_frame, except
2836 but a breakpoint at the previous frame's PC. This is used to
2837 skip a function after stepping into it (for "next" or if the called
2838 function has no debugging information).
2839
2840 The current function has almost always been reached by single
2841 stepping a call or return instruction. NEXT_FRAME belongs to the
2842 current function, and the breakpoint will be set at the caller's
2843 resume address.
2844
2845 This is a separate function rather than reusing
2846 insert_step_resume_breakpoint_at_frame in order to avoid
2847 get_prev_frame, which may stop prematurely (see the implementation
2848 of frame_unwind_id for an example). */
2849
2850 static void
2851 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2852 {
2853 struct symtab_and_line sr_sal;
2854
2855 /* We shouldn't have gotten here if we don't know where the call site
2856 is. */
2857 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2858
2859 init_sal (&sr_sal); /* initialize to zeros */
2860
2861 sr_sal.pc = gdbarch_addr_bits_remove
2862 (current_gdbarch, frame_pc_unwind (next_frame));
2863 sr_sal.section = find_pc_overlay (sr_sal.pc);
2864
2865 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2866 }
2867
2868 static void
2869 stop_stepping (struct execution_control_state *ecs)
2870 {
2871 if (debug_infrun)
2872 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2873
2874 /* Let callers know we don't want to wait for the inferior anymore. */
2875 ecs->wait_some_more = 0;
2876 }
2877
2878 /* This function handles various cases where we need to continue
2879 waiting for the inferior. */
2880 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2881
2882 static void
2883 keep_going (struct execution_control_state *ecs)
2884 {
2885 /* Save the pc before execution, to compare with pc after stop. */
2886 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2887
2888 /* If we did not do break;, it means we should keep running the
2889 inferior and not return to debugger. */
2890
2891 if (stepping_over_breakpoint && stop_signal != TARGET_SIGNAL_TRAP)
2892 {
2893 /* We took a signal (which we are supposed to pass through to
2894 the inferior, else we'd have done a break above) and we
2895 haven't yet gotten our trap. Simply continue. */
2896 resume (currently_stepping (ecs), stop_signal);
2897 }
2898 else
2899 {
2900 /* Either the trap was not expected, but we are continuing
2901 anyway (the user asked that this signal be passed to the
2902 child)
2903 -- or --
2904 The signal was SIGTRAP, e.g. it was our signal, but we
2905 decided we should resume from it.
2906
2907 We're going to run this baby now!
2908
2909 Note that insert_breakpoints won't try to re-insert
2910 already inserted breakpoints. Therefore, we don't
2911 care if breakpoints were already inserted, or not. */
2912
2913 if (ecs->stepping_over_breakpoint)
2914 {
2915 remove_breakpoints ();
2916 }
2917 else
2918 {
2919 struct gdb_exception e;
2920 /* Stop stepping when inserting breakpoints
2921 has failed. */
2922 TRY_CATCH (e, RETURN_MASK_ERROR)
2923 {
2924 insert_breakpoints ();
2925 }
2926 if (e.reason < 0)
2927 {
2928 stop_stepping (ecs);
2929 return;
2930 }
2931 }
2932
2933 stepping_over_breakpoint = ecs->stepping_over_breakpoint;
2934
2935 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2936 specifies that such a signal should be delivered to the
2937 target program).
2938
2939 Typically, this would occure when a user is debugging a
2940 target monitor on a simulator: the target monitor sets a
2941 breakpoint; the simulator encounters this break-point and
2942 halts the simulation handing control to GDB; GDB, noteing
2943 that the break-point isn't valid, returns control back to the
2944 simulator; the simulator then delivers the hardware
2945 equivalent of a SIGNAL_TRAP to the program being debugged. */
2946
2947 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2948 stop_signal = TARGET_SIGNAL_0;
2949
2950
2951 resume (currently_stepping (ecs), stop_signal);
2952 }
2953
2954 prepare_to_wait (ecs);
2955 }
2956
2957 /* This function normally comes after a resume, before
2958 handle_inferior_event exits. It takes care of any last bits of
2959 housekeeping, and sets the all-important wait_some_more flag. */
2960
2961 static void
2962 prepare_to_wait (struct execution_control_state *ecs)
2963 {
2964 if (debug_infrun)
2965 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2966 if (ecs->infwait_state == infwait_normal_state)
2967 {
2968 overlay_cache_invalid = 1;
2969
2970 /* We have to invalidate the registers BEFORE calling
2971 target_wait because they can be loaded from the target while
2972 in target_wait. This makes remote debugging a bit more
2973 efficient for those targets that provide critical registers
2974 as part of their normal status mechanism. */
2975
2976 registers_changed ();
2977 ecs->waiton_ptid = pid_to_ptid (-1);
2978 ecs->wp = &(ecs->ws);
2979 }
2980 /* This is the old end of the while loop. Let everybody know we
