]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
2004-05-13 Andrew Cagney <cagney@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "breakpoint.h"
32 #include "gdb_wait.h"
33 #include "gdbcore.h"
34 #include "gdbcmd.h"
35 #include "cli/cli-script.h"
36 #include "target.h"
37 #include "gdbthread.h"
38 #include "annotate.h"
39 #include "symfile.h"
40 #include "top.h"
41 #include <signal.h>
42 #include "inf-loop.h"
43 #include "regcache.h"
44 #include "value.h"
45 #include "observer.h"
46 #include "language.h"
47 #include "gdb_assert.h"
48
49 /* Prototypes for local functions */
50
51 static void signals_info (char *, int);
52
53 static void handle_command (char *, int);
54
55 static void sig_print_info (enum target_signal);
56
57 static void sig_print_header (void);
58
59 static void resume_cleanups (void *);
60
61 static int hook_stop_stub (void *);
62
63 static int restore_selected_frame (void *);
64
65 static void build_infrun (void);
66
67 static int follow_fork (void);
68
69 static void set_schedlock_func (char *args, int from_tty,
70 struct cmd_list_element *c);
71
72 struct execution_control_state;
73
74 static int currently_stepping (struct execution_control_state *ecs);
75
76 static void xdb_handle_command (char *args, int from_tty);
77
78 static int prepare_to_proceed (void);
79
80 void _initialize_infrun (void);
81
82 int inferior_ignoring_startup_exec_events = 0;
83 int inferior_ignoring_leading_exec_events = 0;
84
85 /* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88 int step_stop_if_no_debug = 0;
89
90 /* In asynchronous mode, but simulating synchronous execution. */
91
92 int sync_execution = 0;
93
94 /* wait_for_inferior and normal_stop use this to notify the user
95 when the inferior stopped in a different thread than it had been
96 running in. */
97
98 static ptid_t previous_inferior_ptid;
99
100 /* This is true for configurations that may follow through execl() and
101 similar functions. At present this is only true for HP-UX native. */
102
103 #ifndef MAY_FOLLOW_EXEC
104 #define MAY_FOLLOW_EXEC (0)
105 #endif
106
107 static int may_follow_exec = MAY_FOLLOW_EXEC;
108
109 /* If the program uses ELF-style shared libraries, then calls to
110 functions in shared libraries go through stubs, which live in a
111 table called the PLT (Procedure Linkage Table). The first time the
112 function is called, the stub sends control to the dynamic linker,
113 which looks up the function's real address, patches the stub so
114 that future calls will go directly to the function, and then passes
115 control to the function.
116
117 If we are stepping at the source level, we don't want to see any of
118 this --- we just want to skip over the stub and the dynamic linker.
119 The simple approach is to single-step until control leaves the
120 dynamic linker.
121
122 However, on some systems (e.g., Red Hat's 5.2 distribution) the
123 dynamic linker calls functions in the shared C library, so you
124 can't tell from the PC alone whether the dynamic linker is still
125 running. In this case, we use a step-resume breakpoint to get us
126 past the dynamic linker, as if we were using "next" to step over a
127 function call.
128
129 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
130 linker code or not. Normally, this means we single-step. However,
131 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
132 address where we can place a step-resume breakpoint to get past the
133 linker's symbol resolution function.
134
135 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
136 pretty portable way, by comparing the PC against the address ranges
137 of the dynamic linker's sections.
138
139 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
140 it depends on internal details of the dynamic linker. It's usually
141 not too hard to figure out where to put a breakpoint, but it
142 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
143 sanity checking. If it can't figure things out, returning zero and
144 getting the (possibly confusing) stepping behavior is better than
145 signalling an error, which will obscure the change in the
146 inferior's state. */
147
148 #ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
149 #define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
150 #endif
151
152 /* This function returns TRUE if pc is the address of an instruction
153 that lies within the dynamic linker (such as the event hook, or the
154 dld itself).
