]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
2011-05-27 Pedro Alves <pedro@codesourcery.com>
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48 #include "dictionary.h"
49 #include "block.h"
50 #include "gdb_assert.h"
51 #include "mi/mi-common.h"
52 #include "event-top.h"
53 #include "record.h"
54 #include "inline-frame.h"
55 #include "jit.h"
56 #include "tracepoint.h"
57 #include "continuations.h"
58
59 /* Prototypes for local functions */
60
61 static void signals_info (char *, int);
62
63 static void handle_command (char *, int);
64
65 static void sig_print_info (enum target_signal);
66
67 static void sig_print_header (void);
68
69 static void resume_cleanups (void *);
70
71 static int hook_stop_stub (void *);
72
73 static int restore_selected_frame (void *);
74
75 static int follow_fork (void);
76
77 static void set_schedlock_func (char *args, int from_tty,
78 struct cmd_list_element *c);
79
80 static int currently_stepping (struct thread_info *tp);
81
82 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
83 void *data);
84
85 static void xdb_handle_command (char *args, int from_tty);
86
87 static int prepare_to_proceed (int);
88
89 static void print_exited_reason (int exitstatus);
90
91 static void print_signal_exited_reason (enum target_signal siggnal);
92
93 static void print_no_history_reason (void);
94
95 static void print_signal_received_reason (enum target_signal siggnal);
96
97 static void print_end_stepping_range_reason (void);
98
99 void _initialize_infrun (void);
100
101 void nullify_last_target_wait_ptid (void);
102
103 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
104
105 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
106
107 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
108
109 /* When set, stop the 'step' command if we enter a function which has
110 no line number information. The normal behavior is that we step
111 over such function. */
112 int step_stop_if_no_debug = 0;
113 static void
114 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c, const char *value)
116 {
117 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
118 }
119
120 /* In asynchronous mode, but simulating synchronous execution. */
121
122 int sync_execution = 0;
123
124 /* wait_for_inferior and normal_stop use this to notify the user
125 when the inferior stopped in a different thread than it had been
126 running in. */
127
128 static ptid_t previous_inferior_ptid;
129
130 /* Default behavior is to detach newly forked processes (legacy). */
131 int detach_fork = 1;
132
133 int debug_displaced = 0;
134 static void
135 show_debug_displaced (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137 {
138 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
139 }
140
141 int debug_infrun = 0;
142 static void
143 show_debug_infrun (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
147 }
148
149 /* If the program uses ELF-style shared libraries, then calls to
150 functions in shared libraries go through stubs, which live in a
151 table called the PLT (Procedure Linkage Table). The first time the
152 function is called, the stub sends control to the dynamic linker,
153 which looks up the function's real address, patches the stub so
154 that future calls will go directly to the function, and then passes
155 control to the function.
156
157 If we are stepping at the source level, we don't want to see any of
158 this --- we just want to skip over the stub and the dynamic linker.
159 The simple approach is to single-step until control leaves the
160 dynamic linker.
161
162 However, on some systems (e.g., Red Hat's 5.2 distribution) the
163 dynamic linker calls functions in the shared C library, so you
164 can't tell from the PC alone whether the dynamic linker is still
165 running. In this case, we use a step-resume breakpoint to get us
166 past the dynamic linker, as if we were using "next" to step over a
167 function call.
168
169 in_solib_dynsym_resolve_code() says whether we're in the dynamic
170 linker code or not. Normally, this means we single-step. However,
171 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
172 address where we can place a step-resume breakpoint to get past the
173 linker's symbol resolution function.
174
175 in_solib_dynsym_resolve_code() can generally be implemented in a
176 pretty portable way, by comparing the PC against the address ranges
177 of the dynamic linker's sections.
178
179 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
180 it depends on internal details of the dynamic linker. It's usually
181 not too hard to figure out where to put a breakpoint, but it
182 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
183 sanity checking. If it can't figure things out, returning zero and
184 getting the (possibly confusing) stepping behavior is better than
185 signalling an error, which will obscure the change in the
186 inferior's state. */
187
188 /* This function returns TRUE if pc is the address of an instruction
189 that lies within the dynamic linker (such as the event hook, or the
190 dld itself).
191
192 This function must be used only when a dynamic linker event has
193 been caught, and the inferior is being stepped out of the hook, or
194 undefined results are guaranteed. */
195
196 #ifndef SOLIB_IN_DYNAMIC_LINKER
197 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
198 #endif
199
200 /* "Observer mode" is somewhat like a more extreme version of
201 non-stop, in which all GDB operations that might affect the
202 target's execution have been disabled. */
203
204 static int non_stop_1 = 0;
205
206 int observer_mode = 0;
207 static int observer_mode_1 = 0;
208
209 static void
210 set_observer_mode (char *args, int from_tty,
211 struct cmd_list_element *c)
212 {
213 extern int pagination_enabled;
214
215 if (target_has_execution)
216 {
217 observer_mode_1 = observer_mode;
218 error (_("Cannot change this setting while the inferior is running."));
219 }
220
221 observer_mode = observer_mode_1;
222
223 may_write_registers = !observer_mode;
224 may_write_memory = !observer_mode;
225 may_insert_breakpoints = !observer_mode;
226 may_insert_tracepoints = !observer_mode;
227 /* We can insert fast tracepoints in or out of observer mode,
228 but enable them if we're going into this mode. */
229 if (observer_mode)
230 may_insert_fast_tracepoints = 1;
231 may_stop = !observer_mode;
232 update_target_permissions ();
233
234 /* Going *into* observer mode we must force non-stop, then
235 going out we leave it that way. */
236 if (observer_mode)
237 {
238 target_async_permitted = 1;
239 pagination_enabled = 0;
240 non_stop = non_stop_1 = 1;
241 }
242
243 if (from_tty)
244 printf_filtered (_("Observer mode is now %s.\n"),
245 (observer_mode ? "on" : "off"));
246 }
247
248 static void
249 show_observer_mode (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251 {
252 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
253 }
254
255 /* This updates the value of observer mode based on changes in
256 permissions. Note that we are deliberately ignoring the values of
257 may-write-registers and may-write-memory, since the user may have
258 reason to enable these during a session, for instance to turn on a
259 debugging-related global. */
260
261 void
262 update_observer_mode (void)
263 {
264 int newval;
265
266 newval = (!may_insert_breakpoints
267 && !may_insert_tracepoints
268 && may_insert_fast_tracepoints
269 && !may_stop
270 && non_stop);
271
272 /* Let the user know if things change. */
273 if (newval != observer_mode)
274 printf_filtered (_("Observer mode is now %s.\n"),
275 (newval ? "on" : "off"));
276
277 observer_mode = observer_mode_1 = newval;
278 }
279
280 /* Tables of how to react to signals; the user sets them. */
281
282 static unsigned char *signal_stop;
283 static unsigned char *signal_print;
284 static unsigned char *signal_program;
285
286 /* Table of signals that the target may silently handle.
287 This is automatically determined from the flags above,
288 and simply cached here. */
289 static unsigned char *signal_pass;
290
291 #define SET_SIGS(nsigs,sigs,flags) \
292 do { \
293 int signum = (nsigs); \
294 while (signum-- > 0) \
295 if ((sigs)[signum]) \
296 (flags)[signum] = 1; \
297 } while (0)
298
299 #define UNSET_SIGS(nsigs,sigs,flags) \
300 do { \
301 int signum = (nsigs); \
302 while (signum-- > 0) \
303 if ((sigs)[signum]) \
304 (flags)[signum] = 0; \
305 } while (0)
306
307 /* Value to pass to target_resume() to cause all threads to resume. */
308
309 #define RESUME_ALL minus_one_ptid
310
311 /* Command list pointer for the "stop" placeholder. */
312
313 static struct cmd_list_element *stop_command;
314
315 /* Function inferior was in as of last step command. */
316
317 static struct symbol *step_start_function;
318
319 /* Nonzero if we want to give control to the user when we're notified
320 of shared library events by the dynamic linker. */
321 int stop_on_solib_events;
322 static void
323 show_stop_on_solib_events (struct ui_file *file, int from_tty,
324 struct cmd_list_element *c, const char *value)
325 {
326 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
327 value);
328 }
329
330 /* Nonzero means expecting a trace trap
331 and should stop the inferior and return silently when it happens. */
332
333 int stop_after_trap;
334
335 /* Save register contents here when executing a "finish" command or are
336 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
337 Thus this contains the return value from the called function (assuming
338 values are returned in a register). */
339
340 struct regcache *stop_registers;
341
342 /* Nonzero after stop if current stack frame should be printed. */
343
344 static int stop_print_frame;
345
346 /* This is a cached copy of the pid/waitstatus of the last event
347 returned by target_wait()/deprecated_target_wait_hook(). This
348 information is returned by get_last_target_status(). */
349 static ptid_t target_last_wait_ptid;
350 static struct target_waitstatus target_last_waitstatus;
351
352 static void context_switch (ptid_t ptid);
353
354 void init_thread_stepping_state (struct thread_info *tss);
355
356 void init_infwait_state (void);
357
358 static const char follow_fork_mode_child[] = "child";
359 static const char follow_fork_mode_parent[] = "parent";
360
361 static const char *follow_fork_mode_kind_names[] = {
362 follow_fork_mode_child,
363 follow_fork_mode_parent,
364 NULL
365 };
366
367 static const char *follow_fork_mode_string = follow_fork_mode_parent;
368 static void
369 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
370 struct cmd_list_element *c, const char *value)
371 {
372 fprintf_filtered (file,
373 _("Debugger response to a program "
374 "call of fork or vfork is \"%s\".\n"),
375 value);
376 }
377 \f
378
379 /* Tell the target to follow the fork we're stopped at. Returns true
380 if the inferior should be resumed; false, if the target for some
381 reason decided it's best not to resume. */
382
383 static int
384 follow_fork (void)
385 {
386 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
387 int should_resume = 1;
388 struct thread_info *tp;
389
390 /* Copy user stepping state to the new inferior thread. FIXME: the
391 followed fork child thread should have a copy of most of the
392 parent thread structure's run control related fields, not just these.
393 Initialized to avoid "may be used uninitialized" warnings from gcc. */
394 struct breakpoint *step_resume_breakpoint = NULL;
395 struct breakpoint *exception_resume_breakpoint = NULL;
396 CORE_ADDR step_range_start = 0;
397 CORE_ADDR step_range_end = 0;
398 struct frame_id step_frame_id = { 0 };
399
400 if (!non_stop)
401 {
402 ptid_t wait_ptid;
403 struct target_waitstatus wait_status;
404
405 /* Get the last target status returned by target_wait(). */
406 get_last_target_status (&wait_ptid, &wait_status);
407
408 /* If not stopped at a fork event, then there's nothing else to
409 do. */
410 if (wait_status.kind != TARGET_WAITKIND_FORKED
411 && wait_status.kind != TARGET_WAITKIND_VFORKED)
412 return 1;
413
414 /* Check if we switched over from WAIT_PTID, since the event was
415 reported. */
416 if (!ptid_equal (wait_ptid, minus_one_ptid)
417 && !ptid_equal (inferior_ptid, wait_ptid))
418 {
419 /* We did. Switch back to WAIT_PTID thread, to tell the
420 target to follow it (in either direction). We'll
421 afterwards refuse to resume, and inform the user what
422 happened. */
423 switch_to_thread (wait_ptid);
424 should_resume = 0;
425 }
426 }
427
428 tp = inferior_thread ();
429
430 /* If there were any forks/vforks that were caught and are now to be
431 followed, then do so now. */
432 switch (tp->pending_follow.kind)
433 {
434 case TARGET_WAITKIND_FORKED:
435 case TARGET_WAITKIND_VFORKED:
436 {
437 ptid_t parent, child;
438
439 /* If the user did a next/step, etc, over a fork call,
440 preserve the stepping state in the fork child. */
441 if (follow_child && should_resume)
442 {
443 step_resume_breakpoint = clone_momentary_breakpoint
444 (tp->control.step_resume_breakpoint);
445 step_range_start = tp->control.step_range_start;
446 step_range_end = tp->control.step_range_end;
447 step_frame_id = tp->control.step_frame_id;
448 exception_resume_breakpoint
449 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
450
451 /* For now, delete the parent's sr breakpoint, otherwise,
452 parent/child sr breakpoints are considered duplicates,
453 and the child version will not be installed. Remove
454 this when the breakpoints module becomes aware of
455 inferiors and address spaces. */
456 delete_step_resume_breakpoint (tp);
457 tp->control.step_range_start = 0;
458 tp->control.step_range_end = 0;
459 tp->control.step_frame_id = null_frame_id;
460 delete_exception_resume_breakpoint (tp);
461 }
462
463 parent = inferior_ptid;
464 child = tp->pending_follow.value.related_pid;
465
466 /* Tell the target to do whatever is necessary to follow
467 either parent or child. */
468 if (target_follow_fork (follow_child))
469 {
470 /* Target refused to follow, or there's some other reason
471 we shouldn't resume. */
472 should_resume = 0;
473 }
474 else
475 {
476 /* This pending follow fork event is now handled, one way
477 or another. The previous selected thread may be gone
478 from the lists by now, but if it is still around, need
479 to clear the pending follow request. */
480 tp = find_thread_ptid (parent);
481 if (tp)
482 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
483
484 /* This makes sure we don't try to apply the "Switched
485 over from WAIT_PID" logic above. */
486 nullify_last_target_wait_ptid ();
487
488 /* If we followed the child, switch to it... */
489 if (follow_child)
490 {
491 switch_to_thread (child);
492
493 /* ... and preserve the stepping state, in case the
494 user was stepping over the fork call. */
495 if (should_resume)
496 {
497 tp = inferior_thread ();
498 tp->control.step_resume_breakpoint
499 = step_resume_breakpoint;
500 tp->control.step_range_start = step_range_start;
501 tp->control.step_range_end = step_range_end;
502 tp->control.step_frame_id = step_frame_id;
503 tp->control.exception_resume_breakpoint
504 = exception_resume_breakpoint;
505 }
506 else
507 {
508 /* If we get here, it was because we're trying to
509 resume from a fork catchpoint, but, the user
510 has switched threads away from the thread that
511 forked. In that case, the resume command
512 issued is most likely not applicable to the
513 child, so just warn, and refuse to resume. */
514 warning (_("Not resuming: switched threads "
515 "before following fork child.\n"));
516 }
517
518 /* Reset breakpoints in the child as appropriate. */
519 follow_inferior_reset_breakpoints ();
520 }
521 else
522 switch_to_thread (parent);
523 }
524 }
525 break;
526 case TARGET_WAITKIND_SPURIOUS:
527 /* Nothing to follow. */
528 break;
529 default:
530 internal_error (__FILE__, __LINE__,
531 "Unexpected pending_follow.kind %d\n",
532 tp->pending_follow.kind);
533 break;
534 }
535
536 return should_resume;
537 }
538
539 void
540 follow_inferior_reset_breakpoints (void)
541 {
542 struct thread_info *tp = inferior_thread ();
543
544 /* Was there a step_resume breakpoint? (There was if the user
545 did a "next" at the fork() call.) If so, explicitly reset its
546 thread number.
547
548 step_resumes are a form of bp that are made to be per-thread.
549 Since we created the step_resume bp when the parent process
550 was being debugged, and now are switching to the child process,
551 from the breakpoint package's viewpoint, that's a switch of
552 "threads". We must update the bp's notion of which thread
553 it is for, or it'll be ignored when it triggers. */
554
555 if (tp->control.step_resume_breakpoint)
556 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
557
558 if (tp->control.exception_resume_breakpoint)
559 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
560
561 /* Reinsert all breakpoints in the child. The user may have set
562 breakpoints after catching the fork, in which case those
563 were never set in the child, but only in the parent. This makes
564 sure the inserted breakpoints match the breakpoint list. */
565
566 breakpoint_re_set ();
567 insert_breakpoints ();
568 }
569
570 /* The child has exited or execed: resume threads of the parent the
571 user wanted to be executing. */
572
573 static int
574 proceed_after_vfork_done (struct thread_info *thread,
575 void *arg)
576 {
577 int pid = * (int *) arg;
578
579 if (ptid_get_pid (thread->ptid) == pid
580 && is_running (thread->ptid)
581 && !is_executing (thread->ptid)
582 && !thread->stop_requested
583 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
584 {
585 if (debug_infrun)
586 fprintf_unfiltered (gdb_stdlog,
587 "infrun: resuming vfork parent thread %s\n",
588 target_pid_to_str (thread->ptid));
589
590 switch_to_thread (thread->ptid);
591 clear_proceed_status ();
592 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
593 }
594
595 return 0;
596 }
597
598 /* Called whenever we notice an exec or exit event, to handle
599 detaching or resuming a vfork parent. */
600
601 static void
602 handle_vfork_child_exec_or_exit (int exec)
603 {
604 struct inferior *inf = current_inferior ();
605
606 if (inf->vfork_parent)
607 {
608 int resume_parent = -1;
609
610 /* This exec or exit marks the end of the shared memory region
611 between the parent and the child. If the user wanted to
612 detach from the parent, now is the time. */
613
614 if (inf->vfork_parent->pending_detach)
615 {
616 struct thread_info *tp;
617 struct cleanup *old_chain;
618 struct program_space *pspace;
619 struct address_space *aspace;
620
621 /* follow-fork child, detach-on-fork on. */
622
623 old_chain = make_cleanup_restore_current_thread ();
624
625 /* We're letting loose of the parent. */
626 tp = any_live_thread_of_process (inf->vfork_parent->pid);
627 switch_to_thread (tp->ptid);
628
629 /* We're about to detach from the parent, which implicitly
630 removes breakpoints from its address space. There's a
631 catch here: we want to reuse the spaces for the child,
632 but, parent/child are still sharing the pspace at this
633 point, although the exec in reality makes the kernel give
634 the child a fresh set of new pages. The problem here is
635 that the breakpoints module being unaware of this, would
636 likely chose the child process to write to the parent
637 address space. Swapping the child temporarily away from
638 the spaces has the desired effect. Yes, this is "sort
639 of" a hack. */
640
641 pspace = inf->pspace;
642 aspace = inf->aspace;
643 inf->aspace = NULL;
644 inf->pspace = NULL;
645
646 if (debug_infrun || info_verbose)
647 {
648 target_terminal_ours ();
649
650 if (exec)
651 fprintf_filtered (gdb_stdlog,
652 "Detaching vfork parent process "
653 "%d after child exec.\n",
654 inf->vfork_parent->pid);
655 else
656 fprintf_filtered (gdb_stdlog,
657 "Detaching vfork parent process "
658 "%d after child exit.\n",
659 inf->vfork_parent->pid);
660 }
661
662 target_detach (NULL, 0);
663
664 /* Put it back. */
665 inf->pspace = pspace;
666 inf->aspace = aspace;
667
668 do_cleanups (old_chain);
669 }
670 else if (exec)
671 {
672 /* We're staying attached to the parent, so, really give the
673 child a new address space. */
674 inf->pspace = add_program_space (maybe_new_address_space ());
675 inf->aspace = inf->pspace->aspace;
676 inf->removable = 1;
677 set_current_program_space (inf->pspace);
678
679 resume_parent = inf->vfork_parent->pid;
680
681 /* Break the bonds. */
682 inf->vfork_parent->vfork_child = NULL;
683 }
684 else
685 {
686 struct cleanup *old_chain;
687 struct program_space *pspace;
688
689 /* If this is a vfork child exiting, then the pspace and
690 aspaces were shared with the parent. Since we're
691 reporting the process exit, we'll be mourning all that is
692 found in the address space, and switching to null_ptid,
693 preparing to start a new inferior. But, since we don't
694 want to clobber the parent's address/program spaces, we
695 go ahead and create a new one for this exiting
696 inferior. */
697
698 /* Switch to null_ptid, so that clone_program_space doesn't want
699 to read the selected frame of a dead process. */
700 old_chain = save_inferior_ptid ();
701 inferior_ptid = null_ptid;
702
703 /* This inferior is dead, so avoid giving the breakpoints
704 module the option to write through to it (cloning a
705 program space resets breakpoints). */
706 inf->aspace = NULL;
707 inf->pspace = NULL;
708 pspace = add_program_space (maybe_new_address_space ());
709 set_current_program_space (pspace);
710 inf->removable = 1;
711 clone_program_space (pspace, inf->vfork_parent->pspace);
712 inf->pspace = pspace;
713 inf->aspace = pspace->aspace;
714
715 /* Put back inferior_ptid. We'll continue mourning this
716 inferior. */
717 do_cleanups (old_chain);
718
719 resume_parent = inf->vfork_parent->pid;
720 /* Break the bonds. */
721 inf->vfork_parent->vfork_child = NULL;
722 }
723
724 inf->vfork_parent = NULL;
725
726 gdb_assert (current_program_space == inf->pspace);
727
728 if (non_stop && resume_parent != -1)
729 {
730 /* If the user wanted the parent to be running, let it go
731 free now. */
732 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
733
734 if (debug_infrun)
735 fprintf_unfiltered (gdb_stdlog,
736 "infrun: resuming vfork parent process %d\n",
737 resume_parent);
738
739 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
740
741 do_cleanups (old_chain);
742 }
743 }
744 }
745
746 /* Enum strings for "set|show displaced-stepping". */
747
748 static const char follow_exec_mode_new[] = "new";
749 static const char follow_exec_mode_same[] = "same";
750 static const char *follow_exec_mode_names[] =
751 {
752 follow_exec_mode_new,
753 follow_exec_mode_same,
754 NULL,
755 };
756
757 static const char *follow_exec_mode_string = follow_exec_mode_same;
758 static void
759 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
760 struct cmd_list_element *c, const char *value)
761 {
762 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
763 }
764
765 /* EXECD_PATHNAME is assumed to be non-NULL. */
766
767 static void
768 follow_exec (ptid_t pid, char *execd_pathname)
769 {
770 struct thread_info *th = inferior_thread ();
771 struct inferior *inf = current_inferior ();
772
773 /* This is an exec event that we actually wish to pay attention to.
774 Refresh our symbol table to the newly exec'd program, remove any
775 momentary bp's, etc.
776
777 If there are breakpoints, they aren't really inserted now,
778 since the exec() transformed our inferior into a fresh set
779 of instructions.
780
781 We want to preserve symbolic breakpoints on the list, since
782 we have hopes that they can be reset after the new a.out's
783 symbol table is read.
784
785 However, any "raw" breakpoints must be removed from the list
786 (e.g., the solib bp's), since their address is probably invalid
787 now.
788
789 And, we DON'T want to call delete_breakpoints() here, since
790 that may write the bp's "shadow contents" (the instruction
791 value that was overwritten witha TRAP instruction). Since
792 we now have a new a.out, those shadow contents aren't valid. */
793
794 mark_breakpoints_out ();
795
796 update_breakpoints_after_exec ();
797
798 /* If there was one, it's gone now. We cannot truly step-to-next
799 statement through an exec(). */
800 th->control.step_resume_breakpoint = NULL;
801 th->control.exception_resume_breakpoint = NULL;
802 th->control.step_range_start = 0;
803 th->control.step_range_end = 0;
804
805 /* The target reports the exec event to the main thread, even if
806 some other thread does the exec, and even if the main thread was
807 already stopped --- if debugging in non-stop mode, it's possible
808 the user had the main thread held stopped in the previous image
809 --- release it now. This is the same behavior as step-over-exec
810 with scheduler-locking on in all-stop mode. */
811 th->stop_requested = 0;
812
813 /* What is this a.out's name? */
814 printf_unfiltered (_("%s is executing new program: %s\n"),
815 target_pid_to_str (inferior_ptid),
816 execd_pathname);
817
818 /* We've followed the inferior through an exec. Therefore, the
819 inferior has essentially been killed & reborn. */
820
821 gdb_flush (gdb_stdout);
822
823 breakpoint_init_inferior (inf_execd);
824
825 if (gdb_sysroot && *gdb_sysroot)
826 {
827 char *name = alloca (strlen (gdb_sysroot)
828 + strlen (execd_pathname)
829 + 1);
830
831 strcpy (name, gdb_sysroot);
832 strcat (name, execd_pathname);
833 execd_pathname = name;
834 }
835
836 /* Reset the shared library package. This ensures that we get a
837 shlib event when the child reaches "_start", at which point the
838 dld will have had a chance to initialize the child. */
839 /* Also, loading a symbol file below may trigger symbol lookups, and
840 we don't want those to be satisfied by the libraries of the
841 previous incarnation of this process. */
842 no_shared_libraries (NULL, 0);
843
844 if (follow_exec_mode_string == follow_exec_mode_new)
845 {
846 struct program_space *pspace;
847
848 /* The user wants to keep the old inferior and program spaces
849 around. Create a new fresh one, and switch to it. */
850
851 inf = add_inferior (current_inferior ()->pid);
852 pspace = add_program_space (maybe_new_address_space ());
853 inf->pspace = pspace;
854 inf->aspace = pspace->aspace;
855
856 exit_inferior_num_silent (current_inferior ()->num);
857
858 set_current_inferior (inf);
859 set_current_program_space (pspace);
860 }
861
862 gdb_assert (current_program_space == inf->pspace);
863
864 /* That a.out is now the one to use. */
865 exec_file_attach (execd_pathname, 0);
866
867 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
868 (Position Independent Executable) main symbol file will get applied by
869 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
870 the breakpoints with the zero displacement. */
871
872 symbol_file_add (execd_pathname, SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET,
873 NULL, 0);
874
875 set_initial_language ();
876
877 #ifdef SOLIB_CREATE_INFERIOR_HOOK
878 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
879 #else
880 solib_create_inferior_hook (0);
881 #endif
882
883 jit_inferior_created_hook ();
884
885 breakpoint_re_set ();
886
887 /* Reinsert all breakpoints. (Those which were symbolic have
888 been reset to the proper address in the new a.out, thanks
889 to symbol_file_command...). */
890 insert_breakpoints ();
891
892 /* The next resume of this inferior should bring it to the shlib
893 startup breakpoints. (If the user had also set bp's on
894 "main" from the old (parent) process, then they'll auto-
895 matically get reset there in the new process.). */
896 }
897
898 /* Non-zero if we just simulating a single-step. This is needed
899 because we cannot remove the breakpoints in the inferior process
900 until after the `wait' in `wait_for_inferior'. */
901 static int singlestep_breakpoints_inserted_p = 0;
902
903 /* The thread we inserted single-step breakpoints for. */
904 static ptid_t singlestep_ptid;
905
906 /* PC when we started this single-step. */
907 static CORE_ADDR singlestep_pc;
908
909 /* If another thread hit the singlestep breakpoint, we save the original
910 thread here so that we can resume single-stepping it later. */
911 static ptid_t saved_singlestep_ptid;
912 static int stepping_past_singlestep_breakpoint;
913
914 /* If not equal to null_ptid, this means that after stepping over breakpoint
915 is finished, we need to switch to deferred_step_ptid, and step it.
916
917 The use case is when one thread has hit a breakpoint, and then the user
918 has switched to another thread and issued 'step'. We need to step over
919 breakpoint in the thread which hit the breakpoint, but then continue
920 stepping the thread user has selected. */
921 static ptid_t deferred_step_ptid;
922 \f
923 /* Displaced stepping. */
924
925 /* In non-stop debugging mode, we must take special care to manage
926 breakpoints properly; in particular, the traditional strategy for
927 stepping a thread past a breakpoint it has hit is unsuitable.
928 'Displaced stepping' is a tactic for stepping one thread past a
929 breakpoint it has hit while ensuring that other threads running
930 concurrently will hit the breakpoint as they should.
931
932 The traditional way to step a thread T off a breakpoint in a
933 multi-threaded program in all-stop mode is as follows:
934
935 a0) Initially, all threads are stopped, and breakpoints are not
936 inserted.
937 a1) We single-step T, leaving breakpoints uninserted.
938 a2) We insert breakpoints, and resume all threads.
939
940 In non-stop debugging, however, this strategy is unsuitable: we
941 don't want to have to stop all threads in the system in order to
942 continue or step T past a breakpoint. Instead, we use displaced
943 stepping:
944
945 n0) Initially, T is stopped, other threads are running, and
946 breakpoints are inserted.
947 n1) We copy the instruction "under" the breakpoint to a separate
948 location, outside the main code stream, making any adjustments
949 to the instruction, register, and memory state as directed by
950 T's architecture.
951 n2) We single-step T over the instruction at its new location.
952 n3) We adjust the resulting register and memory state as directed
953 by T's architecture. This includes resetting T's PC to point
954 back into the main instruction stream.
955 n4) We resume T.
956
957 This approach depends on the following gdbarch methods:
958
959 - gdbarch_max_insn_length and gdbarch_displaced_step_location
960 indicate where to copy the instruction, and how much space must
961 be reserved there. We use these in step n1.
962
963 - gdbarch_displaced_step_copy_insn copies a instruction to a new
964 address, and makes any necessary adjustments to the instruction,
965 register contents, and memory. We use this in step n1.
966
967 - gdbarch_displaced_step_fixup adjusts registers and memory after
968 we have successfuly single-stepped the instruction, to yield the
969 same effect the instruction would have had if we had executed it
970 at its original address. We use this in step n3.
971
972 - gdbarch_displaced_step_free_closure provides cleanup.
973
974 The gdbarch_displaced_step_copy_insn and
975 gdbarch_displaced_step_fixup functions must be written so that
976 copying an instruction with gdbarch_displaced_step_copy_insn,
977 single-stepping across the copied instruction, and then applying
978 gdbarch_displaced_insn_fixup should have the same effects on the
979 thread's memory and registers as stepping the instruction in place
980 would have. Exactly which responsibilities fall to the copy and
981 which fall to the fixup is up to the author of those functions.