2981 want to wait for the inferior some more and get called again
2982 soon. */
2983 ecs->wait_some_more = 1;
2984 }
2985
2986 /* Print why the inferior has stopped. We always print something when
2987 the inferior exits, or receives a signal. The rest of the cases are
2988 dealt with later on in normal_stop() and print_it_typical(). Ideally
2989 there should be a call to this function from handle_inferior_event()
2990 each time stop_stepping() is called.*/
2991 static void
2992 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2993 {
2994 switch (stop_reason)
2995 {
2996 case END_STEPPING_RANGE:
2997 /* We are done with a step/next/si/ni command. */
2998 /* For now print nothing. */
2999 /* Print a message only if not in the middle of doing a "step n"
3000 operation for n > 1 */
3001 if (!step_multi || !stop_step)
3002 if (ui_out_is_mi_like_p (uiout))
3003 ui_out_field_string
3004 (uiout, "reason",
3005 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3006 break;
3007 case SIGNAL_EXITED:
3008 /* The inferior was terminated by a signal. */
3009 annotate_signalled ();
3010 if (ui_out_is_mi_like_p (uiout))
3011 ui_out_field_string
3012 (uiout, "reason",
3013 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3014 ui_out_text (uiout, "\nProgram terminated with signal ");
3015 annotate_signal_name ();
3016 ui_out_field_string (uiout, "signal-name",
3017 target_signal_to_name (stop_info));
3018 annotate_signal_name_end ();
3019 ui_out_text (uiout, ", ");
3020 annotate_signal_string ();
3021 ui_out_field_string (uiout, "signal-meaning",
3022 target_signal_to_string (stop_info));
3023 annotate_signal_string_end ();
3024 ui_out_text (uiout, ".\n");
3025 ui_out_text (uiout, "The program no longer exists.\n");
3026 break;
3027 case EXITED:
3028 /* The inferior program is finished. */
3029 annotate_exited (stop_info);
3030 if (stop_info)
3031 {
3032 if (ui_out_is_mi_like_p (uiout))
3033 ui_out_field_string (uiout, "reason",
3034 async_reason_lookup (EXEC_ASYNC_EXITED));
3035 ui_out_text (uiout, "\nProgram exited with code ");
3036 ui_out_field_fmt (uiout, "exit-code", "0%o",
3037 (unsigned int) stop_info);
3038 ui_out_text (uiout, ".\n");
3039 }
3040 else
3041 {
3042 if (ui_out_is_mi_like_p (uiout))
3043 ui_out_field_string
3044 (uiout, "reason",
3045 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3046 ui_out_text (uiout, "\nProgram exited normally.\n");
3047 }
3048 /* Support the --return-child-result option. */
3049 return_child_result_value = stop_info;
3050 break;
3051 case SIGNAL_RECEIVED:
3052 /* Signal received. The signal table tells us to print about
3053 it. */
3054 annotate_signal ();
3055 ui_out_text (uiout, "\nProgram received signal ");
3056 annotate_signal_name ();
3057 if (ui_out_is_mi_like_p (uiout))
3058 ui_out_field_string
3059 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3060 ui_out_field_string (uiout, "signal-name",
3061 target_signal_to_name (stop_info));
3062 annotate_signal_name_end ();
3063 ui_out_text (uiout, ", ");
3064 annotate_signal_string ();
3065 ui_out_field_string (uiout, "signal-meaning",
3066 target_signal_to_string (stop_info));
3067 annotate_signal_string_end ();
3068 ui_out_text (uiout, ".\n");
3069 break;
3070 default:
3071 internal_error (__FILE__, __LINE__,
3072 _("print_stop_reason: unrecognized enum value"));
3073 break;
3074 }
3075 }
3076 \f
3077
3078 /* Here to return control to GDB when the inferior stops for real.
3079 Print appropriate messages, remove breakpoints, give terminal our modes.
3080
3081 STOP_PRINT_FRAME nonzero means print the executing frame
3082 (pc, function, args, file, line number and line text).
3083 BREAKPOINTS_FAILED nonzero means stop was due to error
3084 attempting to insert breakpoints. */
3085
3086 void
3087 normal_stop (void)
3088 {
3089 struct target_waitstatus last;
3090 ptid_t last_ptid;
3091
3092 get_last_target_status (&last_ptid, &last);
3093
3094 /* As with the notification of thread events, we want to delay
3095 notifying the user that we've switched thread context until
3096 the inferior actually stops.
3097
3098 There's no point in saying anything if the inferior has exited.
3099 Note that SIGNALLED here means "exited with a signal", not
3100 "received a signal". */
3101 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3102 && target_has_execution
3103 && last.kind != TARGET_WAITKIND_SIGNALLED
3104 && last.kind != TARGET_WAITKIND_EXITED)
3105 {
3106 target_terminal_ours_for_output ();
3107 printf_filtered (_("[Switching to %s]\n"),
3108 target_pid_to_str (inferior_ptid));
3109 previous_inferior_ptid = inferior_ptid;
3110 }
3111
3112 /* NOTE drow/2004-01-17: Is this still necessary? */
3113 /* Make sure that the current_frame's pc is correct. This
3114 is a correction for setting up the frame info before doing
3115 gdbarch_decr_pc_after_break */
3116 if (target_has_execution)
3117 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3118 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3119 frame code to check for this and sort out any resultant mess.
