]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
infrun.c:handle_inferior_event: Move comment.
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2013 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "exceptions.h"
28 #include "breakpoint.h"
29 #include "gdb_wait.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "cli/cli-script.h"
33 #include "target.h"
34 #include "gdbthread.h"
35 #include "annotate.h"
36 #include "symfile.h"
37 #include "top.h"
38 #include <signal.h>
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "value.h"
42 #include "observer.h"
43 #include "language.h"
44 #include "solib.h"
45 #include "main.h"
46 #include "dictionary.h"
47 #include "block.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "record-full.h"
53 #include "inline-frame.h"
54 #include "jit.h"
55 #include "tracepoint.h"
56 #include "continuations.h"
57 #include "interps.h"
58 #include "skip.h"
59 #include "probe.h"
60 #include "objfiles.h"
61 #include "completer.h"
62 #include "target-descriptions.h"
63
64 /* Prototypes for local functions */
65
66 static void signals_info (char *, int);
67
68 static void handle_command (char *, int);
69
70 static void sig_print_info (enum gdb_signal);
71
72 static void sig_print_header (void);
73
74 static void resume_cleanups (void *);
75
76 static int hook_stop_stub (void *);
77
78 static int restore_selected_frame (void *);
79
80 static int follow_fork (void);
81
82 static void set_schedlock_func (char *args, int from_tty,
83 struct cmd_list_element *c);
84
85 static int currently_stepping (struct thread_info *tp);
86
87 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
88 void *data);
89
90 static void xdb_handle_command (char *args, int from_tty);
91
92 static int prepare_to_proceed (int);
93
94 static void print_exited_reason (int exitstatus);
95
96 static void print_signal_exited_reason (enum gdb_signal siggnal);
97
98 static void print_no_history_reason (void);
99
100 static void print_signal_received_reason (enum gdb_signal siggnal);
101
102 static void print_end_stepping_range_reason (void);
103
104 void _initialize_infrun (void);
105
106 void nullify_last_target_wait_ptid (void);
107
108 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
109
110 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
111
112 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
113
114 /* When set, stop the 'step' command if we enter a function which has
115 no line number information. The normal behavior is that we step
116 over such function. */
117 int step_stop_if_no_debug = 0;
118 static void
119 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
123 }
124
125 /* In asynchronous mode, but simulating synchronous execution. */
126
127 int sync_execution = 0;
128
129 /* wait_for_inferior and normal_stop use this to notify the user
130 when the inferior stopped in a different thread than it had been
131 running in. */
132
133 static ptid_t previous_inferior_ptid;
134
135 /* If set (default for legacy reasons), when following a fork, GDB
136 will detach from one of the fork branches, child or parent.
137 Exactly which branch is detached depends on 'set follow-fork-mode'
138 setting. */
139
140 static int detach_fork = 1;
141
142 int debug_displaced = 0;
143 static void
144 show_debug_displaced (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146 {
147 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
148 }
149
150 unsigned int debug_infrun = 0;
151 static void
152 show_debug_infrun (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154 {
155 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
156 }
157
158
159 /* Support for disabling address space randomization. */
160
161 int disable_randomization = 1;
162
163 static void
164 show_disable_randomization (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 if (target_supports_disable_randomization ())
168 fprintf_filtered (file,
169 _("Disabling randomization of debuggee's "
170 "virtual address space is %s.\n"),
171 value);
172 else
173 fputs_filtered (_("Disabling randomization of debuggee's "
174 "virtual address space is unsupported on\n"
175 "this platform.\n"), file);
176 }
177
178 static void
179 set_disable_randomization (char *args, int from_tty,
180 struct cmd_list_element *c)
181 {
182 if (!target_supports_disable_randomization ())
183 error (_("Disabling randomization of debuggee's "
184 "virtual address space is unsupported on\n"
185 "this platform."));
186 }
187
188 /* User interface for non-stop mode. */
189
190 int non_stop = 0;
191 static int non_stop_1 = 0;
192
193 static void
194 set_non_stop (char *args, int from_tty,
195 struct cmd_list_element *c)
196 {
197 if (target_has_execution)
198 {
199 non_stop_1 = non_stop;
200 error (_("Cannot change this setting while the inferior is running."));
201 }
202
203 non_stop = non_stop_1;
204 }
205
206 static void
207 show_non_stop (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209 {
210 fprintf_filtered (file,
211 _("Controlling the inferior in non-stop mode is %s.\n"),
212 value);
213 }
214
215 /* "Observer mode" is somewhat like a more extreme version of
216 non-stop, in which all GDB operations that might affect the
217 target's execution have been disabled. */
218
219 int observer_mode = 0;
220 static int observer_mode_1 = 0;
221
222 static void
223 set_observer_mode (char *args, int from_tty,
224 struct cmd_list_element *c)
225 {
226 if (target_has_execution)
227 {
228 observer_mode_1 = observer_mode;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 observer_mode = observer_mode_1;
233
234 may_write_registers = !observer_mode;
235 may_write_memory = !observer_mode;
236 may_insert_breakpoints = !observer_mode;
237 may_insert_tracepoints = !observer_mode;
238 /* We can insert fast tracepoints in or out of observer mode,
239 but enable them if we're going into this mode. */
240 if (observer_mode)
241 may_insert_fast_tracepoints = 1;
242 may_stop = !observer_mode;
243 update_target_permissions ();
244
245 /* Going *into* observer mode we must force non-stop, then
246 going out we leave it that way. */
247 if (observer_mode)
248 {
249 target_async_permitted = 1;
250 pagination_enabled = 0;
251 non_stop = non_stop_1 = 1;
252 }
253
254 if (from_tty)
255 printf_filtered (_("Observer mode is now %s.\n"),
256 (observer_mode ? "on" : "off"));
257 }
258
259 static void
260 show_observer_mode (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
264 }
265
266 /* This updates the value of observer mode based on changes in
267 permissions. Note that we are deliberately ignoring the values of
268 may-write-registers and may-write-memory, since the user may have
269 reason to enable these during a session, for instance to turn on a
270 debugging-related global. */
271
272 void
273 update_observer_mode (void)
274 {
275 int newval;
276
277 newval = (!may_insert_breakpoints
278 && !may_insert_tracepoints
279 && may_insert_fast_tracepoints
280 && !may_stop
281 && non_stop);
282
283 /* Let the user know if things change. */
284 if (newval != observer_mode)
285 printf_filtered (_("Observer mode is now %s.\n"),
286 (newval ? "on" : "off"));
287
288 observer_mode = observer_mode_1 = newval;
289 }
290
291 /* Tables of how to react to signals; the user sets them. */
292
293 static unsigned char *signal_stop;
294 static unsigned char *signal_print;
295 static unsigned char *signal_program;
296
297 /* Table of signals that are registered with "catch signal". A
298 non-zero entry indicates that the signal is caught by some "catch
299 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
300 signals. */
301 static unsigned char *signal_catch;
302
303 /* Table of signals that the target may silently handle.
304 This is automatically determined from the flags above,
305 and simply cached here. */
306 static unsigned char *signal_pass;
307
308 #define SET_SIGS(nsigs,sigs,flags) \
309 do { \
310 int signum = (nsigs); \
311 while (signum-- > 0) \
312 if ((sigs)[signum]) \
313 (flags)[signum] = 1; \
314 } while (0)
315
316 #define UNSET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 0; \
322 } while (0)
323
324 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
325 this function is to avoid exporting `signal_program'. */
326
327 void
328 update_signals_program_target (void)
329 {
330 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
331 }
332
333 /* Value to pass to target_resume() to cause all threads to resume. */
334
335 #define RESUME_ALL minus_one_ptid
336
337 /* Command list pointer for the "stop" placeholder. */
338
339 static struct cmd_list_element *stop_command;
340
341 /* Function inferior was in as of last step command. */
342
343 static struct symbol *step_start_function;
344
345 /* Nonzero if we want to give control to the user when we're notified
346 of shared library events by the dynamic linker. */
347 int stop_on_solib_events;
348
349 /* Enable or disable optional shared library event breakpoints
350 as appropriate when the above flag is changed. */
351
352 static void
353 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
354 {
355 update_solib_breakpoints ();
356 }
357
358 static void
359 show_stop_on_solib_events (struct ui_file *file, int from_tty,
360 struct cmd_list_element *c, const char *value)
361 {
362 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
363 value);
364 }
365
366 /* Nonzero means expecting a trace trap
367 and should stop the inferior and return silently when it happens. */
368
369 int stop_after_trap;
370
371 /* Save register contents here when executing a "finish" command or are
372 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
373 Thus this contains the return value from the called function (assuming
374 values are returned in a register). */
375
376 struct regcache *stop_registers;
377
378 /* Nonzero after stop if current stack frame should be printed. */
379
380 static int stop_print_frame;
381
382 /* This is a cached copy of the pid/waitstatus of the last event
383 returned by target_wait()/deprecated_target_wait_hook(). This
384 information is returned by get_last_target_status(). */
385 static ptid_t target_last_wait_ptid;
386 static struct target_waitstatus target_last_waitstatus;
387
388 static void context_switch (ptid_t ptid);
389
390 void init_thread_stepping_state (struct thread_info *tss);
391
392 static void init_infwait_state (void);
393
394 static const char follow_fork_mode_child[] = "child";
395 static const char follow_fork_mode_parent[] = "parent";
396
397 static const char *const follow_fork_mode_kind_names[] = {
398 follow_fork_mode_child,
399 follow_fork_mode_parent,
400 NULL
401 };
402
403 static const char *follow_fork_mode_string = follow_fork_mode_parent;
404 static void
405 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
406 struct cmd_list_element *c, const char *value)
407 {
408 fprintf_filtered (file,
409 _("Debugger response to a program "
410 "call of fork or vfork is \"%s\".\n"),
411 value);
412 }
413 \f
414
415 /* Tell the target to follow the fork we're stopped at. Returns true
416 if the inferior should be resumed; false, if the target for some
417 reason decided it's best not to resume. */
418
419 static int
420 follow_fork (void)
421 {
422 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
423 int should_resume = 1;
424 struct thread_info *tp;
425
426 /* Copy user stepping state to the new inferior thread. FIXME: the
427 followed fork child thread should have a copy of most of the
428 parent thread structure's run control related fields, not just these.
429 Initialized to avoid "may be used uninitialized" warnings from gcc. */
430 struct breakpoint *step_resume_breakpoint = NULL;
431 struct breakpoint *exception_resume_breakpoint = NULL;
432 CORE_ADDR step_range_start = 0;
433 CORE_ADDR step_range_end = 0;
434 struct frame_id step_frame_id = { 0 };
435
436 if (!non_stop)
437 {
438 ptid_t wait_ptid;
439 struct target_waitstatus wait_status;
440
441 /* Get the last target status returned by target_wait(). */
442 get_last_target_status (&wait_ptid, &wait_status);
443
444 /* If not stopped at a fork event, then there's nothing else to
445 do. */
446 if (wait_status.kind != TARGET_WAITKIND_FORKED
447 && wait_status.kind != TARGET_WAITKIND_VFORKED)
448 return 1;
449
450 /* Check if we switched over from WAIT_PTID, since the event was
451 reported. */
452 if (!ptid_equal (wait_ptid, minus_one_ptid)
453 && !ptid_equal (inferior_ptid, wait_ptid))
454 {
455 /* We did. Switch back to WAIT_PTID thread, to tell the
456 target to follow it (in either direction). We'll
457 afterwards refuse to resume, and inform the user what
458 happened. */
459 switch_to_thread (wait_ptid);
460 should_resume = 0;
461 }
462 }
463
464 tp = inferior_thread ();
465
466 /* If there were any forks/vforks that were caught and are now to be
467 followed, then do so now. */
468 switch (tp->pending_follow.kind)
469 {
470 case TARGET_WAITKIND_FORKED:
471 case TARGET_WAITKIND_VFORKED:
472 {
473 ptid_t parent, child;
474
475 /* If the user did a next/step, etc, over a fork call,
476 preserve the stepping state in the fork child. */
477 if (follow_child && should_resume)
478 {
479 step_resume_breakpoint = clone_momentary_breakpoint
480 (tp->control.step_resume_breakpoint);
481 step_range_start = tp->control.step_range_start;
482 step_range_end = tp->control.step_range_end;
483 step_frame_id = tp->control.step_frame_id;
484 exception_resume_breakpoint
485 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
486
487 /* For now, delete the parent's sr breakpoint, otherwise,
488 parent/child sr breakpoints are considered duplicates,
489 and the child version will not be installed. Remove
490 this when the breakpoints module becomes aware of
491 inferiors and address spaces. */
492 delete_step_resume_breakpoint (tp);
493 tp->control.step_range_start = 0;
494 tp->control.step_range_end = 0;
495 tp->control.step_frame_id = null_frame_id;
496 delete_exception_resume_breakpoint (tp);
497 }
498
499 parent = inferior_ptid;
500 child = tp->pending_follow.value.related_pid;
501
502 /* Tell the target to do whatever is necessary to follow
503 either parent or child. */
504 if (target_follow_fork (follow_child, detach_fork))
505 {
506 /* Target refused to follow, or there's some other reason
507 we shouldn't resume. */
508 should_resume = 0;
509 }
510 else
511 {
512 /* This pending follow fork event is now handled, one way
513 or another. The previous selected thread may be gone
514 from the lists by now, but if it is still around, need
515 to clear the pending follow request. */
516 tp = find_thread_ptid (parent);
517 if (tp)
518 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
519
520 /* This makes sure we don't try to apply the "Switched
521 over from WAIT_PID" logic above. */
522 nullify_last_target_wait_ptid ();
523
524 /* If we followed the child, switch to it... */
525 if (follow_child)
526 {
527 switch_to_thread (child);
528
529 /* ... and preserve the stepping state, in case the
530 user was stepping over the fork call. */
531 if (should_resume)
532 {
533 tp = inferior_thread ();
534 tp->control.step_resume_breakpoint
535 = step_resume_breakpoint;
536 tp->control.step_range_start = step_range_start;
537 tp->control.step_range_end = step_range_end;
538 tp->control.step_frame_id = step_frame_id;
539 tp->control.exception_resume_breakpoint
540 = exception_resume_breakpoint;
541 }
542 else
543 {
544 /* If we get here, it was because we're trying to
545 resume from a fork catchpoint, but, the user
546 has switched threads away from the thread that
547 forked. In that case, the resume command
548 issued is most likely not applicable to the
549 child, so just warn, and refuse to resume. */
550 warning (_("Not resuming: switched threads "
551 "before following fork child.\n"));
552 }
553
554 /* Reset breakpoints in the child as appropriate. */
555 follow_inferior_reset_breakpoints ();
556 }
557 else
558 switch_to_thread (parent);
559 }
560 }
561 break;
562 case TARGET_WAITKIND_SPURIOUS:
563 /* Nothing to follow. */
564 break;
565 default:
566 internal_error (__FILE__, __LINE__,
567 "Unexpected pending_follow.kind %d\n",
568 tp->pending_follow.kind);
569 break;
570 }
571
572 return should_resume;
573 }
574
575 void
576 follow_inferior_reset_breakpoints (void)
577 {
578 struct thread_info *tp = inferior_thread ();
579
580 /* Was there a step_resume breakpoint? (There was if the user
581 did a "next" at the fork() call.) If so, explicitly reset its
582 thread number.
583
584 step_resumes are a form of bp that are made to be per-thread.
585 Since we created the step_resume bp when the parent process
586 was being debugged, and now are switching to the child process,
587 from the breakpoint package's viewpoint, that's a switch of
588 "threads". We must update the bp's notion of which thread
589 it is for, or it'll be ignored when it triggers. */
590
591 if (tp->control.step_resume_breakpoint)
592 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
593
594 if (tp->control.exception_resume_breakpoint)
595 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
596
597 /* Reinsert all breakpoints in the child. The user may have set
598 breakpoints after catching the fork, in which case those
599 were never set in the child, but only in the parent. This makes
600 sure the inserted breakpoints match the breakpoint list. */
601
602 breakpoint_re_set ();
603 insert_breakpoints ();
604 }
605
606 /* The child has exited or execed: resume threads of the parent the
607 user wanted to be executing. */
608
609 static int
610 proceed_after_vfork_done (struct thread_info *thread,
611 void *arg)
612 {
613 int pid = * (int *) arg;
614
615 if (ptid_get_pid (thread->ptid) == pid
616 && is_running (thread->ptid)
617 && !is_executing (thread->ptid)
618 && !thread->stop_requested
619 && thread->suspend.stop_signal == GDB_SIGNAL_0)
620 {
621 if (debug_infrun)
622 fprintf_unfiltered (gdb_stdlog,
623 "infrun: resuming vfork parent thread %s\n",
624 target_pid_to_str (thread->ptid));
625
626 switch_to_thread (thread->ptid);
627 clear_proceed_status ();
628 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
629 }
630
631 return 0;
632 }
633
634 /* Called whenever we notice an exec or exit event, to handle
635 detaching or resuming a vfork parent. */
636
637 static void
638 handle_vfork_child_exec_or_exit (int exec)
639 {
640 struct inferior *inf = current_inferior ();
641
642 if (inf->vfork_parent)
643 {
644 int resume_parent = -1;
645
646 /* This exec or exit marks the end of the shared memory region
647 between the parent and the child. If the user wanted to
648 detach from the parent, now is the time. */
649
650 if (inf->vfork_parent->pending_detach)
651 {
652 struct thread_info *tp;
653 struct cleanup *old_chain;
654 struct program_space *pspace;
655 struct address_space *aspace;
656
657 /* follow-fork child, detach-on-fork on. */
658
659 inf->vfork_parent->pending_detach = 0;
660
661 if (!exec)
662 {
663 /* If we're handling a child exit, then inferior_ptid
664 points at the inferior's pid, not to a thread. */
665 old_chain = save_inferior_ptid ();
666 save_current_program_space ();
667 save_current_inferior ();
668 }
669 else
670 old_chain = save_current_space_and_thread ();
671
672 /* We're letting loose of the parent. */
673 tp = any_live_thread_of_process (inf->vfork_parent->pid);
674 switch_to_thread (tp->ptid);
675
676 /* We're about to detach from the parent, which implicitly
677 removes breakpoints from its address space. There's a
678 catch here: we want to reuse the spaces for the child,
679 but, parent/child are still sharing the pspace at this
680 point, although the exec in reality makes the kernel give
681 the child a fresh set of new pages. The problem here is
682 that the breakpoints module being unaware of this, would
683 likely chose the child process to write to the parent
684 address space. Swapping the child temporarily away from
685 the spaces has the desired effect. Yes, this is "sort
686 of" a hack. */
687
688 pspace = inf->pspace;
689 aspace = inf->aspace;
690 inf->aspace = NULL;
691 inf->pspace = NULL;
692
693 if (debug_infrun || info_verbose)
694 {
695 target_terminal_ours ();
696
697 if (exec)
698 fprintf_filtered (gdb_stdlog,
699 "Detaching vfork parent process "
700 "%d after child exec.\n",
701 inf->vfork_parent->pid);
702 else
703 fprintf_filtered (gdb_stdlog,
704 "Detaching vfork parent process "
705 "%d after child exit.\n",
706 inf->vfork_parent->pid);
707 }
708
709 target_detach (NULL, 0);
710
711 /* Put it back. */
712 inf->pspace = pspace;
713 inf->aspace = aspace;
714
715 do_cleanups (old_chain);
716 }
717 else if (exec)
718 {
719 /* We're staying attached to the parent, so, really give the
720 child a new address space. */
721 inf->pspace = add_program_space (maybe_new_address_space ());
722 inf->aspace = inf->pspace->aspace;
723 inf->removable = 1;
724 set_current_program_space (inf->pspace);
725
726 resume_parent = inf->vfork_parent->pid;
727
728 /* Break the bonds. */
729 inf->vfork_parent->vfork_child = NULL;
730 }
731 else
732 {
733 struct cleanup *old_chain;
734 struct program_space *pspace;
735
736 /* If this is a vfork child exiting, then the pspace and
737 aspaces were shared with the parent. Since we're
738 reporting the process exit, we'll be mourning all that is
739 found in the address space, and switching to null_ptid,
740 preparing to start a new inferior. But, since we don't
741 want to clobber the parent's address/program spaces, we
742 go ahead and create a new one for this exiting
743 inferior. */
744
745 /* Switch to null_ptid, so that clone_program_space doesn't want
746 to read the selected frame of a dead process. */
747 old_chain = save_inferior_ptid ();
748 inferior_ptid = null_ptid;
749
750 /* This inferior is dead, so avoid giving the breakpoints
751 module the option to write through to it (cloning a
752 program space resets breakpoints). */
753 inf->aspace = NULL;
754 inf->pspace = NULL;
755 pspace = add_program_space (maybe_new_address_space ());
756 set_current_program_space (pspace);
757 inf->removable = 1;
758 inf->symfile_flags = SYMFILE_NO_READ;
759 clone_program_space (pspace, inf->vfork_parent->pspace);
760 inf->pspace = pspace;
761 inf->aspace = pspace->aspace;
762
763 /* Put back inferior_ptid. We'll continue mourning this
764 inferior. */
765 do_cleanups (old_chain);
766
767 resume_parent = inf->vfork_parent->pid;
768 /* Break the bonds. */
769 inf->vfork_parent->vfork_child = NULL;
770 }
771
772 inf->vfork_parent = NULL;
773
774 gdb_assert (current_program_space == inf->pspace);
775
776 if (non_stop && resume_parent != -1)
777 {
778 /* If the user wanted the parent to be running, let it go
779 free now. */
780 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
781
782 if (debug_infrun)
783 fprintf_unfiltered (gdb_stdlog,
784 "infrun: resuming vfork parent process %d\n",
785 resume_parent);
786
787 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
788
789 do_cleanups (old_chain);
790 }
791 }
792 }
793
794 /* Enum strings for "set|show follow-exec-mode". */
795
796 static const char follow_exec_mode_new[] = "new";
797 static const char follow_exec_mode_same[] = "same";
798 static const char *const follow_exec_mode_names[] =
799 {
800 follow_exec_mode_new,
801 follow_exec_mode_same,
802 NULL,
803 };
804
805 static const char *follow_exec_mode_string = follow_exec_mode_same;
806 static void
807 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
808 struct cmd_list_element *c, const char *value)
809 {
810 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
811 }
812
813 /* EXECD_PATHNAME is assumed to be non-NULL. */
814
815 static void
816 follow_exec (ptid_t pid, char *execd_pathname)
817 {
818 struct thread_info *th = inferior_thread ();
819 struct inferior *inf = current_inferior ();
820
821 /* This is an exec event that we actually wish to pay attention to.
822 Refresh our symbol table to the newly exec'd program, remove any
823 momentary bp's, etc.
824
825 If there are breakpoints, they aren't really inserted now,
826 since the exec() transformed our inferior into a fresh set
827 of instructions.
828
829 We want to preserve symbolic breakpoints on the list, since
830 we have hopes that they can be reset after the new a.out's
831 symbol table is read.
832
833 However, any "raw" breakpoints must be removed from the list
834 (e.g., the solib bp's), since their address is probably invalid
835 now.
836
837 And, we DON'T want to call delete_breakpoints() here, since
838 that may write the bp's "shadow contents" (the instruction
839 value that was overwritten witha TRAP instruction). Since
840 we now have a new a.out, those shadow contents aren't valid. */
841
842 mark_breakpoints_out ();
843
844 update_breakpoints_after_exec ();
845
846 /* If there was one, it's gone now. We cannot truly step-to-next
847 statement through an exec(). */
848 th->control.step_resume_breakpoint = NULL;
849 th->control.exception_resume_breakpoint = NULL;
850 th->control.step_range_start = 0;
851 th->control.step_range_end = 0;
852
853 /* The target reports the exec event to the main thread, even if
854 some other thread does the exec, and even if the main thread was
855 already stopped --- if debugging in non-stop mode, it's possible
856 the user had the main thread held stopped in the previous image
857 --- release it now. This is the same behavior as step-over-exec
858 with scheduler-locking on in all-stop mode. */
859 th->stop_requested = 0;
860
861 /* What is this a.out's name? */
862 printf_unfiltered (_("%s is executing new program: %s\n"),
863 target_pid_to_str (inferior_ptid),
864 execd_pathname);
865
866 /* We've followed the inferior through an exec. Therefore, the
867 inferior has essentially been killed & reborn. */
868
869 gdb_flush (gdb_stdout);
870
871 breakpoint_init_inferior (inf_execd);
872
873 if (gdb_sysroot && *gdb_sysroot)
874 {
875 char *name = alloca (strlen (gdb_sysroot)
876 + strlen (execd_pathname)
877 + 1);
878
879 strcpy (name, gdb_sysroot);
880 strcat (name, execd_pathname);
881 execd_pathname = name;
882 }
883
884 /* Reset the shared library package. This ensures that we get a
885 shlib event when the child reaches "_start", at which point the
886 dld will have had a chance to initialize the child. */
887 /* Also, loading a symbol file below may trigger symbol lookups, and
888 we don't want those to be satisfied by the libraries of the
889 previous incarnation of this process. */
890 no_shared_libraries (NULL, 0);
891
892 if (follow_exec_mode_string == follow_exec_mode_new)
893 {
894 struct program_space *pspace;
895
896 /* The user wants to keep the old inferior and program spaces
897 around. Create a new fresh one, and switch to it. */
898
899 inf = add_inferior (current_inferior ()->pid);
900 pspace = add_program_space (maybe_new_address_space ());
901 inf->pspace = pspace;
902 inf->aspace = pspace->aspace;
903
904 exit_inferior_num_silent (current_inferior ()->num);
905
906 set_current_inferior (inf);
907 set_current_program_space (pspace);
908 }
909 else
910 {
911 /* The old description may no longer be fit for the new image.
912 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
913 old description; we'll read a new one below. No need to do
914 this on "follow-exec-mode new", as the old inferior stays
915 around (its description is later cleared/refetched on
916 restart). */
917 target_clear_description ();
918 }
919
920 gdb_assert (current_program_space == inf->pspace);
921
922 /* That a.out is now the one to use. */
923 exec_file_attach (execd_pathname, 0);
924
925 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
926 (Position Independent Executable) main symbol file will get applied by
927 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
928 the breakpoints with the zero displacement. */
929
930 symbol_file_add (execd_pathname,
931 (inf->symfile_flags
932 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
933 NULL, 0);
934
935 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
936 set_initial_language ();
937
938 /* If the target can specify a description, read it. Must do this
939 after flipping to the new executable (because the target supplied
940 description must be compatible with the executable's
941 architecture, and the old executable may e.g., be 32-bit, while
942 the new one 64-bit), and before anything involving memory or
943 registers. */
944 target_find_description ();
945
946 solib_create_inferior_hook (0);
947
948 jit_inferior_created_hook ();
949
950 breakpoint_re_set ();
951
952 /* Reinsert all breakpoints. (Those which were symbolic have
953 been reset to the proper address in the new a.out, thanks
954 to symbol_file_command...). */
955 insert_breakpoints ();
956
957 /* The next resume of this inferior should bring it to the shlib
958 startup breakpoints. (If the user had also set bp's on
959 "main" from the old (parent) process, then they'll auto-
960 matically get reset there in the new process.). */
961 }
962
963 /* Non-zero if we just simulating a single-step. This is needed
964 because we cannot remove the breakpoints in the inferior process
965 until after the `wait' in `wait_for_inferior'. */
966 static int singlestep_breakpoints_inserted_p = 0;
967
968 /* The thread we inserted single-step breakpoints for. */
969 static ptid_t singlestep_ptid;
970
971 /* PC when we started this single-step. */
972 static CORE_ADDR singlestep_pc;
973
974 /* If another thread hit the singlestep breakpoint, we save the original
975 thread here so that we can resume single-stepping it later. */
976 static ptid_t saved_singlestep_ptid;
977 static int stepping_past_singlestep_breakpoint;
978
979 /* If not equal to null_ptid, this means that after stepping over breakpoint
980 is finished, we need to switch to deferred_step_ptid, and step it.
981
982 The use case is when one thread has hit a breakpoint, and then the user
983 has switched to another thread and issued 'step'. We need to step over
984 breakpoint in the thread which hit the breakpoint, but then continue
985 stepping the thread user has selected. */
986 static ptid_t deferred_step_ptid;
987 \f
988 /* Displaced stepping. */
989
990 /* In non-stop debugging mode, we must take special care to manage
991 breakpoints properly; in particular, the traditional strategy for
992 stepping a thread past a breakpoint it has hit is unsuitable.
993 'Displaced stepping' is a tactic for stepping one thread past a
994 breakpoint it has hit while ensuring that other threads running
995 concurrently will hit the breakpoint as they should.
996
997 The traditional way to step a thread T off a breakpoint in a
998 multi-threaded program in all-stop mode is as follows:
999
1000 a0) Initially, all threads are stopped, and breakpoints are not
1001 inserted.
1002 a1) We single-step T, leaving breakpoints uninserted.
1003 a2) We insert breakpoints, and resume all threads.
1004
1005 In non-stop debugging, however, this strategy is unsuitable: we
1006 don't want to have to stop all threads in the system in order to
1007 continue or step T past a breakpoint. Instead, we use displaced
1008 stepping:
1009
1010 n0) Initially, T is stopped, other threads are running, and
1011 breakpoints are inserted.
1012 n1) We copy the instruction "under" the breakpoint to a separate
1013 location, outside the main code stream, making any adjustments
1014 to the instruction, register, and memory state as directed by
1015 T's architecture.
1016 n2) We single-step T over the instruction at its new location.
1017 n3) We adjust the resulting register and memory state as directed
1018 by T's architecture. This includes resetting T's PC to point
1019 back into the main instruction stream.
1020 n4) We resume T.
1021
1022 This approach depends on the following gdbarch methods:
1023
1024 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1025 indicate where to copy the instruction, and how much space must
1026 be reserved there. We use these in step n1.
1027
1028 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1029 address, and makes any necessary adjustments to the instruction,
1030 register contents, and memory. We use this in step n1.
1031
1032 - gdbarch_displaced_step_fixup adjusts registers and memory after
1033 we have successfuly single-stepped the instruction, to yield the
1034 same effect the instruction would have had if we had executed it
1035 at its original address. We use this in step n3.
1036
1037 - gdbarch_displaced_step_free_closure provides cleanup.
