]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
This commit was generated by cvs2svn to track changes on a CVS vendor
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "exceptions.h"
32 #include "breakpoint.h"
33 #include "gdb_wait.h"
34 #include "gdbcore.h"
35 #include "gdbcmd.h"
36 #include "cli/cli-script.h"
37 #include "target.h"
38 #include "gdbthread.h"
39 #include "annotate.h"
40 #include "symfile.h"
41 #include "top.h"
42 #include <signal.h>
43 #include "inf-loop.h"
44 #include "regcache.h"
45 #include "value.h"
46 #include "observer.h"
47 #include "language.h"
48 #include "solib.h"
49 #include "main.h"
50
51 #include "gdb_assert.h"
52 #include "mi/mi-common.h"
53
54 /* Prototypes for local functions */
55
56 static void signals_info (char *, int);
57
58 static void handle_command (char *, int);
59
60 static void sig_print_info (enum target_signal);
61
62 static void sig_print_header (void);
63
64 static void resume_cleanups (void *);
65
66 static int hook_stop_stub (void *);
67
68 static int restore_selected_frame (void *);
69
70 static void build_infrun (void);
71
72 static int follow_fork (void);
73
74 static void set_schedlock_func (char *args, int from_tty,
75 struct cmd_list_element *c);
76
77 struct execution_control_state;
78
79 static int currently_stepping (struct execution_control_state *ecs);
80
81 static void xdb_handle_command (char *args, int from_tty);
82
83 static int prepare_to_proceed (void);
84
85 void _initialize_infrun (void);
86
87 int inferior_ignoring_startup_exec_events = 0;
88 int inferior_ignoring_leading_exec_events = 0;
89
90 /* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93 int step_stop_if_no_debug = 0;
94 static void
95 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97 {
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99 }
100
101 /* In asynchronous mode, but simulating synchronous execution. */
102
103 int sync_execution = 0;
104
105 /* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
107 running in. */
108
109 static ptid_t previous_inferior_ptid;
110
111 /* This is true for configurations that may follow through execl() and
112 similar functions. At present this is only true for HP-UX native. */
113
114 #ifndef MAY_FOLLOW_EXEC
115 #define MAY_FOLLOW_EXEC (0)
116 #endif
117
118 static int may_follow_exec = MAY_FOLLOW_EXEC;
119
120 static int debug_infrun = 0;
121 static void
122 show_debug_infrun (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c, const char *value)
124 {
125 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
126 }
127
128 /* If the program uses ELF-style shared libraries, then calls to
129 functions in shared libraries go through stubs, which live in a
130 table called the PLT (Procedure Linkage Table). The first time the
131 function is called, the stub sends control to the dynamic linker,
132 which looks up the function's real address, patches the stub so
133 that future calls will go directly to the function, and then passes
134 control to the function.
135
136 If we are stepping at the source level, we don't want to see any of
137 this --- we just want to skip over the stub and the dynamic linker.
138 The simple approach is to single-step until control leaves the
139 dynamic linker.
140
141 However, on some systems (e.g., Red Hat's 5.2 distribution) the
142 dynamic linker calls functions in the shared C library, so you
143 can't tell from the PC alone whether the dynamic linker is still
144 running. In this case, we use a step-resume breakpoint to get us
145 past the dynamic linker, as if we were using "next" to step over a
146 function call.
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
149 linker code or not. Normally, this means we single-step. However,
150 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
151 address where we can place a step-resume breakpoint to get past the
152 linker's symbol resolution function.
153
154 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
155 pretty portable way, by comparing the PC against the address ranges
156 of the dynamic linker's sections.
157
158 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
159 it depends on internal details of the dynamic linker. It's usually
160 not too hard to figure out where to put a breakpoint, but it
161 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
162 sanity checking. If it can't figure things out, returning zero and
163 getting the (possibly confusing) stepping behavior is better than
164 signalling an error, which will obscure the change in the
165 inferior's state. */
166
167 /* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
169 dld itself).
170
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
174
175 #ifndef SOLIB_IN_DYNAMIC_LINKER
176 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
177 #endif
178
179 /* We can't step off a permanent breakpoint in the ordinary way, because we
180 can't remove it. Instead, we have to advance the PC to the next
181 instruction. This macro should expand to a pointer to a function that
182 does that, or zero if we have no such function. If we don't have a
183 definition for it, we have to report an error. */
184 #ifndef SKIP_PERMANENT_BREAKPOINT
185 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
186 static void
187 default_skip_permanent_breakpoint (void)
188 {
189 error (_("\
190 The program is stopped at a permanent breakpoint, but GDB does not know\n\
191 how to step past a permanent breakpoint on this architecture. Try using\n\
192 a command like `return' or `jump' to continue execution."));
193 }
194 #endif
195
196
197 /* Convert the #defines into values. This is temporary until wfi control
198 flow is completely sorted out. */
199
200 #ifndef HAVE_STEPPABLE_WATCHPOINT
201 #define HAVE_STEPPABLE_WATCHPOINT 0
202 #else
203 #undef HAVE_STEPPABLE_WATCHPOINT
204 #define HAVE_STEPPABLE_WATCHPOINT 1
205 #endif
206
207 #ifndef CANNOT_STEP_HW_WATCHPOINTS
208 #define CANNOT_STEP_HW_WATCHPOINTS 0
209 #else
210 #undef CANNOT_STEP_HW_WATCHPOINTS
211 #define CANNOT_STEP_HW_WATCHPOINTS 1
212 #endif
213
214 /* Tables of how to react to signals; the user sets them. */
215
216 static unsigned char *signal_stop;
217 static unsigned char *signal_print;
218 static unsigned char *signal_program;
219
220 #define SET_SIGS(nsigs,sigs,flags) \
221 do { \
222 int signum = (nsigs); \
223 while (signum-- > 0) \
224 if ((sigs)[signum]) \
225 (flags)[signum] = 1; \
226 } while (0)
227
228 #define UNSET_SIGS(nsigs,sigs,flags) \
229 do { \
230 int signum = (nsigs); \
231 while (signum-- > 0) \
232 if ((sigs)[signum]) \
233 (flags)[signum] = 0; \
234 } while (0)
235
236 /* Value to pass to target_resume() to cause all threads to resume */
237
238 #define RESUME_ALL (pid_to_ptid (-1))
239
240 /* Command list pointer for the "stop" placeholder. */
241
242 static struct cmd_list_element *stop_command;
243
244 /* Nonzero if breakpoints are now inserted in the inferior. */
245
246 static int breakpoints_inserted;
247
248 /* Function inferior was in as of last step command. */
249
250 static struct symbol *step_start_function;
251
252 /* Nonzero if we are expecting a trace trap and should proceed from it. */
253
254 static int trap_expected;
255
256 /* Nonzero if we want to give control to the user when we're notified
257 of shared library events by the dynamic linker. */
258 static int stop_on_solib_events;
259 static void
260 show_stop_on_solib_events (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
264 value);
265 }
266
267 /* Nonzero means expecting a trace trap
268 and should stop the inferior and return silently when it happens. */
269
270 int stop_after_trap;
271
272 /* Nonzero means expecting a trap and caller will handle it themselves.
273 It is used after attach, due to attaching to a process;
274 when running in the shell before the child program has been exec'd;
275 and when running some kinds of remote stuff (FIXME?). */
276
277 enum stop_kind stop_soon;
278
279 /* Nonzero if proceed is being used for a "finish" command or a similar
280 situation when stop_registers should be saved. */
281
282 int proceed_to_finish;
283
284 /* Save register contents here when about to pop a stack dummy frame,
285 if-and-only-if proceed_to_finish is set.
286 Thus this contains the return value from the called function (assuming
287 values are returned in a register). */
288
289 struct regcache *stop_registers;
290
291 /* Nonzero if program stopped due to error trying to insert breakpoints. */
292
293 static int breakpoints_failed;
294
295 /* Nonzero after stop if current stack frame should be printed. */
296
297 static int stop_print_frame;
298
299 static struct breakpoint *step_resume_breakpoint = NULL;
300
301 /* This is a cached copy of the pid/waitstatus of the last event
302 returned by target_wait()/deprecated_target_wait_hook(). This
303 information is returned by get_last_target_status(). */
304 static ptid_t target_last_wait_ptid;
305 static struct target_waitstatus target_last_waitstatus;
306
307 /* This is used to remember when a fork, vfork or exec event
308 was caught by a catchpoint, and thus the event is to be
309 followed at the next resume of the inferior, and not
310 immediately. */
311 static struct
312 {
313 enum target_waitkind kind;
314 struct
315 {
316 int parent_pid;
317 int child_pid;
318 }
319 fork_event;
320 char *execd_pathname;
321 }
322 pending_follow;
323
324 static const char follow_fork_mode_child[] = "child";
325 static const char follow_fork_mode_parent[] = "parent";
326
327 static const char *follow_fork_mode_kind_names[] = {
328 follow_fork_mode_child,
329 follow_fork_mode_parent,
330 NULL
331 };
332
333 static const char *follow_fork_mode_string = follow_fork_mode_parent;
334 static void
335 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
336 struct cmd_list_element *c, const char *value)
337 {
338 fprintf_filtered (file, _("\
339 Debugger response to a program call of fork or vfork is \"%s\".\n"),
340 value);
341 }
342 \f
343
344 static int
345 follow_fork (void)
346 {
347 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
348
349 return target_follow_fork (follow_child);
350 }
351
352 void
353 follow_inferior_reset_breakpoints (void)
354 {
355 /* Was there a step_resume breakpoint? (There was if the user
356 did a "next" at the fork() call.) If so, explicitly reset its
357 thread number.
358
359 step_resumes are a form of bp that are made to be per-thread.
360 Since we created the step_resume bp when the parent process
361 was being debugged, and now are switching to the child process,
362 from the breakpoint package's viewpoint, that's a switch of
363 "threads". We must update the bp's notion of which thread
364 it is for, or it'll be ignored when it triggers. */
365
366 if (step_resume_breakpoint)
367 breakpoint_re_set_thread (step_resume_breakpoint);
368
369 /* Reinsert all breakpoints in the child. The user may have set
370 breakpoints after catching the fork, in which case those
371 were never set in the child, but only in the parent. This makes
372 sure the inserted breakpoints match the breakpoint list. */
373
374 breakpoint_re_set ();
375 insert_breakpoints ();
376 }
377
378 /* EXECD_PATHNAME is assumed to be non-NULL. */
379
380 static void
381 follow_exec (int pid, char *execd_pathname)
382 {
383 int saved_pid = pid;
384 struct target_ops *tgt;
385
386 if (!may_follow_exec)
387 return;
388
389 /* This is an exec event that we actually wish to pay attention to.
390 Refresh our symbol table to the newly exec'd program, remove any
391 momentary bp's, etc.
392
393 If there are breakpoints, they aren't really inserted now,
394 since the exec() transformed our inferior into a fresh set
395 of instructions.
396
397 We want to preserve symbolic breakpoints on the list, since
398 we have hopes that they can be reset after the new a.out's
399 symbol table is read.
400
401 However, any "raw" breakpoints must be removed from the list
402 (e.g., the solib bp's), since their address is probably invalid
403 now.
404
405 And, we DON'T want to call delete_breakpoints() here, since
406 that may write the bp's "shadow contents" (the instruction
407 value that was overwritten witha TRAP instruction). Since
408 we now have a new a.out, those shadow contents aren't valid. */
409 update_breakpoints_after_exec ();
410
411 /* If there was one, it's gone now. We cannot truly step-to-next
412 statement through an exec(). */
413 step_resume_breakpoint = NULL;
414 step_range_start = 0;
415 step_range_end = 0;
416
417 /* What is this a.out's name? */
418 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
419
420 /* We've followed the inferior through an exec. Therefore, the
421 inferior has essentially been killed & reborn. */
422
423 /* First collect the run target in effect. */
424 tgt = find_run_target ();
425 /* If we can't find one, things are in a very strange state... */
426 if (tgt == NULL)
427 error (_("Could find run target to save before following exec"));
428
429 gdb_flush (gdb_stdout);
430 target_mourn_inferior ();
431 inferior_ptid = pid_to_ptid (saved_pid);
432 /* Because mourn_inferior resets inferior_ptid. */
433 push_target (tgt);
434
435 /* That a.out is now the one to use. */
436 exec_file_attach (execd_pathname, 0);
437
438 /* And also is where symbols can be found. */
439 symbol_file_add_main (execd_pathname, 0);
440
441 /* Reset the shared library package. This ensures that we get
442 a shlib event when the child reaches "_start", at which point
443 the dld will have had a chance to initialize the child. */
444 #if defined(SOLIB_RESTART)
445 SOLIB_RESTART ();
446 #endif
447 #ifdef SOLIB_CREATE_INFERIOR_HOOK
448 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
449 #else
450 solib_create_inferior_hook ();
451 #endif
452
453 /* Reinsert all breakpoints. (Those which were symbolic have
454 been reset to the proper address in the new a.out, thanks
455 to symbol_file_command...) */
456 insert_breakpoints ();
457
458 /* The next resume of this inferior should bring it to the shlib
459 startup breakpoints. (If the user had also set bp's on
460 "main" from the old (parent) process, then they'll auto-
461 matically get reset there in the new process.) */
462 }
463
464 /* Non-zero if we just simulating a single-step. This is needed
465 because we cannot remove the breakpoints in the inferior process
466 until after the `wait' in `wait_for_inferior'. */
467 static int singlestep_breakpoints_inserted_p = 0;
468
469 /* The thread we inserted single-step breakpoints for. */
470 static ptid_t singlestep_ptid;
471
472 /* If another thread hit the singlestep breakpoint, we save the original
473 thread here so that we can resume single-stepping it later. */
474 static ptid_t saved_singlestep_ptid;
475 static int stepping_past_singlestep_breakpoint;
476 \f
477
478 /* Things to clean up if we QUIT out of resume (). */
479 static void
480 resume_cleanups (void *ignore)
481 {
482 normal_stop ();
483 }
484
485 static const char schedlock_off[] = "off";
486 static const char schedlock_on[] = "on";
487 static const char schedlock_step[] = "step";
488 static const char *scheduler_enums[] = {
489 schedlock_off,
490 schedlock_on,
491 schedlock_step,
492 NULL
493 };
494 static const char *scheduler_mode = schedlock_off;
495 static void
496 show_scheduler_mode (struct ui_file *file, int from_tty,
497 struct cmd_list_element *c, const char *value)
498 {
499 fprintf_filtered (file, _("\
500 Mode for locking scheduler during execution is \"%s\".\n"),
501 value);
502 }
503
504 static void
505 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
506 {
507 if (!target_can_lock_scheduler)
508 {
509 scheduler_mode = schedlock_off;
510 error (_("Target '%s' cannot support this command."), target_shortname);
511 }
512 }
513
514
515 /* Resume the inferior, but allow a QUIT. This is useful if the user
516 wants to interrupt some lengthy single-stepping operation
517 (for child processes, the SIGINT goes to the inferior, and so
518 we get a SIGINT random_signal, but for remote debugging and perhaps
519 other targets, that's not true).
520
521 STEP nonzero if we should step (zero to continue instead).
522 SIG is the signal to give the inferior (zero for none). */
523 void
524 resume (int step, enum target_signal sig)
525 {
526 int should_resume = 1;
527 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
528 QUIT;
529
530 if (debug_infrun)
531 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
532 step, sig);
533
534 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
535
536
537 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
538 over an instruction that causes a page fault without triggering
539 a hardware watchpoint. The kernel properly notices that it shouldn't
540 stop, because the hardware watchpoint is not triggered, but it forgets
541 the step request and continues the program normally.