3120 gdbarch_decr_pc_after_break needs to just go away. */
3121 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3122
3123 if (target_has_execution)
3124 {
3125 if (remove_breakpoints ())
3126 {
3127 target_terminal_ours_for_output ();
3128 printf_filtered (_("\
3129 Cannot remove breakpoints because program is no longer writable.\n\
3130 It might be running in another process.\n\
3131 Further execution is probably impossible.\n"));
3132 }
3133 }
3134
3135 /* If an auto-display called a function and that got a signal,
3136 delete that auto-display to avoid an infinite recursion. */
3137
3138 if (stopped_by_random_signal)
3139 disable_current_display ();
3140
3141 /* Don't print a message if in the middle of doing a "step n"
3142 operation for n > 1 */
3143 if (step_multi && stop_step)
3144 goto done;
3145
3146 target_terminal_ours ();
3147
3148 /* Set the current source location. This will also happen if we
3149 display the frame below, but the current SAL will be incorrect
3150 during a user hook-stop function. */
3151 if (target_has_stack && !stop_stack_dummy)
3152 set_current_sal_from_frame (get_current_frame (), 1);
3153
3154 /* Look up the hook_stop and run it (CLI internally handles problem
3155 of stop_command's pre-hook not existing). */
3156 if (stop_command)
3157 catch_errors (hook_stop_stub, stop_command,
3158 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3159
3160 if (!target_has_stack)
3161 {
3162
3163 goto done;
3164 }
3165
3166 /* Select innermost stack frame - i.e., current frame is frame 0,
3167 and current location is based on that.
3168 Don't do this on return from a stack dummy routine,
3169 or if the program has exited. */
3170
3171 if (!stop_stack_dummy)
3172 {
3173 select_frame (get_current_frame ());
3174
3175 /* Print current location without a level number, if
3176 we have changed functions or hit a breakpoint.
3177 Print source line if we have one.
3178 bpstat_print() contains the logic deciding in detail
3179 what to print, based on the event(s) that just occurred. */
3180
3181 if (stop_print_frame)
3182 {
3183 int bpstat_ret;
3184 int source_flag;
3185 int do_frame_printing = 1;
3186
3187 bpstat_ret = bpstat_print (stop_bpstat);
3188 switch (bpstat_ret)
3189 {
3190 case PRINT_UNKNOWN:
3191 /* If we had hit a shared library event breakpoint,
3192 bpstat_print would print out this message. If we hit
3193 an OS-level shared library event, do the same
3194 thing. */
3195 if (last.kind == TARGET_WAITKIND_LOADED)
3196 {
3197 printf_filtered (_("Stopped due to shared library event\n"));
3198 source_flag = SRC_LINE; /* something bogus */
3199 do_frame_printing = 0;
3200 break;
3201 }
3202
3203 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3204 (or should) carry around the function and does (or
3205 should) use that when doing a frame comparison. */
3206 if (stop_step
3207 && frame_id_eq (step_frame_id,
3208 get_frame_id (get_current_frame ()))
3209 && step_start_function == find_pc_function (stop_pc))
3210 source_flag = SRC_LINE; /* finished step, just print source line */
3211 else
3212 source_flag = SRC_AND_LOC; /* print location and source line */
3213 break;
3214 case PRINT_SRC_AND_LOC:
3215 source_flag = SRC_AND_LOC; /* print location and source line */
3216 break;
3217 case PRINT_SRC_ONLY:
3218 source_flag = SRC_LINE;
3219 break;
3220 case PRINT_NOTHING:
3221 source_flag = SRC_LINE; /* something bogus */
3222 do_frame_printing = 0;
3223 break;
3224 default:
3225 internal_error (__FILE__, __LINE__, _("Unknown value."));
3226 }
3227
3228 if (ui_out_is_mi_like_p (uiout))
3229 ui_out_field_int (uiout, "thread-id",
3230 pid_to_thread_id (inferior_ptid));
3231 /* The behavior of this routine with respect to the source
3232 flag is:
3233 SRC_LINE: Print only source line
3234 LOCATION: Print only location
3235 SRC_AND_LOC: Print location and source line */
3236 if (do_frame_printing)
3237 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3238
3239 /* Display the auto-display expressions. */
3240 do_displays ();
3241 }
3242 }
3243
3244 /* Save the function value return registers, if we care.
3245 We might be about to restore their previous contents. */
3246 if (proceed_to_finish)
3247 {
3248 /* This should not be necessary. */
3249 if (stop_registers)
3250 regcache_xfree (stop_registers);
3251
3252 /* NB: The copy goes through to the target picking up the value of
3253 all the registers. */
3254 stop_registers = regcache_dup (get_current_regcache ());
3255 }
3256
3257 if (stop_stack_dummy)
3258 {
3259 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3260 ends with a setting of the current frame, so we can use that
3261 next. */
3262 frame_pop (get_current_frame ());
3263 /* Set stop_pc to what it was before we called the function.
