]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
Copyright updates for 2007.
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "exceptions.h"
32 #include "breakpoint.h"
33 #include "gdb_wait.h"
34 #include "gdbcore.h"
35 #include "gdbcmd.h"
36 #include "cli/cli-script.h"
37 #include "target.h"
38 #include "gdbthread.h"
39 #include "annotate.h"
40 #include "symfile.h"
41 #include "top.h"
42 #include <signal.h>
43 #include "inf-loop.h"
44 #include "regcache.h"
45 #include "value.h"
46 #include "observer.h"
47 #include "language.h"
48 #include "solib.h"
49 #include "main.h"
50
51 #include "gdb_assert.h"
52 #include "mi/mi-common.h"
53
54 /* Prototypes for local functions */
55
56 static void signals_info (char *, int);
57
58 static void handle_command (char *, int);
59
60 static void sig_print_info (enum target_signal);
61
62 static void sig_print_header (void);
63
64 static void resume_cleanups (void *);
65
66 static int hook_stop_stub (void *);
67
68 static int restore_selected_frame (void *);
69
70 static void build_infrun (void);
71
72 static int follow_fork (void);
73
74 static void set_schedlock_func (char *args, int from_tty,
75 struct cmd_list_element *c);
76
77 struct execution_control_state;
78
79 static int currently_stepping (struct execution_control_state *ecs);
80
81 static void xdb_handle_command (char *args, int from_tty);
82
83 static int prepare_to_proceed (void);
84
85 void _initialize_infrun (void);
86
87 int inferior_ignoring_startup_exec_events = 0;
88 int inferior_ignoring_leading_exec_events = 0;
89
90 /* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93 int step_stop_if_no_debug = 0;
94 static void
95 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97 {
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99 }
100
101 /* In asynchronous mode, but simulating synchronous execution. */
102
103 int sync_execution = 0;
104
105 /* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
107 running in. */
108
109 static ptid_t previous_inferior_ptid;
110
111 /* This is true for configurations that may follow through execl() and
112 similar functions. At present this is only true for HP-UX native. */
113
114 #ifndef MAY_FOLLOW_EXEC
115 #define MAY_FOLLOW_EXEC (0)
116 #endif
117
118 static int may_follow_exec = MAY_FOLLOW_EXEC;
119
120 static int debug_infrun = 0;
121 static void
122 show_debug_infrun (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c, const char *value)
124 {
125 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
126 }
127
128 /* If the program uses ELF-style shared libraries, then calls to
129 functions in shared libraries go through stubs, which live in a
130 table called the PLT (Procedure Linkage Table). The first time the
131 function is called, the stub sends control to the dynamic linker,
132 which looks up the function's real address, patches the stub so
133 that future calls will go directly to the function, and then passes
134 control to the function.
135
136 If we are stepping at the source level, we don't want to see any of
137 this --- we just want to skip over the stub and the dynamic linker.
138 The simple approach is to single-step until control leaves the
139 dynamic linker.
140
141 However, on some systems (e.g., Red Hat's 5.2 distribution) the
142 dynamic linker calls functions in the shared C library, so you
143 can't tell from the PC alone whether the dynamic linker is still
144 running. In this case, we use a step-resume breakpoint to get us
145 past the dynamic linker, as if we were using "next" to step over a
146 function call.
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
149 linker code or not. Normally, this means we single-step. However,
150 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
151 address where we can place a step-resume breakpoint to get past the
152 linker's symbol resolution function.
153
154 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
155 pretty portable way, by comparing the PC against the address ranges
156 of the dynamic linker's sections.
157
158 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
159 it depends on internal details of the dynamic linker. It's usually
160 not too hard to figure out where to put a breakpoint, but it
161 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
162 sanity checking. If it can't figure things out, returning zero and
163 getting the (possibly confusing) stepping behavior is better than
164 signalling an error, which will obscure the change in the
165 inferior's state. */
166
167 /* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
169 dld itself).
170
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
174
175 #ifndef SOLIB_IN_DYNAMIC_LINKER
176 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
177 #endif
178
179 /* We can't step off a permanent breakpoint in the ordinary way, because we
180 can't remove it. Instead, we have to advance the PC to the next
181 instruction. This macro should expand to a pointer to a function that
182 does that, or zero if we have no such function. If we don't have a
183 definition for it, we have to report an error. */
184 #ifndef SKIP_PERMANENT_BREAKPOINT
185 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
186 static void
187 default_skip_permanent_breakpoint (void)
188 {
189 error (_("\
190 The program is stopped at a permanent breakpoint, but GDB does not know\n\
191 how to step past a permanent breakpoint on this architecture. Try using\n\
192 a command like `return' or `jump' to continue execution."));
193 }
194 #endif
195
196
197 /* Convert the #defines into values. This is temporary until wfi control
198 flow is completely sorted out. */
199
200 #ifndef HAVE_STEPPABLE_WATCHPOINT
201 #define HAVE_STEPPABLE_WATCHPOINT 0
202 #else
203 #undef HAVE_STEPPABLE_WATCHPOINT
204 #define HAVE_STEPPABLE_WATCHPOINT 1
205 #endif
206
207 #ifndef CANNOT_STEP_HW_WATCHPOINTS
208 #define CANNOT_STEP_HW_WATCHPOINTS 0
209 #else
210 #undef CANNOT_STEP_HW_WATCHPOINTS
211 #define CANNOT_STEP_HW_WATCHPOINTS 1
212 #endif
213
214 /* Tables of how to react to signals; the user sets them. */
215
216 static unsigned char *signal_stop;
217 static unsigned char *signal_print;
218 static unsigned char *signal_program;
219
220 #define SET_SIGS(nsigs,sigs,flags) \
221 do { \
222 int signum = (nsigs); \
223 while (signum-- > 0) \
224 if ((sigs)[signum]) \
225 (flags)[signum] = 1; \
226 } while (0)
227
228 #define UNSET_SIGS(nsigs,sigs,flags) \
229 do { \
230 int signum = (nsigs); \
231 while (signum-- > 0) \
232 if ((sigs)[signum]) \
233 (flags)[signum] = 0; \
234 } while (0)
235
236 /* Value to pass to target_resume() to cause all threads to resume */
237
238 #define RESUME_ALL (pid_to_ptid (-1))
239
240 /* Command list pointer for the "stop" placeholder. */
241
242 static struct cmd_list_element *stop_command;
243
244 /* Nonzero if breakpoints are now inserted in the inferior. */
245
246 static int breakpoints_inserted;
247
248 /* Function inferior was in as of last step command. */
249
250 static struct symbol *step_start_function;
251
252 /* Nonzero if we are expecting a trace trap and should proceed from it. */
253
254 static int trap_expected;
255
256 /* Nonzero if we want to give control to the user when we're notified
257 of shared library events by the dynamic linker. */
258 static int stop_on_solib_events;
259 static void
260 show_stop_on_solib_events (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
264 value);
265 }
266
267 /* Nonzero means expecting a trace trap
268 and should stop the inferior and return silently when it happens. */
269
270 int stop_after_trap;
271
272 /* Nonzero means expecting a trap and caller will handle it themselves.
273 It is used after attach, due to attaching to a process;
274 when running in the shell before the child program has been exec'd;
275 and when running some kinds of remote stuff (FIXME?). */
276
277 enum stop_kind stop_soon;
278
279 /* Nonzero if proceed is being used for a "finish" command or a similar
280 situation when stop_registers should be saved. */
281
282 int proceed_to_finish;
283
284 /* Save register contents here when about to pop a stack dummy frame,
285 if-and-only-if proceed_to_finish is set.
286 Thus this contains the return value from the called function (assuming
287 values are returned in a register). */
288
289 struct regcache *stop_registers;
290
291 /* Nonzero if program stopped due to error trying to insert breakpoints. */
292
293 static int breakpoints_failed;
294
295 /* Nonzero after stop if current stack frame should be printed. */
296
297 static int stop_print_frame;
298
299 static struct breakpoint *step_resume_breakpoint = NULL;
300
301 /* This is a cached copy of the pid/waitstatus of the last event
302 returned by target_wait()/deprecated_target_wait_hook(). This
303 information is returned by get_last_target_status(). */
304 static ptid_t target_last_wait_ptid;
305 static struct target_waitstatus target_last_waitstatus;
306
307 /* This is used to remember when a fork, vfork or exec event
308 was caught by a catchpoint, and thus the event is to be
309 followed at the next resume of the inferior, and not
310 immediately. */
311 static struct
312 {
313 enum target_waitkind kind;
314 struct
315 {
316 int parent_pid;
317 int child_pid;
318 }
319 fork_event;
320 char *execd_pathname;
321 }
322 pending_follow;
323
324 static const char follow_fork_mode_child[] = "child";
325 static const char follow_fork_mode_parent[] = "parent";
326
327 static const char *follow_fork_mode_kind_names[] = {
328 follow_fork_mode_child,
329 follow_fork_mode_parent,
330 NULL
331 };
332
333 static const char *follow_fork_mode_string = follow_fork_mode_parent;
334 static void
335 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
336 struct cmd_list_element *c, const char *value)
337 {
338 fprintf_filtered (file, _("\
339 Debugger response to a program call of fork or vfork is \"%s\".\n"),
340 value);
341 }
342 \f
343
344 static int
345 follow_fork (void)
346 {
347 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
348
349 return target_follow_fork (follow_child);
350 }
351
352 void
353 follow_inferior_reset_breakpoints (void)
354 {
355 /* Was there a step_resume breakpoint? (There was if the user
356 did a "next" at the fork() call.) If so, explicitly reset its
357 thread number.
358
359 step_resumes are a form of bp that are made to be per-thread.
360 Since we created the step_resume bp when the parent process
361 was being debugged, and now are switching to the child process,
362 from the breakpoint package's viewpoint, that's a switch of
363 "threads". We must update the bp's notion of which thread
364 it is for, or it'll be ignored when it triggers. */
365
366 if (step_resume_breakpoint)
367 breakpoint_re_set_thread (step_resume_breakpoint);
368
369 /* Reinsert all breakpoints in the child. The user may have set
370 breakpoints after catching the fork, in which case those
371 were never set in the child, but only in the parent. This makes
372 sure the inserted breakpoints match the breakpoint list. */
373
374 breakpoint_re_set ();
375 insert_breakpoints ();
376 }
377
378 /* EXECD_PATHNAME is assumed to be non-NULL. */
379
380 static void
381 follow_exec (int pid, char *execd_pathname)
382 {
383 int saved_pid = pid;
384 struct target_ops *tgt;
385
386 if (!may_follow_exec)
387 return;
388
389 /* This is an exec event that we actually wish to pay attention to.
390 Refresh our symbol table to the newly exec'd program, remove any
391 momentary bp's, etc.
392
393 If there are breakpoints, they aren't really inserted now,
394 since the exec() transformed our inferior into a fresh set
395 of instructions.
396
397 We want to preserve symbolic breakpoints on the list, since
398 we have hopes that they can be reset after the new a.out's
399 symbol table is read.
400
401 However, any "raw" breakpoints must be removed from the list
402 (e.g., the solib bp's), since their address is probably invalid
403 now.
404
405 And, we DON'T want to call delete_breakpoints() here, since
406 that may write the bp's "shadow contents" (the instruction
407 value that was overwritten witha TRAP instruction). Since
408 we now have a new a.out, those shadow contents aren't valid. */
409 update_breakpoints_after_exec ();
410
411 /* If there was one, it's gone now. We cannot truly step-to-next
412 statement through an exec(). */
413 step_resume_breakpoint = NULL;
414 step_range_start = 0;
415 step_range_end = 0;
416
417 /* What is this a.out's name? */
418 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
419
420 /* We've followed the inferior through an exec. Therefore, the
421 inferior has essentially been killed & reborn. */
422
423 /* First collect the run target in effect. */
424 tgt = find_run_target ();
425 /* If we can't find one, things are in a very strange state... */
426 if (tgt == NULL)
427 error (_("Could find run target to save before following exec"));
428
429 gdb_flush (gdb_stdout);
430 target_mourn_inferior ();
431 inferior_ptid = pid_to_ptid (saved_pid);
432 /* Because mourn_inferior resets inferior_ptid. */
433 push_target (tgt);
434
435 /* That a.out is now the one to use. */
436 exec_file_attach (execd_pathname, 0);
437
438 /* And also is where symbols can be found. */
439 symbol_file_add_main (execd_pathname, 0);
440
441 /* Reset the shared library package. This ensures that we get
442 a shlib event when the child reaches "_start", at which point
443 the dld will have had a chance to initialize the child. */
444 #if defined(SOLIB_RESTART)
445 SOLIB_RESTART ();
446 #endif
447 #ifdef SOLIB_CREATE_INFERIOR_HOOK
448 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
449 #else
450 solib_create_inferior_hook ();
451 #endif
452
453 /* Reinsert all breakpoints. (Those which were symbolic have
454 been reset to the proper address in the new a.out, thanks
455 to symbol_file_command...) */
456 insert_breakpoints ();
457
458 /* The next resume of this inferior should bring it to the shlib
459 startup breakpoints. (If the user had also set bp's on
460 "main" from the old (parent) process, then they'll auto-
461 matically get reset there in the new process.) */
462 }
463
464 /* Non-zero if we just simulating a single-step. This is needed
465 because we cannot remove the breakpoints in the inferior process
466 until after the `wait' in `wait_for_inferior'. */
467 static int singlestep_breakpoints_inserted_p = 0;
468
469 /* The thread we inserted single-step breakpoints for. */
470 static ptid_t singlestep_ptid;
471
472 /* If another thread hit the singlestep breakpoint, we save the original
473 thread here so that we can resume single-stepping it later. */
474 static ptid_t saved_singlestep_ptid;
475 static int stepping_past_singlestep_breakpoint;
476 \f
477
478 /* Things to clean up if we QUIT out of resume (). */
479 static void
480 resume_cleanups (void *ignore)
481 {
482 normal_stop ();
483 }
484
485 static const char schedlock_off[] = "off";
486 static const char schedlock_on[] = "on";
487 static const char schedlock_step[] = "step";
488 static const char *scheduler_enums[] = {
489 schedlock_off,
490 schedlock_on,
491 schedlock_step,
492 NULL
493 };
494 static const char *scheduler_mode = schedlock_off;
495 static void
496 show_scheduler_mode (struct ui_file *file, int from_tty,
497 struct cmd_list_element *c, const char *value)
498 {
499 fprintf_filtered (file, _("\
500 Mode for locking scheduler during execution is \"%s\".\n"),
501 value);
502 }
503
504 static void
505 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
506 {
507 if (!target_can_lock_scheduler)
508 {
509 scheduler_mode = schedlock_off;
510 error (_("Target '%s' cannot support this command."), target_shortname);
511 }
512 }
513
514
515 /* Resume the inferior, but allow a QUIT. This is useful if the user
516 wants to interrupt some lengthy single-stepping operation
517 (for child processes, the SIGINT goes to the inferior, and so
518 we get a SIGINT random_signal, but for remote debugging and perhaps
519 other targets, that's not true).
520
521 STEP nonzero if we should step (zero to continue instead).
522 SIG is the signal to give the inferior (zero for none). */
523 void
524 resume (int step, enum target_signal sig)
525 {
526 int should_resume = 1;
527 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
528 QUIT;
529
530 if (debug_infrun)
531 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
532 step, sig);
533
534 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
535
536
537 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
538 over an instruction that causes a page fault without triggering
539 a hardware watchpoint. The kernel properly notices that it shouldn't
540 stop, because the hardware watchpoint is not triggered, but it forgets
541 the step request and continues the program normally.