982
983 See the comments in gdbarch.sh for details.
984
985 Note that displaced stepping and software single-step cannot
986 currently be used in combination, although with some care I think
987 they could be made to. Software single-step works by placing
988 breakpoints on all possible subsequent instructions; if the
989 displaced instruction is a PC-relative jump, those breakpoints
990 could fall in very strange places --- on pages that aren't
991 executable, or at addresses that are not proper instruction
992 boundaries. (We do generally let other threads run while we wait
993 to hit the software single-step breakpoint, and they might
994 encounter such a corrupted instruction.) One way to work around
995 this would be to have gdbarch_displaced_step_copy_insn fully
996 simulate the effect of PC-relative instructions (and return NULL)
997 on architectures that use software single-stepping.
998
999 In non-stop mode, we can have independent and simultaneous step
1000 requests, so more than one thread may need to simultaneously step
1001 over a breakpoint. The current implementation assumes there is
1002 only one scratch space per process. In this case, we have to
1003 serialize access to the scratch space. If thread A wants to step
1004 over a breakpoint, but we are currently waiting for some other
1005 thread to complete a displaced step, we leave thread A stopped and
1006 place it in the displaced_step_request_queue. Whenever a displaced
1007 step finishes, we pick the next thread in the queue and start a new
1008 displaced step operation on it. See displaced_step_prepare and
1009 displaced_step_fixup for details. */
1010
1011 struct displaced_step_request
1012 {
1013 ptid_t ptid;
1014 struct displaced_step_request *next;
1015 };
1016
1017 /* Per-inferior displaced stepping state. */
1018 struct displaced_step_inferior_state
1019 {
1020 /* Pointer to next in linked list. */
1021 struct displaced_step_inferior_state *next;
1022
1023 /* The process this displaced step state refers to. */
1024 int pid;
1025
1026 /* A queue of pending displaced stepping requests. One entry per
1027 thread that needs to do a displaced step. */
1028 struct displaced_step_request *step_request_queue;
1029
1030 /* If this is not null_ptid, this is the thread carrying out a
1031 displaced single-step in process PID. This thread's state will
1032 require fixing up once it has completed its step. */
1033 ptid_t step_ptid;
1034
1035 /* The architecture the thread had when we stepped it. */
1036 struct gdbarch *step_gdbarch;
1037
1038 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1039 for post-step cleanup. */
1040 struct displaced_step_closure *step_closure;
1041
1042 /* The address of the original instruction, and the copy we
1043 made. */
1044 CORE_ADDR step_original, step_copy;
1045
1046 /* Saved contents of copy area. */
1047 gdb_byte *step_saved_copy;
1048 };
1049
1050 /* The list of states of processes involved in displaced stepping
1051 presently. */
1052 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1053
1054 /* Get the displaced stepping state of process PID. */
1055
1056 static struct displaced_step_inferior_state *
1057 get_displaced_stepping_state (int pid)
1058 {
1059 struct displaced_step_inferior_state *state;
1060
1061 for (state = displaced_step_inferior_states;
1062 state != NULL;
1063 state = state->next)
1064 if (state->pid == pid)
1065 return state;
1066
1067 return NULL;
1068 }
1069
1070 /* Add a new displaced stepping state for process PID to the displaced
1071 stepping state list, or return a pointer to an already existing
1072 entry, if it already exists. Never returns NULL. */
1073
1074 static struct displaced_step_inferior_state *
1075 add_displaced_stepping_state (int pid)
1076 {
1077 struct displaced_step_inferior_state *state;
1078
1079 for (state = displaced_step_inferior_states;
1080 state != NULL;
1081 state = state->next)
1082 if (state->pid == pid)
1083 return state;
1084
1085 state = xcalloc (1, sizeof (*state));
1086 state->pid = pid;
1087 state->next = displaced_step_inferior_states;
1088 displaced_step_inferior_states = state;
1089
1090 return state;
1091 }
1092
1093 /* If inferior is in displaced stepping, and ADDR equals to starting address
1094 of copy area, return corresponding displaced_step_closure. Otherwise,
1095 return NULL. */
1096
1097 struct displaced_step_closure*
1098 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1099 {
1100 struct displaced_step_inferior_state *displaced
1101 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1102
1103 /* If checking the mode of displaced instruction in copy area. */
1104 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1105 && (displaced->step_copy == addr))
1106 return displaced->step_closure;
1107
1108 return NULL;
1109 }
1110
1111 /* Remove the displaced stepping state of process PID. */
1112
1113 static void
1114 remove_displaced_stepping_state (int pid)
1115 {
1116 struct displaced_step_inferior_state *it, **prev_next_p;
1117
1118 gdb_assert (pid != 0);
1119
1120 it = displaced_step_inferior_states;
1121 prev_next_p = &displaced_step_inferior_states;
1122 while (it)
1123 {
1124 if (it->pid == pid)
1125 {
1126 *prev_next_p = it->next;
1127 xfree (it);
1128 return;
1129 }
1130
1131 prev_next_p = &it->next;
1132 it = *prev_next_p;
1133 }
1134 }
1135
1136 static void
1137 infrun_inferior_exit (struct inferior *inf)
1138 {
1139 remove_displaced_stepping_state (inf->pid);
1140 }
1141
1142 /* Enum strings for "set|show displaced-stepping". */
1143
1144 static const char can_use_displaced_stepping_auto[] = "auto";
1145 static const char can_use_displaced_stepping_on[] = "on";
1146 static const char can_use_displaced_stepping_off[] = "off";
1147 static const char *can_use_displaced_stepping_enum[] =
1148 {
1149 can_use_displaced_stepping_auto,
1150 can_use_displaced_stepping_on,
1151 can_use_displaced_stepping_off,
1152 NULL,
1153 };
1154
1155 /* If ON, and the architecture supports it, GDB will use displaced
1156 stepping to step over breakpoints. If OFF, or if the architecture
1157 doesn't support it, GDB will instead use the traditional
1158 hold-and-step approach. If AUTO (which is the default), GDB will
1159 decide which technique to use to step over breakpoints depending on
1160 which of all-stop or non-stop mode is active --- displaced stepping
1161 in non-stop mode; hold-and-step in all-stop mode. */
1162
1163 static const char *can_use_displaced_stepping =
1164 can_use_displaced_stepping_auto;
1165
1166 static void
1167 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1168 struct cmd_list_element *c,
1169 const char *value)
1170 {
1171 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
1172 fprintf_filtered (file,
1173 _("Debugger's willingness to use displaced stepping "
1174 "to step over breakpoints is %s (currently %s).\n"),
1175 value, non_stop ? "on" : "off");
1176 else
1177 fprintf_filtered (file,
1178 _("Debugger's willingness to use displaced stepping "
1179 "to step over breakpoints is %s.\n"), value);
1180 }
1181
1182 /* Return non-zero if displaced stepping can/should be used to step
1183 over breakpoints. */
1184
1185 static int
1186 use_displaced_stepping (struct gdbarch *gdbarch)
1187 {
1188 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1189 && non_stop)
1190 || can_use_displaced_stepping == can_use_displaced_stepping_on)
1191 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1192 && !RECORD_IS_USED);
1193 }
1194
1195 /* Clean out any stray displaced stepping state. */
1196 static void
1197 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1198 {
1199 /* Indicate that there is no cleanup pending. */
1200 displaced->step_ptid = null_ptid;
1201
1202 if (displaced->step_closure)
1203 {
1204 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1205 displaced->step_closure);
1206 displaced->step_closure = NULL;
1207 }
1208 }
1209
1210 static void
1211 displaced_step_clear_cleanup (void *arg)
1212 {
1213 struct displaced_step_inferior_state *state = arg;
1214
1215 displaced_step_clear (state);
1216 }
1217
1218 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1219 void
1220 displaced_step_dump_bytes (struct ui_file *file,
1221 const gdb_byte *buf,
1222 size_t len)
1223 {
1224 int i;
1225
1226 for (i = 0; i < len; i++)
1227 fprintf_unfiltered (file, "%02x ", buf[i]);
1228 fputs_unfiltered ("\n", file);
1229 }
1230
1231 /* Prepare to single-step, using displaced stepping.
1232
1233 Note that we cannot use displaced stepping when we have a signal to
1234 deliver. If we have a signal to deliver and an instruction to step
1235 over, then after the step, there will be no indication from the
1236 target whether the thread entered a signal handler or ignored the
1237 signal and stepped over the instruction successfully --- both cases
1238 result in a simple SIGTRAP. In the first case we mustn't do a
1239 fixup, and in the second case we must --- but we can't tell which.
1240 Comments in the code for 'random signals' in handle_inferior_event
1241 explain how we handle this case instead.
1242
1243 Returns 1 if preparing was successful -- this thread is going to be
1244 stepped now; or 0 if displaced stepping this thread got queued. */
1245 static int
1246 displaced_step_prepare (ptid_t ptid)
1247 {
1248 struct cleanup *old_cleanups, *ignore_cleanups;
1249 struct regcache *regcache = get_thread_regcache (ptid);
1250 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1251 CORE_ADDR original, copy;
1252 ULONGEST len;
1253 struct displaced_step_closure *closure;
1254 struct displaced_step_inferior_state *displaced;
1255
1256 /* We should never reach this function if the architecture does not
1257 support displaced stepping. */
1258 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1259
1260 /* We have to displaced step one thread at a time, as we only have
1261 access to a single scratch space per inferior. */
1262
1263 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1264
1265 if (!ptid_equal (displaced->step_ptid, null_ptid))
1266 {
1267 /* Already waiting for a displaced step to finish. Defer this
1268 request and place in queue. */
1269 struct displaced_step_request *req, *new_req;
1270
1271 if (debug_displaced)
1272 fprintf_unfiltered (gdb_stdlog,
1273 "displaced: defering step of %s\n",
1274 target_pid_to_str (ptid));
1275
1276 new_req = xmalloc (sizeof (*new_req));
1277 new_req->ptid = ptid;
1278 new_req->next = NULL;
1279
1280 if (displaced->step_request_queue)
1281 {
1282 for (req = displaced->step_request_queue;
1283 req && req->next;
1284 req = req->next)
1285 ;
1286 req->next = new_req;
1287 }
1288 else
1289 displaced->step_request_queue = new_req;
1290
1291 return 0;
1292 }
1293 else
1294 {
1295 if (debug_displaced)
1296 fprintf_unfiltered (gdb_stdlog,
1297 "displaced: stepping %s now\n",
1298 target_pid_to_str (ptid));
1299 }
1300
1301 displaced_step_clear (displaced);
1302
1303 old_cleanups = save_inferior_ptid ();
1304 inferior_ptid = ptid;
1305
1306 original = regcache_read_pc (regcache);
1307
1308 copy = gdbarch_displaced_step_location (gdbarch);
1309 len = gdbarch_max_insn_length (gdbarch);
1310
1311 /* Save the original contents of the copy area. */
1312 displaced->step_saved_copy = xmalloc (len);
1313 ignore_cleanups = make_cleanup (free_current_contents,
1314 &displaced->step_saved_copy);
1315 read_memory (copy, displaced->step_saved_copy, len);
1316 if (debug_displaced)
1317 {
1318 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1319 paddress (gdbarch, copy));
1320 displaced_step_dump_bytes (gdb_stdlog,
1321 displaced->step_saved_copy,
1322 len);
1323 };
1324
1325 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1326 original, copy, regcache);
1327
1328 /* We don't support the fully-simulated case at present. */
1329 gdb_assert (closure);
1330
1331 /* Save the information we need to fix things up if the step
1332 succeeds. */
1333 displaced->step_ptid = ptid;
1334 displaced->step_gdbarch = gdbarch;
1335 displaced->step_closure = closure;
1336 displaced->step_original = original;
1337 displaced->step_copy = copy;
1338
1339 make_cleanup (displaced_step_clear_cleanup, displaced);
1340
1341 /* Resume execution at the copy. */
1342 regcache_write_pc (regcache, copy);
1343
1344 discard_cleanups (ignore_cleanups);
1345
1346 do_cleanups (old_cleanups);
1347
1348 if (debug_displaced)
1349 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1350 paddress (gdbarch, copy));
1351
1352 return 1;
1353 }
1354
1355 static void
1356 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1357 const gdb_byte *myaddr, int len)
1358 {
1359 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1360
1361 inferior_ptid = ptid;
1362 write_memory (memaddr, myaddr, len);
1363 do_cleanups (ptid_cleanup);
1364 }
1365
1366 static void
1367 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1368 {
1369 struct cleanup *old_cleanups;
1370 struct displaced_step_inferior_state *displaced
1371 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1372
1373 /* Was any thread of this process doing a displaced step? */
1374 if (displaced == NULL)
1375 return;
1376
1377 /* Was this event for the pid we displaced? */
1378 if (ptid_equal (displaced->step_ptid, null_ptid)
1379 || ! ptid_equal (displaced->step_ptid, event_ptid))
1380 return;
1381
1382 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1383
1384 /* Restore the contents of the copy area. */
1385 {
1386 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1387
1388 write_memory_ptid (displaced->step_ptid, displaced->step_copy,
1389 displaced->step_saved_copy, len);
1390 if (debug_displaced)
1391 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
1392 paddress (displaced->step_gdbarch,
1393 displaced->step_copy));
1394 }
1395
1396 /* Did the instruction complete successfully? */
1397 if (signal == TARGET_SIGNAL_TRAP)
1398 {
1399 /* Fix up the resulting state. */
1400 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1401 displaced->step_closure,
1402 displaced->step_original,
1403 displaced->step_copy,
1404 get_thread_regcache (displaced->step_ptid));
1405 }
1406 else
1407 {
1408 /* Since the instruction didn't complete, all we can do is
1409 relocate the PC. */
1410 struct regcache *regcache = get_thread_regcache (event_ptid);
1411 CORE_ADDR pc = regcache_read_pc (regcache);
1412
1413 pc = displaced->step_original + (pc - displaced->step_copy);
1414 regcache_write_pc (regcache, pc);
1415 }
1416
1417 do_cleanups (old_cleanups);
1418
1419 displaced->step_ptid = null_ptid;
1420
1421 /* Are there any pending displaced stepping requests? If so, run
1422 one now. Leave the state object around, since we're likely to
1423 need it again soon. */
1424 while (displaced->step_request_queue)
1425 {
1426 struct displaced_step_request *head;
1427 ptid_t ptid;
1428 struct regcache *regcache;
1429 struct gdbarch *gdbarch;
1430 CORE_ADDR actual_pc;
1431 struct address_space *aspace;
1432
1433 head = displaced->step_request_queue;
1434 ptid = head->ptid;
1435 displaced->step_request_queue = head->next;
1436 xfree (head);
1437
1438 context_switch (ptid);
1439
1440 regcache = get_thread_regcache (ptid);
1441 actual_pc = regcache_read_pc (regcache);
1442 aspace = get_regcache_aspace (regcache);
1443
1444 if (breakpoint_here_p (aspace, actual_pc))
1445 {
1446 if (debug_displaced)
1447 fprintf_unfiltered (gdb_stdlog,
1448 "displaced: stepping queued %s now\n",
1449 target_pid_to_str (ptid));
1450
1451 displaced_step_prepare (ptid);
1452
1453 gdbarch = get_regcache_arch (regcache);
1454
1455 if (debug_displaced)
1456 {
1457 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1458 gdb_byte buf[4];
1459
1460 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1461 paddress (gdbarch, actual_pc));
1462 read_memory (actual_pc, buf, sizeof (buf));
1463 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1464 }
1465
1466 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1467 displaced->step_closure))
1468 target_resume (ptid, 1, TARGET_SIGNAL_0);
1469 else
1470 target_resume (ptid, 0, TARGET_SIGNAL_0);
1471
1472 /* Done, we're stepping a thread. */
1473 break;
1474 }
1475 else
1476 {
1477 int step;
1478 struct thread_info *tp = inferior_thread ();
1479
1480 /* The breakpoint we were sitting under has since been
1481 removed. */
1482 tp->control.trap_expected = 0;
1483
1484 /* Go back to what we were trying to do. */
1485 step = currently_stepping (tp);
1486
1487 if (debug_displaced)
1488 fprintf_unfiltered (gdb_stdlog,
1489 "breakpoint is gone %s: step(%d)\n",
1490 target_pid_to_str (tp->ptid), step);
1491
1492 target_resume (ptid, step, TARGET_SIGNAL_0);
1493 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1494
1495 /* This request was discarded. See if there's any other
1496 thread waiting for its turn. */
1497 }
1498 }
1499 }
1500
1501 /* Update global variables holding ptids to hold NEW_PTID if they were
1502 holding OLD_PTID. */
1503 static void
1504 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1505 {
1506 struct displaced_step_request *it;
1507 struct displaced_step_inferior_state *displaced;
1508
1509 if (ptid_equal (inferior_ptid, old_ptid))
1510 inferior_ptid = new_ptid;
1511
1512 if (ptid_equal (singlestep_ptid, old_ptid))
1513 singlestep_ptid = new_ptid;
1514
1515 if (ptid_equal (deferred_step_ptid, old_ptid))
1516 deferred_step_ptid = new_ptid;
1517
1518 for (displaced = displaced_step_inferior_states;
1519 displaced;
1520 displaced = displaced->next)
1521 {
1522 if (ptid_equal (displaced->step_ptid, old_ptid))
1523 displaced->step_ptid = new_ptid;
1524
1525 for (it = displaced->step_request_queue; it; it = it->next)
1526 if (ptid_equal (it->ptid, old_ptid))
1527 it->ptid = new_ptid;
1528 }
1529 }
1530
1531 \f
1532 /* Resuming. */
1533
1534 /* Things to clean up if we QUIT out of resume (). */
1535 static void
1536 resume_cleanups (void *ignore)
1537 {
1538 normal_stop ();
1539 }
1540
1541 static const char schedlock_off[] = "off";
1542 static const char schedlock_on[] = "on";
1543 static const char schedlock_step[] = "step";
1544 static const char *scheduler_enums[] = {
1545 schedlock_off,
1546 schedlock_on,
1547 schedlock_step,
1548 NULL
1549 };
1550 static const char *scheduler_mode = schedlock_off;
1551 static void
1552 show_scheduler_mode (struct ui_file *file, int from_tty,
1553 struct cmd_list_element *c, const char *value)
1554 {
1555 fprintf_filtered (file,
1556 _("Mode for locking scheduler "
1557 "during execution is \"%s\".\n"),
1558 value);
1559 }
1560
1561 static void
1562 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1563 {
1564 if (!target_can_lock_scheduler)
1565 {
1566 scheduler_mode = schedlock_off;
1567 error (_("Target '%s' cannot support this command."), target_shortname);
1568 }
1569 }
1570
1571 /* True if execution commands resume all threads of all processes by
1572 default; otherwise, resume only threads of the current inferior
1573 process. */
1574 int sched_multi = 0;
1575
1576 /* Try to setup for software single stepping over the specified location.
1577 Return 1 if target_resume() should use hardware single step.
1578
1579 GDBARCH the current gdbarch.
1580 PC the location to step over. */
1581
1582 static int
1583 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1584 {
1585 int hw_step = 1;
1586
1587 if (execution_direction == EXEC_FORWARD
1588 && gdbarch_software_single_step_p (gdbarch)
1589 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1590 {
1591 hw_step = 0;
1592 /* Do not pull these breakpoints until after a `wait' in
1593 `wait_for_inferior'. */
1594 singlestep_breakpoints_inserted_p = 1;
1595 singlestep_ptid = inferior_ptid;
1596 singlestep_pc = pc;
1597 }
1598 return hw_step;
1599 }
1600
1601 /* Return a ptid representing the set of threads that we will proceed,
1602 in the perspective of the user/frontend. We may actually resume
1603 fewer threads at first, e.g., if a thread is stopped at a
1604 breakpoint that needs stepping-off, but that should not be visible
1605 to the user/frontend, and neither should the frontend/user be
1606 allowed to proceed any of the threads that happen to be stopped for
1607 internal run control handling, if a previous command wanted them
1608 resumed. */
1609
1610 ptid_t
1611 user_visible_resume_ptid (int step)
1612 {
1613 /* By default, resume all threads of all processes. */
1614 ptid_t resume_ptid = RESUME_ALL;
1615
1616 /* Maybe resume only all threads of the current process. */
1617 if (!sched_multi && target_supports_multi_process ())
1618 {
1619 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1620 }
1621
1622 /* Maybe resume a single thread after all. */
1623 if (non_stop)
1624 {
1625 /* With non-stop mode on, threads are always handled
1626 individually. */
1627 resume_ptid = inferior_ptid;
1628 }
1629 else if ((scheduler_mode == schedlock_on)
1630 || (scheduler_mode == schedlock_step
1631 && (step || singlestep_breakpoints_inserted_p)))
1632 {
1633 /* User-settable 'scheduler' mode requires solo thread resume. */
1634 resume_ptid = inferior_ptid;
1635 }
1636
1637 return resume_ptid;
1638 }
1639
1640 /* Resume the inferior, but allow a QUIT. This is useful if the user
1641 wants to interrupt some lengthy single-stepping operation
1642 (for child processes, the SIGINT goes to the inferior, and so
1643 we get a SIGINT random_signal, but for remote debugging and perhaps
1644 other targets, that's not true).
1645
1646 STEP nonzero if we should step (zero to continue instead).
1647 SIG is the signal to give the inferior (zero for none). */
1648 void
1649 resume (int step, enum target_signal sig)
1650 {
1651 int should_resume = 1;
1652 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1653 struct regcache *regcache = get_current_regcache ();
1654 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1655 struct thread_info *tp = inferior_thread ();
1656 CORE_ADDR pc = regcache_read_pc (regcache);
1657 struct address_space *aspace = get_regcache_aspace (regcache);
1658
1659 QUIT;
1660
1661 if (current_inferior ()->waiting_for_vfork_done)
1662 {
1663 /* Don't try to single-step a vfork parent that is waiting for
1664 the child to get out of the shared memory region (by exec'ing
1665 or exiting). This is particularly important on software
1666 single-step archs, as the child process would trip on the
1667 software single step breakpoint inserted for the parent
1668 process. Since the parent will not actually execute any
1669 instruction until the child is out of the shared region (such
1670 are vfork's semantics), it is safe to simply continue it.
1671 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1672 the parent, and tell it to `keep_going', which automatically
1673 re-sets it stepping. */
1674 if (debug_infrun)
1675 fprintf_unfiltered (gdb_stdlog,
1676 "infrun: resume : clear step\n");
1677 step = 0;
1678 }
1679
1680 if (debug_infrun)
1681 fprintf_unfiltered (gdb_stdlog,
1682 "infrun: resume (step=%d, signal=%d), "
1683 "trap_expected=%d, current thread [%s] at %s\n",
1684 step, sig, tp->control.trap_expected,
1685 target_pid_to_str (inferior_ptid),
1686 paddress (gdbarch, pc));
1687
1688 /* Normally, by the time we reach `resume', the breakpoints are either
1689 removed or inserted, as appropriate. The exception is if we're sitting
1690 at a permanent breakpoint; we need to step over it, but permanent
1691 breakpoints can't be removed. So we have to test for it here. */
1692 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1693 {
1694 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1695 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1696 else
1697 error (_("\
1698 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1699 how to step past a permanent breakpoint on this architecture. Try using\n\
1700 a command like `return' or `jump' to continue execution."));
1701 }
1702
1703 /* If enabled, step over breakpoints by executing a copy of the
1704 instruction at a different address.
1705
1706 We can't use displaced stepping when we have a signal to deliver;
1707 the comments for displaced_step_prepare explain why. The
1708 comments in the handle_inferior event for dealing with 'random
1709 signals' explain what we do instead.
1710
1711 We can't use displaced stepping when we are waiting for vfork_done
1712 event, displaced stepping breaks the vfork child similarly as single
1713 step software breakpoint. */
1714 if (use_displaced_stepping (gdbarch)
1715 && (tp->control.trap_expected
1716 || (step && gdbarch_software_single_step_p (gdbarch)))
1717 && sig == TARGET_SIGNAL_0
1718 && !current_inferior ()->waiting_for_vfork_done)
1719 {
1720 struct displaced_step_inferior_state *displaced;
1721
1722 if (!displaced_step_prepare (inferior_ptid))
1723 {
1724 /* Got placed in displaced stepping queue. Will be resumed
1725 later when all the currently queued displaced stepping
1726 requests finish. The thread is not executing at this point,
1727 and the call to set_executing will be made later. But we
1728 need to call set_running here, since from frontend point of view,
1729 the thread is running. */
1730 set_running (inferior_ptid, 1);
1731 discard_cleanups (old_cleanups);
1732 return;
1733 }
1734
1735 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1736 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1737 displaced->step_closure);
1738 }
1739
1740 /* Do we need to do it the hard way, w/temp breakpoints? */
1741 else if (step)
1742 step = maybe_software_singlestep (gdbarch, pc);
1743
1744 /* Currently, our software single-step implementation leads to different
1745 results than hardware single-stepping in one situation: when stepping
1746 into delivering a signal which has an associated signal handler,
1747 hardware single-step will stop at the first instruction of the handler,
1748 while software single-step will simply skip execution of the handler.
1749
1750 For now, this difference in behavior is accepted since there is no
1751 easy way to actually implement single-stepping into a signal handler
1752 without kernel support.
1753
1754 However, there is one scenario where this difference leads to follow-on
1755 problems: if we're stepping off a breakpoint by removing all breakpoints
1756 and then single-stepping. In this case, the software single-step
1757 behavior means that even if there is a *breakpoint* in the signal
1758 handler, GDB still would not stop.
1759
1760 Fortunately, we can at least fix this particular issue. We detect
1761 here the case where we are about to deliver a signal while software
1762 single-stepping with breakpoints removed. In this situation, we
1763 revert the decisions to remove all breakpoints and insert single-
1764 step breakpoints, and instead we install a step-resume breakpoint
1765 at the current address, deliver the signal without stepping, and
1766 once we arrive back at the step-resume breakpoint, actually step
1767 over the breakpoint we originally wanted to step over. */
1768 if (singlestep_breakpoints_inserted_p
1769 && tp->control.trap_expected && sig != TARGET_SIGNAL_0)
1770 {
1771 /* If we have nested signals or a pending signal is delivered
1772 immediately after a handler returns, might might already have
1773 a step-resume breakpoint set on the earlier handler. We cannot
1774 set another step-resume breakpoint; just continue on until the
1775 original breakpoint is hit. */
1776 if (tp->control.step_resume_breakpoint == NULL)
1777 {
1778 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1779 tp->step_after_step_resume_breakpoint = 1;
1780 }
1781
1782 remove_single_step_breakpoints ();
1783 singlestep_breakpoints_inserted_p = 0;
1784
1785 insert_breakpoints ();
1786 tp->control.trap_expected = 0;
1787 }
1788
1789 if (should_resume)
1790 {
1791 ptid_t resume_ptid;
1792
1793 /* If STEP is set, it's a request to use hardware stepping
1794 facilities. But in that case, we should never
1795 use singlestep breakpoint. */
1796 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1797
1798 /* Decide the set of threads to ask the target to resume. Start
1799 by assuming everything will be resumed, than narrow the set
1800 by applying increasingly restricting conditions. */
1801 resume_ptid = user_visible_resume_ptid (step);
1802
1803 /* Maybe resume a single thread after all. */
1804 if (singlestep_breakpoints_inserted_p
1805 && stepping_past_singlestep_breakpoint)
1806 {
1807 /* The situation here is as follows. In thread T1 we wanted to
1808 single-step. Lacking hardware single-stepping we've
1809 set breakpoint at the PC of the next instruction -- call it
1810 P. After resuming, we've hit that breakpoint in thread T2.
1811 Now we've removed original breakpoint, inserted breakpoint
1812 at P+1, and try to step to advance T2 past breakpoint.
1813 We need to step only T2, as if T1 is allowed to freely run,
1814 it can run past P, and if other threads are allowed to run,
1815 they can hit breakpoint at P+1, and nested hits of single-step
1816 breakpoints is not something we'd want -- that's complicated
1817 to support, and has no value. */
1818 resume_ptid = inferior_ptid;
1819 }
1820 else if ((step || singlestep_breakpoints_inserted_p)
1821 && tp->control.trap_expected)
1822 {
1823 /* We're allowing a thread to run past a breakpoint it has
1824 hit, by single-stepping the thread with the breakpoint
1825 removed. In which case, we need to single-step only this
1826 thread, and keep others stopped, as they can miss this
1827 breakpoint if allowed to run.