3264 Can't rely on restore_inferior_status because that only gets
3265 called if we don't stop in the called function. */
3266 stop_pc = read_pc ();
3267 select_frame (get_current_frame ());
3268 }
3269
3270 done:
3271 annotate_stopped ();
3272 observer_notify_normal_stop (stop_bpstat);
3273 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3274 Delete any breakpoint that is to be deleted at the next stop. */
3275 breakpoint_auto_delete (stop_bpstat);
3276 }
3277
3278 static int
3279 hook_stop_stub (void *cmd)
3280 {
3281 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3282 return (0);
3283 }
3284 \f
3285 int
3286 signal_stop_state (int signo)
3287 {
3288 return signal_stop[signo];
3289 }
3290
3291 int
3292 signal_print_state (int signo)
3293 {
3294 return signal_print[signo];
3295 }
3296
3297 int
3298 signal_pass_state (int signo)
3299 {
3300 return signal_program[signo];
3301 }
3302
3303 int
3304 signal_stop_update (int signo, int state)
3305 {
3306 int ret = signal_stop[signo];
3307 signal_stop[signo] = state;
3308 return ret;
3309 }
3310
3311 int
3312 signal_print_update (int signo, int state)
3313 {
3314 int ret = signal_print[signo];
3315 signal_print[signo] = state;
3316 return ret;
3317 }
3318
3319 int
3320 signal_pass_update (int signo, int state)
3321 {
3322 int ret = signal_program[signo];
3323 signal_program[signo] = state;
3324 return ret;
3325 }
3326
3327 static void
3328 sig_print_header (void)
3329 {
3330 printf_filtered (_("\
3331 Signal Stop\tPrint\tPass to program\tDescription\n"));
3332 }
3333
3334 static void
3335 sig_print_info (enum target_signal oursig)
3336 {
3337 char *name = target_signal_to_name (oursig);
3338 int name_padding = 13 - strlen (name);
3339
3340 if (name_padding <= 0)
3341 name_padding = 0;
3342
3343 printf_filtered ("%s", name);
3344 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3345 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3346 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3347 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3348 printf_filtered ("%s\n", target_signal_to_string (oursig));
3349 }
3350
3351 /* Specify how various signals in the inferior should be handled. */
3352
3353 static void
3354 handle_command (char *args, int from_tty)
3355 {
3356 char **argv;
3357 int digits, wordlen;
3358 int sigfirst, signum, siglast;
3359 enum target_signal oursig;
3360 int allsigs;
3361 int nsigs;
3362 unsigned char *sigs;
3363 struct cleanup *old_chain;
3364
3365 if (args == NULL)
3366 {
3367 error_no_arg (_("signal to handle"));
3368 }
3369
3370 /* Allocate and zero an array of flags for which signals to handle. */
3371
3372 nsigs = (int) TARGET_SIGNAL_LAST;
3373 sigs = (unsigned char *) alloca (nsigs);
3374 memset (sigs, 0, nsigs);
3375
3376 /* Break the command line up into args. */
3377
3378 argv = buildargv (args);
3379 if (argv == NULL)
3380 {
3381 nomem (0);
3382 }
3383 old_chain = make_cleanup_freeargv (argv);
3384
3385 /* Walk through the args, looking for signal oursigs, signal names, and
3386 actions. Signal numbers and signal names may be interspersed with
3387 actions, with the actions being performed for all signals cumulatively
3388 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3389
3390 while (*argv != NULL)
3391 {
3392 wordlen = strlen (*argv);
3393 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3394 {;
3395 }
3396 allsigs = 0;
3397 sigfirst = siglast = -1;
3398
3399 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3400 {
3401 /* Apply action to all signals except those used by the
3402 debugger. Silently skip those. */
3403 allsigs = 1;
3404 sigfirst = 0;
3405 siglast = nsigs - 1;
3406 }
3407 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3408 {
3409 SET_SIGS (nsigs, sigs, signal_stop);
3410 SET_SIGS (nsigs, sigs, signal_print);
3411 }
3412 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3413 {
3414 UNSET_SIGS (nsigs, sigs, signal_program);
3415 }
3416 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3417 {
3418 SET_SIGS (nsigs, sigs, signal_print);
3419 }
3420 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3421 {
3422 SET_SIGS (nsigs, sigs, signal_program);
3423 }
3424 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3425 {
3426 UNSET_SIGS (nsigs, sigs, signal_stop);
3427 }
3428 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3429 {
3430 SET_SIGS (nsigs, sigs, signal_program);
3431 }
3432 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3433 {
3434 UNSET_SIGS (nsigs, sigs, signal_print);
3435 UNSET_SIGS (nsigs, sigs, signal_stop);
3436 }
3437 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3438 {
3439 UNSET_SIGS (nsigs, sigs, signal_program);
3440 }
3441 else if (digits > 0)
3442 {
3443 /* It is numeric. The numeric signal refers to our own
3444 internal signal numbering from target.h, not to host/target
3445 signal number. This is a feature; users really should be
3446 using symbolic names anyway, and the common ones like
3447 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3448
3449 sigfirst = siglast = (int)
3450 target_signal_from_command (atoi (*argv));
3451 if ((*argv)[digits] == '-')
3452 {
3453 siglast = (int)
3454 target_signal_from_command (atoi ((*argv) + digits + 1));
3455 }
3456 if (sigfirst > siglast)
3457 {
3458 /* Bet he didn't figure we'd think of this case... */
3459 signum = sigfirst;
3460 sigfirst = siglast;
3461 siglast = signum;
3462 }
3463 }
3464 else
3465 {
3466 oursig = target_signal_from_name (*argv);
3467 if (oursig != TARGET_SIGNAL_UNKNOWN)
3468 {
3469 sigfirst = siglast = (int) oursig;
3470 }
3471 else
3472 {
3473 /* Not a number and not a recognized flag word => complain. */
3474 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3475 }
3476 }
3477
3478 /* If any signal numbers or symbol names were found, set flags for
3479 which signals to apply actions to. */
3480
3481 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3482 {
3483 switch ((enum target_signal) signum)