542 Work around the problem by removing hardware watchpoints if a step is
543 requested, GDB will check for a hardware watchpoint trigger after the
544 step anyway. */
545 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
546 remove_hw_watchpoints ();
547
548
549 /* Normally, by the time we reach `resume', the breakpoints are either
550 removed or inserted, as appropriate. The exception is if we're sitting
551 at a permanent breakpoint; we need to step over it, but permanent
552 breakpoints can't be removed. So we have to test for it here. */
553 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
554 SKIP_PERMANENT_BREAKPOINT ();
555
556 if (SOFTWARE_SINGLE_STEP_P () && step)
557 {
558 /* Do it the hard way, w/temp breakpoints */
559 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
560 /* ...and don't ask hardware to do it. */
561 step = 0;
562 /* and do not pull these breakpoints until after a `wait' in
563 `wait_for_inferior' */
564 singlestep_breakpoints_inserted_p = 1;
565 singlestep_ptid = inferior_ptid;
566 }
567
568 /* If there were any forks/vforks/execs that were caught and are
569 now to be followed, then do so. */
570 switch (pending_follow.kind)
571 {
572 case TARGET_WAITKIND_FORKED:
573 case TARGET_WAITKIND_VFORKED:
574 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
575 if (follow_fork ())
576 should_resume = 0;
577 break;
578
579 case TARGET_WAITKIND_EXECD:
580 /* follow_exec is called as soon as the exec event is seen. */
581 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
582 break;
583
584 default:
585 break;
586 }
587
588 /* Install inferior's terminal modes. */
589 target_terminal_inferior ();
590
591 if (should_resume)
592 {
593 ptid_t resume_ptid;
594
595 resume_ptid = RESUME_ALL; /* Default */
596
597 if ((step || singlestep_breakpoints_inserted_p)
598 && (stepping_past_singlestep_breakpoint
599 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
600 {
601 /* Stepping past a breakpoint without inserting breakpoints.
602 Make sure only the current thread gets to step, so that
603 other threads don't sneak past breakpoints while they are
604 not inserted. */
605
606 resume_ptid = inferior_ptid;
607 }
608
609 if ((scheduler_mode == schedlock_on)
610 || (scheduler_mode == schedlock_step
611 && (step || singlestep_breakpoints_inserted_p)))
612 {
613 /* User-settable 'scheduler' mode requires solo thread resume. */
614 resume_ptid = inferior_ptid;
615 }
616
617 if (CANNOT_STEP_BREAKPOINT)
618 {
619 /* Most targets can step a breakpoint instruction, thus
620 executing it normally. But if this one cannot, just
621 continue and we will hit it anyway. */
622 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
623 step = 0;
624 }
625 target_resume (resume_ptid, step, sig);
626 }
627
628 discard_cleanups (old_cleanups);
629 }
630 \f
631
632 /* Clear out all variables saying what to do when inferior is continued.
633 First do this, then set the ones you want, then call `proceed'. */
634
635 void
636 clear_proceed_status (void)
637 {
638 trap_expected = 0;
639 step_range_start = 0;
640 step_range_end = 0;
641 step_frame_id = null_frame_id;
642 step_over_calls = STEP_OVER_UNDEBUGGABLE;
643 stop_after_trap = 0;
644 stop_soon = NO_STOP_QUIETLY;
645 proceed_to_finish = 0;
646 breakpoint_proceeded = 1; /* We're about to proceed... */
647
648 /* Discard any remaining commands or status from previous stop. */
649 bpstat_clear (&stop_bpstat);
650 }
651
652 /* This should be suitable for any targets that support threads. */
653
654 static int
655 prepare_to_proceed (void)
656 {
657 ptid_t wait_ptid;
658 struct target_waitstatus wait_status;
659
660 /* Get the last target status returned by target_wait(). */
661 get_last_target_status (&wait_ptid, &wait_status);
662
663 /* Make sure we were stopped either at a breakpoint, or because
664 of a Ctrl-C. */
665 if (wait_status.kind != TARGET_WAITKIND_STOPPED
666 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
667 && wait_status.value.sig != TARGET_SIGNAL_INT))
668 {
669 return 0;
670 }
671
672 if (!ptid_equal (wait_ptid, minus_one_ptid)
673 && !ptid_equal (inferior_ptid, wait_ptid))
674 {
675 /* Switched over from WAIT_PID. */
676 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
677
678 if (wait_pc != read_pc ())
679 {
680 /* Switch back to WAIT_PID thread. */
681 inferior_ptid = wait_ptid;
682
683 /* FIXME: This stuff came from switch_to_thread() in
684 thread.c (which should probably be a public function). */
685 flush_cached_frames ();
686 registers_changed ();
687 stop_pc = wait_pc;
688 select_frame (get_current_frame ());
689 }
690
691 /* We return 1 to indicate that there is a breakpoint here,
692 so we need to step over it before continuing to avoid
693 hitting it straight away. */
694 if (breakpoint_here_p (wait_pc))
695 return 1;
696 }
697
698 return 0;
699
700 }
701
702 /* Record the pc of the program the last time it stopped. This is
703 just used internally by wait_for_inferior, but need to be preserved
704 over calls to it and cleared when the inferior is started. */
705 static CORE_ADDR prev_pc;
706
707 /* Basic routine for continuing the program in various fashions.
708
709 ADDR is the address to resume at, or -1 for resume where stopped.
710 SIGGNAL is the signal to give it, or 0 for none,
711 or -1 for act according to how it stopped.
712 STEP is nonzero if should trap after one instruction.
713 -1 means return after that and print nothing.
714 You should probably set various step_... variables
715 before calling here, if you are stepping.
716
717 You should call clear_proceed_status before calling proceed. */
718
719 void
720 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
721 {
722 int oneproc = 0;
723
724 if (step > 0)
725 step_start_function = find_pc_function (read_pc ());
726 if (step < 0)
727 stop_after_trap = 1;
728
729 if (addr == (CORE_ADDR) -1)
730 {
731 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
732 /* There is a breakpoint at the address we will resume at,
733 step one instruction before inserting breakpoints so that
734 we do not stop right away (and report a second hit at this
735 breakpoint). */
736 oneproc = 1;
737 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
738 && gdbarch_single_step_through_delay (current_gdbarch,
739 get_current_frame ()))
740 /* We stepped onto an instruction that needs to be stepped
741 again before re-inserting the breakpoint, do so. */
742 oneproc = 1;
743 }
744 else
745 {
746 write_pc (addr);
747 }
748
749 if (debug_infrun)
750 fprintf_unfiltered (gdb_stdlog,
751 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
752 paddr_nz (addr), siggnal, step);
753
754 /* In a multi-threaded task we may select another thread
755 and then continue or step.
756
757 But if the old thread was stopped at a breakpoint, it
758 will immediately cause another breakpoint stop without
759 any execution (i.e. it will report a breakpoint hit
760 incorrectly). So we must step over it first.
761
762 prepare_to_proceed checks the current thread against the thread
763 that reported the most recent event. If a step-over is required
764 it returns TRUE and sets the current thread to the old thread. */
765 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
766 oneproc = 1;
767
768 if (oneproc)
769 /* We will get a trace trap after one instruction.
770 Continue it automatically and insert breakpoints then. */
771 trap_expected = 1;
772 else
773 {
774 insert_breakpoints ();
775 /* If we get here there was no call to error() in
776 insert breakpoints -- so they were inserted. */
777 breakpoints_inserted = 1;
778 }
779
780 if (siggnal != TARGET_SIGNAL_DEFAULT)
781 stop_signal = siggnal;
782 /* If this signal should not be seen by program,
783 give it zero. Used for debugging signals. */
784 else if (!signal_program[stop_signal])
785 stop_signal = TARGET_SIGNAL_0;
786
787 annotate_starting ();
788
789 /* Make sure that output from GDB appears before output from the
790 inferior. */
791 gdb_flush (gdb_stdout);
792
793 /* Refresh prev_pc value just prior to resuming. This used to be
794 done in stop_stepping, however, setting prev_pc there did not handle
795 scenarios such as inferior function calls or returning from
796 a function via the return command. In those cases, the prev_pc
797 value was not set properly for subsequent commands. The prev_pc value
798 is used to initialize the starting line number in the ecs. With an
799 invalid value, the gdb next command ends up stopping at the position
800 represented by the next line table entry past our start position.
801 On platforms that generate one line table entry per line, this
802 is not a problem. However, on the ia64, the compiler generates
803 extraneous line table entries that do not increase the line number.
804 When we issue the gdb next command on the ia64 after an inferior call
805 or a return command, we often end up a few instructions forward, still
806 within the original line we started.
807
808 An attempt was made to have init_execution_control_state () refresh
809 the prev_pc value before calculating the line number. This approach
810 did not work because on platforms that use ptrace, the pc register
811 cannot be read unless the inferior is stopped. At that point, we
812 are not guaranteed the inferior is stopped and so the read_pc ()
813 call can fail. Setting the prev_pc value here ensures the value is
814 updated correctly when the inferior is stopped. */
815 prev_pc = read_pc ();
816
817 /* Resume inferior. */
818 resume (oneproc || step || bpstat_should_step (), stop_signal);
819
820 /* Wait for it to stop (if not standalone)
821 and in any case decode why it stopped, and act accordingly. */
822 /* Do this only if we are not using the event loop, or if the target
823 does not support asynchronous execution. */
824 if (!target_can_async_p ())
825 {
826 wait_for_inferior ();
827 normal_stop ();
828 }
829 }
830 \f
831
832 /* Start remote-debugging of a machine over a serial link. */
833
834 void
835 start_remote (int from_tty)
836 {
837 init_thread_list ();
838 init_wait_for_inferior ();
839 stop_soon = STOP_QUIETLY;
840 trap_expected = 0;
841
842 /* Always go on waiting for the target, regardless of the mode. */
843 /* FIXME: cagney/1999-09-23: At present it isn't possible to
844 indicate to wait_for_inferior that a target should timeout if
845 nothing is returned (instead of just blocking). Because of this,
846 targets expecting an immediate response need to, internally, set
847 things up so that the target_wait() is forced to eventually
848 timeout. */
849 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
850 differentiate to its caller what the state of the target is after
851 the initial open has been performed. Here we're assuming that
852 the target has stopped. It should be possible to eventually have
853 target_open() return to the caller an indication that the target
854 is currently running and GDB state should be set to the same as
855 for an async run. */
856 wait_for_inferior ();
857
858 /* Now that the inferior has stopped, do any bookkeeping like
859 loading shared libraries. We want to do this before normal_stop,
860 so that the displayed frame is up to date. */
861 post_create_inferior (&current_target, from_tty);
862
863 normal_stop ();
864 }
865
866 /* Initialize static vars when a new inferior begins. */
867
868 void
869 init_wait_for_inferior (void)
870 {
871 /* These are meaningless until the first time through wait_for_inferior. */
872 prev_pc = 0;
873
874 breakpoints_inserted = 0;
875 breakpoint_init_inferior (inf_starting);
876
877 /* Don't confuse first call to proceed(). */
878 stop_signal = TARGET_SIGNAL_0;
879
880 /* The first resume is not following a fork/vfork/exec. */
881 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
882
883 clear_proceed_status ();
884
885 stepping_past_singlestep_breakpoint = 0;
886 }
887 \f
888 /* This enum encodes possible reasons for doing a target_wait, so that
889 wfi can call target_wait in one place. (Ultimately the call will be
890 moved out of the infinite loop entirely.) */
891
892 enum infwait_states
893 {
894 infwait_normal_state,
895 infwait_thread_hop_state,
896 infwait_nonstep_watch_state
897 };
898
899 /* Why did the inferior stop? Used to print the appropriate messages
900 to the interface from within handle_inferior_event(). */
901 enum inferior_stop_reason
902 {
903 /* We don't know why. */
904 STOP_UNKNOWN,
905 /* Step, next, nexti, stepi finished. */
906 END_STEPPING_RANGE,
907 /* Found breakpoint. */
908 BREAKPOINT_HIT,
909 /* Inferior terminated by signal. */
910 SIGNAL_EXITED,
911 /* Inferior exited. */
912 EXITED,
913 /* Inferior received signal, and user asked to be notified. */
914 SIGNAL_RECEIVED
915 };
916
917 /* This structure contains what used to be local variables in
918 wait_for_inferior. Probably many of them can return to being
919 locals in handle_inferior_event. */
920
921 struct execution_control_state
922 {
923 struct target_waitstatus ws;
924 struct target_waitstatus *wp;
925 int another_trap;
926 int random_signal;
927 CORE_ADDR stop_func_start;
928 CORE_ADDR stop_func_end;
929 char *stop_func_name;
930 struct symtab_and_line sal;
931 int current_line;
932 struct symtab *current_symtab;
933 int handling_longjmp; /* FIXME */
934 ptid_t ptid;
935 ptid_t saved_inferior_ptid;
936 int step_after_step_resume_breakpoint;
937 int stepping_through_solib_after_catch;
938 bpstat stepping_through_solib_catchpoints;
939 int new_thread_event;
940 struct target_waitstatus tmpstatus;
941 enum infwait_states infwait_state;
942 ptid_t waiton_ptid;
943 int wait_some_more;
944 };
945
946 void init_execution_control_state (struct execution_control_state *ecs);
947
948 void handle_inferior_event (struct execution_control_state *ecs);
949
950 static void step_into_function (struct execution_control_state *ecs);
951 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
952 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
953 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
954 struct frame_id sr_id);
955 static void stop_stepping (struct execution_control_state *ecs);
956 static void prepare_to_wait (struct execution_control_state *ecs);
957 static void keep_going (struct execution_control_state *ecs);
958 static void print_stop_reason (enum inferior_stop_reason stop_reason,
959 int stop_info);
960
961 /* Wait for control to return from inferior to debugger.
962 If inferior gets a signal, we may decide to start it up again
963 instead of returning. That is why there is a loop in this function.
964 When this function actually returns it means the inferior
965 should be left stopped and GDB should read more commands. */
966
967 void
968 wait_for_inferior (void)
969 {
970 struct cleanup *old_cleanups;
971 struct execution_control_state ecss;
972 struct execution_control_state *ecs;
973
974 if (debug_infrun)
975 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
976
977 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
978 &step_resume_breakpoint);
979
980 /* wfi still stays in a loop, so it's OK just to take the address of
981 a local to get the ecs pointer. */
982 ecs = &ecss;
983
984 /* Fill in with reasonable starting values. */
985 init_execution_control_state (ecs);
986
987 /* We'll update this if & when we switch to a new thread. */
988 previous_inferior_ptid = inferior_ptid;
989
990 overlay_cache_invalid = 1;
991
992 /* We have to invalidate the registers BEFORE calling target_wait
993 because they can be loaded from the target while in target_wait.
994 This makes remote debugging a bit more efficient for those
995 targets that provide critical registers as part of their normal
996 status mechanism. */
997
998 registers_changed ();
999
1000 while (1)
1001 {
1002 if (deprecated_target_wait_hook)
1003 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
1004 else
1005 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1006
1007 /* Now figure out what to do with the result of the result. */
1008 handle_inferior_event (ecs);
1009
1010 if (!ecs->wait_some_more)
1011 break;
1012 }
1013 do_cleanups (old_cleanups);
1014 }
1015
1016 /* Asynchronous version of wait_for_inferior. It is called by the
1017 event loop whenever a change of state is detected on the file
1018 descriptor corresponding to the target. It can be called more than
1019 once to complete a single execution command. In such cases we need
1020 to keep the state in a global variable ASYNC_ECSS. If it is the
1021 last time that this function is called for a single execution
1022 command, then report to the user that the inferior has stopped, and
1023 do the necessary cleanups. */
1024
1025 struct execution_control_state async_ecss;
1026 struct execution_control_state *async_ecs;
1027
1028 void
1029 fetch_inferior_event (void *client_data)
1030 {
1031 static struct cleanup *old_cleanups;
1032
1033 async_ecs = &async_ecss;
1034
1035 if (!async_ecs->wait_some_more)
1036 {
1037 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1038 &step_resume_breakpoint);
1039
1040 /* Fill in with reasonable starting values. */
1041 init_execution_control_state (async_ecs);
1042
1043 /* We'll update this if & when we switch to a new thread. */
1044 previous_inferior_ptid = inferior_ptid;
1045
1046 overlay_cache_invalid = 1;
1047
1048 /* We have to invalidate the registers BEFORE calling target_wait
1049 because they can be loaded from the target while in target_wait.