155
156 This function must be used only when a dynamic linker event has
157 been caught, and the inferior is being stepped out of the hook, or
158 undefined results are guaranteed. */
159
160 #ifndef SOLIB_IN_DYNAMIC_LINKER
161 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
162 #endif
163
164 /* On MIPS16, a function that returns a floating point value may call
165 a library helper function to copy the return value to a floating point
166 register. The IGNORE_HELPER_CALL macro returns non-zero if we
167 should ignore (i.e. step over) this function call. */
168 #ifndef IGNORE_HELPER_CALL
169 #define IGNORE_HELPER_CALL(pc) 0
170 #endif
171
172 /* On some systems, the PC may be left pointing at an instruction that won't
173 actually be executed. This is usually indicated by a bit in the PSW. If
174 we find ourselves in such a state, then we step the target beyond the
175 nullified instruction before returning control to the user so as to avoid
176 confusion. */
177
178 #ifndef INSTRUCTION_NULLIFIED
179 #define INSTRUCTION_NULLIFIED 0
180 #endif
181
182 /* We can't step off a permanent breakpoint in the ordinary way, because we
183 can't remove it. Instead, we have to advance the PC to the next
184 instruction. This macro should expand to a pointer to a function that
185 does that, or zero if we have no such function. If we don't have a
186 definition for it, we have to report an error. */
187 #ifndef SKIP_PERMANENT_BREAKPOINT
188 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
189 static void
190 default_skip_permanent_breakpoint (void)
191 {
192 error ("\
193 The program is stopped at a permanent breakpoint, but GDB does not know\n\
194 how to step past a permanent breakpoint on this architecture. Try using\n\
195 a command like `return' or `jump' to continue execution.");
196 }
197 #endif
198
199
200 /* Convert the #defines into values. This is temporary until wfi control
201 flow is completely sorted out. */
202
203 #ifndef HAVE_STEPPABLE_WATCHPOINT
204 #define HAVE_STEPPABLE_WATCHPOINT 0
205 #else
206 #undef HAVE_STEPPABLE_WATCHPOINT
207 #define HAVE_STEPPABLE_WATCHPOINT 1
208 #endif
209
210 #ifndef CANNOT_STEP_HW_WATCHPOINTS
211 #define CANNOT_STEP_HW_WATCHPOINTS 0
212 #else
213 #undef CANNOT_STEP_HW_WATCHPOINTS
214 #define CANNOT_STEP_HW_WATCHPOINTS 1
215 #endif
216
217 /* Tables of how to react to signals; the user sets them. */
218
219 static unsigned char *signal_stop;
220 static unsigned char *signal_print;
221 static unsigned char *signal_program;
222
223 #define SET_SIGS(nsigs,sigs,flags) \
224 do { \
225 int signum = (nsigs); \
226 while (signum-- > 0) \
227 if ((sigs)[signum]) \
228 (flags)[signum] = 1; \
229 } while (0)
230
231 #define UNSET_SIGS(nsigs,sigs,flags) \
232 do { \
233 int signum = (nsigs); \
234 while (signum-- > 0) \
235 if ((sigs)[signum]) \
236 (flags)[signum] = 0; \
237 } while (0)
238
239 /* Value to pass to target_resume() to cause all threads to resume */
240
241 #define RESUME_ALL (pid_to_ptid (-1))
242
243 /* Command list pointer for the "stop" placeholder. */
244
245 static struct cmd_list_element *stop_command;
246
247 /* Nonzero if breakpoints are now inserted in the inferior. */
248
249 static int breakpoints_inserted;
250
251 /* Function inferior was in as of last step command. */
252
253 static struct symbol *step_start_function;
254
255 /* Nonzero if we are expecting a trace trap and should proceed from it. */
256
257 static int trap_expected;
258
259 #ifdef SOLIB_ADD
260 /* Nonzero if we want to give control to the user when we're notified
261 of shared library events by the dynamic linker. */
262 static int stop_on_solib_events;
263 #endif
264
265 #ifdef HP_OS_BUG
266 /* Nonzero if the next time we try to continue the inferior, it will
267 step one instruction and generate a spurious trace trap.
268 This is used to compensate for a bug in HP-UX. */
269
270 static int trap_expected_after_continue;
271 #endif
272
273 /* Nonzero means expecting a trace trap
274 and should stop the inferior and return silently when it happens. */
275
276 int stop_after_trap;
277
278 /* Nonzero means expecting a trap and caller will handle it themselves.
279 It is used after attach, due to attaching to a process;
280 when running in the shell before the child program has been exec'd;
281 and when running some kinds of remote stuff (FIXME?). */
282
283 enum stop_kind stop_soon;
284
285 /* Nonzero if proceed is being used for a "finish" command or a similar
286 situation when stop_registers should be saved. */
287
288 int proceed_to_finish;
289
290 /* Save register contents here when about to pop a stack dummy frame,
291 if-and-only-if proceed_to_finish is set.