1828
1829 The current code actually removes all breakpoints when
1830 doing this, not just the one being stepped over, so if we
1831 let other threads run, we can actually miss any
1832 breakpoint, not just the one at PC. */
1833 resume_ptid = inferior_ptid;
1834 }
1835
1836 if (gdbarch_cannot_step_breakpoint (gdbarch))
1837 {
1838 /* Most targets can step a breakpoint instruction, thus
1839 executing it normally. But if this one cannot, just
1840 continue and we will hit it anyway. */
1841 if (step && breakpoint_inserted_here_p (aspace, pc))
1842 step = 0;
1843 }
1844
1845 if (debug_displaced
1846 && use_displaced_stepping (gdbarch)
1847 && tp->control.trap_expected)
1848 {
1849 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1850 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1851 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1852 gdb_byte buf[4];
1853
1854 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1855 paddress (resume_gdbarch, actual_pc));
1856 read_memory (actual_pc, buf, sizeof (buf));
1857 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1858 }
1859
1860 /* Install inferior's terminal modes. */
1861 target_terminal_inferior ();
1862
1863 /* Avoid confusing the next resume, if the next stop/resume
1864 happens to apply to another thread. */
1865 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1866
1867 /* Advise target which signals may be handled silently. If we have
1868 removed breakpoints because we are stepping over one (which can
1869 happen only if we are not using displaced stepping), we need to
1870 receive all signals to avoid accidentally skipping a breakpoint
1871 during execution of a signal handler. */
1872 if ((step || singlestep_breakpoints_inserted_p)
1873 && tp->control.trap_expected
1874 && !use_displaced_stepping (gdbarch))
1875 target_pass_signals (0, NULL);
1876 else
1877 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
1878
1879 target_resume (resume_ptid, step, sig);
1880 }
1881
1882 discard_cleanups (old_cleanups);
1883 }
1884 \f
1885 /* Proceeding. */
1886
1887 /* Clear out all variables saying what to do when inferior is continued.
1888 First do this, then set the ones you want, then call `proceed'. */
1889
1890 static void
1891 clear_proceed_status_thread (struct thread_info *tp)
1892 {
1893 if (debug_infrun)
1894 fprintf_unfiltered (gdb_stdlog,
1895 "infrun: clear_proceed_status_thread (%s)\n",
1896 target_pid_to_str (tp->ptid));
1897
1898 tp->control.trap_expected = 0;
1899 tp->control.step_range_start = 0;
1900 tp->control.step_range_end = 0;
1901 tp->control.step_frame_id = null_frame_id;
1902 tp->control.step_stack_frame_id = null_frame_id;
1903 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1904 tp->stop_requested = 0;
1905
1906 tp->control.stop_step = 0;
1907
1908 tp->control.proceed_to_finish = 0;
1909
1910 /* Discard any remaining commands or status from previous stop. */
1911 bpstat_clear (&tp->control.stop_bpstat);
1912 }
1913
1914 static int
1915 clear_proceed_status_callback (struct thread_info *tp, void *data)
1916 {
1917 if (is_exited (tp->ptid))
1918 return 0;
1919
1920 clear_proceed_status_thread (tp);
1921 return 0;
1922 }
1923
1924 void
1925 clear_proceed_status (void)
1926 {
1927 if (!non_stop)
1928 {
1929 /* In all-stop mode, delete the per-thread status of all
1930 threads, even if inferior_ptid is null_ptid, there may be
1931 threads on the list. E.g., we may be launching a new
1932 process, while selecting the executable. */
1933 iterate_over_threads (clear_proceed_status_callback, NULL);
1934 }
1935
1936 if (!ptid_equal (inferior_ptid, null_ptid))
1937 {
1938 struct inferior *inferior;
1939
1940 if (non_stop)
1941 {
1942 /* If in non-stop mode, only delete the per-thread status of
1943 the current thread. */
1944 clear_proceed_status_thread (inferior_thread ());
1945 }
1946
1947 inferior = current_inferior ();
1948 inferior->control.stop_soon = NO_STOP_QUIETLY;
1949 }
1950
1951 stop_after_trap = 0;
1952
1953 observer_notify_about_to_proceed ();
1954
1955 if (stop_registers)
1956 {
1957 regcache_xfree (stop_registers);
1958 stop_registers = NULL;
1959 }
1960 }
1961
1962 /* Check the current thread against the thread that reported the most recent
1963 event. If a step-over is required return TRUE and set the current thread
1964 to the old thread. Otherwise return FALSE.
1965
1966 This should be suitable for any targets that support threads. */
1967
1968 static int
1969 prepare_to_proceed (int step)
1970 {
1971 ptid_t wait_ptid;
1972 struct target_waitstatus wait_status;
1973 int schedlock_enabled;
1974
1975 /* With non-stop mode on, threads are always handled individually. */
1976 gdb_assert (! non_stop);
1977
1978 /* Get the last target status returned by target_wait(). */
1979 get_last_target_status (&wait_ptid, &wait_status);
1980
1981 /* Make sure we were stopped at a breakpoint. */
1982 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1983 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
1984 && wait_status.value.sig != TARGET_SIGNAL_ILL
1985 && wait_status.value.sig != TARGET_SIGNAL_SEGV
1986 && wait_status.value.sig != TARGET_SIGNAL_EMT))
1987 {
1988 return 0;
1989 }
1990
1991 schedlock_enabled = (scheduler_mode == schedlock_on
1992 || (scheduler_mode == schedlock_step
1993 && step));
1994
1995 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1996 if (schedlock_enabled)
1997 return 0;
1998
1999 /* Don't switch over if we're about to resume some other process
2000 other than WAIT_PTID's, and schedule-multiple is off. */
2001 if (!sched_multi
2002 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2003 return 0;
2004
2005 /* Switched over from WAIT_PID. */
2006 if (!ptid_equal (wait_ptid, minus_one_ptid)
2007 && !ptid_equal (inferior_ptid, wait_ptid))
2008 {
2009 struct regcache *regcache = get_thread_regcache (wait_ptid);
2010
2011 if (breakpoint_here_p (get_regcache_aspace (regcache),
2012 regcache_read_pc (regcache)))
2013 {
2014 /* If stepping, remember current thread to switch back to. */
2015 if (step)
2016 deferred_step_ptid = inferior_ptid;
2017
2018 /* Switch back to WAIT_PID thread. */
2019 switch_to_thread (wait_ptid);
2020
2021 if (debug_infrun)
2022 fprintf_unfiltered (gdb_stdlog,
2023 "infrun: prepare_to_proceed (step=%d), "
2024 "switched to [%s]\n",
2025 step, target_pid_to_str (inferior_ptid));
2026
2027 /* We return 1 to indicate that there is a breakpoint here,
2028 so we need to step over it before continuing to avoid
2029 hitting it straight away. */
2030 return 1;
2031 }
2032 }
2033
2034 return 0;
2035 }
2036
2037 /* Basic routine for continuing the program in various fashions.
2038
2039 ADDR is the address to resume at, or -1 for resume where stopped.
2040 SIGGNAL is the signal to give it, or 0 for none,
2041 or -1 for act according to how it stopped.
2042 STEP is nonzero if should trap after one instruction.
2043 -1 means return after that and print nothing.
2044 You should probably set various step_... variables
2045 before calling here, if you are stepping.
2046
2047 You should call clear_proceed_status before calling proceed. */
2048
2049 void
2050 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
2051 {
2052 struct regcache *regcache;
2053 struct gdbarch *gdbarch;
2054 struct thread_info *tp;
2055 CORE_ADDR pc;
2056 struct address_space *aspace;
2057 int oneproc = 0;
2058
2059 /* If we're stopped at a fork/vfork, follow the branch set by the
2060 "set follow-fork-mode" command; otherwise, we'll just proceed
2061 resuming the current thread. */
2062 if (!follow_fork ())
2063 {
2064 /* The target for some reason decided not to resume. */
2065 normal_stop ();
2066 if (target_can_async_p ())
2067 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2068 return;
2069 }
2070
2071 /* We'll update this if & when we switch to a new thread. */
2072 previous_inferior_ptid = inferior_ptid;
2073
2074 regcache = get_current_regcache ();
2075 gdbarch = get_regcache_arch (regcache);
2076 aspace = get_regcache_aspace (regcache);
2077 pc = regcache_read_pc (regcache);
2078
2079 if (step > 0)
2080 step_start_function = find_pc_function (pc);
2081 if (step < 0)
2082 stop_after_trap = 1;
2083
2084 if (addr == (CORE_ADDR) -1)
2085 {
2086 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2087 && execution_direction != EXEC_REVERSE)
2088 /* There is a breakpoint at the address we will resume at,
2089 step one instruction before inserting breakpoints so that
2090 we do not stop right away (and report a second hit at this
2091 breakpoint).
2092
2093 Note, we don't do this in reverse, because we won't
2094 actually be executing the breakpoint insn anyway.
2095 We'll be (un-)executing the previous instruction. */
2096
2097 oneproc = 1;
2098 else if (gdbarch_single_step_through_delay_p (gdbarch)
2099 && gdbarch_single_step_through_delay (gdbarch,
2100 get_current_frame ()))
2101 /* We stepped onto an instruction that needs to be stepped
2102 again before re-inserting the breakpoint, do so. */
2103 oneproc = 1;
2104 }
2105 else
2106 {
2107 regcache_write_pc (regcache, addr);
2108 }
2109
2110 if (debug_infrun)
2111 fprintf_unfiltered (gdb_stdlog,
2112 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2113 paddress (gdbarch, addr), siggnal, step);
2114
2115 if (non_stop)
2116 /* In non-stop, each thread is handled individually. The context
2117 must already be set to the right thread here. */
2118 ;
2119 else
2120 {
2121 /* In a multi-threaded task we may select another thread and
2122 then continue or step.
2123
2124 But if the old thread was stopped at a breakpoint, it will
2125 immediately cause another breakpoint stop without any
2126 execution (i.e. it will report a breakpoint hit incorrectly).
2127 So we must step over it first.
2128
2129 prepare_to_proceed checks the current thread against the
2130 thread that reported the most recent event. If a step-over
2131 is required it returns TRUE and sets the current thread to
2132 the old thread. */
2133 if (prepare_to_proceed (step))
2134 oneproc = 1;
2135 }
2136
2137 /* prepare_to_proceed may change the current thread. */
2138 tp = inferior_thread ();
2139
2140 if (oneproc)
2141 {
2142 tp->control.trap_expected = 1;
2143 /* If displaced stepping is enabled, we can step over the
2144 breakpoint without hitting it, so leave all breakpoints
2145 inserted. Otherwise we need to disable all breakpoints, step
2146 one instruction, and then re-add them when that step is
2147 finished. */
2148 if (!use_displaced_stepping (gdbarch))
2149 remove_breakpoints ();
2150 }
2151
2152 /* We can insert breakpoints if we're not trying to step over one,
2153 or if we are stepping over one but we're using displaced stepping
2154 to do so. */
2155 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2156 insert_breakpoints ();
2157
2158 if (!non_stop)
2159 {
2160 /* Pass the last stop signal to the thread we're resuming,
2161 irrespective of whether the current thread is the thread that
2162 got the last event or not. This was historically GDB's
2163 behaviour before keeping a stop_signal per thread. */
2164
2165 struct thread_info *last_thread;
2166 ptid_t last_ptid;
2167 struct target_waitstatus last_status;
2168
2169 get_last_target_status (&last_ptid, &last_status);
2170 if (!ptid_equal (inferior_ptid, last_ptid)
2171 && !ptid_equal (last_ptid, null_ptid)
2172 && !ptid_equal (last_ptid, minus_one_ptid))
2173 {
2174 last_thread = find_thread_ptid (last_ptid);
2175 if (last_thread)
2176 {
2177 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2178 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2179 }
2180 }
2181 }
2182
2183 if (siggnal != TARGET_SIGNAL_DEFAULT)
2184 tp->suspend.stop_signal = siggnal;
2185 /* If this signal should not be seen by program,
2186 give it zero. Used for debugging signals. */
2187 else if (!signal_program[tp->suspend.stop_signal])
2188 tp->suspend.stop_signal = TARGET_SIGNAL_0;
2189
2190 annotate_starting ();
2191
2192 /* Make sure that output from GDB appears before output from the
2193 inferior. */
2194 gdb_flush (gdb_stdout);
2195
2196 /* Refresh prev_pc value just prior to resuming. This used to be
2197 done in stop_stepping, however, setting prev_pc there did not handle
2198 scenarios such as inferior function calls or returning from
2199 a function via the return command. In those cases, the prev_pc
2200 value was not set properly for subsequent commands. The prev_pc value
2201 is used to initialize the starting line number in the ecs. With an
2202 invalid value, the gdb next command ends up stopping at the position
2203 represented by the next line table entry past our start position.
2204 On platforms that generate one line table entry per line, this
2205 is not a problem. However, on the ia64, the compiler generates
2206 extraneous line table entries that do not increase the line number.
2207 When we issue the gdb next command on the ia64 after an inferior call
2208 or a return command, we often end up a few instructions forward, still
2209 within the original line we started.
2210
2211 An attempt was made to refresh the prev_pc at the same time the
2212 execution_control_state is initialized (for instance, just before
2213 waiting for an inferior event). But this approach did not work
2214 because of platforms that use ptrace, where the pc register cannot
2215 be read unless the inferior is stopped. At that point, we are not
2216 guaranteed the inferior is stopped and so the regcache_read_pc() call
2217 can fail. Setting the prev_pc value here ensures the value is updated
2218 correctly when the inferior is stopped. */
2219 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2220
2221 /* Fill in with reasonable starting values. */
2222 init_thread_stepping_state (tp);
2223
2224 /* Reset to normal state. */
2225 init_infwait_state ();
2226
2227 /* Resume inferior. */
2228 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
2229
2230 /* Wait for it to stop (if not standalone)
2231 and in any case decode why it stopped, and act accordingly. */
2232 /* Do this only if we are not using the event loop, or if the target
2233 does not support asynchronous execution. */
2234 if (!target_can_async_p ())
2235 {
2236 wait_for_inferior ();
2237 normal_stop ();
2238 }
2239 }
2240 \f
2241
2242 /* Start remote-debugging of a machine over a serial link. */
2243
2244 void
2245 start_remote (int from_tty)
2246 {
2247 struct inferior *inferior;
2248
2249 init_wait_for_inferior ();
2250 inferior = current_inferior ();
2251 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2252
2253 /* Always go on waiting for the target, regardless of the mode. */
2254 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2255 indicate to wait_for_inferior that a target should timeout if
2256 nothing is returned (instead of just blocking). Because of this,
2257 targets expecting an immediate response need to, internally, set
2258 things up so that the target_wait() is forced to eventually
2259 timeout. */
2260 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2261 differentiate to its caller what the state of the target is after
2262 the initial open has been performed. Here we're assuming that
2263 the target has stopped. It should be possible to eventually have
2264 target_open() return to the caller an indication that the target
2265 is currently running and GDB state should be set to the same as
2266 for an async run. */
2267 wait_for_inferior ();
2268
2269 /* Now that the inferior has stopped, do any bookkeeping like
2270 loading shared libraries. We want to do this before normal_stop,
2271 so that the displayed frame is up to date. */
2272 post_create_inferior (&current_target, from_tty);
2273
2274 normal_stop ();
2275 }
2276
2277 /* Initialize static vars when a new inferior begins. */
2278
2279 void
2280 init_wait_for_inferior (void)
2281 {
2282 /* These are meaningless until the first time through wait_for_inferior. */
2283
2284 breakpoint_init_inferior (inf_starting);
2285
2286 clear_proceed_status ();
2287
2288 stepping_past_singlestep_breakpoint = 0;
2289 deferred_step_ptid = null_ptid;
2290
2291 target_last_wait_ptid = minus_one_ptid;
2292
2293 previous_inferior_ptid = inferior_ptid;
2294 init_infwait_state ();
2295
2296 /* Discard any skipped inlined frames. */
2297 clear_inline_frame_state (minus_one_ptid);
2298 }
2299
2300 \f
2301 /* This enum encodes possible reasons for doing a target_wait, so that
2302 wfi can call target_wait in one place. (Ultimately the call will be
2303 moved out of the infinite loop entirely.) */
2304
2305 enum infwait_states
2306 {
2307 infwait_normal_state,
2308 infwait_thread_hop_state,
2309 infwait_step_watch_state,
2310 infwait_nonstep_watch_state
2311 };
2312
2313 /* The PTID we'll do a target_wait on.*/
2314 ptid_t waiton_ptid;
2315
2316 /* Current inferior wait state. */
2317 enum infwait_states infwait_state;
2318
2319 /* Data to be passed around while handling an event. This data is
2320 discarded between events. */
2321 struct execution_control_state
2322 {
2323 ptid_t ptid;
2324 /* The thread that got the event, if this was a thread event; NULL
2325 otherwise. */
2326 struct thread_info *event_thread;
2327
2328 struct target_waitstatus ws;
2329 int random_signal;
2330 CORE_ADDR stop_func_start;
2331 CORE_ADDR stop_func_end;
2332 char *stop_func_name;
2333 int new_thread_event;
2334 int wait_some_more;
2335 };
2336
2337 static void handle_inferior_event (struct execution_control_state *ecs);
2338
2339 static void handle_step_into_function (struct gdbarch *gdbarch,
2340 struct execution_control_state *ecs);
2341 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2342 struct execution_control_state *ecs);
2343 static void check_exception_resume (struct execution_control_state *,
2344 struct frame_info *, struct symbol *);
2345
2346 static void stop_stepping (struct execution_control_state *ecs);
2347 static void prepare_to_wait (struct execution_control_state *ecs);
2348 static void keep_going (struct execution_control_state *ecs);
2349
2350 /* Callback for iterate over threads. If the thread is stopped, but
2351 the user/frontend doesn't know about that yet, go through
2352 normal_stop, as if the thread had just stopped now. ARG points at
2353 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2354 ptid_is_pid(PTID) is true, applies to all threads of the process
2355 pointed at by PTID. Otherwise, apply only to the thread pointed by
2356 PTID. */
2357
2358 static int
2359 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2360 {
2361 ptid_t ptid = * (ptid_t *) arg;
2362
2363 if ((ptid_equal (info->ptid, ptid)
2364 || ptid_equal (minus_one_ptid, ptid)
2365 || (ptid_is_pid (ptid)
2366 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2367 && is_running (info->ptid)
2368 && !is_executing (info->ptid))
2369 {
2370 struct cleanup *old_chain;
2371 struct execution_control_state ecss;
2372 struct execution_control_state *ecs = &ecss;
2373
2374 memset (ecs, 0, sizeof (*ecs));
2375
2376 old_chain = make_cleanup_restore_current_thread ();
2377
2378 switch_to_thread (info->ptid);
2379
2380 /* Go through handle_inferior_event/normal_stop, so we always
2381 have consistent output as if the stop event had been
2382 reported. */
2383 ecs->ptid = info->ptid;
2384 ecs->event_thread = find_thread_ptid (info->ptid);
2385 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2386 ecs->ws.value.sig = TARGET_SIGNAL_0;
2387
2388 handle_inferior_event (ecs);
2389
2390 if (!ecs->wait_some_more)
2391 {
2392 struct thread_info *tp;
2393
2394 normal_stop ();
2395
2396 /* Finish off the continuations. The continations
2397 themselves are responsible for realising the thread
2398 didn't finish what it was supposed to do. */
2399 tp = inferior_thread ();
2400 do_all_intermediate_continuations_thread (tp);
2401 do_all_continuations_thread (tp);
2402 }
2403
2404 do_cleanups (old_chain);
2405 }
2406
2407 return 0;
2408 }
2409
2410 /* This function is attached as a "thread_stop_requested" observer.
2411 Cleanup local state that assumed the PTID was to be resumed, and
2412 report the stop to the frontend. */
2413
2414 static void
2415 infrun_thread_stop_requested (ptid_t ptid)
2416 {
2417 struct displaced_step_inferior_state *displaced;
2418
2419 /* PTID was requested to stop. Remove it from the displaced
2420 stepping queue, so we don't try to resume it automatically. */
2421
2422 for (displaced = displaced_step_inferior_states;
2423 displaced;
2424 displaced = displaced->next)
2425 {
2426 struct displaced_step_request *it, **prev_next_p;
2427
2428 it = displaced->step_request_queue;
2429 prev_next_p = &displaced->step_request_queue;
2430 while (it)
2431 {
2432 if (ptid_match (it->ptid, ptid))
2433 {
2434 *prev_next_p = it->next;
2435 it->next = NULL;
2436 xfree (it);
2437 }
2438 else
2439 {
2440 prev_next_p = &it->next;
2441 }
2442
2443 it = *prev_next_p;
2444 }
2445 }
2446
2447 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2448 }
2449
2450 static void
2451 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2452 {
2453 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2454 nullify_last_target_wait_ptid ();
2455 }
2456
2457 /* Callback for iterate_over_threads. */
2458
2459 static int
2460 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2461 {
2462 if (is_exited (info->ptid))
2463 return 0;
2464
2465 delete_step_resume_breakpoint (info);
2466 delete_exception_resume_breakpoint (info);
2467 return 0;
2468 }
2469
2470 /* In all-stop, delete the step resume breakpoint of any thread that
2471 had one. In non-stop, delete the step resume breakpoint of the
2472 thread that just stopped. */
2473
2474 static void
2475 delete_step_thread_step_resume_breakpoint (void)
2476 {
2477 if (!target_has_execution
2478 || ptid_equal (inferior_ptid, null_ptid))
2479 /* If the inferior has exited, we have already deleted the step
2480 resume breakpoints out of GDB's lists. */
2481 return;
2482
2483 if (non_stop)
2484 {
2485 /* If in non-stop mode, only delete the step-resume or
2486 longjmp-resume breakpoint of the thread that just stopped
2487 stepping. */
2488 struct thread_info *tp = inferior_thread ();
2489
2490 delete_step_resume_breakpoint (tp);
2491 delete_exception_resume_breakpoint (tp);
2492 }
2493 else
2494 /* In all-stop mode, delete all step-resume and longjmp-resume
2495 breakpoints of any thread that had them. */
2496 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2497 }
2498
2499 /* A cleanup wrapper. */
2500
2501 static void
2502 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2503 {
2504 delete_step_thread_step_resume_breakpoint ();
2505 }
2506
2507 /* Pretty print the results of target_wait, for debugging purposes. */
2508
2509 static void
2510 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2511 const struct target_waitstatus *ws)
2512 {
2513 char *status_string = target_waitstatus_to_string (ws);
2514 struct ui_file *tmp_stream = mem_fileopen ();
2515 char *text;
2516
2517 /* The text is split over several lines because it was getting too long.
2518 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2519 output as a unit; we want only one timestamp printed if debug_timestamp
2520 is set. */
2521
2522 fprintf_unfiltered (tmp_stream,
2523 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2524 if (PIDGET (waiton_ptid) != -1)
2525 fprintf_unfiltered (tmp_stream,
2526 " [%s]", target_pid_to_str (waiton_ptid));
2527 fprintf_unfiltered (tmp_stream, ", status) =\n");
2528 fprintf_unfiltered (tmp_stream,
2529 "infrun: %d [%s],\n",
2530 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2531 fprintf_unfiltered (tmp_stream,
2532 "infrun: %s\n",
2533 status_string);
2534
2535 text = ui_file_xstrdup (tmp_stream, NULL);
2536
2537 /* This uses %s in part to handle %'s in the text, but also to avoid
2538 a gcc error: the format attribute requires a string literal. */
2539 fprintf_unfiltered (gdb_stdlog, "%s", text);
2540
2541 xfree (status_string);
2542 xfree (text);
2543 ui_file_delete (tmp_stream);
2544 }
2545
2546 /* Prepare and stabilize the inferior for detaching it. E.g.,
2547 detaching while a thread is displaced stepping is a recipe for
2548 crashing it, as nothing would readjust the PC out of the scratch
2549 pad. */
2550
2551 void
2552 prepare_for_detach (void)
2553 {
2554 struct inferior *inf = current_inferior ();
2555 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2556 struct cleanup *old_chain_1;
2557 struct displaced_step_inferior_state *displaced;
2558
2559 displaced = get_displaced_stepping_state (inf->pid);
2560
2561 /* Is any thread of this process displaced stepping? If not,
2562 there's nothing else to do. */
2563 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2564 return;
2565
2566 if (debug_infrun)
2567 fprintf_unfiltered (gdb_stdlog,
2568 "displaced-stepping in-process while detaching");
2569
2570 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2571 inf->detaching = 1;
2572
2573 while (!ptid_equal (displaced->step_ptid, null_ptid))
2574 {
2575 struct cleanup *old_chain_2;
2576 struct execution_control_state ecss;
2577 struct execution_control_state *ecs;
2578
2579 ecs = &ecss;
2580 memset (ecs, 0, sizeof (*ecs));
2581
2582 overlay_cache_invalid = 1;
2583
2584 /* We have to invalidate the registers BEFORE calling
2585 target_wait because they can be loaded from the target while
2586 in target_wait. This makes remote debugging a bit more
2587 efficient for those targets that provide critical registers
2588 as part of their normal status mechanism. */
2589
2590 registers_changed ();
2591
2592 if (deprecated_target_wait_hook)
2593 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2594 else
2595 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2596
2597 if (debug_infrun)
2598 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2599
2600 /* If an error happens while handling the event, propagate GDB's
2601 knowledge of the executing state to the frontend/user running
2602 state. */
2603 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2604 &minus_one_ptid);
2605
2606 /* In non-stop mode, each thread is handled individually.
2607 Switch early, so the global state is set correctly for this
2608 thread. */
2609 if (non_stop
2610 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2611 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2612 context_switch (ecs->ptid);
2613
2614 /* Now figure out what to do with the result of the result. */
2615 handle_inferior_event (ecs);
2616
2617 /* No error, don't finish the state yet. */
2618 discard_cleanups (old_chain_2);
2619
2620 /* Breakpoints and watchpoints are not installed on the target
2621 at this point, and signals are passed directly to the
2622 inferior, so this must mean the process is gone. */
2623 if (!ecs->wait_some_more)
2624 {
2625 discard_cleanups (old_chain_1);
2626 error (_("Program exited while detaching"));
2627 }
2628 }
2629
2630 discard_cleanups (old_chain_1);
2631 }
2632
2633 /* Wait for control to return from inferior to debugger.
2634
2635 If inferior gets a signal, we may decide to start it up again
2636 instead of returning. That is why there is a loop in this function.
2637 When this function actually returns it means the inferior
2638 should be left stopped and GDB should read more commands. */
2639
2640 void
2641 wait_for_inferior (void)
2642 {
2643 struct cleanup *old_cleanups;
2644 struct execution_control_state ecss;
2645 struct execution_control_state *ecs;
2646
2647 if (debug_infrun)
2648 fprintf_unfiltered
2649 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2650
2651 old_cleanups =
2652 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2653
2654 ecs = &ecss;
2655 memset (ecs, 0, sizeof (*ecs));
2656
2657 while (1)
2658 {
2659 struct cleanup *old_chain;
2660
2661 /* We have to invalidate the registers BEFORE calling target_wait
2662 because they can be loaded from the target while in target_wait.
2663 This makes remote debugging a bit more efficient for those
2664 targets that provide critical registers as part of their normal
2665 status mechanism. */
2666
2667 overlay_cache_invalid = 1;
2668 registers_changed ();
2669
2670 if (deprecated_target_wait_hook)
2671 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2672 else
2673 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2674
2675 if (debug_infrun)
2676 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2677
2678 /* If an error happens while handling the event, propagate GDB's
2679 knowledge of the executing state to the frontend/user running
2680 state. */
2681 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2682
2683 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2684 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2685 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2686
2687 /* Now figure out what to do with the result of the result. */
2688 handle_inferior_event (ecs);
2689
2690 /* No error, don't finish the state yet. */
2691 discard_cleanups (old_chain);
2692
2693 if (!ecs->wait_some_more)
2694 break;
2695 }
2696
2697 do_cleanups (old_cleanups);
2698 }
2699
2700 /* Asynchronous version of wait_for_inferior. It is called by the
2701 event loop whenever a change of state is detected on the file
2702 descriptor corresponding to the target. It can be called more than
2703 once to complete a single execution command. In such cases we need
2704 to keep the state in a global variable ECSS. If it is the last time
2705 that this function is called for a single execution command, then
2706 report to the user that the inferior has stopped, and do the
2707 necessary cleanups. */
2708
2709 void
2710 fetch_inferior_event (void *client_data)
2711 {
2712 struct execution_control_state ecss;
2713 struct execution_control_state *ecs = &ecss;
2714 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2715 struct cleanup *ts_old_chain;
2716 int was_sync = sync_execution;
2717
2718 memset (ecs, 0, sizeof (*ecs));
2719
2720 /* We're handling a live event, so make sure we're doing live
2721 debugging. If we're looking at traceframes while the target is
2722 running, we're going to need to get back to that mode after
2723 handling the event. */
2724 if (non_stop)
2725 {
2726 make_cleanup_restore_current_traceframe ();
2727 set_current_traceframe (-1);
2728 }
2729
2730 if (non_stop)
2731 /* In non-stop mode, the user/frontend should not notice a thread
2732 switch due to internal events. Make sure we reverse to the
2733 user selected thread and frame after handling the event and
2734 running any breakpoint commands. */
2735 make_cleanup_restore_current_thread ();
2736
2737 /* We have to invalidate the registers BEFORE calling target_wait
2738 because they can be loaded from the target while in target_wait.