1050 This makes remote debugging a bit more efficient for those
1051 targets that provide critical registers as part of their normal
1052 status mechanism. */
1053
1054 registers_changed ();
1055 }
1056
1057 if (deprecated_target_wait_hook)
1058 async_ecs->ptid =
1059 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1060 else
1061 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1062
1063 /* Now figure out what to do with the result of the result. */
1064 handle_inferior_event (async_ecs);
1065
1066 if (!async_ecs->wait_some_more)
1067 {
1068 /* Do only the cleanups that have been added by this
1069 function. Let the continuations for the commands do the rest,
1070 if there are any. */
1071 do_exec_cleanups (old_cleanups);
1072 normal_stop ();
1073 if (step_multi && stop_step)
1074 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1075 else
1076 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1077 }
1078 }
1079
1080 /* Prepare an execution control state for looping through a
1081 wait_for_inferior-type loop. */
1082
1083 void
1084 init_execution_control_state (struct execution_control_state *ecs)
1085 {
1086 ecs->another_trap = 0;
1087 ecs->random_signal = 0;
1088 ecs->step_after_step_resume_breakpoint = 0;
1089 ecs->handling_longjmp = 0; /* FIXME */
1090 ecs->stepping_through_solib_after_catch = 0;
1091 ecs->stepping_through_solib_catchpoints = NULL;
1092 ecs->sal = find_pc_line (prev_pc, 0);
1093 ecs->current_line = ecs->sal.line;
1094 ecs->current_symtab = ecs->sal.symtab;
1095 ecs->infwait_state = infwait_normal_state;
1096 ecs->waiton_ptid = pid_to_ptid (-1);
1097 ecs->wp = &(ecs->ws);
1098 }
1099
1100 /* Return the cached copy of the last pid/waitstatus returned by
1101 target_wait()/deprecated_target_wait_hook(). The data is actually
1102 cached by handle_inferior_event(), which gets called immediately
1103 after target_wait()/deprecated_target_wait_hook(). */
1104
1105 void
1106 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1107 {
1108 *ptidp = target_last_wait_ptid;
1109 *status = target_last_waitstatus;
1110 }
1111
1112 void
1113 nullify_last_target_wait_ptid (void)
1114 {
1115 target_last_wait_ptid = minus_one_ptid;
1116 }
1117
1118 /* Switch thread contexts, maintaining "infrun state". */
1119
1120 static void
1121 context_switch (struct execution_control_state *ecs)
1122 {
1123 /* Caution: it may happen that the new thread (or the old one!)
1124 is not in the thread list. In this case we must not attempt
1125 to "switch context", or we run the risk that our context may
1126 be lost. This may happen as a result of the target module
1127 mishandling thread creation. */
1128
1129 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1130 { /* Perform infrun state context switch: */
1131 /* Save infrun state for the old thread. */
1132 save_infrun_state (inferior_ptid, prev_pc,
1133 trap_expected, step_resume_breakpoint,
1134 step_range_start,
1135 step_range_end, &step_frame_id,
1136 ecs->handling_longjmp, ecs->another_trap,
1137 ecs->stepping_through_solib_after_catch,
1138 ecs->stepping_through_solib_catchpoints,
1139 ecs->current_line, ecs->current_symtab);
1140
1141 /* Load infrun state for the new thread. */
1142 load_infrun_state (ecs->ptid, &prev_pc,
1143 &trap_expected, &step_resume_breakpoint,
1144 &step_range_start,
1145 &step_range_end, &step_frame_id,
1146 &ecs->handling_longjmp, &ecs->another_trap,
1147 &ecs->stepping_through_solib_after_catch,
1148 &ecs->stepping_through_solib_catchpoints,
1149 &ecs->current_line, &ecs->current_symtab);
1150 }
1151 inferior_ptid = ecs->ptid;
1152 }
1153
1154 static void
1155 adjust_pc_after_break (struct execution_control_state *ecs)
1156 {
1157 CORE_ADDR breakpoint_pc;
1158
1159 /* If this target does not decrement the PC after breakpoints, then
1160 we have nothing to do. */
1161 if (DECR_PC_AFTER_BREAK == 0)
1162 return;
1163
1164 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1165 we aren't, just return.
1166
1167 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1168 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1169 by software breakpoints should be handled through the normal breakpoint
1170 layer.
1171
1172 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1173 different signals (SIGILL or SIGEMT for instance), but it is less
1174 clear where the PC is pointing afterwards. It may not match
1175 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1176 these signals at breakpoints (the code has been in GDB since at least
1177 1992) so I can not guess how to handle them here.
1178
1179 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1180 would have the PC after hitting a watchpoint affected by
1181 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1182 in GDB history, and it seems unlikely to be correct, so
1183 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1184
1185 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1186 return;
1187
1188 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1189 return;
1190
1191 /* Find the location where (if we've hit a breakpoint) the
1192 breakpoint would be. */
1193 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1194
1195 if (SOFTWARE_SINGLE_STEP_P ())
1196 {
1197 /* When using software single-step, a SIGTRAP can only indicate
1198 an inserted breakpoint. This actually makes things
1199 easier. */
1200 if (singlestep_breakpoints_inserted_p)
1201 /* When software single stepping, the instruction at [prev_pc]
1202 is never a breakpoint, but the instruction following
1203 [prev_pc] (in program execution order) always is. Assume
1204 that following instruction was reached and hence a software
1205 breakpoint was hit. */
1206 write_pc_pid (breakpoint_pc, ecs->ptid);
1207 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1208 /* The inferior was free running (i.e., no single-step
1209 breakpoints inserted) and it hit a software breakpoint. */
1210 write_pc_pid (breakpoint_pc, ecs->ptid);
1211 }
1212 else
1213 {
1214 /* When using hardware single-step, a SIGTRAP is reported for
1215 both a completed single-step and a software breakpoint. Need
1216 to differentiate between the two as the latter needs
1217 adjusting but the former does not.
1218
1219 When the thread to be examined does not match the current thread
1220 context we can't use currently_stepping, so assume no
1221 single-stepping in this case. */
1222 if (ptid_equal (ecs->ptid, inferior_ptid) && currently_stepping (ecs))
1223 {
1224 if (prev_pc == breakpoint_pc
1225 && software_breakpoint_inserted_here_p (breakpoint_pc))
1226 /* Hardware single-stepped a software breakpoint (as
1227 occures when the inferior is resumed with PC pointing
1228 at not-yet-hit software breakpoint). Since the
1229 breakpoint really is executed, the inferior needs to be
1230 backed up to the breakpoint address. */
1231 write_pc_pid (breakpoint_pc, ecs->ptid);
1232 }
1233 else
1234 {
1235 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1236 /* The inferior was free running (i.e., no hardware
1237 single-step and no possibility of a false SIGTRAP) and
1238 hit a software breakpoint. */
1239 write_pc_pid (breakpoint_pc, ecs->ptid);
1240 }
1241 }
1242 }
1243
1244 /* Given an execution control state that has been freshly filled in
1245 by an event from the inferior, figure out what it means and take
1246 appropriate action. */
1247
1248 int stepped_after_stopped_by_watchpoint;
1249
1250 void
1251 handle_inferior_event (struct execution_control_state *ecs)
1252 {
1253 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1254 that the variable stepped_after_stopped_by_watchpoint isn't used,
1255 then you're wrong! See remote.c:remote_stopped_data_address. */
1256
1257 int sw_single_step_trap_p = 0;
1258 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1259
1260 /* Cache the last pid/waitstatus. */
1261 target_last_wait_ptid = ecs->ptid;
1262 target_last_waitstatus = *ecs->wp;
1263
1264 adjust_pc_after_break (ecs);
1265
1266 switch (ecs->infwait_state)
1267 {
1268 case infwait_thread_hop_state:
1269 if (debug_infrun)
1270 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1271 /* Cancel the waiton_ptid. */
1272 ecs->waiton_ptid = pid_to_ptid (-1);
1273 break;
1274
1275 case infwait_normal_state:
1276 if (debug_infrun)
1277 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1278 stepped_after_stopped_by_watchpoint = 0;
1279 break;
1280
1281 case infwait_nonstep_watch_state:
1282 if (debug_infrun)
1283 fprintf_unfiltered (gdb_stdlog,
1284 "infrun: infwait_nonstep_watch_state\n");
1285 insert_breakpoints ();
1286
1287 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1288 handle things like signals arriving and other things happening
1289 in combination correctly? */
1290 stepped_after_stopped_by_watchpoint = 1;
1291 break;
1292
1293 default:
1294 internal_error (__FILE__, __LINE__, _("bad switch"));
1295 }
1296 ecs->infwait_state = infwait_normal_state;
1297
1298 flush_cached_frames ();
1299
1300 /* If it's a new process, add it to the thread database */
1301
1302 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1303 && !ptid_equal (ecs->ptid, minus_one_ptid)
1304 && !in_thread_list (ecs->ptid));
1305
1306 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1307 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1308 {
1309 add_thread (ecs->ptid);
1310
1311 ui_out_text (uiout, "[New ");
1312 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1313 ui_out_text (uiout, "]\n");
1314 }
1315
1316 switch (ecs->ws.kind)
1317 {
1318 case TARGET_WAITKIND_LOADED:
1319 if (debug_infrun)
1320 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1321 /* Ignore gracefully during startup of the inferior, as it
1322 might be the shell which has just loaded some objects,
1323 otherwise add the symbols for the newly loaded objects. */
1324 #ifdef SOLIB_ADD
1325 if (stop_soon == NO_STOP_QUIETLY)
1326 {
1327 /* Remove breakpoints, SOLIB_ADD might adjust
1328 breakpoint addresses via breakpoint_re_set. */
1329 if (breakpoints_inserted)
1330 remove_breakpoints ();
1331
1332 /* Check for any newly added shared libraries if we're
1333 supposed to be adding them automatically. Switch
1334 terminal for any messages produced by
1335 breakpoint_re_set. */
1336 target_terminal_ours_for_output ();
1337 /* NOTE: cagney/2003-11-25: Make certain that the target
1338 stack's section table is kept up-to-date. Architectures,
1339 (e.g., PPC64), use the section table to perform
1340 operations such as address => section name and hence
1341 require the table to contain all sections (including
1342 those found in shared libraries). */
1343 /* NOTE: cagney/2003-11-25: Pass current_target and not
1344 exec_ops to SOLIB_ADD. This is because current GDB is
1345 only tooled to propagate section_table changes out from
1346 the "current_target" (see target_resize_to_sections), and
1347 not up from the exec stratum. This, of course, isn't
1348 right. "infrun.c" should only interact with the
1349 exec/process stratum, instead relying on the target stack
1350 to propagate relevant changes (stop, section table
1351 changed, ...) up to other layers. */
1352 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1353 target_terminal_inferior ();
1354
1355 /* Reinsert breakpoints and continue. */
1356 if (breakpoints_inserted)
1357 insert_breakpoints ();
1358 }
1359 #endif
1360 resume (0, TARGET_SIGNAL_0);
1361 prepare_to_wait (ecs);
1362 return;
1363
1364 case TARGET_WAITKIND_SPURIOUS:
1365 if (debug_infrun)
1366 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1367 resume (0, TARGET_SIGNAL_0);
1368 prepare_to_wait (ecs);
1369 return;
1370
1371 case TARGET_WAITKIND_EXITED:
1372 if (debug_infrun)
1373 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1374 target_terminal_ours (); /* Must do this before mourn anyway */
1375 print_stop_reason (EXITED, ecs->ws.value.integer);
1376
1377 /* Record the exit code in the convenience variable $_exitcode, so
1378 that the user can inspect this again later. */
1379 set_internalvar (lookup_internalvar ("_exitcode"),
1380 value_from_longest (builtin_type_int,
1381 (LONGEST) ecs->ws.value.integer));
1382 gdb_flush (gdb_stdout);
1383 target_mourn_inferior ();
1384 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1385 stop_print_frame = 0;
1386 stop_stepping (ecs);
1387 return;
1388
1389 case TARGET_WAITKIND_SIGNALLED:
1390 if (debug_infrun)
1391 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1392 stop_print_frame = 0;
1393 stop_signal = ecs->ws.value.sig;
1394 target_terminal_ours (); /* Must do this before mourn anyway */
1395
1396 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1397 reach here unless the inferior is dead. However, for years
1398 target_kill() was called here, which hints that fatal signals aren't
1399 really fatal on some systems. If that's true, then some changes
1400 may be needed. */
1401 target_mourn_inferior ();
1402
1403 print_stop_reason (SIGNAL_EXITED, stop_signal);
1404 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1405 stop_stepping (ecs);
1406 return;
1407
1408 /* The following are the only cases in which we keep going;
1409 the above cases end in a continue or goto. */
1410 case TARGET_WAITKIND_FORKED:
1411 case TARGET_WAITKIND_VFORKED:
1412 if (debug_infrun)
1413 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1414 stop_signal = TARGET_SIGNAL_TRAP;
1415 pending_follow.kind = ecs->ws.kind;
1416
1417 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1418 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1419
1420 if (!ptid_equal (ecs->ptid, inferior_ptid))
1421 {
1422 context_switch (ecs);
1423 flush_cached_frames ();
1424 }
1425
1426 stop_pc = read_pc ();
1427
1428 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1429
1430 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1431
1432 /* If no catchpoint triggered for this, then keep going. */
1433 if (ecs->random_signal)
1434 {
1435 stop_signal = TARGET_SIGNAL_0;
1436 keep_going (ecs);
1437 return;
1438 }
1439 goto process_event_stop_test;
1440
1441 case TARGET_WAITKIND_EXECD:
1442 if (debug_infrun)
1443 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1444 stop_signal = TARGET_SIGNAL_TRAP;
1445
1446 /* NOTE drow/2002-12-05: This code should be pushed down into the
1447 target_wait function. Until then following vfork on HP/UX 10.20
1448 is probably broken by this. Of course, it's broken anyway. */
1449 /* Is this a target which reports multiple exec events per actual
1450 call to exec()? (HP-UX using ptrace does, for example.) If so,
1451 ignore all but the last one. Just resume the exec'r, and wait
1452 for the next exec event. */
1453 if (inferior_ignoring_leading_exec_events)
1454 {
1455 inferior_ignoring_leading_exec_events--;
1456 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1457 prepare_to_wait (ecs);
1458 return;
1459 }
1460 inferior_ignoring_leading_exec_events =
1461 target_reported_exec_events_per_exec_call () - 1;
1462
1463 pending_follow.execd_pathname =
1464 savestring (ecs->ws.value.execd_pathname,
1465 strlen (ecs->ws.value.execd_pathname));
1466
1467 /* This causes the eventpoints and symbol table to be reset. Must
1468 do this now, before trying to determine whether to stop. */
1469 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1470 xfree (pending_follow.execd_pathname);
1471
1472 stop_pc = read_pc_pid (ecs->ptid);
1473 ecs->saved_inferior_ptid = inferior_ptid;
1474 inferior_ptid = ecs->ptid;
1475
1476 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1477
1478 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1479 inferior_ptid = ecs->saved_inferior_ptid;
1480
1481 if (!ptid_equal (ecs->ptid, inferior_ptid))
1482 {
1483 context_switch (ecs);
1484 flush_cached_frames ();
1485 }
1486
1487 /* If no catchpoint triggered for this, then keep going. */
1488 if (ecs->random_signal)
1489 {
1490 stop_signal = TARGET_SIGNAL_0;
1491 keep_going (ecs);
1492 return;
1493 }
1494 goto process_event_stop_test;
1495
1496 /* Be careful not to try to gather much state about a thread
1497 that's in a syscall. It's frequently a losing proposition. */
1498 case TARGET_WAITKIND_SYSCALL_ENTRY:
1499 if (debug_infrun)
1500 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1501 resume (0, TARGET_SIGNAL_0);
1502 prepare_to_wait (ecs);
1503 return;
1504
1505 /* Before examining the threads further, step this thread to
1506 get it entirely out of the syscall. (We get notice of the
1507 event when the thread is just on the verge of exiting a
1508 syscall. Stepping one instruction seems to get it back
1509 into user code.) */
1510 case TARGET_WAITKIND_SYSCALL_RETURN:
1511 if (debug_infrun)
1512 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1513 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1514 prepare_to_wait (ecs);
1515 return;
1516
1517 case TARGET_WAITKIND_STOPPED:
1518 if (debug_infrun)
1519 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1520 stop_signal = ecs->ws.value.sig;
1521 break;
1522
1523 /* We had an event in the inferior, but we are not interested
1524 in handling it at this level. The lower layers have already
1525 done what needs to be done, if anything.