542 Work around the problem by removing hardware watchpoints if a step is
543 requested, GDB will check for a hardware watchpoint trigger after the
544 step anyway. */
545 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
546 remove_hw_watchpoints ();
547
548
549 /* Normally, by the time we reach `resume', the breakpoints are either
550 removed or inserted, as appropriate. The exception is if we're sitting
551 at a permanent breakpoint; we need to step over it, but permanent
552 breakpoints can't be removed. So we have to test for it here. */
553 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
554 SKIP_PERMANENT_BREAKPOINT ();
555
556 if (SOFTWARE_SINGLE_STEP_P () && step)
557 {
558 /* Do it the hard way, w/temp breakpoints */
559 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
560 /* ...and don't ask hardware to do it. */
561 step = 0;
562 /* and do not pull these breakpoints until after a `wait' in
563 `wait_for_inferior' */
564 singlestep_breakpoints_inserted_p = 1;
565 singlestep_ptid = inferior_ptid;
566 }
567
568 /* If there were any forks/vforks/execs that were caught and are
569 now to be followed, then do so. */
570 switch (pending_follow.kind)
571 {
572 case TARGET_WAITKIND_FORKED:
573 case TARGET_WAITKIND_VFORKED:
574 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
575 if (follow_fork ())
576 should_resume = 0;
577 break;
578
579 case TARGET_WAITKIND_EXECD:
580 /* follow_exec is called as soon as the exec event is seen. */
581 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
582 break;
583
584 default:
585 break;
586 }
587
588 /* Install inferior's terminal modes. */
589 target_terminal_inferior ();
590
591 if (should_resume)
592 {
593 ptid_t resume_ptid;
594
595 resume_ptid = RESUME_ALL; /* Default */
596
597 if ((step || singlestep_breakpoints_inserted_p)
598 && (stepping_past_singlestep_breakpoint
599 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
600 {
601 /* Stepping past a breakpoint without inserting breakpoints.
602 Make sure only the current thread gets to step, so that
603 other threads don't sneak past breakpoints while they are
604 not inserted. */
605
606 resume_ptid = inferior_ptid;
607 }
608
609 if ((scheduler_mode == schedlock_on)
610 || (scheduler_mode == schedlock_step
611 && (step || singlestep_breakpoints_inserted_p)))
612 {
613 /* User-settable 'scheduler' mode requires solo thread resume. */
614 resume_ptid = inferior_ptid;
615 }
616
617 if (CANNOT_STEP_BREAKPOINT)
618 {
619 /* Most targets can step a breakpoint instruction, thus
620 executing it normally. But if this one cannot, just
621 continue and we will hit it anyway. */
622 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
623 step = 0;
624 }
625 target_resume (resume_ptid, step, sig);
626 }
627
628 discard_cleanups (old_cleanups);
629 }
630 \f
631
632 /* Clear out all variables saying what to do when inferior is continued.
633 First do this, then set the ones you want, then call `proceed'. */
634
635 void
636 clear_proceed_status (void)
637 {
638 trap_expected = 0;
639 step_range_start = 0;
640 step_range_end = 0;
641 step_frame_id = null_frame_id;
642 step_over_calls = STEP_OVER_UNDEBUGGABLE;
643 stop_after_trap = 0;
644 stop_soon = NO_STOP_QUIETLY;
645 proceed_to_finish = 0;
646 breakpoint_proceeded = 1; /* We're about to proceed... */
647
648 /* Discard any remaining commands or status from previous stop. */
649 bpstat_clear (&stop_bpstat);
650 }
651
652 /* This should be suitable for any targets that support threads. */
653
654 static int
655 prepare_to_proceed (void)
656 {
657 ptid_t wait_ptid;
658 struct target_waitstatus wait_status;
659
660 /* Get the last target status returned by target_wait(). */
661 get_last_target_status (&wait_ptid, &wait_status);
662
663 /* Make sure we were stopped either at a breakpoint, or because
664 of a Ctrl-C. */
665 if (wait_status.kind != TARGET_WAITKIND_STOPPED
666 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
667 && wait_status.value.sig != TARGET_SIGNAL_INT))
668 {
669 return 0;
670 }
671
672 if (!ptid_equal (wait_ptid, minus_one_ptid)
673 && !ptid_equal (inferior_ptid, wait_ptid))
674 {
675 /* Switched over from WAIT_PID. */
676 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
677
678 if (wait_pc != read_pc ())
679 {
680 /* Switch back to WAIT_PID thread. */
681 inferior_ptid = wait_ptid;
682
683 /* FIXME: This stuff came from switch_to_thread() in
684 thread.c (which should probably be a public function). */
685 flush_cached_frames ();
686 registers_changed ();
687 stop_pc = wait_pc;
688 select_frame (get_current_frame ());
689 }
690
691 /* We return 1 to indicate that there is a breakpoint here,
692 so we need to step over it before continuing to avoid
693 hitting it straight away. */
694 if (breakpoint_here_p (wait_pc))
695 return 1;
696 }
697
698 return 0;
699
700 }
701
702 /* Record the pc of the program the last time it stopped. This is
703 just used internally by wait_for_inferior, but need to be preserved
704 over calls to it and cleared when the inferior is started. */
705 static CORE_ADDR prev_pc;
706
707 /* Basic routine for continuing the program in various fashions.
708
709 ADDR is the address to resume at, or -1 for resume where stopped.
710 SIGGNAL is the signal to give it, or 0 for none,
711 or -1 for act according to how it stopped.
712 STEP is nonzero if should trap after one instruction.
713 -1 means return after that and print nothing.
714 You should probably set various step_... variables
715 before calling here, if you are stepping.
716
717 You should call clear_proceed_status before calling proceed. */
718
719 void
720 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
721 {
722 int oneproc = 0;
723
724 if (step > 0)
725 step_start_function = find_pc_function (read_pc ());
726 if (step < 0)
727 stop_after_trap = 1;
728
729 if (addr == (CORE_ADDR) -1)
730 {
731 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
732 /* There is a breakpoint at the address we will resume at,
733 step one instruction before inserting breakpoints so that
734 we do not stop right away (and report a second hit at this
735 breakpoint). */
736 oneproc = 1;
737 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
738 && gdbarch_single_step_through_delay (current_gdbarch,
739 get_current_frame ()))
740 /* We stepped onto an instruction that needs to be stepped
741 again before re-inserting the breakpoint, do so. */
742 oneproc = 1;
743 }
744 else
745 {
746 write_pc (addr);
747 }
748
749 if (debug_infrun)
750 fprintf_unfiltered (gdb_stdlog,
751 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
752 paddr_nz (addr), siggnal, step);
753
754 /* In a multi-threaded task we may select another thread
755 and then continue or step.
756
757 But if the old thread was stopped at a breakpoint, it
758 will immediately cause another breakpoint stop without
759 any execution (i.e. it will report a breakpoint hit
760 incorrectly). So we must step over it first.
761
762 prepare_to_proceed checks the current thread against the thread
763 that reported the most recent event. If a step-over is required
764 it returns TRUE and sets the current thread to the old thread. */
765 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
766 oneproc = 1;
767
768 if (oneproc)
769 /* We will get a trace trap after one instruction.
770 Continue it automatically and insert breakpoints then. */
771 trap_expected = 1;
772 else
773 {
774 insert_breakpoints ();
775 /* If we get here there was no call to error() in
776 insert breakpoints -- so they were inserted. */
777 breakpoints_inserted = 1;
778 }
779
780 if (siggnal != TARGET_SIGNAL_DEFAULT)
781 stop_signal = siggnal;
782 /* If this signal should not be seen by program,
783 give it zero. Used for debugging signals. */
784 else if (!signal_program[stop_signal])
785 stop_signal = TARGET_SIGNAL_0;
786
787 annotate_starting ();
788
789 /* Make sure that output from GDB appears before output from the
790 inferior. */
791 gdb_flush (gdb_stdout);
792
793 /* Refresh prev_pc value just prior to resuming. This used to be
794 done in stop_stepping, however, setting prev_pc there did not handle
795 scenarios such as inferior function calls or returning from
796 a function via the return command. In those cases, the prev_pc
797 value was not set properly for subsequent commands. The prev_pc value
798 is used to initialize the starting line number in the ecs. With an
799 invalid value, the gdb next command ends up stopping at the position
800 represented by the next line table entry past our start position.
801 On platforms that generate one line table entry per line, this
802 is not a problem. However, on the ia64, the compiler generates
803 extraneous line table entries that do not increase the line number.
804 When we issue the gdb next command on the ia64 after an inferior call
805 or a return command, we often end up a few instructions forward, still
806 within the original line we started.
807
808 An attempt was made to have init_execution_control_state () refresh
809 the prev_pc value before calculating the line number. This approach
810 did not work because on platforms that use ptrace, the pc register
811 cannot be read unless the inferior is stopped. At that point, we
812 are not guaranteed the inferior is stopped and so the read_pc ()
813 call can fail. Setting the prev_pc value here ensures the value is
814 updated correctly when the inferior is stopped. */
815 prev_pc = read_pc ();
816
817 /* Resume inferior. */
818 resume (oneproc || step || bpstat_should_step (), stop_signal);
819
820 /* Wait for it to stop (if not standalone)
821 and in any case decode why it stopped, and act accordingly. */
822 /* Do this only if we are not using the event loop, or if the target
823 does not support asynchronous execution. */
824 if (!target_can_async_p ())
825 {
826 wait_for_inferior ();
827 normal_stop ();
828 }
829 }
830 \f
831
832 /* Start remote-debugging of a machine over a serial link. */
833
834 void
835 start_remote (void)
836 {
837 init_thread_list ();
838 init_wait_for_inferior ();
839 stop_soon = STOP_QUIETLY;
840 trap_expected = 0;
841
842 /* Always go on waiting for the target, regardless of the mode. */
843 /* FIXME: cagney/1999-09-23: At present it isn't possible to
844 indicate to wait_for_inferior that a target should timeout if
845 nothing is returned (instead of just blocking). Because of this,
846 targets expecting an immediate response need to, internally, set
847 things up so that the target_wait() is forced to eventually
848 timeout. */
849 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
850 differentiate to its caller what the state of the target is after
851 the initial open has been performed. Here we're assuming that
852 the target has stopped. It should be possible to eventually have
853 target_open() return to the caller an indication that the target
854 is currently running and GDB state should be set to the same as
855 for an async run. */
856 wait_for_inferior ();
857 normal_stop ();
858 }
859
860 /* Initialize static vars when a new inferior begins. */
861
862 void
863 init_wait_for_inferior (void)
864 {
865 /* These are meaningless until the first time through wait_for_inferior. */
866 prev_pc = 0;
867
868 breakpoints_inserted = 0;
869 breakpoint_init_inferior (inf_starting);
870
871 /* Don't confuse first call to proceed(). */
872 stop_signal = TARGET_SIGNAL_0;
873
874 /* The first resume is not following a fork/vfork/exec. */
875 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
876
877 clear_proceed_status ();
878
879 stepping_past_singlestep_breakpoint = 0;
880 }
881 \f
882 /* This enum encodes possible reasons for doing a target_wait, so that
883 wfi can call target_wait in one place. (Ultimately the call will be
884 moved out of the infinite loop entirely.) */
885
886 enum infwait_states
887 {
888 infwait_normal_state,
889 infwait_thread_hop_state,
890 infwait_nonstep_watch_state
891 };
892
893 /* Why did the inferior stop? Used to print the appropriate messages
894 to the interface from within handle_inferior_event(). */
895 enum inferior_stop_reason
896 {
897 /* We don't know why. */
898 STOP_UNKNOWN,
899 /* Step, next, nexti, stepi finished. */
900 END_STEPPING_RANGE,
901 /* Found breakpoint. */
902 BREAKPOINT_HIT,
903 /* Inferior terminated by signal. */
904 SIGNAL_EXITED,
905 /* Inferior exited. */
906 EXITED,
907 /* Inferior received signal, and user asked to be notified. */
908 SIGNAL_RECEIVED
909 };
910
911 /* This structure contains what used to be local variables in
912 wait_for_inferior. Probably many of them can return to being
913 locals in handle_inferior_event. */
914
915 struct execution_control_state
916 {
917 struct target_waitstatus ws;
918 struct target_waitstatus *wp;
919 int another_trap;
920 int random_signal;
921 CORE_ADDR stop_func_start;
922 CORE_ADDR stop_func_end;
923 char *stop_func_name;
924 struct symtab_and_line sal;
925 int current_line;
926 struct symtab *current_symtab;
927 int handling_longjmp; /* FIXME */
928 ptid_t ptid;
929 ptid_t saved_inferior_ptid;
930 int step_after_step_resume_breakpoint;
931 int stepping_through_solib_after_catch;
932 bpstat stepping_through_solib_catchpoints;
933 int new_thread_event;
934 struct target_waitstatus tmpstatus;
935 enum infwait_states infwait_state;
936 ptid_t waiton_ptid;
937 int wait_some_more;
938 };
939
940 void init_execution_control_state (struct execution_control_state *ecs);
941
942 void handle_inferior_event (struct execution_control_state *ecs);
943
944 static void step_into_function (struct execution_control_state *ecs);
945 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
946 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
947 struct frame_id sr_id);
948 static void stop_stepping (struct execution_control_state *ecs);
949 static void prepare_to_wait (struct execution_control_state *ecs);
950 static void keep_going (struct execution_control_state *ecs);
951 static void print_stop_reason (enum inferior_stop_reason stop_reason,
952 int stop_info);
953
954 /* Wait for control to return from inferior to debugger.
955 If inferior gets a signal, we may decide to start it up again
956 instead of returning. That is why there is a loop in this function.
957 When this function actually returns it means the inferior
958 should be left stopped and GDB should read more commands. */
959
960 void
961 wait_for_inferior (void)
962 {
963 struct cleanup *old_cleanups;
964 struct execution_control_state ecss;
965 struct execution_control_state *ecs;
966
967 if (debug_infrun)
968 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
969
970 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
971 &step_resume_breakpoint);
972
973 /* wfi still stays in a loop, so it's OK just to take the address of
974 a local to get the ecs pointer. */
975 ecs = &ecss;
976
977 /* Fill in with reasonable starting values. */
978 init_execution_control_state (ecs);
979
980 /* We'll update this if & when we switch to a new thread. */
981 previous_inferior_ptid = inferior_ptid;
982
983 overlay_cache_invalid = 1;
984
985 /* We have to invalidate the registers BEFORE calling target_wait
986 because they can be loaded from the target while in target_wait.
987 This makes remote debugging a bit more efficient for those
988 targets that provide critical registers as part of their normal
989 status mechanism. */
990
991 registers_changed ();
992
993 while (1)
994 {
995 if (deprecated_target_wait_hook)
996 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
997 else
998 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
999
1000 /* Now figure out what to do with the result of the result. */
1001 handle_inferior_event (ecs);
1002
1003 if (!ecs->wait_some_more)
1004 break;
1005 }
1006 do_cleanups (old_cleanups);
1007 }
1008
1009 /* Asynchronous version of wait_for_inferior. It is called by the
1010 event loop whenever a change of state is detected on the file
1011 descriptor corresponding to the target. It can be called more than
1012 once to complete a single execution command. In such cases we need
1013 to keep the state in a global variable ASYNC_ECSS. If it is the
1014 last time that this function is called for a single execution
1015 command, then report to the user that the inferior has stopped, and
1016 do the necessary cleanups. */
1017
1018 struct execution_control_state async_ecss;
1019 struct execution_control_state *async_ecs;
1020
1021 void
1022 fetch_inferior_event (void *client_data)
1023 {
1024 static struct cleanup *old_cleanups;
1025
1026 async_ecs = &async_ecss;
1027
1028 if (!async_ecs->wait_some_more)
1029 {
1030 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1031 &step_resume_breakpoint);
1032
1033 /* Fill in with reasonable starting values. */
1034 init_execution_control_state (async_ecs);
1035
1036 /* We'll update this if & when we switch to a new thread. */
1037 previous_inferior_ptid = inferior_ptid;
1038
1039 overlay_cache_invalid = 1;
1040
1041 /* We have to invalidate the registers BEFORE calling target_wait
1042 because they can be loaded from the target while in target_wait.