2739 This makes remote debugging a bit more efficient for those
2740 targets that provide critical registers as part of their normal
2741 status mechanism. */
2742
2743 overlay_cache_invalid = 1;
2744 registers_changed ();
2745
2746 make_cleanup_restore_integer (&execution_direction);
2747 execution_direction = target_execution_direction ();
2748
2749 if (deprecated_target_wait_hook)
2750 ecs->ptid =
2751 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2752 else
2753 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2754
2755 if (debug_infrun)
2756 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2757
2758 if (non_stop
2759 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2760 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2761 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2762 /* In non-stop mode, each thread is handled individually. Switch
2763 early, so the global state is set correctly for this
2764 thread. */
2765 context_switch (ecs->ptid);
2766
2767 /* If an error happens while handling the event, propagate GDB's
2768 knowledge of the executing state to the frontend/user running
2769 state. */
2770 if (!non_stop)
2771 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2772 else
2773 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2774
2775 /* Now figure out what to do with the result of the result. */
2776 handle_inferior_event (ecs);
2777
2778 if (!ecs->wait_some_more)
2779 {
2780 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2781
2782 delete_step_thread_step_resume_breakpoint ();
2783
2784 /* We may not find an inferior if this was a process exit. */
2785 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2786 normal_stop ();
2787
2788 if (target_has_execution
2789 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2790 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2791 && ecs->event_thread->step_multi
2792 && ecs->event_thread->control.stop_step)
2793 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2794 else
2795 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2796 }
2797
2798 /* No error, don't finish the thread states yet. */
2799 discard_cleanups (ts_old_chain);
2800
2801 /* Revert thread and frame. */
2802 do_cleanups (old_chain);
2803
2804 /* If the inferior was in sync execution mode, and now isn't,
2805 restore the prompt. */
2806 if (was_sync && !sync_execution)
2807 display_gdb_prompt (0);
2808 }
2809
2810 /* Record the frame and location we're currently stepping through. */
2811 void
2812 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2813 {
2814 struct thread_info *tp = inferior_thread ();
2815
2816 tp->control.step_frame_id = get_frame_id (frame);
2817 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2818
2819 tp->current_symtab = sal.symtab;
2820 tp->current_line = sal.line;
2821 }
2822
2823 /* Clear context switchable stepping state. */
2824
2825 void
2826 init_thread_stepping_state (struct thread_info *tss)
2827 {
2828 tss->stepping_over_breakpoint = 0;
2829 tss->step_after_step_resume_breakpoint = 0;
2830 tss->stepping_through_solib_after_catch = 0;
2831 tss->stepping_through_solib_catchpoints = NULL;
2832 }
2833
2834 /* Return the cached copy of the last pid/waitstatus returned by
2835 target_wait()/deprecated_target_wait_hook(). The data is actually
2836 cached by handle_inferior_event(), which gets called immediately
2837 after target_wait()/deprecated_target_wait_hook(). */
2838
2839 void
2840 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2841 {
2842 *ptidp = target_last_wait_ptid;
2843 *status = target_last_waitstatus;
2844 }
2845
2846 void
2847 nullify_last_target_wait_ptid (void)
2848 {
2849 target_last_wait_ptid = minus_one_ptid;
2850 }
2851
2852 /* Switch thread contexts. */
2853
2854 static void
2855 context_switch (ptid_t ptid)
2856 {
2857 if (debug_infrun)
2858 {
2859 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2860 target_pid_to_str (inferior_ptid));
2861 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2862 target_pid_to_str (ptid));
2863 }
2864
2865 switch_to_thread (ptid);
2866 }
2867
2868 static void
2869 adjust_pc_after_break (struct execution_control_state *ecs)
2870 {
2871 struct regcache *regcache;
2872 struct gdbarch *gdbarch;
2873 struct address_space *aspace;
2874 CORE_ADDR breakpoint_pc;
2875
2876 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2877 we aren't, just return.
2878
2879 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2880 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2881 implemented by software breakpoints should be handled through the normal
2882 breakpoint layer.
2883
2884 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2885 different signals (SIGILL or SIGEMT for instance), but it is less
2886 clear where the PC is pointing afterwards. It may not match
2887 gdbarch_decr_pc_after_break. I don't know any specific target that
2888 generates these signals at breakpoints (the code has been in GDB since at
2889 least 1992) so I can not guess how to handle them here.
2890
2891 In earlier versions of GDB, a target with
2892 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2893 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2894 target with both of these set in GDB history, and it seems unlikely to be
2895 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2896
2897 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2898 return;
2899
2900 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2901 return;
2902
2903 /* In reverse execution, when a breakpoint is hit, the instruction
2904 under it has already been de-executed. The reported PC always
2905 points at the breakpoint address, so adjusting it further would
2906 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2907 architecture:
2908
2909 B1 0x08000000 : INSN1
2910 B2 0x08000001 : INSN2
2911 0x08000002 : INSN3
2912 PC -> 0x08000003 : INSN4
2913
2914 Say you're stopped at 0x08000003 as above. Reverse continuing
2915 from that point should hit B2 as below. Reading the PC when the
2916 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2917 been de-executed already.
2918
2919 B1 0x08000000 : INSN1
2920 B2 PC -> 0x08000001 : INSN2
2921 0x08000002 : INSN3
2922 0x08000003 : INSN4
2923
2924 We can't apply the same logic as for forward execution, because
2925 we would wrongly adjust the PC to 0x08000000, since there's a
2926 breakpoint at PC - 1. We'd then report a hit on B1, although
2927 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2928 behaviour. */
2929 if (execution_direction == EXEC_REVERSE)
2930 return;
2931
2932 /* If this target does not decrement the PC after breakpoints, then
2933 we have nothing to do. */
2934 regcache = get_thread_regcache (ecs->ptid);
2935 gdbarch = get_regcache_arch (regcache);
2936 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2937 return;
2938
2939 aspace = get_regcache_aspace (regcache);
2940
2941 /* Find the location where (if we've hit a breakpoint) the
2942 breakpoint would be. */
2943 breakpoint_pc = regcache_read_pc (regcache)
2944 - gdbarch_decr_pc_after_break (gdbarch);
2945
2946 /* Check whether there actually is a software breakpoint inserted at
2947 that location.
2948
2949 If in non-stop mode, a race condition is possible where we've
2950 removed a breakpoint, but stop events for that breakpoint were
2951 already queued and arrive later. To suppress those spurious
2952 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2953 and retire them after a number of stop events are reported. */
2954 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2955 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
2956 {
2957 struct cleanup *old_cleanups = NULL;
2958
2959 if (RECORD_IS_USED)
2960 old_cleanups = record_gdb_operation_disable_set ();
2961
2962 /* When using hardware single-step, a SIGTRAP is reported for both
2963 a completed single-step and a software breakpoint. Need to
2964 differentiate between the two, as the latter needs adjusting
2965 but the former does not.
2966
2967 The SIGTRAP can be due to a completed hardware single-step only if
2968 - we didn't insert software single-step breakpoints
2969 - the thread to be examined is still the current thread
2970 - this thread is currently being stepped
2971
2972 If any of these events did not occur, we must have stopped due
2973 to hitting a software breakpoint, and have to back up to the
2974 breakpoint address.
2975
2976 As a special case, we could have hardware single-stepped a
2977 software breakpoint. In this case (prev_pc == breakpoint_pc),
2978 we also need to back up to the breakpoint address. */
2979
2980 if (singlestep_breakpoints_inserted_p
2981 || !ptid_equal (ecs->ptid, inferior_ptid)
2982 || !currently_stepping (ecs->event_thread)
2983 || ecs->event_thread->prev_pc == breakpoint_pc)
2984 regcache_write_pc (regcache, breakpoint_pc);
2985
2986 if (RECORD_IS_USED)
2987 do_cleanups (old_cleanups);
2988 }
2989 }
2990
2991 void
2992 init_infwait_state (void)
2993 {
2994 waiton_ptid = pid_to_ptid (-1);
2995 infwait_state = infwait_normal_state;
2996 }
2997
2998 void
2999 error_is_running (void)
3000 {
3001 error (_("Cannot execute this command while "
3002 "the selected thread is running."));
3003 }
3004
3005 void
3006 ensure_not_running (void)
3007 {
3008 if (is_running (inferior_ptid))
3009 error_is_running ();
3010 }
3011
3012 static int
3013 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3014 {
3015 for (frame = get_prev_frame (frame);
3016 frame != NULL;
3017 frame = get_prev_frame (frame))
3018 {
3019 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3020 return 1;
3021 if (get_frame_type (frame) != INLINE_FRAME)
3022 break;
3023 }
3024
3025 return 0;
3026 }
3027
3028 /* Auxiliary function that handles syscall entry/return events.
3029 It returns 1 if the inferior should keep going (and GDB
3030 should ignore the event), or 0 if the event deserves to be
3031 processed. */
3032
3033 static int
3034 handle_syscall_event (struct execution_control_state *ecs)
3035 {
3036 struct regcache *regcache;
3037 struct gdbarch *gdbarch;
3038 int syscall_number;
3039
3040 if (!ptid_equal (ecs->ptid, inferior_ptid))
3041 context_switch (ecs->ptid);
3042
3043 regcache = get_thread_regcache (ecs->ptid);
3044 gdbarch = get_regcache_arch (regcache);
3045 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
3046 stop_pc = regcache_read_pc (regcache);
3047
3048 target_last_waitstatus.value.syscall_number = syscall_number;
3049
3050 if (catch_syscall_enabled () > 0
3051 && catching_syscall_number (syscall_number) > 0)
3052 {
3053 if (debug_infrun)
3054 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3055 syscall_number);
3056
3057 ecs->event_thread->control.stop_bpstat
3058 = bpstat_stop_status (get_regcache_aspace (regcache),
3059 stop_pc, ecs->ptid);
3060 ecs->random_signal
3061 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3062
3063 if (!ecs->random_signal)
3064 {
3065 /* Catchpoint hit. */
3066 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3067 return 0;
3068 }
3069 }
3070
3071 /* If no catchpoint triggered for this, then keep going. */
3072 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3073 keep_going (ecs);
3074 return 1;
3075 }
3076
3077 /* Given an execution control state that has been freshly filled in
3078 by an event from the inferior, figure out what it means and take
3079 appropriate action. */
3080
3081 static void
3082 handle_inferior_event (struct execution_control_state *ecs)
3083 {
3084 struct frame_info *frame;
3085 struct gdbarch *gdbarch;
3086 int sw_single_step_trap_p = 0;
3087 int stopped_by_watchpoint;
3088 int stepped_after_stopped_by_watchpoint = 0;
3089 struct symtab_and_line stop_pc_sal;
3090 enum stop_kind stop_soon;
3091
3092 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3093 {
3094 /* We had an event in the inferior, but we are not interested in
3095 handling it at this level. The lower layers have already
3096 done what needs to be done, if anything.
3097
3098 One of the possible circumstances for this is when the
3099 inferior produces output for the console. The inferior has
3100 not stopped, and we are ignoring the event. Another possible
3101 circumstance is any event which the lower level knows will be
3102 reported multiple times without an intervening resume. */
3103 if (debug_infrun)
3104 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3105 prepare_to_wait (ecs);
3106 return;
3107 }
3108
3109 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3110 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3111 {
3112 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3113
3114 gdb_assert (inf);
3115 stop_soon = inf->control.stop_soon;
3116 }
3117 else
3118 stop_soon = NO_STOP_QUIETLY;
3119
3120 /* Cache the last pid/waitstatus. */
3121 target_last_wait_ptid = ecs->ptid;
3122 target_last_waitstatus = ecs->ws;
3123
3124 /* Always clear state belonging to the previous time we stopped. */
3125 stop_stack_dummy = STOP_NONE;
3126
3127 /* If it's a new process, add it to the thread database. */
3128
3129 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3130 && !ptid_equal (ecs->ptid, minus_one_ptid)
3131 && !in_thread_list (ecs->ptid));
3132
3133 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3134 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3135 add_thread (ecs->ptid);
3136
3137 ecs->event_thread = find_thread_ptid (ecs->ptid);
3138
3139 /* Dependent on valid ECS->EVENT_THREAD. */
3140 adjust_pc_after_break (ecs);
3141
3142 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3143 reinit_frame_cache ();
3144
3145 breakpoint_retire_moribund ();
3146
3147 /* First, distinguish signals caused by the debugger from signals
3148 that have to do with the program's own actions. Note that
3149 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3150 on the operating system version. Here we detect when a SIGILL or
3151 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3152 something similar for SIGSEGV, since a SIGSEGV will be generated
3153 when we're trying to execute a breakpoint instruction on a
3154 non-executable stack. This happens for call dummy breakpoints
3155 for architectures like SPARC that place call dummies on the
3156 stack. */
3157 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3158 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3159 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
3160 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
3161 {
3162 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3163
3164 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3165 regcache_read_pc (regcache)))
3166 {
3167 if (debug_infrun)
3168 fprintf_unfiltered (gdb_stdlog,
3169 "infrun: Treating signal as SIGTRAP\n");
3170 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3171 }
3172 }
3173
3174 /* Mark the non-executing threads accordingly. In all-stop, all
3175 threads of all processes are stopped when we get any event
3176 reported. In non-stop mode, only the event thread stops. If
3177 we're handling a process exit in non-stop mode, there's nothing
3178 to do, as threads of the dead process are gone, and threads of
3179 any other process were left running. */
3180 if (!non_stop)
3181 set_executing (minus_one_ptid, 0);
3182 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3183 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3184 set_executing (inferior_ptid, 0);
3185
3186 switch (infwait_state)
3187 {
3188 case infwait_thread_hop_state:
3189 if (debug_infrun)
3190 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3191 break;
3192
3193 case infwait_normal_state:
3194 if (debug_infrun)
3195 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3196 break;
3197
3198 case infwait_step_watch_state:
3199 if (debug_infrun)
3200 fprintf_unfiltered (gdb_stdlog,
3201 "infrun: infwait_step_watch_state\n");
3202
3203 stepped_after_stopped_by_watchpoint = 1;
3204 break;
3205
3206 case infwait_nonstep_watch_state:
3207 if (debug_infrun)
3208 fprintf_unfiltered (gdb_stdlog,
3209 "infrun: infwait_nonstep_watch_state\n");
3210 insert_breakpoints ();
3211
3212 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3213 handle things like signals arriving and other things happening
3214 in combination correctly? */
3215 stepped_after_stopped_by_watchpoint = 1;
3216 break;
3217
3218 default:
3219 internal_error (__FILE__, __LINE__, _("bad switch"));
3220 }
3221
3222 infwait_state = infwait_normal_state;
3223 waiton_ptid = pid_to_ptid (-1);
3224
3225 switch (ecs->ws.kind)
3226 {
3227 case TARGET_WAITKIND_LOADED:
3228 if (debug_infrun)
3229 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3230 /* Ignore gracefully during startup of the inferior, as it might
3231 be the shell which has just loaded some objects, otherwise
3232 add the symbols for the newly loaded objects. Also ignore at
3233 the beginning of an attach or remote session; we will query
3234 the full list of libraries once the connection is
3235 established. */
3236 if (stop_soon == NO_STOP_QUIETLY)
3237 {
3238 /* Check for any newly added shared libraries if we're
3239 supposed to be adding them automatically. Switch
3240 terminal for any messages produced by
3241 breakpoint_re_set. */
3242 target_terminal_ours_for_output ();
3243 /* NOTE: cagney/2003-11-25: Make certain that the target
3244 stack's section table is kept up-to-date. Architectures,
3245 (e.g., PPC64), use the section table to perform
3246 operations such as address => section name and hence
3247 require the table to contain all sections (including
3248 those found in shared libraries). */
3249 #ifdef SOLIB_ADD
3250 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3251 #else
3252 solib_add (NULL, 0, &current_target, auto_solib_add);
3253 #endif
3254 target_terminal_inferior ();
3255
3256 /* If requested, stop when the dynamic linker notifies
3257 gdb of events. This allows the user to get control
3258 and place breakpoints in initializer routines for
3259 dynamically loaded objects (among other things). */
3260 if (stop_on_solib_events)
3261 {
3262 /* Make sure we print "Stopped due to solib-event" in
3263 normal_stop. */
3264 stop_print_frame = 1;
3265
3266 stop_stepping (ecs);
3267 return;
3268 }
3269
3270 /* NOTE drow/2007-05-11: This might be a good place to check
3271 for "catch load". */
3272 }
3273
3274 /* If we are skipping through a shell, or through shared library
3275 loading that we aren't interested in, resume the program. If
3276 we're running the program normally, also resume. But stop if
3277 we're attaching or setting up a remote connection. */
3278 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3279 {
3280 /* Loading of shared libraries might have changed breakpoint
3281 addresses. Make sure new breakpoints are inserted. */
3282 if (stop_soon == NO_STOP_QUIETLY
3283 && !breakpoints_always_inserted_mode ())
3284 insert_breakpoints ();
3285 resume (0, TARGET_SIGNAL_0);
3286 prepare_to_wait (ecs);
3287 return;
3288 }
3289
3290 break;
3291
3292 case TARGET_WAITKIND_SPURIOUS:
3293 if (debug_infrun)
3294 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3295 resume (0, TARGET_SIGNAL_0);
3296 prepare_to_wait (ecs);
3297 return;
3298
3299 case TARGET_WAITKIND_EXITED:
3300 if (debug_infrun)
3301 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
3302 inferior_ptid = ecs->ptid;
3303 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3304 set_current_program_space (current_inferior ()->pspace);
3305 handle_vfork_child_exec_or_exit (0);
3306 target_terminal_ours (); /* Must do this before mourn anyway. */
3307 print_exited_reason (ecs->ws.value.integer);
3308
3309 /* Record the exit code in the convenience variable $_exitcode, so
3310 that the user can inspect this again later. */
3311 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3312 (LONGEST) ecs->ws.value.integer);
3313 gdb_flush (gdb_stdout);
3314 target_mourn_inferior ();
3315 singlestep_breakpoints_inserted_p = 0;
3316 cancel_single_step_breakpoints ();
3317 stop_print_frame = 0;
3318 stop_stepping (ecs);
3319 return;
3320
3321 case TARGET_WAITKIND_SIGNALLED:
3322 if (debug_infrun)
3323 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
3324 inferior_ptid = ecs->ptid;
3325 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3326 set_current_program_space (current_inferior ()->pspace);
3327 handle_vfork_child_exec_or_exit (0);
3328 stop_print_frame = 0;
3329 target_terminal_ours (); /* Must do this before mourn anyway. */
3330
3331 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3332 reach here unless the inferior is dead. However, for years
3333 target_kill() was called here, which hints that fatal signals aren't
3334 really fatal on some systems. If that's true, then some changes
3335 may be needed. */
3336 target_mourn_inferior ();
3337
3338 print_signal_exited_reason (ecs->ws.value.sig);
3339 singlestep_breakpoints_inserted_p = 0;
3340 cancel_single_step_breakpoints ();
3341 stop_stepping (ecs);
3342 return;
3343
3344 /* The following are the only cases in which we keep going;
3345 the above cases end in a continue or goto. */
3346 case TARGET_WAITKIND_FORKED:
3347 case TARGET_WAITKIND_VFORKED:
3348 if (debug_infrun)
3349 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3350
3351 if (!ptid_equal (ecs->ptid, inferior_ptid))
3352 {
3353 context_switch (ecs->ptid);
3354 reinit_frame_cache ();
3355 }
3356
3357 /* Immediately detach breakpoints from the child before there's
3358 any chance of letting the user delete breakpoints from the
3359 breakpoint lists. If we don't do this early, it's easy to
3360 leave left over traps in the child, vis: "break foo; catch
3361 fork; c; <fork>; del; c; <child calls foo>". We only follow
3362 the fork on the last `continue', and by that time the
3363 breakpoint at "foo" is long gone from the breakpoint table.
3364 If we vforked, then we don't need to unpatch here, since both
3365 parent and child are sharing the same memory pages; we'll
3366 need to unpatch at follow/detach time instead to be certain
3367 that new breakpoints added between catchpoint hit time and
3368 vfork follow are detached. */
3369 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3370 {
3371 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3372
3373 /* This won't actually modify the breakpoint list, but will
3374 physically remove the breakpoints from the child. */
3375 detach_breakpoints (child_pid);
3376 }
3377
3378 if (singlestep_breakpoints_inserted_p)
3379 {
3380 /* Pull the single step breakpoints out of the target. */
3381 remove_single_step_breakpoints ();
3382 singlestep_breakpoints_inserted_p = 0;
3383 }
3384
3385 /* In case the event is caught by a catchpoint, remember that
3386 the event is to be followed at the next resume of the thread,
3387 and not immediately. */
3388 ecs->event_thread->pending_follow = ecs->ws;
3389
3390 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3391
3392 ecs->event_thread->control.stop_bpstat
3393 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3394 stop_pc, ecs->ptid);
3395
3396 /* Note that we're interested in knowing the bpstat actually
3397 causes a stop, not just if it may explain the signal.
3398 Software watchpoints, for example, always appear in the
3399 bpstat. */
3400 ecs->random_signal
3401 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3402
3403 /* If no catchpoint triggered for this, then keep going. */
3404 if (ecs->random_signal)
3405 {
3406 ptid_t parent;
3407 ptid_t child;
3408 int should_resume;
3409 int follow_child
3410 = (follow_fork_mode_string == follow_fork_mode_child);
3411
3412 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3413
3414 should_resume = follow_fork ();
3415
3416 parent = ecs->ptid;
3417 child = ecs->ws.value.related_pid;
3418
3419 /* In non-stop mode, also resume the other branch. */
3420 if (non_stop && !detach_fork)
3421 {
3422 if (follow_child)
3423 switch_to_thread (parent);
3424 else
3425 switch_to_thread (child);
3426
3427 ecs->event_thread = inferior_thread ();
3428 ecs->ptid = inferior_ptid;
3429 keep_going (ecs);
3430 }
3431
3432 if (follow_child)
3433 switch_to_thread (child);
3434 else
3435 switch_to_thread (parent);
3436
3437 ecs->event_thread = inferior_thread ();
3438 ecs->ptid = inferior_ptid;
3439
3440 if (should_resume)
3441 keep_going (ecs);
3442 else
3443 stop_stepping (ecs);
3444 return;
3445 }
3446 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3447 goto process_event_stop_test;
3448
3449 case TARGET_WAITKIND_VFORK_DONE:
3450 /* Done with the shared memory region. Re-insert breakpoints in
3451 the parent, and keep going. */
3452
3453 if (debug_infrun)
3454 fprintf_unfiltered (gdb_stdlog,
3455 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3456
3457 if (!ptid_equal (ecs->ptid, inferior_ptid))
3458 context_switch (ecs->ptid);
3459
3460 current_inferior ()->waiting_for_vfork_done = 0;
3461 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3462 /* This also takes care of reinserting breakpoints in the
3463 previously locked inferior. */
3464 keep_going (ecs);
3465 return;
3466
3467 case TARGET_WAITKIND_EXECD:
3468 if (debug_infrun)
3469 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3470
3471 if (!ptid_equal (ecs->ptid, inferior_ptid))
3472 {
3473 context_switch (ecs->ptid);
3474 reinit_frame_cache ();
3475 }
3476
3477 singlestep_breakpoints_inserted_p = 0;
3478 cancel_single_step_breakpoints ();
3479
3480 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3481
3482 /* Do whatever is necessary to the parent branch of the vfork. */
3483 handle_vfork_child_exec_or_exit (1);
3484
3485 /* This causes the eventpoints and symbol table to be reset.
3486 Must do this now, before trying to determine whether to
3487 stop. */
3488 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3489
3490 ecs->event_thread->control.stop_bpstat
3491 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3492 stop_pc, ecs->ptid);
3493 ecs->random_signal
3494 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3495
3496 /* Note that this may be referenced from inside
3497 bpstat_stop_status above, through inferior_has_execd. */
3498 xfree (ecs->ws.value.execd_pathname);
3499 ecs->ws.value.execd_pathname = NULL;
3500
3501 /* If no catchpoint triggered for this, then keep going. */
3502 if (ecs->random_signal)
3503 {
3504 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3505 keep_going (ecs);
3506 return;
3507 }
3508 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3509 goto process_event_stop_test;
3510
3511 /* Be careful not to try to gather much state about a thread
3512 that's in a syscall. It's frequently a losing proposition. */
3513 case TARGET_WAITKIND_SYSCALL_ENTRY:
3514 if (debug_infrun)
3515 fprintf_unfiltered (gdb_stdlog,
3516 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3517 /* Getting the current syscall number. */
3518 if (handle_syscall_event (ecs) != 0)
3519 return;
3520 goto process_event_stop_test;
3521
3522 /* Before examining the threads further, step this thread to
3523 get it entirely out of the syscall. (We get notice of the
3524 event when the thread is just on the verge of exiting a
3525 syscall. Stepping one instruction seems to get it back
3526 into user code.) */
3527 case TARGET_WAITKIND_SYSCALL_RETURN:
3528 if (debug_infrun)
3529 fprintf_unfiltered (gdb_stdlog,
3530 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3531 if (handle_syscall_event (ecs) != 0)
3532 return;
3533 goto process_event_stop_test;
3534
3535 case TARGET_WAITKIND_STOPPED:
3536 if (debug_infrun)
3537 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3538 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3539 break;
3540
3541 case TARGET_WAITKIND_NO_HISTORY:
3542 /* Reverse execution: target ran out of history info. */
3543 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3544 print_no_history_reason ();
3545 stop_stepping (ecs);
3546 return;
3547 }
3548
3549 if (ecs->new_thread_event)
3550 {
3551 if (non_stop)
3552 /* Non-stop assumes that the target handles adding new threads
3553 to the thread list. */
3554 internal_error (__FILE__, __LINE__,
3555 "targets should add new threads to the thread "
3556 "list themselves in non-stop mode.");
3557
3558 /* We may want to consider not doing a resume here in order to
3559 give the user a chance to play with the new thread. It might
3560 be good to make that a user-settable option. */
3561
3562 /* At this point, all threads are stopped (happens automatically
3563 in either the OS or the native code). Therefore we need to
3564 continue all threads in order to make progress. */
3565
3566 if (!ptid_equal (ecs->ptid, inferior_ptid))
3567 context_switch (ecs->ptid);
3568 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3569 prepare_to_wait (ecs);
3570 return;
3571 }
3572
3573 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3574 {
3575 /* Do we need to clean up the state of a thread that has
3576 completed a displaced single-step? (Doing so usually affects
3577 the PC, so do it here, before we set stop_pc.) */
3578 displaced_step_fixup (ecs->ptid,
3579 ecs->event_thread->suspend.stop_signal);
3580
3581 /* If we either finished a single-step or hit a breakpoint, but
3582 the user wanted this thread to be stopped, pretend we got a
3583 SIG0 (generic unsignaled stop). */
3584
3585 if (ecs->event_thread->stop_requested
3586 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3587 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3588 }
3589
3590 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3591
3592 if (debug_infrun)
3593 {
3594 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3595 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3596 struct cleanup *old_chain = save_inferior_ptid ();
3597
3598 inferior_ptid = ecs->ptid;
3599
3600 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3601 paddress (gdbarch, stop_pc));
3602 if (target_stopped_by_watchpoint ())
3603 {
3604 CORE_ADDR addr;
3605
3606 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3607
3608 if (target_stopped_data_address (&current_target, &addr))
3609 fprintf_unfiltered (gdb_stdlog,
3610 "infrun: stopped data address = %s\n",
3611 paddress (gdbarch, addr));
3612 else
3613 fprintf_unfiltered (gdb_stdlog,
3614 "infrun: (no data address available)\n");
3615 }
3616
3617 do_cleanups (old_chain);
3618 }
3619
3620 if (stepping_past_singlestep_breakpoint)
3621 {
3622 gdb_assert (singlestep_breakpoints_inserted_p);
3623 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3624 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3625
3626 stepping_past_singlestep_breakpoint = 0;
3627
3628 /* We've either finished single-stepping past the single-step
3629 breakpoint, or stopped for some other reason. It would be nice if
3630 we could tell, but we can't reliably. */
3631 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3632 {
3633 if (debug_infrun)
3634 fprintf_unfiltered (gdb_stdlog,
3635 "infrun: stepping_past_"
3636 "singlestep_breakpoint\n");
3637 /* Pull the single step breakpoints out of the target. */
3638 remove_single_step_breakpoints ();
3639 singlestep_breakpoints_inserted_p = 0;
3640
3641 ecs->random_signal = 0;
3642 ecs->event_thread->control.trap_expected = 0;
3643
3644 context_switch (saved_singlestep_ptid);
3645 if (deprecated_context_hook)
3646 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3647
3648 resume (1, TARGET_SIGNAL_0);
3649 prepare_to_wait (ecs);
3650 return;
3651 }
3652 }
3653
3654 if (!ptid_equal (deferred_step_ptid, null_ptid))
3655 {
3656 /* In non-stop mode, there's never a deferred_step_ptid set. */
3657 gdb_assert (!non_stop);
3658
3659 /* If we stopped for some other reason than single-stepping, ignore
3660 the fact that we were supposed to switch back. */
3661 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3662 {
3663 if (debug_infrun)
3664 fprintf_unfiltered (gdb_stdlog,
3665 "infrun: handling deferred step\n");
3666
3667 /* Pull the single step breakpoints out of the target. */
3668 if (singlestep_breakpoints_inserted_p)
3669 {
3670 remove_single_step_breakpoints ();
3671 singlestep_breakpoints_inserted_p = 0;
3672 }
3673
3674 ecs->event_thread->control.trap_expected = 0;
3675
3676 /* Note: We do not call context_switch at this point, as the
3677 context is already set up for stepping the original thread. */
3678 switch_to_thread (deferred_step_ptid);
3679 deferred_step_ptid = null_ptid;
3680 /* Suppress spurious "Switching to ..." message. */
3681 previous_inferior_ptid = inferior_ptid;
3682
3683 resume (1, TARGET_SIGNAL_0);
3684 prepare_to_wait (ecs);
3685 return;
3686 }
3687
3688 deferred_step_ptid = null_ptid;
3689 }
3690
3691 /* See if a thread hit a thread-specific breakpoint that was meant for
3692 another thread. If so, then step that thread past the breakpoint,
3693 and continue it. */
3694
3695 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3696 {
3697 int thread_hop_needed = 0;
3698 struct address_space *aspace =
3699 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3700
3701 /* Check if a regular breakpoint has been hit before checking
3702 for a potential single step breakpoint. Otherwise, GDB will
3703 not see this breakpoint hit when stepping onto breakpoints. */
3704 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3705 {
3706 ecs->random_signal = 0;
3707 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3708 thread_hop_needed = 1;
3709 }
3710 else if (singlestep_breakpoints_inserted_p)
3711 {
3712 /* We have not context switched yet, so this should be true
3713 no matter which thread hit the singlestep breakpoint. */
3714 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3715 if (debug_infrun)
3716 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3717 "trap for %s\n",
3718 target_pid_to_str (ecs->ptid));
3719
3720 ecs->random_signal = 0;
3721 /* The call to in_thread_list is necessary because PTIDs sometimes
3722 change when we go from single-threaded to multi-threaded. If
3723 the singlestep_ptid is still in the list, assume that it is
3724 really different from ecs->ptid. */
3725 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3726 && in_thread_list (singlestep_ptid))
3727 {
3728 /* If the PC of the thread we were trying to single-step
3729 has changed, discard this event (which we were going
3730 to ignore anyway), and pretend we saw that thread
3731 trap. This prevents us continuously moving the
3732 single-step breakpoint forward, one instruction at a
3733 time. If the PC has changed, then the thread we were
3734 trying to single-step has trapped or been signalled,
3735 but the event has not been reported to GDB yet.