1526
1527 One of the possible circumstances for this is when the
1528 inferior produces output for the console. The inferior has
1529 not stopped, and we are ignoring the event. Another possible
1530 circumstance is any event which the lower level knows will be
1531 reported multiple times without an intervening resume. */
1532 case TARGET_WAITKIND_IGNORE:
1533 if (debug_infrun)
1534 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1535 prepare_to_wait (ecs);
1536 return;
1537 }
1538
1539 /* We may want to consider not doing a resume here in order to give
1540 the user a chance to play with the new thread. It might be good
1541 to make that a user-settable option. */
1542
1543 /* At this point, all threads are stopped (happens automatically in
1544 either the OS or the native code). Therefore we need to continue
1545 all threads in order to make progress. */
1546 if (ecs->new_thread_event)
1547 {
1548 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1549 prepare_to_wait (ecs);
1550 return;
1551 }
1552
1553 stop_pc = read_pc_pid (ecs->ptid);
1554
1555 if (debug_infrun)
1556 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1557
1558 if (stepping_past_singlestep_breakpoint)
1559 {
1560 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1561 && singlestep_breakpoints_inserted_p);
1562 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1563 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1564
1565 stepping_past_singlestep_breakpoint = 0;
1566
1567 /* We've either finished single-stepping past the single-step
1568 breakpoint, or stopped for some other reason. It would be nice if
1569 we could tell, but we can't reliably. */
1570 if (stop_signal == TARGET_SIGNAL_TRAP)
1571 {
1572 if (debug_infrun)
1573 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1574 /* Pull the single step breakpoints out of the target. */
1575 SOFTWARE_SINGLE_STEP (0, 0);
1576 singlestep_breakpoints_inserted_p = 0;
1577
1578 ecs->random_signal = 0;
1579
1580 ecs->ptid = saved_singlestep_ptid;
1581 context_switch (ecs);
1582 if (deprecated_context_hook)
1583 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1584
1585 resume (1, TARGET_SIGNAL_0);
1586 prepare_to_wait (ecs);
1587 return;
1588 }
1589 }
1590
1591 stepping_past_singlestep_breakpoint = 0;
1592
1593 /* See if a thread hit a thread-specific breakpoint that was meant for
1594 another thread. If so, then step that thread past the breakpoint,
1595 and continue it. */
1596
1597 if (stop_signal == TARGET_SIGNAL_TRAP)
1598 {
1599 int thread_hop_needed = 0;
1600
1601 /* Check if a regular breakpoint has been hit before checking
1602 for a potential single step breakpoint. Otherwise, GDB will
1603 not see this breakpoint hit when stepping onto breakpoints. */
1604 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1605 {
1606 ecs->random_signal = 0;
1607 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1608 thread_hop_needed = 1;
1609 }
1610 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1611 {
1612 ecs->random_signal = 0;
1613 /* The call to in_thread_list is necessary because PTIDs sometimes
1614 change when we go from single-threaded to multi-threaded. If
1615 the singlestep_ptid is still in the list, assume that it is
1616 really different from ecs->ptid. */
1617 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1618 && in_thread_list (singlestep_ptid))
1619 {
1620 thread_hop_needed = 1;
1621 stepping_past_singlestep_breakpoint = 1;
1622 saved_singlestep_ptid = singlestep_ptid;
1623 }
1624 }
1625
1626 if (thread_hop_needed)
1627 {
1628 int remove_status;
1629
1630 if (debug_infrun)
1631 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1632
1633 /* Saw a breakpoint, but it was hit by the wrong thread.
1634 Just continue. */
1635
1636 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1637 {
1638 /* Pull the single step breakpoints out of the target. */
1639 SOFTWARE_SINGLE_STEP (0, 0);
1640 singlestep_breakpoints_inserted_p = 0;
1641 }
1642
1643 remove_status = remove_breakpoints ();
1644 /* Did we fail to remove breakpoints? If so, try
1645 to set the PC past the bp. (There's at least
1646 one situation in which we can fail to remove
1647 the bp's: On HP-UX's that use ttrace, we can't
1648 change the address space of a vforking child
1649 process until the child exits (well, okay, not
1650 then either :-) or execs. */
1651 if (remove_status != 0)
1652 {
1653 /* FIXME! This is obviously non-portable! */
1654 write_pc_pid (stop_pc + 4, ecs->ptid);
1655 /* We need to restart all the threads now,
1656 * unles we're running in scheduler-locked mode.
1657 * Use currently_stepping to determine whether to
1658 * step or continue.
1659 */
1660 /* FIXME MVS: is there any reason not to call resume()? */
1661 if (scheduler_mode == schedlock_on)
1662 target_resume (ecs->ptid,
1663 currently_stepping (ecs), TARGET_SIGNAL_0);
1664 else
1665 target_resume (RESUME_ALL,
1666 currently_stepping (ecs), TARGET_SIGNAL_0);
1667 prepare_to_wait (ecs);
1668 return;
1669 }
1670 else
1671 { /* Single step */
1672 breakpoints_inserted = 0;
1673 if (!ptid_equal (inferior_ptid, ecs->ptid))
1674 context_switch (ecs);
1675 ecs->waiton_ptid = ecs->ptid;
1676 ecs->wp = &(ecs->ws);
1677 ecs->another_trap = 1;
1678
1679 ecs->infwait_state = infwait_thread_hop_state;
1680 keep_going (ecs);
1681 registers_changed ();
1682 return;
1683 }
1684 }
1685 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1686 {
1687 sw_single_step_trap_p = 1;
1688 ecs->random_signal = 0;
1689 }
1690 }
1691 else
1692 ecs->random_signal = 1;
1693
1694 /* See if something interesting happened to the non-current thread. If
1695 so, then switch to that thread. */
1696 if (!ptid_equal (ecs->ptid, inferior_ptid))
1697 {
1698 if (debug_infrun)
1699 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1700
1701 context_switch (ecs);
1702
1703 if (deprecated_context_hook)
1704 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1705
1706 flush_cached_frames ();
1707 }
1708
1709 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1710 {
1711 /* Pull the single step breakpoints out of the target. */
1712 SOFTWARE_SINGLE_STEP (0, 0);
1713 singlestep_breakpoints_inserted_p = 0;
1714 }
1715
1716 /* It may not be necessary to disable the watchpoint to stop over
1717 it. For example, the PA can (with some kernel cooperation)
1718 single step over a watchpoint without disabling the watchpoint. */
1719 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1720 {
1721 if (debug_infrun)
1722 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1723 resume (1, 0);
1724 prepare_to_wait (ecs);
1725 return;
1726 }
1727
1728 /* It is far more common to need to disable a watchpoint to step
1729 the inferior over it. FIXME. What else might a debug
1730 register or page protection watchpoint scheme need here? */
1731 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1732 {
1733 /* At this point, we are stopped at an instruction which has
1734 attempted to write to a piece of memory under control of
1735 a watchpoint. The instruction hasn't actually executed
1736 yet. If we were to evaluate the watchpoint expression
1737 now, we would get the old value, and therefore no change
1738 would seem to have occurred.
1739
1740 In order to make watchpoints work `right', we really need
1741 to complete the memory write, and then evaluate the
1742 watchpoint expression. The following code does that by
1743 removing the watchpoint (actually, all watchpoints and
1744 breakpoints), single-stepping the target, re-inserting
1745 watchpoints, and then falling through to let normal
1746 single-step processing handle proceed. Since this
1747 includes evaluating watchpoints, things will come to a
1748 stop in the correct manner. */
1749
1750 if (debug_infrun)
1751 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1752 remove_breakpoints ();
1753 registers_changed ();
1754 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1755
1756 ecs->waiton_ptid = ecs->ptid;
1757 ecs->wp = &(ecs->ws);
1758 ecs->infwait_state = infwait_nonstep_watch_state;
1759 prepare_to_wait (ecs);
1760 return;
1761 }
1762
1763 /* It may be possible to simply continue after a watchpoint. */
1764 if (HAVE_CONTINUABLE_WATCHPOINT)
1765 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1766
1767 ecs->stop_func_start = 0;
1768 ecs->stop_func_end = 0;
1769 ecs->stop_func_name = 0;
1770 /* Don't care about return value; stop_func_start and stop_func_name
1771 will both be 0 if it doesn't work. */
1772 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1773 &ecs->stop_func_start, &ecs->stop_func_end);
1774 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1775 ecs->another_trap = 0;
1776 bpstat_clear (&stop_bpstat);
1777 stop_step = 0;
1778 stop_stack_dummy = 0;
1779 stop_print_frame = 1;
1780 ecs->random_signal = 0;
1781 stopped_by_random_signal = 0;
1782 breakpoints_failed = 0;
1783
1784 if (stop_signal == TARGET_SIGNAL_TRAP
1785 && trap_expected
1786 && gdbarch_single_step_through_delay_p (current_gdbarch)
1787 && currently_stepping (ecs))
1788 {
1789 /* We're trying to step of a breakpoint. Turns out that we're
1790 also on an instruction that needs to be stepped multiple
1791 times before it's been fully executing. E.g., architectures
1792 with a delay slot. It needs to be stepped twice, once for
1793 the instruction and once for the delay slot. */
1794 int step_through_delay
1795 = gdbarch_single_step_through_delay (current_gdbarch,
1796 get_current_frame ());
1797 if (debug_infrun && step_through_delay)
1798 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1799 if (step_range_end == 0 && step_through_delay)
1800 {
1801 /* The user issued a continue when stopped at a breakpoint.
1802 Set up for another trap and get out of here. */
1803 ecs->another_trap = 1;
1804 keep_going (ecs);
1805 return;
1806 }
1807 else if (step_through_delay)
1808 {
1809 /* The user issued a step when stopped at a breakpoint.
1810 Maybe we should stop, maybe we should not - the delay
1811 slot *might* correspond to a line of source. In any
1812 case, don't decide that here, just set ecs->another_trap,
1813 making sure we single-step again before breakpoints are
1814 re-inserted. */
1815 ecs->another_trap = 1;
1816 }
1817 }
1818
1819 /* Look at the cause of the stop, and decide what to do.
1820 The alternatives are:
1821 1) break; to really stop and return to the debugger,
1822 2) drop through to start up again
1823 (set ecs->another_trap to 1 to single step once)
1824 3) set ecs->random_signal to 1, and the decision between 1 and 2
1825 will be made according to the signal handling tables. */
1826
1827 /* First, distinguish signals caused by the debugger from signals
1828 that have to do with the program's own actions. Note that
1829 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1830 on the operating system version. Here we detect when a SIGILL or
1831 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1832 something similar for SIGSEGV, since a SIGSEGV will be generated
1833 when we're trying to execute a breakpoint instruction on a
1834 non-executable stack. This happens for call dummy breakpoints
1835 for architectures like SPARC that place call dummies on the
1836 stack. */
1837
1838 if (stop_signal == TARGET_SIGNAL_TRAP
1839 || (breakpoints_inserted
1840 && (stop_signal == TARGET_SIGNAL_ILL
1841 || stop_signal == TARGET_SIGNAL_SEGV
1842 || stop_signal == TARGET_SIGNAL_EMT))
1843 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1844 {
1845 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1846 {
1847 if (debug_infrun)
1848 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1849 stop_print_frame = 0;
1850 stop_stepping (ecs);
1851 return;
1852 }
1853
1854 /* This is originated from start_remote(), start_inferior() and
1855 shared libraries hook functions. */
1856 if (stop_soon == STOP_QUIETLY)
1857 {
1858 if (debug_infrun)
1859 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1860 stop_stepping (ecs);
1861 return;
1862 }
1863
1864 /* This originates from attach_command(). We need to overwrite
1865 the stop_signal here, because some kernels don't ignore a
1866 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1867 See more comments in inferior.h. */
1868 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1869 {
1870 stop_stepping (ecs);
1871 if (stop_signal == TARGET_SIGNAL_STOP)
1872 stop_signal = TARGET_SIGNAL_0;
1873 return;
1874 }
1875
1876 /* Don't even think about breakpoints if just proceeded over a
1877 breakpoint. */
1878 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1879 {
1880 if (debug_infrun)
1881 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1882 bpstat_clear (&stop_bpstat);
1883 }
1884 else
1885 {
1886 /* See if there is a breakpoint at the current PC. */
1887 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1888 stopped_by_watchpoint);
1889
1890 /* Following in case break condition called a
1891 function. */
1892 stop_print_frame = 1;
1893 }
1894
1895 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1896 at one stage in the past included checks for an inferior
1897 function call's call dummy's return breakpoint. The original
1898 comment, that went with the test, read:
1899
1900 ``End of a stack dummy. Some systems (e.g. Sony news) give
1901 another signal besides SIGTRAP, so check here as well as
1902 above.''
1903
1904 If someone ever tries to get get call dummys on a
1905 non-executable stack to work (where the target would stop
1906 with something like a SIGSEGV), then those tests might need
1907 to be re-instated. Given, however, that the tests were only
1908 enabled when momentary breakpoints were not being used, I
1909 suspect that it won't be the case.
1910
1911 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1912 be necessary for call dummies on a non-executable stack on
1913 SPARC. */
1914
1915 if (stop_signal == TARGET_SIGNAL_TRAP)
1916 ecs->random_signal
1917 = !(bpstat_explains_signal (stop_bpstat)
1918 || trap_expected
1919 || (step_range_end && step_resume_breakpoint == NULL));
1920 else
1921 {
1922 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1923 if (!ecs->random_signal)
1924 stop_signal = TARGET_SIGNAL_TRAP;
1925 }
1926 }
1927
1928 /* When we reach this point, we've pretty much decided
1929 that the reason for stopping must've been a random
1930 (unexpected) signal. */
1931
1932 else
1933 ecs->random_signal = 1;
1934
1935 process_event_stop_test:
1936 /* For the program's own signals, act according to
1937 the signal handling tables. */
1938
1939 if (ecs->random_signal)
1940 {
1941 /* Signal not for debugging purposes. */
1942 int printed = 0;
1943
1944 if (debug_infrun)
1945 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
1946
1947 stopped_by_random_signal = 1;
1948
1949 if (signal_print[stop_signal])
1950 {
1951 printed = 1;
1952 target_terminal_ours_for_output ();
1953 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1954 }
1955 if (signal_stop[stop_signal])
1956 {
1957 stop_stepping (ecs);
1958 return;
1959 }
1960 /* If not going to stop, give terminal back
1961 if we took it away. */
1962 else if (printed)
1963 target_terminal_inferior ();
1964
1965 /* Clear the signal if it should not be passed. */
1966 if (signal_program[stop_signal] == 0)
1967 stop_signal = TARGET_SIGNAL_0;
1968
1969 if (prev_pc == read_pc ()
1970 && !breakpoints_inserted
1971 && breakpoint_here_p (read_pc ())
1972 && step_resume_breakpoint == NULL)
1973 {
1974 /* We were just starting a new sequence, attempting to
1975 single-step off of a breakpoint and expecting a SIGTRAP.
1976 Intead this signal arrives. This signal will take us out
1977 of the stepping range so GDB needs to remember to, when
1978 the signal handler returns, resume stepping off that
1979 breakpoint. */
1980 /* To simplify things, "continue" is forced to use the same
1981 code paths as single-step - set a breakpoint at the
1982 signal return address and then, once hit, step off that
1983 breakpoint. */
1984 insert_step_resume_breakpoint_at_frame (get_current_frame ());
1985 ecs->step_after_step_resume_breakpoint = 1;
1986 keep_going (ecs);
1987 return;
1988 }
1989
1990 if (step_range_end != 0
1991 && stop_signal != TARGET_SIGNAL_0
1992 && stop_pc >= step_range_start && stop_pc < step_range_end
1993 && frame_id_eq (get_frame_id (get_current_frame ()),
1994 step_frame_id)
1995 && step_resume_breakpoint == NULL)
1996 {
1997 /* The inferior is about to take a signal that will take it
1998 out of the single step range. Set a breakpoint at the
1999 current PC (which is presumably where the signal handler
2000 will eventually return) and then allow the inferior to
2001 run free.