292 Thus this contains the return value from the called function (assuming
293 values are returned in a register). */
294
295 struct regcache *stop_registers;
296
297 /* Nonzero if program stopped due to error trying to insert breakpoints. */
298
299 static int breakpoints_failed;
300
301 /* Nonzero after stop if current stack frame should be printed. */
302
303 static int stop_print_frame;
304
305 static struct breakpoint *step_resume_breakpoint = NULL;
306
307 /* On some platforms (e.g., HP-UX), hardware watchpoints have bad
308 interactions with an inferior that is running a kernel function
309 (aka, a system call or "syscall"). wait_for_inferior therefore
310 may have a need to know when the inferior is in a syscall. This
311 is a count of the number of inferior threads which are known to
312 currently be running in a syscall. */
313 static int number_of_threads_in_syscalls;
314
315 /* This is a cached copy of the pid/waitstatus of the last event
316 returned by target_wait()/deprecated_target_wait_hook(). This
317 information is returned by get_last_target_status(). */
318 static ptid_t target_last_wait_ptid;
319 static struct target_waitstatus target_last_waitstatus;
320
321 /* This is used to remember when a fork, vfork or exec event
322 was caught by a catchpoint, and thus the event is to be
323 followed at the next resume of the inferior, and not
324 immediately. */
325 static struct
326 {
327 enum target_waitkind kind;
328 struct
329 {
330 int parent_pid;
331 int child_pid;
332 }
333 fork_event;
334 char *execd_pathname;
335 }
336 pending_follow;
337
338 static const char follow_fork_mode_child[] = "child";
339 static const char follow_fork_mode_parent[] = "parent";
340
341 static const char *follow_fork_mode_kind_names[] = {
342 follow_fork_mode_child,
343 follow_fork_mode_parent,
344 NULL
345 };
346
347 static const char *follow_fork_mode_string = follow_fork_mode_parent;
348 \f
349
350 static int
351 follow_fork (void)
352 {
353 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
354
355 return target_follow_fork (follow_child);
356 }
357
358 void
359 follow_inferior_reset_breakpoints (void)
360 {
361 /* Was there a step_resume breakpoint? (There was if the user
362 did a "next" at the fork() call.) If so, explicitly reset its
363 thread number.
364
365 step_resumes are a form of bp that are made to be per-thread.
366 Since we created the step_resume bp when the parent process
367 was being debugged, and now are switching to the child process,
368 from the breakpoint package's viewpoint, that's a switch of
369 "threads". We must update the bp's notion of which thread
370 it is for, or it'll be ignored when it triggers. */
371
372 if (step_resume_breakpoint)
373 breakpoint_re_set_thread (step_resume_breakpoint);
374
375 /* Reinsert all breakpoints in the child. The user may have set
376 breakpoints after catching the fork, in which case those
377 were never set in the child, but only in the parent. This makes
378 sure the inserted breakpoints match the breakpoint list. */
379
380 breakpoint_re_set ();
381 insert_breakpoints ();
382 }
383
384 /* EXECD_PATHNAME is assumed to be non-NULL. */
385
386 static void
387 follow_exec (int pid, char *execd_pathname)
388 {
389 int saved_pid = pid;
390 struct target_ops *tgt;
391
392 if (!may_follow_exec)
393 return;
394
395 /* This is an exec event that we actually wish to pay attention to.
396 Refresh our symbol table to the newly exec'd program, remove any
397 momentary bp's, etc.
398
399 If there are breakpoints, they aren't really inserted now,
400 since the exec() transformed our inferior into a fresh set
401 of instructions.
402
403 We want to preserve symbolic breakpoints on the list, since
404 we have hopes that they can be reset after the new a.out's
405 symbol table is read.
406
407 However, any "raw" breakpoints must be removed from the list
408 (e.g., the solib bp's), since their address is probably invalid
409 now.