3484 {
3485 case TARGET_SIGNAL_TRAP:
3486 case TARGET_SIGNAL_INT:
3487 if (!allsigs && !sigs[signum])
3488 {
3489 if (query ("%s is used by the debugger.\n\
3490 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3491 {
3492 sigs[signum] = 1;
3493 }
3494 else
3495 {
3496 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3497 gdb_flush (gdb_stdout);
3498 }
3499 }
3500 break;
3501 case TARGET_SIGNAL_0:
3502 case TARGET_SIGNAL_DEFAULT:
3503 case TARGET_SIGNAL_UNKNOWN:
3504 /* Make sure that "all" doesn't print these. */
3505 break;
3506 default:
3507 sigs[signum] = 1;
3508 break;
3509 }
3510 }
3511
3512 argv++;
3513 }
3514
3515 target_notice_signals (inferior_ptid);
3516
3517 if (from_tty)
3518 {
3519 /* Show the results. */
3520 sig_print_header ();
3521 for (signum = 0; signum < nsigs; signum++)
3522 {
3523 if (sigs[signum])
3524 {
3525 sig_print_info (signum);
3526 }
3527 }
3528 }
3529
3530 do_cleanups (old_chain);
3531 }
3532
3533 static void
3534 xdb_handle_command (char *args, int from_tty)
3535 {
3536 char **argv;
3537 struct cleanup *old_chain;
3538
3539 /* Break the command line up into args. */
3540
3541 argv = buildargv (args);
3542 if (argv == NULL)
3543 {
3544 nomem (0);
3545 }
3546 old_chain = make_cleanup_freeargv (argv);
3547 if (argv[1] != (char *) NULL)
3548 {
3549 char *argBuf;
3550 int bufLen;
3551
3552 bufLen = strlen (argv[0]) + 20;
3553 argBuf = (char *) xmalloc (bufLen);
3554 if (argBuf)
3555 {
3556 int validFlag = 1;
3557 enum target_signal oursig;
3558
3559 oursig = target_signal_from_name (argv[0]);
3560 memset (argBuf, 0, bufLen);
3561 if (strcmp (argv[1], "Q") == 0)
3562 sprintf (argBuf, "%s %s", argv[0], "noprint");
3563 else
3564 {
3565 if (strcmp (argv[1], "s") == 0)
3566 {
3567 if (!signal_stop[oursig])
3568 sprintf (argBuf, "%s %s", argv[0], "stop");
3569 else
3570 sprintf (argBuf, "%s %s", argv[0], "nostop");
3571 }
3572 else if (strcmp (argv[1], "i") == 0)
3573 {
3574 if (!signal_program[oursig])
3575 sprintf (argBuf, "%s %s", argv[0], "pass");
3576 else
3577 sprintf (argBuf, "%s %s", argv[0], "nopass");
3578 }
3579 else if (strcmp (argv[1], "r") == 0)
3580 {
3581 if (!signal_print[oursig])
3582 sprintf (argBuf, "%s %s", argv[0], "print");
3583 else
3584 sprintf (argBuf, "%s %s", argv[0], "noprint");
3585 }
3586 else
3587 validFlag = 0;
3588 }
3589 if (validFlag)
3590 handle_command (argBuf, from_tty);
3591 else
3592 printf_filtered (_("Invalid signal handling flag.\n"));
3593 if (argBuf)
3594 xfree (argBuf);
3595 }
3596 }
3597 do_cleanups (old_chain);
3598 }
3599
3600 /* Print current contents of the tables set by the handle command.
3601 It is possible we should just be printing signals actually used
3602 by the current target (but for things to work right when switching
3603 targets, all signals should be in the signal tables). */
3604
3605 static void
3606 signals_info (char *signum_exp, int from_tty)
3607 {
3608 enum target_signal oursig;
3609 sig_print_header ();
3610
3611 if (signum_exp)
3612 {
3613 /* First see if this is a symbol name. */
3614 oursig = target_signal_from_name (signum_exp);
3615 if (oursig == TARGET_SIGNAL_UNKNOWN)
3616 {
3617 /* No, try numeric. */
3618 oursig =
3619 target_signal_from_command (parse_and_eval_long (signum_exp));
3620 }
3621 sig_print_info (oursig);
3622 return;
3623 }
3624
3625 printf_filtered ("\n");
3626 /* These ugly casts brought to you by the native VAX compiler. */
3627 for (oursig = TARGET_SIGNAL_FIRST;
3628 (int) oursig < (int) TARGET_SIGNAL_LAST;
3629 oursig = (enum target_signal) ((int) oursig + 1))
3630 {
3631 QUIT;
3632
3633 if (oursig != TARGET_SIGNAL_UNKNOWN
3634 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3635 sig_print_info (oursig);
3636 }
3637
3638 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3639 }
3640 \f
3641 struct inferior_status
3642 {
3643 enum target_signal stop_signal;
3644 CORE_ADDR stop_pc;
3645 bpstat stop_bpstat;
3646 int stop_step;
3647 int stop_stack_dummy;
3648 int stopped_by_random_signal;
3649 int stepping_over_breakpoint;
3650 CORE_ADDR step_range_start;
3651 CORE_ADDR step_range_end;
3652 struct frame_id step_frame_id;
3653 enum step_over_calls_kind step_over_calls;
3654 CORE_ADDR step_resume_break_address;
3655 int stop_after_trap;
3656 int stop_soon;
3657
3658 /* These are here because if call_function_by_hand has written some
3659 registers and then decides to call error(), we better not have changed
3660 any registers. */
3661 struct regcache *registers;
3662
3663 /* A frame unique identifier. */
3664 struct frame_id selected_frame_id;
3665
3666 int breakpoint_proceeded;
3667 int restore_stack_info;
3668 int proceed_to_finish;
3669 };
3670
3671 void
3672 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3673 LONGEST val)
3674 {
3675 int size = register_size (current_gdbarch, regno);
3676 void *buf = alloca (size);
3677 store_signed_integer (buf, size, val);
3678 regcache_raw_write (inf_status->registers, regno, buf);
3679 }
3680
3681 /* Save all of the information associated with the inferior<==>gdb
3682 connection. INF_STATUS is a pointer to a "struct inferior_status"
3683 (defined in inferior.h). */
3684
3685 struct inferior_status *
3686 save_inferior_status (int restore_stack_info)
3687 {
3688 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3689
3690 inf_status->stop_signal = stop_signal;
3691 inf_status->stop_pc = stop_pc;
3692 inf_status->stop_step = stop_step;
3693 inf_status->stop_stack_dummy = stop_stack_dummy;
3694 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3695 inf_status->stepping_over_breakpoint = stepping_over_breakpoint;
3696 inf_status->step_range_start = step_range_start;
3697 inf_status->step_range_end = step_range_end;
3698 inf_status->step_frame_id = step_frame_id;
3699 inf_status->step_over_calls = step_over_calls;
3700 inf_status->stop_after_trap = stop_after_trap;
3701 inf_status->stop_soon = stop_soon;
3702 /* Save original bpstat chain here; replace it with copy of chain.