1038
1039 The gdbarch_displaced_step_copy_insn and
1040 gdbarch_displaced_step_fixup functions must be written so that
1041 copying an instruction with gdbarch_displaced_step_copy_insn,
1042 single-stepping across the copied instruction, and then applying
1043 gdbarch_displaced_insn_fixup should have the same effects on the
1044 thread's memory and registers as stepping the instruction in place
1045 would have. Exactly which responsibilities fall to the copy and
1046 which fall to the fixup is up to the author of those functions.
1047
1048 See the comments in gdbarch.sh for details.
1049
1050 Note that displaced stepping and software single-step cannot
1051 currently be used in combination, although with some care I think
1052 they could be made to. Software single-step works by placing
1053 breakpoints on all possible subsequent instructions; if the
1054 displaced instruction is a PC-relative jump, those breakpoints
1055 could fall in very strange places --- on pages that aren't
1056 executable, or at addresses that are not proper instruction
1057 boundaries. (We do generally let other threads run while we wait
1058 to hit the software single-step breakpoint, and they might
1059 encounter such a corrupted instruction.) One way to work around
1060 this would be to have gdbarch_displaced_step_copy_insn fully
1061 simulate the effect of PC-relative instructions (and return NULL)
1062 on architectures that use software single-stepping.
1063
1064 In non-stop mode, we can have independent and simultaneous step
1065 requests, so more than one thread may need to simultaneously step
1066 over a breakpoint. The current implementation assumes there is
1067 only one scratch space per process. In this case, we have to
1068 serialize access to the scratch space. If thread A wants to step
1069 over a breakpoint, but we are currently waiting for some other
1070 thread to complete a displaced step, we leave thread A stopped and
1071 place it in the displaced_step_request_queue. Whenever a displaced
1072 step finishes, we pick the next thread in the queue and start a new
1073 displaced step operation on it. See displaced_step_prepare and
1074 displaced_step_fixup for details. */
1075
1076 struct displaced_step_request
1077 {
1078 ptid_t ptid;
1079 struct displaced_step_request *next;
1080 };
1081
1082 /* Per-inferior displaced stepping state. */
1083 struct displaced_step_inferior_state
1084 {
1085 /* Pointer to next in linked list. */
1086 struct displaced_step_inferior_state *next;
1087
1088 /* The process this displaced step state refers to. */
1089 int pid;
1090
1091 /* A queue of pending displaced stepping requests. One entry per
1092 thread that needs to do a displaced step. */
1093 struct displaced_step_request *step_request_queue;
1094
1095 /* If this is not null_ptid, this is the thread carrying out a
1096 displaced single-step in process PID. This thread's state will
1097 require fixing up once it has completed its step. */
1098 ptid_t step_ptid;
1099
1100 /* The architecture the thread had when we stepped it. */
1101 struct gdbarch *step_gdbarch;
1102
1103 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1104 for post-step cleanup. */
1105 struct displaced_step_closure *step_closure;
1106
1107 /* The address of the original instruction, and the copy we
1108 made. */
1109 CORE_ADDR step_original, step_copy;
1110
1111 /* Saved contents of copy area. */
1112 gdb_byte *step_saved_copy;
1113 };
1114
1115 /* The list of states of processes involved in displaced stepping
1116 presently. */
1117 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1118
1119 /* Get the displaced stepping state of process PID. */
1120
1121 static struct displaced_step_inferior_state *
1122 get_displaced_stepping_state (int pid)
1123 {
1124 struct displaced_step_inferior_state *state;
1125
1126 for (state = displaced_step_inferior_states;
1127 state != NULL;
1128 state = state->next)
1129 if (state->pid == pid)
1130 return state;
1131
1132 return NULL;
1133 }
1134
1135 /* Add a new displaced stepping state for process PID to the displaced
1136 stepping state list, or return a pointer to an already existing
1137 entry, if it already exists. Never returns NULL. */
1138
1139 static struct displaced_step_inferior_state *
1140 add_displaced_stepping_state (int pid)
1141 {
1142 struct displaced_step_inferior_state *state;
1143
1144 for (state = displaced_step_inferior_states;
1145 state != NULL;
1146 state = state->next)
1147 if (state->pid == pid)
1148 return state;
1149
1150 state = xcalloc (1, sizeof (*state));
1151 state->pid = pid;
1152 state->next = displaced_step_inferior_states;
1153 displaced_step_inferior_states = state;
1154
1155 return state;
1156 }
1157
1158 /* If inferior is in displaced stepping, and ADDR equals to starting address
1159 of copy area, return corresponding displaced_step_closure. Otherwise,
1160 return NULL. */
1161
1162 struct displaced_step_closure*
1163 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1164 {
1165 struct displaced_step_inferior_state *displaced
1166 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1167
1168 /* If checking the mode of displaced instruction in copy area. */
1169 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1170 && (displaced->step_copy == addr))
1171 return displaced->step_closure;
1172
1173 return NULL;
1174 }
1175
1176 /* Remove the displaced stepping state of process PID. */
1177
1178 static void
1179 remove_displaced_stepping_state (int pid)
1180 {
1181 struct displaced_step_inferior_state *it, **prev_next_p;
1182
1183 gdb_assert (pid != 0);
1184
1185 it = displaced_step_inferior_states;
1186 prev_next_p = &displaced_step_inferior_states;
1187 while (it)
1188 {
1189 if (it->pid == pid)
1190 {
1191 *prev_next_p = it->next;
1192 xfree (it);
1193 return;
1194 }
1195
1196 prev_next_p = &it->next;
1197 it = *prev_next_p;
1198 }
1199 }
1200
1201 static void
1202 infrun_inferior_exit (struct inferior *inf)
1203 {
1204 remove_displaced_stepping_state (inf->pid);
1205 }
1206
1207 /* If ON, and the architecture supports it, GDB will use displaced
1208 stepping to step over breakpoints. If OFF, or if the architecture
1209 doesn't support it, GDB will instead use the traditional
1210 hold-and-step approach. If AUTO (which is the default), GDB will
1211 decide which technique to use to step over breakpoints depending on
1212 which of all-stop or non-stop mode is active --- displaced stepping
1213 in non-stop mode; hold-and-step in all-stop mode. */
1214
1215 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1216
1217 static void
1218 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1219 struct cmd_list_element *c,
1220 const char *value)
1221 {
1222 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1223 fprintf_filtered (file,
1224 _("Debugger's willingness to use displaced stepping "
1225 "to step over breakpoints is %s (currently %s).\n"),
1226 value, non_stop ? "on" : "off");
1227 else
1228 fprintf_filtered (file,
1229 _("Debugger's willingness to use displaced stepping "
1230 "to step over breakpoints is %s.\n"), value);
1231 }
1232
1233 /* Return non-zero if displaced stepping can/should be used to step
1234 over breakpoints. */
1235
1236 static int
1237 use_displaced_stepping (struct gdbarch *gdbarch)
1238 {
1239 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1240 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1241 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1242 && !RECORD_IS_USED);
1243 }
1244
1245 /* Clean out any stray displaced stepping state. */
1246 static void
1247 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1248 {
1249 /* Indicate that there is no cleanup pending. */
1250 displaced->step_ptid = null_ptid;
1251
1252 if (displaced->step_closure)
1253 {
1254 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1255 displaced->step_closure);
1256 displaced->step_closure = NULL;
1257 }
1258 }
1259
1260 static void
1261 displaced_step_clear_cleanup (void *arg)
1262 {
1263 struct displaced_step_inferior_state *state = arg;
1264
1265 displaced_step_clear (state);
1266 }
1267
1268 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1269 void
1270 displaced_step_dump_bytes (struct ui_file *file,
1271 const gdb_byte *buf,
1272 size_t len)
1273 {
1274 int i;
1275
1276 for (i = 0; i < len; i++)
1277 fprintf_unfiltered (file, "%02x ", buf[i]);
1278 fputs_unfiltered ("\n", file);
1279 }
1280
1281 /* Prepare to single-step, using displaced stepping.
1282
1283 Note that we cannot use displaced stepping when we have a signal to
1284 deliver. If we have a signal to deliver and an instruction to step
1285 over, then after the step, there will be no indication from the
1286 target whether the thread entered a signal handler or ignored the
1287 signal and stepped over the instruction successfully --- both cases
1288 result in a simple SIGTRAP. In the first case we mustn't do a
1289 fixup, and in the second case we must --- but we can't tell which.
1290 Comments in the code for 'random signals' in handle_inferior_event
1291 explain how we handle this case instead.
1292
1293 Returns 1 if preparing was successful -- this thread is going to be
1294 stepped now; or 0 if displaced stepping this thread got queued. */
1295 static int
1296 displaced_step_prepare (ptid_t ptid)
1297 {
1298 struct cleanup *old_cleanups, *ignore_cleanups;
1299 struct thread_info *tp = find_thread_ptid (ptid);
1300 struct regcache *regcache = get_thread_regcache (ptid);
1301 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1302 CORE_ADDR original, copy;
1303 ULONGEST len;
1304 struct displaced_step_closure *closure;
1305 struct displaced_step_inferior_state *displaced;
1306 int status;
1307
1308 /* We should never reach this function if the architecture does not
1309 support displaced stepping. */
1310 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1311
1312 /* Disable range stepping while executing in the scratch pad. We
1313 want a single-step even if executing the displaced instruction in
1314 the scratch buffer lands within the stepping range (e.g., a
1315 jump/branch). */
1316 tp->control.may_range_step = 0;
1317
1318 /* We have to displaced step one thread at a time, as we only have
1319 access to a single scratch space per inferior. */
1320
1321 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1322
1323 if (!ptid_equal (displaced->step_ptid, null_ptid))
1324 {
1325 /* Already waiting for a displaced step to finish. Defer this
1326 request and place in queue. */
1327 struct displaced_step_request *req, *new_req;
1328
1329 if (debug_displaced)
1330 fprintf_unfiltered (gdb_stdlog,
1331 "displaced: defering step of %s\n",
1332 target_pid_to_str (ptid));
1333
1334 new_req = xmalloc (sizeof (*new_req));
1335 new_req->ptid = ptid;
1336 new_req->next = NULL;
1337
1338 if (displaced->step_request_queue)
1339 {
1340 for (req = displaced->step_request_queue;
1341 req && req->next;
1342 req = req->next)
1343 ;
1344 req->next = new_req;
1345 }
1346 else
1347 displaced->step_request_queue = new_req;
1348
1349 return 0;
1350 }
1351 else
1352 {
1353 if (debug_displaced)
1354 fprintf_unfiltered (gdb_stdlog,
1355 "displaced: stepping %s now\n",
1356 target_pid_to_str (ptid));
1357 }
1358
1359 displaced_step_clear (displaced);
1360
1361 old_cleanups = save_inferior_ptid ();
1362 inferior_ptid = ptid;
1363
1364 original = regcache_read_pc (regcache);
1365
1366 copy = gdbarch_displaced_step_location (gdbarch);
1367 len = gdbarch_max_insn_length (gdbarch);
1368
1369 /* Save the original contents of the copy area. */
1370 displaced->step_saved_copy = xmalloc (len);
1371 ignore_cleanups = make_cleanup (free_current_contents,
1372 &displaced->step_saved_copy);
1373 status = target_read_memory (copy, displaced->step_saved_copy, len);
1374 if (status != 0)
1375 throw_error (MEMORY_ERROR,
1376 _("Error accessing memory address %s (%s) for "
1377 "displaced-stepping scratch space."),
1378 paddress (gdbarch, copy), safe_strerror (status));
1379 if (debug_displaced)
1380 {
1381 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1382 paddress (gdbarch, copy));
1383 displaced_step_dump_bytes (gdb_stdlog,
1384 displaced->step_saved_copy,
1385 len);
1386 };
1387
1388 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1389 original, copy, regcache);
1390
1391 /* We don't support the fully-simulated case at present. */
1392 gdb_assert (closure);
1393
1394 /* Save the information we need to fix things up if the step
1395 succeeds. */
1396 displaced->step_ptid = ptid;
1397 displaced->step_gdbarch = gdbarch;
1398 displaced->step_closure = closure;
1399 displaced->step_original = original;
1400 displaced->step_copy = copy;
1401
1402 make_cleanup (displaced_step_clear_cleanup, displaced);
1403
1404 /* Resume execution at the copy. */
1405 regcache_write_pc (regcache, copy);
1406
1407 discard_cleanups (ignore_cleanups);
1408
1409 do_cleanups (old_cleanups);
1410
1411 if (debug_displaced)
1412 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1413 paddress (gdbarch, copy));
1414
1415 return 1;
1416 }
1417
1418 static void
1419 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1420 const gdb_byte *myaddr, int len)
1421 {
1422 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1423
1424 inferior_ptid = ptid;
1425 write_memory (memaddr, myaddr, len);
1426 do_cleanups (ptid_cleanup);
1427 }
1428
1429 /* Restore the contents of the copy area for thread PTID. */
1430
1431 static void
1432 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1433 ptid_t ptid)
1434 {
1435 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1436
1437 write_memory_ptid (ptid, displaced->step_copy,
1438 displaced->step_saved_copy, len);
1439 if (debug_displaced)
1440 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1441 target_pid_to_str (ptid),
1442 paddress (displaced->step_gdbarch,
1443 displaced->step_copy));
1444 }
1445
1446 static void
1447 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1448 {
1449 struct cleanup *old_cleanups;
1450 struct displaced_step_inferior_state *displaced
1451 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1452
1453 /* Was any thread of this process doing a displaced step? */
1454 if (displaced == NULL)
1455 return;
1456
1457 /* Was this event for the pid we displaced? */
1458 if (ptid_equal (displaced->step_ptid, null_ptid)
1459 || ! ptid_equal (displaced->step_ptid, event_ptid))
1460 return;
1461
1462 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1463
1464 displaced_step_restore (displaced, displaced->step_ptid);
1465
1466 /* Did the instruction complete successfully? */
1467 if (signal == GDB_SIGNAL_TRAP)
1468 {
1469 /* Fix up the resulting state. */
1470 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1471 displaced->step_closure,
1472 displaced->step_original,
1473 displaced->step_copy,
1474 get_thread_regcache (displaced->step_ptid));
1475 }
1476 else
1477 {
1478 /* Since the instruction didn't complete, all we can do is
1479 relocate the PC. */
1480 struct regcache *regcache = get_thread_regcache (event_ptid);
1481 CORE_ADDR pc = regcache_read_pc (regcache);
1482
1483 pc = displaced->step_original + (pc - displaced->step_copy);
1484 regcache_write_pc (regcache, pc);
1485 }
1486
1487 do_cleanups (old_cleanups);
1488
1489 displaced->step_ptid = null_ptid;
1490
1491 /* Are there any pending displaced stepping requests? If so, run
1492 one now. Leave the state object around, since we're likely to
1493 need it again soon. */
1494 while (displaced->step_request_queue)
1495 {
1496 struct displaced_step_request *head;
1497 ptid_t ptid;
1498 struct regcache *regcache;
1499 struct gdbarch *gdbarch;
1500 CORE_ADDR actual_pc;
1501 struct address_space *aspace;
1502
1503 head = displaced->step_request_queue;
1504 ptid = head->ptid;
1505 displaced->step_request_queue = head->next;
1506 xfree (head);
1507
1508 context_switch (ptid);
1509
1510 regcache = get_thread_regcache (ptid);
1511 actual_pc = regcache_read_pc (regcache);
1512 aspace = get_regcache_aspace (regcache);
1513
1514 if (breakpoint_here_p (aspace, actual_pc))
1515 {
1516 if (debug_displaced)
1517 fprintf_unfiltered (gdb_stdlog,
1518 "displaced: stepping queued %s now\n",
1519 target_pid_to_str (ptid));
1520
1521 displaced_step_prepare (ptid);
1522
1523 gdbarch = get_regcache_arch (regcache);
1524
1525 if (debug_displaced)
1526 {
1527 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1528 gdb_byte buf[4];
1529
1530 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1531 paddress (gdbarch, actual_pc));
1532 read_memory (actual_pc, buf, sizeof (buf));
1533 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1534 }
1535
1536 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1537 displaced->step_closure))
1538 target_resume (ptid, 1, GDB_SIGNAL_0);
1539 else
1540 target_resume (ptid, 0, GDB_SIGNAL_0);
1541
1542 /* Done, we're stepping a thread. */
1543 break;
1544 }
1545 else
1546 {
1547 int step;
1548 struct thread_info *tp = inferior_thread ();
1549
1550 /* The breakpoint we were sitting under has since been
1551 removed. */
1552 tp->control.trap_expected = 0;
1553
1554 /* Go back to what we were trying to do. */
1555 step = currently_stepping (tp);
1556
1557 if (debug_displaced)
1558 fprintf_unfiltered (gdb_stdlog,
1559 "displaced: breakpoint is gone: %s, step(%d)\n",
1560 target_pid_to_str (tp->ptid), step);
1561
1562 target_resume (ptid, step, GDB_SIGNAL_0);
1563 tp->suspend.stop_signal = GDB_SIGNAL_0;
1564
1565 /* This request was discarded. See if there's any other
1566 thread waiting for its turn. */
1567 }
1568 }
1569 }
1570
1571 /* Update global variables holding ptids to hold NEW_PTID if they were
1572 holding OLD_PTID. */
1573 static void
1574 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1575 {
1576 struct displaced_step_request *it;
1577 struct displaced_step_inferior_state *displaced;
1578
1579 if (ptid_equal (inferior_ptid, old_ptid))
1580 inferior_ptid = new_ptid;
1581
1582 if (ptid_equal (singlestep_ptid, old_ptid))
1583 singlestep_ptid = new_ptid;
1584
1585 if (ptid_equal (deferred_step_ptid, old_ptid))
1586 deferred_step_ptid = new_ptid;
1587
1588 for (displaced = displaced_step_inferior_states;
1589 displaced;
1590 displaced = displaced->next)
1591 {
1592 if (ptid_equal (displaced->step_ptid, old_ptid))
1593 displaced->step_ptid = new_ptid;
1594
1595 for (it = displaced->step_request_queue; it; it = it->next)
1596 if (ptid_equal (it->ptid, old_ptid))
1597 it->ptid = new_ptid;
1598 }
1599 }
1600
1601 \f
1602 /* Resuming. */
1603
1604 /* Things to clean up if we QUIT out of resume (). */
1605 static void
1606 resume_cleanups (void *ignore)
1607 {
1608 normal_stop ();
1609 }
1610
1611 static const char schedlock_off[] = "off";
1612 static const char schedlock_on[] = "on";
1613 static const char schedlock_step[] = "step";
1614 static const char *const scheduler_enums[] = {
1615 schedlock_off,
1616 schedlock_on,
1617 schedlock_step,
1618 NULL
1619 };
1620 static const char *scheduler_mode = schedlock_off;
1621 static void
1622 show_scheduler_mode (struct ui_file *file, int from_tty,
1623 struct cmd_list_element *c, const char *value)
1624 {
1625 fprintf_filtered (file,
1626 _("Mode for locking scheduler "
1627 "during execution is \"%s\".\n"),
1628 value);
1629 }
1630
1631 static void
1632 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1633 {
1634 if (!target_can_lock_scheduler)
1635 {
1636 scheduler_mode = schedlock_off;
1637 error (_("Target '%s' cannot support this command."), target_shortname);
1638 }
1639 }
1640
1641 /* True if execution commands resume all threads of all processes by
1642 default; otherwise, resume only threads of the current inferior
1643 process. */
1644 int sched_multi = 0;
1645
1646 /* Try to setup for software single stepping over the specified location.
1647 Return 1 if target_resume() should use hardware single step.
1648
1649 GDBARCH the current gdbarch.
1650 PC the location to step over. */
1651
1652 static int
1653 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1654 {
1655 int hw_step = 1;
1656
1657 if (execution_direction == EXEC_FORWARD
1658 && gdbarch_software_single_step_p (gdbarch)
1659 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1660 {
1661 hw_step = 0;
1662 /* Do not pull these breakpoints until after a `wait' in
1663 `wait_for_inferior'. */
1664 singlestep_breakpoints_inserted_p = 1;
1665 singlestep_ptid = inferior_ptid;
1666 singlestep_pc = pc;
1667 }
1668 return hw_step;
1669 }
1670
1671 /* Return a ptid representing the set of threads that we will proceed,
1672 in the perspective of the user/frontend. We may actually resume
1673 fewer threads at first, e.g., if a thread is stopped at a
1674 breakpoint that needs stepping-off, but that should not be visible
1675 to the user/frontend, and neither should the frontend/user be
1676 allowed to proceed any of the threads that happen to be stopped for
1677 internal run control handling, if a previous command wanted them
1678 resumed. */
1679
1680 ptid_t
1681 user_visible_resume_ptid (int step)
1682 {
1683 /* By default, resume all threads of all processes. */
1684 ptid_t resume_ptid = RESUME_ALL;
1685
1686 /* Maybe resume only all threads of the current process. */
1687 if (!sched_multi && target_supports_multi_process ())
1688 {
1689 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1690 }
1691
1692 /* Maybe resume a single thread after all. */
1693 if (non_stop)
1694 {
1695 /* With non-stop mode on, threads are always handled
1696 individually. */
1697 resume_ptid = inferior_ptid;
1698 }
1699 else if ((scheduler_mode == schedlock_on)
1700 || (scheduler_mode == schedlock_step
1701 && (step || singlestep_breakpoints_inserted_p)))
1702 {
1703 /* User-settable 'scheduler' mode requires solo thread resume. */
1704 resume_ptid = inferior_ptid;
1705 }
1706
1707 return resume_ptid;
1708 }
1709
1710 /* Resume the inferior, but allow a QUIT. This is useful if the user
1711 wants to interrupt some lengthy single-stepping operation
1712 (for child processes, the SIGINT goes to the inferior, and so
1713 we get a SIGINT random_signal, but for remote debugging and perhaps
1714 other targets, that's not true).
1715
1716 STEP nonzero if we should step (zero to continue instead).
1717 SIG is the signal to give the inferior (zero for none). */
1718 void
1719 resume (int step, enum gdb_signal sig)
1720 {
1721 int should_resume = 1;
1722 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1723 struct regcache *regcache = get_current_regcache ();
1724 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1725 struct thread_info *tp = inferior_thread ();
1726 CORE_ADDR pc = regcache_read_pc (regcache);
1727 struct address_space *aspace = get_regcache_aspace (regcache);
1728
1729 QUIT;
1730
1731 if (current_inferior ()->waiting_for_vfork_done)
1732 {
1733 /* Don't try to single-step a vfork parent that is waiting for
1734 the child to get out of the shared memory region (by exec'ing
1735 or exiting). This is particularly important on software
1736 single-step archs, as the child process would trip on the
1737 software single step breakpoint inserted for the parent
1738 process. Since the parent will not actually execute any
1739 instruction until the child is out of the shared region (such
1740 are vfork's semantics), it is safe to simply continue it.
1741 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1742 the parent, and tell it to `keep_going', which automatically
1743 re-sets it stepping. */
1744 if (debug_infrun)
1745 fprintf_unfiltered (gdb_stdlog,
1746 "infrun: resume : clear step\n");
1747 step = 0;
1748 }
1749
1750 if (debug_infrun)
1751 fprintf_unfiltered (gdb_stdlog,
1752 "infrun: resume (step=%d, signal=%s), "
1753 "trap_expected=%d, current thread [%s] at %s\n",
1754 step, gdb_signal_to_symbol_string (sig),
1755 tp->control.trap_expected,
1756 target_pid_to_str (inferior_ptid),
1757 paddress (gdbarch, pc));
1758
1759 /* Normally, by the time we reach `resume', the breakpoints are either
1760 removed or inserted, as appropriate. The exception is if we're sitting
1761 at a permanent breakpoint; we need to step over it, but permanent
1762 breakpoints can't be removed. So we have to test for it here. */
1763 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1764 {
1765 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1766 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1767 else
1768 error (_("\
1769 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1770 how to step past a permanent breakpoint on this architecture. Try using\n\
1771 a command like `return' or `jump' to continue execution."));
1772 }
1773
1774 /* If we have a breakpoint to step over, make sure to do a single
1775 step only. Same if we have software watchpoints. */
1776 if (tp->control.trap_expected || bpstat_should_step ())
1777 tp->control.may_range_step = 0;
1778
1779 /* If enabled, step over breakpoints by executing a copy of the
1780 instruction at a different address.
1781
1782 We can't use displaced stepping when we have a signal to deliver;
1783 the comments for displaced_step_prepare explain why. The
1784 comments in the handle_inferior event for dealing with 'random
1785 signals' explain what we do instead.
1786
1787 We can't use displaced stepping when we are waiting for vfork_done
1788 event, displaced stepping breaks the vfork child similarly as single
1789 step software breakpoint. */
1790 if (use_displaced_stepping (gdbarch)
1791 && (tp->control.trap_expected
1792 || (step && gdbarch_software_single_step_p (gdbarch)))
1793 && sig == GDB_SIGNAL_0
1794 && !current_inferior ()->waiting_for_vfork_done)
1795 {
1796 struct displaced_step_inferior_state *displaced;
1797
1798 if (!displaced_step_prepare (inferior_ptid))
1799 {
1800 /* Got placed in displaced stepping queue. Will be resumed
1801 later when all the currently queued displaced stepping
1802 requests finish. The thread is not executing at this point,
1803 and the call to set_executing will be made later. But we
1804 need to call set_running here, since from frontend point of view,
1805 the thread is running. */
1806 set_running (inferior_ptid, 1);
1807 discard_cleanups (old_cleanups);
1808 return;
1809 }
1810
1811 /* Update pc to reflect the new address from which we will execute
1812 instructions due to displaced stepping. */
1813 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1814
1815 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1816 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1817 displaced->step_closure);
1818 }
1819
1820 /* Do we need to do it the hard way, w/temp breakpoints? */
1821 else if (step)
1822 step = maybe_software_singlestep (gdbarch, pc);
1823
1824 /* Currently, our software single-step implementation leads to different
1825 results than hardware single-stepping in one situation: when stepping
1826 into delivering a signal which has an associated signal handler,
1827 hardware single-step will stop at the first instruction of the handler,
1828 while software single-step will simply skip execution of the handler.
1829
1830 For now, this difference in behavior is accepted since there is no
1831 easy way to actually implement single-stepping into a signal handler
1832 without kernel support.
1833
1834 However, there is one scenario where this difference leads to follow-on
1835 problems: if we're stepping off a breakpoint by removing all breakpoints
1836 and then single-stepping. In this case, the software single-step
1837 behavior means that even if there is a *breakpoint* in the signal
1838 handler, GDB still would not stop.
1839
1840 Fortunately, we can at least fix this particular issue. We detect
1841 here the case where we are about to deliver a signal while software
1842 single-stepping with breakpoints removed. In this situation, we
1843 revert the decisions to remove all breakpoints and insert single-
1844 step breakpoints, and instead we install a step-resume breakpoint
1845 at the current address, deliver the signal without stepping, and
1846 once we arrive back at the step-resume breakpoint, actually step
1847 over the breakpoint we originally wanted to step over. */
1848 if (singlestep_breakpoints_inserted_p
1849 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
1850 {
1851 /* If we have nested signals or a pending signal is delivered
1852 immediately after a handler returns, might might already have
1853 a step-resume breakpoint set on the earlier handler. We cannot
1854 set another step-resume breakpoint; just continue on until the
1855 original breakpoint is hit. */
1856 if (tp->control.step_resume_breakpoint == NULL)
1857 {
1858 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1859 tp->step_after_step_resume_breakpoint = 1;
1860 }
1861
1862 remove_single_step_breakpoints ();
1863 singlestep_breakpoints_inserted_p = 0;
1864
1865 insert_breakpoints ();
1866 tp->control.trap_expected = 0;
1867 }
1868
1869 if (should_resume)
1870 {
1871 ptid_t resume_ptid;
1872
1873 /* If STEP is set, it's a request to use hardware stepping
1874 facilities. But in that case, we should never
1875 use singlestep breakpoint. */
1876 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1877
1878 /* Decide the set of threads to ask the target to resume. Start
1879 by assuming everything will be resumed, than narrow the set
1880 by applying increasingly restricting conditions. */
1881 resume_ptid = user_visible_resume_ptid (step);
1882
1883 /* Maybe resume a single thread after all. */
1884 if (singlestep_breakpoints_inserted_p
1885 && stepping_past_singlestep_breakpoint)
1886 {
1887 /* The situation here is as follows. In thread T1 we wanted to
1888 single-step. Lacking hardware single-stepping we've
1889 set breakpoint at the PC of the next instruction -- call it
1890 P. After resuming, we've hit that breakpoint in thread T2.
1891 Now we've removed original breakpoint, inserted breakpoint
1892 at P+1, and try to step to advance T2 past breakpoint.
1893 We need to step only T2, as if T1 is allowed to freely run,
1894 it can run past P, and if other threads are allowed to run,
1895 they can hit breakpoint at P+1, and nested hits of single-step
1896 breakpoints is not something we'd want -- that's complicated
1897 to support, and has no value. */
1898 resume_ptid = inferior_ptid;
1899 }
1900 else if ((step || singlestep_breakpoints_inserted_p)
1901 && tp->control.trap_expected)
1902 {
1903 /* We're allowing a thread to run past a breakpoint it has
1904 hit, by single-stepping the thread with the breakpoint
1905 removed. In which case, we need to single-step only this
1906 thread, and keep others stopped, as they can miss this
1907 breakpoint if allowed to run.