1043 This makes remote debugging a bit more efficient for those
1044 targets that provide critical registers as part of their normal
1045 status mechanism. */
1046
1047 registers_changed ();
1048 }
1049
1050 if (deprecated_target_wait_hook)
1051 async_ecs->ptid =
1052 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1053 else
1054 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1055
1056 /* Now figure out what to do with the result of the result. */
1057 handle_inferior_event (async_ecs);
1058
1059 if (!async_ecs->wait_some_more)
1060 {
1061 /* Do only the cleanups that have been added by this
1062 function. Let the continuations for the commands do the rest,
1063 if there are any. */
1064 do_exec_cleanups (old_cleanups);
1065 normal_stop ();
1066 if (step_multi && stop_step)
1067 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1068 else
1069 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1070 }
1071 }
1072
1073 /* Prepare an execution control state for looping through a
1074 wait_for_inferior-type loop. */
1075
1076 void
1077 init_execution_control_state (struct execution_control_state *ecs)
1078 {
1079 ecs->another_trap = 0;
1080 ecs->random_signal = 0;
1081 ecs->step_after_step_resume_breakpoint = 0;
1082 ecs->handling_longjmp = 0; /* FIXME */
1083 ecs->stepping_through_solib_after_catch = 0;
1084 ecs->stepping_through_solib_catchpoints = NULL;
1085 ecs->sal = find_pc_line (prev_pc, 0);
1086 ecs->current_line = ecs->sal.line;
1087 ecs->current_symtab = ecs->sal.symtab;
1088 ecs->infwait_state = infwait_normal_state;
1089 ecs->waiton_ptid = pid_to_ptid (-1);
1090 ecs->wp = &(ecs->ws);
1091 }
1092
1093 /* Return the cached copy of the last pid/waitstatus returned by
1094 target_wait()/deprecated_target_wait_hook(). The data is actually
1095 cached by handle_inferior_event(), which gets called immediately
1096 after target_wait()/deprecated_target_wait_hook(). */
1097
1098 void
1099 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1100 {
1101 *ptidp = target_last_wait_ptid;
1102 *status = target_last_waitstatus;
1103 }
1104
1105 void
1106 nullify_last_target_wait_ptid (void)
1107 {
1108 target_last_wait_ptid = minus_one_ptid;
1109 }
1110
1111 /* Switch thread contexts, maintaining "infrun state". */
1112
1113 static void
1114 context_switch (struct execution_control_state *ecs)
1115 {
1116 /* Caution: it may happen that the new thread (or the old one!)
1117 is not in the thread list. In this case we must not attempt
1118 to "switch context", or we run the risk that our context may
1119 be lost. This may happen as a result of the target module
1120 mishandling thread creation. */
1121
1122 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1123 { /* Perform infrun state context switch: */
1124 /* Save infrun state for the old thread. */
1125 save_infrun_state (inferior_ptid, prev_pc,
1126 trap_expected, step_resume_breakpoint,
1127 step_range_start,
1128 step_range_end, &step_frame_id,
1129 ecs->handling_longjmp, ecs->another_trap,
1130 ecs->stepping_through_solib_after_catch,
1131 ecs->stepping_through_solib_catchpoints,
1132 ecs->current_line, ecs->current_symtab);
1133
1134 /* Load infrun state for the new thread. */
1135 load_infrun_state (ecs->ptid, &prev_pc,
1136 &trap_expected, &step_resume_breakpoint,
1137 &step_range_start,
1138 &step_range_end, &step_frame_id,
1139 &ecs->handling_longjmp, &ecs->another_trap,
1140 &ecs->stepping_through_solib_after_catch,
1141 &ecs->stepping_through_solib_catchpoints,
1142 &ecs->current_line, &ecs->current_symtab);
1143 }
1144 inferior_ptid = ecs->ptid;
1145 }
1146
1147 static void
1148 adjust_pc_after_break (struct execution_control_state *ecs)
1149 {
1150 CORE_ADDR breakpoint_pc;
1151
1152 /* If this target does not decrement the PC after breakpoints, then
1153 we have nothing to do. */
1154 if (DECR_PC_AFTER_BREAK == 0)
1155 return;
1156
1157 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1158 we aren't, just return.
1159
1160 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1161 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1162 by software breakpoints should be handled through the normal breakpoint
1163 layer.
1164
1165 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1166 different signals (SIGILL or SIGEMT for instance), but it is less
1167 clear where the PC is pointing afterwards. It may not match
1168 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1169 these signals at breakpoints (the code has been in GDB since at least
1170 1992) so I can not guess how to handle them here.
1171
1172 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1173 would have the PC after hitting a watchpoint affected by
1174 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1175 in GDB history, and it seems unlikely to be correct, so
1176 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1177
1178 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1179 return;
1180
1181 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1182 return;
1183
1184 /* Find the location where (if we've hit a breakpoint) the
1185 breakpoint would be. */
1186 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1187
1188 if (SOFTWARE_SINGLE_STEP_P ())
1189 {
1190 /* When using software single-step, a SIGTRAP can only indicate
1191 an inserted breakpoint. This actually makes things
1192 easier. */
1193 if (singlestep_breakpoints_inserted_p)
1194 /* When software single stepping, the instruction at [prev_pc]
1195 is never a breakpoint, but the instruction following
1196 [prev_pc] (in program execution order) always is. Assume
1197 that following instruction was reached and hence a software
1198 breakpoint was hit. */
1199 write_pc_pid (breakpoint_pc, ecs->ptid);
1200 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1201 /* The inferior was free running (i.e., no single-step
1202 breakpoints inserted) and it hit a software breakpoint. */
1203 write_pc_pid (breakpoint_pc, ecs->ptid);
1204 }
1205 else
1206 {
1207 /* When using hardware single-step, a SIGTRAP is reported for
1208 both a completed single-step and a software breakpoint. Need
1209 to differentiate between the two as the latter needs
1210 adjusting but the former does not.
1211
1212 When the thread to be examined does not match the current thread
1213 context we can't use currently_stepping, so assume no
1214 single-stepping in this case. */
1215 if (ptid_equal (ecs->ptid, inferior_ptid) && currently_stepping (ecs))
1216 {
1217 if (prev_pc == breakpoint_pc
1218 && software_breakpoint_inserted_here_p (breakpoint_pc))
1219 /* Hardware single-stepped a software breakpoint (as
1220 occures when the inferior is resumed with PC pointing
1221 at not-yet-hit software breakpoint). Since the
1222 breakpoint really is executed, the inferior needs to be
1223 backed up to the breakpoint address. */
1224 write_pc_pid (breakpoint_pc, ecs->ptid);
1225 }
1226 else
1227 {
1228 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1229 /* The inferior was free running (i.e., no hardware
1230 single-step and no possibility of a false SIGTRAP) and
1231 hit a software breakpoint. */
1232 write_pc_pid (breakpoint_pc, ecs->ptid);
1233 }
1234 }
1235 }
1236
1237 /* Given an execution control state that has been freshly filled in
1238 by an event from the inferior, figure out what it means and take
1239 appropriate action. */
1240
1241 int stepped_after_stopped_by_watchpoint;
1242
1243 void
1244 handle_inferior_event (struct execution_control_state *ecs)
1245 {
1246 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1247 that the variable stepped_after_stopped_by_watchpoint isn't used,
1248 then you're wrong! See remote.c:remote_stopped_data_address. */
1249
1250 int sw_single_step_trap_p = 0;
1251 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1252
1253 /* Cache the last pid/waitstatus. */
1254 target_last_wait_ptid = ecs->ptid;
1255 target_last_waitstatus = *ecs->wp;
1256
1257 adjust_pc_after_break (ecs);
1258
1259 switch (ecs->infwait_state)
1260 {
1261 case infwait_thread_hop_state:
1262 if (debug_infrun)
1263 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1264 /* Cancel the waiton_ptid. */
1265 ecs->waiton_ptid = pid_to_ptid (-1);
1266 break;
1267
1268 case infwait_normal_state:
1269 if (debug_infrun)
1270 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1271 stepped_after_stopped_by_watchpoint = 0;
1272 break;
1273
1274 case infwait_nonstep_watch_state:
1275 if (debug_infrun)
1276 fprintf_unfiltered (gdb_stdlog,
1277 "infrun: infwait_nonstep_watch_state\n");
1278 insert_breakpoints ();
1279
1280 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1281 handle things like signals arriving and other things happening
1282 in combination correctly? */
1283 stepped_after_stopped_by_watchpoint = 1;
1284 break;
1285
1286 default:
1287 internal_error (__FILE__, __LINE__, _("bad switch"));
1288 }
1289 ecs->infwait_state = infwait_normal_state;
1290
1291 flush_cached_frames ();
1292
1293 /* If it's a new process, add it to the thread database */
1294
1295 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1296 && !ptid_equal (ecs->ptid, minus_one_ptid)
1297 && !in_thread_list (ecs->ptid));
1298
1299 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1300 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1301 {
1302 add_thread (ecs->ptid);
1303
1304 ui_out_text (uiout, "[New ");
1305 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1306 ui_out_text (uiout, "]\n");
1307 }
1308
1309 switch (ecs->ws.kind)
1310 {
1311 case TARGET_WAITKIND_LOADED:
1312 if (debug_infrun)
1313 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1314 /* Ignore gracefully during startup of the inferior, as it
1315 might be the shell which has just loaded some objects,
1316 otherwise add the symbols for the newly loaded objects. */
1317 #ifdef SOLIB_ADD
1318 if (stop_soon == NO_STOP_QUIETLY)
1319 {
1320 /* Remove breakpoints, SOLIB_ADD might adjust
1321 breakpoint addresses via breakpoint_re_set. */
1322 if (breakpoints_inserted)
1323 remove_breakpoints ();
1324
1325 /* Check for any newly added shared libraries if we're
1326 supposed to be adding them automatically. Switch
1327 terminal for any messages produced by
1328 breakpoint_re_set. */
1329 target_terminal_ours_for_output ();
1330 /* NOTE: cagney/2003-11-25: Make certain that the target
1331 stack's section table is kept up-to-date. Architectures,
1332 (e.g., PPC64), use the section table to perform
1333 operations such as address => section name and hence
1334 require the table to contain all sections (including
1335 those found in shared libraries). */
1336 /* NOTE: cagney/2003-11-25: Pass current_target and not
1337 exec_ops to SOLIB_ADD. This is because current GDB is
1338 only tooled to propagate section_table changes out from
1339 the "current_target" (see target_resize_to_sections), and
1340 not up from the exec stratum. This, of course, isn't
1341 right. "infrun.c" should only interact with the
1342 exec/process stratum, instead relying on the target stack
1343 to propagate relevant changes (stop, section table
1344 changed, ...) up to other layers. */
1345 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1346 target_terminal_inferior ();
1347
1348 /* Reinsert breakpoints and continue. */
1349 if (breakpoints_inserted)
1350 insert_breakpoints ();
1351 }
1352 #endif
1353 resume (0, TARGET_SIGNAL_0);
1354 prepare_to_wait (ecs);
1355 return;
1356
1357 case TARGET_WAITKIND_SPURIOUS:
1358 if (debug_infrun)
1359 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1360 resume (0, TARGET_SIGNAL_0);
1361 prepare_to_wait (ecs);
1362 return;
1363
1364 case TARGET_WAITKIND_EXITED:
1365 if (debug_infrun)
1366 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1367 target_terminal_ours (); /* Must do this before mourn anyway */
1368 print_stop_reason (EXITED, ecs->ws.value.integer);
1369
1370 /* Record the exit code in the convenience variable $_exitcode, so
1371 that the user can inspect this again later. */
1372 set_internalvar (lookup_internalvar ("_exitcode"),
1373 value_from_longest (builtin_type_int,
1374 (LONGEST) ecs->ws.value.integer));
1375 gdb_flush (gdb_stdout);
1376 target_mourn_inferior ();
1377 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1378 stop_print_frame = 0;
1379 stop_stepping (ecs);
1380 return;
1381
1382 case TARGET_WAITKIND_SIGNALLED:
1383 if (debug_infrun)
1384 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1385 stop_print_frame = 0;
1386 stop_signal = ecs->ws.value.sig;
1387 target_terminal_ours (); /* Must do this before mourn anyway */
1388
1389 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1390 reach here unless the inferior is dead. However, for years
1391 target_kill() was called here, which hints that fatal signals aren't
1392 really fatal on some systems. If that's true, then some changes
1393 may be needed. */
1394 target_mourn_inferior ();
1395
1396 print_stop_reason (SIGNAL_EXITED, stop_signal);
1397 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1398 stop_stepping (ecs);
1399 return;
1400
1401 /* The following are the only cases in which we keep going;
1402 the above cases end in a continue or goto. */
1403 case TARGET_WAITKIND_FORKED:
1404 case TARGET_WAITKIND_VFORKED:
1405 if (debug_infrun)
1406 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1407 stop_signal = TARGET_SIGNAL_TRAP;
1408 pending_follow.kind = ecs->ws.kind;
1409
1410 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1411 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1412
1413 stop_pc = read_pc ();
1414
1415 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1416
1417 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1418
1419 /* If no catchpoint triggered for this, then keep going. */
1420 if (ecs->random_signal)
1421 {
1422 stop_signal = TARGET_SIGNAL_0;
1423 keep_going (ecs);
1424 return;
1425 }
1426 goto process_event_stop_test;
1427
1428 case TARGET_WAITKIND_EXECD:
1429 if (debug_infrun)
1430 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECED\n");
1431 stop_signal = TARGET_SIGNAL_TRAP;
1432
1433 /* NOTE drow/2002-12-05: This code should be pushed down into the
1434 target_wait function. Until then following vfork on HP/UX 10.20
1435 is probably broken by this. Of course, it's broken anyway. */
1436 /* Is this a target which reports multiple exec events per actual
1437 call to exec()? (HP-UX using ptrace does, for example.) If so,
1438 ignore all but the last one. Just resume the exec'r, and wait
1439 for the next exec event. */
1440 if (inferior_ignoring_leading_exec_events)
1441 {
1442 inferior_ignoring_leading_exec_events--;
1443 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1444 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1445 parent_pid);
1446 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1447 prepare_to_wait (ecs);
1448 return;
1449 }
1450 inferior_ignoring_leading_exec_events =
1451 target_reported_exec_events_per_exec_call () - 1;
1452
1453 pending_follow.execd_pathname =
1454 savestring (ecs->ws.value.execd_pathname,
1455 strlen (ecs->ws.value.execd_pathname));
1456
1457 /* This causes the eventpoints and symbol table to be reset. Must
1458 do this now, before trying to determine whether to stop. */
1459 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1460 xfree (pending_follow.execd_pathname);
1461
1462 stop_pc = read_pc_pid (ecs->ptid);
1463 ecs->saved_inferior_ptid = inferior_ptid;
1464 inferior_ptid = ecs->ptid;
1465
1466 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1467
1468 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1469 inferior_ptid = ecs->saved_inferior_ptid;
1470
1471 /* If no catchpoint triggered for this, then keep going. */
1472 if (ecs->random_signal)
1473 {
1474 stop_signal = TARGET_SIGNAL_0;
1475 keep_going (ecs);
1476 return;
1477 }
1478 goto process_event_stop_test;
1479
1480 /* Be careful not to try to gather much state about a thread
1481 that's in a syscall. It's frequently a losing proposition. */
1482 case TARGET_WAITKIND_SYSCALL_ENTRY:
1483 if (debug_infrun)
1484 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1485 resume (0, TARGET_SIGNAL_0);
1486 prepare_to_wait (ecs);
1487 return;
1488
1489 /* Before examining the threads further, step this thread to
1490 get it entirely out of the syscall. (We get notice of the
1491 event when the thread is just on the verge of exiting a
1492 syscall. Stepping one instruction seems to get it back
1493 into user code.) */
1494 case TARGET_WAITKIND_SYSCALL_RETURN:
1495 if (debug_infrun)
1496 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1497 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1498 prepare_to_wait (ecs);
1499 return;
1500
1501 case TARGET_WAITKIND_STOPPED:
1502 if (debug_infrun)
1503 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1504 stop_signal = ecs->ws.value.sig;
1505 break;
1506
1507 /* We had an event in the inferior, but we are not interested
1508 in handling it at this level. The lower layers have already
1509 done what needs to be done, if anything.