2002
2003 Note that this is only needed for a signal delivered
2004 while in the single-step range. Nested signals aren't a
2005 problem as they eventually all return. */
2006 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2007 keep_going (ecs);
2008 return;
2009 }
2010
2011 /* Note: step_resume_breakpoint may be non-NULL. This occures
2012 when either there's a nested signal, or when there's a
2013 pending signal enabled just as the signal handler returns
2014 (leaving the inferior at the step-resume-breakpoint without
2015 actually executing it). Either way continue until the
2016 breakpoint is really hit. */
2017 keep_going (ecs);
2018 return;
2019 }
2020
2021 /* Handle cases caused by hitting a breakpoint. */
2022 {
2023 CORE_ADDR jmp_buf_pc;
2024 struct bpstat_what what;
2025
2026 what = bpstat_what (stop_bpstat);
2027
2028 if (what.call_dummy)
2029 {
2030 stop_stack_dummy = 1;
2031 }
2032
2033 switch (what.main_action)
2034 {
2035 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2036 /* If we hit the breakpoint at longjmp, disable it for the
2037 duration of this command. Then, install a temporary
2038 breakpoint at the target of the jmp_buf. */
2039 if (debug_infrun)
2040 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2041 disable_longjmp_breakpoint ();
2042 remove_breakpoints ();
2043 breakpoints_inserted = 0;
2044 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
2045 {
2046 keep_going (ecs);
2047 return;
2048 }
2049
2050 /* Need to blow away step-resume breakpoint, as it
2051 interferes with us */
2052 if (step_resume_breakpoint != NULL)
2053 {
2054 delete_step_resume_breakpoint (&step_resume_breakpoint);
2055 }
2056
2057 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2058 ecs->handling_longjmp = 1; /* FIXME */
2059 keep_going (ecs);
2060 return;
2061
2062 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2063 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2064 if (debug_infrun)
2065 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2066 remove_breakpoints ();
2067 breakpoints_inserted = 0;
2068 disable_longjmp_breakpoint ();
2069 ecs->handling_longjmp = 0; /* FIXME */
2070 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2071 break;
2072 /* else fallthrough */
2073
2074 case BPSTAT_WHAT_SINGLE:
2075 if (debug_infrun)
2076 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2077 if (breakpoints_inserted)
2078 {
2079 remove_breakpoints ();
2080 }
2081 breakpoints_inserted = 0;
2082 ecs->another_trap = 1;
2083 /* Still need to check other stuff, at least the case
2084 where we are stepping and step out of the right range. */
2085 break;
2086
2087 case BPSTAT_WHAT_STOP_NOISY:
2088 if (debug_infrun)
2089 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2090 stop_print_frame = 1;
2091
2092 /* We are about to nuke the step_resume_breakpointt via the
2093 cleanup chain, so no need to worry about it here. */
2094
2095 stop_stepping (ecs);
2096 return;
2097
2098 case BPSTAT_WHAT_STOP_SILENT:
2099 if (debug_infrun)
2100 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2101 stop_print_frame = 0;
2102
2103 /* We are about to nuke the step_resume_breakpoin via the
2104 cleanup chain, so no need to worry about it here. */
2105
2106 stop_stepping (ecs);
2107 return;
2108
2109 case BPSTAT_WHAT_STEP_RESUME:
2110 /* This proably demands a more elegant solution, but, yeah
2111 right...
2112
2113 This function's use of the simple variable
2114 step_resume_breakpoint doesn't seem to accomodate
2115 simultaneously active step-resume bp's, although the
2116 breakpoint list certainly can.
2117
2118 If we reach here and step_resume_breakpoint is already
2119 NULL, then apparently we have multiple active
2120 step-resume bp's. We'll just delete the breakpoint we
2121 stopped at, and carry on.
2122
2123 Correction: what the code currently does is delete a
2124 step-resume bp, but it makes no effort to ensure that
2125 the one deleted is the one currently stopped at. MVS */
2126
2127 if (debug_infrun)
2128 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2129
2130 if (step_resume_breakpoint == NULL)
2131 {
2132 step_resume_breakpoint =
2133 bpstat_find_step_resume_breakpoint (stop_bpstat);
2134 }
2135 delete_step_resume_breakpoint (&step_resume_breakpoint);
2136 if (ecs->step_after_step_resume_breakpoint)
2137 {
2138 /* Back when the step-resume breakpoint was inserted, we
2139 were trying to single-step off a breakpoint. Go back
2140 to doing that. */
2141 ecs->step_after_step_resume_breakpoint = 0;
2142 remove_breakpoints ();
2143 breakpoints_inserted = 0;
2144 ecs->another_trap = 1;
2145 keep_going (ecs);
2146 return;
2147 }
2148 break;
2149
2150 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2151 if (debug_infrun)
2152 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_THROUGH_SIGTRAMP\n");
2153 /* If were waiting for a trap, hitting the step_resume_break
2154 doesn't count as getting it. */
2155 if (trap_expected)
2156 ecs->another_trap = 1;
2157 break;
2158
2159 case BPSTAT_WHAT_CHECK_SHLIBS:
2160 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2161 {
2162 if (debug_infrun)
2163 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2164 /* Remove breakpoints, we eventually want to step over the
2165 shlib event breakpoint, and SOLIB_ADD might adjust
2166 breakpoint addresses via breakpoint_re_set. */
2167 if (breakpoints_inserted)
2168 remove_breakpoints ();
2169 breakpoints_inserted = 0;
2170
2171 /* Check for any newly added shared libraries if we're
2172 supposed to be adding them automatically. Switch
2173 terminal for any messages produced by
2174 breakpoint_re_set. */
2175 target_terminal_ours_for_output ();
2176 /* NOTE: cagney/2003-11-25: Make certain that the target
2177 stack's section table is kept up-to-date. Architectures,
2178 (e.g., PPC64), use the section table to perform
2179 operations such as address => section name and hence
2180 require the table to contain all sections (including
2181 those found in shared libraries). */
2182 /* NOTE: cagney/2003-11-25: Pass current_target and not
2183 exec_ops to SOLIB_ADD. This is because current GDB is
2184 only tooled to propagate section_table changes out from
2185 the "current_target" (see target_resize_to_sections), and
2186 not up from the exec stratum. This, of course, isn't
2187 right. "infrun.c" should only interact with the
2188 exec/process stratum, instead relying on the target stack
2189 to propagate relevant changes (stop, section table
2190 changed, ...) up to other layers. */
2191 #ifdef SOLIB_ADD
2192 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2193 #else
2194 solib_add (NULL, 0, &current_target, auto_solib_add);
2195 #endif
2196 target_terminal_inferior ();
2197
2198 /* Try to reenable shared library breakpoints, additional
2199 code segments in shared libraries might be mapped in now. */
2200 re_enable_breakpoints_in_shlibs ();
2201
2202 /* If requested, stop when the dynamic linker notifies
2203 gdb of events. This allows the user to get control
2204 and place breakpoints in initializer routines for
2205 dynamically loaded objects (among other things). */
2206 if (stop_on_solib_events || stop_stack_dummy)
2207 {
2208 stop_stepping (ecs);
2209 return;
2210 }
2211
2212 /* If we stopped due to an explicit catchpoint, then the
2213 (see above) call to SOLIB_ADD pulled in any symbols
2214 from a newly-loaded library, if appropriate.
2215
2216 We do want the inferior to stop, but not where it is
2217 now, which is in the dynamic linker callback. Rather,
2218 we would like it stop in the user's program, just after
2219 the call that caused this catchpoint to trigger. That
2220 gives the user a more useful vantage from which to
2221 examine their program's state. */
2222 else if (what.main_action
2223 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2224 {
2225 /* ??rehrauer: If I could figure out how to get the
2226 right return PC from here, we could just set a temp
2227 breakpoint and resume. I'm not sure we can without
2228 cracking open the dld's shared libraries and sniffing
2229 their unwind tables and text/data ranges, and that's
2230 not a terribly portable notion.
2231
2232 Until that time, we must step the inferior out of the
2233 dld callback, and also out of the dld itself (and any
2234 code or stubs in libdld.sl, such as "shl_load" and
2235 friends) until we reach non-dld code. At that point,
2236 we can stop stepping. */
2237 bpstat_get_triggered_catchpoints (stop_bpstat,
2238 &ecs->
2239 stepping_through_solib_catchpoints);
2240 ecs->stepping_through_solib_after_catch = 1;
2241
2242 /* Be sure to lift all breakpoints, so the inferior does
2243 actually step past this point... */
2244 ecs->another_trap = 1;
2245 break;
2246 }
2247 else
2248 {
2249 /* We want to step over this breakpoint, then keep going. */
2250 ecs->another_trap = 1;
2251 break;
2252 }
2253 }
2254 break;
2255
2256 case BPSTAT_WHAT_LAST:
2257 /* Not a real code, but listed here to shut up gcc -Wall. */
2258
2259 case BPSTAT_WHAT_KEEP_CHECKING:
2260 break;
2261 }
2262 }
2263
2264 /* We come here if we hit a breakpoint but should not
2265 stop for it. Possibly we also were stepping
2266 and should stop for that. So fall through and
2267 test for stepping. But, if not stepping,
2268 do not stop. */
2269
2270 /* Are we stepping to get the inferior out of the dynamic linker's
2271 hook (and possibly the dld itself) after catching a shlib
2272 event? */
2273 if (ecs->stepping_through_solib_after_catch)
2274 {
2275 #if defined(SOLIB_ADD)
2276 /* Have we reached our destination? If not, keep going. */
2277 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2278 {
2279 if (debug_infrun)
2280 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2281 ecs->another_trap = 1;
2282 keep_going (ecs);
2283 return;
2284 }
2285 #endif
2286 if (debug_infrun)
2287 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2288 /* Else, stop and report the catchpoint(s) whose triggering
2289 caused us to begin stepping. */
2290 ecs->stepping_through_solib_after_catch = 0;
2291 bpstat_clear (&stop_bpstat);
2292 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2293 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2294 stop_print_frame = 1;
2295 stop_stepping (ecs);
2296 return;
2297 }
2298
2299 if (step_resume_breakpoint)
2300 {
2301 if (debug_infrun)
2302 fprintf_unfiltered (gdb_stdlog, "infrun: step-resume breakpoint\n");
2303
2304 /* Having a step-resume breakpoint overrides anything
2305 else having to do with stepping commands until
2306 that breakpoint is reached. */
2307 keep_going (ecs);
2308 return;
2309 }
2310
2311 if (step_range_end == 0)
2312 {
2313 if (debug_infrun)
2314 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2315 /* Likewise if we aren't even stepping. */
2316 keep_going (ecs);
2317 return;
2318 }
2319
2320 /* If stepping through a line, keep going if still within it.
2321
2322 Note that step_range_end is the address of the first instruction
2323 beyond the step range, and NOT the address of the last instruction
2324 within it! */
2325 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2326 {
2327 if (debug_infrun)
2328 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2329 paddr_nz (step_range_start),
2330 paddr_nz (step_range_end));
2331 keep_going (ecs);
2332 return;
2333 }
2334
2335 /* We stepped out of the stepping range. */
2336
2337 /* If we are stepping at the source level and entered the runtime
2338 loader dynamic symbol resolution code, we keep on single stepping
2339 until we exit the run time loader code and reach the callee's
2340 address. */
2341 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2342 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2343 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2344 #else
2345 && in_solib_dynsym_resolve_code (stop_pc)
2346 #endif
2347 )
2348 {
2349 CORE_ADDR pc_after_resolver =
2350 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2351
2352 if (debug_infrun)
2353 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2354
2355 if (pc_after_resolver)
2356 {
2357 /* Set up a step-resume breakpoint at the address
2358 indicated by SKIP_SOLIB_RESOLVER. */
2359 struct symtab_and_line sr_sal;
2360 init_sal (&sr_sal);
2361 sr_sal.pc = pc_after_resolver;
2362
2363 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2364 }
2365
2366 keep_going (ecs);
2367 return;
2368 }
2369
2370 if (step_range_end != 1
2371 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2372 || step_over_calls == STEP_OVER_ALL)
2373 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2374 {
2375 if (debug_infrun)
2376 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2377 /* The inferior, while doing a "step" or "next", has ended up in
2378 a signal trampoline (either by a signal being delivered or by
2379 the signal handler returning). Just single-step until the
2380 inferior leaves the trampoline (either by calling the handler
2381 or returning). */
2382 keep_going (ecs);
2383 return;
2384 }
2385
2386 /* Check for subroutine calls. The check for the current frame
2387 equalling the step ID is not necessary - the check of the
2388 previous frame's ID is sufficient - but it is a common case and
2389 cheaper than checking the previous frame's ID.
2390
2391 NOTE: frame_id_eq will never report two invalid frame IDs as
2392 being equal, so to get into this block, both the current and
2393 previous frame must have valid frame IDs. */
2394 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2395 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2396 {
2397 CORE_ADDR real_stop_pc;
2398
2399 if (debug_infrun)
2400 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2401
2402 if ((step_over_calls == STEP_OVER_NONE)
2403 || ((step_range_end == 1)
2404 && in_prologue (prev_pc, ecs->stop_func_start)))
2405 {
2406 /* I presume that step_over_calls is only 0 when we're
2407 supposed to be stepping at the assembly language level
2408 ("stepi"). Just stop. */
2409 /* Also, maybe we just did a "nexti" inside a prolog, so we
2410 thought it was a subroutine call but it was not. Stop as
2411 well. FENN */
2412 stop_step = 1;
2413 print_stop_reason (END_STEPPING_RANGE, 0);
2414 stop_stepping (ecs);
2415 return;
2416 }
2417
2418 if (step_over_calls == STEP_OVER_ALL)
2419 {
2420 /* We're doing a "next", set a breakpoint at callee's return
2421 address (the address at which the caller will
2422 resume). */
2423 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2424 keep_going (ecs);
2425 return;
2426 }
2427
2428 /* If we are in a function call trampoline (a stub between the
2429 calling routine and the real function), locate the real
2430 function. That's what tells us (a) whether we want to step
2431 into it at all, and (b) what prologue we want to run to the
2432 end of, if we do step into it. */
2433 real_stop_pc = skip_language_trampoline (stop_pc);
2434 if (real_stop_pc == 0)
2435 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2436 if (real_stop_pc != 0)
2437 ecs->stop_func_start = real_stop_pc;
2438
2439 if (
2440 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2441 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2442 #else
2443 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2444 #endif
2445 )
2446 {
2447 struct symtab_and_line sr_sal;
2448 init_sal (&sr_sal);
2449 sr_sal.pc = ecs->stop_func_start;
2450
2451 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2452 keep_going (ecs);
2453 return;
2454 }
2455
2456 /* If we have line number information for the function we are
2457 thinking of stepping into, step into it.
2458
2459 If there are several symtabs at that PC (e.g. with include
2460 files), just want to know whether *any* of them have line
2461 numbers. find_pc_line handles this. */
2462 {
2463 struct symtab_and_line tmp_sal;
2464
2465 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2466 if (tmp_sal.line != 0)
2467 {
2468 step_into_function (ecs);
2469 return;
2470 }
2471 }
2472
2473 /* If we have no line number and the step-stop-if-no-debug is
2474 set, we stop the step so that the user has a chance to switch
2475 in assembly mode. */
2476 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2477 {
2478 stop_step = 1;
2479 print_stop_reason (END_STEPPING_RANGE, 0);
2480 stop_stepping (ecs);
2481 return;
2482 }
2483
2484 /* Set a breakpoint at callee's return address (the address at
2485 which the caller will resume). */
2486 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2487 keep_going (ecs);
2488 return;
2489 }
2490
2491 /* If we're in the return path from a shared library trampoline,
2492 we want to proceed through the trampoline when stepping. */
2493 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2494 {
2495 /* Determine where this trampoline returns. */
2496 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2497
2498 if (debug_infrun)
2499 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2500
2501 /* Only proceed through if we know where it's going. */
2502 if (real_stop_pc)
2503 {
2504 /* And put the step-breakpoint there and go until there. */
2505 struct symtab_and_line sr_sal;
2506
2507 init_sal (&sr_sal); /* initialize to zeroes */
2508 sr_sal.pc = real_stop_pc;
2509 sr_sal.section = find_pc_overlay (sr_sal.pc);
2510
2511 /* Do not specify what the fp should be when we stop since
2512 on some machines the prologue is where the new fp value
2513 is established. */
2514 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2515
2516 /* Restart without fiddling with the step ranges or
2517 other state. */
2518 keep_going (ecs);
2519 return;
2520 }
2521 }
2522
2523 ecs->sal = find_pc_line (stop_pc, 0);
2524
2525 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2526 the trampoline processing logic, however, there are some trampolines
2527 that have no names, so we should do trampoline handling first. */
2528 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2529 && ecs->stop_func_name == NULL
2530 && ecs->sal.line == 0)
2531 {
2532 if (debug_infrun)
2533 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2534
2535 /* The inferior just stepped into, or returned to, an
2536 undebuggable function (where there is no debugging information
2537 and no line number corresponding to the address where the
2538 inferior stopped). Since we want to skip this kind of code,
2539 we keep going until the inferior returns from this
2540 function - unless the user has asked us not to (via
2541 set step-mode) or we no longer know how to get back
2542 to the call site. */
2543 if (step_stop_if_no_debug
2544 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2545 {
2546 /* If we have no line number and the step-stop-if-no-debug
2547 is set, we stop the step so that the user has a chance to
2548 switch in assembly mode. */
2549 stop_step = 1;
2550 print_stop_reason (END_STEPPING_RANGE, 0);
2551 stop_stepping (ecs);
2552 return;
2553 }
2554 else
2555 {
2556 /* Set a breakpoint at callee's return address (the address
2557 at which the caller will resume). */
2558 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2559 keep_going (ecs);
2560 return;
2561 }
2562 }
2563
2564 if (step_range_end == 1)
2565 {
2566 /* It is stepi or nexti. We always want to stop stepping after
2567 one instruction. */
2568 if (debug_infrun)
2569 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2570 stop_step = 1;
2571 print_stop_reason (END_STEPPING_RANGE, 0);
2572 stop_stepping (ecs);
2573 return;
2574 }
2575
2576 if (ecs->sal.line == 0)
2577 {
2578 /* We have no line number information. That means to stop
2579 stepping (does this always happen right after one instruction,
2580 when we do "s" in a function with no line numbers,
2581 or can this happen as a result of a return or longjmp?). */
2582 if (debug_infrun)
2583 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2584 stop_step = 1;
2585 print_stop_reason (END_STEPPING_RANGE, 0);
2586 stop_stepping (ecs);
2587 return;
2588 }
2589
2590 if ((stop_pc == ecs->sal.pc)
2591 && (ecs->current_line != ecs->sal.line
2592 || ecs->current_symtab != ecs->sal.symtab))
2593 {
2594 /* We are at the start of a different line. So stop. Note that
2595 we don't stop if we step into the middle of a different line.