1908
1909 The current code actually removes all breakpoints when
1910 doing this, not just the one being stepped over, so if we
1911 let other threads run, we can actually miss any
1912 breakpoint, not just the one at PC. */
1913 resume_ptid = inferior_ptid;
1914 }
1915
1916 if (gdbarch_cannot_step_breakpoint (gdbarch))
1917 {
1918 /* Most targets can step a breakpoint instruction, thus
1919 executing it normally. But if this one cannot, just
1920 continue and we will hit it anyway. */
1921 if (step && breakpoint_inserted_here_p (aspace, pc))
1922 step = 0;
1923 }
1924
1925 if (debug_displaced
1926 && use_displaced_stepping (gdbarch)
1927 && tp->control.trap_expected)
1928 {
1929 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1930 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1931 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1932 gdb_byte buf[4];
1933
1934 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1935 paddress (resume_gdbarch, actual_pc));
1936 read_memory (actual_pc, buf, sizeof (buf));
1937 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1938 }
1939
1940 if (tp->control.may_range_step)
1941 {
1942 /* If we're resuming a thread with the PC out of the step
1943 range, then we're doing some nested/finer run control
1944 operation, like stepping the thread out of the dynamic
1945 linker or the displaced stepping scratch pad. We
1946 shouldn't have allowed a range step then. */
1947 gdb_assert (pc_in_thread_step_range (pc, tp));
1948 }
1949
1950 /* Install inferior's terminal modes. */
1951 target_terminal_inferior ();
1952
1953 /* Avoid confusing the next resume, if the next stop/resume
1954 happens to apply to another thread. */
1955 tp->suspend.stop_signal = GDB_SIGNAL_0;
1956
1957 /* Advise target which signals may be handled silently. If we have
1958 removed breakpoints because we are stepping over one (which can
1959 happen only if we are not using displaced stepping), we need to
1960 receive all signals to avoid accidentally skipping a breakpoint
1961 during execution of a signal handler. */
1962 if ((step || singlestep_breakpoints_inserted_p)
1963 && tp->control.trap_expected
1964 && !use_displaced_stepping (gdbarch))
1965 target_pass_signals (0, NULL);
1966 else
1967 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
1968
1969 target_resume (resume_ptid, step, sig);
1970 }
1971
1972 discard_cleanups (old_cleanups);
1973 }
1974 \f
1975 /* Proceeding. */
1976
1977 /* Clear out all variables saying what to do when inferior is continued.
1978 First do this, then set the ones you want, then call `proceed'. */
1979
1980 static void
1981 clear_proceed_status_thread (struct thread_info *tp)
1982 {
1983 if (debug_infrun)
1984 fprintf_unfiltered (gdb_stdlog,
1985 "infrun: clear_proceed_status_thread (%s)\n",
1986 target_pid_to_str (tp->ptid));
1987
1988 tp->control.trap_expected = 0;
1989 tp->control.step_range_start = 0;
1990 tp->control.step_range_end = 0;
1991 tp->control.may_range_step = 0;
1992 tp->control.step_frame_id = null_frame_id;
1993 tp->control.step_stack_frame_id = null_frame_id;
1994 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1995 tp->stop_requested = 0;
1996
1997 tp->control.stop_step = 0;
1998
1999 tp->control.proceed_to_finish = 0;
2000
2001 /* Discard any remaining commands or status from previous stop. */
2002 bpstat_clear (&tp->control.stop_bpstat);
2003 }
2004
2005 static int
2006 clear_proceed_status_callback (struct thread_info *tp, void *data)
2007 {
2008 if (is_exited (tp->ptid))
2009 return 0;
2010
2011 clear_proceed_status_thread (tp);
2012 return 0;
2013 }
2014
2015 void
2016 clear_proceed_status (void)
2017 {
2018 if (!non_stop)
2019 {
2020 /* In all-stop mode, delete the per-thread status of all
2021 threads, even if inferior_ptid is null_ptid, there may be
2022 threads on the list. E.g., we may be launching a new
2023 process, while selecting the executable. */
2024 iterate_over_threads (clear_proceed_status_callback, NULL);
2025 }
2026
2027 if (!ptid_equal (inferior_ptid, null_ptid))
2028 {
2029 struct inferior *inferior;
2030
2031 if (non_stop)
2032 {
2033 /* If in non-stop mode, only delete the per-thread status of
2034 the current thread. */
2035 clear_proceed_status_thread (inferior_thread ());
2036 }
2037
2038 inferior = current_inferior ();
2039 inferior->control.stop_soon = NO_STOP_QUIETLY;
2040 }
2041
2042 stop_after_trap = 0;
2043
2044 observer_notify_about_to_proceed ();
2045
2046 if (stop_registers)
2047 {
2048 regcache_xfree (stop_registers);
2049 stop_registers = NULL;
2050 }
2051 }
2052
2053 /* Check the current thread against the thread that reported the most recent
2054 event. If a step-over is required return TRUE and set the current thread
2055 to the old thread. Otherwise return FALSE.
2056
2057 This should be suitable for any targets that support threads. */
2058
2059 static int
2060 prepare_to_proceed (int step)
2061 {
2062 ptid_t wait_ptid;
2063 struct target_waitstatus wait_status;
2064 int schedlock_enabled;
2065
2066 /* With non-stop mode on, threads are always handled individually. */
2067 gdb_assert (! non_stop);
2068
2069 /* Get the last target status returned by target_wait(). */
2070 get_last_target_status (&wait_ptid, &wait_status);
2071
2072 /* Make sure we were stopped at a breakpoint. */
2073 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2074 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2075 && wait_status.value.sig != GDB_SIGNAL_ILL
2076 && wait_status.value.sig != GDB_SIGNAL_SEGV
2077 && wait_status.value.sig != GDB_SIGNAL_EMT))
2078 {
2079 return 0;
2080 }
2081
2082 schedlock_enabled = (scheduler_mode == schedlock_on
2083 || (scheduler_mode == schedlock_step
2084 && step));
2085
2086 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2087 if (schedlock_enabled)
2088 return 0;
2089
2090 /* Don't switch over if we're about to resume some other process
2091 other than WAIT_PTID's, and schedule-multiple is off. */
2092 if (!sched_multi
2093 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2094 return 0;
2095
2096 /* Switched over from WAIT_PID. */
2097 if (!ptid_equal (wait_ptid, minus_one_ptid)
2098 && !ptid_equal (inferior_ptid, wait_ptid))
2099 {
2100 struct regcache *regcache = get_thread_regcache (wait_ptid);
2101
2102 if (breakpoint_here_p (get_regcache_aspace (regcache),
2103 regcache_read_pc (regcache)))
2104 {
2105 /* If stepping, remember current thread to switch back to. */
2106 if (step)
2107 deferred_step_ptid = inferior_ptid;
2108
2109 /* Switch back to WAIT_PID thread. */
2110 switch_to_thread (wait_ptid);
2111
2112 if (debug_infrun)
2113 fprintf_unfiltered (gdb_stdlog,
2114 "infrun: prepare_to_proceed (step=%d), "
2115 "switched to [%s]\n",
2116 step, target_pid_to_str (inferior_ptid));
2117
2118 /* We return 1 to indicate that there is a breakpoint here,
2119 so we need to step over it before continuing to avoid
2120 hitting it straight away. */
2121 return 1;
2122 }
2123 }
2124
2125 return 0;
2126 }
2127
2128 /* Basic routine for continuing the program in various fashions.
2129
2130 ADDR is the address to resume at, or -1 for resume where stopped.
2131 SIGGNAL is the signal to give it, or 0 for none,
2132 or -1 for act according to how it stopped.
2133 STEP is nonzero if should trap after one instruction.
2134 -1 means return after that and print nothing.
2135 You should probably set various step_... variables
2136 before calling here, if you are stepping.
2137
2138 You should call clear_proceed_status before calling proceed. */
2139
2140 void
2141 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2142 {
2143 struct regcache *regcache;
2144 struct gdbarch *gdbarch;
2145 struct thread_info *tp;
2146 CORE_ADDR pc;
2147 struct address_space *aspace;
2148 /* GDB may force the inferior to step due to various reasons. */
2149 int force_step = 0;
2150
2151 /* If we're stopped at a fork/vfork, follow the branch set by the
2152 "set follow-fork-mode" command; otherwise, we'll just proceed
2153 resuming the current thread. */
2154 if (!follow_fork ())
2155 {
2156 /* The target for some reason decided not to resume. */
2157 normal_stop ();
2158 if (target_can_async_p ())
2159 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2160 return;
2161 }
2162
2163 /* We'll update this if & when we switch to a new thread. */
2164 previous_inferior_ptid = inferior_ptid;
2165
2166 regcache = get_current_regcache ();
2167 gdbarch = get_regcache_arch (regcache);
2168 aspace = get_regcache_aspace (regcache);
2169 pc = regcache_read_pc (regcache);
2170
2171 if (step > 0)
2172 step_start_function = find_pc_function (pc);
2173 if (step < 0)
2174 stop_after_trap = 1;
2175
2176 if (addr == (CORE_ADDR) -1)
2177 {
2178 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2179 && execution_direction != EXEC_REVERSE)
2180 /* There is a breakpoint at the address we will resume at,
2181 step one instruction before inserting breakpoints so that
2182 we do not stop right away (and report a second hit at this
2183 breakpoint).
2184
2185 Note, we don't do this in reverse, because we won't
2186 actually be executing the breakpoint insn anyway.
2187 We'll be (un-)executing the previous instruction. */
2188
2189 force_step = 1;
2190 else if (gdbarch_single_step_through_delay_p (gdbarch)
2191 && gdbarch_single_step_through_delay (gdbarch,
2192 get_current_frame ()))
2193 /* We stepped onto an instruction that needs to be stepped
2194 again before re-inserting the breakpoint, do so. */
2195 force_step = 1;
2196 }
2197 else
2198 {
2199 regcache_write_pc (regcache, addr);
2200 }
2201
2202 if (debug_infrun)
2203 fprintf_unfiltered (gdb_stdlog,
2204 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2205 paddress (gdbarch, addr),
2206 gdb_signal_to_symbol_string (siggnal), step);
2207
2208 if (non_stop)
2209 /* In non-stop, each thread is handled individually. The context
2210 must already be set to the right thread here. */
2211 ;
2212 else
2213 {
2214 /* In a multi-threaded task we may select another thread and
2215 then continue or step.
2216
2217 But if the old thread was stopped at a breakpoint, it will
2218 immediately cause another breakpoint stop without any
2219 execution (i.e. it will report a breakpoint hit incorrectly).
2220 So we must step over it first.
2221
2222 prepare_to_proceed checks the current thread against the
2223 thread that reported the most recent event. If a step-over
2224 is required it returns TRUE and sets the current thread to
2225 the old thread. */
2226 if (prepare_to_proceed (step))
2227 force_step = 1;
2228 }
2229
2230 /* prepare_to_proceed may change the current thread. */
2231 tp = inferior_thread ();
2232
2233 if (force_step)
2234 {
2235 tp->control.trap_expected = 1;
2236 /* If displaced stepping is enabled, we can step over the
2237 breakpoint without hitting it, so leave all breakpoints
2238 inserted. Otherwise we need to disable all breakpoints, step
2239 one instruction, and then re-add them when that step is
2240 finished. */
2241 if (!use_displaced_stepping (gdbarch))
2242 remove_breakpoints ();
2243 }
2244
2245 /* We can insert breakpoints if we're not trying to step over one,
2246 or if we are stepping over one but we're using displaced stepping
2247 to do so. */
2248 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2249 insert_breakpoints ();
2250
2251 if (!non_stop)
2252 {
2253 /* Pass the last stop signal to the thread we're resuming,
2254 irrespective of whether the current thread is the thread that
2255 got the last event or not. This was historically GDB's
2256 behaviour before keeping a stop_signal per thread. */
2257
2258 struct thread_info *last_thread;
2259 ptid_t last_ptid;
2260 struct target_waitstatus last_status;
2261
2262 get_last_target_status (&last_ptid, &last_status);
2263 if (!ptid_equal (inferior_ptid, last_ptid)
2264 && !ptid_equal (last_ptid, null_ptid)
2265 && !ptid_equal (last_ptid, minus_one_ptid))
2266 {
2267 last_thread = find_thread_ptid (last_ptid);
2268 if (last_thread)
2269 {
2270 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2271 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2272 }
2273 }
2274 }
2275
2276 if (siggnal != GDB_SIGNAL_DEFAULT)
2277 tp->suspend.stop_signal = siggnal;
2278 /* If this signal should not be seen by program,
2279 give it zero. Used for debugging signals. */
2280 else if (!signal_program[tp->suspend.stop_signal])
2281 tp->suspend.stop_signal = GDB_SIGNAL_0;
2282
2283 annotate_starting ();
2284
2285 /* Make sure that output from GDB appears before output from the
2286 inferior. */
2287 gdb_flush (gdb_stdout);
2288
2289 /* Refresh prev_pc value just prior to resuming. This used to be
2290 done in stop_stepping, however, setting prev_pc there did not handle
2291 scenarios such as inferior function calls or returning from
2292 a function via the return command. In those cases, the prev_pc
2293 value was not set properly for subsequent commands. The prev_pc value
2294 is used to initialize the starting line number in the ecs. With an
2295 invalid value, the gdb next command ends up stopping at the position
2296 represented by the next line table entry past our start position.
2297 On platforms that generate one line table entry per line, this
2298 is not a problem. However, on the ia64, the compiler generates
2299 extraneous line table entries that do not increase the line number.
2300 When we issue the gdb next command on the ia64 after an inferior call
2301 or a return command, we often end up a few instructions forward, still
2302 within the original line we started.
2303
2304 An attempt was made to refresh the prev_pc at the same time the
2305 execution_control_state is initialized (for instance, just before
2306 waiting for an inferior event). But this approach did not work
2307 because of platforms that use ptrace, where the pc register cannot
2308 be read unless the inferior is stopped. At that point, we are not
2309 guaranteed the inferior is stopped and so the regcache_read_pc() call
2310 can fail. Setting the prev_pc value here ensures the value is updated
2311 correctly when the inferior is stopped. */
2312 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2313
2314 /* Fill in with reasonable starting values. */
2315 init_thread_stepping_state (tp);
2316
2317 /* Reset to normal state. */
2318 init_infwait_state ();
2319
2320 /* Resume inferior. */
2321 resume (force_step || step || bpstat_should_step (),
2322 tp->suspend.stop_signal);
2323
2324 /* Wait for it to stop (if not standalone)
2325 and in any case decode why it stopped, and act accordingly. */
2326 /* Do this only if we are not using the event loop, or if the target
2327 does not support asynchronous execution. */
2328 if (!target_can_async_p ())
2329 {
2330 wait_for_inferior ();
2331 normal_stop ();
2332 }
2333 }
2334 \f
2335
2336 /* Start remote-debugging of a machine over a serial link. */
2337
2338 void
2339 start_remote (int from_tty)
2340 {
2341 struct inferior *inferior;
2342
2343 inferior = current_inferior ();
2344 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2345
2346 /* Always go on waiting for the target, regardless of the mode. */
2347 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2348 indicate to wait_for_inferior that a target should timeout if
2349 nothing is returned (instead of just blocking). Because of this,
2350 targets expecting an immediate response need to, internally, set
2351 things up so that the target_wait() is forced to eventually
2352 timeout. */
2353 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2354 differentiate to its caller what the state of the target is after
2355 the initial open has been performed. Here we're assuming that
2356 the target has stopped. It should be possible to eventually have
2357 target_open() return to the caller an indication that the target
2358 is currently running and GDB state should be set to the same as
2359 for an async run. */
2360 wait_for_inferior ();
2361
2362 /* Now that the inferior has stopped, do any bookkeeping like
2363 loading shared libraries. We want to do this before normal_stop,
2364 so that the displayed frame is up to date. */
2365 post_create_inferior (&current_target, from_tty);
2366
2367 normal_stop ();
2368 }
2369
2370 /* Initialize static vars when a new inferior begins. */
2371
2372 void
2373 init_wait_for_inferior (void)
2374 {
2375 /* These are meaningless until the first time through wait_for_inferior. */
2376
2377 breakpoint_init_inferior (inf_starting);
2378
2379 clear_proceed_status ();
2380
2381 stepping_past_singlestep_breakpoint = 0;
2382 deferred_step_ptid = null_ptid;
2383
2384 target_last_wait_ptid = minus_one_ptid;
2385
2386 previous_inferior_ptid = inferior_ptid;
2387 init_infwait_state ();
2388
2389 /* Discard any skipped inlined frames. */
2390 clear_inline_frame_state (minus_one_ptid);
2391 }
2392
2393 \f
2394 /* This enum encodes possible reasons for doing a target_wait, so that
2395 wfi can call target_wait in one place. (Ultimately the call will be
2396 moved out of the infinite loop entirely.) */
2397
2398 enum infwait_states
2399 {
2400 infwait_normal_state,
2401 infwait_thread_hop_state,
2402 infwait_step_watch_state,
2403 infwait_nonstep_watch_state
2404 };
2405
2406 /* The PTID we'll do a target_wait on.*/
2407 ptid_t waiton_ptid;
2408
2409 /* Current inferior wait state. */
2410 static enum infwait_states infwait_state;
2411
2412 /* Data to be passed around while handling an event. This data is
2413 discarded between events. */
2414 struct execution_control_state
2415 {
2416 ptid_t ptid;
2417 /* The thread that got the event, if this was a thread event; NULL
2418 otherwise. */
2419 struct thread_info *event_thread;
2420
2421 struct target_waitstatus ws;
2422 int random_signal;
2423 int stop_func_filled_in;
2424 CORE_ADDR stop_func_start;
2425 CORE_ADDR stop_func_end;
2426 const char *stop_func_name;
2427 int wait_some_more;
2428 };
2429
2430 static void handle_inferior_event (struct execution_control_state *ecs);
2431
2432 static void handle_step_into_function (struct gdbarch *gdbarch,
2433 struct execution_control_state *ecs);
2434 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2435 struct execution_control_state *ecs);
2436 static void check_exception_resume (struct execution_control_state *,
2437 struct frame_info *);
2438
2439 static void stop_stepping (struct execution_control_state *ecs);
2440 static void prepare_to_wait (struct execution_control_state *ecs);
2441 static void keep_going (struct execution_control_state *ecs);
2442 static void process_event_stop_test (struct execution_control_state *ecs);
2443 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
2444
2445 /* Callback for iterate over threads. If the thread is stopped, but
2446 the user/frontend doesn't know about that yet, go through
2447 normal_stop, as if the thread had just stopped now. ARG points at
2448 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2449 ptid_is_pid(PTID) is true, applies to all threads of the process
2450 pointed at by PTID. Otherwise, apply only to the thread pointed by
2451 PTID. */
2452
2453 static int
2454 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2455 {
2456 ptid_t ptid = * (ptid_t *) arg;
2457
2458 if ((ptid_equal (info->ptid, ptid)
2459 || ptid_equal (minus_one_ptid, ptid)
2460 || (ptid_is_pid (ptid)
2461 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2462 && is_running (info->ptid)
2463 && !is_executing (info->ptid))
2464 {
2465 struct cleanup *old_chain;
2466 struct execution_control_state ecss;
2467 struct execution_control_state *ecs = &ecss;
2468
2469 memset (ecs, 0, sizeof (*ecs));
2470
2471 old_chain = make_cleanup_restore_current_thread ();
2472
2473 /* Go through handle_inferior_event/normal_stop, so we always
2474 have consistent output as if the stop event had been
2475 reported. */
2476 ecs->ptid = info->ptid;
2477 ecs->event_thread = find_thread_ptid (info->ptid);
2478 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2479 ecs->ws.value.sig = GDB_SIGNAL_0;
2480
2481 handle_inferior_event (ecs);
2482
2483 if (!ecs->wait_some_more)
2484 {
2485 struct thread_info *tp;
2486
2487 normal_stop ();
2488
2489 /* Finish off the continuations. */
2490 tp = inferior_thread ();
2491 do_all_intermediate_continuations_thread (tp, 1);
2492 do_all_continuations_thread (tp, 1);
2493 }
2494
2495 do_cleanups (old_chain);
2496 }
2497
2498 return 0;
2499 }
2500
2501 /* This function is attached as a "thread_stop_requested" observer.
2502 Cleanup local state that assumed the PTID was to be resumed, and
2503 report the stop to the frontend. */
2504
2505 static void
2506 infrun_thread_stop_requested (ptid_t ptid)
2507 {
2508 struct displaced_step_inferior_state *displaced;
2509
2510 /* PTID was requested to stop. Remove it from the displaced
2511 stepping queue, so we don't try to resume it automatically. */
2512
2513 for (displaced = displaced_step_inferior_states;
2514 displaced;
2515 displaced = displaced->next)
2516 {
2517 struct displaced_step_request *it, **prev_next_p;
2518
2519 it = displaced->step_request_queue;
2520 prev_next_p = &displaced->step_request_queue;
2521 while (it)
2522 {
2523 if (ptid_match (it->ptid, ptid))
2524 {
2525 *prev_next_p = it->next;
2526 it->next = NULL;
2527 xfree (it);
2528 }
2529 else
2530 {
2531 prev_next_p = &it->next;
2532 }
2533
2534 it = *prev_next_p;
2535 }
2536 }
2537
2538 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2539 }
2540
2541 static void
2542 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2543 {
2544 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2545 nullify_last_target_wait_ptid ();
2546 }
2547
2548 /* Callback for iterate_over_threads. */
2549
2550 static int
2551 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2552 {
2553 if (is_exited (info->ptid))
2554 return 0;
2555
2556 delete_step_resume_breakpoint (info);
2557 delete_exception_resume_breakpoint (info);
2558 return 0;
2559 }
2560
2561 /* In all-stop, delete the step resume breakpoint of any thread that
2562 had one. In non-stop, delete the step resume breakpoint of the
2563 thread that just stopped. */
2564
2565 static void
2566 delete_step_thread_step_resume_breakpoint (void)
2567 {
2568 if (!target_has_execution
2569 || ptid_equal (inferior_ptid, null_ptid))
2570 /* If the inferior has exited, we have already deleted the step
2571 resume breakpoints out of GDB's lists. */
2572 return;
2573
2574 if (non_stop)
2575 {
2576 /* If in non-stop mode, only delete the step-resume or
2577 longjmp-resume breakpoint of the thread that just stopped
2578 stepping. */
2579 struct thread_info *tp = inferior_thread ();
2580
2581 delete_step_resume_breakpoint (tp);
2582 delete_exception_resume_breakpoint (tp);
2583 }
2584 else
2585 /* In all-stop mode, delete all step-resume and longjmp-resume
2586 breakpoints of any thread that had them. */
2587 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2588 }
2589
2590 /* A cleanup wrapper. */
2591
2592 static void
2593 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2594 {
2595 delete_step_thread_step_resume_breakpoint ();
2596 }
2597
2598 /* Pretty print the results of target_wait, for debugging purposes. */
2599
2600 static void
2601 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2602 const struct target_waitstatus *ws)
2603 {
2604 char *status_string = target_waitstatus_to_string (ws);
2605 struct ui_file *tmp_stream = mem_fileopen ();
2606 char *text;
2607
2608 /* The text is split over several lines because it was getting too long.
2609 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2610 output as a unit; we want only one timestamp printed if debug_timestamp
2611 is set. */
2612
2613 fprintf_unfiltered (tmp_stream,
2614 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
2615 if (ptid_get_pid (waiton_ptid) != -1)
2616 fprintf_unfiltered (tmp_stream,
2617 " [%s]", target_pid_to_str (waiton_ptid));
2618 fprintf_unfiltered (tmp_stream, ", status) =\n");
2619 fprintf_unfiltered (tmp_stream,
2620 "infrun: %d [%s],\n",
2621 ptid_get_pid (result_ptid),
2622 target_pid_to_str (result_ptid));
2623 fprintf_unfiltered (tmp_stream,
2624 "infrun: %s\n",
2625 status_string);
2626
2627 text = ui_file_xstrdup (tmp_stream, NULL);
2628
2629 /* This uses %s in part to handle %'s in the text, but also to avoid
2630 a gcc error: the format attribute requires a string literal. */
2631 fprintf_unfiltered (gdb_stdlog, "%s", text);
2632
2633 xfree (status_string);
2634 xfree (text);
2635 ui_file_delete (tmp_stream);
2636 }
2637
2638 /* Prepare and stabilize the inferior for detaching it. E.g.,
2639 detaching while a thread is displaced stepping is a recipe for
2640 crashing it, as nothing would readjust the PC out of the scratch
2641 pad. */
2642
2643 void
2644 prepare_for_detach (void)
2645 {
2646 struct inferior *inf = current_inferior ();
2647 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2648 struct cleanup *old_chain_1;
2649 struct displaced_step_inferior_state *displaced;
2650
2651 displaced = get_displaced_stepping_state (inf->pid);
2652
2653 /* Is any thread of this process displaced stepping? If not,
2654 there's nothing else to do. */
2655 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2656 return;
2657
2658 if (debug_infrun)
2659 fprintf_unfiltered (gdb_stdlog,
2660 "displaced-stepping in-process while detaching");
2661
2662 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2663 inf->detaching = 1;
2664
2665 while (!ptid_equal (displaced->step_ptid, null_ptid))
2666 {
2667 struct cleanup *old_chain_2;
2668 struct execution_control_state ecss;
2669 struct execution_control_state *ecs;
2670
2671 ecs = &ecss;
2672 memset (ecs, 0, sizeof (*ecs));
2673
2674 overlay_cache_invalid = 1;
2675
2676 if (deprecated_target_wait_hook)
2677 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2678 else
2679 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2680
2681 if (debug_infrun)
2682 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2683
2684 /* If an error happens while handling the event, propagate GDB's
2685 knowledge of the executing state to the frontend/user running
2686 state. */
2687 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2688 &minus_one_ptid);
2689
2690 /* Now figure out what to do with the result of the result. */
2691 handle_inferior_event (ecs);
2692
2693 /* No error, don't finish the state yet. */
2694 discard_cleanups (old_chain_2);
2695
2696 /* Breakpoints and watchpoints are not installed on the target
2697 at this point, and signals are passed directly to the
2698 inferior, so this must mean the process is gone. */
2699 if (!ecs->wait_some_more)
2700 {
2701 discard_cleanups (old_chain_1);
2702 error (_("Program exited while detaching"));
2703 }
2704 }
2705
2706 discard_cleanups (old_chain_1);
2707 }
2708
2709 /* Wait for control to return from inferior to debugger.
2710
2711 If inferior gets a signal, we may decide to start it up again
2712 instead of returning. That is why there is a loop in this function.
2713 When this function actually returns it means the inferior
2714 should be left stopped and GDB should read more commands. */
2715
2716 void
2717 wait_for_inferior (void)
2718 {
2719 struct cleanup *old_cleanups;
2720
2721 if (debug_infrun)
2722 fprintf_unfiltered
2723 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2724
2725 old_cleanups =
2726 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2727
2728 while (1)
2729 {
2730 struct execution_control_state ecss;
2731 struct execution_control_state *ecs = &ecss;
2732 struct cleanup *old_chain;
2733
2734 memset (ecs, 0, sizeof (*ecs));
2735
2736 overlay_cache_invalid = 1;
2737
2738 if (deprecated_target_wait_hook)
2739 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2740 else
2741 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2742
2743 if (debug_infrun)
2744 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2745
2746 /* If an error happens while handling the event, propagate GDB's
2747 knowledge of the executing state to the frontend/user running
2748 state. */
2749 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2750
2751 /* Now figure out what to do with the result of the result. */
2752 handle_inferior_event (ecs);
2753
2754 /* No error, don't finish the state yet. */
2755 discard_cleanups (old_chain);
2756
2757 if (!ecs->wait_some_more)
2758 break;
2759 }
2760
2761 do_cleanups (old_cleanups);
2762 }
2763
2764 /* Asynchronous version of wait_for_inferior. It is called by the
2765 event loop whenever a change of state is detected on the file
2766 descriptor corresponding to the target. It can be called more than
2767 once to complete a single execution command. In such cases we need
2768 to keep the state in a global variable ECSS. If it is the last time
2769 that this function is called for a single execution command, then
2770 report to the user that the inferior has stopped, and do the
2771 necessary cleanups. */
2772
2773 void
2774 fetch_inferior_event (void *client_data)
2775 {
2776 struct execution_control_state ecss;
2777 struct execution_control_state *ecs = &ecss;
2778 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2779 struct cleanup *ts_old_chain;
2780 int was_sync = sync_execution;
2781 int cmd_done = 0;
2782
2783 memset (ecs, 0, sizeof (*ecs));
2784
2785 /* We're handling a live event, so make sure we're doing live
2786 debugging. If we're looking at traceframes while the target is
2787 running, we're going to need to get back to that mode after
2788 handling the event. */
2789 if (non_stop)
2790 {
2791 make_cleanup_restore_current_traceframe ();
2792 set_current_traceframe (-1);
2793 }
2794
2795 if (non_stop)
2796 /* In non-stop mode, the user/frontend should not notice a thread
2797 switch due to internal events. Make sure we reverse to the
2798 user selected thread and frame after handling the event and
2799 running any breakpoint commands. */
2800 make_cleanup_restore_current_thread ();
2801
2802 overlay_cache_invalid = 1;
2803
2804 make_cleanup_restore_integer (&execution_direction);
2805 execution_direction = target_execution_direction ();
2806
2807 if (deprecated_target_wait_hook)
2808 ecs->ptid =
2809 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2810 else
2811 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2812
2813 if (debug_infrun)
2814 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2815
2816 /* If an error happens while handling the event, propagate GDB's
2817 knowledge of the executing state to the frontend/user running
2818 state. */
2819 if (!non_stop)
2820 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2821 else
2822 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2823
2824 /* Get executed before make_cleanup_restore_current_thread above to apply
2825 still for the thread which has thrown the exception. */
2826 make_bpstat_clear_actions_cleanup ();
2827
2828 /* Now figure out what to do with the result of the result. */
2829 handle_inferior_event (ecs);
2830
2831 if (!ecs->wait_some_more)
2832 {
2833 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2834
2835 delete_step_thread_step_resume_breakpoint ();
2836
2837 /* We may not find an inferior if this was a process exit. */
2838 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2839 normal_stop ();
2840
2841 if (target_has_execution
2842 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2843 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2844 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2845 && ecs->event_thread->step_multi
2846 && ecs->event_thread->control.stop_step)
2847 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2848 else
2849 {
2850 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2851 cmd_done = 1;
2852 }
2853 }
2854
2855 /* No error, don't finish the thread states yet. */
2856 discard_cleanups (ts_old_chain);
2857
2858 /* Revert thread and frame. */
2859 do_cleanups (old_chain);
2860
2861 /* If the inferior was in sync execution mode, and now isn't,
2862 restore the prompt (a synchronous execution command has finished,
2863 and we're ready for input). */
2864 if (interpreter_async && was_sync && !sync_execution)
2865 display_gdb_prompt (0);
2866
2867 if (cmd_done
2868 && !was_sync
2869 && exec_done_display_p
2870 && (ptid_equal (inferior_ptid, null_ptid)
2871 || !is_running (inferior_ptid)))
2872 printf_unfiltered (_("completed.\n"));
2873 }
2874
2875 /* Record the frame and location we're currently stepping through. */
2876 void
2877 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2878 {
2879 struct thread_info *tp = inferior_thread ();
2880
2881 tp->control.step_frame_id = get_frame_id (frame);
2882 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2883
2884 tp->current_symtab = sal.symtab;
2885 tp->current_line = sal.line;
2886 }
2887
2888 /* Clear context switchable stepping state. */
2889
2890 void
2891 init_thread_stepping_state (struct thread_info *tss)
2892 {
2893 tss->stepping_over_breakpoint = 0;
2894 tss->step_after_step_resume_breakpoint = 0;
2895 }
2896
2897 /* Return the cached copy of the last pid/waitstatus returned by
2898 target_wait()/deprecated_target_wait_hook(). The data is actually
2899 cached by handle_inferior_event(), which gets called immediately
2900 after target_wait()/deprecated_target_wait_hook(). */
2901
2902 void
2903 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2904 {
2905 *ptidp = target_last_wait_ptid;
2906 *status = target_last_waitstatus;
2907 }
2908
2909 void
2910 nullify_last_target_wait_ptid (void)
2911 {
2912 target_last_wait_ptid = minus_one_ptid;
2913 }
2914
2915 /* Switch thread contexts. */
2916
2917 static void
2918 context_switch (ptid_t ptid)
2919 {
2920 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2921 {
2922 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2923 target_pid_to_str (inferior_ptid));
2924 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2925 target_pid_to_str (ptid));
2926 }
2927
2928 switch_to_thread (ptid);
2929 }
2930
2931 static void
2932 adjust_pc_after_break (struct execution_control_state *ecs)
2933 {
2934 struct regcache *regcache;
2935 struct gdbarch *gdbarch;
2936 struct address_space *aspace;
2937 CORE_ADDR breakpoint_pc;
2938
2939 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2940 we aren't, just return.