3703 If caller's caller is walking the chain, they'll be happier if we
3704 hand them back the original chain when restore_inferior_status is
3705 called. */
3706 inf_status->stop_bpstat = stop_bpstat;
3707 stop_bpstat = bpstat_copy (stop_bpstat);
3708 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3709 inf_status->restore_stack_info = restore_stack_info;
3710 inf_status->proceed_to_finish = proceed_to_finish;
3711
3712 inf_status->registers = regcache_dup (get_current_regcache ());
3713
3714 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
3715 return inf_status;
3716 }
3717
3718 static int
3719 restore_selected_frame (void *args)
3720 {
3721 struct frame_id *fid = (struct frame_id *) args;
3722 struct frame_info *frame;
3723
3724 frame = frame_find_by_id (*fid);
3725
3726 /* If inf_status->selected_frame_id is NULL, there was no previously
3727 selected frame. */
3728 if (frame == NULL)
3729 {
3730 warning (_("Unable to restore previously selected frame."));
3731 return 0;
3732 }
3733
3734 select_frame (frame);
3735
3736 return (1);
3737 }
3738
3739 void
3740 restore_inferior_status (struct inferior_status *inf_status)
3741 {
3742 stop_signal = inf_status->stop_signal;
3743 stop_pc = inf_status->stop_pc;
3744 stop_step = inf_status->stop_step;
3745 stop_stack_dummy = inf_status->stop_stack_dummy;
3746 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3747 stepping_over_breakpoint = inf_status->stepping_over_breakpoint;
3748 step_range_start = inf_status->step_range_start;
3749 step_range_end = inf_status->step_range_end;
3750 step_frame_id = inf_status->step_frame_id;
3751 step_over_calls = inf_status->step_over_calls;
3752 stop_after_trap = inf_status->stop_after_trap;
3753 stop_soon = inf_status->stop_soon;
3754 bpstat_clear (&stop_bpstat);
3755 stop_bpstat = inf_status->stop_bpstat;
3756 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3757 proceed_to_finish = inf_status->proceed_to_finish;
3758
3759 /* The inferior can be gone if the user types "print exit(0)"
3760 (and perhaps other times). */
3761 if (target_has_execution)
3762 /* NB: The register write goes through to the target. */
3763 regcache_cpy (get_current_regcache (), inf_status->registers);
3764 regcache_xfree (inf_status->registers);
3765
3766 /* FIXME: If we are being called after stopping in a function which
3767 is called from gdb, we should not be trying to restore the
3768 selected frame; it just prints a spurious error message (The
3769 message is useful, however, in detecting bugs in gdb (like if gdb
3770 clobbers the stack)). In fact, should we be restoring the
3771 inferior status at all in that case? . */
3772
3773 if (target_has_stack && inf_status->restore_stack_info)
3774 {
3775 /* The point of catch_errors is that if the stack is clobbered,
3776 walking the stack might encounter a garbage pointer and
3777 error() trying to dereference it. */
3778 if (catch_errors
3779 (restore_selected_frame, &inf_status->selected_frame_id,
3780 "Unable to restore previously selected frame:\n",
3781 RETURN_MASK_ERROR) == 0)
3782 /* Error in restoring the selected frame. Select the innermost
3783 frame. */
3784 select_frame (get_current_frame ());
3785
3786 }
3787
3788 xfree (inf_status);
3789 }
3790
3791 static void
3792 do_restore_inferior_status_cleanup (void *sts)
3793 {
3794 restore_inferior_status (sts);
3795 }
3796
3797 struct cleanup *
3798 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3799 {
3800 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3801 }
3802
3803 void
3804 discard_inferior_status (struct inferior_status *inf_status)
3805 {
3806 /* See save_inferior_status for info on stop_bpstat. */
3807 bpstat_clear (&inf_status->stop_bpstat);
3808 regcache_xfree (inf_status->registers);
3809 xfree (inf_status);
3810 }
3811
3812 int
3813 inferior_has_forked (int pid, int *child_pid)
3814 {
3815 struct target_waitstatus last;
3816 ptid_t last_ptid;
3817
3818 get_last_target_status (&last_ptid, &last);
3819
3820 if (last.kind != TARGET_WAITKIND_FORKED)
3821 return 0;
3822
3823 if (ptid_get_pid (last_ptid) != pid)
3824 return 0;
3825
3826 *child_pid = last.value.related_pid;
3827 return 1;
3828 }
3829
3830 int
3831 inferior_has_vforked (int pid, int *child_pid)
3832 {
3833 struct target_waitstatus last;
3834 ptid_t last_ptid;
3835
3836 get_last_target_status (&last_ptid, &last);
3837
3838 if (last.kind != TARGET_WAITKIND_VFORKED)
3839 return 0;
3840
3841 if (ptid_get_pid (last_ptid) != pid)
3842 return 0;
3843
3844 *child_pid = last.value.related_pid;
3845 return 1;
3846 }
3847
3848 int
3849 inferior_has_execd (int pid, char **execd_pathname)
3850 {
3851 struct target_waitstatus last;
3852 ptid_t last_ptid;
3853
3854 get_last_target_status (&last_ptid, &last);
3855
3856 if (last.kind != TARGET_WAITKIND_EXECD)
3857 return 0;