410
411 And, we DON'T want to call delete_breakpoints() here, since
412 that may write the bp's "shadow contents" (the instruction
413 value that was overwritten witha TRAP instruction). Since
414 we now have a new a.out, those shadow contents aren't valid. */
415 update_breakpoints_after_exec ();
416
417 /* If there was one, it's gone now. We cannot truly step-to-next
418 statement through an exec(). */
419 step_resume_breakpoint = NULL;
420 step_range_start = 0;
421 step_range_end = 0;
422
423 /* What is this a.out's name? */
424 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
425
426 /* We've followed the inferior through an exec. Therefore, the
427 inferior has essentially been killed & reborn. */
428
429 /* First collect the run target in effect. */
430 tgt = find_run_target ();
431 /* If we can't find one, things are in a very strange state... */
432 if (tgt == NULL)
433 error ("Could find run target to save before following exec");
434
435 gdb_flush (gdb_stdout);
436 target_mourn_inferior ();
437 inferior_ptid = pid_to_ptid (saved_pid);
438 /* Because mourn_inferior resets inferior_ptid. */
439 push_target (tgt);
440
441 /* That a.out is now the one to use. */
442 exec_file_attach (execd_pathname, 0);
443
444 /* And also is where symbols can be found. */
445 symbol_file_add_main (execd_pathname, 0);
446
447 /* Reset the shared library package. This ensures that we get
448 a shlib event when the child reaches "_start", at which point
449 the dld will have had a chance to initialize the child. */
450 #if defined(SOLIB_RESTART)
451 SOLIB_RESTART ();
452 #endif
453 #ifdef SOLIB_CREATE_INFERIOR_HOOK
454 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
455 #endif
456
457 /* Reinsert all breakpoints. (Those which were symbolic have
458 been reset to the proper address in the new a.out, thanks
459 to symbol_file_command...) */
460 insert_breakpoints ();
461
462 /* The next resume of this inferior should bring it to the shlib
463 startup breakpoints. (If the user had also set bp's on
464 "main" from the old (parent) process, then they'll auto-
465 matically get reset there in the new process.) */
466 }
467
468 /* Non-zero if we just simulating a single-step. This is needed
469 because we cannot remove the breakpoints in the inferior process
470 until after the `wait' in `wait_for_inferior'. */
471 static int singlestep_breakpoints_inserted_p = 0;
472
473 /* The thread we inserted single-step breakpoints for. */
474 static ptid_t singlestep_ptid;
475
476 /* If another thread hit the singlestep breakpoint, we save the original
477 thread here so that we can resume single-stepping it later. */
478 static ptid_t saved_singlestep_ptid;
479 static int stepping_past_singlestep_breakpoint;
480 \f
481
482 /* Things to clean up if we QUIT out of resume (). */
483 static void
484 resume_cleanups (void *ignore)
485 {
486 normal_stop ();
487 }
488
489 static const char schedlock_off[] = "off";
490 static const char schedlock_on[] = "on";
491 static const char schedlock_step[] = "step";
492 static const char *scheduler_mode = schedlock_off;
493 static const char *scheduler_enums[] = {
494 schedlock_off,
495 schedlock_on,
496 schedlock_step,
497 NULL
498 };
499
500 static void
501 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
502 {
503 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
504 the set command passed as a parameter. The clone operation will
505 include (BUG?) any ``set'' command callback, if present.
506 Commands like ``info set'' call all the ``show'' command
507 callbacks. Unfortunately, for ``show'' commands cloned from
508 ``set'', this includes callbacks belonging to ``set'' commands.
509 Making this worse, this only occures if add_show_from_set() is
510 called after add_cmd_sfunc() (BUG?). */
511 if (cmd_type (c) == set_cmd)
512 if (!target_can_lock_scheduler)
513 {
514 scheduler_mode = schedlock_off;
515 error ("Target '%s' cannot support this command.", target_shortname);
516 }
517 }
518
519
520 /* Resume the inferior, but allow a QUIT. This is useful if the user
521 wants to interrupt some lengthy single-stepping operation
522 (for child processes, the SIGINT goes to the inferior, and so
523 we get a SIGINT random_signal, but for remote debugging and perhaps
524 other targets, that's not true).
525
526 STEP nonzero if we should step (zero to continue instead).
527 SIG is the signal to give the inferior (zero for none). */
528 void
529 resume (int step, enum target_signal sig)
530 {
531 int should_resume = 1;
532 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
533 QUIT;
534
535 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
536
537
538 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
539 over an instruction that causes a page fault without triggering
540 a hardware watchpoint. The kernel properly notices that it shouldn't
541 stop, because the hardware watchpoint is not triggered, but it forgets
542 the step request and continues the program normally.