2941
2942 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2943 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2944 implemented by software breakpoints should be handled through the normal
2945 breakpoint layer.
2946
2947 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2948 different signals (SIGILL or SIGEMT for instance), but it is less
2949 clear where the PC is pointing afterwards. It may not match
2950 gdbarch_decr_pc_after_break. I don't know any specific target that
2951 generates these signals at breakpoints (the code has been in GDB since at
2952 least 1992) so I can not guess how to handle them here.
2953
2954 In earlier versions of GDB, a target with
2955 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2956 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2957 target with both of these set in GDB history, and it seems unlikely to be
2958 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2959
2960 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2961 return;
2962
2963 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
2964 return;
2965
2966 /* In reverse execution, when a breakpoint is hit, the instruction
2967 under it has already been de-executed. The reported PC always
2968 points at the breakpoint address, so adjusting it further would
2969 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2970 architecture:
2971
2972 B1 0x08000000 : INSN1
2973 B2 0x08000001 : INSN2
2974 0x08000002 : INSN3
2975 PC -> 0x08000003 : INSN4
2976
2977 Say you're stopped at 0x08000003 as above. Reverse continuing
2978 from that point should hit B2 as below. Reading the PC when the
2979 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2980 been de-executed already.
2981
2982 B1 0x08000000 : INSN1
2983 B2 PC -> 0x08000001 : INSN2
2984 0x08000002 : INSN3
2985 0x08000003 : INSN4
2986
2987 We can't apply the same logic as for forward execution, because
2988 we would wrongly adjust the PC to 0x08000000, since there's a
2989 breakpoint at PC - 1. We'd then report a hit on B1, although
2990 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2991 behaviour. */
2992 if (execution_direction == EXEC_REVERSE)
2993 return;
2994
2995 /* If this target does not decrement the PC after breakpoints, then
2996 we have nothing to do. */
2997 regcache = get_thread_regcache (ecs->ptid);
2998 gdbarch = get_regcache_arch (regcache);
2999 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
3000 return;
3001
3002 aspace = get_regcache_aspace (regcache);
3003
3004 /* Find the location where (if we've hit a breakpoint) the
3005 breakpoint would be. */
3006 breakpoint_pc = regcache_read_pc (regcache)
3007 - gdbarch_decr_pc_after_break (gdbarch);
3008
3009 /* Check whether there actually is a software breakpoint inserted at
3010 that location.
3011
3012 If in non-stop mode, a race condition is possible where we've
3013 removed a breakpoint, but stop events for that breakpoint were
3014 already queued and arrive later. To suppress those spurious
3015 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3016 and retire them after a number of stop events are reported. */
3017 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3018 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3019 {
3020 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
3021
3022 if (RECORD_IS_USED)
3023 record_full_gdb_operation_disable_set ();
3024
3025 /* When using hardware single-step, a SIGTRAP is reported for both
3026 a completed single-step and a software breakpoint. Need to
3027 differentiate between the two, as the latter needs adjusting
3028 but the former does not.
3029
3030 The SIGTRAP can be due to a completed hardware single-step only if
3031 - we didn't insert software single-step breakpoints
3032 - the thread to be examined is still the current thread
3033 - this thread is currently being stepped
3034
3035 If any of these events did not occur, we must have stopped due
3036 to hitting a software breakpoint, and have to back up to the
3037 breakpoint address.
3038
3039 As a special case, we could have hardware single-stepped a
3040 software breakpoint. In this case (prev_pc == breakpoint_pc),
3041 we also need to back up to the breakpoint address. */
3042
3043 if (singlestep_breakpoints_inserted_p
3044 || !ptid_equal (ecs->ptid, inferior_ptid)
3045 || !currently_stepping (ecs->event_thread)
3046 || ecs->event_thread->prev_pc == breakpoint_pc)
3047 regcache_write_pc (regcache, breakpoint_pc);
3048
3049 do_cleanups (old_cleanups);
3050 }
3051 }
3052
3053 static void
3054 init_infwait_state (void)
3055 {
3056 waiton_ptid = pid_to_ptid (-1);
3057 infwait_state = infwait_normal_state;
3058 }
3059
3060 static int
3061 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3062 {
3063 for (frame = get_prev_frame (frame);
3064 frame != NULL;
3065 frame = get_prev_frame (frame))
3066 {
3067 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3068 return 1;
3069 if (get_frame_type (frame) != INLINE_FRAME)
3070 break;
3071 }
3072
3073 return 0;
3074 }
3075
3076 /* Auxiliary function that handles syscall entry/return events.
3077 It returns 1 if the inferior should keep going (and GDB
3078 should ignore the event), or 0 if the event deserves to be
3079 processed. */
3080
3081 static int
3082 handle_syscall_event (struct execution_control_state *ecs)
3083 {
3084 struct regcache *regcache;
3085 int syscall_number;
3086
3087 if (!ptid_equal (ecs->ptid, inferior_ptid))
3088 context_switch (ecs->ptid);
3089
3090 regcache = get_thread_regcache (ecs->ptid);
3091 syscall_number = ecs->ws.value.syscall_number;
3092 stop_pc = regcache_read_pc (regcache);
3093
3094 if (catch_syscall_enabled () > 0
3095 && catching_syscall_number (syscall_number) > 0)
3096 {
3097 enum bpstat_signal_value sval;
3098
3099 if (debug_infrun)
3100 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3101 syscall_number);
3102
3103 ecs->event_thread->control.stop_bpstat
3104 = bpstat_stop_status (get_regcache_aspace (regcache),
3105 stop_pc, ecs->ptid, &ecs->ws);
3106
3107 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3108 GDB_SIGNAL_0);
3109 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
3110
3111 if (!ecs->random_signal)
3112 {
3113 /* Catchpoint hit. */
3114 return 0;
3115 }
3116 }
3117
3118 /* If no catchpoint triggered for this, then keep going. */
3119 keep_going (ecs);
3120 return 1;
3121 }
3122
3123 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3124
3125 static void
3126 fill_in_stop_func (struct gdbarch *gdbarch,
3127 struct execution_control_state *ecs)
3128 {
3129 if (!ecs->stop_func_filled_in)
3130 {
3131 /* Don't care about return value; stop_func_start and stop_func_name
3132 will both be 0 if it doesn't work. */
3133 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3134 &ecs->stop_func_start, &ecs->stop_func_end);
3135 ecs->stop_func_start
3136 += gdbarch_deprecated_function_start_offset (gdbarch);
3137
3138 ecs->stop_func_filled_in = 1;
3139 }
3140 }
3141
3142 /* Given an execution control state that has been freshly filled in by
3143 an event from the inferior, figure out what it means and take
3144 appropriate action.
3145
3146 The alternatives are:
3147
3148 1) stop_stepping and return; to really stop and return to the
3149 debugger.
3150
3151 2) keep_going and return; to wait for the next event (set
3152 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3153 once). */
3154
3155 static void
3156 handle_inferior_event (struct execution_control_state *ecs)
3157 {
3158 struct frame_info *frame;
3159 struct gdbarch *gdbarch;
3160 int stopped_by_watchpoint;
3161 int stepped_after_stopped_by_watchpoint = 0;
3162 enum stop_kind stop_soon;
3163
3164 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3165 {
3166 /* We had an event in the inferior, but we are not interested in
3167 handling it at this level. The lower layers have already
3168 done what needs to be done, if anything.
3169
3170 One of the possible circumstances for this is when the
3171 inferior produces output for the console. The inferior has
3172 not stopped, and we are ignoring the event. Another possible
3173 circumstance is any event which the lower level knows will be
3174 reported multiple times without an intervening resume. */
3175 if (debug_infrun)
3176 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3177 prepare_to_wait (ecs);
3178 return;
3179 }
3180
3181 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3182 && target_can_async_p () && !sync_execution)
3183 {
3184 /* There were no unwaited-for children left in the target, but,
3185 we're not synchronously waiting for events either. Just
3186 ignore. Otherwise, if we were running a synchronous
3187 execution command, we need to cancel it and give the user
3188 back the terminal. */
3189 if (debug_infrun)
3190 fprintf_unfiltered (gdb_stdlog,
3191 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3192 prepare_to_wait (ecs);
3193 return;
3194 }
3195
3196 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3197 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3198 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3199 {
3200 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3201
3202 gdb_assert (inf);
3203 stop_soon = inf->control.stop_soon;
3204 }
3205 else
3206 stop_soon = NO_STOP_QUIETLY;
3207
3208 /* Cache the last pid/waitstatus. */
3209 target_last_wait_ptid = ecs->ptid;
3210 target_last_waitstatus = ecs->ws;
3211
3212 /* Always clear state belonging to the previous time we stopped. */
3213 stop_stack_dummy = STOP_NONE;
3214
3215 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3216 {
3217 /* No unwaited-for children left. IOW, all resumed children
3218 have exited. */
3219 if (debug_infrun)
3220 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3221
3222 stop_print_frame = 0;
3223 stop_stepping (ecs);
3224 return;
3225 }
3226
3227 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3228 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3229 {
3230 ecs->event_thread = find_thread_ptid (ecs->ptid);
3231 /* If it's a new thread, add it to the thread database. */
3232 if (ecs->event_thread == NULL)
3233 ecs->event_thread = add_thread (ecs->ptid);
3234
3235 /* Disable range stepping. If the next step request could use a
3236 range, this will be end up re-enabled then. */
3237 ecs->event_thread->control.may_range_step = 0;
3238 }
3239
3240 /* Dependent on valid ECS->EVENT_THREAD. */
3241 adjust_pc_after_break (ecs);
3242
3243 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3244 reinit_frame_cache ();
3245
3246 breakpoint_retire_moribund ();
3247
3248 /* First, distinguish signals caused by the debugger from signals
3249 that have to do with the program's own actions. Note that
3250 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3251 on the operating system version. Here we detect when a SIGILL or
3252 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3253 something similar for SIGSEGV, since a SIGSEGV will be generated
3254 when we're trying to execute a breakpoint instruction on a
3255 non-executable stack. This happens for call dummy breakpoints
3256 for architectures like SPARC that place call dummies on the
3257 stack. */
3258 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3259 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3260 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3261 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3262 {
3263 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3264
3265 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3266 regcache_read_pc (regcache)))
3267 {
3268 if (debug_infrun)
3269 fprintf_unfiltered (gdb_stdlog,
3270 "infrun: Treating signal as SIGTRAP\n");
3271 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3272 }
3273 }
3274
3275 /* Mark the non-executing threads accordingly. In all-stop, all
3276 threads of all processes are stopped when we get any event
3277 reported. In non-stop mode, only the event thread stops. If
3278 we're handling a process exit in non-stop mode, there's nothing
3279 to do, as threads of the dead process are gone, and threads of
3280 any other process were left running. */
3281 if (!non_stop)
3282 set_executing (minus_one_ptid, 0);
3283 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3284 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3285 set_executing (ecs->ptid, 0);
3286
3287 switch (infwait_state)
3288 {
3289 case infwait_thread_hop_state:
3290 if (debug_infrun)
3291 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3292 break;
3293
3294 case infwait_normal_state:
3295 if (debug_infrun)
3296 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3297 break;
3298
3299 case infwait_step_watch_state:
3300 if (debug_infrun)
3301 fprintf_unfiltered (gdb_stdlog,
3302 "infrun: infwait_step_watch_state\n");
3303
3304 stepped_after_stopped_by_watchpoint = 1;
3305 break;
3306
3307 case infwait_nonstep_watch_state:
3308 if (debug_infrun)
3309 fprintf_unfiltered (gdb_stdlog,
3310 "infrun: infwait_nonstep_watch_state\n");
3311 insert_breakpoints ();
3312
3313 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3314 handle things like signals arriving and other things happening
3315 in combination correctly? */
3316 stepped_after_stopped_by_watchpoint = 1;
3317 break;
3318
3319 default:
3320 internal_error (__FILE__, __LINE__, _("bad switch"));
3321 }
3322
3323 infwait_state = infwait_normal_state;
3324 waiton_ptid = pid_to_ptid (-1);
3325
3326 switch (ecs->ws.kind)
3327 {
3328 case TARGET_WAITKIND_LOADED:
3329 if (debug_infrun)
3330 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3331 if (!ptid_equal (ecs->ptid, inferior_ptid))
3332 context_switch (ecs->ptid);
3333 /* Ignore gracefully during startup of the inferior, as it might
3334 be the shell which has just loaded some objects, otherwise
3335 add the symbols for the newly loaded objects. Also ignore at
3336 the beginning of an attach or remote session; we will query
3337 the full list of libraries once the connection is
3338 established. */
3339 if (stop_soon == NO_STOP_QUIETLY)
3340 {
3341 struct regcache *regcache;
3342 enum bpstat_signal_value sval;
3343
3344 regcache = get_thread_regcache (ecs->ptid);
3345
3346 handle_solib_event ();
3347
3348 ecs->event_thread->control.stop_bpstat
3349 = bpstat_stop_status (get_regcache_aspace (regcache),
3350 stop_pc, ecs->ptid, &ecs->ws);
3351
3352 sval
3353 = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3354 GDB_SIGNAL_0);
3355 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
3356
3357 if (!ecs->random_signal)
3358 {
3359 /* A catchpoint triggered. */
3360 process_event_stop_test (ecs);
3361 return;
3362 }
3363
3364 /* If requested, stop when the dynamic linker notifies
3365 gdb of events. This allows the user to get control
3366 and place breakpoints in initializer routines for
3367 dynamically loaded objects (among other things). */
3368 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3369 if (stop_on_solib_events)
3370 {
3371 /* Make sure we print "Stopped due to solib-event" in
3372 normal_stop. */
3373 stop_print_frame = 1;
3374
3375 stop_stepping (ecs);
3376 return;
3377 }
3378 }
3379
3380 /* If we are skipping through a shell, or through shared library
3381 loading that we aren't interested in, resume the program. If
3382 we're running the program normally, also resume. */
3383 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3384 {
3385 /* Loading of shared libraries might have changed breakpoint
3386 addresses. Make sure new breakpoints are inserted. */
3387 if (stop_soon == NO_STOP_QUIETLY
3388 && !breakpoints_always_inserted_mode ())
3389 insert_breakpoints ();
3390 resume (0, GDB_SIGNAL_0);
3391 prepare_to_wait (ecs);
3392 return;
3393 }
3394
3395 /* But stop if we're attaching or setting up a remote
3396 connection. */
3397 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3398 || stop_soon == STOP_QUIETLY_REMOTE)
3399 {
3400 if (debug_infrun)
3401 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3402 stop_stepping (ecs);
3403 return;
3404 }
3405
3406 internal_error (__FILE__, __LINE__,
3407 _("unhandled stop_soon: %d"), (int) stop_soon);
3408
3409 case TARGET_WAITKIND_SPURIOUS:
3410 if (debug_infrun)
3411 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3412 if (!ptid_equal (ecs->ptid, inferior_ptid))
3413 context_switch (ecs->ptid);
3414 resume (0, GDB_SIGNAL_0);
3415 prepare_to_wait (ecs);
3416 return;
3417
3418 case TARGET_WAITKIND_EXITED:
3419 case TARGET_WAITKIND_SIGNALLED:
3420 if (debug_infrun)
3421 {
3422 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3423 fprintf_unfiltered (gdb_stdlog,
3424 "infrun: TARGET_WAITKIND_EXITED\n");
3425 else
3426 fprintf_unfiltered (gdb_stdlog,
3427 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3428 }
3429
3430 inferior_ptid = ecs->ptid;
3431 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3432 set_current_program_space (current_inferior ()->pspace);
3433 handle_vfork_child_exec_or_exit (0);
3434 target_terminal_ours (); /* Must do this before mourn anyway. */
3435
3436 /* Clearing any previous state of convenience variables. */
3437 clear_exit_convenience_vars ();
3438
3439 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3440 {
3441 /* Record the exit code in the convenience variable $_exitcode, so
3442 that the user can inspect this again later. */
3443 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3444 (LONGEST) ecs->ws.value.integer);
3445
3446 /* Also record this in the inferior itself. */
3447 current_inferior ()->has_exit_code = 1;
3448 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3449
3450 print_exited_reason (ecs->ws.value.integer);
3451 }
3452 else
3453 {
3454 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3455 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3456
3457 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3458 {
3459 /* Set the value of the internal variable $_exitsignal,
3460 which holds the signal uncaught by the inferior. */
3461 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3462 gdbarch_gdb_signal_to_target (gdbarch,
3463 ecs->ws.value.sig));
3464 }
3465 else
3466 {
3467 /* We don't have access to the target's method used for
3468 converting between signal numbers (GDB's internal
3469 representation <-> target's representation).
3470 Therefore, we cannot do a good job at displaying this
3471 information to the user. It's better to just warn
3472 her about it (if infrun debugging is enabled), and
3473 give up. */
3474 if (debug_infrun)
3475 fprintf_filtered (gdb_stdlog, _("\
3476 Cannot fill $_exitsignal with the correct signal number.\n"));
3477 }
3478
3479 print_signal_exited_reason (ecs->ws.value.sig);
3480 }
3481
3482 gdb_flush (gdb_stdout);
3483 target_mourn_inferior ();
3484 singlestep_breakpoints_inserted_p = 0;
3485 cancel_single_step_breakpoints ();
3486 stop_print_frame = 0;
3487 stop_stepping (ecs);
3488 return;
3489
3490 /* The following are the only cases in which we keep going;
3491 the above cases end in a continue or goto. */
3492 case TARGET_WAITKIND_FORKED:
3493 case TARGET_WAITKIND_VFORKED:
3494 if (debug_infrun)
3495 {
3496 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3497 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3498 else
3499 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3500 }
3501
3502 /* Check whether the inferior is displaced stepping. */
3503 {
3504 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3505 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3506 struct displaced_step_inferior_state *displaced
3507 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3508
3509 /* If checking displaced stepping is supported, and thread
3510 ecs->ptid is displaced stepping. */
3511 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3512 {
3513 struct inferior *parent_inf
3514 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3515 struct regcache *child_regcache;
3516 CORE_ADDR parent_pc;
3517
3518 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3519 indicating that the displaced stepping of syscall instruction
3520 has been done. Perform cleanup for parent process here. Note
3521 that this operation also cleans up the child process for vfork,
3522 because their pages are shared. */
3523 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3524
3525 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3526 {
3527 /* Restore scratch pad for child process. */
3528 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3529 }
3530
3531 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3532 the child's PC is also within the scratchpad. Set the child's PC
3533 to the parent's PC value, which has already been fixed up.
3534 FIXME: we use the parent's aspace here, although we're touching
3535 the child, because the child hasn't been added to the inferior
3536 list yet at this point. */
3537
3538 child_regcache
3539 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3540 gdbarch,
3541 parent_inf->aspace);
3542 /* Read PC value of parent process. */
3543 parent_pc = regcache_read_pc (regcache);
3544
3545 if (debug_displaced)
3546 fprintf_unfiltered (gdb_stdlog,
3547 "displaced: write child pc from %s to %s\n",
3548 paddress (gdbarch,
3549 regcache_read_pc (child_regcache)),
3550 paddress (gdbarch, parent_pc));
3551
3552 regcache_write_pc (child_regcache, parent_pc);
3553 }
3554 }
3555
3556 if (!ptid_equal (ecs->ptid, inferior_ptid))
3557 context_switch (ecs->ptid);
3558
3559 /* Immediately detach breakpoints from the child before there's
3560 any chance of letting the user delete breakpoints from the
3561 breakpoint lists. If we don't do this early, it's easy to
3562 leave left over traps in the child, vis: "break foo; catch
3563 fork; c; <fork>; del; c; <child calls foo>". We only follow
3564 the fork on the last `continue', and by that time the
3565 breakpoint at "foo" is long gone from the breakpoint table.
3566 If we vforked, then we don't need to unpatch here, since both
3567 parent and child are sharing the same memory pages; we'll
3568 need to unpatch at follow/detach time instead to be certain
3569 that new breakpoints added between catchpoint hit time and
3570 vfork follow are detached. */
3571 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3572 {
3573 /* This won't actually modify the breakpoint list, but will
3574 physically remove the breakpoints from the child. */
3575 detach_breakpoints (ecs->ws.value.related_pid);
3576 }
3577
3578 if (singlestep_breakpoints_inserted_p)
3579 {
3580 /* Pull the single step breakpoints out of the target. */
3581 remove_single_step_breakpoints ();
3582 singlestep_breakpoints_inserted_p = 0;
3583 }
3584
3585 /* In case the event is caught by a catchpoint, remember that
3586 the event is to be followed at the next resume of the thread,
3587 and not immediately. */
3588 ecs->event_thread->pending_follow = ecs->ws;
3589
3590 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3591
3592 ecs->event_thread->control.stop_bpstat
3593 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3594 stop_pc, ecs->ptid, &ecs->ws);
3595
3596 /* Note that we're interested in knowing the bpstat actually
3597 causes a stop, not just if it may explain the signal.
3598 Software watchpoints, for example, always appear in the
3599 bpstat. */
3600 ecs->random_signal
3601 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3602
3603 /* If no catchpoint triggered for this, then keep going. */
3604 if (ecs->random_signal)
3605 {
3606 ptid_t parent;
3607 ptid_t child;
3608 int should_resume;
3609 int follow_child
3610 = (follow_fork_mode_string == follow_fork_mode_child);
3611
3612 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3613
3614 should_resume = follow_fork ();
3615
3616 parent = ecs->ptid;
3617 child = ecs->ws.value.related_pid;
3618
3619 /* In non-stop mode, also resume the other branch. */
3620 if (non_stop && !detach_fork)
3621 {
3622 if (follow_child)
3623 switch_to_thread (parent);
3624 else
3625 switch_to_thread (child);
3626
3627 ecs->event_thread = inferior_thread ();
3628 ecs->ptid = inferior_ptid;
3629 keep_going (ecs);
3630 }
3631
3632 if (follow_child)
3633 switch_to_thread (child);
3634 else
3635 switch_to_thread (parent);
3636
3637 ecs->event_thread = inferior_thread ();
3638 ecs->ptid = inferior_ptid;
3639
3640 if (should_resume)
3641 keep_going (ecs);
3642 else
3643 stop_stepping (ecs);
3644 return;
3645 }
3646 process_event_stop_test (ecs);
3647 return;
3648
3649 case TARGET_WAITKIND_VFORK_DONE:
3650 /* Done with the shared memory region. Re-insert breakpoints in
3651 the parent, and keep going. */
3652
3653 if (debug_infrun)
3654 fprintf_unfiltered (gdb_stdlog,
3655 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3656
3657 if (!ptid_equal (ecs->ptid, inferior_ptid))
3658 context_switch (ecs->ptid);
3659
3660 current_inferior ()->waiting_for_vfork_done = 0;
3661 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3662 /* This also takes care of reinserting breakpoints in the
3663 previously locked inferior. */
3664 keep_going (ecs);
3665 return;
3666
3667 case TARGET_WAITKIND_EXECD:
3668 if (debug_infrun)
3669 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3670
3671 if (!ptid_equal (ecs->ptid, inferior_ptid))
3672 context_switch (ecs->ptid);
3673
3674 singlestep_breakpoints_inserted_p = 0;
3675 cancel_single_step_breakpoints ();
3676
3677 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3678
3679 /* Do whatever is necessary to the parent branch of the vfork. */
3680 handle_vfork_child_exec_or_exit (1);
3681
3682 /* This causes the eventpoints and symbol table to be reset.
3683 Must do this now, before trying to determine whether to
3684 stop. */
3685 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3686
3687 ecs->event_thread->control.stop_bpstat
3688 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3689 stop_pc, ecs->ptid, &ecs->ws);
3690 ecs->random_signal
3691 = (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3692 GDB_SIGNAL_0)
3693 == BPSTAT_SIGNAL_NO);
3694
3695 /* Note that this may be referenced from inside
3696 bpstat_stop_status above, through inferior_has_execd. */
3697 xfree (ecs->ws.value.execd_pathname);
3698 ecs->ws.value.execd_pathname = NULL;
3699
3700 /* If no catchpoint triggered for this, then keep going. */
3701 if (ecs->random_signal)
3702 {
3703 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3704 keep_going (ecs);
3705 return;
3706 }
3707 process_event_stop_test (ecs);
3708 return;
3709
3710 /* Be careful not to try to gather much state about a thread
3711 that's in a syscall. It's frequently a losing proposition. */
3712 case TARGET_WAITKIND_SYSCALL_ENTRY:
3713 if (debug_infrun)
3714 fprintf_unfiltered (gdb_stdlog,
3715 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3716 /* Getting the current syscall number. */
3717 if (handle_syscall_event (ecs) == 0)
3718 process_event_stop_test (ecs);
3719 return;
3720
3721 /* Before examining the threads further, step this thread to
3722 get it entirely out of the syscall. (We get notice of the
3723 event when the thread is just on the verge of exiting a
3724 syscall. Stepping one instruction seems to get it back
3725 into user code.) */
3726 case TARGET_WAITKIND_SYSCALL_RETURN:
3727 if (debug_infrun)
3728 fprintf_unfiltered (gdb_stdlog,
3729 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3730 if (handle_syscall_event (ecs) == 0)
3731 process_event_stop_test (ecs);
3732 return;
3733
3734 case TARGET_WAITKIND_STOPPED:
3735 if (debug_infrun)
3736 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3737 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3738 break;
3739
3740 case TARGET_WAITKIND_NO_HISTORY:
3741 if (debug_infrun)
3742 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3743 /* Reverse execution: target ran out of history info. */
3744
3745 /* Pull the single step breakpoints out of the target. */
3746 if (singlestep_breakpoints_inserted_p)
3747 {
3748 if (!ptid_equal (ecs->ptid, inferior_ptid))
3749 context_switch (ecs->ptid);
3750 remove_single_step_breakpoints ();
3751 singlestep_breakpoints_inserted_p = 0;
3752 }
3753 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3754 print_no_history_reason ();
3755 stop_stepping (ecs);
3756 return;
3757 }
3758
3759 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3760 {
3761 /* Do we need to clean up the state of a thread that has
3762 completed a displaced single-step? (Doing so usually affects
3763 the PC, so do it here, before we set stop_pc.) */
3764 displaced_step_fixup (ecs->ptid,
3765 ecs->event_thread->suspend.stop_signal);
3766
3767 /* If we either finished a single-step or hit a breakpoint, but
3768 the user wanted this thread to be stopped, pretend we got a
3769 SIG0 (generic unsignaled stop). */
3770
3771 if (ecs->event_thread->stop_requested
3772 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3773 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3774 }
3775
3776 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3777
3778 if (debug_infrun)
3779 {
3780 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3781 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3782 struct cleanup *old_chain = save_inferior_ptid ();
3783
3784 inferior_ptid = ecs->ptid;
3785
3786 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3787 paddress (gdbarch, stop_pc));
3788 if (target_stopped_by_watchpoint ())
3789 {
3790 CORE_ADDR addr;
3791
3792 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3793
3794 if (target_stopped_data_address (&current_target, &addr))
3795 fprintf_unfiltered (gdb_stdlog,
3796 "infrun: stopped data address = %s\n",
3797 paddress (gdbarch, addr));
3798 else
3799 fprintf_unfiltered (gdb_stdlog,
3800 "infrun: (no data address available)\n");
3801 }
3802
3803 do_cleanups (old_chain);
3804 }
3805
3806 if (stepping_past_singlestep_breakpoint)
3807 {
3808 gdb_assert (singlestep_breakpoints_inserted_p);
3809 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3810 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3811
3812 stepping_past_singlestep_breakpoint = 0;
3813
3814 /* We've either finished single-stepping past the single-step
3815 breakpoint, or stopped for some other reason. It would be nice if
3816 we could tell, but we can't reliably. */
3817 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3818 {
3819 if (debug_infrun)
3820 fprintf_unfiltered (gdb_stdlog,
3821 "infrun: stepping_past_"
3822 "singlestep_breakpoint\n");
3823 /* Pull the single step breakpoints out of the target. */
3824 if (!ptid_equal (ecs->ptid, inferior_ptid))
3825 context_switch (ecs->ptid);
3826 remove_single_step_breakpoints ();
3827 singlestep_breakpoints_inserted_p = 0;
3828
3829 ecs->event_thread->control.trap_expected = 0;
3830
3831 context_switch (saved_singlestep_ptid);
3832 if (deprecated_context_hook)
3833 deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
3834
3835 resume (1, GDB_SIGNAL_0);
3836 prepare_to_wait (ecs);
3837 return;
3838 }
3839 }
3840
3841 if (!ptid_equal (deferred_step_ptid, null_ptid))
3842 {
3843 /* In non-stop mode, there's never a deferred_step_ptid set. */
3844 gdb_assert (!non_stop);
3845
3846 /* If we stopped for some other reason than single-stepping, ignore
3847 the fact that we were supposed to switch back. */
3848 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3849 {
3850 if (debug_infrun)
3851 fprintf_unfiltered (gdb_stdlog,
3852 "infrun: handling deferred step\n");
3853
3854 /* Pull the single step breakpoints out of the target. */
3855 if (singlestep_breakpoints_inserted_p)
3856 {
3857 if (!ptid_equal (ecs->ptid, inferior_ptid))
3858 context_switch (ecs->ptid);
3859 remove_single_step_breakpoints ();
3860 singlestep_breakpoints_inserted_p = 0;
3861 }
3862
3863 ecs->event_thread->control.trap_expected = 0;
3864
3865 context_switch (deferred_step_ptid);
3866 deferred_step_ptid = null_ptid;
3867 /* Suppress spurious "Switching to ..." message. */
3868 previous_inferior_ptid = inferior_ptid;
3869
3870 resume (1, GDB_SIGNAL_0);
3871 prepare_to_wait (ecs);
3872 return;
3873 }
3874
3875 deferred_step_ptid = null_ptid;
3876 }
3877
3878 /* See if a thread hit a thread-specific breakpoint that was meant for
3879 another thread. If so, then step that thread past the breakpoint,
3880 and continue it. */
3881
3882 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3883 {
3884 int thread_hop_needed = 0;
3885 struct address_space *aspace =
3886 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3887
3888 /* Check if a regular breakpoint has been hit before checking
3889 for a potential single step breakpoint. Otherwise, GDB will
3890 not see this breakpoint hit when stepping onto breakpoints. */
3891 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3892 {
3893 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3894 thread_hop_needed = 1;
3895 }
3896 else if (singlestep_breakpoints_inserted_p)
3897 {
3898 /* We have not context switched yet, so this should be true
3899 no matter which thread hit the singlestep breakpoint. */
3900 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3901 if (debug_infrun)
3902 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3903 "trap for %s\n",
3904 target_pid_to_str (ecs->ptid));
3905
3906 /* The call to in_thread_list is necessary because PTIDs sometimes
3907 change when we go from single-threaded to multi-threaded. If
3908 the singlestep_ptid is still in the list, assume that it is
3909 really different from ecs->ptid. */
3910 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3911 && in_thread_list (singlestep_ptid))
3912 {
3913 /* If the PC of the thread we were trying to single-step
3914 has changed, discard this event (which we were going
3915 to ignore anyway), and pretend we saw that thread
3916 trap. This prevents us continuously moving the
3917 single-step breakpoint forward, one instruction at a
3918 time. If the PC has changed, then the thread we were
3919 trying to single-step has trapped or been signalled,
3920 but the event has not been reported to GDB yet.