1510
1511 One of the possible circumstances for this is when the
1512 inferior produces output for the console. The inferior has
1513 not stopped, and we are ignoring the event. Another possible
1514 circumstance is any event which the lower level knows will be
1515 reported multiple times without an intervening resume. */
1516 case TARGET_WAITKIND_IGNORE:
1517 if (debug_infrun)
1518 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1519 prepare_to_wait (ecs);
1520 return;
1521 }
1522
1523 /* We may want to consider not doing a resume here in order to give
1524 the user a chance to play with the new thread. It might be good
1525 to make that a user-settable option. */
1526
1527 /* At this point, all threads are stopped (happens automatically in
1528 either the OS or the native code). Therefore we need to continue
1529 all threads in order to make progress. */
1530 if (ecs->new_thread_event)
1531 {
1532 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1533 prepare_to_wait (ecs);
1534 return;
1535 }
1536
1537 stop_pc = read_pc_pid (ecs->ptid);
1538
1539 if (debug_infrun)
1540 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1541
1542 if (stepping_past_singlestep_breakpoint)
1543 {
1544 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1545 && singlestep_breakpoints_inserted_p);
1546 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1547 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1548
1549 stepping_past_singlestep_breakpoint = 0;
1550
1551 /* We've either finished single-stepping past the single-step
1552 breakpoint, or stopped for some other reason. It would be nice if
1553 we could tell, but we can't reliably. */
1554 if (stop_signal == TARGET_SIGNAL_TRAP)
1555 {
1556 if (debug_infrun)
1557 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1558 /* Pull the single step breakpoints out of the target. */
1559 SOFTWARE_SINGLE_STEP (0, 0);
1560 singlestep_breakpoints_inserted_p = 0;
1561
1562 ecs->random_signal = 0;
1563
1564 ecs->ptid = saved_singlestep_ptid;
1565 context_switch (ecs);
1566 if (deprecated_context_hook)
1567 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1568
1569 resume (1, TARGET_SIGNAL_0);
1570 prepare_to_wait (ecs);
1571 return;
1572 }
1573 }
1574
1575 stepping_past_singlestep_breakpoint = 0;
1576
1577 /* See if a thread hit a thread-specific breakpoint that was meant for
1578 another thread. If so, then step that thread past the breakpoint,
1579 and continue it. */
1580
1581 if (stop_signal == TARGET_SIGNAL_TRAP)
1582 {
1583 int thread_hop_needed = 0;
1584
1585 /* Check if a regular breakpoint has been hit before checking
1586 for a potential single step breakpoint. Otherwise, GDB will
1587 not see this breakpoint hit when stepping onto breakpoints. */
1588 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1589 {
1590 ecs->random_signal = 0;
1591 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1592 thread_hop_needed = 1;
1593 }
1594 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1595 {
1596 ecs->random_signal = 0;
1597 /* The call to in_thread_list is necessary because PTIDs sometimes
1598 change when we go from single-threaded to multi-threaded. If
1599 the singlestep_ptid is still in the list, assume that it is
1600 really different from ecs->ptid. */
1601 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1602 && in_thread_list (singlestep_ptid))
1603 {
1604 thread_hop_needed = 1;
1605 stepping_past_singlestep_breakpoint = 1;
1606 saved_singlestep_ptid = singlestep_ptid;
1607 }
1608 }
1609
1610 if (thread_hop_needed)
1611 {
1612 int remove_status;
1613
1614 if (debug_infrun)
1615 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1616
1617 /* Saw a breakpoint, but it was hit by the wrong thread.
1618 Just continue. */
1619
1620 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1621 {
1622 /* Pull the single step breakpoints out of the target. */
1623 SOFTWARE_SINGLE_STEP (0, 0);
1624 singlestep_breakpoints_inserted_p = 0;
1625 }
1626
1627 remove_status = remove_breakpoints ();
1628 /* Did we fail to remove breakpoints? If so, try
1629 to set the PC past the bp. (There's at least
1630 one situation in which we can fail to remove
1631 the bp's: On HP-UX's that use ttrace, we can't
1632 change the address space of a vforking child
1633 process until the child exits (well, okay, not
1634 then either :-) or execs. */
1635 if (remove_status != 0)
1636 {
1637 /* FIXME! This is obviously non-portable! */
1638 write_pc_pid (stop_pc + 4, ecs->ptid);
1639 /* We need to restart all the threads now,
1640 * unles we're running in scheduler-locked mode.
1641 * Use currently_stepping to determine whether to
1642 * step or continue.
1643 */
1644 /* FIXME MVS: is there any reason not to call resume()? */
1645 if (scheduler_mode == schedlock_on)
1646 target_resume (ecs->ptid,
1647 currently_stepping (ecs), TARGET_SIGNAL_0);
1648 else
1649 target_resume (RESUME_ALL,
1650 currently_stepping (ecs), TARGET_SIGNAL_0);
1651 prepare_to_wait (ecs);
1652 return;
1653 }
1654 else
1655 { /* Single step */
1656 breakpoints_inserted = 0;
1657 if (!ptid_equal (inferior_ptid, ecs->ptid))
1658 context_switch (ecs);
1659 ecs->waiton_ptid = ecs->ptid;
1660 ecs->wp = &(ecs->ws);
1661 ecs->another_trap = 1;
1662
1663 ecs->infwait_state = infwait_thread_hop_state;
1664 keep_going (ecs);
1665 registers_changed ();
1666 return;
1667 }
1668 }
1669 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1670 {
1671 sw_single_step_trap_p = 1;
1672 ecs->random_signal = 0;
1673 }
1674 }
1675 else
1676 ecs->random_signal = 1;
1677
1678 /* See if something interesting happened to the non-current thread. If
1679 so, then switch to that thread. */
1680 if (!ptid_equal (ecs->ptid, inferior_ptid))
1681 {
1682 if (debug_infrun)
1683 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1684
1685 context_switch (ecs);
1686
1687 if (deprecated_context_hook)
1688 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1689
1690 flush_cached_frames ();
1691 }
1692
1693 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1694 {
1695 /* Pull the single step breakpoints out of the target. */
1696 SOFTWARE_SINGLE_STEP (0, 0);
1697 singlestep_breakpoints_inserted_p = 0;
1698 }
1699
1700 /* It may not be necessary to disable the watchpoint to stop over
1701 it. For example, the PA can (with some kernel cooperation)
1702 single step over a watchpoint without disabling the watchpoint. */
1703 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1704 {
1705 if (debug_infrun)
1706 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1707 resume (1, 0);
1708 prepare_to_wait (ecs);
1709 return;
1710 }
1711
1712 /* It is far more common to need to disable a watchpoint to step
1713 the inferior over it. FIXME. What else might a debug
1714 register or page protection watchpoint scheme need here? */
1715 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1716 {
1717 /* At this point, we are stopped at an instruction which has
1718 attempted to write to a piece of memory under control of
1719 a watchpoint. The instruction hasn't actually executed
1720 yet. If we were to evaluate the watchpoint expression
1721 now, we would get the old value, and therefore no change
1722 would seem to have occurred.
1723
1724 In order to make watchpoints work `right', we really need
1725 to complete the memory write, and then evaluate the
1726 watchpoint expression. The following code does that by
1727 removing the watchpoint (actually, all watchpoints and
1728 breakpoints), single-stepping the target, re-inserting
1729 watchpoints, and then falling through to let normal
1730 single-step processing handle proceed. Since this
1731 includes evaluating watchpoints, things will come to a
1732 stop in the correct manner. */
1733
1734 if (debug_infrun)
1735 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1736 remove_breakpoints ();
1737 registers_changed ();
1738 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1739
1740 ecs->waiton_ptid = ecs->ptid;
1741 ecs->wp = &(ecs->ws);
1742 ecs->infwait_state = infwait_nonstep_watch_state;
1743 prepare_to_wait (ecs);
1744 return;
1745 }
1746
1747 /* It may be possible to simply continue after a watchpoint. */
1748 if (HAVE_CONTINUABLE_WATCHPOINT)
1749 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1750
1751 ecs->stop_func_start = 0;
1752 ecs->stop_func_end = 0;
1753 ecs->stop_func_name = 0;
1754 /* Don't care about return value; stop_func_start and stop_func_name
1755 will both be 0 if it doesn't work. */
1756 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1757 &ecs->stop_func_start, &ecs->stop_func_end);
1758 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1759 ecs->another_trap = 0;
1760 bpstat_clear (&stop_bpstat);
1761 stop_step = 0;
1762 stop_stack_dummy = 0;
1763 stop_print_frame = 1;
1764 ecs->random_signal = 0;
1765 stopped_by_random_signal = 0;
1766 breakpoints_failed = 0;
1767
1768 if (stop_signal == TARGET_SIGNAL_TRAP
1769 && trap_expected
1770 && gdbarch_single_step_through_delay_p (current_gdbarch)
1771 && currently_stepping (ecs))
1772 {
1773 /* We're trying to step of a breakpoint. Turns out that we're
1774 also on an instruction that needs to be stepped multiple
1775 times before it's been fully executing. E.g., architectures
1776 with a delay slot. It needs to be stepped twice, once for
1777 the instruction and once for the delay slot. */
1778 int step_through_delay
1779 = gdbarch_single_step_through_delay (current_gdbarch,
1780 get_current_frame ());
1781 if (debug_infrun && step_through_delay)
1782 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1783 if (step_range_end == 0 && step_through_delay)
1784 {
1785 /* The user issued a continue when stopped at a breakpoint.
1786 Set up for another trap and get out of here. */
1787 ecs->another_trap = 1;
1788 keep_going (ecs);
1789 return;
1790 }
1791 else if (step_through_delay)
1792 {
1793 /* The user issued a step when stopped at a breakpoint.
1794 Maybe we should stop, maybe we should not - the delay
1795 slot *might* correspond to a line of source. In any
1796 case, don't decide that here, just set ecs->another_trap,
1797 making sure we single-step again before breakpoints are
1798 re-inserted. */
1799 ecs->another_trap = 1;
1800 }
1801 }
1802
1803 /* Look at the cause of the stop, and decide what to do.
1804 The alternatives are:
1805 1) break; to really stop and return to the debugger,
1806 2) drop through to start up again
1807 (set ecs->another_trap to 1 to single step once)
1808 3) set ecs->random_signal to 1, and the decision between 1 and 2
1809 will be made according to the signal handling tables. */
1810
1811 /* First, distinguish signals caused by the debugger from signals
1812 that have to do with the program's own actions. Note that
1813 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1814 on the operating system version. Here we detect when a SIGILL or
1815 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1816 something similar for SIGSEGV, since a SIGSEGV will be generated
1817 when we're trying to execute a breakpoint instruction on a
1818 non-executable stack. This happens for call dummy breakpoints
1819 for architectures like SPARC that place call dummies on the
1820 stack. */
1821
1822 if (stop_signal == TARGET_SIGNAL_TRAP
1823 || (breakpoints_inserted
1824 && (stop_signal == TARGET_SIGNAL_ILL
1825 || stop_signal == TARGET_SIGNAL_SEGV
1826 || stop_signal == TARGET_SIGNAL_EMT))
1827 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1828 {
1829 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1830 {
1831 if (debug_infrun)
1832 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1833 stop_print_frame = 0;
1834 stop_stepping (ecs);
1835 return;
1836 }
1837
1838 /* This is originated from start_remote(), start_inferior() and
1839 shared libraries hook functions. */
1840 if (stop_soon == STOP_QUIETLY)
1841 {
1842 if (debug_infrun)
1843 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1844 stop_stepping (ecs);
1845 return;
1846 }
1847
1848 /* This originates from attach_command(). We need to overwrite
1849 the stop_signal here, because some kernels don't ignore a
1850 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1851 See more comments in inferior.h. */
1852 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1853 {
1854 stop_stepping (ecs);
1855 if (stop_signal == TARGET_SIGNAL_STOP)
1856 stop_signal = TARGET_SIGNAL_0;
1857 return;
1858 }
1859
1860 /* Don't even think about breakpoints if just proceeded over a
1861 breakpoint. */
1862 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1863 {
1864 if (debug_infrun)
1865 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1866 bpstat_clear (&stop_bpstat);
1867 }
1868 else
1869 {
1870 /* See if there is a breakpoint at the current PC. */
1871 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1872 stopped_by_watchpoint);
1873
1874 /* Following in case break condition called a
1875 function. */
1876 stop_print_frame = 1;
1877 }
1878
1879 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1880 at one stage in the past included checks for an inferior
1881 function call's call dummy's return breakpoint. The original
1882 comment, that went with the test, read:
1883
1884 ``End of a stack dummy. Some systems (e.g. Sony news) give
1885 another signal besides SIGTRAP, so check here as well as
1886 above.''
1887
1888 If someone ever tries to get get call dummys on a
1889 non-executable stack to work (where the target would stop
1890 with something like a SIGSEGV), then those tests might need
1891 to be re-instated. Given, however, that the tests were only
1892 enabled when momentary breakpoints were not being used, I
1893 suspect that it won't be the case.
1894
1895 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1896 be necessary for call dummies on a non-executable stack on
1897 SPARC. */
1898
1899 if (stop_signal == TARGET_SIGNAL_TRAP)
1900 ecs->random_signal
1901 = !(bpstat_explains_signal (stop_bpstat)
1902 || trap_expected
1903 || (step_range_end && step_resume_breakpoint == NULL));
1904 else
1905 {
1906 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1907 if (!ecs->random_signal)
1908 stop_signal = TARGET_SIGNAL_TRAP;
1909 }
1910 }
1911
1912 /* When we reach this point, we've pretty much decided
1913 that the reason for stopping must've been a random
1914 (unexpected) signal. */
1915
1916 else
1917 ecs->random_signal = 1;
1918
1919 process_event_stop_test:
1920 /* For the program's own signals, act according to
1921 the signal handling tables. */
1922
1923 if (ecs->random_signal)
1924 {
1925 /* Signal not for debugging purposes. */
1926 int printed = 0;
1927
1928 if (debug_infrun)
1929 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
1930
1931 stopped_by_random_signal = 1;
1932
1933 if (signal_print[stop_signal])
1934 {
1935 printed = 1;
1936 target_terminal_ours_for_output ();
1937 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1938 }
1939 if (signal_stop[stop_signal])
1940 {
1941 stop_stepping (ecs);
1942 return;
1943 }
1944 /* If not going to stop, give terminal back
1945 if we took it away. */
1946 else if (printed)
1947 target_terminal_inferior ();
1948
1949 /* Clear the signal if it should not be passed. */
1950 if (signal_program[stop_signal] == 0)
1951 stop_signal = TARGET_SIGNAL_0;
1952
1953 if (prev_pc == read_pc ()
1954 && !breakpoints_inserted
1955 && breakpoint_here_p (read_pc ())
1956 && step_resume_breakpoint == NULL)
1957 {
1958 /* We were just starting a new sequence, attempting to
1959 single-step off of a breakpoint and expecting a SIGTRAP.
1960 Intead this signal arrives. This signal will take us out
1961 of the stepping range so GDB needs to remember to, when
1962 the signal handler returns, resume stepping off that
1963 breakpoint. */
1964 /* To simplify things, "continue" is forced to use the same
1965 code paths as single-step - set a breakpoint at the
1966 signal return address and then, once hit, step off that
1967 breakpoint. */
1968 insert_step_resume_breakpoint_at_frame (get_current_frame ());
1969 ecs->step_after_step_resume_breakpoint = 1;
1970 keep_going (ecs);
1971 return;
1972 }
1973
1974 if (step_range_end != 0
1975 && stop_signal != TARGET_SIGNAL_0
1976 && stop_pc >= step_range_start && stop_pc < step_range_end
1977 && frame_id_eq (get_frame_id (get_current_frame ()),
1978 step_frame_id)
1979 && step_resume_breakpoint == NULL)
1980 {
1981 /* The inferior is about to take a signal that will take it
1982 out of the single step range. Set a breakpoint at the
1983 current PC (which is presumably where the signal handler
1984 will eventually return) and then allow the inferior to
1985 run free.