3736
3737 There might be some cases where this loses signal
3738 information, if a signal has arrived at exactly the
3739 same time that the PC changed, but this is the best
3740 we can do with the information available. Perhaps we
3741 should arrange to report all events for all threads
3742 when they stop, or to re-poll the remote looking for
3743 this particular thread (i.e. temporarily enable
3744 schedlock). */
3745
3746 CORE_ADDR new_singlestep_pc
3747 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3748
3749 if (new_singlestep_pc != singlestep_pc)
3750 {
3751 enum target_signal stop_signal;
3752
3753 if (debug_infrun)
3754 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3755 " but expected thread advanced also\n");
3756
3757 /* The current context still belongs to
3758 singlestep_ptid. Don't swap here, since that's
3759 the context we want to use. Just fudge our
3760 state and continue. */
3761 stop_signal = ecs->event_thread->suspend.stop_signal;
3762 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3763 ecs->ptid = singlestep_ptid;
3764 ecs->event_thread = find_thread_ptid (ecs->ptid);
3765 ecs->event_thread->suspend.stop_signal = stop_signal;
3766 stop_pc = new_singlestep_pc;
3767 }
3768 else
3769 {
3770 if (debug_infrun)
3771 fprintf_unfiltered (gdb_stdlog,
3772 "infrun: unexpected thread\n");
3773
3774 thread_hop_needed = 1;
3775 stepping_past_singlestep_breakpoint = 1;
3776 saved_singlestep_ptid = singlestep_ptid;
3777 }
3778 }
3779 }
3780
3781 if (thread_hop_needed)
3782 {
3783 struct regcache *thread_regcache;
3784 int remove_status = 0;
3785
3786 if (debug_infrun)
3787 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3788
3789 /* Switch context before touching inferior memory, the
3790 previous thread may have exited. */
3791 if (!ptid_equal (inferior_ptid, ecs->ptid))
3792 context_switch (ecs->ptid);
3793
3794 /* Saw a breakpoint, but it was hit by the wrong thread.
3795 Just continue. */
3796
3797 if (singlestep_breakpoints_inserted_p)
3798 {
3799 /* Pull the single step breakpoints out of the target. */
3800 remove_single_step_breakpoints ();
3801 singlestep_breakpoints_inserted_p = 0;
3802 }
3803
3804 /* If the arch can displace step, don't remove the
3805 breakpoints. */
3806 thread_regcache = get_thread_regcache (ecs->ptid);
3807 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3808 remove_status = remove_breakpoints ();
3809
3810 /* Did we fail to remove breakpoints? If so, try
3811 to set the PC past the bp. (There's at least
3812 one situation in which we can fail to remove
3813 the bp's: On HP-UX's that use ttrace, we can't
3814 change the address space of a vforking child
3815 process until the child exits (well, okay, not
3816 then either :-) or execs. */
3817 if (remove_status != 0)
3818 error (_("Cannot step over breakpoint hit in wrong thread"));
3819 else
3820 { /* Single step */
3821 if (!non_stop)
3822 {
3823 /* Only need to require the next event from this
3824 thread in all-stop mode. */
3825 waiton_ptid = ecs->ptid;
3826 infwait_state = infwait_thread_hop_state;
3827 }
3828
3829 ecs->event_thread->stepping_over_breakpoint = 1;
3830 keep_going (ecs);
3831 return;
3832 }
3833 }
3834 else if (singlestep_breakpoints_inserted_p)
3835 {
3836 sw_single_step_trap_p = 1;
3837 ecs->random_signal = 0;
3838 }
3839 }
3840 else
3841 ecs->random_signal = 1;
3842
3843 /* See if something interesting happened to the non-current thread. If
3844 so, then switch to that thread. */
3845 if (!ptid_equal (ecs->ptid, inferior_ptid))
3846 {
3847 if (debug_infrun)
3848 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3849
3850 context_switch (ecs->ptid);
3851
3852 if (deprecated_context_hook)
3853 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3854 }
3855
3856 /* At this point, get hold of the now-current thread's frame. */
3857 frame = get_current_frame ();
3858 gdbarch = get_frame_arch (frame);
3859
3860 if (singlestep_breakpoints_inserted_p)
3861 {
3862 /* Pull the single step breakpoints out of the target. */
3863 remove_single_step_breakpoints ();
3864 singlestep_breakpoints_inserted_p = 0;
3865 }
3866
3867 if (stepped_after_stopped_by_watchpoint)
3868 stopped_by_watchpoint = 0;
3869 else
3870 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3871
3872 /* If necessary, step over this watchpoint. We'll be back to display
3873 it in a moment. */
3874 if (stopped_by_watchpoint
3875 && (target_have_steppable_watchpoint
3876 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
3877 {
3878 /* At this point, we are stopped at an instruction which has
3879 attempted to write to a piece of memory under control of
3880 a watchpoint. The instruction hasn't actually executed
3881 yet. If we were to evaluate the watchpoint expression
3882 now, we would get the old value, and therefore no change
3883 would seem to have occurred.
3884
3885 In order to make watchpoints work `right', we really need
3886 to complete the memory write, and then evaluate the
3887 watchpoint expression. We do this by single-stepping the
3888 target.
3889
3890 It may not be necessary to disable the watchpoint to stop over
3891 it. For example, the PA can (with some kernel cooperation)
3892 single step over a watchpoint without disabling the watchpoint.
3893
3894 It is far more common to need to disable a watchpoint to step
3895 the inferior over it. If we have non-steppable watchpoints,
3896 we must disable the current watchpoint; it's simplest to
3897 disable all watchpoints and breakpoints. */
3898 int hw_step = 1;
3899
3900 if (!target_have_steppable_watchpoint)
3901 {
3902 remove_breakpoints ();
3903 /* See comment in resume why we need to stop bypassing signals
3904 while breakpoints have been removed. */
3905 target_pass_signals (0, NULL);
3906 }
3907 /* Single step */
3908 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
3909 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
3910 waiton_ptid = ecs->ptid;
3911 if (target_have_steppable_watchpoint)
3912 infwait_state = infwait_step_watch_state;
3913 else
3914 infwait_state = infwait_nonstep_watch_state;
3915 prepare_to_wait (ecs);
3916 return;
3917 }
3918
3919 ecs->stop_func_start = 0;
3920 ecs->stop_func_end = 0;
3921 ecs->stop_func_name = 0;
3922 /* Don't care about return value; stop_func_start and stop_func_name
3923 will both be 0 if it doesn't work. */
3924 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3925 &ecs->stop_func_start, &ecs->stop_func_end);
3926 ecs->stop_func_start
3927 += gdbarch_deprecated_function_start_offset (gdbarch);
3928 ecs->event_thread->stepping_over_breakpoint = 0;
3929 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
3930 ecs->event_thread->control.stop_step = 0;
3931 stop_print_frame = 1;
3932 ecs->random_signal = 0;
3933 stopped_by_random_signal = 0;
3934
3935 /* Hide inlined functions starting here, unless we just performed stepi or
3936 nexti. After stepi and nexti, always show the innermost frame (not any
3937 inline function call sites). */
3938 if (ecs->event_thread->control.step_range_end != 1)
3939 skip_inline_frames (ecs->ptid);
3940
3941 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3942 && ecs->event_thread->control.trap_expected
3943 && gdbarch_single_step_through_delay_p (gdbarch)
3944 && currently_stepping (ecs->event_thread))
3945 {
3946 /* We're trying to step off a breakpoint. Turns out that we're
3947 also on an instruction that needs to be stepped multiple
3948 times before it's been fully executing. E.g., architectures
3949 with a delay slot. It needs to be stepped twice, once for
3950 the instruction and once for the delay slot. */
3951 int step_through_delay
3952 = gdbarch_single_step_through_delay (gdbarch, frame);
3953
3954 if (debug_infrun && step_through_delay)
3955 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3956 if (ecs->event_thread->control.step_range_end == 0
3957 && step_through_delay)
3958 {
3959 /* The user issued a continue when stopped at a breakpoint.
3960 Set up for another trap and get out of here. */
3961 ecs->event_thread->stepping_over_breakpoint = 1;
3962 keep_going (ecs);
3963 return;
3964 }
3965 else if (step_through_delay)
3966 {
3967 /* The user issued a step when stopped at a breakpoint.
3968 Maybe we should stop, maybe we should not - the delay
3969 slot *might* correspond to a line of source. In any
3970 case, don't decide that here, just set
3971 ecs->stepping_over_breakpoint, making sure we
3972 single-step again before breakpoints are re-inserted. */
3973 ecs->event_thread->stepping_over_breakpoint = 1;
3974 }
3975 }
3976
3977 /* Look at the cause of the stop, and decide what to do.
3978 The alternatives are:
3979 1) stop_stepping and return; to really stop and return to the debugger,
3980 2) keep_going and return to start up again
3981 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
3982 3) set ecs->random_signal to 1, and the decision between 1 and 2
3983 will be made according to the signal handling tables. */
3984
3985 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3986 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3987 || stop_soon == STOP_QUIETLY_REMOTE)
3988 {
3989 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3990 && stop_after_trap)
3991 {
3992 if (debug_infrun)
3993 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
3994 stop_print_frame = 0;
3995 stop_stepping (ecs);
3996 return;
3997 }
3998
3999 /* This is originated from start_remote(), start_inferior() and
4000 shared libraries hook functions. */
4001 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4002 {
4003 if (debug_infrun)
4004 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4005 stop_stepping (ecs);
4006 return;
4007 }
4008
4009 /* This originates from attach_command(). We need to overwrite
4010 the stop_signal here, because some kernels don't ignore a
4011 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4012 See more comments in inferior.h. On the other hand, if we
4013 get a non-SIGSTOP, report it to the user - assume the backend
4014 will handle the SIGSTOP if it should show up later.
4015
4016 Also consider that the attach is complete when we see a
4017 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4018 target extended-remote report it instead of a SIGSTOP
4019 (e.g. gdbserver). We already rely on SIGTRAP being our
4020 signal, so this is no exception.
4021
4022 Also consider that the attach is complete when we see a
4023 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4024 the target to stop all threads of the inferior, in case the
4025 low level attach operation doesn't stop them implicitly. If
4026 they weren't stopped implicitly, then the stub will report a
4027 TARGET_SIGNAL_0, meaning: stopped for no particular reason
4028 other than GDB's request. */
4029 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4030 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
4031 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4032 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
4033 {
4034 stop_stepping (ecs);
4035 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
4036 return;
4037 }
4038
4039 /* See if there is a breakpoint at the current PC. */
4040 ecs->event_thread->control.stop_bpstat
4041 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4042 stop_pc, ecs->ptid);
4043
4044 /* Following in case break condition called a
4045 function. */
4046 stop_print_frame = 1;
4047
4048 /* This is where we handle "moribund" watchpoints. Unlike
4049 software breakpoints traps, hardware watchpoint traps are
4050 always distinguishable from random traps. If no high-level
4051 watchpoint is associated with the reported stop data address
4052 anymore, then the bpstat does not explain the signal ---
4053 simply make sure to ignore it if `stopped_by_watchpoint' is
4054 set. */
4055
4056 if (debug_infrun
4057 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4058 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4059 && stopped_by_watchpoint)
4060 fprintf_unfiltered (gdb_stdlog,
4061 "infrun: no user watchpoint explains "
4062 "watchpoint SIGTRAP, ignoring\n");
4063
4064 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4065 at one stage in the past included checks for an inferior
4066 function call's call dummy's return breakpoint. The original
4067 comment, that went with the test, read:
4068
4069 ``End of a stack dummy. Some systems (e.g. Sony news) give
4070 another signal besides SIGTRAP, so check here as well as
4071 above.''
4072
4073 If someone ever tries to get call dummys on a
4074 non-executable stack to work (where the target would stop
4075 with something like a SIGSEGV), then those tests might need
4076 to be re-instated. Given, however, that the tests were only
4077 enabled when momentary breakpoints were not being used, I
4078 suspect that it won't be the case.
4079
4080 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4081 be necessary for call dummies on a non-executable stack on
4082 SPARC. */
4083
4084 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
4085 ecs->random_signal
4086 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4087 || stopped_by_watchpoint
4088 || ecs->event_thread->control.trap_expected
4089 || (ecs->event_thread->control.step_range_end
4090 && (ecs->event_thread->control.step_resume_breakpoint
4091 == NULL)));
4092 else
4093 {
4094 ecs->random_signal = !bpstat_explains_signal
4095 (ecs->event_thread->control.stop_bpstat);
4096 if (!ecs->random_signal)
4097 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
4098 }
4099 }
4100
4101 /* When we reach this point, we've pretty much decided
4102 that the reason for stopping must've been a random
4103 (unexpected) signal. */
4104
4105 else
4106 ecs->random_signal = 1;
4107
4108 process_event_stop_test:
4109
4110 /* Re-fetch current thread's frame in case we did a
4111 "goto process_event_stop_test" above. */
4112 frame = get_current_frame ();
4113 gdbarch = get_frame_arch (frame);
4114
4115 /* For the program's own signals, act according to
4116 the signal handling tables. */
4117
4118 if (ecs->random_signal)
4119 {
4120 /* Signal not for debugging purposes. */
4121 int printed = 0;
4122 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4123
4124 if (debug_infrun)
4125 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4126 ecs->event_thread->suspend.stop_signal);
4127
4128 stopped_by_random_signal = 1;
4129
4130 if (signal_print[ecs->event_thread->suspend.stop_signal])
4131 {
4132 printed = 1;
4133 target_terminal_ours_for_output ();
4134 print_signal_received_reason
4135 (ecs->event_thread->suspend.stop_signal);
4136 }
4137 /* Always stop on signals if we're either just gaining control
4138 of the program, or the user explicitly requested this thread
4139 to remain stopped. */
4140 if (stop_soon != NO_STOP_QUIETLY
4141 || ecs->event_thread->stop_requested
4142 || (!inf->detaching
4143 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4144 {
4145 stop_stepping (ecs);
4146 return;
4147 }
4148 /* If not going to stop, give terminal back
4149 if we took it away. */
4150 else if (printed)
4151 target_terminal_inferior ();
4152
4153 /* Clear the signal if it should not be passed. */
4154 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4155 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
4156
4157 if (ecs->event_thread->prev_pc == stop_pc
4158 && ecs->event_thread->control.trap_expected
4159 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4160 {
4161 /* We were just starting a new sequence, attempting to
4162 single-step off of a breakpoint and expecting a SIGTRAP.
4163 Instead this signal arrives. This signal will take us out
4164 of the stepping range so GDB needs to remember to, when
4165 the signal handler returns, resume stepping off that
4166 breakpoint. */
4167 /* To simplify things, "continue" is forced to use the same
4168 code paths as single-step - set a breakpoint at the
4169 signal return address and then, once hit, step off that
4170 breakpoint. */
4171 if (debug_infrun)
4172 fprintf_unfiltered (gdb_stdlog,
4173 "infrun: signal arrived while stepping over "
4174 "breakpoint\n");
4175
4176 insert_hp_step_resume_breakpoint_at_frame (frame);
4177 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4178 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4179 ecs->event_thread->control.trap_expected = 0;
4180 keep_going (ecs);
4181 return;
4182 }
4183
4184 if (ecs->event_thread->control.step_range_end != 0
4185 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4186 && (ecs->event_thread->control.step_range_start <= stop_pc
4187 && stop_pc < ecs->event_thread->control.step_range_end)
4188 && frame_id_eq (get_stack_frame_id (frame),
4189 ecs->event_thread->control.step_stack_frame_id)
4190 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4191 {
4192 /* The inferior is about to take a signal that will take it
4193 out of the single step range. Set a breakpoint at the
4194 current PC (which is presumably where the signal handler
4195 will eventually return) and then allow the inferior to
4196 run free.
4197
4198 Note that this is only needed for a signal delivered
4199 while in the single-step range. Nested signals aren't a
4200 problem as they eventually all return. */
4201 if (debug_infrun)
4202 fprintf_unfiltered (gdb_stdlog,
4203 "infrun: signal may take us out of "
4204 "single-step range\n");
4205
4206 insert_hp_step_resume_breakpoint_at_frame (frame);
4207 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4208 ecs->event_thread->control.trap_expected = 0;
4209 keep_going (ecs);
4210 return;
4211 }
4212
4213 /* Note: step_resume_breakpoint may be non-NULL. This occures
4214 when either there's a nested signal, or when there's a
4215 pending signal enabled just as the signal handler returns
4216 (leaving the inferior at the step-resume-breakpoint without
4217 actually executing it). Either way continue until the
4218 breakpoint is really hit. */
4219 keep_going (ecs);
4220 return;
4221 }
4222
4223 /* Handle cases caused by hitting a breakpoint. */
4224 {
4225 CORE_ADDR jmp_buf_pc;
4226 struct bpstat_what what;
4227
4228 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4229
4230 if (what.call_dummy)
4231 {
4232 stop_stack_dummy = what.call_dummy;
4233 }
4234
4235 /* If we hit an internal event that triggers symbol changes, the
4236 current frame will be invalidated within bpstat_what (e.g., if
4237 we hit an internal solib event). Re-fetch it. */
4238 frame = get_current_frame ();
4239 gdbarch = get_frame_arch (frame);
4240
4241 switch (what.main_action)
4242 {
4243 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4244 /* If we hit the breakpoint at longjmp while stepping, we
4245 install a momentary breakpoint at the target of the
4246 jmp_buf. */
4247
4248 if (debug_infrun)
4249 fprintf_unfiltered (gdb_stdlog,
4250 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4251
4252 ecs->event_thread->stepping_over_breakpoint = 1;
4253
4254 if (what.is_longjmp)
4255 {
4256 if (!gdbarch_get_longjmp_target_p (gdbarch)
4257 || !gdbarch_get_longjmp_target (gdbarch,
4258 frame, &jmp_buf_pc))
4259 {
4260 if (debug_infrun)
4261 fprintf_unfiltered (gdb_stdlog,
4262 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4263 "(!gdbarch_get_longjmp_target)\n");
4264 keep_going (ecs);
4265 return;
4266 }
4267
4268 /* We're going to replace the current step-resume breakpoint
4269 with a longjmp-resume breakpoint. */
4270 delete_step_resume_breakpoint (ecs->event_thread);
4271
4272 /* Insert a breakpoint at resume address. */
4273 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4274 }
4275 else
4276 {
4277 struct symbol *func = get_frame_function (frame);
4278
4279 if (func)
4280 check_exception_resume (ecs, frame, func);
4281 }
4282 keep_going (ecs);
4283 return;
4284
4285 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4286 if (debug_infrun)
4287 fprintf_unfiltered (gdb_stdlog,
4288 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4289
4290 if (what.is_longjmp)
4291 {
4292 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4293 != NULL);
4294 delete_step_resume_breakpoint (ecs->event_thread);
4295 }
4296 else
4297 {
4298 /* There are several cases to consider.
4299
4300 1. The initiating frame no longer exists. In this case
4301 we must stop, because the exception has gone too far.
4302
4303 2. The initiating frame exists, and is the same as the
4304 current frame. We stop, because the exception has been
4305 caught.
4306
4307 3. The initiating frame exists and is different from
4308 the current frame. This means the exception has been
4309 caught beneath the initiating frame, so keep going. */
4310 struct frame_info *init_frame
4311 = frame_find_by_id (ecs->event_thread->initiating_frame);
4312
4313 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4314 != NULL);
4315 delete_exception_resume_breakpoint (ecs->event_thread);
4316
4317 if (init_frame)
4318 {
4319 struct frame_id current_id
4320 = get_frame_id (get_current_frame ());
4321 if (frame_id_eq (current_id,
4322 ecs->event_thread->initiating_frame))
4323 {
4324 /* Case 2. Fall through. */
4325 }
4326 else
4327 {
4328 /* Case 3. */
4329 keep_going (ecs);
4330 return;
4331 }
4332 }
4333
4334 /* For Cases 1 and 2, remove the step-resume breakpoint,
4335 if it exists. */
4336 delete_step_resume_breakpoint (ecs->event_thread);
4337 }
4338
4339 ecs->event_thread->control.stop_step = 1;
4340 print_end_stepping_range_reason ();
4341 stop_stepping (ecs);
4342 return;
4343
4344 case BPSTAT_WHAT_SINGLE:
4345 if (debug_infrun)
4346 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4347 ecs->event_thread->stepping_over_breakpoint = 1;
4348 /* Still need to check other stuff, at least the case
4349 where we are stepping and step out of the right range. */
4350 break;
4351
4352 case BPSTAT_WHAT_STEP_RESUME:
4353 if (debug_infrun)
4354 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4355
4356 delete_step_resume_breakpoint (ecs->event_thread);
4357 if (ecs->event_thread->control.proceed_to_finish
4358 && execution_direction == EXEC_REVERSE)
4359 {
4360 struct thread_info *tp = ecs->event_thread;
4361
4362 /* We are finishing a function in reverse, and just hit
4363 the step-resume breakpoint at the start address of the
4364 function, and we're almost there -- just need to back
4365 up by one more single-step, which should take us back
4366 to the function call. */
4367 tp->control.step_range_start = tp->control.step_range_end = 1;
4368 keep_going (ecs);
4369 return;
4370 }
4371 if (stop_pc == ecs->stop_func_start
4372 && execution_direction == EXEC_REVERSE)
4373 {
4374 /* We are stepping over a function call in reverse, and
4375 just hit the step-resume breakpoint at the start
4376 address of the function. Go back to single-stepping,
4377 which should take us back to the function call. */
4378 ecs->event_thread->stepping_over_breakpoint = 1;
4379 keep_going (ecs);
4380 return;
4381 }
4382 break;
4383
4384 case BPSTAT_WHAT_STOP_NOISY:
4385 if (debug_infrun)
4386 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4387 stop_print_frame = 1;
4388
4389 /* We are about to nuke the step_resume_breakpointt via the
4390 cleanup chain, so no need to worry about it here. */
4391
4392 stop_stepping (ecs);
4393 return;
4394
4395 case BPSTAT_WHAT_STOP_SILENT:
4396 if (debug_infrun)
4397 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4398 stop_print_frame = 0;
4399
4400 /* We are about to nuke the step_resume_breakpoin via the
4401 cleanup chain, so no need to worry about it here. */
4402
4403 stop_stepping (ecs);
4404 return;
4405
4406 case BPSTAT_WHAT_HP_STEP_RESUME:
4407 if (debug_infrun)
4408 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4409
4410 delete_step_resume_breakpoint (ecs->event_thread);
4411 if (ecs->event_thread->step_after_step_resume_breakpoint)
4412 {
4413 /* Back when the step-resume breakpoint was inserted, we
4414 were trying to single-step off a breakpoint. Go back
4415 to doing that. */
4416 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4417 ecs->event_thread->stepping_over_breakpoint = 1;
4418 keep_going (ecs);
4419 return;
4420 }
4421 break;
4422
4423 case BPSTAT_WHAT_KEEP_CHECKING:
4424 break;
4425 }
4426 }
4427
4428 /* We come here if we hit a breakpoint but should not
4429 stop for it. Possibly we also were stepping
4430 and should stop for that. So fall through and
4431 test for stepping. But, if not stepping,
4432 do not stop. */
4433
4434 /* In all-stop mode, if we're currently stepping but have stopped in
4435 some other thread, we need to switch back to the stepped thread. */
4436 if (!non_stop)
4437 {
4438 struct thread_info *tp;
4439
4440 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4441 ecs->event_thread);
4442 if (tp)
4443 {
4444 /* However, if the current thread is blocked on some internal
4445 breakpoint, and we simply need to step over that breakpoint
4446 to get it going again, do that first. */
4447 if ((ecs->event_thread->control.trap_expected
4448 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
4449 || ecs->event_thread->stepping_over_breakpoint)
4450 {
4451 keep_going (ecs);
4452 return;
4453 }
4454
4455 /* If the stepping thread exited, then don't try to switch
4456 back and resume it, which could fail in several different
4457 ways depending on the target. Instead, just keep going.
4458
4459 We can find a stepping dead thread in the thread list in
4460 two cases:
4461
4462 - The target supports thread exit events, and when the
4463 target tries to delete the thread from the thread list,
4464 inferior_ptid pointed at the exiting thread. In such
4465 case, calling delete_thread does not really remove the
4466 thread from the list; instead, the thread is left listed,
4467 with 'exited' state.
4468
4469 - The target's debug interface does not support thread
4470 exit events, and so we have no idea whatsoever if the
4471 previously stepping thread is still alive. For that
4472 reason, we need to synchronously query the target
4473 now. */
4474 if (is_exited (tp->ptid)
4475 || !target_thread_alive (tp->ptid))
4476 {
4477 if (debug_infrun)
4478 fprintf_unfiltered (gdb_stdlog,
4479 "infrun: not switching back to "
4480 "stepped thread, it has vanished\n");
4481
4482 delete_thread (tp->ptid);
4483 keep_going (ecs);
4484 return;
4485 }
4486
4487 /* Otherwise, we no longer expect a trap in the current thread.
4488 Clear the trap_expected flag before switching back -- this is
4489 what keep_going would do as well, if we called it. */
4490 ecs->event_thread->control.trap_expected = 0;
4491
4492 if (debug_infrun)
4493 fprintf_unfiltered (gdb_stdlog,
4494 "infrun: switching back to stepped thread\n");
4495
4496 ecs->event_thread = tp;
4497 ecs->ptid = tp->ptid;
4498 context_switch (ecs->ptid);
4499 keep_going (ecs);
4500 return;
4501 }
4502 }
4503
4504 /* Are we stepping to get the inferior out of the dynamic linker's
4505 hook (and possibly the dld itself) after catching a shlib
4506 event? */
4507 if (ecs->event_thread->stepping_through_solib_after_catch)
4508 {
4509 #if defined(SOLIB_ADD)
4510 /* Have we reached our destination? If not, keep going. */
4511 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
4512 {
4513 if (debug_infrun)
4514 fprintf_unfiltered (gdb_stdlog,
4515 "infrun: stepping in dynamic linker\n");
4516 ecs->event_thread->stepping_over_breakpoint = 1;
4517 keep_going (ecs);
4518 return;
4519 }
4520 #endif
4521 if (debug_infrun)
4522 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
4523 /* Else, stop and report the catchpoint(s) whose triggering
4524 caused us to begin stepping. */
4525 ecs->event_thread->stepping_through_solib_after_catch = 0;
4526 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4527 ecs->event_thread->control.stop_bpstat
4528 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4529 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
4530 stop_print_frame = 1;
4531 stop_stepping (ecs);
4532 return;
4533 }
4534
4535 if (ecs->event_thread->control.step_resume_breakpoint)
4536 {
4537 if (debug_infrun)
4538 fprintf_unfiltered (gdb_stdlog,
4539 "infrun: step-resume breakpoint is inserted\n");
4540
4541 /* Having a step-resume breakpoint overrides anything
4542 else having to do with stepping commands until
4543 that breakpoint is reached. */
4544 keep_going (ecs);
4545 return;
4546 }
4547
4548 if (ecs->event_thread->control.step_range_end == 0)
4549 {
4550 if (debug_infrun)
4551 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4552 /* Likewise if we aren't even stepping. */
4553 keep_going (ecs);
4554 return;
4555 }
4556
4557 /* Re-fetch current thread's frame in case the code above caused
4558 the frame cache to be re-initialized, making our FRAME variable
4559 a dangling pointer. */
4560 frame = get_current_frame ();
4561 gdbarch = get_frame_arch (frame);
4562
4563 /* If stepping through a line, keep going if still within it.
4564
4565 Note that step_range_end is the address of the first instruction
4566 beyond the step range, and NOT the address of the last instruction
4567 within it!