2596 That is said to make things like for (;;) statements work
2597 better. */
2598 if (debug_infrun)
2599 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2600 stop_step = 1;
2601 print_stop_reason (END_STEPPING_RANGE, 0);
2602 stop_stepping (ecs);
2603 return;
2604 }
2605
2606 /* We aren't done stepping.
2607
2608 Optimize by setting the stepping range to the line.
2609 (We might not be in the original line, but if we entered a
2610 new line in mid-statement, we continue stepping. This makes
2611 things like for(;;) statements work better.) */
2612
2613 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2614 {
2615 /* If this is the last line of the function, don't keep stepping
2616 (it would probably step us out of the function).
2617 This is particularly necessary for a one-line function,
2618 in which after skipping the prologue we better stop even though
2619 we will be in mid-line. */
2620 if (debug_infrun)
2621 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2622 stop_step = 1;
2623 print_stop_reason (END_STEPPING_RANGE, 0);
2624 stop_stepping (ecs);
2625 return;
2626 }
2627 step_range_start = ecs->sal.pc;
2628 step_range_end = ecs->sal.end;
2629 step_frame_id = get_frame_id (get_current_frame ());
2630 ecs->current_line = ecs->sal.line;
2631 ecs->current_symtab = ecs->sal.symtab;
2632
2633 /* In the case where we just stepped out of a function into the
2634 middle of a line of the caller, continue stepping, but
2635 step_frame_id must be modified to current frame */
2636 #if 0
2637 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2638 generous. It will trigger on things like a step into a frameless
2639 stackless leaf function. I think the logic should instead look
2640 at the unwound frame ID has that should give a more robust
2641 indication of what happened. */
2642 if (step - ID == current - ID)
2643 still stepping in same function;
2644 else if (step - ID == unwind (current - ID))
2645 stepped into a function;
2646 else
2647 stepped out of a function;
2648 /* Of course this assumes that the frame ID unwind code is robust
2649 and we're willing to introduce frame unwind logic into this
2650 function. Fortunately, those days are nearly upon us. */
2651 #endif
2652 {
2653 struct frame_id current_frame = get_frame_id (get_current_frame ());
2654 if (!(frame_id_inner (current_frame, step_frame_id)))
2655 step_frame_id = current_frame;
2656 }
2657
2658 if (debug_infrun)
2659 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2660 keep_going (ecs);
2661 }
2662
2663 /* Are we in the middle of stepping? */
2664
2665 static int
2666 currently_stepping (struct execution_control_state *ecs)
2667 {
2668 return ((!ecs->handling_longjmp
2669 && ((step_range_end && step_resume_breakpoint == NULL)
2670 || trap_expected))
2671 || ecs->stepping_through_solib_after_catch
2672 || bpstat_should_step ());
2673 }
2674
2675 /* Subroutine call with source code we should not step over. Do step
2676 to the first line of code in it. */
2677
2678 static void
2679 step_into_function (struct execution_control_state *ecs)
2680 {
2681 struct symtab *s;
2682 struct symtab_and_line sr_sal;
2683
2684 s = find_pc_symtab (stop_pc);
2685 if (s && s->language != language_asm)
2686 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2687
2688 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2689 /* Use the step_resume_break to step until the end of the prologue,
2690 even if that involves jumps (as it seems to on the vax under
2691 4.2). */
2692 /* If the prologue ends in the middle of a source line, continue to
2693 the end of that source line (if it is still within the function).
2694 Otherwise, just go to end of prologue. */
2695 if (ecs->sal.end
2696 && ecs->sal.pc != ecs->stop_func_start
2697 && ecs->sal.end < ecs->stop_func_end)
2698 ecs->stop_func_start = ecs->sal.end;
2699
2700 /* Architectures which require breakpoint adjustment might not be able
2701 to place a breakpoint at the computed address. If so, the test
2702 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2703 ecs->stop_func_start to an address at which a breakpoint may be
2704 legitimately placed.
2705
2706 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2707 made, GDB will enter an infinite loop when stepping through
2708 optimized code consisting of VLIW instructions which contain
2709 subinstructions corresponding to different source lines. On
2710 FR-V, it's not permitted to place a breakpoint on any but the
2711 first subinstruction of a VLIW instruction. When a breakpoint is
2712 set, GDB will adjust the breakpoint address to the beginning of
2713 the VLIW instruction. Thus, we need to make the corresponding
2714 adjustment here when computing the stop address. */
2715
2716 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2717 {
2718 ecs->stop_func_start
2719 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2720 ecs->stop_func_start);
2721 }
2722
2723 if (ecs->stop_func_start == stop_pc)
2724 {
2725 /* We are already there: stop now. */
2726 stop_step = 1;
2727 print_stop_reason (END_STEPPING_RANGE, 0);
2728 stop_stepping (ecs);
2729 return;
2730 }
2731 else
2732 {
2733 /* Put the step-breakpoint there and go until there. */
2734 init_sal (&sr_sal); /* initialize to zeroes */
2735 sr_sal.pc = ecs->stop_func_start;
2736 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2737
2738 /* Do not specify what the fp should be when we stop since on
2739 some machines the prologue is where the new fp value is
2740 established. */
2741 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2742
2743 /* And make sure stepping stops right away then. */
2744 step_range_end = step_range_start;
2745 }
2746 keep_going (ecs);
2747 }
2748
2749 /* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID.
2750 This is used to both functions and to skip over code. */
2751
2752 static void
2753 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2754 struct frame_id sr_id)
2755 {
2756 /* There should never be more than one step-resume breakpoint per
2757 thread, so we should never be setting a new
2758 step_resume_breakpoint when one is already active. */
2759 gdb_assert (step_resume_breakpoint == NULL);
2760 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2761 bp_step_resume);
2762 if (breakpoints_inserted)
2763 insert_breakpoints ();
2764 }
2765
2766 /* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2767 to skip a potential signal handler.
2768
2769 This is called with the interrupted function's frame. The signal
2770 handler, when it returns, will resume the interrupted function at
2771 RETURN_FRAME.pc. */
2772
2773 static void
2774 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2775 {
2776 struct symtab_and_line sr_sal;
2777
2778 init_sal (&sr_sal); /* initialize to zeros */
2779
2780 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
2781 sr_sal.section = find_pc_overlay (sr_sal.pc);
2782
2783 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2784 }
2785
2786 /* Similar to insert_step_resume_breakpoint_at_frame, except
2787 but a breakpoint at the previous frame's PC. This is used to
2788 skip a function after stepping into it (for "next" or if the called
2789 function has no debugging information).
2790
2791 The current function has almost always been reached by single
2792 stepping a call or return instruction. NEXT_FRAME belongs to the
2793 current function, and the breakpoint will be set at the caller's
2794 resume address.
2795
2796 This is a separate function rather than reusing
2797 insert_step_resume_breakpoint_at_frame in order to avoid
2798 get_prev_frame, which may stop prematurely (see the implementation
2799 of frame_unwind_id for an example). */
2800
2801 static void
2802 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2803 {
2804 struct symtab_and_line sr_sal;
2805
2806 /* We shouldn't have gotten here if we don't know where the call site
2807 is. */
2808 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2809
2810 init_sal (&sr_sal); /* initialize to zeros */
2811
2812 sr_sal.pc = ADDR_BITS_REMOVE (frame_pc_unwind (next_frame));
2813 sr_sal.section = find_pc_overlay (sr_sal.pc);
2814
2815 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2816 }
2817
2818 static void
2819 stop_stepping (struct execution_control_state *ecs)
2820 {
2821 if (debug_infrun)
2822 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2823
2824 /* Let callers know we don't want to wait for the inferior anymore. */
2825 ecs->wait_some_more = 0;
2826 }
2827
2828 /* This function handles various cases where we need to continue
2829 waiting for the inferior. */
2830 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2831
2832 static void
2833 keep_going (struct execution_control_state *ecs)
2834 {
2835 /* Save the pc before execution, to compare with pc after stop. */
2836 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2837
2838 /* If we did not do break;, it means we should keep running the
2839 inferior and not return to debugger. */
2840
2841 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2842 {
2843 /* We took a signal (which we are supposed to pass through to
2844 the inferior, else we'd have done a break above) and we
2845 haven't yet gotten our trap. Simply continue. */
2846 resume (currently_stepping (ecs), stop_signal);
2847 }
2848 else
2849 {
2850 /* Either the trap was not expected, but we are continuing
2851 anyway (the user asked that this signal be passed to the
2852 child)
2853 -- or --
2854 The signal was SIGTRAP, e.g. it was our signal, but we
2855 decided we should resume from it.
2856
2857 We're going to run this baby now! */
2858
2859 if (!breakpoints_inserted && !ecs->another_trap)
2860 {
2861 breakpoints_failed = insert_breakpoints ();
2862 if (breakpoints_failed)
2863 {
2864 stop_stepping (ecs);
2865 return;
2866 }
2867 breakpoints_inserted = 1;
2868 }
2869
2870 trap_expected = ecs->another_trap;
2871
2872 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2873 specifies that such a signal should be delivered to the
2874 target program).
2875
2876 Typically, this would occure when a user is debugging a
2877 target monitor on a simulator: the target monitor sets a
2878 breakpoint; the simulator encounters this break-point and
2879 halts the simulation handing control to GDB; GDB, noteing
2880 that the break-point isn't valid, returns control back to the
2881 simulator; the simulator then delivers the hardware
2882 equivalent of a SIGNAL_TRAP to the program being debugged. */
2883
2884 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2885 stop_signal = TARGET_SIGNAL_0;
2886
2887
2888 resume (currently_stepping (ecs), stop_signal);
2889 }
2890
2891 prepare_to_wait (ecs);
2892 }
2893
2894 /* This function normally comes after a resume, before
2895 handle_inferior_event exits. It takes care of any last bits of
2896 housekeeping, and sets the all-important wait_some_more flag. */
2897
2898 static void
2899 prepare_to_wait (struct execution_control_state *ecs)
2900 {
2901 if (debug_infrun)
2902 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2903 if (ecs->infwait_state == infwait_normal_state)
2904 {
2905 overlay_cache_invalid = 1;
2906
2907 /* We have to invalidate the registers BEFORE calling
2908 target_wait because they can be loaded from the target while
2909 in target_wait. This makes remote debugging a bit more
2910 efficient for those targets that provide critical registers
2911 as part of their normal status mechanism. */
2912
2913 registers_changed ();
2914 ecs->waiton_ptid = pid_to_ptid (-1);
2915 ecs->wp = &(ecs->ws);
2916 }
2917 /* This is the old end of the while loop. Let everybody know we
2918 want to wait for the inferior some more and get called again
2919 soon. */
2920 ecs->wait_some_more = 1;
2921 }
2922
2923 /* Print why the inferior has stopped. We always print something when
2924 the inferior exits, or receives a signal. The rest of the cases are
2925 dealt with later on in normal_stop() and print_it_typical(). Ideally
2926 there should be a call to this function from handle_inferior_event()
2927 each time stop_stepping() is called.*/
2928 static void
2929 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2930 {
2931 switch (stop_reason)
2932 {
2933 case STOP_UNKNOWN:
2934 /* We don't deal with these cases from handle_inferior_event()
2935 yet. */
2936 break;
2937 case END_STEPPING_RANGE:
2938 /* We are done with a step/next/si/ni command. */
2939 /* For now print nothing. */
2940 /* Print a message only if not in the middle of doing a "step n"
2941 operation for n > 1 */
2942 if (!step_multi || !stop_step)
2943 if (ui_out_is_mi_like_p (uiout))
2944 ui_out_field_string
2945 (uiout, "reason",
2946 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
2947 break;
2948 case BREAKPOINT_HIT:
2949 /* We found a breakpoint. */
2950 /* For now print nothing. */
2951 break;
2952 case SIGNAL_EXITED:
2953 /* The inferior was terminated by a signal. */
2954 annotate_signalled ();
2955 if (ui_out_is_mi_like_p (uiout))
2956 ui_out_field_string
2957 (uiout, "reason",
2958 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
2959 ui_out_text (uiout, "\nProgram terminated with signal ");
2960 annotate_signal_name ();
2961 ui_out_field_string (uiout, "signal-name",
2962 target_signal_to_name (stop_info));
2963 annotate_signal_name_end ();
2964 ui_out_text (uiout, ", ");
2965 annotate_signal_string ();
2966 ui_out_field_string (uiout, "signal-meaning",
2967 target_signal_to_string (stop_info));
2968 annotate_signal_string_end ();
2969 ui_out_text (uiout, ".\n");
2970 ui_out_text (uiout, "The program no longer exists.\n");
2971 break;
2972 case EXITED:
2973 /* The inferior program is finished. */
2974 annotate_exited (stop_info);
2975 if (stop_info)
2976 {
2977 if (ui_out_is_mi_like_p (uiout))
2978 ui_out_field_string (uiout, "reason",
2979 async_reason_lookup (EXEC_ASYNC_EXITED));
2980 ui_out_text (uiout, "\nProgram exited with code ");
2981 ui_out_field_fmt (uiout, "exit-code", "0%o",
2982 (unsigned int) stop_info);
2983 ui_out_text (uiout, ".\n");
2984 }
2985 else
2986 {
2987 if (ui_out_is_mi_like_p (uiout))
2988 ui_out_field_string
2989 (uiout, "reason",
2990 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
2991 ui_out_text (uiout, "\nProgram exited normally.\n");
2992 }
2993 /* Support the --return-child-result option. */
2994 return_child_result_value = stop_info;
2995 break;
2996 case SIGNAL_RECEIVED:
2997 /* Signal received. The signal table tells us to print about
2998 it. */
2999 annotate_signal ();
3000 ui_out_text (uiout, "\nProgram received signal ");
3001 annotate_signal_name ();
3002 if (ui_out_is_mi_like_p (uiout))
3003 ui_out_field_string
3004 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3005 ui_out_field_string (uiout, "signal-name",
3006 target_signal_to_name (stop_info));
3007 annotate_signal_name_end ();
3008 ui_out_text (uiout, ", ");
3009 annotate_signal_string ();
3010 ui_out_field_string (uiout, "signal-meaning",
3011 target_signal_to_string (stop_info));
3012 annotate_signal_string_end ();
3013 ui_out_text (uiout, ".\n");
3014 break;
3015 default:
3016 internal_error (__FILE__, __LINE__,
3017 _("print_stop_reason: unrecognized enum value"));
3018 break;
3019 }
3020 }
3021 \f
3022
3023 /* Here to return control to GDB when the inferior stops for real.
3024 Print appropriate messages, remove breakpoints, give terminal our modes.
3025
3026 STOP_PRINT_FRAME nonzero means print the executing frame
3027 (pc, function, args, file, line number and line text).
3028 BREAKPOINTS_FAILED nonzero means stop was due to error
3029 attempting to insert breakpoints. */
3030
3031 void
3032 normal_stop (void)
3033 {
3034 struct target_waitstatus last;
3035 ptid_t last_ptid;
3036
3037 get_last_target_status (&last_ptid, &last);
3038
3039 /* As with the notification of thread events, we want to delay
3040 notifying the user that we've switched thread context until
3041 the inferior actually stops.