1986
1987 Note that this is only needed for a signal delivered
1988 while in the single-step range. Nested signals aren't a
1989 problem as they eventually all return. */
1990 insert_step_resume_breakpoint_at_frame (get_current_frame ());
1991 keep_going (ecs);
1992 return;
1993 }
1994
1995 /* Note: step_resume_breakpoint may be non-NULL. This occures
1996 when either there's a nested signal, or when there's a
1997 pending signal enabled just as the signal handler returns
1998 (leaving the inferior at the step-resume-breakpoint without
1999 actually executing it). Either way continue until the
2000 breakpoint is really hit. */
2001 keep_going (ecs);
2002 return;
2003 }
2004
2005 /* Handle cases caused by hitting a breakpoint. */
2006 {
2007 CORE_ADDR jmp_buf_pc;
2008 struct bpstat_what what;
2009
2010 what = bpstat_what (stop_bpstat);
2011
2012 if (what.call_dummy)
2013 {
2014 stop_stack_dummy = 1;
2015 }
2016
2017 switch (what.main_action)
2018 {
2019 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2020 /* If we hit the breakpoint at longjmp, disable it for the
2021 duration of this command. Then, install a temporary
2022 breakpoint at the target of the jmp_buf. */
2023 if (debug_infrun)
2024 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_SET_LONGJMP_RESUME\n");
2025 disable_longjmp_breakpoint ();
2026 remove_breakpoints ();
2027 breakpoints_inserted = 0;
2028 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
2029 {
2030 keep_going (ecs);
2031 return;
2032 }
2033
2034 /* Need to blow away step-resume breakpoint, as it
2035 interferes with us */
2036 if (step_resume_breakpoint != NULL)
2037 {
2038 delete_step_resume_breakpoint (&step_resume_breakpoint);
2039 }
2040
2041 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2042 ecs->handling_longjmp = 1; /* FIXME */
2043 keep_going (ecs);
2044 return;
2045
2046 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2047 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2048 if (debug_infrun)
2049 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_CLEAR_LONGJMP_RESUME\n");
2050 remove_breakpoints ();
2051 breakpoints_inserted = 0;
2052 disable_longjmp_breakpoint ();
2053 ecs->handling_longjmp = 0; /* FIXME */
2054 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2055 break;
2056 /* else fallthrough */
2057
2058 case BPSTAT_WHAT_SINGLE:
2059 if (debug_infrun)
2060 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_SINGLE\n");
2061 if (breakpoints_inserted)
2062 {
2063 remove_breakpoints ();
2064 }
2065 breakpoints_inserted = 0;
2066 ecs->another_trap = 1;
2067 /* Still need to check other stuff, at least the case
2068 where we are stepping and step out of the right range. */
2069 break;
2070
2071 case BPSTAT_WHAT_STOP_NOISY:
2072 if (debug_infrun)
2073 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STOP_NOISY\n");
2074 stop_print_frame = 1;
2075
2076 /* We are about to nuke the step_resume_breakpointt via the
2077 cleanup chain, so no need to worry about it here. */
2078
2079 stop_stepping (ecs);
2080 return;
2081
2082 case BPSTAT_WHAT_STOP_SILENT:
2083 if (debug_infrun)
2084 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STOP_SILENT\n");
2085 stop_print_frame = 0;
2086
2087 /* We are about to nuke the step_resume_breakpoin via the
2088 cleanup chain, so no need to worry about it here. */
2089
2090 stop_stepping (ecs);
2091 return;
2092
2093 case BPSTAT_WHAT_STEP_RESUME:
2094 /* This proably demands a more elegant solution, but, yeah
2095 right...
2096
2097 This function's use of the simple variable
2098 step_resume_breakpoint doesn't seem to accomodate
2099 simultaneously active step-resume bp's, although the
2100 breakpoint list certainly can.
2101
2102 If we reach here and step_resume_breakpoint is already
2103 NULL, then apparently we have multiple active
2104 step-resume bp's. We'll just delete the breakpoint we
2105 stopped at, and carry on.
2106
2107 Correction: what the code currently does is delete a
2108 step-resume bp, but it makes no effort to ensure that
2109 the one deleted is the one currently stopped at. MVS */
2110
2111 if (debug_infrun)
2112 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STEP_RESUME\n");
2113
2114 if (step_resume_breakpoint == NULL)
2115 {
2116 step_resume_breakpoint =
2117 bpstat_find_step_resume_breakpoint (stop_bpstat);
2118 }
2119 delete_step_resume_breakpoint (&step_resume_breakpoint);
2120 if (ecs->step_after_step_resume_breakpoint)
2121 {
2122 /* Back when the step-resume breakpoint was inserted, we
2123 were trying to single-step off a breakpoint. Go back
2124 to doing that. */
2125 ecs->step_after_step_resume_breakpoint = 0;
2126 remove_breakpoints ();
2127 breakpoints_inserted = 0;
2128 ecs->another_trap = 1;
2129 keep_going (ecs);
2130 return;
2131 }
2132 break;
2133
2134 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2135 if (debug_infrun)
2136 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_THROUGH_SIGTRAMP\n");
2137 /* If were waiting for a trap, hitting the step_resume_break
2138 doesn't count as getting it. */
2139 if (trap_expected)
2140 ecs->another_trap = 1;
2141 break;
2142
2143 case BPSTAT_WHAT_CHECK_SHLIBS:
2144 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2145 {
2146 if (debug_infrun)
2147 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_CHECK_SHLIBS\n");
2148 /* Remove breakpoints, we eventually want to step over the
2149 shlib event breakpoint, and SOLIB_ADD might adjust
2150 breakpoint addresses via breakpoint_re_set. */
2151 if (breakpoints_inserted)
2152 remove_breakpoints ();
2153 breakpoints_inserted = 0;
2154
2155 /* Check for any newly added shared libraries if we're
2156 supposed to be adding them automatically. Switch
2157 terminal for any messages produced by
2158 breakpoint_re_set. */
2159 target_terminal_ours_for_output ();
2160 /* NOTE: cagney/2003-11-25: Make certain that the target
2161 stack's section table is kept up-to-date. Architectures,
2162 (e.g., PPC64), use the section table to perform
2163 operations such as address => section name and hence
2164 require the table to contain all sections (including
2165 those found in shared libraries). */
2166 /* NOTE: cagney/2003-11-25: Pass current_target and not
2167 exec_ops to SOLIB_ADD. This is because current GDB is
2168 only tooled to propagate section_table changes out from
2169 the "current_target" (see target_resize_to_sections), and
2170 not up from the exec stratum. This, of course, isn't
2171 right. "infrun.c" should only interact with the
2172 exec/process stratum, instead relying on the target stack
2173 to propagate relevant changes (stop, section table
2174 changed, ...) up to other layers. */
2175 #ifdef SOLIB_ADD
2176 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2177 #else
2178 solib_add (NULL, 0, &current_target, auto_solib_add);
2179 #endif
2180 target_terminal_inferior ();
2181
2182 /* Try to reenable shared library breakpoints, additional
2183 code segments in shared libraries might be mapped in now. */
2184 re_enable_breakpoints_in_shlibs ();
2185
2186 /* If requested, stop when the dynamic linker notifies
2187 gdb of events. This allows the user to get control
2188 and place breakpoints in initializer routines for
2189 dynamically loaded objects (among other things). */
2190 if (stop_on_solib_events || stop_stack_dummy)
2191 {
2192 stop_stepping (ecs);
2193 return;
2194 }
2195
2196 /* If we stopped due to an explicit catchpoint, then the
2197 (see above) call to SOLIB_ADD pulled in any symbols
2198 from a newly-loaded library, if appropriate.
2199
2200 We do want the inferior to stop, but not where it is
2201 now, which is in the dynamic linker callback. Rather,
2202 we would like it stop in the user's program, just after
2203 the call that caused this catchpoint to trigger. That
2204 gives the user a more useful vantage from which to
2205 examine their program's state. */
2206 else if (what.main_action
2207 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2208 {
2209 /* ??rehrauer: If I could figure out how to get the
2210 right return PC from here, we could just set a temp
2211 breakpoint and resume. I'm not sure we can without
2212 cracking open the dld's shared libraries and sniffing
2213 their unwind tables and text/data ranges, and that's
2214 not a terribly portable notion.
2215
2216 Until that time, we must step the inferior out of the
2217 dld callback, and also out of the dld itself (and any
2218 code or stubs in libdld.sl, such as "shl_load" and
2219 friends) until we reach non-dld code. At that point,
2220 we can stop stepping. */
2221 bpstat_get_triggered_catchpoints (stop_bpstat,
2222 &ecs->
2223 stepping_through_solib_catchpoints);
2224 ecs->stepping_through_solib_after_catch = 1;
2225
2226 /* Be sure to lift all breakpoints, so the inferior does
2227 actually step past this point... */
2228 ecs->another_trap = 1;
2229 break;
2230 }
2231 else
2232 {
2233 /* We want to step over this breakpoint, then keep going. */
2234 ecs->another_trap = 1;
2235 break;
2236 }
2237 }
2238 break;
2239
2240 case BPSTAT_WHAT_LAST:
2241 /* Not a real code, but listed here to shut up gcc -Wall. */
2242
2243 case BPSTAT_WHAT_KEEP_CHECKING:
2244 break;
2245 }
2246 }
2247
2248 /* We come here if we hit a breakpoint but should not
2249 stop for it. Possibly we also were stepping
2250 and should stop for that. So fall through and
2251 test for stepping. But, if not stepping,
2252 do not stop. */
2253
2254 /* Are we stepping to get the inferior out of the dynamic linker's
2255 hook (and possibly the dld itself) after catching a shlib
2256 event? */
2257 if (ecs->stepping_through_solib_after_catch)
2258 {
2259 #if defined(SOLIB_ADD)
2260 /* Have we reached our destination? If not, keep going. */
2261 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2262 {
2263 if (debug_infrun)
2264 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2265 ecs->another_trap = 1;
2266 keep_going (ecs);
2267 return;
2268 }
2269 #endif
2270 if (debug_infrun)
2271 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2272 /* Else, stop and report the catchpoint(s) whose triggering
2273 caused us to begin stepping. */
2274 ecs->stepping_through_solib_after_catch = 0;
2275 bpstat_clear (&stop_bpstat);
2276 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2277 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2278 stop_print_frame = 1;
2279 stop_stepping (ecs);
2280 return;
2281 }
2282
2283 if (step_resume_breakpoint)
2284 {
2285 if (debug_infrun)
2286 fprintf_unfiltered (gdb_stdlog, "infrun: step-resume breakpoint\n");
2287
2288 /* Having a step-resume breakpoint overrides anything
2289 else having to do with stepping commands until
2290 that breakpoint is reached. */
2291 keep_going (ecs);
2292 return;
2293 }
2294
2295 if (step_range_end == 0)
2296 {
2297 if (debug_infrun)
2298 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2299 /* Likewise if we aren't even stepping. */
2300 keep_going (ecs);
2301 return;
2302 }
2303
2304 /* If stepping through a line, keep going if still within it.
2305
2306 Note that step_range_end is the address of the first instruction
2307 beyond the step range, and NOT the address of the last instruction
2308 within it! */
2309 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2310 {
2311 if (debug_infrun)
2312 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2313 paddr_nz (step_range_start),
2314 paddr_nz (step_range_end));
2315 keep_going (ecs);
2316 return;
2317 }
2318
2319 /* We stepped out of the stepping range. */
2320
2321 /* If we are stepping at the source level and entered the runtime
2322 loader dynamic symbol resolution code, we keep on single stepping
2323 until we exit the run time loader code and reach the callee's
2324 address. */
2325 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2326 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2327 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2328 #else
2329 && in_solib_dynsym_resolve_code (stop_pc)
2330 #endif
2331 )
2332 {
2333 CORE_ADDR pc_after_resolver =
2334 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2335
2336 if (debug_infrun)
2337 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2338
2339 if (pc_after_resolver)
2340 {
2341 /* Set up a step-resume breakpoint at the address
2342 indicated by SKIP_SOLIB_RESOLVER. */
2343 struct symtab_and_line sr_sal;
2344 init_sal (&sr_sal);
2345 sr_sal.pc = pc_after_resolver;
2346
2347 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2348 }
2349
2350 keep_going (ecs);
2351 return;
2352 }
2353
2354 if (step_range_end != 1
2355 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2356 || step_over_calls == STEP_OVER_ALL)
2357 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2358 {
2359 if (debug_infrun)
2360 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2361 /* The inferior, while doing a "step" or "next", has ended up in
2362 a signal trampoline (either by a signal being delivered or by
2363 the signal handler returning). Just single-step until the
2364 inferior leaves the trampoline (either by calling the handler
2365 or returning). */
2366 keep_going (ecs);
2367 return;
2368 }
2369
2370 if (frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2371 {
2372 /* It's a subroutine call. */
2373 CORE_ADDR real_stop_pc;
2374
2375 if (debug_infrun)
2376 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2377
2378 if ((step_over_calls == STEP_OVER_NONE)
2379 || ((step_range_end == 1)
2380 && in_prologue (prev_pc, ecs->stop_func_start)))
2381 {
2382 /* I presume that step_over_calls is only 0 when we're
2383 supposed to be stepping at the assembly language level
2384 ("stepi"). Just stop. */
2385 /* Also, maybe we just did a "nexti" inside a prolog, so we
2386 thought it was a subroutine call but it was not. Stop as
2387 well. FENN */
2388 stop_step = 1;
2389 print_stop_reason (END_STEPPING_RANGE, 0);
2390 stop_stepping (ecs);
2391 return;
2392 }
2393
2394 if (step_over_calls == STEP_OVER_ALL)
2395 {
2396 /* We're doing a "next", set a breakpoint at callee's return
2397 address (the address at which the caller will
2398 resume). */
2399 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2400 keep_going (ecs);
2401 return;
2402 }
2403
2404 /* If we are in a function call trampoline (a stub between the
2405 calling routine and the real function), locate the real
2406 function. That's what tells us (a) whether we want to step
2407 into it at all, and (b) what prologue we want to run to the
2408 end of, if we do step into it. */
2409 real_stop_pc = skip_language_trampoline (stop_pc);
2410 if (real_stop_pc == 0)
2411 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2412 if (real_stop_pc != 0)
2413 ecs->stop_func_start = real_stop_pc;
2414
2415 if (
2416 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2417 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2418 #else
2419 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2420 #endif
2421 )
2422 {
2423 struct symtab_and_line sr_sal;
2424 init_sal (&sr_sal);
2425 sr_sal.pc = ecs->stop_func_start;
2426
2427 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2428 keep_going (ecs);
2429 return;
2430 }
2431
2432 /* If we have line number information for the function we are
2433 thinking of stepping into, step into it.
2434
2435 If there are several symtabs at that PC (e.g. with include
2436 files), just want to know whether *any* of them have line
2437 numbers. find_pc_line handles this. */
2438 {
2439 struct symtab_and_line tmp_sal;
2440
2441 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2442 if (tmp_sal.line != 0)
2443 {
2444 step_into_function (ecs);
2445 return;
2446 }
2447 }
2448
2449 /* If we have no line number and the step-stop-if-no-debug is
2450 set, we stop the step so that the user has a chance to switch
2451 in assembly mode. */
2452 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2453 {
2454 stop_step = 1;
2455 print_stop_reason (END_STEPPING_RANGE, 0);
2456 stop_stepping (ecs);
2457 return;
2458 }
2459
2460 /* Set a breakpoint at callee's return address (the address at
2461 which the caller will resume). */
2462 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2463 keep_going (ecs);
2464 return;
2465 }
2466
2467 /* If we're in the return path from a shared library trampoline,
2468 we want to proceed through the trampoline when stepping. */
2469 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2470 {
2471 /* Determine where this trampoline returns. */
2472 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2473
2474 if (debug_infrun)
2475 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2476
2477 /* Only proceed through if we know where it's going. */
2478 if (real_stop_pc)
2479 {
2480 /* And put the step-breakpoint there and go until there. */
2481 struct symtab_and_line sr_sal;
2482
2483 init_sal (&sr_sal); /* initialize to zeroes */
2484 sr_sal.pc = real_stop_pc;
2485 sr_sal.section = find_pc_overlay (sr_sal.pc);
2486
2487 /* Do not specify what the fp should be when we stop since
2488 on some machines the prologue is where the new fp value
2489 is established. */
2490 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2491
2492 /* Restart without fiddling with the step ranges or
2493 other state. */
2494 keep_going (ecs);
2495 return;
2496 }
2497 }
2498
2499 ecs->sal = find_pc_line (stop_pc, 0);
2500
2501 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2502 the trampoline processing logic, however, there are some trampolines
2503 that have no names, so we should do trampoline handling first. */
2504 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2505 && ecs->stop_func_name == NULL
2506 && ecs->sal.line == 0)
2507 {
2508 if (debug_infrun)
2509 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2510
2511 /* The inferior just stepped into, or returned to, an
2512 undebuggable function (where there is no debugging information
2513 and no line number corresponding to the address where the
2514 inferior stopped). Since we want to skip this kind of code,
2515 we keep going until the inferior returns from this
2516 function. */
2517 if (step_stop_if_no_debug)
2518 {
2519 /* If we have no line number and the step-stop-if-no-debug
2520 is set, we stop the step so that the user has a chance to
2521 switch in assembly mode. */
2522 stop_step = 1;
2523 print_stop_reason (END_STEPPING_RANGE, 0);
2524 stop_stepping (ecs);
2525 return;
2526 }
2527 else
2528 {
2529 /* Set a breakpoint at callee's return address (the address
2530 at which the caller will resume). */
2531 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2532 keep_going (ecs);
2533 return;
2534 }
2535 }
2536
2537 if (step_range_end == 1)
2538 {
2539 /* It is stepi or nexti. We always want to stop stepping after
2540 one instruction. */
2541 if (debug_infrun)
2542 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2543 stop_step = 1;
2544 print_stop_reason (END_STEPPING_RANGE, 0);
2545 stop_stepping (ecs);
2546 return;
2547 }
2548
2549 if (ecs->sal.line == 0)
2550 {
2551 /* We have no line number information. That means to stop
2552 stepping (does this always happen right after one instruction,
2553 when we do "s" in a function with no line numbers,
2554 or can this happen as a result of a return or longjmp?). */
2555 if (debug_infrun)
2556 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2557 stop_step = 1;
2558 print_stop_reason (END_STEPPING_RANGE, 0);
2559 stop_stepping (ecs);
2560 return;
2561 }
2562
2563 if ((stop_pc == ecs->sal.pc)
2564 && (ecs->current_line != ecs->sal.line
2565 || ecs->current_symtab != ecs->sal.symtab))
2566 {
2567 /* We are at the start of a different line. So stop. Note that
2568 we don't stop if we step into the middle of a different line.