4568
4569 Note also that during reverse execution, we may be stepping
4570 through a function epilogue and therefore must detect when
4571 the current-frame changes in the middle of a line. */
4572
4573 if (stop_pc >= ecs->event_thread->control.step_range_start
4574 && stop_pc < ecs->event_thread->control.step_range_end
4575 && (execution_direction != EXEC_REVERSE
4576 || frame_id_eq (get_frame_id (frame),
4577 ecs->event_thread->control.step_frame_id)))
4578 {
4579 if (debug_infrun)
4580 fprintf_unfiltered
4581 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4582 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4583 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4584
4585 /* When stepping backward, stop at beginning of line range
4586 (unless it's the function entry point, in which case
4587 keep going back to the call point). */
4588 if (stop_pc == ecs->event_thread->control.step_range_start
4589 && stop_pc != ecs->stop_func_start
4590 && execution_direction == EXEC_REVERSE)
4591 {
4592 ecs->event_thread->control.stop_step = 1;
4593 print_end_stepping_range_reason ();
4594 stop_stepping (ecs);
4595 }
4596 else
4597 keep_going (ecs);
4598
4599 return;
4600 }
4601
4602 /* We stepped out of the stepping range. */
4603
4604 /* If we are stepping at the source level and entered the runtime
4605 loader dynamic symbol resolution code...
4606
4607 EXEC_FORWARD: we keep on single stepping until we exit the run
4608 time loader code and reach the callee's address.
4609
4610 EXEC_REVERSE: we've already executed the callee (backward), and
4611 the runtime loader code is handled just like any other
4612 undebuggable function call. Now we need only keep stepping
4613 backward through the trampoline code, and that's handled further
4614 down, so there is nothing for us to do here. */
4615
4616 if (execution_direction != EXEC_REVERSE
4617 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4618 && in_solib_dynsym_resolve_code (stop_pc))
4619 {
4620 CORE_ADDR pc_after_resolver =
4621 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4622
4623 if (debug_infrun)
4624 fprintf_unfiltered (gdb_stdlog,
4625 "infrun: stepped into dynsym resolve code\n");
4626
4627 if (pc_after_resolver)
4628 {
4629 /* Set up a step-resume breakpoint at the address
4630 indicated by SKIP_SOLIB_RESOLVER. */
4631 struct symtab_and_line sr_sal;
4632
4633 init_sal (&sr_sal);
4634 sr_sal.pc = pc_after_resolver;
4635 sr_sal.pspace = get_frame_program_space (frame);
4636
4637 insert_step_resume_breakpoint_at_sal (gdbarch,
4638 sr_sal, null_frame_id);
4639 }
4640
4641 keep_going (ecs);
4642 return;
4643 }
4644
4645 if (ecs->event_thread->control.step_range_end != 1
4646 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4647 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4648 && get_frame_type (frame) == SIGTRAMP_FRAME)
4649 {
4650 if (debug_infrun)
4651 fprintf_unfiltered (gdb_stdlog,
4652 "infrun: stepped into signal trampoline\n");
4653 /* The inferior, while doing a "step" or "next", has ended up in
4654 a signal trampoline (either by a signal being delivered or by
4655 the signal handler returning). Just single-step until the
4656 inferior leaves the trampoline (either by calling the handler
4657 or returning). */
4658 keep_going (ecs);
4659 return;
4660 }
4661
4662 /* Check for subroutine calls. The check for the current frame
4663 equalling the step ID is not necessary - the check of the
4664 previous frame's ID is sufficient - but it is a common case and
4665 cheaper than checking the previous frame's ID.
4666
4667 NOTE: frame_id_eq will never report two invalid frame IDs as
4668 being equal, so to get into this block, both the current and
4669 previous frame must have valid frame IDs. */
4670 /* The outer_frame_id check is a heuristic to detect stepping
4671 through startup code. If we step over an instruction which
4672 sets the stack pointer from an invalid value to a valid value,
4673 we may detect that as a subroutine call from the mythical
4674 "outermost" function. This could be fixed by marking
4675 outermost frames as !stack_p,code_p,special_p. Then the
4676 initial outermost frame, before sp was valid, would
4677 have code_addr == &_start. See the comment in frame_id_eq
4678 for more. */
4679 if (!frame_id_eq (get_stack_frame_id (frame),
4680 ecs->event_thread->control.step_stack_frame_id)
4681 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4682 ecs->event_thread->control.step_stack_frame_id)
4683 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4684 outer_frame_id)
4685 || step_start_function != find_pc_function (stop_pc))))
4686 {
4687 CORE_ADDR real_stop_pc;
4688
4689 if (debug_infrun)
4690 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4691
4692 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4693 || ((ecs->event_thread->control.step_range_end == 1)
4694 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4695 ecs->stop_func_start)))
4696 {
4697 /* I presume that step_over_calls is only 0 when we're
4698 supposed to be stepping at the assembly language level
4699 ("stepi"). Just stop. */
4700 /* Also, maybe we just did a "nexti" inside a prolog, so we
4701 thought it was a subroutine call but it was not. Stop as
4702 well. FENN */
4703 /* And this works the same backward as frontward. MVS */
4704 ecs->event_thread->control.stop_step = 1;
4705 print_end_stepping_range_reason ();
4706 stop_stepping (ecs);
4707 return;
4708 }
4709
4710 /* Reverse stepping through solib trampolines. */
4711
4712 if (execution_direction == EXEC_REVERSE
4713 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4714 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4715 || (ecs->stop_func_start == 0
4716 && in_solib_dynsym_resolve_code (stop_pc))))
4717 {
4718 /* Any solib trampoline code can be handled in reverse
4719 by simply continuing to single-step. We have already
4720 executed the solib function (backwards), and a few
4721 steps will take us back through the trampoline to the
4722 caller. */
4723 keep_going (ecs);
4724 return;
4725 }
4726
4727 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4728 {
4729 /* We're doing a "next".
4730
4731 Normal (forward) execution: set a breakpoint at the
4732 callee's return address (the address at which the caller
4733 will resume).
4734
4735 Reverse (backward) execution. set the step-resume
4736 breakpoint at the start of the function that we just
4737 stepped into (backwards), and continue to there. When we
4738 get there, we'll need to single-step back to the caller. */
4739
4740 if (execution_direction == EXEC_REVERSE)
4741 {
4742 struct symtab_and_line sr_sal;
4743
4744 /* Normal function call return (static or dynamic). */
4745 init_sal (&sr_sal);
4746 sr_sal.pc = ecs->stop_func_start;
4747 sr_sal.pspace = get_frame_program_space (frame);
4748 insert_step_resume_breakpoint_at_sal (gdbarch,
4749 sr_sal, null_frame_id);
4750 }
4751 else
4752 insert_step_resume_breakpoint_at_caller (frame);
4753
4754 keep_going (ecs);
4755 return;
4756 }
4757
4758 /* If we are in a function call trampoline (a stub between the
4759 calling routine and the real function), locate the real
4760 function. That's what tells us (a) whether we want to step
4761 into it at all, and (b) what prologue we want to run to the
4762 end of, if we do step into it. */
4763 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4764 if (real_stop_pc == 0)
4765 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4766 if (real_stop_pc != 0)
4767 ecs->stop_func_start = real_stop_pc;
4768
4769 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4770 {
4771 struct symtab_and_line sr_sal;
4772
4773 init_sal (&sr_sal);
4774 sr_sal.pc = ecs->stop_func_start;
4775 sr_sal.pspace = get_frame_program_space (frame);
4776
4777 insert_step_resume_breakpoint_at_sal (gdbarch,
4778 sr_sal, null_frame_id);
4779 keep_going (ecs);
4780 return;
4781 }
4782
4783 /* If we have line number information for the function we are
4784 thinking of stepping into, step into it.
4785
4786 If there are several symtabs at that PC (e.g. with include
4787 files), just want to know whether *any* of them have line
4788 numbers. find_pc_line handles this. */
4789 {
4790 struct symtab_and_line tmp_sal;
4791
4792 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4793 if (tmp_sal.line != 0)
4794 {
4795 if (execution_direction == EXEC_REVERSE)
4796 handle_step_into_function_backward (gdbarch, ecs);
4797 else
4798 handle_step_into_function (gdbarch, ecs);
4799 return;
4800 }
4801 }
4802
4803 /* If we have no line number and the step-stop-if-no-debug is
4804 set, we stop the step so that the user has a chance to switch
4805 in assembly mode. */
4806 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4807 && step_stop_if_no_debug)
4808 {
4809 ecs->event_thread->control.stop_step = 1;
4810 print_end_stepping_range_reason ();
4811 stop_stepping (ecs);
4812 return;
4813 }
4814
4815 if (execution_direction == EXEC_REVERSE)
4816 {
4817 /* Set a breakpoint at callee's start address.
4818 From there we can step once and be back in the caller. */
4819 struct symtab_and_line sr_sal;
4820
4821 init_sal (&sr_sal);
4822 sr_sal.pc = ecs->stop_func_start;
4823 sr_sal.pspace = get_frame_program_space (frame);
4824 insert_step_resume_breakpoint_at_sal (gdbarch,
4825 sr_sal, null_frame_id);
4826 }
4827 else
4828 /* Set a breakpoint at callee's return address (the address
4829 at which the caller will resume). */
4830 insert_step_resume_breakpoint_at_caller (frame);
4831
4832 keep_going (ecs);
4833 return;
4834 }
4835
4836 /* Reverse stepping through solib trampolines. */
4837
4838 if (execution_direction == EXEC_REVERSE
4839 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4840 {
4841 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4842 || (ecs->stop_func_start == 0
4843 && in_solib_dynsym_resolve_code (stop_pc)))
4844 {
4845 /* Any solib trampoline code can be handled in reverse
4846 by simply continuing to single-step. We have already
4847 executed the solib function (backwards), and a few
4848 steps will take us back through the trampoline to the
4849 caller. */
4850 keep_going (ecs);
4851 return;
4852 }
4853 else if (in_solib_dynsym_resolve_code (stop_pc))
4854 {
4855 /* Stepped backward into the solib dynsym resolver.
4856 Set a breakpoint at its start and continue, then
4857 one more step will take us out. */
4858 struct symtab_and_line sr_sal;
4859
4860 init_sal (&sr_sal);
4861 sr_sal.pc = ecs->stop_func_start;
4862 sr_sal.pspace = get_frame_program_space (frame);
4863 insert_step_resume_breakpoint_at_sal (gdbarch,
4864 sr_sal, null_frame_id);
4865 keep_going (ecs);
4866 return;
4867 }
4868 }
4869
4870 /* If we're in the return path from a shared library trampoline,
4871 we want to proceed through the trampoline when stepping. */
4872 if (gdbarch_in_solib_return_trampoline (gdbarch,
4873 stop_pc, ecs->stop_func_name))
4874 {
4875 /* Determine where this trampoline returns. */
4876 CORE_ADDR real_stop_pc;
4877
4878 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4879
4880 if (debug_infrun)
4881 fprintf_unfiltered (gdb_stdlog,
4882 "infrun: stepped into solib return tramp\n");
4883
4884 /* Only proceed through if we know where it's going. */
4885 if (real_stop_pc)
4886 {
4887 /* And put the step-breakpoint there and go until there. */
4888 struct symtab_and_line sr_sal;
4889
4890 init_sal (&sr_sal); /* initialize to zeroes */
4891 sr_sal.pc = real_stop_pc;
4892 sr_sal.section = find_pc_overlay (sr_sal.pc);
4893 sr_sal.pspace = get_frame_program_space (frame);
4894
4895 /* Do not specify what the fp should be when we stop since
4896 on some machines the prologue is where the new fp value
4897 is established. */
4898 insert_step_resume_breakpoint_at_sal (gdbarch,
4899 sr_sal, null_frame_id);
4900
4901 /* Restart without fiddling with the step ranges or
4902 other state. */
4903 keep_going (ecs);
4904 return;
4905 }
4906 }
4907
4908 stop_pc_sal = find_pc_line (stop_pc, 0);
4909
4910 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4911 the trampoline processing logic, however, there are some trampolines
4912 that have no names, so we should do trampoline handling first. */
4913 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4914 && ecs->stop_func_name == NULL
4915 && stop_pc_sal.line == 0)
4916 {
4917 if (debug_infrun)
4918 fprintf_unfiltered (gdb_stdlog,
4919 "infrun: stepped into undebuggable function\n");
4920
4921 /* The inferior just stepped into, or returned to, an
4922 undebuggable function (where there is no debugging information
4923 and no line number corresponding to the address where the
4924 inferior stopped). Since we want to skip this kind of code,
4925 we keep going until the inferior returns from this
4926 function - unless the user has asked us not to (via
4927 set step-mode) or we no longer know how to get back
4928 to the call site. */
4929 if (step_stop_if_no_debug
4930 || !frame_id_p (frame_unwind_caller_id (frame)))
4931 {
4932 /* If we have no line number and the step-stop-if-no-debug
4933 is set, we stop the step so that the user has a chance to
4934 switch in assembly mode. */
4935 ecs->event_thread->control.stop_step = 1;
4936 print_end_stepping_range_reason ();
4937 stop_stepping (ecs);
4938 return;
4939 }
4940 else
4941 {
4942 /* Set a breakpoint at callee's return address (the address
4943 at which the caller will resume). */
4944 insert_step_resume_breakpoint_at_caller (frame);
4945 keep_going (ecs);
4946 return;
4947 }
4948 }
4949
4950 if (ecs->event_thread->control.step_range_end == 1)
4951 {
4952 /* It is stepi or nexti. We always want to stop stepping after
4953 one instruction. */
4954 if (debug_infrun)
4955 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
4956 ecs->event_thread->control.stop_step = 1;
4957 print_end_stepping_range_reason ();
4958 stop_stepping (ecs);
4959 return;
4960 }
4961
4962 if (stop_pc_sal.line == 0)
4963 {
4964 /* We have no line number information. That means to stop
4965 stepping (does this always happen right after one instruction,
4966 when we do "s" in a function with no line numbers,
4967 or can this happen as a result of a return or longjmp?). */
4968 if (debug_infrun)
4969 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
4970 ecs->event_thread->control.stop_step = 1;
4971 print_end_stepping_range_reason ();
4972 stop_stepping (ecs);
4973 return;
4974 }
4975
4976 /* Look for "calls" to inlined functions, part one. If the inline
4977 frame machinery detected some skipped call sites, we have entered
4978 a new inline function. */
4979
4980 if (frame_id_eq (get_frame_id (get_current_frame ()),
4981 ecs->event_thread->control.step_frame_id)
4982 && inline_skipped_frames (ecs->ptid))
4983 {
4984 struct symtab_and_line call_sal;
4985
4986 if (debug_infrun)
4987 fprintf_unfiltered (gdb_stdlog,
4988 "infrun: stepped into inlined function\n");
4989
4990 find_frame_sal (get_current_frame (), &call_sal);
4991
4992 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
4993 {
4994 /* For "step", we're going to stop. But if the call site
4995 for this inlined function is on the same source line as
4996 we were previously stepping, go down into the function
4997 first. Otherwise stop at the call site. */
4998
4999 if (call_sal.line == ecs->event_thread->current_line
5000 && call_sal.symtab == ecs->event_thread->current_symtab)
5001 step_into_inline_frame (ecs->ptid);
5002
5003 ecs->event_thread->control.stop_step = 1;
5004 print_end_stepping_range_reason ();
5005 stop_stepping (ecs);
5006 return;
5007 }
5008 else
5009 {
5010 /* For "next", we should stop at the call site if it is on a
5011 different source line. Otherwise continue through the
5012 inlined function. */
5013 if (call_sal.line == ecs->event_thread->current_line
5014 && call_sal.symtab == ecs->event_thread->current_symtab)
5015 keep_going (ecs);
5016 else
5017 {
5018 ecs->event_thread->control.stop_step = 1;
5019 print_end_stepping_range_reason ();
5020 stop_stepping (ecs);
5021 }
5022 return;
5023 }
5024 }
5025
5026 /* Look for "calls" to inlined functions, part two. If we are still
5027 in the same real function we were stepping through, but we have
5028 to go further up to find the exact frame ID, we are stepping
5029 through a more inlined call beyond its call site. */
5030
5031 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5032 && !frame_id_eq (get_frame_id (get_current_frame ()),
5033 ecs->event_thread->control.step_frame_id)
5034 && stepped_in_from (get_current_frame (),
5035 ecs->event_thread->control.step_frame_id))
5036 {
5037 if (debug_infrun)
5038 fprintf_unfiltered (gdb_stdlog,
5039 "infrun: stepping through inlined function\n");
5040
5041 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5042 keep_going (ecs);
5043 else
5044 {
5045 ecs->event_thread->control.stop_step = 1;
5046 print_end_stepping_range_reason ();
5047 stop_stepping (ecs);
5048 }
5049 return;
5050 }
5051
5052 if ((stop_pc == stop_pc_sal.pc)
5053 && (ecs->event_thread->current_line != stop_pc_sal.line
5054 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5055 {
5056 /* We are at the start of a different line. So stop. Note that
5057 we don't stop if we step into the middle of a different line.
5058 That is said to make things like for (;;) statements work
5059 better. */
5060 if (debug_infrun)
5061 fprintf_unfiltered (gdb_stdlog,
5062 "infrun: stepped to a different line\n");
5063 ecs->event_thread->control.stop_step = 1;
5064 print_end_stepping_range_reason ();
5065 stop_stepping (ecs);
5066 return;
5067 }
5068
5069 /* We aren't done stepping.
5070
5071 Optimize by setting the stepping range to the line.
5072 (We might not be in the original line, but if we entered a
5073 new line in mid-statement, we continue stepping. This makes
5074 things like for(;;) statements work better.) */
5075
5076 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5077 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5078 set_step_info (frame, stop_pc_sal);
5079
5080 if (debug_infrun)
5081 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5082 keep_going (ecs);
5083 }
5084
5085 /* Is thread TP in the middle of single-stepping? */
5086
5087 static int
5088 currently_stepping (struct thread_info *tp)
5089 {
5090 return ((tp->control.step_range_end
5091 && tp->control.step_resume_breakpoint == NULL)
5092 || tp->control.trap_expected
5093 || tp->stepping_through_solib_after_catch
5094 || bpstat_should_step ());
5095 }
5096
5097 /* Returns true if any thread *but* the one passed in "data" is in the
5098 middle of stepping or of handling a "next". */
5099
5100 static int
5101 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5102 {
5103 if (tp == data)
5104 return 0;
5105
5106 return (tp->control.step_range_end
5107 || tp->control.trap_expected
5108 || tp->stepping_through_solib_after_catch);
5109 }
5110
5111 /* Inferior has stepped into a subroutine call with source code that
5112 we should not step over. Do step to the first line of code in
5113 it. */
5114
5115 static void
5116 handle_step_into_function (struct gdbarch *gdbarch,
5117 struct execution_control_state *ecs)
5118 {
5119 struct symtab *s;
5120 struct symtab_and_line stop_func_sal, sr_sal;
5121
5122 s = find_pc_symtab (stop_pc);
5123 if (s && s->language != language_asm)
5124 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5125 ecs->stop_func_start);
5126
5127 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5128 /* Use the step_resume_break to step until the end of the prologue,
5129 even if that involves jumps (as it seems to on the vax under
5130 4.2). */
5131 /* If the prologue ends in the middle of a source line, continue to
5132 the end of that source line (if it is still within the function).
5133 Otherwise, just go to end of prologue. */
5134 if (stop_func_sal.end
5135 && stop_func_sal.pc != ecs->stop_func_start
5136 && stop_func_sal.end < ecs->stop_func_end)
5137 ecs->stop_func_start = stop_func_sal.end;
5138
5139 /* Architectures which require breakpoint adjustment might not be able
5140 to place a breakpoint at the computed address. If so, the test
5141 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5142 ecs->stop_func_start to an address at which a breakpoint may be
5143 legitimately placed.
5144
5145 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5146 made, GDB will enter an infinite loop when stepping through
5147 optimized code consisting of VLIW instructions which contain
5148 subinstructions corresponding to different source lines. On
5149 FR-V, it's not permitted to place a breakpoint on any but the
5150 first subinstruction of a VLIW instruction. When a breakpoint is
5151 set, GDB will adjust the breakpoint address to the beginning of
5152 the VLIW instruction. Thus, we need to make the corresponding
5153 adjustment here when computing the stop address. */
5154
5155 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5156 {
5157 ecs->stop_func_start
5158 = gdbarch_adjust_breakpoint_address (gdbarch,
5159 ecs->stop_func_start);
5160 }
5161
5162 if (ecs->stop_func_start == stop_pc)
5163 {
5164 /* We are already there: stop now. */
5165 ecs->event_thread->control.stop_step = 1;
5166 print_end_stepping_range_reason ();
5167 stop_stepping (ecs);
5168 return;
5169 }
5170 else
5171 {
5172 /* Put the step-breakpoint there and go until there. */
5173 init_sal (&sr_sal); /* initialize to zeroes */
5174 sr_sal.pc = ecs->stop_func_start;
5175 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5176 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5177
5178 /* Do not specify what the fp should be when we stop since on
5179 some machines the prologue is where the new fp value is
5180 established. */
5181 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5182
5183 /* And make sure stepping stops right away then. */
5184 ecs->event_thread->control.step_range_end
5185 = ecs->event_thread->control.step_range_start;
5186 }
5187 keep_going (ecs);
5188 }
5189
5190 /* Inferior has stepped backward into a subroutine call with source
5191 code that we should not step over. Do step to the beginning of the
5192 last line of code in it. */
5193
5194 static void
5195 handle_step_into_function_backward (struct gdbarch *gdbarch,
5196 struct execution_control_state *ecs)
5197 {
5198 struct symtab *s;
5199 struct symtab_and_line stop_func_sal;
5200
5201 s = find_pc_symtab (stop_pc);
5202 if (s && s->language != language_asm)
5203 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5204 ecs->stop_func_start);
5205
5206 stop_func_sal = find_pc_line (stop_pc, 0);
5207
5208 /* OK, we're just going to keep stepping here. */
5209 if (stop_func_sal.pc == stop_pc)
5210 {
5211 /* We're there already. Just stop stepping now. */
5212 ecs->event_thread->control.stop_step = 1;
5213 print_end_stepping_range_reason ();
5214 stop_stepping (ecs);
5215 }
5216 else
5217 {
5218 /* Else just reset the step range and keep going.
5219 No step-resume breakpoint, they don't work for
5220 epilogues, which can have multiple entry paths. */
5221 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5222 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5223 keep_going (ecs);
5224 }
5225 return;
5226 }
5227
5228 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5229 This is used to both functions and to skip over code. */
5230
5231 static void
5232 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5233 struct symtab_and_line sr_sal,
5234 struct frame_id sr_id,
5235 enum bptype sr_type)
5236 {
5237 /* There should never be more than one step-resume or longjmp-resume
5238 breakpoint per thread, so we should never be setting a new
5239 step_resume_breakpoint when one is already active. */
5240 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5241 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5242
5243 if (debug_infrun)
5244 fprintf_unfiltered (gdb_stdlog,
5245 "infrun: inserting step-resume breakpoint at %s\n",
5246 paddress (gdbarch, sr_sal.pc));
5247
5248 inferior_thread ()->control.step_resume_breakpoint
5249 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5250 }
5251
5252 void
5253 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5254 struct symtab_and_line sr_sal,
5255 struct frame_id sr_id)
5256 {
5257 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5258 sr_sal, sr_id,
5259 bp_step_resume);
5260 }
5261
5262 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5263 This is used to skip a potential signal handler.
5264
5265 This is called with the interrupted function's frame. The signal
5266 handler, when it returns, will resume the interrupted function at
5267 RETURN_FRAME.pc. */
5268
5269 static void
5270 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5271 {
5272 struct symtab_and_line sr_sal;
5273 struct gdbarch *gdbarch;
5274
5275 gdb_assert (return_frame != NULL);
5276 init_sal (&sr_sal); /* initialize to zeros */
5277
5278 gdbarch = get_frame_arch (return_frame);
5279 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5280 sr_sal.section = find_pc_overlay (sr_sal.pc);
5281 sr_sal.pspace = get_frame_program_space (return_frame);
5282
5283 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5284 get_stack_frame_id (return_frame),
5285 bp_hp_step_resume);
5286 }
5287
5288 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5289 is used to skip a function after stepping into it (for "next" or if
5290 the called function has no debugging information).
5291
5292 The current function has almost always been reached by single
5293 stepping a call or return instruction. NEXT_FRAME belongs to the
5294 current function, and the breakpoint will be set at the caller's
5295 resume address.
5296
5297 This is a separate function rather than reusing
5298 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5299 get_prev_frame, which may stop prematurely (see the implementation
5300 of frame_unwind_caller_id for an example). */
5301
5302 static void
5303 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5304 {
5305 struct symtab_and_line sr_sal;
5306 struct gdbarch *gdbarch;
5307
5308 /* We shouldn't have gotten here if we don't know where the call site
5309 is. */
5310 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5311
5312 init_sal (&sr_sal); /* initialize to zeros */
5313
5314 gdbarch = frame_unwind_caller_arch (next_frame);
5315 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5316 frame_unwind_caller_pc (next_frame));
5317 sr_sal.section = find_pc_overlay (sr_sal.pc);
5318 sr_sal.pspace = frame_unwind_program_space (next_frame);
5319
5320 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5321 frame_unwind_caller_id (next_frame));
5322 }
5323
5324 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5325 new breakpoint at the target of a jmp_buf. The handling of
5326 longjmp-resume uses the same mechanisms used for handling
5327 "step-resume" breakpoints. */
5328
5329 static void
5330 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5331 {
5332 /* There should never be more than one step-resume or longjmp-resume
5333 breakpoint per thread, so we should never be setting a new
5334 longjmp_resume_breakpoint when one is already active. */
5335 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5336
5337 if (debug_infrun)
5338 fprintf_unfiltered (gdb_stdlog,
5339 "infrun: inserting longjmp-resume breakpoint at %s\n",
5340 paddress (gdbarch, pc));
5341
5342 inferior_thread ()->control.step_resume_breakpoint =
5343 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5344 }
5345
5346 /* Insert an exception resume breakpoint. TP is the thread throwing
5347 the exception. The block B is the block of the unwinder debug hook
5348 function. FRAME is the frame corresponding to the call to this
5349 function. SYM is the symbol of the function argument holding the
5350 target PC of the exception. */
5351
5352 static void
5353 insert_exception_resume_breakpoint (struct thread_info *tp,
5354 struct block *b,
5355 struct frame_info *frame,
5356 struct symbol *sym)
5357 {
5358 struct gdb_exception e;
5359
5360 /* We want to ignore errors here. */
5361 TRY_CATCH (e, RETURN_MASK_ERROR)
5362 {
5363 struct symbol *vsym;
5364 struct value *value;
5365 CORE_ADDR handler;
5366 struct breakpoint *bp;
5367
5368 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5369 value = read_var_value (vsym, frame);
5370 /* If the value was optimized out, revert to the old behavior. */
5371 if (! value_optimized_out (value))
5372 {
5373 handler = value_as_address (value);
5374
5375 if (debug_infrun)
5376 fprintf_unfiltered (gdb_stdlog,
5377 "infrun: exception resume at %lx\n",
5378 (unsigned long) handler);
5379
5380 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5381 handler, bp_exception_resume);
5382 bp->thread = tp->num;
5383 inferior_thread ()->control.exception_resume_breakpoint = bp;
5384 }
5385 }
5386 }
5387
5388 /* This is called when an exception has been intercepted. Check to
5389 see whether the exception's destination is of interest, and if so,
5390 set an exception resume breakpoint there. */
5391
5392 static void
5393 check_exception_resume (struct execution_control_state *ecs,
5394 struct frame_info *frame, struct symbol *func)
5395 {
5396 struct gdb_exception e;
5397
5398 TRY_CATCH (e, RETURN_MASK_ERROR)
5399 {
5400 struct block *b;
5401 struct dict_iterator iter;
5402 struct symbol *sym;
5403 int argno = 0;
5404
5405 /* The exception breakpoint is a thread-specific breakpoint on
5406 the unwinder's debug hook, declared as:
5407
5408 void _Unwind_DebugHook (void *cfa, void *handler);
5409
5410 The CFA argument indicates the frame to which control is
5411 about to be transferred. HANDLER is the destination PC.
5412
5413 We ignore the CFA and set a temporary breakpoint at HANDLER.
5414 This is not extremely efficient but it avoids issues in gdb
5415 with computing the DWARF CFA, and it also works even in weird
5416 cases such as throwing an exception from inside a signal
5417 handler. */
5418
5419 b = SYMBOL_BLOCK_VALUE (func);
5420 ALL_BLOCK_SYMBOLS (b, iter, sym)
5421 {
5422 if (!SYMBOL_IS_ARGUMENT (sym))
5423 continue;
5424
5425 if (argno == 0)
5426 ++argno;
5427 else
5428 {
5429 insert_exception_resume_breakpoint (ecs->event_thread,
5430 b, frame, sym);
5431 break;
5432 }
5433 }
5434 }
5435 }
5436
5437 static void
5438 stop_stepping (struct execution_control_state *ecs)
5439 {
5440 if (debug_infrun)
5441 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5442
5443 /* Let callers know we don't want to wait for the inferior anymore. */
5444 ecs->wait_some_more = 0;
5445 }
5446
5447 /* This function handles various cases where we need to continue
5448 waiting for the inferior. */
5449 /* (Used to be the keep_going: label in the old wait_for_inferior). */
5450
5451 static void
5452 keep_going (struct execution_control_state *ecs)
5453 {
5454 /* Make sure normal_stop is called if we get a QUIT handled before
5455 reaching resume. */
5456 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5457
5458 /* Save the pc before execution, to compare with pc after stop. */
5459 ecs->event_thread->prev_pc
5460 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5461
5462 /* If we did not do break;, it means we should keep running the
5463 inferior and not return to debugger. */
5464
5465 if (ecs->event_thread->control.trap_expected
5466 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
5467 {
5468 /* We took a signal (which we are supposed to pass through to
5469 the inferior, else we'd not get here) and we haven't yet
5470 gotten our trap. Simply continue. */
5471
5472 discard_cleanups (old_cleanups);
5473 resume (currently_stepping (ecs->event_thread),
5474 ecs->event_thread->suspend.stop_signal);
5475 }
5476 else
5477 {
5478 /* Either the trap was not expected, but we are continuing
5479 anyway (the user asked that this signal be passed to the
5480 child)
5481 -- or --
5482 The signal was SIGTRAP, e.g. it was our signal, but we
5483 decided we should resume from it.