3858
3859 if (ptid_get_pid (last_ptid) != pid)
3860 return 0;
3861
3862 *execd_pathname = xstrdup (last.value.execd_pathname);
3863 return 1;
3864 }
3865
3866 /* Oft used ptids */
3867 ptid_t null_ptid;
3868 ptid_t minus_one_ptid;
3869
3870 /* Create a ptid given the necessary PID, LWP, and TID components. */
3871
3872 ptid_t
3873 ptid_build (int pid, long lwp, long tid)
3874 {
3875 ptid_t ptid;
3876
3877 ptid.pid = pid;
3878 ptid.lwp = lwp;
3879 ptid.tid = tid;
3880 return ptid;
3881 }
3882
3883 /* Create a ptid from just a pid. */
3884
3885 ptid_t
3886 pid_to_ptid (int pid)
3887 {
3888 return ptid_build (pid, 0, 0);
3889 }
3890
3891 /* Fetch the pid (process id) component from a ptid. */
3892
3893 int
3894 ptid_get_pid (ptid_t ptid)
3895 {
3896 return ptid.pid;
3897 }
3898
3899 /* Fetch the lwp (lightweight process) component from a ptid. */
3900
3901 long
3902 ptid_get_lwp (ptid_t ptid)
3903 {
3904 return ptid.lwp;
3905 }
3906
3907 /* Fetch the tid (thread id) component from a ptid. */
3908
3909 long
3910 ptid_get_tid (ptid_t ptid)
3911 {
3912 return ptid.tid;
3913 }
3914
3915 /* ptid_equal() is used to test equality of two ptids. */
3916
3917 int
3918 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3919 {
3920 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3921 && ptid1.tid == ptid2.tid);
3922 }
3923
3924 /* restore_inferior_ptid() will be used by the cleanup machinery
3925 to restore the inferior_ptid value saved in a call to
3926 save_inferior_ptid(). */
3927
3928 static void
3929 restore_inferior_ptid (void *arg)
3930 {
3931 ptid_t *saved_ptid_ptr = arg;
3932 inferior_ptid = *saved_ptid_ptr;
3933 xfree (arg);
3934 }
3935
3936 /* Save the value of inferior_ptid so that it may be restored by a
3937 later call to do_cleanups(). Returns the struct cleanup pointer
3938 needed for later doing the cleanup. */
3939
3940 struct cleanup *
3941 save_inferior_ptid (void)
3942 {
3943 ptid_t *saved_ptid_ptr;
3944
3945 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3946 *saved_ptid_ptr = inferior_ptid;
3947 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3948 }
3949 \f
3950
3951 void
3952 _initialize_infrun (void)
3953 {
3954 int i;
3955 int numsigs;
3956 struct cmd_list_element *c;
3957
3958 add_info ("signals", signals_info, _("\
3959 What debugger does when program gets various signals.\n\
3960 Specify a signal as argument to print info on that signal only."));
3961 add_info_alias ("handle", "signals", 0);
3962
3963 add_com ("handle", class_run, handle_command, _("\
3964 Specify how to handle a signal.\n\
3965 Args are signals and actions to apply to those signals.\n\
3966 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3967 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3968 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3969 The special arg \"all\" is recognized to mean all signals except those\n\
3970 used by the debugger, typically SIGTRAP and SIGINT.\n\
3971 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3972 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3973 Stop means reenter debugger if this signal happens (implies print).\n\
3974 Print means print a message if this signal happens.\n\
3975 Pass means let program see this signal; otherwise program doesn't know.\n\
3976 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3977 Pass and Stop may be combined."));
3978 if (xdb_commands)
3979 {
3980 add_com ("lz", class_info, signals_info, _("\
3981 What debugger does when program gets various signals.\n\
3982 Specify a signal as argument to print info on that signal only."));
3983 add_com ("z", class_run, xdb_handle_command, _("\
3984 Specify how to handle a signal.\n\
3985 Args are signals and actions to apply to those signals.\n\
3986 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3987 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3988 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3989 The special arg \"all\" is recognized to mean all signals except those\n\
3990 used by the debugger, typically SIGTRAP and SIGINT.\n\
3991 Recognized actions include \"s\" (toggles between stop and nostop), \n\
3992 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3993 nopass), \"Q\" (noprint)\n\
3994 Stop means reenter debugger if this signal happens (implies print).\n\
3995 Print means print a message if this signal happens.\n\
3996 Pass means let program see this signal; otherwise program doesn't know.\n\
3997 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3998 Pass and Stop may be combined."));
3999 }
4000
4001 if (!dbx_commands)
4002 stop_command = add_cmd ("stop", class_obscure,
4003 not_just_help_class_command, _("\
4004 There is no `stop' command, but you can set a hook on `stop'.\n\
4005 This allows you to set a list of commands to be run each time execution\n\