2569 That is said to make things like for (;;) statements work
2570 better. */
2571 if (debug_infrun)
2572 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2573 stop_step = 1;
2574 print_stop_reason (END_STEPPING_RANGE, 0);
2575 stop_stepping (ecs);
2576 return;
2577 }
2578
2579 /* We aren't done stepping.
2580
2581 Optimize by setting the stepping range to the line.
2582 (We might not be in the original line, but if we entered a
2583 new line in mid-statement, we continue stepping. This makes
2584 things like for(;;) statements work better.) */
2585
2586 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2587 {
2588 /* If this is the last line of the function, don't keep stepping
2589 (it would probably step us out of the function).
2590 This is particularly necessary for a one-line function,
2591 in which after skipping the prologue we better stop even though
2592 we will be in mid-line. */
2593 if (debug_infrun)
2594 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2595 stop_step = 1;
2596 print_stop_reason (END_STEPPING_RANGE, 0);
2597 stop_stepping (ecs);
2598 return;
2599 }
2600 step_range_start = ecs->sal.pc;
2601 step_range_end = ecs->sal.end;
2602 step_frame_id = get_frame_id (get_current_frame ());
2603 ecs->current_line = ecs->sal.line;
2604 ecs->current_symtab = ecs->sal.symtab;
2605
2606 /* In the case where we just stepped out of a function into the
2607 middle of a line of the caller, continue stepping, but
2608 step_frame_id must be modified to current frame */
2609 #if 0
2610 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2611 generous. It will trigger on things like a step into a frameless
2612 stackless leaf function. I think the logic should instead look
2613 at the unwound frame ID has that should give a more robust
2614 indication of what happened. */
2615 if (step - ID == current - ID)
2616 still stepping in same function;
2617 else if (step - ID == unwind (current - ID))
2618 stepped into a function;
2619 else
2620 stepped out of a function;
2621 /* Of course this assumes that the frame ID unwind code is robust
2622 and we're willing to introduce frame unwind logic into this
2623 function. Fortunately, those days are nearly upon us. */
2624 #endif
2625 {
2626 struct frame_id current_frame = get_frame_id (get_current_frame ());
2627 if (!(frame_id_inner (current_frame, step_frame_id)))
2628 step_frame_id = current_frame;
2629 }
2630
2631 if (debug_infrun)
2632 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2633 keep_going (ecs);
2634 }
2635
2636 /* Are we in the middle of stepping? */
2637
2638 static int
2639 currently_stepping (struct execution_control_state *ecs)
2640 {
2641 return ((!ecs->handling_longjmp
2642 && ((step_range_end && step_resume_breakpoint == NULL)
2643 || trap_expected))
2644 || ecs->stepping_through_solib_after_catch
2645 || bpstat_should_step ());
2646 }
2647
2648 /* Subroutine call with source code we should not step over. Do step
2649 to the first line of code in it. */
2650
2651 static void
2652 step_into_function (struct execution_control_state *ecs)
2653 {
2654 struct symtab *s;
2655 struct symtab_and_line sr_sal;
2656
2657 s = find_pc_symtab (stop_pc);
2658 if (s && s->language != language_asm)
2659 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2660
2661 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2662 /* Use the step_resume_break to step until the end of the prologue,
2663 even if that involves jumps (as it seems to on the vax under
2664 4.2). */
2665 /* If the prologue ends in the middle of a source line, continue to
2666 the end of that source line (if it is still within the function).
2667 Otherwise, just go to end of prologue. */
2668 if (ecs->sal.end
2669 && ecs->sal.pc != ecs->stop_func_start
2670 && ecs->sal.end < ecs->stop_func_end)
2671 ecs->stop_func_start = ecs->sal.end;
2672
2673 /* Architectures which require breakpoint adjustment might not be able
2674 to place a breakpoint at the computed address. If so, the test
2675 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2676 ecs->stop_func_start to an address at which a breakpoint may be
2677 legitimately placed.
2678
2679 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2680 made, GDB will enter an infinite loop when stepping through
2681 optimized code consisting of VLIW instructions which contain
2682 subinstructions corresponding to different source lines. On
2683 FR-V, it's not permitted to place a breakpoint on any but the
2684 first subinstruction of a VLIW instruction. When a breakpoint is
2685 set, GDB will adjust the breakpoint address to the beginning of
2686 the VLIW instruction. Thus, we need to make the corresponding
2687 adjustment here when computing the stop address. */
2688
2689 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2690 {
2691 ecs->stop_func_start
2692 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2693 ecs->stop_func_start);
2694 }
2695
2696 if (ecs->stop_func_start == stop_pc)
2697 {
2698 /* We are already there: stop now. */
2699 stop_step = 1;
2700 print_stop_reason (END_STEPPING_RANGE, 0);
2701 stop_stepping (ecs);
2702 return;
2703 }
2704 else
2705 {
2706 /* Put the step-breakpoint there and go until there. */
2707 init_sal (&sr_sal); /* initialize to zeroes */
2708 sr_sal.pc = ecs->stop_func_start;
2709 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2710
2711 /* Do not specify what the fp should be when we stop since on
2712 some machines the prologue is where the new fp value is
2713 established. */
2714 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2715
2716 /* And make sure stepping stops right away then. */
2717 step_range_end = step_range_start;
2718 }
2719 keep_going (ecs);
2720 }
2721
2722 /* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID.
2723 This is used to both functions and to skip over code. */
2724
2725 static void
2726 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2727 struct frame_id sr_id)
2728 {
2729 /* There should never be more than one step-resume breakpoint per
2730 thread, so we should never be setting a new
2731 step_resume_breakpoint when one is already active. */
2732 gdb_assert (step_resume_breakpoint == NULL);
2733 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2734 bp_step_resume);
2735 if (breakpoints_inserted)
2736 insert_breakpoints ();
2737 }
2738
2739 /* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2740 to skip a function (next, skip-no-debug) or signal. It's assumed
2741 that the function/signal handler being skipped eventually returns
2742 to the breakpoint inserted at RETURN_FRAME.pc.
2743
2744 For the skip-function case, the function may have been reached by
2745 either single stepping a call / return / signal-return instruction,
2746 or by hitting a breakpoint. In all cases, the RETURN_FRAME belongs
2747 to the skip-function's caller.
2748
2749 For the signals case, this is called with the interrupted
2750 function's frame. The signal handler, when it returns, will resume
2751 the interrupted function at RETURN_FRAME.pc. */
2752
2753 static void
2754 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2755 {
2756 struct symtab_and_line sr_sal;
2757
2758 init_sal (&sr_sal); /* initialize to zeros */
2759
2760 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
2761 sr_sal.section = find_pc_overlay (sr_sal.pc);
2762
2763 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2764 }
2765
2766 static void
2767 stop_stepping (struct execution_control_state *ecs)
2768 {
2769 if (debug_infrun)
2770 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2771
2772 /* Let callers know we don't want to wait for the inferior anymore. */
2773 ecs->wait_some_more = 0;
2774 }
2775
2776 /* This function handles various cases where we need to continue
2777 waiting for the inferior. */
2778 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2779
2780 static void
2781 keep_going (struct execution_control_state *ecs)
2782 {
2783 /* Save the pc before execution, to compare with pc after stop. */
2784 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2785
2786 /* If we did not do break;, it means we should keep running the
2787 inferior and not return to debugger. */
2788
2789 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2790 {
2791 /* We took a signal (which we are supposed to pass through to
2792 the inferior, else we'd have done a break above) and we
2793 haven't yet gotten our trap. Simply continue. */
2794 resume (currently_stepping (ecs), stop_signal);
2795 }
2796 else
2797 {
2798 /* Either the trap was not expected, but we are continuing
2799 anyway (the user asked that this signal be passed to the
2800 child)
2801 -- or --
2802 The signal was SIGTRAP, e.g. it was our signal, but we
2803 decided we should resume from it.
2804
2805 We're going to run this baby now! */
2806
2807 if (!breakpoints_inserted && !ecs->another_trap)
2808 {
2809 breakpoints_failed = insert_breakpoints ();
2810 if (breakpoints_failed)
2811 {
2812 stop_stepping (ecs);
2813 return;
2814 }
2815 breakpoints_inserted = 1;
2816 }
2817
2818 trap_expected = ecs->another_trap;
2819
2820 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2821 specifies that such a signal should be delivered to the
2822 target program).
2823
2824 Typically, this would occure when a user is debugging a
2825 target monitor on a simulator: the target monitor sets a
2826 breakpoint; the simulator encounters this break-point and
2827 halts the simulation handing control to GDB; GDB, noteing
2828 that the break-point isn't valid, returns control back to the
2829 simulator; the simulator then delivers the hardware
2830 equivalent of a SIGNAL_TRAP to the program being debugged. */
2831
2832 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2833 stop_signal = TARGET_SIGNAL_0;
2834
2835
2836 resume (currently_stepping (ecs), stop_signal);
2837 }
2838
2839 prepare_to_wait (ecs);
2840 }
2841
2842 /* This function normally comes after a resume, before
2843 handle_inferior_event exits. It takes care of any last bits of
2844 housekeeping, and sets the all-important wait_some_more flag. */
2845
2846 static void
2847 prepare_to_wait (struct execution_control_state *ecs)
2848 {
2849 if (debug_infrun)
2850 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2851 if (ecs->infwait_state == infwait_normal_state)
2852 {
2853 overlay_cache_invalid = 1;
2854
2855 /* We have to invalidate the registers BEFORE calling
2856 target_wait because they can be loaded from the target while
2857 in target_wait. This makes remote debugging a bit more
2858 efficient for those targets that provide critical registers
2859 as part of their normal status mechanism. */
2860
2861 registers_changed ();
2862 ecs->waiton_ptid = pid_to_ptid (-1);
2863 ecs->wp = &(ecs->ws);
2864 }
2865 /* This is the old end of the while loop. Let everybody know we
2866 want to wait for the inferior some more and get called again
2867 soon. */
2868 ecs->wait_some_more = 1;
2869 }
2870
2871 /* Print why the inferior has stopped. We always print something when
2872 the inferior exits, or receives a signal. The rest of the cases are
2873 dealt with later on in normal_stop() and print_it_typical(). Ideally
2874 there should be a call to this function from handle_inferior_event()
2875 each time stop_stepping() is called.*/
2876 static void
2877 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2878 {
2879 switch (stop_reason)
2880 {
2881 case STOP_UNKNOWN:
2882 /* We don't deal with these cases from handle_inferior_event()
2883 yet. */
2884 break;
2885 case END_STEPPING_RANGE:
2886 /* We are done with a step/next/si/ni command. */
2887 /* For now print nothing. */
2888 /* Print a message only if not in the middle of doing a "step n"
2889 operation for n > 1 */
2890 if (!step_multi || !stop_step)
2891 if (ui_out_is_mi_like_p (uiout))
2892 ui_out_field_string
2893 (uiout, "reason",
2894 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
2895 break;
2896 case BREAKPOINT_HIT:
2897 /* We found a breakpoint. */
2898 /* For now print nothing. */
2899 break;
2900 case SIGNAL_EXITED:
2901 /* The inferior was terminated by a signal. */
2902 annotate_signalled ();
2903 if (ui_out_is_mi_like_p (uiout))
2904 ui_out_field_string
2905 (uiout, "reason",
2906 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
2907 ui_out_text (uiout, "\nProgram terminated with signal ");
2908 annotate_signal_name ();
2909 ui_out_field_string (uiout, "signal-name",
2910 target_signal_to_name (stop_info));
2911 annotate_signal_name_end ();
2912 ui_out_text (uiout, ", ");
2913 annotate_signal_string ();
2914 ui_out_field_string (uiout, "signal-meaning",
2915 target_signal_to_string (stop_info));
2916 annotate_signal_string_end ();
2917 ui_out_text (uiout, ".\n");
2918 ui_out_text (uiout, "The program no longer exists.\n");
2919 break;
2920 case EXITED:
2921 /* The inferior program is finished. */
2922 annotate_exited (stop_info);
2923 if (stop_info)
2924 {
2925 if (ui_out_is_mi_like_p (uiout))
2926 ui_out_field_string (uiout, "reason",
2927 async_reason_lookup (EXEC_ASYNC_EXITED));
2928 ui_out_text (uiout, "\nProgram exited with code ");
2929 ui_out_field_fmt (uiout, "exit-code", "0%o",
2930 (unsigned int) stop_info);
2931 ui_out_text (uiout, ".\n");
2932 }
2933 else
2934 {
2935 if (ui_out_is_mi_like_p (uiout))
2936 ui_out_field_string
2937 (uiout, "reason",
2938 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
2939 ui_out_text (uiout, "\nProgram exited normally.\n");
2940 }
2941 /* Support the --return-child-result option. */
2942 return_child_result_value = stop_info;
2943 break;
2944 case SIGNAL_RECEIVED:
2945 /* Signal received. The signal table tells us to print about
2946 it. */
2947 annotate_signal ();
2948 ui_out_text (uiout, "\nProgram received signal ");
2949 annotate_signal_name ();
2950 if (ui_out_is_mi_like_p (uiout))
2951 ui_out_field_string
2952 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
2953 ui_out_field_string (uiout, "signal-name",
2954 target_signal_to_name (stop_info));
2955 annotate_signal_name_end ();
2956 ui_out_text (uiout, ", ");
2957 annotate_signal_string ();
2958 ui_out_field_string (uiout, "signal-meaning",
2959 target_signal_to_string (stop_info));
2960 annotate_signal_string_end ();
2961 ui_out_text (uiout, ".\n");
2962 break;
2963 default:
2964 internal_error (__FILE__, __LINE__,
2965 _("print_stop_reason: unrecognized enum value"));
2966 break;
2967 }
2968 }
2969 \f
2970
2971 /* Here to return control to GDB when the inferior stops for real.
2972 Print appropriate messages, remove breakpoints, give terminal our modes.
2973
2974 STOP_PRINT_FRAME nonzero means print the executing frame
2975 (pc, function, args, file, line number and line text).
2976 BREAKPOINTS_FAILED nonzero means stop was due to error
2977 attempting to insert breakpoints. */
2978
2979 void
2980 normal_stop (void)
2981 {
2982 struct target_waitstatus last;
2983 ptid_t last_ptid;
2984
2985 get_last_target_status (&last_ptid, &last);
2986
2987 /* As with the notification of thread events, we want to delay
2988 notifying the user that we've switched thread context until
2989 the inferior actually stops.
2990
2991 There's no point in saying anything if the inferior has exited.
2992 Note that SIGNALLED here means "exited with a signal", not
2993 "received a signal". */
2994 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
2995 && target_has_execution
2996 && last.kind != TARGET_WAITKIND_SIGNALLED
2997 && last.kind != TARGET_WAITKIND_EXITED)
2998 {
2999 target_terminal_ours_for_output ();
3000 printf_filtered (_("[Switching to %s]\n"),
3001 target_pid_or_tid_to_str (inferior_ptid));
3002 previous_inferior_ptid = inferior_ptid;
3003 }
3004
3005 /* NOTE drow/2004-01-17: Is this still necessary? */
3006 /* Make sure that the current_frame's pc is correct. This
3007 is a correction for setting up the frame info before doing
3008 DECR_PC_AFTER_BREAK */
3009 if (target_has_execution)
3010 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3011 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3012 frame code to check for this and sort out any resultant mess.