3921
3922 There might be some cases where this loses signal
3923 information, if a signal has arrived at exactly the
3924 same time that the PC changed, but this is the best
3925 we can do with the information available. Perhaps we
3926 should arrange to report all events for all threads
3927 when they stop, or to re-poll the remote looking for
3928 this particular thread (i.e. temporarily enable
3929 schedlock). */
3930
3931 CORE_ADDR new_singlestep_pc
3932 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3933
3934 if (new_singlestep_pc != singlestep_pc)
3935 {
3936 enum gdb_signal stop_signal;
3937
3938 if (debug_infrun)
3939 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3940 " but expected thread advanced also\n");
3941
3942 /* The current context still belongs to
3943 singlestep_ptid. Don't swap here, since that's
3944 the context we want to use. Just fudge our
3945 state and continue. */
3946 stop_signal = ecs->event_thread->suspend.stop_signal;
3947 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3948 ecs->ptid = singlestep_ptid;
3949 ecs->event_thread = find_thread_ptid (ecs->ptid);
3950 ecs->event_thread->suspend.stop_signal = stop_signal;
3951 stop_pc = new_singlestep_pc;
3952 }
3953 else
3954 {
3955 if (debug_infrun)
3956 fprintf_unfiltered (gdb_stdlog,
3957 "infrun: unexpected thread\n");
3958
3959 thread_hop_needed = 1;
3960 stepping_past_singlestep_breakpoint = 1;
3961 saved_singlestep_ptid = singlestep_ptid;
3962 }
3963 }
3964 }
3965
3966 if (thread_hop_needed)
3967 {
3968 struct regcache *thread_regcache;
3969 int remove_status = 0;
3970
3971 if (debug_infrun)
3972 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3973
3974 /* Switch context before touching inferior memory, the
3975 previous thread may have exited. */
3976 if (!ptid_equal (inferior_ptid, ecs->ptid))
3977 context_switch (ecs->ptid);
3978
3979 /* Saw a breakpoint, but it was hit by the wrong thread.
3980 Just continue. */
3981
3982 if (singlestep_breakpoints_inserted_p)
3983 {
3984 /* Pull the single step breakpoints out of the target. */
3985 remove_single_step_breakpoints ();
3986 singlestep_breakpoints_inserted_p = 0;
3987 }
3988
3989 /* If the arch can displace step, don't remove the
3990 breakpoints. */
3991 thread_regcache = get_thread_regcache (ecs->ptid);
3992 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3993 remove_status = remove_breakpoints ();
3994
3995 /* Did we fail to remove breakpoints? If so, try
3996 to set the PC past the bp. (There's at least
3997 one situation in which we can fail to remove
3998 the bp's: On HP-UX's that use ttrace, we can't
3999 change the address space of a vforking child
4000 process until the child exits (well, okay, not
4001 then either :-) or execs. */
4002 if (remove_status != 0)
4003 error (_("Cannot step over breakpoint hit in wrong thread"));
4004 else
4005 { /* Single step */
4006 if (!non_stop)
4007 {
4008 /* Only need to require the next event from this
4009 thread in all-stop mode. */
4010 waiton_ptid = ecs->ptid;
4011 infwait_state = infwait_thread_hop_state;
4012 }
4013
4014 ecs->event_thread->stepping_over_breakpoint = 1;
4015 keep_going (ecs);
4016 return;
4017 }
4018 }
4019 }
4020
4021 /* See if something interesting happened to the non-current thread. If
4022 so, then switch to that thread. */
4023 if (!ptid_equal (ecs->ptid, inferior_ptid))
4024 {
4025 if (debug_infrun)
4026 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
4027
4028 context_switch (ecs->ptid);
4029
4030 if (deprecated_context_hook)
4031 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
4032 }
4033
4034 /* At this point, get hold of the now-current thread's frame. */
4035 frame = get_current_frame ();
4036 gdbarch = get_frame_arch (frame);
4037
4038 if (singlestep_breakpoints_inserted_p)
4039 {
4040 /* Pull the single step breakpoints out of the target. */
4041 remove_single_step_breakpoints ();
4042 singlestep_breakpoints_inserted_p = 0;
4043 }
4044
4045 if (stepped_after_stopped_by_watchpoint)
4046 stopped_by_watchpoint = 0;
4047 else
4048 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4049
4050 /* If necessary, step over this watchpoint. We'll be back to display
4051 it in a moment. */
4052 if (stopped_by_watchpoint
4053 && (target_have_steppable_watchpoint
4054 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4055 {
4056 /* At this point, we are stopped at an instruction which has
4057 attempted to write to a piece of memory under control of
4058 a watchpoint. The instruction hasn't actually executed
4059 yet. If we were to evaluate the watchpoint expression
4060 now, we would get the old value, and therefore no change
4061 would seem to have occurred.
4062
4063 In order to make watchpoints work `right', we really need
4064 to complete the memory write, and then evaluate the
4065 watchpoint expression. We do this by single-stepping the
4066 target.
4067
4068 It may not be necessary to disable the watchpoint to stop over
4069 it. For example, the PA can (with some kernel cooperation)
4070 single step over a watchpoint without disabling the watchpoint.
4071
4072 It is far more common to need to disable a watchpoint to step
4073 the inferior over it. If we have non-steppable watchpoints,
4074 we must disable the current watchpoint; it's simplest to
4075 disable all watchpoints and breakpoints. */
4076 int hw_step = 1;
4077
4078 if (!target_have_steppable_watchpoint)
4079 {
4080 remove_breakpoints ();
4081 /* See comment in resume why we need to stop bypassing signals
4082 while breakpoints have been removed. */
4083 target_pass_signals (0, NULL);
4084 }
4085 /* Single step */
4086 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4087 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
4088 waiton_ptid = ecs->ptid;
4089 if (target_have_steppable_watchpoint)
4090 infwait_state = infwait_step_watch_state;
4091 else
4092 infwait_state = infwait_nonstep_watch_state;
4093 prepare_to_wait (ecs);
4094 return;
4095 }
4096
4097 ecs->event_thread->stepping_over_breakpoint = 0;
4098 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4099 ecs->event_thread->control.stop_step = 0;
4100 stop_print_frame = 1;
4101 stopped_by_random_signal = 0;
4102
4103 /* Hide inlined functions starting here, unless we just performed stepi or
4104 nexti. After stepi and nexti, always show the innermost frame (not any
4105 inline function call sites). */
4106 if (ecs->event_thread->control.step_range_end != 1)
4107 {
4108 struct address_space *aspace =
4109 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4110
4111 /* skip_inline_frames is expensive, so we avoid it if we can
4112 determine that the address is one where functions cannot have
4113 been inlined. This improves performance with inferiors that
4114 load a lot of shared libraries, because the solib event
4115 breakpoint is defined as the address of a function (i.e. not
4116 inline). Note that we have to check the previous PC as well
4117 as the current one to catch cases when we have just
4118 single-stepped off a breakpoint prior to reinstating it.
4119 Note that we're assuming that the code we single-step to is
4120 not inline, but that's not definitive: there's nothing
4121 preventing the event breakpoint function from containing
4122 inlined code, and the single-step ending up there. If the
4123 user had set a breakpoint on that inlined code, the missing
4124 skip_inline_frames call would break things. Fortunately
4125 that's an extremely unlikely scenario. */
4126 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4127 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4128 && ecs->event_thread->control.trap_expected
4129 && pc_at_non_inline_function (aspace,
4130 ecs->event_thread->prev_pc,
4131 &ecs->ws)))
4132 {
4133 skip_inline_frames (ecs->ptid);
4134
4135 /* Re-fetch current thread's frame in case that invalidated
4136 the frame cache. */
4137 frame = get_current_frame ();
4138 gdbarch = get_frame_arch (frame);
4139 }
4140 }
4141
4142 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4143 && ecs->event_thread->control.trap_expected
4144 && gdbarch_single_step_through_delay_p (gdbarch)
4145 && currently_stepping (ecs->event_thread))
4146 {
4147 /* We're trying to step off a breakpoint. Turns out that we're
4148 also on an instruction that needs to be stepped multiple
4149 times before it's been fully executing. E.g., architectures
4150 with a delay slot. It needs to be stepped twice, once for
4151 the instruction and once for the delay slot. */
4152 int step_through_delay
4153 = gdbarch_single_step_through_delay (gdbarch, frame);
4154
4155 if (debug_infrun && step_through_delay)
4156 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4157 if (ecs->event_thread->control.step_range_end == 0
4158 && step_through_delay)
4159 {
4160 /* The user issued a continue when stopped at a breakpoint.
4161 Set up for another trap and get out of here. */
4162 ecs->event_thread->stepping_over_breakpoint = 1;
4163 keep_going (ecs);
4164 return;
4165 }
4166 else if (step_through_delay)
4167 {
4168 /* The user issued a step when stopped at a breakpoint.
4169 Maybe we should stop, maybe we should not - the delay
4170 slot *might* correspond to a line of source. In any
4171 case, don't decide that here, just set
4172 ecs->stepping_over_breakpoint, making sure we
4173 single-step again before breakpoints are re-inserted. */
4174 ecs->event_thread->stepping_over_breakpoint = 1;
4175 }
4176 }
4177
4178 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4179 && stop_after_trap)
4180 {
4181 if (debug_infrun)
4182 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4183 stop_print_frame = 0;
4184 stop_stepping (ecs);
4185 return;
4186 }
4187
4188 /* This is originated from start_remote(), start_inferior() and
4189 shared libraries hook functions. */
4190 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4191 {
4192 if (debug_infrun)
4193 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4194 stop_stepping (ecs);
4195 return;
4196 }
4197
4198 /* This originates from attach_command(). We need to overwrite
4199 the stop_signal here, because some kernels don't ignore a
4200 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4201 See more comments in inferior.h. On the other hand, if we
4202 get a non-SIGSTOP, report it to the user - assume the backend
4203 will handle the SIGSTOP if it should show up later.
4204
4205 Also consider that the attach is complete when we see a
4206 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4207 target extended-remote report it instead of a SIGSTOP
4208 (e.g. gdbserver). We already rely on SIGTRAP being our
4209 signal, so this is no exception.
4210
4211 Also consider that the attach is complete when we see a
4212 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4213 the target to stop all threads of the inferior, in case the
4214 low level attach operation doesn't stop them implicitly. If
4215 they weren't stopped implicitly, then the stub will report a
4216 GDB_SIGNAL_0, meaning: stopped for no particular reason
4217 other than GDB's request. */
4218 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4219 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4220 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4221 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4222 {
4223 stop_stepping (ecs);
4224 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4225 return;
4226 }
4227
4228 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4229 handles this event. */
4230 ecs->event_thread->control.stop_bpstat
4231 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4232 stop_pc, ecs->ptid, &ecs->ws);
4233
4234 /* Following in case break condition called a
4235 function. */
4236 stop_print_frame = 1;
4237
4238 /* This is where we handle "moribund" watchpoints. Unlike
4239 software breakpoints traps, hardware watchpoint traps are
4240 always distinguishable from random traps. If no high-level
4241 watchpoint is associated with the reported stop data address
4242 anymore, then the bpstat does not explain the signal ---
4243 simply make sure to ignore it if `stopped_by_watchpoint' is
4244 set. */
4245
4246 if (debug_infrun
4247 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4248 && (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4249 GDB_SIGNAL_TRAP)
4250 == BPSTAT_SIGNAL_NO)
4251 && stopped_by_watchpoint)
4252 fprintf_unfiltered (gdb_stdlog,
4253 "infrun: no user watchpoint explains "
4254 "watchpoint SIGTRAP, ignoring\n");
4255
4256 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4257 at one stage in the past included checks for an inferior
4258 function call's call dummy's return breakpoint. The original
4259 comment, that went with the test, read:
4260
4261 ``End of a stack dummy. Some systems (e.g. Sony news) give
4262 another signal besides SIGTRAP, so check here as well as
4263 above.''
4264
4265 If someone ever tries to get call dummys on a
4266 non-executable stack to work (where the target would stop
4267 with something like a SIGSEGV), then those tests might need
4268 to be re-instated. Given, however, that the tests were only
4269 enabled when momentary breakpoints were not being used, I
4270 suspect that it won't be the case.
4271
4272 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4273 be necessary for call dummies on a non-executable stack on
4274 SPARC. */
4275
4276 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4277 ecs->random_signal
4278 = !((bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4279 GDB_SIGNAL_TRAP)
4280 != BPSTAT_SIGNAL_NO)
4281 || stopped_by_watchpoint
4282 || ecs->event_thread->control.trap_expected
4283 || (ecs->event_thread->control.step_range_end
4284 && (ecs->event_thread->control.step_resume_breakpoint
4285 == NULL)));
4286 else
4287 {
4288 enum bpstat_signal_value sval;
4289
4290 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4291 ecs->event_thread->suspend.stop_signal);
4292 ecs->random_signal = (sval == BPSTAT_SIGNAL_NO);
4293
4294 if (sval == BPSTAT_SIGNAL_HIDE)
4295 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4296 }
4297
4298 /* For the program's own signals, act according to
4299 the signal handling tables. */
4300
4301 if (ecs->random_signal)
4302 {
4303 /* Signal not for debugging purposes. */
4304 int printed = 0;
4305 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4306 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
4307
4308 if (debug_infrun)
4309 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4310 gdb_signal_to_symbol_string (stop_signal));
4311
4312 stopped_by_random_signal = 1;
4313
4314 if (signal_print[ecs->event_thread->suspend.stop_signal])
4315 {
4316 printed = 1;
4317 target_terminal_ours_for_output ();
4318 print_signal_received_reason
4319 (ecs->event_thread->suspend.stop_signal);
4320 }
4321 /* Always stop on signals if we're either just gaining control
4322 of the program, or the user explicitly requested this thread
4323 to remain stopped. */
4324 if (stop_soon != NO_STOP_QUIETLY
4325 || ecs->event_thread->stop_requested
4326 || (!inf->detaching
4327 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4328 {
4329 stop_stepping (ecs);
4330 return;
4331 }
4332 /* If not going to stop, give terminal back
4333 if we took it away. */
4334 else if (printed)
4335 target_terminal_inferior ();
4336
4337 /* Clear the signal if it should not be passed. */
4338 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4339 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4340
4341 if (ecs->event_thread->prev_pc == stop_pc
4342 && ecs->event_thread->control.trap_expected
4343 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4344 {
4345 /* We were just starting a new sequence, attempting to
4346 single-step off of a breakpoint and expecting a SIGTRAP.
4347 Instead this signal arrives. This signal will take us out
4348 of the stepping range so GDB needs to remember to, when
4349 the signal handler returns, resume stepping off that
4350 breakpoint. */
4351 /* To simplify things, "continue" is forced to use the same
4352 code paths as single-step - set a breakpoint at the
4353 signal return address and then, once hit, step off that
4354 breakpoint. */
4355 if (debug_infrun)
4356 fprintf_unfiltered (gdb_stdlog,
4357 "infrun: signal arrived while stepping over "
4358 "breakpoint\n");
4359
4360 insert_hp_step_resume_breakpoint_at_frame (frame);
4361 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4362 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4363 ecs->event_thread->control.trap_expected = 0;
4364 keep_going (ecs);
4365 return;
4366 }
4367
4368 if (ecs->event_thread->control.step_range_end != 0
4369 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4370 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
4371 && frame_id_eq (get_stack_frame_id (frame),
4372 ecs->event_thread->control.step_stack_frame_id)
4373 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4374 {
4375 /* The inferior is about to take a signal that will take it
4376 out of the single step range. Set a breakpoint at the
4377 current PC (which is presumably where the signal handler
4378 will eventually return) and then allow the inferior to
4379 run free.
4380
4381 Note that this is only needed for a signal delivered
4382 while in the single-step range. Nested signals aren't a
4383 problem as they eventually all return. */
4384 if (debug_infrun)
4385 fprintf_unfiltered (gdb_stdlog,
4386 "infrun: signal may take us out of "
4387 "single-step range\n");
4388
4389 insert_hp_step_resume_breakpoint_at_frame (frame);
4390 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4391 ecs->event_thread->control.trap_expected = 0;
4392 keep_going (ecs);
4393 return;
4394 }
4395
4396 /* Note: step_resume_breakpoint may be non-NULL. This occures
4397 when either there's a nested signal, or when there's a
4398 pending signal enabled just as the signal handler returns
4399 (leaving the inferior at the step-resume-breakpoint without
4400 actually executing it). Either way continue until the
4401 breakpoint is really hit. */
4402
4403 if (!switch_back_to_stepped_thread (ecs))
4404 {
4405 if (debug_infrun)
4406 fprintf_unfiltered (gdb_stdlog,
4407 "infrun: random signal, keep going\n");
4408
4409 keep_going (ecs);
4410 }
4411 return;
4412 }
4413
4414 process_event_stop_test (ecs);
4415 }
4416
4417 /* Come here when we've got some debug event / signal we can explain
4418 (IOW, not a random signal), and test whether it should cause a
4419 stop, or whether we should resume the inferior (transparently).
4420 E.g., could be a breakpoint whose condition evaluates false; we
4421 could be still stepping within the line; etc. */
4422
4423 static void
4424 process_event_stop_test (struct execution_control_state *ecs)
4425 {
4426 struct symtab_and_line stop_pc_sal;
4427 struct frame_info *frame;
4428 struct gdbarch *gdbarch;
4429 CORE_ADDR jmp_buf_pc;
4430 struct bpstat_what what;
4431
4432 /* Handle cases caused by hitting a breakpoint. */
4433
4434 frame = get_current_frame ();
4435 gdbarch = get_frame_arch (frame);
4436
4437 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4438
4439 if (what.call_dummy)
4440 {
4441 stop_stack_dummy = what.call_dummy;
4442 }
4443
4444 /* If we hit an internal event that triggers symbol changes, the
4445 current frame will be invalidated within bpstat_what (e.g., if we
4446 hit an internal solib event). Re-fetch it. */
4447 frame = get_current_frame ();
4448 gdbarch = get_frame_arch (frame);
4449
4450 switch (what.main_action)
4451 {
4452 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4453 /* If we hit the breakpoint at longjmp while stepping, we
4454 install a momentary breakpoint at the target of the
4455 jmp_buf. */
4456
4457 if (debug_infrun)
4458 fprintf_unfiltered (gdb_stdlog,
4459 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4460
4461 ecs->event_thread->stepping_over_breakpoint = 1;
4462
4463 if (what.is_longjmp)
4464 {
4465 struct value *arg_value;
4466
4467 /* If we set the longjmp breakpoint via a SystemTap probe,
4468 then use it to extract the arguments. The destination PC
4469 is the third argument to the probe. */
4470 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4471 if (arg_value)
4472 jmp_buf_pc = value_as_address (arg_value);
4473 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4474 || !gdbarch_get_longjmp_target (gdbarch,
4475 frame, &jmp_buf_pc))
4476 {
4477 if (debug_infrun)
4478 fprintf_unfiltered (gdb_stdlog,
4479 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4480 "(!gdbarch_get_longjmp_target)\n");
4481 keep_going (ecs);
4482 return;
4483 }
4484
4485 /* Insert a breakpoint at resume address. */
4486 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4487 }
4488 else
4489 check_exception_resume (ecs, frame);
4490 keep_going (ecs);
4491 return;
4492
4493 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4494 {
4495 struct frame_info *init_frame;
4496
4497 /* There are several cases to consider.
4498
4499 1. The initiating frame no longer exists. In this case we
4500 must stop, because the exception or longjmp has gone too
4501 far.
4502
4503 2. The initiating frame exists, and is the same as the
4504 current frame. We stop, because the exception or longjmp
4505 has been caught.
4506
4507 3. The initiating frame exists and is different from the
4508 current frame. This means the exception or longjmp has
4509 been caught beneath the initiating frame, so keep going.
4510
4511 4. longjmp breakpoint has been placed just to protect
4512 against stale dummy frames and user is not interested in
4513 stopping around longjmps. */
4514
4515 if (debug_infrun)
4516 fprintf_unfiltered (gdb_stdlog,
4517 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4518
4519 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4520 != NULL);
4521 delete_exception_resume_breakpoint (ecs->event_thread);
4522
4523 if (what.is_longjmp)
4524 {
4525 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
4526
4527 if (!frame_id_p (ecs->event_thread->initiating_frame))
4528 {
4529 /* Case 4. */
4530 keep_going (ecs);
4531 return;
4532 }
4533 }
4534
4535 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4536
4537 if (init_frame)
4538 {
4539 struct frame_id current_id
4540 = get_frame_id (get_current_frame ());
4541 if (frame_id_eq (current_id,
4542 ecs->event_thread->initiating_frame))
4543 {
4544 /* Case 2. Fall through. */
4545 }
4546 else
4547 {
4548 /* Case 3. */
4549 keep_going (ecs);
4550 return;
4551 }
4552 }
4553
4554 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4555 exists. */
4556 delete_step_resume_breakpoint (ecs->event_thread);
4557
4558 ecs->event_thread->control.stop_step = 1;
4559 print_end_stepping_range_reason ();
4560 stop_stepping (ecs);
4561 }
4562 return;
4563
4564 case BPSTAT_WHAT_SINGLE:
4565 if (debug_infrun)
4566 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4567 ecs->event_thread->stepping_over_breakpoint = 1;
4568 /* Still need to check other stuff, at least the case where we
4569 are stepping and step out of the right range. */
4570 break;
4571
4572 case BPSTAT_WHAT_STEP_RESUME:
4573 if (debug_infrun)
4574 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4575
4576 delete_step_resume_breakpoint (ecs->event_thread);
4577 if (ecs->event_thread->control.proceed_to_finish
4578 && execution_direction == EXEC_REVERSE)
4579 {
4580 struct thread_info *tp = ecs->event_thread;
4581
4582 /* We are finishing a function in reverse, and just hit the
4583 step-resume breakpoint at the start address of the
4584 function, and we're almost there -- just need to back up
4585 by one more single-step, which should take us back to the
4586 function call. */
4587 tp->control.step_range_start = tp->control.step_range_end = 1;
4588 keep_going (ecs);
4589 return;
4590 }
4591 fill_in_stop_func (gdbarch, ecs);
4592 if (stop_pc == ecs->stop_func_start
4593 && execution_direction == EXEC_REVERSE)
4594 {
4595 /* We are stepping over a function call in reverse, and just
4596 hit the step-resume breakpoint at the start address of
4597 the function. Go back to single-stepping, which should
4598 take us back to the function call. */
4599 ecs->event_thread->stepping_over_breakpoint = 1;
4600 keep_going (ecs);
4601 return;
4602 }
4603 break;
4604
4605 case BPSTAT_WHAT_STOP_NOISY:
4606 if (debug_infrun)
4607 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4608 stop_print_frame = 1;
4609
4610 /* We are about to nuke the step_resume_breakpointt via the
4611 cleanup chain, so no need to worry about it here. */
4612
4613 stop_stepping (ecs);
4614 return;
4615
4616 case BPSTAT_WHAT_STOP_SILENT:
4617 if (debug_infrun)
4618 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4619 stop_print_frame = 0;
4620
4621 /* We are about to nuke the step_resume_breakpoin via the
4622 cleanup chain, so no need to worry about it here. */
4623
4624 stop_stepping (ecs);
4625 return;
4626
4627 case BPSTAT_WHAT_HP_STEP_RESUME:
4628 if (debug_infrun)
4629 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4630
4631 delete_step_resume_breakpoint (ecs->event_thread);
4632 if (ecs->event_thread->step_after_step_resume_breakpoint)
4633 {
4634 /* Back when the step-resume breakpoint was inserted, we
4635 were trying to single-step off a breakpoint. Go back to
4636 doing that. */
4637 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4638 ecs->event_thread->stepping_over_breakpoint = 1;
4639 keep_going (ecs);
4640 return;
4641 }
4642 break;
4643
4644 case BPSTAT_WHAT_KEEP_CHECKING:
4645 break;
4646 }
4647
4648 /* We come here if we hit a breakpoint but should not stop for it.
4649 Possibly we also were stepping and should stop for that. So fall
4650 through and test for stepping. But, if not stepping, do not
4651 stop. */
4652
4653 /* In all-stop mode, if we're currently stepping but have stopped in
4654 some other thread, we need to switch back to the stepped thread. */
4655 if (switch_back_to_stepped_thread (ecs))
4656 return;
4657
4658 if (ecs->event_thread->control.step_resume_breakpoint)
4659 {
4660 if (debug_infrun)
4661 fprintf_unfiltered (gdb_stdlog,
4662 "infrun: step-resume breakpoint is inserted\n");
4663
4664 /* Having a step-resume breakpoint overrides anything
4665 else having to do with stepping commands until
4666 that breakpoint is reached. */
4667 keep_going (ecs);
4668 return;
4669 }
4670
4671 if (ecs->event_thread->control.step_range_end == 0)
4672 {
4673 if (debug_infrun)
4674 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4675 /* Likewise if we aren't even stepping. */
4676 keep_going (ecs);
4677 return;
4678 }
4679
4680 /* Re-fetch current thread's frame in case the code above caused
4681 the frame cache to be re-initialized, making our FRAME variable
4682 a dangling pointer. */
4683 frame = get_current_frame ();
4684 gdbarch = get_frame_arch (frame);
4685 fill_in_stop_func (gdbarch, ecs);
4686
4687 /* If stepping through a line, keep going if still within it.
4688
4689 Note that step_range_end is the address of the first instruction
4690 beyond the step range, and NOT the address of the last instruction
4691 within it!
4692
4693 Note also that during reverse execution, we may be stepping
4694 through a function epilogue and therefore must detect when
4695 the current-frame changes in the middle of a line. */
4696
4697 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4698 && (execution_direction != EXEC_REVERSE
4699 || frame_id_eq (get_frame_id (frame),
4700 ecs->event_thread->control.step_frame_id)))
4701 {
4702 if (debug_infrun)
4703 fprintf_unfiltered
4704 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4705 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4706 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4707
4708 /* Tentatively re-enable range stepping; `resume' disables it if
4709 necessary (e.g., if we're stepping over a breakpoint or we
4710 have software watchpoints). */
4711 ecs->event_thread->control.may_range_step = 1;
4712
4713 /* When stepping backward, stop at beginning of line range
4714 (unless it's the function entry point, in which case
4715 keep going back to the call point). */
4716 if (stop_pc == ecs->event_thread->control.step_range_start
4717 && stop_pc != ecs->stop_func_start
4718 && execution_direction == EXEC_REVERSE)
4719 {
4720 ecs->event_thread->control.stop_step = 1;
4721 print_end_stepping_range_reason ();
4722 stop_stepping (ecs);
4723 }
4724 else
4725 keep_going (ecs);
4726
4727 return;
4728 }
4729
4730 /* We stepped out of the stepping range. */
4731
4732 /* If we are stepping at the source level and entered the runtime
4733 loader dynamic symbol resolution code...
4734
4735 EXEC_FORWARD: we keep on single stepping until we exit the run
4736 time loader code and reach the callee's address.