3042
3043 There's no point in saying anything if the inferior has exited.
3044 Note that SIGNALLED here means "exited with a signal", not
3045 "received a signal". */
3046 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3047 && target_has_execution
3048 && last.kind != TARGET_WAITKIND_SIGNALLED
3049 && last.kind != TARGET_WAITKIND_EXITED)
3050 {
3051 target_terminal_ours_for_output ();
3052 printf_filtered (_("[Switching to %s]\n"),
3053 target_pid_or_tid_to_str (inferior_ptid));
3054 previous_inferior_ptid = inferior_ptid;
3055 }
3056
3057 /* NOTE drow/2004-01-17: Is this still necessary? */
3058 /* Make sure that the current_frame's pc is correct. This
3059 is a correction for setting up the frame info before doing
3060 DECR_PC_AFTER_BREAK */
3061 if (target_has_execution)
3062 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3063 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3064 frame code to check for this and sort out any resultant mess.
3065 DECR_PC_AFTER_BREAK needs to just go away. */
3066 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3067
3068 if (target_has_execution && breakpoints_inserted)
3069 {
3070 if (remove_breakpoints ())
3071 {
3072 target_terminal_ours_for_output ();
3073 printf_filtered (_("\
3074 Cannot remove breakpoints because program is no longer writable.\n\
3075 It might be running in another process.\n\
3076 Further execution is probably impossible.\n"));
3077 }
3078 }
3079 breakpoints_inserted = 0;
3080
3081 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3082 Delete any breakpoint that is to be deleted at the next stop. */
3083
3084 breakpoint_auto_delete (stop_bpstat);
3085
3086 /* If an auto-display called a function and that got a signal,
3087 delete that auto-display to avoid an infinite recursion. */
3088
3089 if (stopped_by_random_signal)
3090 disable_current_display ();
3091
3092 /* Don't print a message if in the middle of doing a "step n"
3093 operation for n > 1 */
3094 if (step_multi && stop_step)
3095 goto done;
3096
3097 target_terminal_ours ();
3098
3099 /* Set the current source location. This will also happen if we
3100 display the frame below, but the current SAL will be incorrect
3101 during a user hook-stop function. */
3102 if (target_has_stack && !stop_stack_dummy)
3103 set_current_sal_from_frame (get_current_frame (), 1);
3104
3105 /* Look up the hook_stop and run it (CLI internally handles problem
3106 of stop_command's pre-hook not existing). */
3107 if (stop_command)
3108 catch_errors (hook_stop_stub, stop_command,
3109 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3110
3111 if (!target_has_stack)
3112 {
3113
3114 goto done;
3115 }
3116
3117 /* Select innermost stack frame - i.e., current frame is frame 0,
3118 and current location is based on that.
3119 Don't do this on return from a stack dummy routine,
3120 or if the program has exited. */
3121
3122 if (!stop_stack_dummy)
3123 {
3124 select_frame (get_current_frame ());
3125
3126 /* Print current location without a level number, if
3127 we have changed functions or hit a breakpoint.
3128 Print source line if we have one.
3129 bpstat_print() contains the logic deciding in detail
3130 what to print, based on the event(s) that just occurred. */
3131
3132 if (stop_print_frame && deprecated_selected_frame)
3133 {
3134 int bpstat_ret;
3135 int source_flag;
3136 int do_frame_printing = 1;
3137
3138 bpstat_ret = bpstat_print (stop_bpstat);
3139 switch (bpstat_ret)
3140 {
3141 case PRINT_UNKNOWN:
3142 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3143 (or should) carry around the function and does (or
3144 should) use that when doing a frame comparison. */
3145 if (stop_step
3146 && frame_id_eq (step_frame_id,
3147 get_frame_id (get_current_frame ()))
3148 && step_start_function == find_pc_function (stop_pc))
3149 source_flag = SRC_LINE; /* finished step, just print source line */
3150 else
3151 source_flag = SRC_AND_LOC; /* print location and source line */
3152 break;
3153 case PRINT_SRC_AND_LOC:
3154 source_flag = SRC_AND_LOC; /* print location and source line */
3155 break;
3156 case PRINT_SRC_ONLY:
3157 source_flag = SRC_LINE;
3158 break;
3159 case PRINT_NOTHING:
3160 source_flag = SRC_LINE; /* something bogus */
3161 do_frame_printing = 0;
3162 break;
3163 default:
3164 internal_error (__FILE__, __LINE__, _("Unknown value."));
3165 }
3166 /* For mi, have the same behavior every time we stop:
3167 print everything but the source line. */
3168 if (ui_out_is_mi_like_p (uiout))
3169 source_flag = LOC_AND_ADDRESS;
3170
3171 if (ui_out_is_mi_like_p (uiout))
3172 ui_out_field_int (uiout, "thread-id",
3173 pid_to_thread_id (inferior_ptid));
3174 /* The behavior of this routine with respect to the source
3175 flag is:
3176 SRC_LINE: Print only source line
3177 LOCATION: Print only location
3178 SRC_AND_LOC: Print location and source line */
3179 if (do_frame_printing)
3180 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3181
3182 /* Display the auto-display expressions. */
3183 do_displays ();
3184 }
3185 }
3186
3187 /* Save the function value return registers, if we care.
3188 We might be about to restore their previous contents. */
3189 if (proceed_to_finish)
3190 /* NB: The copy goes through to the target picking up the value of
3191 all the registers. */
3192 regcache_cpy (stop_registers, current_regcache);
3193
3194 if (stop_stack_dummy)
3195 {
3196 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3197 ends with a setting of the current frame, so we can use that
3198 next. */
3199 frame_pop (get_current_frame ());
3200 /* Set stop_pc to what it was before we called the function.
3201 Can't rely on restore_inferior_status because that only gets
3202 called if we don't stop in the called function. */
3203 stop_pc = read_pc ();
3204 select_frame (get_current_frame ());
3205 }
3206
3207 done:
3208 annotate_stopped ();
3209 observer_notify_normal_stop (stop_bpstat);
3210 }
3211
3212 static int
3213 hook_stop_stub (void *cmd)
3214 {
3215 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3216 return (0);
3217 }
3218 \f
3219 int
3220 signal_stop_state (int signo)
3221 {
3222 return signal_stop[signo];
3223 }
3224
3225 int
3226 signal_print_state (int signo)
3227 {
3228 return signal_print[signo];
3229 }
3230
3231 int
3232 signal_pass_state (int signo)
3233 {
3234 return signal_program[signo];
3235 }
3236
3237 int
3238 signal_stop_update (int signo, int state)
3239 {
3240 int ret = signal_stop[signo];
3241 signal_stop[signo] = state;
3242 return ret;
3243 }
3244
3245 int
3246 signal_print_update (int signo, int state)
3247 {
3248 int ret = signal_print[signo];
3249 signal_print[signo] = state;
3250 return ret;
3251 }
3252
3253 int
3254 signal_pass_update (int signo, int state)
3255 {
3256 int ret = signal_program[signo];
3257 signal_program[signo] = state;
3258 return ret;
3259 }
3260
3261 static void
3262 sig_print_header (void)
3263 {
3264 printf_filtered (_("\
3265 Signal Stop\tPrint\tPass to program\tDescription\n"));
3266 }
3267
3268 static void
3269 sig_print_info (enum target_signal oursig)
3270 {
3271 char *name = target_signal_to_name (oursig);
3272 int name_padding = 13 - strlen (name);
3273
3274 if (name_padding <= 0)
3275 name_padding = 0;
3276
3277 printf_filtered ("%s", name);
3278 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3279 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3280 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3281 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3282 printf_filtered ("%s\n", target_signal_to_string (oursig));
3283 }
3284
3285 /* Specify how various signals in the inferior should be handled. */
3286
3287 static void
3288 handle_command (char *args, int from_tty)
3289 {
3290 char **argv;
3291 int digits, wordlen;
3292 int sigfirst, signum, siglast;
3293 enum target_signal oursig;
3294 int allsigs;
3295 int nsigs;
3296 unsigned char *sigs;
3297 struct cleanup *old_chain;
3298
3299 if (args == NULL)
3300 {
3301 error_no_arg (_("signal to handle"));
3302 }
3303
3304 /* Allocate and zero an array of flags for which signals to handle. */
3305
3306 nsigs = (int) TARGET_SIGNAL_LAST;
3307 sigs = (unsigned char *) alloca (nsigs);
3308 memset (sigs, 0, nsigs);
3309
3310 /* Break the command line up into args. */
3311
3312 argv = buildargv (args);
3313 if (argv == NULL)
3314 {
3315 nomem (0);
3316 }
3317 old_chain = make_cleanup_freeargv (argv);
3318
3319 /* Walk through the args, looking for signal oursigs, signal names, and
3320 actions. Signal numbers and signal names may be interspersed with
3321 actions, with the actions being performed for all signals cumulatively
3322 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3323
3324 while (*argv != NULL)
3325 {
3326 wordlen = strlen (*argv);
3327 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3328 {;
3329 }
3330 allsigs = 0;
3331 sigfirst = siglast = -1;
3332
3333 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3334 {
3335 /* Apply action to all signals except those used by the
3336 debugger. Silently skip those. */
3337 allsigs = 1;
3338 sigfirst = 0;
3339 siglast = nsigs - 1;
3340 }
3341 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3342 {
3343 SET_SIGS (nsigs, sigs, signal_stop);
3344 SET_SIGS (nsigs, sigs, signal_print);
3345 }
3346 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3347 {
3348 UNSET_SIGS (nsigs, sigs, signal_program);
3349 }
3350 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3351 {
3352 SET_SIGS (nsigs, sigs, signal_print);
3353 }
3354 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3355 {
3356 SET_SIGS (nsigs, sigs, signal_program);
3357 }
3358 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3359 {
3360 UNSET_SIGS (nsigs, sigs, signal_stop);
3361 }
3362 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3363 {
3364 SET_SIGS (nsigs, sigs, signal_program);
3365 }
3366 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3367 {
3368 UNSET_SIGS (nsigs, sigs, signal_print);
3369 UNSET_SIGS (nsigs, sigs, signal_stop);
3370 }
3371 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3372 {
3373 UNSET_SIGS (nsigs, sigs, signal_program);
3374 }
3375 else if (digits > 0)
3376 {
3377 /* It is numeric. The numeric signal refers to our own
3378 internal signal numbering from target.h, not to host/target
3379 signal number. This is a feature; users really should be
3380 using symbolic names anyway, and the common ones like
3381 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3382
3383 sigfirst = siglast = (int)
3384 target_signal_from_command (atoi (*argv));
3385 if ((*argv)[digits] == '-')
3386 {
3387 siglast = (int)
3388 target_signal_from_command (atoi ((*argv) + digits + 1));
3389 }
3390 if (sigfirst > siglast)
3391 {
3392 /* Bet he didn't figure we'd think of this case... */
3393 signum = sigfirst;
3394 sigfirst = siglast;
3395 siglast = signum;
3396 }
3397 }
3398 else
3399 {
3400 oursig = target_signal_from_name (*argv);
3401 if (oursig != TARGET_SIGNAL_UNKNOWN)
3402 {
3403 sigfirst = siglast = (int) oursig;
3404 }
3405 else
3406 {
3407 /* Not a number and not a recognized flag word => complain. */
3408 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3409 }
3410 }
3411
3412 /* If any signal numbers or symbol names were found, set flags for
3413 which signals to apply actions to. */
3414
3415 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3416 {
3417 switch ((enum target_signal) signum)
3418 {
3419 case TARGET_SIGNAL_TRAP:
3420 case TARGET_SIGNAL_INT:
3421 if (!allsigs && !sigs[signum])
3422 {
3423 if (query ("%s is used by the debugger.\n\
3424 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3425 {
3426 sigs[signum] = 1;
3427 }
3428 else
3429 {
3430 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3431 gdb_flush (gdb_stdout);
3432 }
3433 }
3434 break;
3435 case TARGET_SIGNAL_0:
3436 case TARGET_SIGNAL_DEFAULT:
3437 case TARGET_SIGNAL_UNKNOWN:
3438 /* Make sure that "all" doesn't print these. */
3439 break;
3440 default:
3441 sigs[signum] = 1;
3442 break;
3443 }
3444 }
3445
3446 argv++;
3447 }
3448
3449 target_notice_signals (inferior_ptid);
3450
3451 if (from_tty)
3452 {
3453 /* Show the results. */
3454 sig_print_header ();
3455 for (signum = 0; signum < nsigs; signum++)
3456 {
3457 if (sigs[signum])
3458 {
3459 sig_print_info (signum);
3460 }
3461 }
3462 }
3463
3464 do_cleanups (old_chain);
3465 }
3466
3467 static void
3468 xdb_handle_command (char *args, int from_tty)
3469 {
3470 char **argv;
3471 struct cleanup *old_chain;
3472
3473 /* Break the command line up into args. */
3474
3475 argv = buildargv (args);
3476 if (argv == NULL)
3477 {
3478 nomem (0);
3479 }
3480 old_chain = make_cleanup_freeargv (argv);
3481 if (argv[1] != (char *) NULL)
3482 {
3483 char *argBuf;
3484 int bufLen;
3485
3486 bufLen = strlen (argv[0]) + 20;
3487 argBuf = (char *) xmalloc (bufLen);
3488 if (argBuf)
3489 {
3490 int validFlag = 1;
3491 enum target_signal oursig;
3492
3493 oursig = target_signal_from_name (argv[0]);
3494 memset (argBuf, 0, bufLen);
3495 if (strcmp (argv[1], "Q") == 0)
3496 sprintf (argBuf, "%s %s", argv[0], "noprint");
3497 else
3498 {
3499 if (strcmp (argv[1], "s") == 0)
3500 {
3501 if (!signal_stop[oursig])
3502 sprintf (argBuf, "%s %s", argv[0], "stop");
3503 else
3504 sprintf (argBuf, "%s %s", argv[0], "nostop");
3505 }
3506 else if (strcmp (argv[1], "i") == 0)
3507 {
3508 if (!signal_program[oursig])
3509 sprintf (argBuf, "%s %s", argv[0], "pass");
3510 else
3511 sprintf (argBuf, "%s %s", argv[0], "nopass");
3512 }
3513 else if (strcmp (argv[1], "r") == 0)
3514 {
3515 if (!signal_print[oursig])
3516 sprintf (argBuf, "%s %s", argv[0], "print");
3517 else
3518 sprintf (argBuf, "%s %s", argv[0], "noprint");
3519 }
3520 else
3521 validFlag = 0;
3522 }
3523 if (validFlag)
3524 handle_command (argBuf, from_tty);
3525 else
3526 printf_filtered (_("Invalid signal handling flag.\n"));
3527 if (argBuf)
3528 xfree (argBuf);
3529 }
3530 }
3531 do_cleanups (old_chain);
3532 }
3533
3534 /* Print current contents of the tables set by the handle command.
3535 It is possible we should just be printing signals actually used
3536 by the current target (but for things to work right when switching
3537 targets, all signals should be in the signal tables). */
3538
3539 static void
3540 signals_info (char *signum_exp, int from_tty)
3541 {
3542 enum target_signal oursig;
3543 sig_print_header ();
3544
3545 if (signum_exp)
3546 {
3547 /* First see if this is a symbol name. */
3548 oursig = target_signal_from_name (signum_exp);
3549 if (oursig == TARGET_SIGNAL_UNKNOWN)
3550 {
3551 /* No, try numeric. */
3552 oursig =
3553 target_signal_from_command (parse_and_eval_long (signum_exp));
3554 }
3555 sig_print_info (oursig);
3556 return;
3557 }
3558
3559 printf_filtered ("\n");
3560 /* These ugly casts brought to you by the native VAX compiler. */
3561 for (oursig = TARGET_SIGNAL_FIRST;
3562 (int) oursig < (int) TARGET_SIGNAL_LAST;
3563 oursig = (enum target_signal) ((int) oursig + 1))
3564 {
3565 QUIT;
3566
3567 if (oursig != TARGET_SIGNAL_UNKNOWN
3568 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3569 sig_print_info (oursig);
3570 }
3571
3572 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3573 }
3574 \f
3575 struct inferior_status
3576 {
3577 enum target_signal stop_signal;
3578 CORE_ADDR stop_pc;
3579 bpstat stop_bpstat;
3580 int stop_step;
3581 int stop_stack_dummy;
3582 int stopped_by_random_signal;
3583 int trap_expected;
3584 CORE_ADDR step_range_start;
3585 CORE_ADDR step_range_end;
3586 struct frame_id step_frame_id;
3587 enum step_over_calls_kind step_over_calls;
3588 CORE_ADDR step_resume_break_address;
3589 int stop_after_trap;
3590 int stop_soon;
3591 struct regcache *stop_registers;
3592
3593 /* These are here because if call_function_by_hand has written some
3594 registers and then decides to call error(), we better not have changed
3595 any registers. */
3596 struct regcache *registers;
3597
3598 /* A frame unique identifier. */
3599 struct frame_id selected_frame_id;
3600
3601 int breakpoint_proceeded;
3602 int restore_stack_info;
3603 int proceed_to_finish;
3604 };
3605
3606 void
3607 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3608 LONGEST val)
3609 {
3610 int size = register_size (current_gdbarch, regno);
3611 void *buf = alloca (size);
3612 store_signed_integer (buf, size, val);
3613 regcache_raw_write (inf_status->registers, regno, buf);
3614 }
3615
3616 /* Save all of the information associated with the inferior<==>gdb
3617 connection. INF_STATUS is a pointer to a "struct inferior_status"
3618 (defined in inferior.h). */
3619
3620 struct inferior_status *
3621 save_inferior_status (int restore_stack_info)
3622 {
3623 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3624
3625 inf_status->stop_signal = stop_signal;
3626 inf_status->stop_pc = stop_pc;
3627 inf_status->stop_step = stop_step;
3628 inf_status->stop_stack_dummy = stop_stack_dummy;
3629 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3630 inf_status->trap_expected = trap_expected;
3631 inf_status->step_range_start = step_range_start;
3632 inf_status->step_range_end = step_range_end;
3633 inf_status->step_frame_id = step_frame_id;
3634 inf_status->step_over_calls = step_over_calls;
3635 inf_status->stop_after_trap = stop_after_trap;
3636 inf_status->stop_soon = stop_soon;
3637 /* Save original bpstat chain here; replace it with copy of chain.