3013 DECR_PC_AFTER_BREAK needs to just go away. */
3014 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3015
3016 if (target_has_execution && breakpoints_inserted)
3017 {
3018 if (remove_breakpoints ())
3019 {
3020 target_terminal_ours_for_output ();
3021 printf_filtered (_("\
3022 Cannot remove breakpoints because program is no longer writable.\n\
3023 It might be running in another process.\n\
3024 Further execution is probably impossible.\n"));
3025 }
3026 }
3027 breakpoints_inserted = 0;
3028
3029 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3030 Delete any breakpoint that is to be deleted at the next stop. */
3031
3032 breakpoint_auto_delete (stop_bpstat);
3033
3034 /* If an auto-display called a function and that got a signal,
3035 delete that auto-display to avoid an infinite recursion. */
3036
3037 if (stopped_by_random_signal)
3038 disable_current_display ();
3039
3040 /* Don't print a message if in the middle of doing a "step n"
3041 operation for n > 1 */
3042 if (step_multi && stop_step)
3043 goto done;
3044
3045 target_terminal_ours ();
3046
3047 /* Set the current source location. This will also happen if we
3048 display the frame below, but the current SAL will be incorrect
3049 during a user hook-stop function. */
3050 if (target_has_stack && !stop_stack_dummy)
3051 set_current_sal_from_frame (get_current_frame (), 1);
3052
3053 /* Look up the hook_stop and run it (CLI internally handles problem
3054 of stop_command's pre-hook not existing). */
3055 if (stop_command)
3056 catch_errors (hook_stop_stub, stop_command,
3057 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3058
3059 if (!target_has_stack)
3060 {
3061
3062 goto done;
3063 }
3064
3065 /* Select innermost stack frame - i.e., current frame is frame 0,
3066 and current location is based on that.
3067 Don't do this on return from a stack dummy routine,
3068 or if the program has exited. */
3069
3070 if (!stop_stack_dummy)
3071 {
3072 select_frame (get_current_frame ());
3073
3074 /* Print current location without a level number, if
3075 we have changed functions or hit a breakpoint.
3076 Print source line if we have one.
3077 bpstat_print() contains the logic deciding in detail
3078 what to print, based on the event(s) that just occurred. */
3079
3080 if (stop_print_frame && deprecated_selected_frame)
3081 {
3082 int bpstat_ret;
3083 int source_flag;
3084 int do_frame_printing = 1;
3085
3086 bpstat_ret = bpstat_print (stop_bpstat);
3087 switch (bpstat_ret)
3088 {
3089 case PRINT_UNKNOWN:
3090 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3091 (or should) carry around the function and does (or
3092 should) use that when doing a frame comparison. */
3093 if (stop_step
3094 && frame_id_eq (step_frame_id,
3095 get_frame_id (get_current_frame ()))
3096 && step_start_function == find_pc_function (stop_pc))
3097 source_flag = SRC_LINE; /* finished step, just print source line */
3098 else
3099 source_flag = SRC_AND_LOC; /* print location and source line */
3100 break;
3101 case PRINT_SRC_AND_LOC:
3102 source_flag = SRC_AND_LOC; /* print location and source line */
3103 break;
3104 case PRINT_SRC_ONLY:
3105 source_flag = SRC_LINE;
3106 break;
3107 case PRINT_NOTHING:
3108 source_flag = SRC_LINE; /* something bogus */
3109 do_frame_printing = 0;
3110 break;
3111 default:
3112 internal_error (__FILE__, __LINE__, _("Unknown value."));
3113 }
3114 /* For mi, have the same behavior every time we stop:
3115 print everything but the source line. */
3116 if (ui_out_is_mi_like_p (uiout))
3117 source_flag = LOC_AND_ADDRESS;
3118
3119 if (ui_out_is_mi_like_p (uiout))
3120 ui_out_field_int (uiout, "thread-id",
3121 pid_to_thread_id (inferior_ptid));
3122 /* The behavior of this routine with respect to the source
3123 flag is:
3124 SRC_LINE: Print only source line
3125 LOCATION: Print only location
3126 SRC_AND_LOC: Print location and source line */
3127 if (do_frame_printing)
3128 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3129
3130 /* Display the auto-display expressions. */
3131 do_displays ();
3132 }
3133 }
3134
3135 /* Save the function value return registers, if we care.
3136 We might be about to restore their previous contents. */
3137 if (proceed_to_finish)
3138 /* NB: The copy goes through to the target picking up the value of
3139 all the registers. */
3140 regcache_cpy (stop_registers, current_regcache);
3141
3142 if (stop_stack_dummy)
3143 {
3144 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3145 ends with a setting of the current frame, so we can use that
3146 next. */
3147 frame_pop (get_current_frame ());
3148 /* Set stop_pc to what it was before we called the function.
3149 Can't rely on restore_inferior_status because that only gets
3150 called if we don't stop in the called function. */
3151 stop_pc = read_pc ();
3152 select_frame (get_current_frame ());
3153 }
3154
3155 done:
3156 annotate_stopped ();
3157 observer_notify_normal_stop (stop_bpstat);
3158 }
3159
3160 static int
3161 hook_stop_stub (void *cmd)
3162 {
3163 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3164 return (0);
3165 }
3166 \f
3167 int
3168 signal_stop_state (int signo)
3169 {
3170 return signal_stop[signo];
3171 }
3172
3173 int
3174 signal_print_state (int signo)
3175 {
3176 return signal_print[signo];
3177 }
3178
3179 int
3180 signal_pass_state (int signo)
3181 {
3182 return signal_program[signo];
3183 }
3184
3185 int
3186 signal_stop_update (int signo, int state)
3187 {
3188 int ret = signal_stop[signo];
3189 signal_stop[signo] = state;
3190 return ret;
3191 }
3192
3193 int
3194 signal_print_update (int signo, int state)
3195 {
3196 int ret = signal_print[signo];
3197 signal_print[signo] = state;
3198 return ret;
3199 }
3200
3201 int
3202 signal_pass_update (int signo, int state)
3203 {
3204 int ret = signal_program[signo];
3205 signal_program[signo] = state;
3206 return ret;
3207 }
3208
3209 static void
3210 sig_print_header (void)
3211 {
3212 printf_filtered (_("\
3213 Signal Stop\tPrint\tPass to program\tDescription\n"));
3214 }
3215
3216 static void
3217 sig_print_info (enum target_signal oursig)
3218 {
3219 char *name = target_signal_to_name (oursig);
3220 int name_padding = 13 - strlen (name);
3221
3222 if (name_padding <= 0)
3223 name_padding = 0;
3224
3225 printf_filtered ("%s", name);
3226 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3227 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3228 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3229 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3230 printf_filtered ("%s\n", target_signal_to_string (oursig));
3231 }
3232
3233 /* Specify how various signals in the inferior should be handled. */
3234
3235 static void
3236 handle_command (char *args, int from_tty)
3237 {
3238 char **argv;
3239 int digits, wordlen;
3240 int sigfirst, signum, siglast;
3241 enum target_signal oursig;
3242 int allsigs;
3243 int nsigs;
3244 unsigned char *sigs;
3245 struct cleanup *old_chain;
3246
3247 if (args == NULL)
3248 {
3249 error_no_arg (_("signal to handle"));
3250 }
3251
3252 /* Allocate and zero an array of flags for which signals to handle. */
3253
3254 nsigs = (int) TARGET_SIGNAL_LAST;
3255 sigs = (unsigned char *) alloca (nsigs);
3256 memset (sigs, 0, nsigs);
3257
3258 /* Break the command line up into args. */
3259
3260 argv = buildargv (args);
3261 if (argv == NULL)
3262 {
3263 nomem (0);
3264 }
3265 old_chain = make_cleanup_freeargv (argv);
3266
3267 /* Walk through the args, looking for signal oursigs, signal names, and
3268 actions. Signal numbers and signal names may be interspersed with
3269 actions, with the actions being performed for all signals cumulatively
3270 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3271
3272 while (*argv != NULL)
3273 {
3274 wordlen = strlen (*argv);
3275 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3276 {;
3277 }
3278 allsigs = 0;
3279 sigfirst = siglast = -1;
3280
3281 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3282 {
3283 /* Apply action to all signals except those used by the
3284 debugger. Silently skip those. */
3285 allsigs = 1;
3286 sigfirst = 0;
3287 siglast = nsigs - 1;
3288 }
3289 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3290 {
3291 SET_SIGS (nsigs, sigs, signal_stop);
3292 SET_SIGS (nsigs, sigs, signal_print);
3293 }
3294 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3295 {
3296 UNSET_SIGS (nsigs, sigs, signal_program);
3297 }
3298 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3299 {
3300 SET_SIGS (nsigs, sigs, signal_print);
3301 }
3302 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3303 {
3304 SET_SIGS (nsigs, sigs, signal_program);
3305 }
3306 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3307 {
3308 UNSET_SIGS (nsigs, sigs, signal_stop);
3309 }
3310 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3311 {
3312 SET_SIGS (nsigs, sigs, signal_program);
3313 }
3314 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3315 {
3316 UNSET_SIGS (nsigs, sigs, signal_print);
3317 UNSET_SIGS (nsigs, sigs, signal_stop);
3318 }
3319 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3320 {
3321 UNSET_SIGS (nsigs, sigs, signal_program);
3322 }
3323 else if (digits > 0)
3324 {
3325 /* It is numeric. The numeric signal refers to our own
3326 internal signal numbering from target.h, not to host/target
3327 signal number. This is a feature; users really should be
3328 using symbolic names anyway, and the common ones like
3329 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3330
3331 sigfirst = siglast = (int)
3332 target_signal_from_command (atoi (*argv));
3333 if ((*argv)[digits] == '-')
3334 {
3335 siglast = (int)
3336 target_signal_from_command (atoi ((*argv) + digits + 1));
3337 }
3338 if (sigfirst > siglast)
3339 {
3340 /* Bet he didn't figure we'd think of this case... */
3341 signum = sigfirst;
3342 sigfirst = siglast;
3343 siglast = signum;
3344 }
3345 }
3346 else
3347 {
3348 oursig = target_signal_from_name (*argv);
3349 if (oursig != TARGET_SIGNAL_UNKNOWN)
3350 {
3351 sigfirst = siglast = (int) oursig;
3352 }
3353 else
3354 {
3355 /* Not a number and not a recognized flag word => complain. */
3356 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3357 }
3358 }
3359
3360 /* If any signal numbers or symbol names were found, set flags for
3361 which signals to apply actions to. */
3362
3363 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3364 {
3365 switch ((enum target_signal) signum)
3366 {
3367 case TARGET_SIGNAL_TRAP:
3368 case TARGET_SIGNAL_INT:
3369 if (!allsigs && !sigs[signum])
3370 {
3371 if (query ("%s is used by the debugger.\n\
3372 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3373 {
3374 sigs[signum] = 1;
3375 }
3376 else
3377 {
3378 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3379 gdb_flush (gdb_stdout);
3380 }
3381 }
3382 break;
3383 case TARGET_SIGNAL_0:
3384 case TARGET_SIGNAL_DEFAULT:
3385 case TARGET_SIGNAL_UNKNOWN:
3386 /* Make sure that "all" doesn't print these. */
3387 break;
3388 default:
3389 sigs[signum] = 1;
3390 break;
3391 }
3392 }
3393
3394 argv++;
3395 }
3396
3397 target_notice_signals (inferior_ptid);
3398
3399 if (from_tty)
3400 {
3401 /* Show the results. */
3402 sig_print_header ();
3403 for (signum = 0; signum < nsigs; signum++)
3404 {
3405 if (sigs[signum])
3406 {
3407 sig_print_info (signum);
3408 }
3409 }
3410 }
3411
3412 do_cleanups (old_chain);
3413 }
3414
3415 static void
3416 xdb_handle_command (char *args, int from_tty)
3417 {
3418 char **argv;
3419 struct cleanup *old_chain;
3420
3421 /* Break the command line up into args. */
3422
3423 argv = buildargv (args);
3424 if (argv == NULL)
3425 {
3426 nomem (0);
3427 }
3428 old_chain = make_cleanup_freeargv (argv);
3429 if (argv[1] != (char *) NULL)
3430 {
3431 char *argBuf;
3432 int bufLen;
3433
3434 bufLen = strlen (argv[0]) + 20;
3435 argBuf = (char *) xmalloc (bufLen);
3436 if (argBuf)
3437 {
3438 int validFlag = 1;
3439 enum target_signal oursig;
3440
3441 oursig = target_signal_from_name (argv[0]);
3442 memset (argBuf, 0, bufLen);
3443 if (strcmp (argv[1], "Q") == 0)
3444 sprintf (argBuf, "%s %s", argv[0], "noprint");
3445 else
3446 {
3447 if (strcmp (argv[1], "s") == 0)
3448 {
3449 if (!signal_stop[oursig])
3450 sprintf (argBuf, "%s %s", argv[0], "stop");
3451 else
3452 sprintf (argBuf, "%s %s", argv[0], "nostop");
3453 }
3454 else if (strcmp (argv[1], "i") == 0)
3455 {
3456 if (!signal_program[oursig])
3457 sprintf (argBuf, "%s %s", argv[0], "pass");
3458 else
3459 sprintf (argBuf, "%s %s", argv[0], "nopass");
3460 }
3461 else if (strcmp (argv[1], "r") == 0)
3462 {
3463 if (!signal_print[oursig])
3464 sprintf (argBuf, "%s %s", argv[0], "print");
3465 else
3466 sprintf (argBuf, "%s %s", argv[0], "noprint");
3467 }
3468 else
3469 validFlag = 0;
3470 }
3471 if (validFlag)
3472 handle_command (argBuf, from_tty);
3473 else
3474 printf_filtered (_("Invalid signal handling flag.\n"));
3475 if (argBuf)
3476 xfree (argBuf);
3477 }
3478 }
3479 do_cleanups (old_chain);
3480 }
3481
3482 /* Print current contents of the tables set by the handle command.
3483 It is possible we should just be printing signals actually used
3484 by the current target (but for things to work right when switching
3485 targets, all signals should be in the signal tables). */
3486
3487 static void
3488 signals_info (char *signum_exp, int from_tty)
3489 {
3490 enum target_signal oursig;
3491 sig_print_header ();
3492
3493 if (signum_exp)
3494 {
3495 /* First see if this is a symbol name. */
3496 oursig = target_signal_from_name (signum_exp);
3497 if (oursig == TARGET_SIGNAL_UNKNOWN)
3498 {
3499 /* No, try numeric. */
3500 oursig =
3501 target_signal_from_command (parse_and_eval_long (signum_exp));
3502 }
3503 sig_print_info (oursig);
3504 return;
3505 }
3506
3507 printf_filtered ("\n");
3508 /* These ugly casts brought to you by the native VAX compiler. */
3509 for (oursig = TARGET_SIGNAL_FIRST;
3510 (int) oursig < (int) TARGET_SIGNAL_LAST;
3511 oursig = (enum target_signal) ((int) oursig + 1))
3512 {
3513 QUIT;
3514
3515 if (oursig != TARGET_SIGNAL_UNKNOWN
3516 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3517 sig_print_info (oursig);
3518 }
3519
3520 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3521 }
3522 \f
3523 struct inferior_status
3524 {
3525 enum target_signal stop_signal;
3526 CORE_ADDR stop_pc;
3527 bpstat stop_bpstat;
3528 int stop_step;
3529 int stop_stack_dummy;
3530 int stopped_by_random_signal;
3531 int trap_expected;
3532 CORE_ADDR step_range_start;
3533 CORE_ADDR step_range_end;
3534 struct frame_id step_frame_id;
3535 enum step_over_calls_kind step_over_calls;
3536 CORE_ADDR step_resume_break_address;
3537 int stop_after_trap;
3538 int stop_soon;
3539 struct regcache *stop_registers;
3540
3541 /* These are here because if call_function_by_hand has written some
3542 registers and then decides to call error(), we better not have changed
3543 any registers. */
3544 struct regcache *registers;
3545
3546 /* A frame unique identifier. */
3547 struct frame_id selected_frame_id;
3548
3549 int breakpoint_proceeded;
3550 int restore_stack_info;
3551 int proceed_to_finish;
3552 };
3553
3554 void
3555 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3556 LONGEST val)
3557 {
3558 int size = register_size (current_gdbarch, regno);
3559 void *buf = alloca (size);
3560 store_signed_integer (buf, size, val);
3561 regcache_raw_write (inf_status->registers, regno, buf);
3562 }
3563
3564 /* Save all of the information associated with the inferior<==>gdb
3565 connection. INF_STATUS is a pointer to a "struct inferior_status"
3566 (defined in inferior.h). */
3567
3568 struct inferior_status *
3569 save_inferior_status (int restore_stack_info)
3570 {
3571 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3572
3573 inf_status->stop_signal = stop_signal;
3574 inf_status->stop_pc = stop_pc;
3575 inf_status->stop_step = stop_step;
3576 inf_status->stop_stack_dummy = stop_stack_dummy;
3577 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3578 inf_status->trap_expected = trap_expected;
3579 inf_status->step_range_start = step_range_start;
3580 inf_status->step_range_end = step_range_end;
3581 inf_status->step_frame_id = step_frame_id;
3582 inf_status->step_over_calls = step_over_calls;
3583 inf_status->stop_after_trap = stop_after_trap;
3584 inf_status->stop_soon = stop_soon;
3585 /* Save original bpstat chain here; replace it with copy of chain.