4737
4738 EXEC_REVERSE: we've already executed the callee (backward), and
4739 the runtime loader code is handled just like any other
4740 undebuggable function call. Now we need only keep stepping
4741 backward through the trampoline code, and that's handled further
4742 down, so there is nothing for us to do here. */
4743
4744 if (execution_direction != EXEC_REVERSE
4745 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4746 && in_solib_dynsym_resolve_code (stop_pc))
4747 {
4748 CORE_ADDR pc_after_resolver =
4749 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4750
4751 if (debug_infrun)
4752 fprintf_unfiltered (gdb_stdlog,
4753 "infrun: stepped into dynsym resolve code\n");
4754
4755 if (pc_after_resolver)
4756 {
4757 /* Set up a step-resume breakpoint at the address
4758 indicated by SKIP_SOLIB_RESOLVER. */
4759 struct symtab_and_line sr_sal;
4760
4761 init_sal (&sr_sal);
4762 sr_sal.pc = pc_after_resolver;
4763 sr_sal.pspace = get_frame_program_space (frame);
4764
4765 insert_step_resume_breakpoint_at_sal (gdbarch,
4766 sr_sal, null_frame_id);
4767 }
4768
4769 keep_going (ecs);
4770 return;
4771 }
4772
4773 if (ecs->event_thread->control.step_range_end != 1
4774 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4775 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4776 && get_frame_type (frame) == SIGTRAMP_FRAME)
4777 {
4778 if (debug_infrun)
4779 fprintf_unfiltered (gdb_stdlog,
4780 "infrun: stepped into signal trampoline\n");
4781 /* The inferior, while doing a "step" or "next", has ended up in
4782 a signal trampoline (either by a signal being delivered or by
4783 the signal handler returning). Just single-step until the
4784 inferior leaves the trampoline (either by calling the handler
4785 or returning). */
4786 keep_going (ecs);
4787 return;
4788 }
4789
4790 /* If we're in the return path from a shared library trampoline,
4791 we want to proceed through the trampoline when stepping. */
4792 /* macro/2012-04-25: This needs to come before the subroutine
4793 call check below as on some targets return trampolines look
4794 like subroutine calls (MIPS16 return thunks). */
4795 if (gdbarch_in_solib_return_trampoline (gdbarch,
4796 stop_pc, ecs->stop_func_name)
4797 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4798 {
4799 /* Determine where this trampoline returns. */
4800 CORE_ADDR real_stop_pc;
4801
4802 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4803
4804 if (debug_infrun)
4805 fprintf_unfiltered (gdb_stdlog,
4806 "infrun: stepped into solib return tramp\n");
4807
4808 /* Only proceed through if we know where it's going. */
4809 if (real_stop_pc)
4810 {
4811 /* And put the step-breakpoint there and go until there. */
4812 struct symtab_and_line sr_sal;
4813
4814 init_sal (&sr_sal); /* initialize to zeroes */
4815 sr_sal.pc = real_stop_pc;
4816 sr_sal.section = find_pc_overlay (sr_sal.pc);
4817 sr_sal.pspace = get_frame_program_space (frame);
4818
4819 /* Do not specify what the fp should be when we stop since
4820 on some machines the prologue is where the new fp value
4821 is established. */
4822 insert_step_resume_breakpoint_at_sal (gdbarch,
4823 sr_sal, null_frame_id);
4824
4825 /* Restart without fiddling with the step ranges or
4826 other state. */
4827 keep_going (ecs);
4828 return;
4829 }
4830 }
4831
4832 /* Check for subroutine calls. The check for the current frame
4833 equalling the step ID is not necessary - the check of the
4834 previous frame's ID is sufficient - but it is a common case and
4835 cheaper than checking the previous frame's ID.
4836
4837 NOTE: frame_id_eq will never report two invalid frame IDs as
4838 being equal, so to get into this block, both the current and
4839 previous frame must have valid frame IDs. */
4840 /* The outer_frame_id check is a heuristic to detect stepping
4841 through startup code. If we step over an instruction which
4842 sets the stack pointer from an invalid value to a valid value,
4843 we may detect that as a subroutine call from the mythical
4844 "outermost" function. This could be fixed by marking
4845 outermost frames as !stack_p,code_p,special_p. Then the
4846 initial outermost frame, before sp was valid, would
4847 have code_addr == &_start. See the comment in frame_id_eq
4848 for more. */
4849 if (!frame_id_eq (get_stack_frame_id (frame),
4850 ecs->event_thread->control.step_stack_frame_id)
4851 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4852 ecs->event_thread->control.step_stack_frame_id)
4853 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4854 outer_frame_id)
4855 || step_start_function != find_pc_function (stop_pc))))
4856 {
4857 CORE_ADDR real_stop_pc;
4858
4859 if (debug_infrun)
4860 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4861
4862 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4863 || ((ecs->event_thread->control.step_range_end == 1)
4864 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4865 ecs->stop_func_start)))
4866 {
4867 /* I presume that step_over_calls is only 0 when we're
4868 supposed to be stepping at the assembly language level
4869 ("stepi"). Just stop. */
4870 /* Also, maybe we just did a "nexti" inside a prolog, so we
4871 thought it was a subroutine call but it was not. Stop as
4872 well. FENN */
4873 /* And this works the same backward as frontward. MVS */
4874 ecs->event_thread->control.stop_step = 1;
4875 print_end_stepping_range_reason ();
4876 stop_stepping (ecs);
4877 return;
4878 }
4879
4880 /* Reverse stepping through solib trampolines. */
4881
4882 if (execution_direction == EXEC_REVERSE
4883 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4884 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4885 || (ecs->stop_func_start == 0
4886 && in_solib_dynsym_resolve_code (stop_pc))))
4887 {
4888 /* Any solib trampoline code can be handled in reverse
4889 by simply continuing to single-step. We have already
4890 executed the solib function (backwards), and a few
4891 steps will take us back through the trampoline to the
4892 caller. */
4893 keep_going (ecs);
4894 return;
4895 }
4896
4897 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4898 {
4899 /* We're doing a "next".
4900
4901 Normal (forward) execution: set a breakpoint at the
4902 callee's return address (the address at which the caller
4903 will resume).
4904
4905 Reverse (backward) execution. set the step-resume
4906 breakpoint at the start of the function that we just
4907 stepped into (backwards), and continue to there. When we
4908 get there, we'll need to single-step back to the caller. */
4909
4910 if (execution_direction == EXEC_REVERSE)
4911 {
4912 /* If we're already at the start of the function, we've either
4913 just stepped backward into a single instruction function,
4914 or stepped back out of a signal handler to the first instruction
4915 of the function. Just keep going, which will single-step back
4916 to the caller. */
4917 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
4918 {
4919 struct symtab_and_line sr_sal;
4920
4921 /* Normal function call return (static or dynamic). */
4922 init_sal (&sr_sal);
4923 sr_sal.pc = ecs->stop_func_start;
4924 sr_sal.pspace = get_frame_program_space (frame);
4925 insert_step_resume_breakpoint_at_sal (gdbarch,
4926 sr_sal, null_frame_id);
4927 }
4928 }
4929 else
4930 insert_step_resume_breakpoint_at_caller (frame);
4931
4932 keep_going (ecs);
4933 return;
4934 }
4935
4936 /* If we are in a function call trampoline (a stub between the
4937 calling routine and the real function), locate the real
4938 function. That's what tells us (a) whether we want to step
4939 into it at all, and (b) what prologue we want to run to the
4940 end of, if we do step into it. */
4941 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4942 if (real_stop_pc == 0)
4943 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4944 if (real_stop_pc != 0)
4945 ecs->stop_func_start = real_stop_pc;
4946
4947 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4948 {
4949 struct symtab_and_line sr_sal;
4950
4951 init_sal (&sr_sal);
4952 sr_sal.pc = ecs->stop_func_start;
4953 sr_sal.pspace = get_frame_program_space (frame);
4954
4955 insert_step_resume_breakpoint_at_sal (gdbarch,
4956 sr_sal, null_frame_id);
4957 keep_going (ecs);
4958 return;
4959 }
4960
4961 /* If we have line number information for the function we are
4962 thinking of stepping into and the function isn't on the skip
4963 list, step into it.
4964
4965 If there are several symtabs at that PC (e.g. with include
4966 files), just want to know whether *any* of them have line
4967 numbers. find_pc_line handles this. */
4968 {
4969 struct symtab_and_line tmp_sal;
4970
4971 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4972 if (tmp_sal.line != 0
4973 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4974 &tmp_sal))
4975 {
4976 if (execution_direction == EXEC_REVERSE)
4977 handle_step_into_function_backward (gdbarch, ecs);
4978 else
4979 handle_step_into_function (gdbarch, ecs);
4980 return;
4981 }
4982 }
4983
4984 /* If we have no line number and the step-stop-if-no-debug is
4985 set, we stop the step so that the user has a chance to switch
4986 in assembly mode. */
4987 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4988 && step_stop_if_no_debug)
4989 {
4990 ecs->event_thread->control.stop_step = 1;
4991 print_end_stepping_range_reason ();
4992 stop_stepping (ecs);
4993 return;
4994 }
4995
4996 if (execution_direction == EXEC_REVERSE)
4997 {
4998 /* If we're already at the start of the function, we've either just
4999 stepped backward into a single instruction function without line
5000 number info, or stepped back out of a signal handler to the first
5001 instruction of the function without line number info. Just keep
5002 going, which will single-step back to the caller. */
5003 if (ecs->stop_func_start != stop_pc)
5004 {
5005 /* Set a breakpoint at callee's start address.
5006 From there we can step once and be back in the caller. */
5007 struct symtab_and_line sr_sal;
5008
5009 init_sal (&sr_sal);
5010 sr_sal.pc = ecs->stop_func_start;
5011 sr_sal.pspace = get_frame_program_space (frame);
5012 insert_step_resume_breakpoint_at_sal (gdbarch,
5013 sr_sal, null_frame_id);
5014 }
5015 }
5016 else
5017 /* Set a breakpoint at callee's return address (the address
5018 at which the caller will resume). */
5019 insert_step_resume_breakpoint_at_caller (frame);
5020
5021 keep_going (ecs);
5022 return;
5023 }
5024
5025 /* Reverse stepping through solib trampolines. */
5026
5027 if (execution_direction == EXEC_REVERSE
5028 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5029 {
5030 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5031 || (ecs->stop_func_start == 0
5032 && in_solib_dynsym_resolve_code (stop_pc)))
5033 {
5034 /* Any solib trampoline code can be handled in reverse
5035 by simply continuing to single-step. We have already
5036 executed the solib function (backwards), and a few
5037 steps will take us back through the trampoline to the
5038 caller. */
5039 keep_going (ecs);
5040 return;
5041 }
5042 else if (in_solib_dynsym_resolve_code (stop_pc))
5043 {
5044 /* Stepped backward into the solib dynsym resolver.
5045 Set a breakpoint at its start and continue, then
5046 one more step will take us out. */
5047 struct symtab_and_line sr_sal;
5048
5049 init_sal (&sr_sal);
5050 sr_sal.pc = ecs->stop_func_start;
5051 sr_sal.pspace = get_frame_program_space (frame);
5052 insert_step_resume_breakpoint_at_sal (gdbarch,
5053 sr_sal, null_frame_id);
5054 keep_going (ecs);
5055 return;
5056 }
5057 }
5058
5059 stop_pc_sal = find_pc_line (stop_pc, 0);
5060
5061 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5062 the trampoline processing logic, however, there are some trampolines
5063 that have no names, so we should do trampoline handling first. */
5064 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5065 && ecs->stop_func_name == NULL
5066 && stop_pc_sal.line == 0)
5067 {
5068 if (debug_infrun)
5069 fprintf_unfiltered (gdb_stdlog,
5070 "infrun: stepped into undebuggable function\n");
5071
5072 /* The inferior just stepped into, or returned to, an
5073 undebuggable function (where there is no debugging information
5074 and no line number corresponding to the address where the
5075 inferior stopped). Since we want to skip this kind of code,
5076 we keep going until the inferior returns from this
5077 function - unless the user has asked us not to (via
5078 set step-mode) or we no longer know how to get back
5079 to the call site. */
5080 if (step_stop_if_no_debug
5081 || !frame_id_p (frame_unwind_caller_id (frame)))
5082 {
5083 /* If we have no line number and the step-stop-if-no-debug
5084 is set, we stop the step so that the user has a chance to
5085 switch in assembly mode. */
5086 ecs->event_thread->control.stop_step = 1;
5087 print_end_stepping_range_reason ();
5088 stop_stepping (ecs);
5089 return;
5090 }
5091 else
5092 {
5093 /* Set a breakpoint at callee's return address (the address
5094 at which the caller will resume). */
5095 insert_step_resume_breakpoint_at_caller (frame);
5096 keep_going (ecs);
5097 return;
5098 }
5099 }
5100
5101 if (ecs->event_thread->control.step_range_end == 1)
5102 {
5103 /* It is stepi or nexti. We always want to stop stepping after
5104 one instruction. */
5105 if (debug_infrun)
5106 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5107 ecs->event_thread->control.stop_step = 1;
5108 print_end_stepping_range_reason ();
5109 stop_stepping (ecs);
5110 return;
5111 }
5112
5113 if (stop_pc_sal.line == 0)
5114 {
5115 /* We have no line number information. That means to stop
5116 stepping (does this always happen right after one instruction,
5117 when we do "s" in a function with no line numbers,
5118 or can this happen as a result of a return or longjmp?). */
5119 if (debug_infrun)
5120 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5121 ecs->event_thread->control.stop_step = 1;
5122 print_end_stepping_range_reason ();
5123 stop_stepping (ecs);
5124 return;
5125 }
5126
5127 /* Look for "calls" to inlined functions, part one. If the inline
5128 frame machinery detected some skipped call sites, we have entered
5129 a new inline function. */
5130
5131 if (frame_id_eq (get_frame_id (get_current_frame ()),
5132 ecs->event_thread->control.step_frame_id)
5133 && inline_skipped_frames (ecs->ptid))
5134 {
5135 struct symtab_and_line call_sal;
5136
5137 if (debug_infrun)
5138 fprintf_unfiltered (gdb_stdlog,
5139 "infrun: stepped into inlined function\n");
5140
5141 find_frame_sal (get_current_frame (), &call_sal);
5142
5143 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5144 {
5145 /* For "step", we're going to stop. But if the call site
5146 for this inlined function is on the same source line as
5147 we were previously stepping, go down into the function
5148 first. Otherwise stop at the call site. */
5149
5150 if (call_sal.line == ecs->event_thread->current_line
5151 && call_sal.symtab == ecs->event_thread->current_symtab)
5152 step_into_inline_frame (ecs->ptid);
5153
5154 ecs->event_thread->control.stop_step = 1;
5155 print_end_stepping_range_reason ();
5156 stop_stepping (ecs);
5157 return;
5158 }
5159 else
5160 {
5161 /* For "next", we should stop at the call site if it is on a
5162 different source line. Otherwise continue through the
5163 inlined function. */
5164 if (call_sal.line == ecs->event_thread->current_line
5165 && call_sal.symtab == ecs->event_thread->current_symtab)
5166 keep_going (ecs);
5167 else
5168 {
5169 ecs->event_thread->control.stop_step = 1;
5170 print_end_stepping_range_reason ();
5171 stop_stepping (ecs);
5172 }
5173 return;
5174 }
5175 }
5176
5177 /* Look for "calls" to inlined functions, part two. If we are still
5178 in the same real function we were stepping through, but we have
5179 to go further up to find the exact frame ID, we are stepping
5180 through a more inlined call beyond its call site. */
5181
5182 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5183 && !frame_id_eq (get_frame_id (get_current_frame ()),
5184 ecs->event_thread->control.step_frame_id)
5185 && stepped_in_from (get_current_frame (),
5186 ecs->event_thread->control.step_frame_id))
5187 {
5188 if (debug_infrun)
5189 fprintf_unfiltered (gdb_stdlog,
5190 "infrun: stepping through inlined function\n");
5191
5192 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5193 keep_going (ecs);
5194 else
5195 {
5196 ecs->event_thread->control.stop_step = 1;
5197 print_end_stepping_range_reason ();
5198 stop_stepping (ecs);
5199 }
5200 return;
5201 }
5202
5203 if ((stop_pc == stop_pc_sal.pc)
5204 && (ecs->event_thread->current_line != stop_pc_sal.line
5205 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5206 {
5207 /* We are at the start of a different line. So stop. Note that
5208 we don't stop if we step into the middle of a different line.
5209 That is said to make things like for (;;) statements work
5210 better. */
5211 if (debug_infrun)
5212 fprintf_unfiltered (gdb_stdlog,
5213 "infrun: stepped to a different line\n");
5214 ecs->event_thread->control.stop_step = 1;
5215 print_end_stepping_range_reason ();
5216 stop_stepping (ecs);
5217 return;
5218 }
5219
5220 /* We aren't done stepping.
5221
5222 Optimize by setting the stepping range to the line.
5223 (We might not be in the original line, but if we entered a
5224 new line in mid-statement, we continue stepping. This makes
5225 things like for(;;) statements work better.) */
5226
5227 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5228 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5229 ecs->event_thread->control.may_range_step = 1;
5230 set_step_info (frame, stop_pc_sal);
5231
5232 if (debug_infrun)
5233 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5234 keep_going (ecs);
5235 }
5236
5237 /* In all-stop mode, if we're currently stepping but have stopped in
5238 some other thread, we may need to switch back to the stepped
5239 thread. Returns true we set the inferior running, false if we left
5240 it stopped (and the event needs further processing). */
5241
5242 static int
5243 switch_back_to_stepped_thread (struct execution_control_state *ecs)
5244 {
5245 if (!non_stop)
5246 {
5247 struct thread_info *tp;
5248
5249 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
5250 ecs->event_thread);
5251 if (tp)
5252 {
5253 /* However, if the current thread is blocked on some internal
5254 breakpoint, and we simply need to step over that breakpoint
5255 to get it going again, do that first. */
5256 if ((ecs->event_thread->control.trap_expected
5257 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5258 || ecs->event_thread->stepping_over_breakpoint)
5259 {
5260 keep_going (ecs);
5261 return 1;
5262 }
5263
5264 /* If the stepping thread exited, then don't try to switch
5265 back and resume it, which could fail in several different
5266 ways depending on the target. Instead, just keep going.
5267
5268 We can find a stepping dead thread in the thread list in
5269 two cases:
5270
5271 - The target supports thread exit events, and when the
5272 target tries to delete the thread from the thread list,
5273 inferior_ptid pointed at the exiting thread. In such
5274 case, calling delete_thread does not really remove the
5275 thread from the list; instead, the thread is left listed,
5276 with 'exited' state.
5277
5278 - The target's debug interface does not support thread
5279 exit events, and so we have no idea whatsoever if the
5280 previously stepping thread is still alive. For that
5281 reason, we need to synchronously query the target
5282 now. */
5283 if (is_exited (tp->ptid)
5284 || !target_thread_alive (tp->ptid))
5285 {
5286 if (debug_infrun)
5287 fprintf_unfiltered (gdb_stdlog,
5288 "infrun: not switching back to "
5289 "stepped thread, it has vanished\n");
5290
5291 delete_thread (tp->ptid);
5292 keep_going (ecs);
5293 return 1;
5294 }
5295
5296 /* Otherwise, we no longer expect a trap in the current thread.
5297 Clear the trap_expected flag before switching back -- this is
5298 what keep_going would do as well, if we called it. */
5299 ecs->event_thread->control.trap_expected = 0;
5300
5301 if (debug_infrun)
5302 fprintf_unfiltered (gdb_stdlog,
5303 "infrun: switching back to stepped thread\n");
5304
5305 ecs->event_thread = tp;
5306 ecs->ptid = tp->ptid;
5307 context_switch (ecs->ptid);
5308 keep_going (ecs);
5309 return 1;
5310 }
5311 }
5312 return 0;
5313 }
5314
5315 /* Is thread TP in the middle of single-stepping? */
5316
5317 static int
5318 currently_stepping (struct thread_info *tp)
5319 {
5320 return ((tp->control.step_range_end
5321 && tp->control.step_resume_breakpoint == NULL)
5322 || tp->control.trap_expected
5323 || bpstat_should_step ());
5324 }
5325
5326 /* Returns true if any thread *but* the one passed in "data" is in the
5327 middle of stepping or of handling a "next". */
5328
5329 static int
5330 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5331 {
5332 if (tp == data)
5333 return 0;
5334
5335 return (tp->control.step_range_end
5336 || tp->control.trap_expected);
5337 }
5338
5339 /* Inferior has stepped into a subroutine call with source code that
5340 we should not step over. Do step to the first line of code in
5341 it. */
5342
5343 static void
5344 handle_step_into_function (struct gdbarch *gdbarch,
5345 struct execution_control_state *ecs)
5346 {
5347 struct symtab *s;
5348 struct symtab_and_line stop_func_sal, sr_sal;
5349
5350 fill_in_stop_func (gdbarch, ecs);
5351
5352 s = find_pc_symtab (stop_pc);
5353 if (s && s->language != language_asm)
5354 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5355 ecs->stop_func_start);
5356
5357 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5358 /* Use the step_resume_break to step until the end of the prologue,
5359 even if that involves jumps (as it seems to on the vax under
5360 4.2). */
5361 /* If the prologue ends in the middle of a source line, continue to
5362 the end of that source line (if it is still within the function).
5363 Otherwise, just go to end of prologue. */
5364 if (stop_func_sal.end
5365 && stop_func_sal.pc != ecs->stop_func_start
5366 && stop_func_sal.end < ecs->stop_func_end)
5367 ecs->stop_func_start = stop_func_sal.end;
5368
5369 /* Architectures which require breakpoint adjustment might not be able
5370 to place a breakpoint at the computed address. If so, the test
5371 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5372 ecs->stop_func_start to an address at which a breakpoint may be
5373 legitimately placed.
5374
5375 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5376 made, GDB will enter an infinite loop when stepping through
5377 optimized code consisting of VLIW instructions which contain
5378 subinstructions corresponding to different source lines. On
5379 FR-V, it's not permitted to place a breakpoint on any but the
5380 first subinstruction of a VLIW instruction. When a breakpoint is
5381 set, GDB will adjust the breakpoint address to the beginning of
5382 the VLIW instruction. Thus, we need to make the corresponding
5383 adjustment here when computing the stop address. */
5384
5385 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5386 {
5387 ecs->stop_func_start
5388 = gdbarch_adjust_breakpoint_address (gdbarch,
5389 ecs->stop_func_start);
5390 }
5391
5392 if (ecs->stop_func_start == stop_pc)
5393 {
5394 /* We are already there: stop now. */
5395 ecs->event_thread->control.stop_step = 1;
5396 print_end_stepping_range_reason ();
5397 stop_stepping (ecs);
5398 return;
5399 }
5400 else
5401 {
5402 /* Put the step-breakpoint there and go until there. */
5403 init_sal (&sr_sal); /* initialize to zeroes */
5404 sr_sal.pc = ecs->stop_func_start;
5405 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5406 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5407
5408 /* Do not specify what the fp should be when we stop since on
5409 some machines the prologue is where the new fp value is
5410 established. */
5411 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5412
5413 /* And make sure stepping stops right away then. */
5414 ecs->event_thread->control.step_range_end
5415 = ecs->event_thread->control.step_range_start;
5416 }
5417 keep_going (ecs);
5418 }
5419
5420 /* Inferior has stepped backward into a subroutine call with source
5421 code that we should not step over. Do step to the beginning of the
5422 last line of code in it. */
5423
5424 static void
5425 handle_step_into_function_backward (struct gdbarch *gdbarch,
5426 struct execution_control_state *ecs)
5427 {
5428 struct symtab *s;
5429 struct symtab_and_line stop_func_sal;
5430
5431 fill_in_stop_func (gdbarch, ecs);
5432
5433 s = find_pc_symtab (stop_pc);
5434 if (s && s->language != language_asm)
5435 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5436 ecs->stop_func_start);
5437
5438 stop_func_sal = find_pc_line (stop_pc, 0);
5439
5440 /* OK, we're just going to keep stepping here. */
5441 if (stop_func_sal.pc == stop_pc)
5442 {
5443 /* We're there already. Just stop stepping now. */
5444 ecs->event_thread->control.stop_step = 1;
5445 print_end_stepping_range_reason ();
5446 stop_stepping (ecs);
5447 }
5448 else
5449 {
5450 /* Else just reset the step range and keep going.
5451 No step-resume breakpoint, they don't work for
5452 epilogues, which can have multiple entry paths. */
5453 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5454 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5455 keep_going (ecs);
5456 }
5457 return;
5458 }
5459
5460 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5461 This is used to both functions and to skip over code. */
5462
5463 static void
5464 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5465 struct symtab_and_line sr_sal,
5466 struct frame_id sr_id,
5467 enum bptype sr_type)
5468 {
5469 /* There should never be more than one step-resume or longjmp-resume
5470 breakpoint per thread, so we should never be setting a new
5471 step_resume_breakpoint when one is already active. */
5472 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5473 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5474
5475 if (debug_infrun)
5476 fprintf_unfiltered (gdb_stdlog,
5477 "infrun: inserting step-resume breakpoint at %s\n",
5478 paddress (gdbarch, sr_sal.pc));
5479
5480 inferior_thread ()->control.step_resume_breakpoint
5481 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5482 }
5483
5484 void
5485 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5486 struct symtab_and_line sr_sal,
5487 struct frame_id sr_id)
5488 {
5489 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5490 sr_sal, sr_id,
5491 bp_step_resume);
5492 }
5493
5494 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5495 This is used to skip a potential signal handler.
5496
5497 This is called with the interrupted function's frame. The signal
5498 handler, when it returns, will resume the interrupted function at
5499 RETURN_FRAME.pc. */
5500
5501 static void
5502 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5503 {
5504 struct symtab_and_line sr_sal;
5505 struct gdbarch *gdbarch;
5506
5507 gdb_assert (return_frame != NULL);
5508 init_sal (&sr_sal); /* initialize to zeros */
5509
5510 gdbarch = get_frame_arch (return_frame);
5511 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5512 sr_sal.section = find_pc_overlay (sr_sal.pc);
5513 sr_sal.pspace = get_frame_program_space (return_frame);
5514
5515 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5516 get_stack_frame_id (return_frame),
5517 bp_hp_step_resume);
5518 }
5519
5520 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5521 is used to skip a function after stepping into it (for "next" or if
5522 the called function has no debugging information).
5523
5524 The current function has almost always been reached by single
5525 stepping a call or return instruction. NEXT_FRAME belongs to the
5526 current function, and the breakpoint will be set at the caller's
5527 resume address.
5528
5529 This is a separate function rather than reusing
5530 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5531 get_prev_frame, which may stop prematurely (see the implementation
5532 of frame_unwind_caller_id for an example). */
5533
5534 static void
5535 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5536 {
5537 struct symtab_and_line sr_sal;
5538 struct gdbarch *gdbarch;
5539
5540 /* We shouldn't have gotten here if we don't know where the call site
5541 is. */
5542 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5543
5544 init_sal (&sr_sal); /* initialize to zeros */
5545
5546 gdbarch = frame_unwind_caller_arch (next_frame);
5547 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5548 frame_unwind_caller_pc (next_frame));
5549 sr_sal.section = find_pc_overlay (sr_sal.pc);
5550 sr_sal.pspace = frame_unwind_program_space (next_frame);
5551
5552 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5553 frame_unwind_caller_id (next_frame));
5554 }
5555
5556 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5557 new breakpoint at the target of a jmp_buf. The handling of
5558 longjmp-resume uses the same mechanisms used for handling
5559 "step-resume" breakpoints. */
5560
5561 static void
5562 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5563 {
5564 /* There should never be more than one longjmp-resume breakpoint per
5565 thread, so we should never be setting a new
5566 longjmp_resume_breakpoint when one is already active. */
5567 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5568
5569 if (debug_infrun)
5570 fprintf_unfiltered (gdb_stdlog,
5571 "infrun: inserting longjmp-resume breakpoint at %s\n",
5572 paddress (gdbarch, pc));
5573
5574 inferior_thread ()->control.exception_resume_breakpoint =
5575 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5576 }
5577
5578 /* Insert an exception resume breakpoint. TP is the thread throwing
5579 the exception. The block B is the block of the unwinder debug hook
5580 function. FRAME is the frame corresponding to the call to this
5581 function. SYM is the symbol of the function argument holding the
5582 target PC of the exception. */
5583
5584 static void
5585 insert_exception_resume_breakpoint (struct thread_info *tp,
5586 struct block *b,
5587 struct frame_info *frame,
5588 struct symbol *sym)
5589 {
5590 volatile struct gdb_exception e;
5591
5592 /* We want to ignore errors here. */
5593 TRY_CATCH (e, RETURN_MASK_ERROR)
5594 {
5595 struct symbol *vsym;
5596 struct value *value;
5597 CORE_ADDR handler;
5598 struct breakpoint *bp;
5599
5600 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5601 value = read_var_value (vsym, frame);
5602 /* If the value was optimized out, revert to the old behavior. */
5603 if (! value_optimized_out (value))
5604 {
5605 handler = value_as_address (value);
5606
5607 if (debug_infrun)
5608 fprintf_unfiltered (gdb_stdlog,
5609 "infrun: exception resume at %lx\n",
5610 (unsigned long) handler);
5611
5612 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5613 handler, bp_exception_resume);
5614
5615 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5616 frame = NULL;
5617
5618 bp->thread = tp->num;
5619 inferior_thread ()->control.exception_resume_breakpoint = bp;
5620 }
5621 }
5622 }
5623
5624 /* A helper for check_exception_resume that sets an
5625 exception-breakpoint based on a SystemTap probe. */
5626
5627 static void
5628 insert_exception_resume_from_probe (struct thread_info *tp,
5629 const struct probe *probe,
5630 struct frame_info *frame)
5631 {
5632 struct value *arg_value;
5633 CORE_ADDR handler;
5634 struct breakpoint *bp;
5635
5636 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5637 if (!arg_value)
5638 return;
5639
5640 handler = value_as_address (arg_value);
5641
5642 if (debug_infrun)
5643 fprintf_unfiltered (gdb_stdlog,
5644 "infrun: exception resume at %s\n",
5645 paddress (get_objfile_arch (probe->objfile),
5646 handler));
5647
5648 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5649 handler, bp_exception_resume);
5650 bp->thread = tp->num;
5651 inferior_thread ()->control.exception_resume_breakpoint = bp;
5652 }
5653
5654 /* This is called when an exception has been intercepted. Check to
5655 see whether the exception's destination is of interest, and if so,
5656 set an exception resume breakpoint there. */
5657
5658 static void
5659 check_exception_resume (struct execution_control_state *ecs,
5660 struct frame_info *frame)
5661 {
5662 volatile struct gdb_exception e;
5663 const struct probe *probe;
5664 struct symbol *func;
5665
5666 /* First see if this exception unwinding breakpoint was set via a
5667 SystemTap probe point. If so, the probe has two arguments: the
5668 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5669 set a breakpoint there. */
5670 probe = find_probe_by_pc (get_frame_pc (frame));
5671 if (probe)
5672 {
5673 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
5674 return;
5675 }
5676
5677 func = get_frame_function (frame);
5678 if (!func)
5679 return;
5680
5681 TRY_CATCH (e, RETURN_MASK_ERROR)
5682 {
5683 struct block *b;
5684 struct block_iterator iter;
5685 struct symbol *sym;
5686 int argno = 0;
5687
5688 /* The exception breakpoint is a thread-specific breakpoint on
5689 the unwinder's debug hook, declared as:
5690
5691 void _Unwind_DebugHook (void *cfa, void *handler);
5692
5693 The CFA argument indicates the frame to which control is
5694 about to be transferred. HANDLER is the destination PC.