4006 of the program stops."), &cmdlist);
4007
4008 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4009 Set inferior debugging."), _("\
4010 Show inferior debugging."), _("\
4011 When non-zero, inferior specific debugging is enabled."),
4012 NULL,
4013 show_debug_infrun,
4014 &setdebuglist, &showdebuglist);
4015
4016 numsigs = (int) TARGET_SIGNAL_LAST;
4017 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4018 signal_print = (unsigned char *)
4019 xmalloc (sizeof (signal_print[0]) * numsigs);
4020 signal_program = (unsigned char *)
4021 xmalloc (sizeof (signal_program[0]) * numsigs);
4022 for (i = 0; i < numsigs; i++)
4023 {
4024 signal_stop[i] = 1;
4025 signal_print[i] = 1;
4026 signal_program[i] = 1;
4027 }
4028
4029 /* Signals caused by debugger's own actions
4030 should not be given to the program afterwards. */
4031 signal_program[TARGET_SIGNAL_TRAP] = 0;
4032 signal_program[TARGET_SIGNAL_INT] = 0;
4033
4034 /* Signals that are not errors should not normally enter the debugger. */
4035 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4036 signal_print[TARGET_SIGNAL_ALRM] = 0;
4037 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4038 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4039 signal_stop[TARGET_SIGNAL_PROF] = 0;
4040 signal_print[TARGET_SIGNAL_PROF] = 0;
4041 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4042 signal_print[TARGET_SIGNAL_CHLD] = 0;
4043 signal_stop[TARGET_SIGNAL_IO] = 0;
4044 signal_print[TARGET_SIGNAL_IO] = 0;
4045 signal_stop[TARGET_SIGNAL_POLL] = 0;
4046 signal_print[TARGET_SIGNAL_POLL] = 0;
4047 signal_stop[TARGET_SIGNAL_URG] = 0;
4048 signal_print[TARGET_SIGNAL_URG] = 0;
4049 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4050 signal_print[TARGET_SIGNAL_WINCH] = 0;
4051
4052 /* These signals are used internally by user-level thread
4053 implementations. (See signal(5) on Solaris.) Like the above
4054 signals, a healthy program receives and handles them as part of
4055 its normal operation. */
4056 signal_stop[TARGET_SIGNAL_LWP] = 0;
4057 signal_print[TARGET_SIGNAL_LWP] = 0;
4058 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4059 signal_print[TARGET_SIGNAL_WAITING] = 0;
4060 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4061 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4062
4063 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4064 &stop_on_solib_events, _("\
4065 Set stopping for shared library events."), _("\
4066 Show stopping for shared library events."), _("\
4067 If nonzero, gdb will give control to the user when the dynamic linker\n\
4068 notifies gdb of shared library events. The most common event of interest\n\
4069 to the user would be loading/unloading of a new library."),
4070 NULL,
4071 show_stop_on_solib_events,
4072 &setlist, &showlist);
4073
4074 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4075 follow_fork_mode_kind_names,
4076 &follow_fork_mode_string, _("\
4077 Set debugger response to a program call of fork or vfork."), _("\
4078 Show debugger response to a program call of fork or vfork."), _("\
4079 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4080 parent - the original process is debugged after a fork\n\
4081 child - the new process is debugged after a fork\n\
4082 The unfollowed process will continue to run.\n\
4083 By default, the debugger will follow the parent process."),
4084 NULL,
4085 show_follow_fork_mode_string,
4086 &setlist, &showlist);
4087
4088 add_setshow_enum_cmd ("scheduler-locking", class_run,
4089 scheduler_enums, &scheduler_mode, _("\
4090 Set mode for locking scheduler during execution."), _("\
4091 Show mode for locking scheduler during execution."), _("\
4092 off == no locking (threads may preempt at any time)\n\
4093 on == full locking (no thread except the current thread may run)\n\
4094 step == scheduler locked during every single-step operation.\n\
4095 In this mode, no other thread may run during a step command.\n\
4096 Other threads may run while stepping over a function call ('next')."),
4097 set_schedlock_func, /* traps on target vector */
4098 show_scheduler_mode,
4099 &setlist, &showlist);
4100
4101 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4102 Set mode of the step operation."), _("\
4103 Show mode of the step operation."), _("\
4104 When set, doing a step over a function without debug line information\n\
4105 will stop at the first instruction of that function. Otherwise, the\n\
4106 function is skipped and the step command stops at a different source line."),
4107 NULL,
4108 show_step_stop_if_no_debug,
4109 &setlist, &showlist);
4110
4111 /* ptid initializations */
4112 null_ptid = ptid_build (0, 0, 0);
4113 minus_one_ptid = ptid_build (-1, 0, 0);
4114 inferior_ptid = null_ptid;
4115 target_last_wait_ptid = minus_one_ptid;
4116 }