5484
5485 We're going to run this baby now!
5486
5487 Note that insert_breakpoints won't try to re-insert
5488 already inserted breakpoints. Therefore, we don't
5489 care if breakpoints were already inserted, or not. */
5490
5491 if (ecs->event_thread->stepping_over_breakpoint)
5492 {
5493 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5494
5495 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5496 /* Since we can't do a displaced step, we have to remove
5497 the breakpoint while we step it. To keep things
5498 simple, we remove them all. */
5499 remove_breakpoints ();
5500 }
5501 else
5502 {
5503 struct gdb_exception e;
5504
5505 /* Stop stepping when inserting breakpoints
5506 has failed. */
5507 TRY_CATCH (e, RETURN_MASK_ERROR)
5508 {
5509 insert_breakpoints ();
5510 }
5511 if (e.reason < 0)
5512 {
5513 exception_print (gdb_stderr, e);
5514 stop_stepping (ecs);
5515 return;
5516 }
5517 }
5518
5519 ecs->event_thread->control.trap_expected
5520 = ecs->event_thread->stepping_over_breakpoint;
5521
5522 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5523 specifies that such a signal should be delivered to the
5524 target program).
5525
5526 Typically, this would occure when a user is debugging a
5527 target monitor on a simulator: the target monitor sets a
5528 breakpoint; the simulator encounters this break-point and
5529 halts the simulation handing control to GDB; GDB, noteing
5530 that the break-point isn't valid, returns control back to the
5531 simulator; the simulator then delivers the hardware
5532 equivalent of a SIGNAL_TRAP to the program being debugged. */
5533
5534 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5535 && !signal_program[ecs->event_thread->suspend.stop_signal])
5536 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
5537
5538 discard_cleanups (old_cleanups);
5539 resume (currently_stepping (ecs->event_thread),
5540 ecs->event_thread->suspend.stop_signal);
5541 }
5542
5543 prepare_to_wait (ecs);
5544 }
5545
5546 /* This function normally comes after a resume, before
5547 handle_inferior_event exits. It takes care of any last bits of
5548 housekeeping, and sets the all-important wait_some_more flag. */
5549
5550 static void
5551 prepare_to_wait (struct execution_control_state *ecs)
5552 {
5553 if (debug_infrun)
5554 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5555
5556 /* This is the old end of the while loop. Let everybody know we
5557 want to wait for the inferior some more and get called again
5558 soon. */
5559 ecs->wait_some_more = 1;
5560 }
5561
5562 /* Several print_*_reason functions to print why the inferior has stopped.
5563 We always print something when the inferior exits, or receives a signal.
5564 The rest of the cases are dealt with later on in normal_stop and
5565 print_it_typical. Ideally there should be a call to one of these
5566 print_*_reason functions functions from handle_inferior_event each time
5567 stop_stepping is called. */
5568
5569 /* Print why the inferior has stopped.
5570 We are done with a step/next/si/ni command, print why the inferior has
5571 stopped. For now print nothing. Print a message only if not in the middle
5572 of doing a "step n" operation for n > 1. */
5573
5574 static void
5575 print_end_stepping_range_reason (void)
5576 {
5577 if ((!inferior_thread ()->step_multi
5578 || !inferior_thread ()->control.stop_step)
5579 && ui_out_is_mi_like_p (uiout))
5580 ui_out_field_string (uiout, "reason",
5581 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5582 }
5583
5584 /* The inferior was terminated by a signal, print why it stopped. */
5585
5586 static void
5587 print_signal_exited_reason (enum target_signal siggnal)
5588 {
5589 annotate_signalled ();
5590 if (ui_out_is_mi_like_p (uiout))
5591 ui_out_field_string
5592 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5593 ui_out_text (uiout, "\nProgram terminated with signal ");
5594 annotate_signal_name ();
5595 ui_out_field_string (uiout, "signal-name",
5596 target_signal_to_name (siggnal));
5597 annotate_signal_name_end ();
5598 ui_out_text (uiout, ", ");
5599 annotate_signal_string ();
5600 ui_out_field_string (uiout, "signal-meaning",
5601 target_signal_to_string (siggnal));
5602 annotate_signal_string_end ();
5603 ui_out_text (uiout, ".\n");
5604 ui_out_text (uiout, "The program no longer exists.\n");
5605 }
5606
5607 /* The inferior program is finished, print why it stopped. */
5608
5609 static void
5610 print_exited_reason (int exitstatus)
5611 {
5612 struct inferior *inf = current_inferior ();
5613 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5614
5615 annotate_exited (exitstatus);
5616 if (exitstatus)
5617 {
5618 if (ui_out_is_mi_like_p (uiout))
5619 ui_out_field_string (uiout, "reason",
5620 async_reason_lookup (EXEC_ASYNC_EXITED));
5621 ui_out_text (uiout, "[Inferior ");
5622 ui_out_text (uiout, plongest (inf->num));
5623 ui_out_text (uiout, " (");
5624 ui_out_text (uiout, pidstr);
5625 ui_out_text (uiout, ") exited with code ");
5626 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5627 ui_out_text (uiout, "]\n");
5628 }
5629 else
5630 {
5631 if (ui_out_is_mi_like_p (uiout))
5632 ui_out_field_string
5633 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5634 ui_out_text (uiout, "[Inferior ");
5635 ui_out_text (uiout, plongest (inf->num));
5636 ui_out_text (uiout, " (");
5637 ui_out_text (uiout, pidstr);
5638 ui_out_text (uiout, ") exited normally]\n");
5639 }
5640 /* Support the --return-child-result option. */
5641 return_child_result_value = exitstatus;
5642 }
5643
5644 /* Signal received, print why the inferior has stopped. The signal table
5645 tells us to print about it. */
5646
5647 static void
5648 print_signal_received_reason (enum target_signal siggnal)
5649 {
5650 annotate_signal ();
5651
5652 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5653 {
5654 struct thread_info *t = inferior_thread ();
5655
5656 ui_out_text (uiout, "\n[");
5657 ui_out_field_string (uiout, "thread-name",
5658 target_pid_to_str (t->ptid));
5659 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5660 ui_out_text (uiout, " stopped");
5661 }
5662 else
5663 {
5664 ui_out_text (uiout, "\nProgram received signal ");
5665 annotate_signal_name ();
5666 if (ui_out_is_mi_like_p (uiout))
5667 ui_out_field_string
5668 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5669 ui_out_field_string (uiout, "signal-name",
5670 target_signal_to_name (siggnal));
5671 annotate_signal_name_end ();
5672 ui_out_text (uiout, ", ");
5673 annotate_signal_string ();
5674 ui_out_field_string (uiout, "signal-meaning",
5675 target_signal_to_string (siggnal));
5676 annotate_signal_string_end ();
5677 }
5678 ui_out_text (uiout, ".\n");
5679 }
5680
5681 /* Reverse execution: target ran out of history info, print why the inferior
5682 has stopped. */
5683
5684 static void
5685 print_no_history_reason (void)
5686 {
5687 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
5688 }
5689
5690 /* Here to return control to GDB when the inferior stops for real.
5691 Print appropriate messages, remove breakpoints, give terminal our modes.
5692
5693 STOP_PRINT_FRAME nonzero means print the executing frame
5694 (pc, function, args, file, line number and line text).
5695 BREAKPOINTS_FAILED nonzero means stop was due to error
5696 attempting to insert breakpoints. */
5697
5698 void
5699 normal_stop (void)
5700 {
5701 struct target_waitstatus last;
5702 ptid_t last_ptid;
5703 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5704
5705 get_last_target_status (&last_ptid, &last);
5706
5707 /* If an exception is thrown from this point on, make sure to
5708 propagate GDB's knowledge of the executing state to the
5709 frontend/user running state. A QUIT is an easy exception to see
5710 here, so do this before any filtered output. */
5711 if (!non_stop)
5712 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5713 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5714 && last.kind != TARGET_WAITKIND_EXITED)
5715 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5716
5717 /* In non-stop mode, we don't want GDB to switch threads behind the
5718 user's back, to avoid races where the user is typing a command to
5719 apply to thread x, but GDB switches to thread y before the user
5720 finishes entering the command. */
5721
5722 /* As with the notification of thread events, we want to delay
5723 notifying the user that we've switched thread context until
5724 the inferior actually stops.
5725
5726 There's no point in saying anything if the inferior has exited.
5727 Note that SIGNALLED here means "exited with a signal", not
5728 "received a signal". */
5729 if (!non_stop
5730 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5731 && target_has_execution
5732 && last.kind != TARGET_WAITKIND_SIGNALLED
5733 && last.kind != TARGET_WAITKIND_EXITED)
5734 {
5735 target_terminal_ours_for_output ();
5736 printf_filtered (_("[Switching to %s]\n"),
5737 target_pid_to_str (inferior_ptid));
5738 annotate_thread_changed ();
5739 previous_inferior_ptid = inferior_ptid;
5740 }
5741
5742 if (!breakpoints_always_inserted_mode () && target_has_execution)
5743 {
5744 if (remove_breakpoints ())
5745 {
5746 target_terminal_ours_for_output ();
5747 printf_filtered (_("Cannot remove breakpoints because "
5748 "program is no longer writable.\nFurther "
5749 "execution is probably impossible.\n"));
5750 }
5751 }
5752
5753 /* If an auto-display called a function and that got a signal,
5754 delete that auto-display to avoid an infinite recursion. */
5755
5756 if (stopped_by_random_signal)
5757 disable_current_display ();
5758
5759 /* Don't print a message if in the middle of doing a "step n"
5760 operation for n > 1 */
5761 if (target_has_execution
5762 && last.kind != TARGET_WAITKIND_SIGNALLED
5763 && last.kind != TARGET_WAITKIND_EXITED
5764 && inferior_thread ()->step_multi
5765 && inferior_thread ()->control.stop_step)
5766 goto done;
5767
5768 target_terminal_ours ();
5769
5770 /* Set the current source location. This will also happen if we
5771 display the frame below, but the current SAL will be incorrect
5772 during a user hook-stop function. */
5773 if (has_stack_frames () && !stop_stack_dummy)
5774 set_current_sal_from_frame (get_current_frame (), 1);
5775
5776 /* Let the user/frontend see the threads as stopped. */
5777 do_cleanups (old_chain);
5778
5779 /* Look up the hook_stop and run it (CLI internally handles problem
5780 of stop_command's pre-hook not existing). */
5781 if (stop_command)
5782 catch_errors (hook_stop_stub, stop_command,
5783 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5784
5785 if (!has_stack_frames ())
5786 goto done;
5787
5788 if (last.kind == TARGET_WAITKIND_SIGNALLED
5789 || last.kind == TARGET_WAITKIND_EXITED)
5790 goto done;
5791
5792 /* Select innermost stack frame - i.e., current frame is frame 0,
5793 and current location is based on that.
5794 Don't do this on return from a stack dummy routine,
5795 or if the program has exited. */
5796
5797 if (!stop_stack_dummy)
5798 {
5799 select_frame (get_current_frame ());
5800
5801 /* Print current location without a level number, if
5802 we have changed functions or hit a breakpoint.
5803 Print source line if we have one.
5804 bpstat_print() contains the logic deciding in detail
5805 what to print, based on the event(s) that just occurred. */
5806
5807 /* If --batch-silent is enabled then there's no need to print the current
5808 source location, and to try risks causing an error message about
5809 missing source files. */
5810 if (stop_print_frame && !batch_silent)
5811 {
5812 int bpstat_ret;
5813 int source_flag;
5814 int do_frame_printing = 1;
5815 struct thread_info *tp = inferior_thread ();
5816
5817 bpstat_ret = bpstat_print (tp->control.stop_bpstat);
5818 switch (bpstat_ret)
5819 {
5820 case PRINT_UNKNOWN:
5821 /* If we had hit a shared library event breakpoint,
5822 bpstat_print would print out this message. If we hit
5823 an OS-level shared library event, do the same
5824 thing. */
5825 if (last.kind == TARGET_WAITKIND_LOADED)
5826 {
5827 printf_filtered (_("Stopped due to shared library event\n"));
5828 source_flag = SRC_LINE; /* something bogus */
5829 do_frame_printing = 0;
5830 break;
5831 }
5832
5833 /* FIXME: cagney/2002-12-01: Given that a frame ID does
5834 (or should) carry around the function and does (or
5835 should) use that when doing a frame comparison. */
5836 if (tp->control.stop_step
5837 && frame_id_eq (tp->control.step_frame_id,
5838 get_frame_id (get_current_frame ()))
5839 && step_start_function == find_pc_function (stop_pc))
5840 source_flag = SRC_LINE; /* Finished step, just
5841 print source line. */
5842 else
5843 source_flag = SRC_AND_LOC; /* Print location and
5844 source line. */
5845 break;
5846 case PRINT_SRC_AND_LOC:
5847 source_flag = SRC_AND_LOC; /* Print location and
5848 source line. */
5849 break;
5850 case PRINT_SRC_ONLY:
5851 source_flag = SRC_LINE;
5852 break;
5853 case PRINT_NOTHING:
5854 source_flag = SRC_LINE; /* something bogus */
5855 do_frame_printing = 0;
5856 break;
5857 default:
5858 internal_error (__FILE__, __LINE__, _("Unknown value."));
5859 }
5860
5861 /* The behavior of this routine with respect to the source
5862 flag is:
5863 SRC_LINE: Print only source line
5864 LOCATION: Print only location
5865 SRC_AND_LOC: Print location and source line. */
5866 if (do_frame_printing)
5867 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
5868
5869 /* Display the auto-display expressions. */
5870 do_displays ();
5871 }
5872 }
5873
5874 /* Save the function value return registers, if we care.
5875 We might be about to restore their previous contents. */
5876 if (inferior_thread ()->control.proceed_to_finish
5877 && execution_direction != EXEC_REVERSE)
5878 {
5879 /* This should not be necessary. */
5880 if (stop_registers)
5881 regcache_xfree (stop_registers);
5882
5883 /* NB: The copy goes through to the target picking up the value of
5884 all the registers. */
5885 stop_registers = regcache_dup (get_current_regcache ());
5886 }
5887
5888 if (stop_stack_dummy == STOP_STACK_DUMMY)
5889 {
5890 /* Pop the empty frame that contains the stack dummy.
5891 This also restores inferior state prior to the call
5892 (struct infcall_suspend_state). */
5893 struct frame_info *frame = get_current_frame ();
5894
5895 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
5896 frame_pop (frame);
5897 /* frame_pop() calls reinit_frame_cache as the last thing it
5898 does which means there's currently no selected frame. We
5899 don't need to re-establish a selected frame if the dummy call
5900 returns normally, that will be done by
5901 restore_infcall_control_state. However, we do have to handle
5902 the case where the dummy call is returning after being
5903 stopped (e.g. the dummy call previously hit a breakpoint).
5904 We can't know which case we have so just always re-establish
5905 a selected frame here. */
5906 select_frame (get_current_frame ());
5907 }
5908
5909 done:
5910 annotate_stopped ();
5911
5912 /* Suppress the stop observer if we're in the middle of:
5913
5914 - a step n (n > 1), as there still more steps to be done.
5915
5916 - a "finish" command, as the observer will be called in
5917 finish_command_continuation, so it can include the inferior
5918 function's return value.
5919
5920 - calling an inferior function, as we pretend we inferior didn't
5921 run at all. The return value of the call is handled by the
5922 expression evaluator, through call_function_by_hand. */
5923
5924 if (!target_has_execution
5925 || last.kind == TARGET_WAITKIND_SIGNALLED
5926 || last.kind == TARGET_WAITKIND_EXITED
5927 || (!inferior_thread ()->step_multi
5928 && !(inferior_thread ()->control.stop_bpstat
5929 && inferior_thread ()->control.proceed_to_finish)
5930 && !inferior_thread ()->control.in_infcall))
5931 {
5932 if (!ptid_equal (inferior_ptid, null_ptid))
5933 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
5934 stop_print_frame);
5935 else
5936 observer_notify_normal_stop (NULL, stop_print_frame);
5937 }
5938
5939 if (target_has_execution)
5940 {
5941 if (last.kind != TARGET_WAITKIND_SIGNALLED
5942 && last.kind != TARGET_WAITKIND_EXITED)
5943 /* Delete the breakpoint we stopped at, if it wants to be deleted.
5944 Delete any breakpoint that is to be deleted at the next stop. */
5945 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
5946 }
5947
5948 /* Try to get rid of automatically added inferiors that are no
5949 longer needed. Keeping those around slows down things linearly.
5950 Note that this never removes the current inferior. */
5951 prune_inferiors ();
5952 }
5953
5954 static int
5955 hook_stop_stub (void *cmd)
5956 {
5957 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
5958 return (0);
5959 }
5960 \f
5961 int
5962 signal_stop_state (int signo)
5963 {
5964 return signal_stop[signo];
5965 }
5966
5967 int
5968 signal_print_state (int signo)
5969 {
5970 return signal_print[signo];
5971 }
5972
5973 int
5974 signal_pass_state (int signo)
5975 {
5976 return signal_program[signo];
5977 }
5978
5979 static void
5980 signal_cache_update (int signo)
5981 {
5982 if (signo == -1)
5983 {
5984 for (signo = 0; signo < (int) TARGET_SIGNAL_LAST; signo++)
5985 signal_cache_update (signo);
5986
5987 return;
5988 }
5989
5990 signal_pass[signo] = (signal_stop[signo] == 0
5991 && signal_print[signo] == 0
5992 && signal_program[signo] == 1);
5993 }
5994
5995 int
5996 signal_stop_update (int signo, int state)
5997 {
5998 int ret = signal_stop[signo];
5999
6000 signal_stop[signo] = state;
6001 signal_cache_update (signo);
6002 return ret;
6003 }
6004
6005 int
6006 signal_print_update (int signo, int state)
6007 {
6008 int ret = signal_print[signo];
6009
6010 signal_print[signo] = state;
6011 signal_cache_update (signo);
6012 return ret;
6013 }
6014
6015 int
6016 signal_pass_update (int signo, int state)
6017 {
6018 int ret = signal_program[signo];
6019
6020 signal_program[signo] = state;
6021 signal_cache_update (signo);
6022 return ret;
6023 }
6024
6025 static void
6026 sig_print_header (void)
6027 {
6028 printf_filtered (_("Signal Stop\tPrint\tPass "
6029 "to program\tDescription\n"));
6030 }
6031
6032 static void
6033 sig_print_info (enum target_signal oursig)
6034 {
6035 const char *name = target_signal_to_name (oursig);
6036 int name_padding = 13 - strlen (name);
6037
6038 if (name_padding <= 0)
6039 name_padding = 0;
6040
6041 printf_filtered ("%s", name);
6042 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6043 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6044 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6045 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6046 printf_filtered ("%s\n", target_signal_to_string (oursig));
6047 }
6048
6049 /* Specify how various signals in the inferior should be handled. */
6050
6051 static void
6052 handle_command (char *args, int from_tty)
6053 {
6054 char **argv;
6055 int digits, wordlen;
6056 int sigfirst, signum, siglast;
6057 enum target_signal oursig;
6058 int allsigs;
6059 int nsigs;
6060 unsigned char *sigs;
6061 struct cleanup *old_chain;
6062
6063 if (args == NULL)
6064 {
6065 error_no_arg (_("signal to handle"));
6066 }
6067
6068 /* Allocate and zero an array of flags for which signals to handle. */
6069
6070 nsigs = (int) TARGET_SIGNAL_LAST;
6071 sigs = (unsigned char *) alloca (nsigs);
6072 memset (sigs, 0, nsigs);
6073
6074 /* Break the command line up into args. */
6075
6076 argv = gdb_buildargv (args);
6077 old_chain = make_cleanup_freeargv (argv);
6078
6079 /* Walk through the args, looking for signal oursigs, signal names, and
6080 actions. Signal numbers and signal names may be interspersed with
6081 actions, with the actions being performed for all signals cumulatively
6082 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6083
6084 while (*argv != NULL)
6085 {
6086 wordlen = strlen (*argv);
6087 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6088 {;
6089 }
6090 allsigs = 0;
6091 sigfirst = siglast = -1;
6092
6093 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6094 {
6095 /* Apply action to all signals except those used by the
6096 debugger. Silently skip those. */
6097 allsigs = 1;
6098 sigfirst = 0;
6099 siglast = nsigs - 1;
6100 }
6101 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6102 {
6103 SET_SIGS (nsigs, sigs, signal_stop);
6104 SET_SIGS (nsigs, sigs, signal_print);
6105 }
6106 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6107 {
6108 UNSET_SIGS (nsigs, sigs, signal_program);
6109 }
6110 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6111 {
6112 SET_SIGS (nsigs, sigs, signal_print);
6113 }
6114 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6115 {
6116 SET_SIGS (nsigs, sigs, signal_program);
6117 }
6118 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6119 {
6120 UNSET_SIGS (nsigs, sigs, signal_stop);
6121 }
6122 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6123 {
6124 SET_SIGS (nsigs, sigs, signal_program);
6125 }
6126 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6127 {
6128 UNSET_SIGS (nsigs, sigs, signal_print);
6129 UNSET_SIGS (nsigs, sigs, signal_stop);
6130 }
6131 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6132 {
6133 UNSET_SIGS (nsigs, sigs, signal_program);
6134 }
6135 else if (digits > 0)
6136 {
6137 /* It is numeric. The numeric signal refers to our own
6138 internal signal numbering from target.h, not to host/target
6139 signal number. This is a feature; users really should be
6140 using symbolic names anyway, and the common ones like
6141 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6142
6143 sigfirst = siglast = (int)
6144 target_signal_from_command (atoi (*argv));
6145 if ((*argv)[digits] == '-')
6146 {
6147 siglast = (int)
6148 target_signal_from_command (atoi ((*argv) + digits + 1));
6149 }
6150 if (sigfirst > siglast)
6151 {
6152 /* Bet he didn't figure we'd think of this case... */
6153 signum = sigfirst;
6154 sigfirst = siglast;
6155 siglast = signum;
6156 }
6157 }
6158 else
6159 {
6160 oursig = target_signal_from_name (*argv);
6161 if (oursig != TARGET_SIGNAL_UNKNOWN)
6162 {
6163 sigfirst = siglast = (int) oursig;
6164 }
6165 else
6166 {
6167 /* Not a number and not a recognized flag word => complain. */
6168 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6169 }
6170 }
6171
6172 /* If any signal numbers or symbol names were found, set flags for
6173 which signals to apply actions to. */
6174
6175 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6176 {
6177 switch ((enum target_signal) signum)
6178 {
6179 case TARGET_SIGNAL_TRAP:
6180 case TARGET_SIGNAL_INT:
6181 if (!allsigs && !sigs[signum])
6182 {
6183 if (query (_("%s is used by the debugger.\n\
6184 Are you sure you want to change it? "),
6185 target_signal_to_name ((enum target_signal) signum)))
6186 {
6187 sigs[signum] = 1;
6188 }
6189 else
6190 {
6191 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6192 gdb_flush (gdb_stdout);
6193 }
6194 }
6195 break;
6196 case TARGET_SIGNAL_0:
6197 case TARGET_SIGNAL_DEFAULT:
6198 case TARGET_SIGNAL_UNKNOWN:
6199 /* Make sure that "all" doesn't print these. */
6200 break;
6201 default:
6202 sigs[signum] = 1;
6203 break;
6204 }
6205 }
6206
6207 argv++;
6208 }
6209
6210 for (signum = 0; signum < nsigs; signum++)
6211 if (sigs[signum])
6212 {
6213 signal_cache_update (-1);
6214 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
6215
6216 if (from_tty)
6217 {
6218 /* Show the results. */
6219 sig_print_header ();
6220 for (; signum < nsigs; signum++)
6221 if (sigs[signum])
6222 sig_print_info (signum);
6223 }
6224
6225 break;
6226 }
6227
6228 do_cleanups (old_chain);
6229 }
6230
6231 static void
6232 xdb_handle_command (char *args, int from_tty)
6233 {
6234 char **argv;
6235 struct cleanup *old_chain;
6236
6237 if (args == NULL)
6238 error_no_arg (_("xdb command"));
6239
6240 /* Break the command line up into args. */
6241
6242 argv = gdb_buildargv (args);
6243 old_chain = make_cleanup_freeargv (argv);
6244 if (argv[1] != (char *) NULL)
6245 {
6246 char *argBuf;
6247 int bufLen;
6248
6249 bufLen = strlen (argv[0]) + 20;
6250 argBuf = (char *) xmalloc (bufLen);
6251 if (argBuf)
6252 {
6253 int validFlag = 1;
6254 enum target_signal oursig;
6255
6256 oursig = target_signal_from_name (argv[0]);
6257 memset (argBuf, 0, bufLen);
6258 if (strcmp (argv[1], "Q") == 0)
6259 sprintf (argBuf, "%s %s", argv[0], "noprint");
6260 else
6261 {
6262 if (strcmp (argv[1], "s") == 0)
6263 {
6264 if (!signal_stop[oursig])
6265 sprintf (argBuf, "%s %s", argv[0], "stop");
6266 else
6267 sprintf (argBuf, "%s %s", argv[0], "nostop");
6268 }
6269 else if (strcmp (argv[1], "i") == 0)
6270 {
6271 if (!signal_program[oursig])
6272 sprintf (argBuf, "%s %s", argv[0], "pass");
6273 else
6274 sprintf (argBuf, "%s %s", argv[0], "nopass");
6275 }
6276 else if (strcmp (argv[1], "r") == 0)
6277 {
6278 if (!signal_print[oursig])
6279 sprintf (argBuf, "%s %s", argv[0], "print");
6280 else
6281 sprintf (argBuf, "%s %s", argv[0], "noprint");
6282 }
6283 else
6284 validFlag = 0;
6285 }
6286 if (validFlag)
6287 handle_command (argBuf, from_tty);
6288 else
6289 printf_filtered (_("Invalid signal handling flag.\n"));
6290 if (argBuf)
6291 xfree (argBuf);
6292 }
6293 }
6294 do_cleanups (old_chain);
6295 }
6296
6297 /* Print current contents of the tables set by the handle command.
6298 It is possible we should just be printing signals actually used
6299 by the current target (but for things to work right when switching
6300 targets, all signals should be in the signal tables). */
6301
6302 static void
6303 signals_info (char *signum_exp, int from_tty)
6304 {
6305 enum target_signal oursig;
6306
6307 sig_print_header ();
6308
6309 if (signum_exp)
6310 {
6311 /* First see if this is a symbol name. */
6312 oursig = target_signal_from_name (signum_exp);
6313 if (oursig == TARGET_SIGNAL_UNKNOWN)
6314 {
6315 /* No, try numeric. */
6316 oursig =
6317 target_signal_from_command (parse_and_eval_long (signum_exp));
6318 }
6319 sig_print_info (oursig);
6320 return;
6321 }
6322
6323 printf_filtered ("\n");
6324 /* These ugly casts brought to you by the native VAX compiler. */
6325 for (oursig = TARGET_SIGNAL_FIRST;
6326 (int) oursig < (int) TARGET_SIGNAL_LAST;
6327 oursig = (enum target_signal) ((int) oursig + 1))
6328 {
6329 QUIT;
6330
6331 if (oursig != TARGET_SIGNAL_UNKNOWN
6332 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
6333 sig_print_info (oursig);
6334 }
6335
6336 printf_filtered (_("\nUse the \"handle\" command "
6337 "to change these tables.\n"));
6338 }
6339
6340 /* The $_siginfo convenience variable is a bit special. We don't know
6341 for sure the type of the value until we actually have a chance to
6342 fetch the data. The type can change depending on gdbarch, so it is
6343 also dependent on which thread you have selected.
6344
6345 1. making $_siginfo be an internalvar that creates a new value on
6346 access.
6347
6348 2. making the value of $_siginfo be an lval_computed value. */
6349
6350 /* This function implements the lval_computed support for reading a
6351 $_siginfo value. */
6352
6353 static void
6354 siginfo_value_read (struct value *v)
6355 {
6356 LONGEST transferred;
6357
6358 transferred =
6359 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6360 NULL,
6361 value_contents_all_raw (v),
6362 value_offset (v),
6363 TYPE_LENGTH (value_type (v)));
6364
6365 if (transferred != TYPE_LENGTH (value_type (v)))
6366 error (_("Unable to read siginfo"));
6367 }
6368
6369 /* This function implements the lval_computed support for writing a
6370 $_siginfo value. */
6371
6372 static void
6373 siginfo_value_write (struct value *v, struct value *fromval)
6374 {
6375 LONGEST transferred;
6376
6377 transferred = target_write (&current_target,
6378 TARGET_OBJECT_SIGNAL_INFO,
6379 NULL,
6380 value_contents_all_raw (fromval),
6381 value_offset (v),
6382 TYPE_LENGTH (value_type (fromval)));
6383
6384 if (transferred != TYPE_LENGTH (value_type (fromval)))
6385 error (_("Unable to write siginfo"));
6386 }
6387
6388 static struct lval_funcs siginfo_value_funcs =
6389 {
6390 siginfo_value_read,
6391 siginfo_value_write
6392 };
6393
6394 /* Return a new value with the correct type for the siginfo object of
6395 the current thread using architecture GDBARCH. Return a void value
6396 if there's no object available. */
6397
6398 static struct value *
6399 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
6400 {
6401 if (target_has_stack
6402 && !ptid_equal (inferior_ptid, null_ptid)
6403 && gdbarch_get_siginfo_type_p (gdbarch))
6404 {
6405 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6406
6407 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6408 }
6409
6410 return allocate_value (builtin_type (gdbarch)->builtin_void);
6411 }
6412
6413 \f
6414 /* infcall_suspend_state contains state about the program itself like its
6415 registers and any signal it received when it last stopped.