3638 If caller's caller is walking the chain, they'll be happier if we
3639 hand them back the original chain when restore_inferior_status is
3640 called. */
3641 inf_status->stop_bpstat = stop_bpstat;
3642 stop_bpstat = bpstat_copy (stop_bpstat);
3643 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3644 inf_status->restore_stack_info = restore_stack_info;
3645 inf_status->proceed_to_finish = proceed_to_finish;
3646
3647 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3648
3649 inf_status->registers = regcache_dup (current_regcache);
3650
3651 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
3652 return inf_status;
3653 }
3654
3655 static int
3656 restore_selected_frame (void *args)
3657 {
3658 struct frame_id *fid = (struct frame_id *) args;
3659 struct frame_info *frame;
3660
3661 frame = frame_find_by_id (*fid);
3662
3663 /* If inf_status->selected_frame_id is NULL, there was no previously
3664 selected frame. */
3665 if (frame == NULL)
3666 {
3667 warning (_("Unable to restore previously selected frame."));
3668 return 0;
3669 }
3670
3671 select_frame (frame);
3672
3673 return (1);
3674 }
3675
3676 void
3677 restore_inferior_status (struct inferior_status *inf_status)
3678 {
3679 stop_signal = inf_status->stop_signal;
3680 stop_pc = inf_status->stop_pc;
3681 stop_step = inf_status->stop_step;
3682 stop_stack_dummy = inf_status->stop_stack_dummy;
3683 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3684 trap_expected = inf_status->trap_expected;
3685 step_range_start = inf_status->step_range_start;
3686 step_range_end = inf_status->step_range_end;
3687 step_frame_id = inf_status->step_frame_id;
3688 step_over_calls = inf_status->step_over_calls;
3689 stop_after_trap = inf_status->stop_after_trap;
3690 stop_soon = inf_status->stop_soon;
3691 bpstat_clear (&stop_bpstat);
3692 stop_bpstat = inf_status->stop_bpstat;
3693 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3694 proceed_to_finish = inf_status->proceed_to_finish;
3695
3696 /* FIXME: Is the restore of stop_registers always needed. */
3697 regcache_xfree (stop_registers);
3698 stop_registers = inf_status->stop_registers;
3699
3700 /* The inferior can be gone if the user types "print exit(0)"
3701 (and perhaps other times). */
3702 if (target_has_execution)
3703 /* NB: The register write goes through to the target. */
3704 regcache_cpy (current_regcache, inf_status->registers);
3705 regcache_xfree (inf_status->registers);
3706
3707 /* FIXME: If we are being called after stopping in a function which
3708 is called from gdb, we should not be trying to restore the
3709 selected frame; it just prints a spurious error message (The
3710 message is useful, however, in detecting bugs in gdb (like if gdb
3711 clobbers the stack)). In fact, should we be restoring the
3712 inferior status at all in that case? . */
3713
3714 if (target_has_stack && inf_status->restore_stack_info)
3715 {
3716 /* The point of catch_errors is that if the stack is clobbered,
3717 walking the stack might encounter a garbage pointer and
3718 error() trying to dereference it. */
3719 if (catch_errors
3720 (restore_selected_frame, &inf_status->selected_frame_id,
3721 "Unable to restore previously selected frame:\n",
3722 RETURN_MASK_ERROR) == 0)
3723 /* Error in restoring the selected frame. Select the innermost
3724 frame. */
3725 select_frame (get_current_frame ());
3726
3727 }
3728
3729 xfree (inf_status);
3730 }
3731
3732 static void
3733 do_restore_inferior_status_cleanup (void *sts)
3734 {
3735 restore_inferior_status (sts);
3736 }
3737
3738 struct cleanup *
3739 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3740 {
3741 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3742 }
3743
3744 void
3745 discard_inferior_status (struct inferior_status *inf_status)
3746 {
3747 /* See save_inferior_status for info on stop_bpstat. */
3748 bpstat_clear (&inf_status->stop_bpstat);
3749 regcache_xfree (inf_status->registers);
3750 regcache_xfree (inf_status->stop_registers);
3751 xfree (inf_status);
3752 }
3753
3754 int
3755 inferior_has_forked (int pid, int *child_pid)
3756 {
3757 struct target_waitstatus last;
3758 ptid_t last_ptid;
3759
3760 get_last_target_status (&last_ptid, &last);
3761
3762 if (last.kind != TARGET_WAITKIND_FORKED)
3763 return 0;
3764
3765 if (ptid_get_pid (last_ptid) != pid)
3766 return 0;
3767
3768 *child_pid = last.value.related_pid;
3769 return 1;
3770 }
3771
3772 int
3773 inferior_has_vforked (int pid, int *child_pid)
3774 {
3775 struct target_waitstatus last;
3776 ptid_t last_ptid;
3777
3778 get_last_target_status (&last_ptid, &last);
3779
3780 if (last.kind != TARGET_WAITKIND_VFORKED)
3781 return 0;
3782
3783 if (ptid_get_pid (last_ptid) != pid)
3784 return 0;
3785
3786 *child_pid = last.value.related_pid;
3787 return 1;
3788 }
3789
3790 int
3791 inferior_has_execd (int pid, char **execd_pathname)
3792 {
3793 struct target_waitstatus last;
3794 ptid_t last_ptid;
3795
3796 get_last_target_status (&last_ptid, &last);
3797
3798 if (last.kind != TARGET_WAITKIND_EXECD)
3799 return 0;
3800
3801 if (ptid_get_pid (last_ptid) != pid)
3802 return 0;
3803
3804 *execd_pathname = xstrdup (last.value.execd_pathname);
3805 return 1;
3806 }
3807
3808 /* Oft used ptids */
3809 ptid_t null_ptid;
3810 ptid_t minus_one_ptid;
3811
3812 /* Create a ptid given the necessary PID, LWP, and TID components. */
3813
3814 ptid_t
3815 ptid_build (int pid, long lwp, long tid)
3816 {
3817 ptid_t ptid;
3818
3819 ptid.pid = pid;
3820 ptid.lwp = lwp;
3821 ptid.tid = tid;
3822 return ptid;
3823 }
3824
3825 /* Create a ptid from just a pid. */
3826
3827 ptid_t
3828 pid_to_ptid (int pid)
3829 {
3830 return ptid_build (pid, 0, 0);
3831 }
3832
3833 /* Fetch the pid (process id) component from a ptid. */
3834
3835 int
3836 ptid_get_pid (ptid_t ptid)
3837 {
3838 return ptid.pid;
3839 }
3840
3841 /* Fetch the lwp (lightweight process) component from a ptid. */
3842
3843 long
3844 ptid_get_lwp (ptid_t ptid)
3845 {
3846 return ptid.lwp;
3847 }
3848
3849 /* Fetch the tid (thread id) component from a ptid. */
3850
3851 long
3852 ptid_get_tid (ptid_t ptid)
3853 {
3854 return ptid.tid;
3855 }
3856
3857 /* ptid_equal() is used to test equality of two ptids. */
3858
3859 int
3860 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3861 {
3862 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3863 && ptid1.tid == ptid2.tid);
3864 }
3865
3866 /* restore_inferior_ptid() will be used by the cleanup machinery
3867 to restore the inferior_ptid value saved in a call to
3868 save_inferior_ptid(). */
3869
3870 static void
3871 restore_inferior_ptid (void *arg)
3872 {
3873 ptid_t *saved_ptid_ptr = arg;
3874 inferior_ptid = *saved_ptid_ptr;
3875 xfree (arg);
3876 }
3877
3878 /* Save the value of inferior_ptid so that it may be restored by a
3879 later call to do_cleanups(). Returns the struct cleanup pointer
3880 needed for later doing the cleanup. */
3881
3882 struct cleanup *
3883 save_inferior_ptid (void)
3884 {
3885 ptid_t *saved_ptid_ptr;
3886
3887 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3888 *saved_ptid_ptr = inferior_ptid;
3889 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3890 }
3891 \f
3892
3893 static void
3894 build_infrun (void)
3895 {
3896 stop_registers = regcache_xmalloc (current_gdbarch);
3897 }
3898
3899 void
3900 _initialize_infrun (void)
3901 {
3902 int i;
3903 int numsigs;
3904 struct cmd_list_element *c;
3905
3906 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3907 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3908
3909 add_info ("signals", signals_info, _("\
3910 What debugger does when program gets various signals.\n\
3911 Specify a signal as argument to print info on that signal only."));
3912 add_info_alias ("handle", "signals", 0);
3913
3914 add_com ("handle", class_run, handle_command, _("\
3915 Specify how to handle a signal.\n\
3916 Args are signals and actions to apply to those signals.\n\
3917 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3918 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3919 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3920 The special arg \"all\" is recognized to mean all signals except those\n\
3921 used by the debugger, typically SIGTRAP and SIGINT.\n\
3922 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3923 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3924 Stop means reenter debugger if this signal happens (implies print).\n\
3925 Print means print a message if this signal happens.\n\
3926 Pass means let program see this signal; otherwise program doesn't know.\n\
3927 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3928 Pass and Stop may be combined."));
3929 if (xdb_commands)
3930 {
3931 add_com ("lz", class_info, signals_info, _("\
3932 What debugger does when program gets various signals.\n\
3933 Specify a signal as argument to print info on that signal only."));
3934 add_com ("z", class_run, xdb_handle_command, _("\
3935 Specify how to handle a signal.\n\
3936 Args are signals and actions to apply to those signals.\n\
3937 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3938 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3939 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3940 The special arg \"all\" is recognized to mean all signals except those\n\
3941 used by the debugger, typically SIGTRAP and SIGINT.\n\
3942 Recognized actions include \"s\" (toggles between stop and nostop), \n\
3943 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3944 nopass), \"Q\" (noprint)\n\
3945 Stop means reenter debugger if this signal happens (implies print).\n\
3946 Print means print a message if this signal happens.\n\
3947 Pass means let program see this signal; otherwise program doesn't know.\n\
3948 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3949 Pass and Stop may be combined."));
3950 }
3951
3952 if (!dbx_commands)
3953 stop_command = add_cmd ("stop", class_obscure,
3954 not_just_help_class_command, _("\
3955 There is no `stop' command, but you can set a hook on `stop'.\n\
3956 This allows you to set a list of commands to be run each time execution\n\
3957 of the program stops."), &cmdlist);
3958
3959 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
3960 Set inferior debugging."), _("\
3961 Show inferior debugging."), _("\
3962 When non-zero, inferior specific debugging is enabled."),
3963 NULL,
3964 show_debug_infrun,
3965 &setdebuglist, &showdebuglist);
3966
3967 numsigs = (int) TARGET_SIGNAL_LAST;
3968 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3969 signal_print = (unsigned char *)
3970 xmalloc (sizeof (signal_print[0]) * numsigs);
3971 signal_program = (unsigned char *)
3972 xmalloc (sizeof (signal_program[0]) * numsigs);
3973 for (i = 0; i < numsigs; i++)
3974 {
3975 signal_stop[i] = 1;
3976 signal_print[i] = 1;
3977 signal_program[i] = 1;
3978 }
3979
3980 /* Signals caused by debugger's own actions
3981 should not be given to the program afterwards. */
3982 signal_program[TARGET_SIGNAL_TRAP] = 0;
3983 signal_program[TARGET_SIGNAL_INT] = 0;
3984
3985 /* Signals that are not errors should not normally enter the debugger. */
3986 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3987 signal_print[TARGET_SIGNAL_ALRM] = 0;
3988 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3989 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3990 signal_stop[TARGET_SIGNAL_PROF] = 0;
3991 signal_print[TARGET_SIGNAL_PROF] = 0;
3992 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3993 signal_print[TARGET_SIGNAL_CHLD] = 0;
3994 signal_stop[TARGET_SIGNAL_IO] = 0;
3995 signal_print[TARGET_SIGNAL_IO] = 0;
3996 signal_stop[TARGET_SIGNAL_POLL] = 0;
3997 signal_print[TARGET_SIGNAL_POLL] = 0;
3998 signal_stop[TARGET_SIGNAL_URG] = 0;
3999 signal_print[TARGET_SIGNAL_URG] = 0;
4000 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4001 signal_print[TARGET_SIGNAL_WINCH] = 0;
4002
4003 /* These signals are used internally by user-level thread
4004 implementations. (See signal(5) on Solaris.) Like the above
4005 signals, a healthy program receives and handles them as part of
4006 its normal operation. */
4007 signal_stop[TARGET_SIGNAL_LWP] = 0;
4008 signal_print[TARGET_SIGNAL_LWP] = 0;
4009 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4010 signal_print[TARGET_SIGNAL_WAITING] = 0;
4011 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4012 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4013
4014 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4015 &stop_on_solib_events, _("\
4016 Set stopping for shared library events."), _("\
4017 Show stopping for shared library events."), _("\
4018 If nonzero, gdb will give control to the user when the dynamic linker\n\
4019 notifies gdb of shared library events. The most common event of interest\n\
4020 to the user would be loading/unloading of a new library."),
4021 NULL,
4022 show_stop_on_solib_events,
4023 &setlist, &showlist);
4024
4025 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4026 follow_fork_mode_kind_names,
4027 &follow_fork_mode_string, _("\
4028 Set debugger response to a program call of fork or vfork."), _("\
4029 Show debugger response to a program call of fork or vfork."), _("\
4030 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4031 parent - the original process is debugged after a fork\n\
4032 child - the new process is debugged after a fork\n\
4033 The unfollowed process will continue to run.\n\
4034 By default, the debugger will follow the parent process."),
4035 NULL,
4036 show_follow_fork_mode_string,
4037 &setlist, &showlist);
4038
4039 add_setshow_enum_cmd ("scheduler-locking", class_run,
4040 scheduler_enums, &scheduler_mode, _("\
4041 Set mode for locking scheduler during execution."), _("\
4042 Show mode for locking scheduler during execution."), _("\
4043 off == no locking (threads may preempt at any time)\n\
4044 on == full locking (no thread except the current thread may run)\n\
4045 step == scheduler locked during every single-step operation.\n\
4046 In this mode, no other thread may run during a step command.\n\
4047 Other threads may run while stepping over a function call ('next')."),
4048 set_schedlock_func, /* traps on target vector */
4049 show_scheduler_mode,
4050 &setlist, &showlist);
4051
4052 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4053 Set mode of the step operation."), _("\
4054 Show mode of the step operation."), _("\
4055 When set, doing a step over a function without debug line information\n\
4056 will stop at the first instruction of that function. Otherwise, the\n\
4057 function is skipped and the step command stops at a different source line."),
4058 NULL,
4059 show_step_stop_if_no_debug,
4060 &setlist, &showlist);
4061
4062 /* ptid initializations */
4063 null_ptid = ptid_build (0, 0, 0);
4064 minus_one_ptid = ptid_build (-1, 0, 0);
4065 inferior_ptid = null_ptid;
4066 target_last_wait_ptid = minus_one_ptid;
4067 }