5695
5696 We ignore the CFA and set a temporary breakpoint at HANDLER.
5697 This is not extremely efficient but it avoids issues in gdb
5698 with computing the DWARF CFA, and it also works even in weird
5699 cases such as throwing an exception from inside a signal
5700 handler. */
5701
5702 b = SYMBOL_BLOCK_VALUE (func);
5703 ALL_BLOCK_SYMBOLS (b, iter, sym)
5704 {
5705 if (!SYMBOL_IS_ARGUMENT (sym))
5706 continue;
5707
5708 if (argno == 0)
5709 ++argno;
5710 else
5711 {
5712 insert_exception_resume_breakpoint (ecs->event_thread,
5713 b, frame, sym);
5714 break;
5715 }
5716 }
5717 }
5718 }
5719
5720 static void
5721 stop_stepping (struct execution_control_state *ecs)
5722 {
5723 if (debug_infrun)
5724 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5725
5726 /* Let callers know we don't want to wait for the inferior anymore. */
5727 ecs->wait_some_more = 0;
5728 }
5729
5730 /* Called when we should continue running the inferior, because the
5731 current event doesn't cause a user visible stop. This does the
5732 resuming part; waiting for the next event is done elsewhere. */
5733
5734 static void
5735 keep_going (struct execution_control_state *ecs)
5736 {
5737 /* Make sure normal_stop is called if we get a QUIT handled before
5738 reaching resume. */
5739 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5740
5741 /* Save the pc before execution, to compare with pc after stop. */
5742 ecs->event_thread->prev_pc
5743 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5744
5745 if (ecs->event_thread->control.trap_expected
5746 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5747 {
5748 /* We haven't yet gotten our trap, and either: intercepted a
5749 non-signal event (e.g., a fork); or took a signal which we
5750 are supposed to pass through to the inferior. Simply
5751 continue. */
5752 discard_cleanups (old_cleanups);
5753 resume (currently_stepping (ecs->event_thread),
5754 ecs->event_thread->suspend.stop_signal);
5755 }
5756 else
5757 {
5758 /* Either the trap was not expected, but we are continuing
5759 anyway (if we got a signal, the user asked it be passed to
5760 the child)
5761 -- or --
5762 We got our expected trap, but decided we should resume from
5763 it.
5764
5765 We're going to run this baby now!
5766
5767 Note that insert_breakpoints won't try to re-insert
5768 already inserted breakpoints. Therefore, we don't
5769 care if breakpoints were already inserted, or not. */
5770
5771 if (ecs->event_thread->stepping_over_breakpoint)
5772 {
5773 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5774
5775 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5776 {
5777 /* Since we can't do a displaced step, we have to remove
5778 the breakpoint while we step it. To keep things
5779 simple, we remove them all. */
5780 remove_breakpoints ();
5781 }
5782 }
5783 else
5784 {
5785 volatile struct gdb_exception e;
5786
5787 /* Stop stepping if inserting breakpoints fails. */
5788 TRY_CATCH (e, RETURN_MASK_ERROR)
5789 {
5790 insert_breakpoints ();
5791 }
5792 if (e.reason < 0)
5793 {
5794 exception_print (gdb_stderr, e);
5795 stop_stepping (ecs);
5796 return;
5797 }
5798 }
5799
5800 ecs->event_thread->control.trap_expected
5801 = ecs->event_thread->stepping_over_breakpoint;
5802
5803 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
5804 explicitly specifies that such a signal should be delivered
5805 to the target program). Typically, that would occur when a
5806 user is debugging a target monitor on a simulator: the target
5807 monitor sets a breakpoint; the simulator encounters this
5808 breakpoint and halts the simulation handing control to GDB;
5809 GDB, noting that the stop address doesn't map to any known
5810 breakpoint, returns control back to the simulator; the
5811 simulator then delivers the hardware equivalent of a
5812 GDB_SIGNAL_TRAP to the program being debugged. */
5813 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5814 && !signal_program[ecs->event_thread->suspend.stop_signal])
5815 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5816
5817 discard_cleanups (old_cleanups);
5818 resume (currently_stepping (ecs->event_thread),
5819 ecs->event_thread->suspend.stop_signal);
5820 }
5821
5822 prepare_to_wait (ecs);
5823 }
5824
5825 /* This function normally comes after a resume, before
5826 handle_inferior_event exits. It takes care of any last bits of
5827 housekeeping, and sets the all-important wait_some_more flag. */
5828
5829 static void
5830 prepare_to_wait (struct execution_control_state *ecs)
5831 {
5832 if (debug_infrun)
5833 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5834
5835 /* This is the old end of the while loop. Let everybody know we
5836 want to wait for the inferior some more and get called again
5837 soon. */
5838 ecs->wait_some_more = 1;
5839 }
5840
5841 /* Several print_*_reason functions to print why the inferior has stopped.
5842 We always print something when the inferior exits, or receives a signal.
5843 The rest of the cases are dealt with later on in normal_stop and
5844 print_it_typical. Ideally there should be a call to one of these
5845 print_*_reason functions functions from handle_inferior_event each time
5846 stop_stepping is called. */
5847
5848 /* Print why the inferior has stopped.
5849 We are done with a step/next/si/ni command, print why the inferior has
5850 stopped. For now print nothing. Print a message only if not in the middle
5851 of doing a "step n" operation for n > 1. */
5852
5853 static void
5854 print_end_stepping_range_reason (void)
5855 {
5856 if ((!inferior_thread ()->step_multi
5857 || !inferior_thread ()->control.stop_step)
5858 && ui_out_is_mi_like_p (current_uiout))
5859 ui_out_field_string (current_uiout, "reason",
5860 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5861 }
5862
5863 /* The inferior was terminated by a signal, print why it stopped. */
5864
5865 static void
5866 print_signal_exited_reason (enum gdb_signal siggnal)
5867 {
5868 struct ui_out *uiout = current_uiout;
5869
5870 annotate_signalled ();
5871 if (ui_out_is_mi_like_p (uiout))
5872 ui_out_field_string
5873 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5874 ui_out_text (uiout, "\nProgram terminated with signal ");
5875 annotate_signal_name ();
5876 ui_out_field_string (uiout, "signal-name",
5877 gdb_signal_to_name (siggnal));
5878 annotate_signal_name_end ();
5879 ui_out_text (uiout, ", ");
5880 annotate_signal_string ();
5881 ui_out_field_string (uiout, "signal-meaning",
5882 gdb_signal_to_string (siggnal));
5883 annotate_signal_string_end ();
5884 ui_out_text (uiout, ".\n");
5885 ui_out_text (uiout, "The program no longer exists.\n");
5886 }
5887
5888 /* The inferior program is finished, print why it stopped. */
5889
5890 static void
5891 print_exited_reason (int exitstatus)
5892 {
5893 struct inferior *inf = current_inferior ();
5894 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5895 struct ui_out *uiout = current_uiout;
5896
5897 annotate_exited (exitstatus);
5898 if (exitstatus)
5899 {
5900 if (ui_out_is_mi_like_p (uiout))
5901 ui_out_field_string (uiout, "reason",
5902 async_reason_lookup (EXEC_ASYNC_EXITED));
5903 ui_out_text (uiout, "[Inferior ");
5904 ui_out_text (uiout, plongest (inf->num));
5905 ui_out_text (uiout, " (");
5906 ui_out_text (uiout, pidstr);
5907 ui_out_text (uiout, ") exited with code ");
5908 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5909 ui_out_text (uiout, "]\n");
5910 }
5911 else
5912 {
5913 if (ui_out_is_mi_like_p (uiout))
5914 ui_out_field_string
5915 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5916 ui_out_text (uiout, "[Inferior ");
5917 ui_out_text (uiout, plongest (inf->num));
5918 ui_out_text (uiout, " (");
5919 ui_out_text (uiout, pidstr);
5920 ui_out_text (uiout, ") exited normally]\n");
5921 }
5922 /* Support the --return-child-result option. */
5923 return_child_result_value = exitstatus;
5924 }
5925
5926 /* Signal received, print why the inferior has stopped. The signal table
5927 tells us to print about it. */
5928
5929 static void
5930 print_signal_received_reason (enum gdb_signal siggnal)
5931 {
5932 struct ui_out *uiout = current_uiout;
5933
5934 annotate_signal ();
5935
5936 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5937 {
5938 struct thread_info *t = inferior_thread ();
5939
5940 ui_out_text (uiout, "\n[");
5941 ui_out_field_string (uiout, "thread-name",
5942 target_pid_to_str (t->ptid));
5943 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5944 ui_out_text (uiout, " stopped");
5945 }
5946 else
5947 {
5948 ui_out_text (uiout, "\nProgram received signal ");
5949 annotate_signal_name ();
5950 if (ui_out_is_mi_like_p (uiout))
5951 ui_out_field_string
5952 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5953 ui_out_field_string (uiout, "signal-name",
5954 gdb_signal_to_name (siggnal));
5955 annotate_signal_name_end ();
5956 ui_out_text (uiout, ", ");
5957 annotate_signal_string ();
5958 ui_out_field_string (uiout, "signal-meaning",
5959 gdb_signal_to_string (siggnal));
5960 annotate_signal_string_end ();
5961 }
5962 ui_out_text (uiout, ".\n");
5963 }
5964
5965 /* Reverse execution: target ran out of history info, print why the inferior
5966 has stopped. */
5967
5968 static void
5969 print_no_history_reason (void)
5970 {
5971 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5972 }
5973
5974 /* Here to return control to GDB when the inferior stops for real.
5975 Print appropriate messages, remove breakpoints, give terminal our modes.
5976
5977 STOP_PRINT_FRAME nonzero means print the executing frame
5978 (pc, function, args, file, line number and line text).
5979 BREAKPOINTS_FAILED nonzero means stop was due to error
5980 attempting to insert breakpoints. */
5981
5982 void
5983 normal_stop (void)
5984 {
5985 struct target_waitstatus last;
5986 ptid_t last_ptid;
5987 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5988
5989 get_last_target_status (&last_ptid, &last);
5990
5991 /* If an exception is thrown from this point on, make sure to
5992 propagate GDB's knowledge of the executing state to the
5993 frontend/user running state. A QUIT is an easy exception to see
5994 here, so do this before any filtered output. */
5995 if (!non_stop)
5996 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5997 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5998 && last.kind != TARGET_WAITKIND_EXITED
5999 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6000 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
6001
6002 /* In non-stop mode, we don't want GDB to switch threads behind the
6003 user's back, to avoid races where the user is typing a command to
6004 apply to thread x, but GDB switches to thread y before the user
6005 finishes entering the command. */
6006
6007 /* As with the notification of thread events, we want to delay
6008 notifying the user that we've switched thread context until
6009 the inferior actually stops.
6010
6011 There's no point in saying anything if the inferior has exited.
6012 Note that SIGNALLED here means "exited with a signal", not
6013 "received a signal". */
6014 if (!non_stop
6015 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
6016 && target_has_execution
6017 && last.kind != TARGET_WAITKIND_SIGNALLED
6018 && last.kind != TARGET_WAITKIND_EXITED
6019 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6020 {
6021 target_terminal_ours_for_output ();
6022 printf_filtered (_("[Switching to %s]\n"),
6023 target_pid_to_str (inferior_ptid));
6024 annotate_thread_changed ();
6025 previous_inferior_ptid = inferior_ptid;
6026 }
6027
6028 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6029 {
6030 gdb_assert (sync_execution || !target_can_async_p ());
6031
6032 target_terminal_ours_for_output ();
6033 printf_filtered (_("No unwaited-for children left.\n"));
6034 }
6035
6036 if (!breakpoints_always_inserted_mode () && target_has_execution)
6037 {
6038 if (remove_breakpoints ())
6039 {
6040 target_terminal_ours_for_output ();
6041 printf_filtered (_("Cannot remove breakpoints because "
6042 "program is no longer writable.\nFurther "
6043 "execution is probably impossible.\n"));
6044 }
6045 }
6046
6047 /* If an auto-display called a function and that got a signal,
6048 delete that auto-display to avoid an infinite recursion. */
6049
6050 if (stopped_by_random_signal)
6051 disable_current_display ();
6052
6053 /* Don't print a message if in the middle of doing a "step n"
6054 operation for n > 1 */
6055 if (target_has_execution
6056 && last.kind != TARGET_WAITKIND_SIGNALLED
6057 && last.kind != TARGET_WAITKIND_EXITED
6058 && inferior_thread ()->step_multi
6059 && inferior_thread ()->control.stop_step)
6060 goto done;
6061
6062 target_terminal_ours ();
6063 async_enable_stdin ();
6064
6065 /* Set the current source location. This will also happen if we
6066 display the frame below, but the current SAL will be incorrect
6067 during a user hook-stop function. */
6068 if (has_stack_frames () && !stop_stack_dummy)
6069 set_current_sal_from_frame (get_current_frame (), 1);
6070
6071 /* Let the user/frontend see the threads as stopped. */
6072 do_cleanups (old_chain);
6073
6074 /* Look up the hook_stop and run it (CLI internally handles problem
6075 of stop_command's pre-hook not existing). */
6076 if (stop_command)
6077 catch_errors (hook_stop_stub, stop_command,
6078 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6079
6080 if (!has_stack_frames ())
6081 goto done;
6082
6083 if (last.kind == TARGET_WAITKIND_SIGNALLED
6084 || last.kind == TARGET_WAITKIND_EXITED)
6085 goto done;
6086
6087 /* Select innermost stack frame - i.e., current frame is frame 0,
6088 and current location is based on that.
6089 Don't do this on return from a stack dummy routine,
6090 or if the program has exited. */
6091
6092 if (!stop_stack_dummy)
6093 {
6094 select_frame (get_current_frame ());
6095
6096 /* Print current location without a level number, if
6097 we have changed functions or hit a breakpoint.
6098 Print source line if we have one.
6099 bpstat_print() contains the logic deciding in detail
6100 what to print, based on the event(s) that just occurred. */
6101
6102 /* If --batch-silent is enabled then there's no need to print the current
6103 source location, and to try risks causing an error message about
6104 missing source files. */
6105 if (stop_print_frame && !batch_silent)
6106 {
6107 int bpstat_ret;
6108 int source_flag;
6109 int do_frame_printing = 1;
6110 struct thread_info *tp = inferior_thread ();
6111
6112 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
6113 switch (bpstat_ret)
6114 {
6115 case PRINT_UNKNOWN:
6116 /* FIXME: cagney/2002-12-01: Given that a frame ID does
6117 (or should) carry around the function and does (or
6118 should) use that when doing a frame comparison. */
6119 if (tp->control.stop_step
6120 && frame_id_eq (tp->control.step_frame_id,
6121 get_frame_id (get_current_frame ()))
6122 && step_start_function == find_pc_function (stop_pc))
6123 source_flag = SRC_LINE; /* Finished step, just
6124 print source line. */
6125 else
6126 source_flag = SRC_AND_LOC; /* Print location and
6127 source line. */
6128 break;
6129 case PRINT_SRC_AND_LOC:
6130 source_flag = SRC_AND_LOC; /* Print location and
6131 source line. */
6132 break;
6133 case PRINT_SRC_ONLY:
6134 source_flag = SRC_LINE;
6135 break;
6136 case PRINT_NOTHING:
6137 source_flag = SRC_LINE; /* something bogus */
6138 do_frame_printing = 0;
6139 break;
6140 default:
6141 internal_error (__FILE__, __LINE__, _("Unknown value."));
6142 }
6143
6144 /* The behavior of this routine with respect to the source
6145 flag is:
6146 SRC_LINE: Print only source line
6147 LOCATION: Print only location
6148 SRC_AND_LOC: Print location and source line. */
6149 if (do_frame_printing)
6150 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6151
6152 /* Display the auto-display expressions. */
6153 do_displays ();
6154 }
6155 }
6156
6157 /* Save the function value return registers, if we care.
6158 We might be about to restore their previous contents. */
6159 if (inferior_thread ()->control.proceed_to_finish
6160 && execution_direction != EXEC_REVERSE)
6161 {
6162 /* This should not be necessary. */
6163 if (stop_registers)
6164 regcache_xfree (stop_registers);
6165
6166 /* NB: The copy goes through to the target picking up the value of
6167 all the registers. */
6168 stop_registers = regcache_dup (get_current_regcache ());
6169 }
6170
6171 if (stop_stack_dummy == STOP_STACK_DUMMY)
6172 {
6173 /* Pop the empty frame that contains the stack dummy.
6174 This also restores inferior state prior to the call
6175 (struct infcall_suspend_state). */
6176 struct frame_info *frame = get_current_frame ();
6177
6178 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6179 frame_pop (frame);
6180 /* frame_pop() calls reinit_frame_cache as the last thing it
6181 does which means there's currently no selected frame. We
6182 don't need to re-establish a selected frame if the dummy call
6183 returns normally, that will be done by
6184 restore_infcall_control_state. However, we do have to handle
6185 the case where the dummy call is returning after being
6186 stopped (e.g. the dummy call previously hit a breakpoint).
6187 We can't know which case we have so just always re-establish
6188 a selected frame here. */
6189 select_frame (get_current_frame ());
6190 }
6191
6192 done:
6193 annotate_stopped ();
6194
6195 /* Suppress the stop observer if we're in the middle of:
6196
6197 - a step n (n > 1), as there still more steps to be done.
6198
6199 - a "finish" command, as the observer will be called in
6200 finish_command_continuation, so it can include the inferior
6201 function's return value.
6202
6203 - calling an inferior function, as we pretend we inferior didn't
6204 run at all. The return value of the call is handled by the
6205 expression evaluator, through call_function_by_hand. */
6206
6207 if (!target_has_execution
6208 || last.kind == TARGET_WAITKIND_SIGNALLED
6209 || last.kind == TARGET_WAITKIND_EXITED
6210 || last.kind == TARGET_WAITKIND_NO_RESUMED
6211 || (!(inferior_thread ()->step_multi
6212 && inferior_thread ()->control.stop_step)
6213 && !(inferior_thread ()->control.stop_bpstat
6214 && inferior_thread ()->control.proceed_to_finish)
6215 && !inferior_thread ()->control.in_infcall))
6216 {
6217 if (!ptid_equal (inferior_ptid, null_ptid))
6218 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6219 stop_print_frame);
6220 else
6221 observer_notify_normal_stop (NULL, stop_print_frame);
6222 }
6223
6224 if (target_has_execution)
6225 {
6226 if (last.kind != TARGET_WAITKIND_SIGNALLED
6227 && last.kind != TARGET_WAITKIND_EXITED)
6228 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6229 Delete any breakpoint that is to be deleted at the next stop. */
6230 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6231 }
6232
6233 /* Try to get rid of automatically added inferiors that are no
6234 longer needed. Keeping those around slows down things linearly.
6235 Note that this never removes the current inferior. */
6236 prune_inferiors ();
6237 }
6238
6239 static int
6240 hook_stop_stub (void *cmd)
6241 {
6242 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6243 return (0);
6244 }
6245 \f
6246 int
6247 signal_stop_state (int signo)
6248 {
6249 return signal_stop[signo];
6250 }
6251
6252 int
6253 signal_print_state (int signo)
6254 {
6255 return signal_print[signo];
6256 }
6257
6258 int
6259 signal_pass_state (int signo)
6260 {
6261 return signal_program[signo];
6262 }
6263
6264 static void
6265 signal_cache_update (int signo)
6266 {
6267 if (signo == -1)
6268 {
6269 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6270 signal_cache_update (signo);
6271
6272 return;
6273 }
6274
6275 signal_pass[signo] = (signal_stop[signo] == 0
6276 && signal_print[signo] == 0
6277 && signal_program[signo] == 1
6278 && signal_catch[signo] == 0);
6279 }
6280
6281 int
6282 signal_stop_update (int signo, int state)
6283 {
6284 int ret = signal_stop[signo];
6285
6286 signal_stop[signo] = state;
6287 signal_cache_update (signo);
6288 return ret;
6289 }
6290
6291 int
6292 signal_print_update (int signo, int state)
6293 {
6294 int ret = signal_print[signo];
6295
6296 signal_print[signo] = state;
6297 signal_cache_update (signo);
6298 return ret;
6299 }
6300
6301 int
6302 signal_pass_update (int signo, int state)
6303 {
6304 int ret = signal_program[signo];
6305
6306 signal_program[signo] = state;
6307 signal_cache_update (signo);
6308 return ret;
6309 }
6310
6311 /* Update the global 'signal_catch' from INFO and notify the
6312 target. */
6313
6314 void
6315 signal_catch_update (const unsigned int *info)
6316 {
6317 int i;
6318
6319 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6320 signal_catch[i] = info[i] > 0;
6321 signal_cache_update (-1);
6322 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6323 }
6324
6325 static void
6326 sig_print_header (void)
6327 {
6328 printf_filtered (_("Signal Stop\tPrint\tPass "
6329 "to program\tDescription\n"));
6330 }
6331
6332 static void
6333 sig_print_info (enum gdb_signal oursig)
6334 {
6335 const char *name = gdb_signal_to_name (oursig);
6336 int name_padding = 13 - strlen (name);
6337
6338 if (name_padding <= 0)
6339 name_padding = 0;
6340
6341 printf_filtered ("%s", name);
6342 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6343 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6344 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6345 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6346 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6347 }
6348
6349 /* Specify how various signals in the inferior should be handled. */
6350
6351 static void
6352 handle_command (char *args, int from_tty)
6353 {
6354 char **argv;
6355 int digits, wordlen;
6356 int sigfirst, signum, siglast;
6357 enum gdb_signal oursig;
6358 int allsigs;
6359 int nsigs;
6360 unsigned char *sigs;
6361 struct cleanup *old_chain;
6362
6363 if (args == NULL)
6364 {
6365 error_no_arg (_("signal to handle"));
6366 }
6367
6368 /* Allocate and zero an array of flags for which signals to handle. */
6369
6370 nsigs = (int) GDB_SIGNAL_LAST;
6371 sigs = (unsigned char *) alloca (nsigs);
6372 memset (sigs, 0, nsigs);
6373
6374 /* Break the command line up into args. */
6375
6376 argv = gdb_buildargv (args);
6377 old_chain = make_cleanup_freeargv (argv);
6378
6379 /* Walk through the args, looking for signal oursigs, signal names, and
6380 actions. Signal numbers and signal names may be interspersed with
6381 actions, with the actions being performed for all signals cumulatively
6382 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6383
6384 while (*argv != NULL)
6385 {
6386 wordlen = strlen (*argv);
6387 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6388 {;
6389 }
6390 allsigs = 0;
6391 sigfirst = siglast = -1;
6392
6393 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6394 {
6395 /* Apply action to all signals except those used by the
6396 debugger. Silently skip those. */
6397 allsigs = 1;
6398 sigfirst = 0;
6399 siglast = nsigs - 1;
6400 }
6401 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6402 {
6403 SET_SIGS (nsigs, sigs, signal_stop);
6404 SET_SIGS (nsigs, sigs, signal_print);
6405 }
6406 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6407 {
6408 UNSET_SIGS (nsigs, sigs, signal_program);
6409 }
6410 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6411 {
6412 SET_SIGS (nsigs, sigs, signal_print);
6413 }
6414 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6415 {
6416 SET_SIGS (nsigs, sigs, signal_program);
6417 }
6418 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6419 {
6420 UNSET_SIGS (nsigs, sigs, signal_stop);
6421 }
6422 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6423 {
6424 SET_SIGS (nsigs, sigs, signal_program);
6425 }
6426 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6427 {
6428 UNSET_SIGS (nsigs, sigs, signal_print);
6429 UNSET_SIGS (nsigs, sigs, signal_stop);
6430 }
6431 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6432 {
6433 UNSET_SIGS (nsigs, sigs, signal_program);
6434 }
6435 else if (digits > 0)
6436 {
6437 /* It is numeric. The numeric signal refers to our own
6438 internal signal numbering from target.h, not to host/target
6439 signal number. This is a feature; users really should be
6440 using symbolic names anyway, and the common ones like
6441 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6442
6443 sigfirst = siglast = (int)
6444 gdb_signal_from_command (atoi (*argv));
6445 if ((*argv)[digits] == '-')
6446 {
6447 siglast = (int)
6448 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6449 }
6450 if (sigfirst > siglast)
6451 {
6452 /* Bet he didn't figure we'd think of this case... */
6453 signum = sigfirst;
6454 sigfirst = siglast;
6455 siglast = signum;
6456 }
6457 }
6458 else
6459 {
6460 oursig = gdb_signal_from_name (*argv);
6461 if (oursig != GDB_SIGNAL_UNKNOWN)
6462 {
6463 sigfirst = siglast = (int) oursig;
6464 }
6465 else
6466 {
6467 /* Not a number and not a recognized flag word => complain. */
6468 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6469 }
6470 }
6471
6472 /* If any signal numbers or symbol names were found, set flags for
6473 which signals to apply actions to. */
6474
6475 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6476 {
6477 switch ((enum gdb_signal) signum)
6478 {
6479 case GDB_SIGNAL_TRAP:
6480 case GDB_SIGNAL_INT:
6481 if (!allsigs && !sigs[signum])
6482 {
6483 if (query (_("%s is used by the debugger.\n\
6484 Are you sure you want to change it? "),
6485 gdb_signal_to_name ((enum gdb_signal) signum)))
6486 {
6487 sigs[signum] = 1;
6488 }
6489 else
6490 {
6491 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6492 gdb_flush (gdb_stdout);
6493 }
6494 }
6495 break;
6496 case GDB_SIGNAL_0:
6497 case GDB_SIGNAL_DEFAULT:
6498 case GDB_SIGNAL_UNKNOWN:
6499 /* Make sure that "all" doesn't print these. */
6500 break;
6501 default:
6502 sigs[signum] = 1;
6503 break;
6504 }
6505 }
6506
6507 argv++;
6508 }
6509
6510 for (signum = 0; signum < nsigs; signum++)
6511 if (sigs[signum])
6512 {
6513 signal_cache_update (-1);
6514 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6515 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6516
6517 if (from_tty)
6518 {
6519 /* Show the results. */
6520 sig_print_header ();
6521 for (; signum < nsigs; signum++)
6522 if (sigs[signum])
6523 sig_print_info (signum);
6524 }
6525
6526 break;
6527 }
6528
6529 do_cleanups (old_chain);
6530 }
6531
6532 /* Complete the "handle" command. */
6533
6534 static VEC (char_ptr) *
6535 handle_completer (struct cmd_list_element *ignore,
6536 const char *text, const char *word)
6537 {
6538 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6539 static const char * const keywords[] =
6540 {
6541 "all",
6542 "stop",
6543 "ignore",
6544 "print",
6545 "pass",
6546 "nostop",
6547 "noignore",
6548 "noprint",
6549 "nopass",
6550 NULL,
6551 };
6552
6553 vec_signals = signal_completer (ignore, text, word);
6554 vec_keywords = complete_on_enum (keywords, word, word);
6555
6556 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6557 VEC_free (char_ptr, vec_signals);
6558 VEC_free (char_ptr, vec_keywords);
6559 return return_val;
6560 }
6561
6562 static void
6563 xdb_handle_command (char *args, int from_tty)
6564 {
6565 char **argv;
6566 struct cleanup *old_chain;
6567
6568 if (args == NULL)
6569 error_no_arg (_("xdb command"));
6570
6571 /* Break the command line up into args. */
6572
6573 argv = gdb_buildargv (args);
6574 old_chain = make_cleanup_freeargv (argv);
6575 if (argv[1] != (char *) NULL)
6576 {
6577 char *argBuf;
6578 int bufLen;
6579
6580 bufLen = strlen (argv[0]) + 20;
6581 argBuf = (char *) xmalloc (bufLen);
6582 if (argBuf)
6583 {
6584 int validFlag = 1;
6585 enum gdb_signal oursig;
6586
6587 oursig = gdb_signal_from_name (argv[0]);
6588 memset (argBuf, 0, bufLen);
6589 if (strcmp (argv[1], "Q") == 0)
6590 sprintf (argBuf, "%s %s", argv[0], "noprint");
6591 else
6592 {
6593 if (strcmp (argv[1], "s") == 0)
6594 {
6595 if (!signal_stop[oursig])
6596 sprintf (argBuf, "%s %s", argv[0], "stop");
6597 else
6598 sprintf (argBuf, "%s %s", argv[0], "nostop");
6599 }
6600 else if (strcmp (argv[1], "i") == 0)
6601 {
6602 if (!signal_program[oursig])
6603 sprintf (argBuf, "%s %s", argv[0], "pass");
6604 else
6605 sprintf (argBuf, "%s %s", argv[0], "nopass");
6606 }
6607 else if (strcmp (argv[1], "r") == 0)
6608 {
6609 if (!signal_print[oursig])
6610 sprintf (argBuf, "%s %s", argv[0], "print");
6611 else
6612 sprintf (argBuf, "%s %s", argv[0], "noprint");
6613 }
6614 else
6615 validFlag = 0;
6616 }
6617 if (validFlag)
6618 handle_command (argBuf, from_tty);
6619 else
6620 printf_filtered (_("Invalid signal handling flag.\n"));
6621 if (argBuf)
6622 xfree (argBuf);
6623 }
6624 }
6625 do_cleanups (old_chain);
6626 }
6627
6628 enum gdb_signal
6629 gdb_signal_from_command (int num)
6630 {
6631 if (num >= 1 && num <= 15)
6632 return (enum gdb_signal) num;
6633 error (_("Only signals 1-15 are valid as numeric signals.\n\
6634 Use \"info signals\" for a list of symbolic signals."));
6635 }
6636
6637 /* Print current contents of the tables set by the handle command.