3586 If caller's caller is walking the chain, they'll be happier if we
3587 hand them back the original chain when restore_inferior_status is
3588 called. */
3589 inf_status->stop_bpstat = stop_bpstat;
3590 stop_bpstat = bpstat_copy (stop_bpstat);
3591 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3592 inf_status->restore_stack_info = restore_stack_info;
3593 inf_status->proceed_to_finish = proceed_to_finish;
3594
3595 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3596
3597 inf_status->registers = regcache_dup (current_regcache);
3598
3599 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
3600 return inf_status;
3601 }
3602
3603 static int
3604 restore_selected_frame (void *args)
3605 {
3606 struct frame_id *fid = (struct frame_id *) args;
3607 struct frame_info *frame;
3608
3609 frame = frame_find_by_id (*fid);
3610
3611 /* If inf_status->selected_frame_id is NULL, there was no previously
3612 selected frame. */
3613 if (frame == NULL)
3614 {
3615 warning (_("Unable to restore previously selected frame."));
3616 return 0;
3617 }
3618
3619 select_frame (frame);
3620
3621 return (1);
3622 }
3623
3624 void
3625 restore_inferior_status (struct inferior_status *inf_status)
3626 {
3627 stop_signal = inf_status->stop_signal;
3628 stop_pc = inf_status->stop_pc;
3629 stop_step = inf_status->stop_step;
3630 stop_stack_dummy = inf_status->stop_stack_dummy;
3631 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3632 trap_expected = inf_status->trap_expected;
3633 step_range_start = inf_status->step_range_start;
3634 step_range_end = inf_status->step_range_end;
3635 step_frame_id = inf_status->step_frame_id;
3636 step_over_calls = inf_status->step_over_calls;
3637 stop_after_trap = inf_status->stop_after_trap;
3638 stop_soon = inf_status->stop_soon;
3639 bpstat_clear (&stop_bpstat);
3640 stop_bpstat = inf_status->stop_bpstat;
3641 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3642 proceed_to_finish = inf_status->proceed_to_finish;
3643
3644 /* FIXME: Is the restore of stop_registers always needed. */
3645 regcache_xfree (stop_registers);
3646 stop_registers = inf_status->stop_registers;
3647
3648 /* The inferior can be gone if the user types "print exit(0)"
3649 (and perhaps other times). */
3650 if (target_has_execution)
3651 /* NB: The register write goes through to the target. */
3652 regcache_cpy (current_regcache, inf_status->registers);
3653 regcache_xfree (inf_status->registers);
3654
3655 /* FIXME: If we are being called after stopping in a function which
3656 is called from gdb, we should not be trying to restore the
3657 selected frame; it just prints a spurious error message (The
3658 message is useful, however, in detecting bugs in gdb (like if gdb
3659 clobbers the stack)). In fact, should we be restoring the
3660 inferior status at all in that case? . */
3661
3662 if (target_has_stack && inf_status->restore_stack_info)
3663 {
3664 /* The point of catch_errors is that if the stack is clobbered,
3665 walking the stack might encounter a garbage pointer and
3666 error() trying to dereference it. */
3667 if (catch_errors
3668 (restore_selected_frame, &inf_status->selected_frame_id,
3669 "Unable to restore previously selected frame:\n",
3670 RETURN_MASK_ERROR) == 0)
3671 /* Error in restoring the selected frame. Select the innermost
3672 frame. */
3673 select_frame (get_current_frame ());
3674
3675 }
3676
3677 xfree (inf_status);
3678 }
3679
3680 static void
3681 do_restore_inferior_status_cleanup (void *sts)
3682 {
3683 restore_inferior_status (sts);
3684 }
3685
3686 struct cleanup *
3687 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3688 {
3689 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3690 }
3691
3692 void
3693 discard_inferior_status (struct inferior_status *inf_status)
3694 {
3695 /* See save_inferior_status for info on stop_bpstat. */
3696 bpstat_clear (&inf_status->stop_bpstat);
3697 regcache_xfree (inf_status->registers);
3698 regcache_xfree (inf_status->stop_registers);
3699 xfree (inf_status);
3700 }
3701
3702 int
3703 inferior_has_forked (int pid, int *child_pid)
3704 {
3705 struct target_waitstatus last;
3706 ptid_t last_ptid;
3707
3708 get_last_target_status (&last_ptid, &last);
3709
3710 if (last.kind != TARGET_WAITKIND_FORKED)
3711 return 0;
3712
3713 if (ptid_get_pid (last_ptid) != pid)
3714 return 0;
3715
3716 *child_pid = last.value.related_pid;
3717 return 1;
3718 }
3719
3720 int
3721 inferior_has_vforked (int pid, int *child_pid)
3722 {
3723 struct target_waitstatus last;
3724 ptid_t last_ptid;
3725
3726 get_last_target_status (&last_ptid, &last);
3727
3728 if (last.kind != TARGET_WAITKIND_VFORKED)
3729 return 0;
3730
3731 if (ptid_get_pid (last_ptid) != pid)
3732 return 0;
3733
3734 *child_pid = last.value.related_pid;
3735 return 1;
3736 }
3737
3738 int
3739 inferior_has_execd (int pid, char **execd_pathname)
3740 {
3741 struct target_waitstatus last;
3742 ptid_t last_ptid;
3743
3744 get_last_target_status (&last_ptid, &last);
3745
3746 if (last.kind != TARGET_WAITKIND_EXECD)
3747 return 0;
3748
3749 if (ptid_get_pid (last_ptid) != pid)
3750 return 0;
3751
3752 *execd_pathname = xstrdup (last.value.execd_pathname);
3753 return 1;
3754 }
3755
3756 /* Oft used ptids */
3757 ptid_t null_ptid;
3758 ptid_t minus_one_ptid;
3759
3760 /* Create a ptid given the necessary PID, LWP, and TID components. */
3761
3762 ptid_t
3763 ptid_build (int pid, long lwp, long tid)
3764 {
3765 ptid_t ptid;
3766
3767 ptid.pid = pid;
3768 ptid.lwp = lwp;
3769 ptid.tid = tid;
3770 return ptid;
3771 }
3772
3773 /* Create a ptid from just a pid. */
3774
3775 ptid_t
3776 pid_to_ptid (int pid)
3777 {
3778 return ptid_build (pid, 0, 0);
3779 }
3780
3781 /* Fetch the pid (process id) component from a ptid. */
3782
3783 int
3784 ptid_get_pid (ptid_t ptid)
3785 {
3786 return ptid.pid;
3787 }
3788
3789 /* Fetch the lwp (lightweight process) component from a ptid. */
3790
3791 long
3792 ptid_get_lwp (ptid_t ptid)
3793 {
3794 return ptid.lwp;
3795 }
3796
3797 /* Fetch the tid (thread id) component from a ptid. */
3798
3799 long
3800 ptid_get_tid (ptid_t ptid)
3801 {
3802 return ptid.tid;
3803 }
3804
3805 /* ptid_equal() is used to test equality of two ptids. */
3806
3807 int
3808 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3809 {
3810 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3811 && ptid1.tid == ptid2.tid);
3812 }
3813
3814 /* restore_inferior_ptid() will be used by the cleanup machinery
3815 to restore the inferior_ptid value saved in a call to
3816 save_inferior_ptid(). */
3817
3818 static void
3819 restore_inferior_ptid (void *arg)
3820 {
3821 ptid_t *saved_ptid_ptr = arg;
3822 inferior_ptid = *saved_ptid_ptr;
3823 xfree (arg);
3824 }
3825
3826 /* Save the value of inferior_ptid so that it may be restored by a
3827 later call to do_cleanups(). Returns the struct cleanup pointer
3828 needed for later doing the cleanup. */
3829
3830 struct cleanup *
3831 save_inferior_ptid (void)
3832 {
3833 ptid_t *saved_ptid_ptr;
3834
3835 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3836 *saved_ptid_ptr = inferior_ptid;
3837 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3838 }
3839 \f
3840
3841 static void
3842 build_infrun (void)
3843 {
3844 stop_registers = regcache_xmalloc (current_gdbarch);
3845 }
3846
3847 void
3848 _initialize_infrun (void)
3849 {
3850 int i;
3851 int numsigs;
3852 struct cmd_list_element *c;
3853
3854 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3855 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3856
3857 add_info ("signals", signals_info, _("\
3858 What debugger does when program gets various signals.\n\
3859 Specify a signal as argument to print info on that signal only."));
3860 add_info_alias ("handle", "signals", 0);
3861
3862 add_com ("handle", class_run, handle_command, _("\
3863 Specify how to handle a signal.\n\
3864 Args are signals and actions to apply to those signals.\n\
3865 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3866 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3867 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3868 The special arg \"all\" is recognized to mean all signals except those\n\
3869 used by the debugger, typically SIGTRAP and SIGINT.\n\
3870 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3871 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3872 Stop means reenter debugger if this signal happens (implies print).\n\
3873 Print means print a message if this signal happens.\n\
3874 Pass means let program see this signal; otherwise program doesn't know.\n\
3875 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3876 Pass and Stop may be combined."));
3877 if (xdb_commands)
3878 {
3879 add_com ("lz", class_info, signals_info, _("\
3880 What debugger does when program gets various signals.\n\
3881 Specify a signal as argument to print info on that signal only."));
3882 add_com ("z", class_run, xdb_handle_command, _("\
3883 Specify how to handle a signal.\n\
3884 Args are signals and actions to apply to those signals.\n\
3885 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3886 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3887 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3888 The special arg \"all\" is recognized to mean all signals except those\n\
3889 used by the debugger, typically SIGTRAP and SIGINT.\n\
3890 Recognized actions include \"s\" (toggles between stop and nostop), \n\
3891 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3892 nopass), \"Q\" (noprint)\n\
3893 Stop means reenter debugger if this signal happens (implies print).\n\
3894 Print means print a message if this signal happens.\n\
3895 Pass means let program see this signal; otherwise program doesn't know.\n\
3896 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3897 Pass and Stop may be combined."));
3898 }
3899
3900 if (!dbx_commands)
3901 stop_command = add_cmd ("stop", class_obscure,
3902 not_just_help_class_command, _("\
3903 There is no `stop' command, but you can set a hook on `stop'.\n\
3904 This allows you to set a list of commands to be run each time execution\n\
3905 of the program stops."), &cmdlist);
3906
3907 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
3908 Set inferior debugging."), _("\
3909 Show inferior debugging."), _("\
3910 When non-zero, inferior specific debugging is enabled."),
3911 NULL,
3912 show_debug_infrun,
3913 &setdebuglist, &showdebuglist);
3914
3915 numsigs = (int) TARGET_SIGNAL_LAST;
3916 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3917 signal_print = (unsigned char *)
3918 xmalloc (sizeof (signal_print[0]) * numsigs);
3919 signal_program = (unsigned char *)
3920 xmalloc (sizeof (signal_program[0]) * numsigs);
3921 for (i = 0; i < numsigs; i++)
3922 {
3923 signal_stop[i] = 1;
3924 signal_print[i] = 1;
3925 signal_program[i] = 1;
3926 }
3927
3928 /* Signals caused by debugger's own actions
3929 should not be given to the program afterwards. */
3930 signal_program[TARGET_SIGNAL_TRAP] = 0;
3931 signal_program[TARGET_SIGNAL_INT] = 0;
3932
3933 /* Signals that are not errors should not normally enter the debugger. */
3934 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3935 signal_print[TARGET_SIGNAL_ALRM] = 0;
3936 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3937 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3938 signal_stop[TARGET_SIGNAL_PROF] = 0;
3939 signal_print[TARGET_SIGNAL_PROF] = 0;
3940 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3941 signal_print[TARGET_SIGNAL_CHLD] = 0;
3942 signal_stop[TARGET_SIGNAL_IO] = 0;
3943 signal_print[TARGET_SIGNAL_IO] = 0;
3944 signal_stop[TARGET_SIGNAL_POLL] = 0;
3945 signal_print[TARGET_SIGNAL_POLL] = 0;
3946 signal_stop[TARGET_SIGNAL_URG] = 0;
3947 signal_print[TARGET_SIGNAL_URG] = 0;
3948 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3949 signal_print[TARGET_SIGNAL_WINCH] = 0;
3950
3951 /* These signals are used internally by user-level thread
3952 implementations. (See signal(5) on Solaris.) Like the above
3953 signals, a healthy program receives and handles them as part of
3954 its normal operation. */
3955 signal_stop[TARGET_SIGNAL_LWP] = 0;
3956 signal_print[TARGET_SIGNAL_LWP] = 0;
3957 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3958 signal_print[TARGET_SIGNAL_WAITING] = 0;
3959 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3960 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3961
3962 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
3963 &stop_on_solib_events, _("\
3964 Set stopping for shared library events."), _("\
3965 Show stopping for shared library events."), _("\
3966 If nonzero, gdb will give control to the user when the dynamic linker\n\
3967 notifies gdb of shared library events. The most common event of interest\n\
3968 to the user would be loading/unloading of a new library."),
3969 NULL,
3970 show_stop_on_solib_events,
3971 &setlist, &showlist);
3972
3973 add_setshow_enum_cmd ("follow-fork-mode", class_run,
3974 follow_fork_mode_kind_names,
3975 &follow_fork_mode_string, _("\
3976 Set debugger response to a program call of fork or vfork."), _("\
3977 Show debugger response to a program call of fork or vfork."), _("\
3978 A fork or vfork creates a new process. follow-fork-mode can be:\n\
3979 parent - the original process is debugged after a fork\n\
3980 child - the new process is debugged after a fork\n\
3981 The unfollowed process will continue to run.\n\
3982 By default, the debugger will follow the parent process."),
3983 NULL,
3984 show_follow_fork_mode_string,
3985 &setlist, &showlist);
3986
3987 add_setshow_enum_cmd ("scheduler-locking", class_run,
3988 scheduler_enums, &scheduler_mode, _("\
3989 Set mode for locking scheduler during execution."), _("\
3990 Show mode for locking scheduler during execution."), _("\
3991 off == no locking (threads may preempt at any time)\n\
3992 on == full locking (no thread except the current thread may run)\n\
3993 step == scheduler locked during every single-step operation.\n\
3994 In this mode, no other thread may run during a step command.\n\
3995 Other threads may run while stepping over a function call ('next')."),
3996 set_schedlock_func, /* traps on target vector */
3997 show_scheduler_mode,
3998 &setlist, &showlist);
3999
4000 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4001 Set mode of the step operation."), _("\
4002 Show mode of the step operation."), _("\
4003 When set, doing a step over a function without debug line information\n\
4004 will stop at the first instruction of that function. Otherwise, the\n\
4005 function is skipped and the step command stops at a different source line."),
4006 NULL,
4007 show_step_stop_if_no_debug,
4008 &setlist, &showlist);
4009
4010 /* ptid initializations */
4011 null_ptid = ptid_build (0, 0, 0);
4012 minus_one_ptid = ptid_build (-1, 0, 0);
4013 inferior_ptid = null_ptid;
4014 target_last_wait_ptid = minus_one_ptid;
4015 }