6416 This state must be restored regardless of how the inferior function call
6417 ends (either successfully, or after it hits a breakpoint or signal)
6418 if the program is to properly continue where it left off. */
6419
6420 struct infcall_suspend_state
6421 {
6422 struct thread_suspend_state thread_suspend;
6423 struct inferior_suspend_state inferior_suspend;
6424
6425 /* Other fields: */
6426 CORE_ADDR stop_pc;
6427 struct regcache *registers;
6428
6429 /* Format of SIGINFO_DATA or NULL if it is not present. */
6430 struct gdbarch *siginfo_gdbarch;
6431
6432 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6433 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6434 content would be invalid. */
6435 gdb_byte *siginfo_data;
6436 };
6437
6438 struct infcall_suspend_state *
6439 save_infcall_suspend_state (void)
6440 {
6441 struct infcall_suspend_state *inf_state;
6442 struct thread_info *tp = inferior_thread ();
6443 struct inferior *inf = current_inferior ();
6444 struct regcache *regcache = get_current_regcache ();
6445 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6446 gdb_byte *siginfo_data = NULL;
6447
6448 if (gdbarch_get_siginfo_type_p (gdbarch))
6449 {
6450 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6451 size_t len = TYPE_LENGTH (type);
6452 struct cleanup *back_to;
6453
6454 siginfo_data = xmalloc (len);
6455 back_to = make_cleanup (xfree, siginfo_data);
6456
6457 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6458 siginfo_data, 0, len) == len)
6459 discard_cleanups (back_to);
6460 else
6461 {
6462 /* Errors ignored. */
6463 do_cleanups (back_to);
6464 siginfo_data = NULL;
6465 }
6466 }
6467
6468 inf_state = XZALLOC (struct infcall_suspend_state);
6469
6470 if (siginfo_data)
6471 {
6472 inf_state->siginfo_gdbarch = gdbarch;
6473 inf_state->siginfo_data = siginfo_data;
6474 }
6475
6476 inf_state->thread_suspend = tp->suspend;
6477 inf_state->inferior_suspend = inf->suspend;
6478
6479 /* run_inferior_call will not use the signal due to its `proceed' call with
6480 TARGET_SIGNAL_0 anyway. */
6481 tp->suspend.stop_signal = TARGET_SIGNAL_0;
6482
6483 inf_state->stop_pc = stop_pc;
6484
6485 inf_state->registers = regcache_dup (regcache);
6486
6487 return inf_state;
6488 }
6489
6490 /* Restore inferior session state to INF_STATE. */
6491
6492 void
6493 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6494 {
6495 struct thread_info *tp = inferior_thread ();
6496 struct inferior *inf = current_inferior ();
6497 struct regcache *regcache = get_current_regcache ();
6498 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6499
6500 tp->suspend = inf_state->thread_suspend;
6501 inf->suspend = inf_state->inferior_suspend;
6502
6503 stop_pc = inf_state->stop_pc;
6504
6505 if (inf_state->siginfo_gdbarch == gdbarch)
6506 {
6507 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6508 size_t len = TYPE_LENGTH (type);
6509
6510 /* Errors ignored. */
6511 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6512 inf_state->siginfo_data, 0, len);
6513 }
6514
6515 /* The inferior can be gone if the user types "print exit(0)"
6516 (and perhaps other times). */
6517 if (target_has_execution)
6518 /* NB: The register write goes through to the target. */
6519 regcache_cpy (regcache, inf_state->registers);
6520
6521 discard_infcall_suspend_state (inf_state);
6522 }
6523
6524 static void
6525 do_restore_infcall_suspend_state_cleanup (void *state)
6526 {
6527 restore_infcall_suspend_state (state);
6528 }
6529
6530 struct cleanup *
6531 make_cleanup_restore_infcall_suspend_state
6532 (struct infcall_suspend_state *inf_state)
6533 {
6534 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6535 }
6536
6537 void
6538 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6539 {
6540 regcache_xfree (inf_state->registers);
6541 xfree (inf_state->siginfo_data);
6542 xfree (inf_state);
6543 }
6544
6545 struct regcache *
6546 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6547 {
6548 return inf_state->registers;
6549 }
6550
6551 /* infcall_control_state contains state regarding gdb's control of the
6552 inferior itself like stepping control. It also contains session state like
6553 the user's currently selected frame. */
6554
6555 struct infcall_control_state
6556 {
6557 struct thread_control_state thread_control;
6558 struct inferior_control_state inferior_control;
6559
6560 /* Other fields: */
6561 enum stop_stack_kind stop_stack_dummy;
6562 int stopped_by_random_signal;
6563 int stop_after_trap;
6564
6565 /* ID if the selected frame when the inferior function call was made. */
6566 struct frame_id selected_frame_id;
6567 };
6568
6569 /* Save all of the information associated with the inferior<==>gdb
6570 connection. */
6571
6572 struct infcall_control_state *
6573 save_infcall_control_state (void)
6574 {
6575 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6576 struct thread_info *tp = inferior_thread ();
6577 struct inferior *inf = current_inferior ();
6578
6579 inf_status->thread_control = tp->control;
6580 inf_status->inferior_control = inf->control;
6581
6582 tp->control.step_resume_breakpoint = NULL;
6583 tp->control.exception_resume_breakpoint = NULL;
6584
6585 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6586 chain. If caller's caller is walking the chain, they'll be happier if we
6587 hand them back the original chain when restore_infcall_control_state is
6588 called. */
6589 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6590
6591 /* Other fields: */
6592 inf_status->stop_stack_dummy = stop_stack_dummy;
6593 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6594 inf_status->stop_after_trap = stop_after_trap;
6595
6596 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6597
6598 return inf_status;
6599 }
6600
6601 static int
6602 restore_selected_frame (void *args)
6603 {
6604 struct frame_id *fid = (struct frame_id *) args;
6605 struct frame_info *frame;
6606
6607 frame = frame_find_by_id (*fid);
6608
6609 /* If inf_status->selected_frame_id is NULL, there was no previously
6610 selected frame. */
6611 if (frame == NULL)
6612 {
6613 warning (_("Unable to restore previously selected frame."));
6614 return 0;
6615 }
6616
6617 select_frame (frame);
6618
6619 return (1);
6620 }
6621
6622 /* Restore inferior session state to INF_STATUS. */
6623
6624 void
6625 restore_infcall_control_state (struct infcall_control_state *inf_status)
6626 {
6627 struct thread_info *tp = inferior_thread ();
6628 struct inferior *inf = current_inferior ();
6629
6630 if (tp->control.step_resume_breakpoint)
6631 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6632
6633 if (tp->control.exception_resume_breakpoint)
6634 tp->control.exception_resume_breakpoint->disposition
6635 = disp_del_at_next_stop;
6636
6637 /* Handle the bpstat_copy of the chain. */
6638 bpstat_clear (&tp->control.stop_bpstat);
6639
6640 tp->control = inf_status->thread_control;
6641 inf->control = inf_status->inferior_control;
6642
6643 /* Other fields: */
6644 stop_stack_dummy = inf_status->stop_stack_dummy;
6645 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6646 stop_after_trap = inf_status->stop_after_trap;
6647
6648 if (target_has_stack)
6649 {
6650 /* The point of catch_errors is that if the stack is clobbered,
6651 walking the stack might encounter a garbage pointer and
6652 error() trying to dereference it. */
6653 if (catch_errors
6654 (restore_selected_frame, &inf_status->selected_frame_id,
6655 "Unable to restore previously selected frame:\n",
6656 RETURN_MASK_ERROR) == 0)
6657 /* Error in restoring the selected frame. Select the innermost
6658 frame. */
6659 select_frame (get_current_frame ());
6660 }
6661
6662 xfree (inf_status);
6663 }
6664
6665 static void
6666 do_restore_infcall_control_state_cleanup (void *sts)
6667 {
6668 restore_infcall_control_state (sts);
6669 }
6670
6671 struct cleanup *
6672 make_cleanup_restore_infcall_control_state
6673 (struct infcall_control_state *inf_status)
6674 {
6675 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
6676 }
6677
6678 void
6679 discard_infcall_control_state (struct infcall_control_state *inf_status)
6680 {
6681 if (inf_status->thread_control.step_resume_breakpoint)
6682 inf_status->thread_control.step_resume_breakpoint->disposition
6683 = disp_del_at_next_stop;
6684
6685 if (inf_status->thread_control.exception_resume_breakpoint)
6686 inf_status->thread_control.exception_resume_breakpoint->disposition
6687 = disp_del_at_next_stop;
6688
6689 /* See save_infcall_control_state for info on stop_bpstat. */
6690 bpstat_clear (&inf_status->thread_control.stop_bpstat);
6691
6692 xfree (inf_status);
6693 }
6694 \f
6695 int
6696 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
6697 {
6698 struct target_waitstatus last;
6699 ptid_t last_ptid;
6700
6701 get_last_target_status (&last_ptid, &last);
6702
6703 if (last.kind != TARGET_WAITKIND_FORKED)
6704 return 0;
6705
6706 if (!ptid_equal (last_ptid, pid))
6707 return 0;
6708
6709 *child_pid = last.value.related_pid;
6710 return 1;
6711 }
6712
6713 int
6714 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
6715 {
6716 struct target_waitstatus last;
6717 ptid_t last_ptid;
6718
6719 get_last_target_status (&last_ptid, &last);
6720
6721 if (last.kind != TARGET_WAITKIND_VFORKED)
6722 return 0;
6723
6724 if (!ptid_equal (last_ptid, pid))
6725 return 0;
6726
6727 *child_pid = last.value.related_pid;
6728 return 1;
6729 }
6730
6731 int
6732 inferior_has_execd (ptid_t pid, char **execd_pathname)
6733 {
6734 struct target_waitstatus last;
6735 ptid_t last_ptid;
6736
6737 get_last_target_status (&last_ptid, &last);
6738
6739 if (last.kind != TARGET_WAITKIND_EXECD)
6740 return 0;
6741
6742 if (!ptid_equal (last_ptid, pid))
6743 return 0;
6744
6745 *execd_pathname = xstrdup (last.value.execd_pathname);
6746 return 1;
6747 }
6748
6749 int
6750 inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6751 {
6752 struct target_waitstatus last;
6753 ptid_t last_ptid;
6754
6755 get_last_target_status (&last_ptid, &last);
6756
6757 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6758 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6759 return 0;
6760
6761 if (!ptid_equal (last_ptid, pid))
6762 return 0;
6763
6764 *syscall_number = last.value.syscall_number;
6765 return 1;
6766 }
6767
6768 /* Oft used ptids */
6769 ptid_t null_ptid;
6770 ptid_t minus_one_ptid;
6771
6772 /* Create a ptid given the necessary PID, LWP, and TID components. */
6773
6774 ptid_t
6775 ptid_build (int pid, long lwp, long tid)
6776 {
6777 ptid_t ptid;
6778
6779 ptid.pid = pid;
6780 ptid.lwp = lwp;
6781 ptid.tid = tid;
6782 return ptid;
6783 }
6784
6785 /* Create a ptid from just a pid. */
6786
6787 ptid_t
6788 pid_to_ptid (int pid)
6789 {
6790 return ptid_build (pid, 0, 0);
6791 }
6792
6793 /* Fetch the pid (process id) component from a ptid. */
6794
6795 int
6796 ptid_get_pid (ptid_t ptid)
6797 {
6798 return ptid.pid;
6799 }
6800
6801 /* Fetch the lwp (lightweight process) component from a ptid. */
6802
6803 long
6804 ptid_get_lwp (ptid_t ptid)
6805 {
6806 return ptid.lwp;
6807 }
6808
6809 /* Fetch the tid (thread id) component from a ptid. */
6810
6811 long
6812 ptid_get_tid (ptid_t ptid)
6813 {
6814 return ptid.tid;
6815 }
6816
6817 /* ptid_equal() is used to test equality of two ptids. */
6818
6819 int
6820 ptid_equal (ptid_t ptid1, ptid_t ptid2)
6821 {
6822 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
6823 && ptid1.tid == ptid2.tid);
6824 }
6825
6826 /* Returns true if PTID represents a process. */
6827
6828 int
6829 ptid_is_pid (ptid_t ptid)
6830 {
6831 if (ptid_equal (minus_one_ptid, ptid))
6832 return 0;
6833 if (ptid_equal (null_ptid, ptid))
6834 return 0;
6835
6836 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
6837 }
6838
6839 int
6840 ptid_match (ptid_t ptid, ptid_t filter)
6841 {
6842 if (ptid_equal (filter, minus_one_ptid))
6843 return 1;
6844 if (ptid_is_pid (filter)
6845 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6846 return 1;
6847 else if (ptid_equal (ptid, filter))
6848 return 1;
6849
6850 return 0;
6851 }
6852
6853 /* restore_inferior_ptid() will be used by the cleanup machinery
6854 to restore the inferior_ptid value saved in a call to
6855 save_inferior_ptid(). */
6856
6857 static void
6858 restore_inferior_ptid (void *arg)
6859 {
6860 ptid_t *saved_ptid_ptr = arg;
6861
6862 inferior_ptid = *saved_ptid_ptr;
6863 xfree (arg);
6864 }
6865
6866 /* Save the value of inferior_ptid so that it may be restored by a
6867 later call to do_cleanups(). Returns the struct cleanup pointer
6868 needed for later doing the cleanup. */
6869
6870 struct cleanup *
6871 save_inferior_ptid (void)
6872 {
6873 ptid_t *saved_ptid_ptr;
6874
6875 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6876 *saved_ptid_ptr = inferior_ptid;
6877 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6878 }
6879 \f
6880
6881 /* User interface for reverse debugging:
6882 Set exec-direction / show exec-direction commands
6883 (returns error unless target implements to_set_exec_direction method). */
6884
6885 int execution_direction = EXEC_FORWARD;
6886 static const char exec_forward[] = "forward";
6887 static const char exec_reverse[] = "reverse";
6888 static const char *exec_direction = exec_forward;
6889 static const char *exec_direction_names[] = {
6890 exec_forward,
6891 exec_reverse,
6892 NULL
6893 };
6894
6895 static void
6896 set_exec_direction_func (char *args, int from_tty,
6897 struct cmd_list_element *cmd)
6898 {
6899 if (target_can_execute_reverse)
6900 {
6901 if (!strcmp (exec_direction, exec_forward))
6902 execution_direction = EXEC_FORWARD;
6903 else if (!strcmp (exec_direction, exec_reverse))
6904 execution_direction = EXEC_REVERSE;
6905 }
6906 else
6907 {
6908 exec_direction = exec_forward;
6909 error (_("Target does not support this operation."));
6910 }
6911 }
6912
6913 static void
6914 show_exec_direction_func (struct ui_file *out, int from_tty,
6915 struct cmd_list_element *cmd, const char *value)
6916 {
6917 switch (execution_direction) {
6918 case EXEC_FORWARD:
6919 fprintf_filtered (out, _("Forward.\n"));
6920 break;
6921 case EXEC_REVERSE:
6922 fprintf_filtered (out, _("Reverse.\n"));
6923 break;
6924 default:
6925 internal_error (__FILE__, __LINE__,
6926 _("bogus execution_direction value: %d"),
6927 (int) execution_direction);
6928 }
6929 }
6930
6931 /* User interface for non-stop mode. */
6932
6933 int non_stop = 0;
6934
6935 static void
6936 set_non_stop (char *args, int from_tty,
6937 struct cmd_list_element *c)
6938 {
6939 if (target_has_execution)
6940 {
6941 non_stop_1 = non_stop;
6942 error (_("Cannot change this setting while the inferior is running."));
6943 }
6944
6945 non_stop = non_stop_1;
6946 }
6947
6948 static void
6949 show_non_stop (struct ui_file *file, int from_tty,
6950 struct cmd_list_element *c, const char *value)
6951 {
6952 fprintf_filtered (file,
6953 _("Controlling the inferior in non-stop mode is %s.\n"),
6954 value);
6955 }
6956
6957 static void
6958 show_schedule_multiple (struct ui_file *file, int from_tty,
6959 struct cmd_list_element *c, const char *value)
6960 {
6961 fprintf_filtered (file, _("Resuming the execution of threads "
6962 "of all processes is %s.\n"), value);
6963 }
6964
6965 void
6966 _initialize_infrun (void)
6967 {
6968 int i;
6969 int numsigs;
6970
6971 add_info ("signals", signals_info, _("\
6972 What debugger does when program gets various signals.\n\
6973 Specify a signal as argument to print info on that signal only."));
6974 add_info_alias ("handle", "signals", 0);
6975
6976 add_com ("handle", class_run, handle_command, _("\
6977 Specify how to handle a signal.\n\
6978 Args are signals and actions to apply to those signals.\n\
6979 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6980 from 1-15 are allowed for compatibility with old versions of GDB.\n\
6981 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6982 The special arg \"all\" is recognized to mean all signals except those\n\
6983 used by the debugger, typically SIGTRAP and SIGINT.\n\
6984 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
6985 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
6986 Stop means reenter debugger if this signal happens (implies print).\n\
6987 Print means print a message if this signal happens.\n\
6988 Pass means let program see this signal; otherwise program doesn't know.\n\
6989 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
6990 Pass and Stop may be combined."));
6991 if (xdb_commands)
6992 {
6993 add_com ("lz", class_info, signals_info, _("\
6994 What debugger does when program gets various signals.\n\
6995 Specify a signal as argument to print info on that signal only."));
6996 add_com ("z", class_run, xdb_handle_command, _("\
6997 Specify how to handle a signal.\n\
6998 Args are signals and actions to apply to those signals.\n\
6999 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7000 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7001 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7002 The special arg \"all\" is recognized to mean all signals except those\n\
7003 used by the debugger, typically SIGTRAP and SIGINT.\n\
7004 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7005 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7006 nopass), \"Q\" (noprint)\n\
7007 Stop means reenter debugger if this signal happens (implies print).\n\
7008 Print means print a message if this signal happens.\n\
7009 Pass means let program see this signal; otherwise program doesn't know.\n\
7010 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7011 Pass and Stop may be combined."));
7012 }
7013
7014 if (!dbx_commands)
7015 stop_command = add_cmd ("stop", class_obscure,
7016 not_just_help_class_command, _("\
7017 There is no `stop' command, but you can set a hook on `stop'.\n\
7018 This allows you to set a list of commands to be run each time execution\n\
7019 of the program stops."), &cmdlist);
7020
7021 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7022 Set inferior debugging."), _("\
7023 Show inferior debugging."), _("\
7024 When non-zero, inferior specific debugging is enabled."),
7025 NULL,
7026 show_debug_infrun,
7027 &setdebuglist, &showdebuglist);
7028
7029 add_setshow_boolean_cmd ("displaced", class_maintenance,
7030 &debug_displaced, _("\
7031 Set displaced stepping debugging."), _("\
7032 Show displaced stepping debugging."), _("\
7033 When non-zero, displaced stepping specific debugging is enabled."),
7034 NULL,
7035 show_debug_displaced,
7036 &setdebuglist, &showdebuglist);
7037
7038 add_setshow_boolean_cmd ("non-stop", no_class,
7039 &non_stop_1, _("\
7040 Set whether gdb controls the inferior in non-stop mode."), _("\
7041 Show whether gdb controls the inferior in non-stop mode."), _("\
7042 When debugging a multi-threaded program and this setting is\n\
7043 off (the default, also called all-stop mode), when one thread stops\n\
7044 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7045 all other threads in the program while you interact with the thread of\n\
7046 interest. When you continue or step a thread, you can allow the other\n\
7047 threads to run, or have them remain stopped, but while you inspect any\n\
7048 thread's state, all threads stop.\n\
7049 \n\
7050 In non-stop mode, when one thread stops, other threads can continue\n\
7051 to run freely. You'll be able to step each thread independently,\n\
7052 leave it stopped or free to run as needed."),
7053 set_non_stop,
7054 show_non_stop,
7055 &setlist,
7056 &showlist);
7057
7058 numsigs = (int) TARGET_SIGNAL_LAST;
7059 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7060 signal_print = (unsigned char *)
7061 xmalloc (sizeof (signal_print[0]) * numsigs);
7062 signal_program = (unsigned char *)
7063 xmalloc (sizeof (signal_program[0]) * numsigs);
7064 signal_pass = (unsigned char *)
7065 xmalloc (sizeof (signal_program[0]) * numsigs);
7066 for (i = 0; i < numsigs; i++)
7067 {
7068 signal_stop[i] = 1;
7069 signal_print[i] = 1;
7070 signal_program[i] = 1;
7071 }
7072
7073 /* Signals caused by debugger's own actions
7074 should not be given to the program afterwards. */
7075 signal_program[TARGET_SIGNAL_TRAP] = 0;
7076 signal_program[TARGET_SIGNAL_INT] = 0;
7077
7078 /* Signals that are not errors should not normally enter the debugger. */
7079 signal_stop[TARGET_SIGNAL_ALRM] = 0;
7080 signal_print[TARGET_SIGNAL_ALRM] = 0;
7081 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
7082 signal_print[TARGET_SIGNAL_VTALRM] = 0;
7083 signal_stop[TARGET_SIGNAL_PROF] = 0;
7084 signal_print[TARGET_SIGNAL_PROF] = 0;
7085 signal_stop[TARGET_SIGNAL_CHLD] = 0;
7086 signal_print[TARGET_SIGNAL_CHLD] = 0;
7087 signal_stop[TARGET_SIGNAL_IO] = 0;
7088 signal_print[TARGET_SIGNAL_IO] = 0;
7089 signal_stop[TARGET_SIGNAL_POLL] = 0;
7090 signal_print[TARGET_SIGNAL_POLL] = 0;
7091 signal_stop[TARGET_SIGNAL_URG] = 0;
7092 signal_print[TARGET_SIGNAL_URG] = 0;
7093 signal_stop[TARGET_SIGNAL_WINCH] = 0;
7094 signal_print[TARGET_SIGNAL_WINCH] = 0;
7095 signal_stop[TARGET_SIGNAL_PRIO] = 0;
7096 signal_print[TARGET_SIGNAL_PRIO] = 0;
7097
7098 /* These signals are used internally by user-level thread
7099 implementations. (See signal(5) on Solaris.) Like the above
7100 signals, a healthy program receives and handles them as part of
7101 its normal operation. */
7102 signal_stop[TARGET_SIGNAL_LWP] = 0;
7103 signal_print[TARGET_SIGNAL_LWP] = 0;
7104 signal_stop[TARGET_SIGNAL_WAITING] = 0;
7105 signal_print[TARGET_SIGNAL_WAITING] = 0;
7106 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
7107 signal_print[TARGET_SIGNAL_CANCEL] = 0;
7108
7109 /* Update cached state. */
7110 signal_cache_update (-1);
7111
7112 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7113 &stop_on_solib_events, _("\
7114 Set stopping for shared library events."), _("\
7115 Show stopping for shared library events."), _("\
7116 If nonzero, gdb will give control to the user when the dynamic linker\n\
7117 notifies gdb of shared library events. The most common event of interest\n\
7118 to the user would be loading/unloading of a new library."),
7119 NULL,
7120 show_stop_on_solib_events,
7121 &setlist, &showlist);
7122
7123 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7124 follow_fork_mode_kind_names,
7125 &follow_fork_mode_string, _("\
7126 Set debugger response to a program call of fork or vfork."), _("\
7127 Show debugger response to a program call of fork or vfork."), _("\
7128 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7129 parent - the original process is debugged after a fork\n\
7130 child - the new process is debugged after a fork\n\
7131 The unfollowed process will continue to run.\n\
7132 By default, the debugger will follow the parent process."),
7133 NULL,
7134 show_follow_fork_mode_string,
7135 &setlist, &showlist);
7136
7137 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7138 follow_exec_mode_names,
7139 &follow_exec_mode_string, _("\
7140 Set debugger response to a program call of exec."), _("\
7141 Show debugger response to a program call of exec."), _("\
7142 An exec call replaces the program image of a process.\n\
7143 \n\
7144 follow-exec-mode can be:\n\
7145 \n\
7146 new - the debugger creates a new inferior and rebinds the process\n\
7147 to this new inferior. The program the process was running before\n\
7148 the exec call can be restarted afterwards by restarting the original\n\
7149 inferior.\n\
7150 \n\
7151 same - the debugger keeps the process bound to the same inferior.\n\
7152 The new executable image replaces the previous executable loaded in\n\
7153 the inferior. Restarting the inferior after the exec call restarts\n\
7154 the executable the process was running after the exec call.\n\
7155 \n\
7156 By default, the debugger will use the same inferior."),
7157 NULL,
7158 show_follow_exec_mode_string,
7159 &setlist, &showlist);
7160
7161 add_setshow_enum_cmd ("scheduler-locking", class_run,
7162 scheduler_enums, &scheduler_mode, _("\
7163 Set mode for locking scheduler during execution."), _("\
7164 Show mode for locking scheduler during execution."), _("\
7165 off == no locking (threads may preempt at any time)\n\
7166 on == full locking (no thread except the current thread may run)\n\
7167 step == scheduler locked during every single-step operation.\n\
7168 In this mode, no other thread may run during a step command.\n\
7169 Other threads may run while stepping over a function call ('next')."),
7170 set_schedlock_func, /* traps on target vector */
7171 show_scheduler_mode,
7172 &setlist, &showlist);
7173
7174 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7175 Set mode for resuming threads of all processes."), _("\
7176 Show mode for resuming threads of all processes."), _("\
7177 When on, execution commands (such as 'continue' or 'next') resume all\n\
7178 threads of all processes. When off (which is the default), execution\n\
7179 commands only resume the threads of the current process. The set of\n\
7180 threads that are resumed is further refined by the scheduler-locking\n\
7181 mode (see help set scheduler-locking)."),
7182 NULL,
7183 show_schedule_multiple,
7184 &setlist, &showlist);
7185
7186 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7187 Set mode of the step operation."), _("\
7188 Show mode of the step operation."), _("\
7189 When set, doing a step over a function without debug line information\n\
7190 will stop at the first instruction of that function. Otherwise, the\n\
7191 function is skipped and the step command stops at a different source line."),
7192 NULL,
7193 show_step_stop_if_no_debug,
7194 &setlist, &showlist);
7195
7196 add_setshow_enum_cmd ("displaced-stepping", class_run,
7197 can_use_displaced_stepping_enum,
7198 &can_use_displaced_stepping, _("\
7199 Set debugger's willingness to use displaced stepping."), _("\
7200 Show debugger's willingness to use displaced stepping."), _("\
7201 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7202 supported by the target architecture. If off, gdb will not use displaced\n\
7203 stepping to step over breakpoints, even if such is supported by the target\n\
7204 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7205 if the target architecture supports it and non-stop mode is active, but will not\n\
7206 use it in all-stop mode (see help set non-stop)."),
7207 NULL,
7208 show_can_use_displaced_stepping,
7209 &setlist, &showlist);
7210
7211 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7212 &exec_direction, _("Set direction of execution.\n\
7213 Options are 'forward' or 'reverse'."),
7214 _("Show direction of execution (forward/reverse)."),
7215 _("Tells gdb whether to execute forward or backward."),
7216 set_exec_direction_func, show_exec_direction_func,
7217 &setlist, &showlist);
7218
7219 /* Set/show detach-on-fork: user-settable mode. */
7220
7221 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7222 Set whether gdb will detach the child of a fork."), _("\
7223 Show whether gdb will detach the child of a fork."), _("\
7224 Tells gdb whether to detach the child of a fork."),
7225 NULL, NULL, &setlist, &showlist);
7226
7227 /* ptid initializations */
7228 null_ptid = ptid_build (0, 0, 0);
7229 minus_one_ptid = ptid_build (-1, 0, 0);
7230 inferior_ptid = null_ptid;
7231 target_last_wait_ptid = minus_one_ptid;
7232
7233 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7234 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7235 observer_attach_thread_exit (infrun_thread_thread_exit);
7236 observer_attach_inferior_exit (infrun_inferior_exit);
7237
7238 /* Explicitly create without lookup, since that tries to create a
7239 value with a void typed value, and when we get here, gdbarch
7240 isn't initialized yet. At this point, we're quite sure there
7241 isn't another convenience variable of the same name. */
7242 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
7243
7244 add_setshow_boolean_cmd ("observer", no_class,
7245 &observer_mode_1, _("\
7246 Set whether gdb controls the inferior in observer mode."), _("\
7247 Show whether gdb controls the inferior in observer mode."), _("\
7248 In observer mode, GDB can get data from the inferior, but not\n\
7249 affect its execution. Registers and memory may not be changed,\n\
7250 breakpoints may not be set, and the program cannot be interrupted\n\
7251 or signalled."),
7252 set_observer_mode,
7253 show_observer_mode,
7254 &setlist,
7255 &showlist);
7256 }