6638 It is possible we should just be printing signals actually used
6639 by the current target (but for things to work right when switching
6640 targets, all signals should be in the signal tables). */
6641
6642 static void
6643 signals_info (char *signum_exp, int from_tty)
6644 {
6645 enum gdb_signal oursig;
6646
6647 sig_print_header ();
6648
6649 if (signum_exp)
6650 {
6651 /* First see if this is a symbol name. */
6652 oursig = gdb_signal_from_name (signum_exp);
6653 if (oursig == GDB_SIGNAL_UNKNOWN)
6654 {
6655 /* No, try numeric. */
6656 oursig =
6657 gdb_signal_from_command (parse_and_eval_long (signum_exp));
6658 }
6659 sig_print_info (oursig);
6660 return;
6661 }
6662
6663 printf_filtered ("\n");
6664 /* These ugly casts brought to you by the native VAX compiler. */
6665 for (oursig = GDB_SIGNAL_FIRST;
6666 (int) oursig < (int) GDB_SIGNAL_LAST;
6667 oursig = (enum gdb_signal) ((int) oursig + 1))
6668 {
6669 QUIT;
6670
6671 if (oursig != GDB_SIGNAL_UNKNOWN
6672 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
6673 sig_print_info (oursig);
6674 }
6675
6676 printf_filtered (_("\nUse the \"handle\" command "
6677 "to change these tables.\n"));
6678 }
6679
6680 /* Check if it makes sense to read $_siginfo from the current thread
6681 at this point. If not, throw an error. */
6682
6683 static void
6684 validate_siginfo_access (void)
6685 {
6686 /* No current inferior, no siginfo. */
6687 if (ptid_equal (inferior_ptid, null_ptid))
6688 error (_("No thread selected."));
6689
6690 /* Don't try to read from a dead thread. */
6691 if (is_exited (inferior_ptid))
6692 error (_("The current thread has terminated"));
6693
6694 /* ... or from a spinning thread. */
6695 if (is_running (inferior_ptid))
6696 error (_("Selected thread is running."));
6697 }
6698
6699 /* The $_siginfo convenience variable is a bit special. We don't know
6700 for sure the type of the value until we actually have a chance to
6701 fetch the data. The type can change depending on gdbarch, so it is
6702 also dependent on which thread you have selected.
6703
6704 1. making $_siginfo be an internalvar that creates a new value on
6705 access.
6706
6707 2. making the value of $_siginfo be an lval_computed value. */
6708
6709 /* This function implements the lval_computed support for reading a
6710 $_siginfo value. */
6711
6712 static void
6713 siginfo_value_read (struct value *v)
6714 {
6715 LONGEST transferred;
6716
6717 validate_siginfo_access ();
6718
6719 transferred =
6720 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6721 NULL,
6722 value_contents_all_raw (v),
6723 value_offset (v),
6724 TYPE_LENGTH (value_type (v)));
6725
6726 if (transferred != TYPE_LENGTH (value_type (v)))
6727 error (_("Unable to read siginfo"));
6728 }
6729
6730 /* This function implements the lval_computed support for writing a
6731 $_siginfo value. */
6732
6733 static void
6734 siginfo_value_write (struct value *v, struct value *fromval)
6735 {
6736 LONGEST transferred;
6737
6738 validate_siginfo_access ();
6739
6740 transferred = target_write (&current_target,
6741 TARGET_OBJECT_SIGNAL_INFO,
6742 NULL,
6743 value_contents_all_raw (fromval),
6744 value_offset (v),
6745 TYPE_LENGTH (value_type (fromval)));
6746
6747 if (transferred != TYPE_LENGTH (value_type (fromval)))
6748 error (_("Unable to write siginfo"));
6749 }
6750
6751 static const struct lval_funcs siginfo_value_funcs =
6752 {
6753 siginfo_value_read,
6754 siginfo_value_write
6755 };
6756
6757 /* Return a new value with the correct type for the siginfo object of
6758 the current thread using architecture GDBARCH. Return a void value
6759 if there's no object available. */
6760
6761 static struct value *
6762 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6763 void *ignore)
6764 {
6765 if (target_has_stack
6766 && !ptid_equal (inferior_ptid, null_ptid)
6767 && gdbarch_get_siginfo_type_p (gdbarch))
6768 {
6769 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6770
6771 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6772 }
6773
6774 return allocate_value (builtin_type (gdbarch)->builtin_void);
6775 }
6776
6777 \f
6778 /* infcall_suspend_state contains state about the program itself like its
6779 registers and any signal it received when it last stopped.
6780 This state must be restored regardless of how the inferior function call
6781 ends (either successfully, or after it hits a breakpoint or signal)
6782 if the program is to properly continue where it left off. */
6783
6784 struct infcall_suspend_state
6785 {
6786 struct thread_suspend_state thread_suspend;
6787 #if 0 /* Currently unused and empty structures are not valid C. */
6788 struct inferior_suspend_state inferior_suspend;
6789 #endif
6790
6791 /* Other fields: */
6792 CORE_ADDR stop_pc;
6793 struct regcache *registers;
6794
6795 /* Format of SIGINFO_DATA or NULL if it is not present. */
6796 struct gdbarch *siginfo_gdbarch;
6797
6798 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6799 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6800 content would be invalid. */
6801 gdb_byte *siginfo_data;
6802 };
6803
6804 struct infcall_suspend_state *
6805 save_infcall_suspend_state (void)
6806 {
6807 struct infcall_suspend_state *inf_state;
6808 struct thread_info *tp = inferior_thread ();
6809 #if 0
6810 struct inferior *inf = current_inferior ();
6811 #endif
6812 struct regcache *regcache = get_current_regcache ();
6813 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6814 gdb_byte *siginfo_data = NULL;
6815
6816 if (gdbarch_get_siginfo_type_p (gdbarch))
6817 {
6818 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6819 size_t len = TYPE_LENGTH (type);
6820 struct cleanup *back_to;
6821
6822 siginfo_data = xmalloc (len);
6823 back_to = make_cleanup (xfree, siginfo_data);
6824
6825 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6826 siginfo_data, 0, len) == len)
6827 discard_cleanups (back_to);
6828 else
6829 {
6830 /* Errors ignored. */
6831 do_cleanups (back_to);
6832 siginfo_data = NULL;
6833 }
6834 }
6835
6836 inf_state = XZALLOC (struct infcall_suspend_state);
6837
6838 if (siginfo_data)
6839 {
6840 inf_state->siginfo_gdbarch = gdbarch;
6841 inf_state->siginfo_data = siginfo_data;
6842 }
6843
6844 inf_state->thread_suspend = tp->suspend;
6845 #if 0 /* Currently unused and empty structures are not valid C. */
6846 inf_state->inferior_suspend = inf->suspend;
6847 #endif
6848
6849 /* run_inferior_call will not use the signal due to its `proceed' call with
6850 GDB_SIGNAL_0 anyway. */
6851 tp->suspend.stop_signal = GDB_SIGNAL_0;
6852
6853 inf_state->stop_pc = stop_pc;
6854
6855 inf_state->registers = regcache_dup (regcache);
6856
6857 return inf_state;
6858 }
6859
6860 /* Restore inferior session state to INF_STATE. */
6861
6862 void
6863 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6864 {
6865 struct thread_info *tp = inferior_thread ();
6866 #if 0
6867 struct inferior *inf = current_inferior ();
6868 #endif
6869 struct regcache *regcache = get_current_regcache ();
6870 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6871
6872 tp->suspend = inf_state->thread_suspend;
6873 #if 0 /* Currently unused and empty structures are not valid C. */
6874 inf->suspend = inf_state->inferior_suspend;
6875 #endif
6876
6877 stop_pc = inf_state->stop_pc;
6878
6879 if (inf_state->siginfo_gdbarch == gdbarch)
6880 {
6881 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6882
6883 /* Errors ignored. */
6884 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6885 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
6886 }
6887
6888 /* The inferior can be gone if the user types "print exit(0)"
6889 (and perhaps other times). */
6890 if (target_has_execution)
6891 /* NB: The register write goes through to the target. */
6892 regcache_cpy (regcache, inf_state->registers);
6893
6894 discard_infcall_suspend_state (inf_state);
6895 }
6896
6897 static void
6898 do_restore_infcall_suspend_state_cleanup (void *state)
6899 {
6900 restore_infcall_suspend_state (state);
6901 }
6902
6903 struct cleanup *
6904 make_cleanup_restore_infcall_suspend_state
6905 (struct infcall_suspend_state *inf_state)
6906 {
6907 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6908 }
6909
6910 void
6911 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6912 {
6913 regcache_xfree (inf_state->registers);
6914 xfree (inf_state->siginfo_data);
6915 xfree (inf_state);
6916 }
6917
6918 struct regcache *
6919 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6920 {
6921 return inf_state->registers;
6922 }
6923
6924 /* infcall_control_state contains state regarding gdb's control of the
6925 inferior itself like stepping control. It also contains session state like
6926 the user's currently selected frame. */
6927
6928 struct infcall_control_state
6929 {
6930 struct thread_control_state thread_control;
6931 struct inferior_control_state inferior_control;
6932
6933 /* Other fields: */
6934 enum stop_stack_kind stop_stack_dummy;
6935 int stopped_by_random_signal;
6936 int stop_after_trap;
6937
6938 /* ID if the selected frame when the inferior function call was made. */
6939 struct frame_id selected_frame_id;
6940 };
6941
6942 /* Save all of the information associated with the inferior<==>gdb
6943 connection. */
6944
6945 struct infcall_control_state *
6946 save_infcall_control_state (void)
6947 {
6948 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6949 struct thread_info *tp = inferior_thread ();
6950 struct inferior *inf = current_inferior ();
6951
6952 inf_status->thread_control = tp->control;
6953 inf_status->inferior_control = inf->control;
6954
6955 tp->control.step_resume_breakpoint = NULL;
6956 tp->control.exception_resume_breakpoint = NULL;
6957
6958 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6959 chain. If caller's caller is walking the chain, they'll be happier if we
6960 hand them back the original chain when restore_infcall_control_state is
6961 called. */
6962 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6963
6964 /* Other fields: */
6965 inf_status->stop_stack_dummy = stop_stack_dummy;
6966 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6967 inf_status->stop_after_trap = stop_after_trap;
6968
6969 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6970
6971 return inf_status;
6972 }
6973
6974 static int
6975 restore_selected_frame (void *args)
6976 {
6977 struct frame_id *fid = (struct frame_id *) args;
6978 struct frame_info *frame;
6979
6980 frame = frame_find_by_id (*fid);
6981
6982 /* If inf_status->selected_frame_id is NULL, there was no previously
6983 selected frame. */
6984 if (frame == NULL)
6985 {
6986 warning (_("Unable to restore previously selected frame."));
6987 return 0;
6988 }
6989
6990 select_frame (frame);
6991
6992 return (1);
6993 }
6994
6995 /* Restore inferior session state to INF_STATUS. */
6996
6997 void
6998 restore_infcall_control_state (struct infcall_control_state *inf_status)
6999 {
7000 struct thread_info *tp = inferior_thread ();
7001 struct inferior *inf = current_inferior ();
7002
7003 if (tp->control.step_resume_breakpoint)
7004 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7005
7006 if (tp->control.exception_resume_breakpoint)
7007 tp->control.exception_resume_breakpoint->disposition
7008 = disp_del_at_next_stop;
7009
7010 /* Handle the bpstat_copy of the chain. */
7011 bpstat_clear (&tp->control.stop_bpstat);
7012
7013 tp->control = inf_status->thread_control;
7014 inf->control = inf_status->inferior_control;
7015
7016 /* Other fields: */
7017 stop_stack_dummy = inf_status->stop_stack_dummy;
7018 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7019 stop_after_trap = inf_status->stop_after_trap;
7020
7021 if (target_has_stack)
7022 {
7023 /* The point of catch_errors is that if the stack is clobbered,
7024 walking the stack might encounter a garbage pointer and
7025 error() trying to dereference it. */
7026 if (catch_errors
7027 (restore_selected_frame, &inf_status->selected_frame_id,
7028 "Unable to restore previously selected frame:\n",
7029 RETURN_MASK_ERROR) == 0)
7030 /* Error in restoring the selected frame. Select the innermost
7031 frame. */
7032 select_frame (get_current_frame ());
7033 }
7034
7035 xfree (inf_status);
7036 }
7037
7038 static void
7039 do_restore_infcall_control_state_cleanup (void *sts)
7040 {
7041 restore_infcall_control_state (sts);
7042 }
7043
7044 struct cleanup *
7045 make_cleanup_restore_infcall_control_state
7046 (struct infcall_control_state *inf_status)
7047 {
7048 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
7049 }
7050
7051 void
7052 discard_infcall_control_state (struct infcall_control_state *inf_status)
7053 {
7054 if (inf_status->thread_control.step_resume_breakpoint)
7055 inf_status->thread_control.step_resume_breakpoint->disposition
7056 = disp_del_at_next_stop;
7057
7058 if (inf_status->thread_control.exception_resume_breakpoint)
7059 inf_status->thread_control.exception_resume_breakpoint->disposition
7060 = disp_del_at_next_stop;
7061
7062 /* See save_infcall_control_state for info on stop_bpstat. */
7063 bpstat_clear (&inf_status->thread_control.stop_bpstat);
7064
7065 xfree (inf_status);
7066 }
7067 \f
7068 int
7069 ptid_match (ptid_t ptid, ptid_t filter)
7070 {
7071 if (ptid_equal (filter, minus_one_ptid))
7072 return 1;
7073 if (ptid_is_pid (filter)
7074 && ptid_get_pid (ptid) == ptid_get_pid (filter))
7075 return 1;
7076 else if (ptid_equal (ptid, filter))
7077 return 1;
7078
7079 return 0;
7080 }
7081
7082 /* restore_inferior_ptid() will be used by the cleanup machinery
7083 to restore the inferior_ptid value saved in a call to
7084 save_inferior_ptid(). */
7085
7086 static void
7087 restore_inferior_ptid (void *arg)
7088 {
7089 ptid_t *saved_ptid_ptr = arg;
7090
7091 inferior_ptid = *saved_ptid_ptr;
7092 xfree (arg);
7093 }
7094
7095 /* Save the value of inferior_ptid so that it may be restored by a
7096 later call to do_cleanups(). Returns the struct cleanup pointer
7097 needed for later doing the cleanup. */
7098
7099 struct cleanup *
7100 save_inferior_ptid (void)
7101 {
7102 ptid_t *saved_ptid_ptr;
7103
7104 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7105 *saved_ptid_ptr = inferior_ptid;
7106 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7107 }
7108
7109 /* See inferior.h. */
7110
7111 void
7112 clear_exit_convenience_vars (void)
7113 {
7114 clear_internalvar (lookup_internalvar ("_exitsignal"));
7115 clear_internalvar (lookup_internalvar ("_exitcode"));
7116 }
7117 \f
7118
7119 /* User interface for reverse debugging:
7120 Set exec-direction / show exec-direction commands
7121 (returns error unless target implements to_set_exec_direction method). */
7122
7123 int execution_direction = EXEC_FORWARD;
7124 static const char exec_forward[] = "forward";
7125 static const char exec_reverse[] = "reverse";
7126 static const char *exec_direction = exec_forward;
7127 static const char *const exec_direction_names[] = {
7128 exec_forward,
7129 exec_reverse,
7130 NULL
7131 };
7132
7133 static void
7134 set_exec_direction_func (char *args, int from_tty,
7135 struct cmd_list_element *cmd)
7136 {
7137 if (target_can_execute_reverse)
7138 {
7139 if (!strcmp (exec_direction, exec_forward))
7140 execution_direction = EXEC_FORWARD;
7141 else if (!strcmp (exec_direction, exec_reverse))
7142 execution_direction = EXEC_REVERSE;
7143 }
7144 else
7145 {
7146 exec_direction = exec_forward;
7147 error (_("Target does not support this operation."));
7148 }
7149 }
7150
7151 static void
7152 show_exec_direction_func (struct ui_file *out, int from_tty,
7153 struct cmd_list_element *cmd, const char *value)
7154 {
7155 switch (execution_direction) {
7156 case EXEC_FORWARD:
7157 fprintf_filtered (out, _("Forward.\n"));
7158 break;
7159 case EXEC_REVERSE:
7160 fprintf_filtered (out, _("Reverse.\n"));
7161 break;
7162 default:
7163 internal_error (__FILE__, __LINE__,
7164 _("bogus execution_direction value: %d"),
7165 (int) execution_direction);
7166 }
7167 }
7168
7169 static void
7170 show_schedule_multiple (struct ui_file *file, int from_tty,
7171 struct cmd_list_element *c, const char *value)
7172 {
7173 fprintf_filtered (file, _("Resuming the execution of threads "
7174 "of all processes is %s.\n"), value);
7175 }
7176
7177 /* Implementation of `siginfo' variable. */
7178
7179 static const struct internalvar_funcs siginfo_funcs =
7180 {
7181 siginfo_make_value,
7182 NULL,
7183 NULL
7184 };
7185
7186 void
7187 _initialize_infrun (void)
7188 {
7189 int i;
7190 int numsigs;
7191 struct cmd_list_element *c;
7192
7193 add_info ("signals", signals_info, _("\
7194 What debugger does when program gets various signals.\n\
7195 Specify a signal as argument to print info on that signal only."));
7196 add_info_alias ("handle", "signals", 0);
7197
7198 c = add_com ("handle", class_run, handle_command, _("\
7199 Specify how to handle signals.\n\
7200 Usage: handle SIGNAL [ACTIONS]\n\
7201 Args are signals and actions to apply to those signals.\n\
7202 If no actions are specified, the current settings for the specified signals\n\
7203 will be displayed instead.\n\
7204 \n\
7205 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7206 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7207 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7208 The special arg \"all\" is recognized to mean all signals except those\n\
7209 used by the debugger, typically SIGTRAP and SIGINT.\n\
7210 \n\
7211 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7212 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7213 Stop means reenter debugger if this signal happens (implies print).\n\
7214 Print means print a message if this signal happens.\n\
7215 Pass means let program see this signal; otherwise program doesn't know.\n\
7216 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7217 Pass and Stop may be combined.\n\
7218 \n\
7219 Multiple signals may be specified. Signal numbers and signal names\n\
7220 may be interspersed with actions, with the actions being performed for\n\
7221 all signals cumulatively specified."));
7222 set_cmd_completer (c, handle_completer);
7223
7224 if (xdb_commands)
7225 {
7226 add_com ("lz", class_info, signals_info, _("\
7227 What debugger does when program gets various signals.\n\
7228 Specify a signal as argument to print info on that signal only."));
7229 add_com ("z", class_run, xdb_handle_command, _("\
7230 Specify how to handle a signal.\n\
7231 Args are signals and actions to apply to those signals.\n\
7232 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7233 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7234 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7235 The special arg \"all\" is recognized to mean all signals except those\n\
7236 used by the debugger, typically SIGTRAP and SIGINT.\n\
7237 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7238 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7239 nopass), \"Q\" (noprint)\n\
7240 Stop means reenter debugger if this signal happens (implies print).\n\
7241 Print means print a message if this signal happens.\n\
7242 Pass means let program see this signal; otherwise program doesn't know.\n\
7243 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7244 Pass and Stop may be combined."));
7245 }
7246
7247 if (!dbx_commands)
7248 stop_command = add_cmd ("stop", class_obscure,
7249 not_just_help_class_command, _("\
7250 There is no `stop' command, but you can set a hook on `stop'.\n\
7251 This allows you to set a list of commands to be run each time execution\n\
7252 of the program stops."), &cmdlist);
7253
7254 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7255 Set inferior debugging."), _("\
7256 Show inferior debugging."), _("\
7257 When non-zero, inferior specific debugging is enabled."),
7258 NULL,
7259 show_debug_infrun,
7260 &setdebuglist, &showdebuglist);
7261
7262 add_setshow_boolean_cmd ("displaced", class_maintenance,
7263 &debug_displaced, _("\
7264 Set displaced stepping debugging."), _("\
7265 Show displaced stepping debugging."), _("\
7266 When non-zero, displaced stepping specific debugging is enabled."),
7267 NULL,
7268 show_debug_displaced,
7269 &setdebuglist, &showdebuglist);
7270
7271 add_setshow_boolean_cmd ("non-stop", no_class,
7272 &non_stop_1, _("\
7273 Set whether gdb controls the inferior in non-stop mode."), _("\
7274 Show whether gdb controls the inferior in non-stop mode."), _("\
7275 When debugging a multi-threaded program and this setting is\n\
7276 off (the default, also called all-stop mode), when one thread stops\n\
7277 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7278 all other threads in the program while you interact with the thread of\n\
7279 interest. When you continue or step a thread, you can allow the other\n\
7280 threads to run, or have them remain stopped, but while you inspect any\n\
7281 thread's state, all threads stop.\n\
7282 \n\
7283 In non-stop mode, when one thread stops, other threads can continue\n\
7284 to run freely. You'll be able to step each thread independently,\n\
7285 leave it stopped or free to run as needed."),
7286 set_non_stop,
7287 show_non_stop,
7288 &setlist,
7289 &showlist);
7290
7291 numsigs = (int) GDB_SIGNAL_LAST;
7292 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7293 signal_print = (unsigned char *)
7294 xmalloc (sizeof (signal_print[0]) * numsigs);
7295 signal_program = (unsigned char *)
7296 xmalloc (sizeof (signal_program[0]) * numsigs);
7297 signal_catch = (unsigned char *)
7298 xmalloc (sizeof (signal_catch[0]) * numsigs);
7299 signal_pass = (unsigned char *)
7300 xmalloc (sizeof (signal_program[0]) * numsigs);
7301 for (i = 0; i < numsigs; i++)
7302 {
7303 signal_stop[i] = 1;
7304 signal_print[i] = 1;
7305 signal_program[i] = 1;
7306 signal_catch[i] = 0;
7307 }
7308
7309 /* Signals caused by debugger's own actions
7310 should not be given to the program afterwards. */
7311 signal_program[GDB_SIGNAL_TRAP] = 0;
7312 signal_program[GDB_SIGNAL_INT] = 0;
7313
7314 /* Signals that are not errors should not normally enter the debugger. */
7315 signal_stop[GDB_SIGNAL_ALRM] = 0;
7316 signal_print[GDB_SIGNAL_ALRM] = 0;
7317 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7318 signal_print[GDB_SIGNAL_VTALRM] = 0;
7319 signal_stop[GDB_SIGNAL_PROF] = 0;
7320 signal_print[GDB_SIGNAL_PROF] = 0;
7321 signal_stop[GDB_SIGNAL_CHLD] = 0;
7322 signal_print[GDB_SIGNAL_CHLD] = 0;
7323 signal_stop[GDB_SIGNAL_IO] = 0;
7324 signal_print[GDB_SIGNAL_IO] = 0;
7325 signal_stop[GDB_SIGNAL_POLL] = 0;
7326 signal_print[GDB_SIGNAL_POLL] = 0;
7327 signal_stop[GDB_SIGNAL_URG] = 0;
7328 signal_print[GDB_SIGNAL_URG] = 0;
7329 signal_stop[GDB_SIGNAL_WINCH] = 0;
7330 signal_print[GDB_SIGNAL_WINCH] = 0;
7331 signal_stop[GDB_SIGNAL_PRIO] = 0;
7332 signal_print[GDB_SIGNAL_PRIO] = 0;
7333
7334 /* These signals are used internally by user-level thread
7335 implementations. (See signal(5) on Solaris.) Like the above
7336 signals, a healthy program receives and handles them as part of
7337 its normal operation. */
7338 signal_stop[GDB_SIGNAL_LWP] = 0;
7339 signal_print[GDB_SIGNAL_LWP] = 0;
7340 signal_stop[GDB_SIGNAL_WAITING] = 0;
7341 signal_print[GDB_SIGNAL_WAITING] = 0;
7342 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7343 signal_print[GDB_SIGNAL_CANCEL] = 0;
7344
7345 /* Update cached state. */
7346 signal_cache_update (-1);
7347
7348 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7349 &stop_on_solib_events, _("\
7350 Set stopping for shared library events."), _("\
7351 Show stopping for shared library events."), _("\
7352 If nonzero, gdb will give control to the user when the dynamic linker\n\
7353 notifies gdb of shared library events. The most common event of interest\n\
7354 to the user would be loading/unloading of a new library."),
7355 set_stop_on_solib_events,
7356 show_stop_on_solib_events,
7357 &setlist, &showlist);
7358
7359 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7360 follow_fork_mode_kind_names,
7361 &follow_fork_mode_string, _("\
7362 Set debugger response to a program call of fork or vfork."), _("\
7363 Show debugger response to a program call of fork or vfork."), _("\
7364 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7365 parent - the original process is debugged after a fork\n\
7366 child - the new process is debugged after a fork\n\
7367 The unfollowed process will continue to run.\n\
7368 By default, the debugger will follow the parent process."),
7369 NULL,
7370 show_follow_fork_mode_string,
7371 &setlist, &showlist);
7372
7373 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7374 follow_exec_mode_names,
7375 &follow_exec_mode_string, _("\
7376 Set debugger response to a program call of exec."), _("\
7377 Show debugger response to a program call of exec."), _("\
7378 An exec call replaces the program image of a process.\n\
7379 \n\
7380 follow-exec-mode can be:\n\
7381 \n\
7382 new - the debugger creates a new inferior and rebinds the process\n\
7383 to this new inferior. The program the process was running before\n\
7384 the exec call can be restarted afterwards by restarting the original\n\
7385 inferior.\n\
7386 \n\
7387 same - the debugger keeps the process bound to the same inferior.\n\
7388 The new executable image replaces the previous executable loaded in\n\
7389 the inferior. Restarting the inferior after the exec call restarts\n\
7390 the executable the process was running after the exec call.\n\
7391 \n\
7392 By default, the debugger will use the same inferior."),
7393 NULL,
7394 show_follow_exec_mode_string,
7395 &setlist, &showlist);
7396
7397 add_setshow_enum_cmd ("scheduler-locking", class_run,
7398 scheduler_enums, &scheduler_mode, _("\
7399 Set mode for locking scheduler during execution."), _("\
7400 Show mode for locking scheduler during execution."), _("\
7401 off == no locking (threads may preempt at any time)\n\
7402 on == full locking (no thread except the current thread may run)\n\
7403 step == scheduler locked during every single-step operation.\n\
7404 In this mode, no other thread may run during a step command.\n\
7405 Other threads may run while stepping over a function call ('next')."),
7406 set_schedlock_func, /* traps on target vector */
7407 show_scheduler_mode,
7408 &setlist, &showlist);
7409
7410 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7411 Set mode for resuming threads of all processes."), _("\
7412 Show mode for resuming threads of all processes."), _("\
7413 When on, execution commands (such as 'continue' or 'next') resume all\n\
7414 threads of all processes. When off (which is the default), execution\n\
7415 commands only resume the threads of the current process. The set of\n\
7416 threads that are resumed is further refined by the scheduler-locking\n\
7417 mode (see help set scheduler-locking)."),
7418 NULL,
7419 show_schedule_multiple,
7420 &setlist, &showlist);
7421
7422 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7423 Set mode of the step operation."), _("\
7424 Show mode of the step operation."), _("\
7425 When set, doing a step over a function without debug line information\n\
7426 will stop at the first instruction of that function. Otherwise, the\n\
7427 function is skipped and the step command stops at a different source line."),
7428 NULL,
7429 show_step_stop_if_no_debug,
7430 &setlist, &showlist);
7431
7432 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7433 &can_use_displaced_stepping, _("\
7434 Set debugger's willingness to use displaced stepping."), _("\
7435 Show debugger's willingness to use displaced stepping."), _("\
7436 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7437 supported by the target architecture. If off, gdb will not use displaced\n\
7438 stepping to step over breakpoints, even if such is supported by the target\n\
7439 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7440 if the target architecture supports it and non-stop mode is active, but will not\n\
7441 use it in all-stop mode (see help set non-stop)."),
7442 NULL,
7443 show_can_use_displaced_stepping,
7444 &setlist, &showlist);
7445
7446 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7447 &exec_direction, _("Set direction of execution.\n\
7448 Options are 'forward' or 'reverse'."),
7449 _("Show direction of execution (forward/reverse)."),
7450 _("Tells gdb whether to execute forward or backward."),
7451 set_exec_direction_func, show_exec_direction_func,
7452 &setlist, &showlist);
7453
7454 /* Set/show detach-on-fork: user-settable mode. */
7455
7456 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7457 Set whether gdb will detach the child of a fork."), _("\
7458 Show whether gdb will detach the child of a fork."), _("\
7459 Tells gdb whether to detach the child of a fork."),
7460 NULL, NULL, &setlist, &showlist);
7461
7462 /* Set/show disable address space randomization mode. */
7463
7464 add_setshow_boolean_cmd ("disable-randomization", class_support,
7465 &disable_randomization, _("\
7466 Set disabling of debuggee's virtual address space randomization."), _("\
7467 Show disabling of debuggee's virtual address space randomization."), _("\
7468 When this mode is on (which is the default), randomization of the virtual\n\
7469 address space is disabled. Standalone programs run with the randomization\n\
7470 enabled by default on some platforms."),
7471 &set_disable_randomization,
7472 &show_disable_randomization,
7473 &setlist, &showlist);
7474
7475 /* ptid initializations */
7476 inferior_ptid = null_ptid;
7477 target_last_wait_ptid = minus_one_ptid;
7478
7479 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7480 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7481 observer_attach_thread_exit (infrun_thread_thread_exit);
7482 observer_attach_inferior_exit (infrun_inferior_exit);
7483
7484 /* Explicitly create without lookup, since that tries to create a
7485 value with a void typed value, and when we get here, gdbarch
7486 isn't initialized yet. At this point, we're quite sure there
7487 isn't another convenience variable of the same name. */
7488 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7489
7490 add_setshow_boolean_cmd ("observer", no_class,
7491 &observer_mode_1, _("\
7492 Set whether gdb controls the inferior in observer mode."), _("\
7493 Show whether gdb controls the inferior in observer mode."), _("\
7494 In observer mode, GDB can get data from the inferior, but not\n\
7495 affect its execution. Registers and memory may not be changed,\n\
7496 breakpoints may not be set, and the program cannot be interrupted\n\
7497 or signalled."),
7498 set_observer_mode,
7499 show_observer_mode,
7500 &setlist,
7501 &showlist);
7502 }