543 Work around the problem by removing hardware watchpoints if a step is
544 requested, GDB will check for a hardware watchpoint trigger after the
545 step anyway. */
546 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
547 remove_hw_watchpoints ();
548
549
550 /* Normally, by the time we reach `resume', the breakpoints are either
551 removed or inserted, as appropriate. The exception is if we're sitting
552 at a permanent breakpoint; we need to step over it, but permanent
553 breakpoints can't be removed. So we have to test for it here. */
554 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
555 SKIP_PERMANENT_BREAKPOINT ();
556
557 if (SOFTWARE_SINGLE_STEP_P () && step)
558 {
559 /* Do it the hard way, w/temp breakpoints */
560 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
561 /* ...and don't ask hardware to do it. */
562 step = 0;
563 /* and do not pull these breakpoints until after a `wait' in
564 `wait_for_inferior' */
565 singlestep_breakpoints_inserted_p = 1;
566 singlestep_ptid = inferior_ptid;
567 }
568
569 /* If there were any forks/vforks/execs that were caught and are
570 now to be followed, then do so. */
571 switch (pending_follow.kind)
572 {
573 case TARGET_WAITKIND_FORKED:
574 case TARGET_WAITKIND_VFORKED:
575 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
576 if (follow_fork ())
577 should_resume = 0;
578 break;
579
580 case TARGET_WAITKIND_EXECD:
581 /* follow_exec is called as soon as the exec event is seen. */
582 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
583 break;
584
585 default:
586 break;
587 }
588
589 /* Install inferior's terminal modes. */
590 target_terminal_inferior ();
591
592 if (should_resume)
593 {
594 ptid_t resume_ptid;
595
596 resume_ptid = RESUME_ALL; /* Default */
597
598 if ((step || singlestep_breakpoints_inserted_p) &&
599 (stepping_past_singlestep_breakpoint
600 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
601 {
602 /* Stepping past a breakpoint without inserting breakpoints.
603 Make sure only the current thread gets to step, so that
604 other threads don't sneak past breakpoints while they are
605 not inserted. */
606
607 resume_ptid = inferior_ptid;
608 }
609
610 if ((scheduler_mode == schedlock_on) ||
611 (scheduler_mode == schedlock_step &&
612 (step || singlestep_breakpoints_inserted_p)))
613 {
614 /* User-settable 'scheduler' mode requires solo thread resume. */
615 resume_ptid = inferior_ptid;
616 }
617
618 if (CANNOT_STEP_BREAKPOINT)
619 {
620 /* Most targets can step a breakpoint instruction, thus
621 executing it normally. But if this one cannot, just
622 continue and we will hit it anyway. */
623 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
624 step = 0;
625 }
626 target_resume (resume_ptid, step, sig);
627 }
628
629 discard_cleanups (old_cleanups);
630 }
631 \f
632
633 /* Clear out all variables saying what to do when inferior is continued.
634 First do this, then set the ones you want, then call `proceed'. */
635
636 void
637 clear_proceed_status (void)
638 {
639 trap_expected = 0;
640 step_range_start = 0;
641 step_range_end = 0;
642 step_frame_id = null_frame_id;
643 step_over_calls = STEP_OVER_UNDEBUGGABLE;
644 stop_after_trap = 0;
645 stop_soon = NO_STOP_QUIETLY;
646 proceed_to_finish = 0;
647 breakpoint_proceeded = 1; /* We're about to proceed... */
648
649 /* Discard any remaining commands or status from previous stop. */
650 bpstat_clear (&stop_bpstat);
651 }
652
653 /* This should be suitable for any targets that support threads. */
654
655 static int
656 prepare_to_proceed (void)
657 {
658 ptid_t wait_ptid;
659 struct target_waitstatus wait_status;
660
661 /* Get the last target status returned by target_wait(). */
662 get_last_target_status (&wait_ptid, &wait_status);
663
664 /* Make sure we were stopped either at a breakpoint, or because
665 of a Ctrl-C. */
666 if (wait_status.kind != TARGET_WAITKIND_STOPPED
667 || (wait_status.value.sig != TARGET_SIGNAL_TRAP &&
668 wait_status.value.sig != TARGET_SIGNAL_INT))
669 {
670 return 0;
671 }
672
673 if (!ptid_equal (wait_ptid, minus_one_ptid)
674 && !ptid_equal (inferior_ptid, wait_ptid))
675 {
676 /* Switched over from WAIT_PID. */
677 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
678
679 if (wait_pc != read_pc ())
680 {
681 /* Switch back to WAIT_PID thread. */
682 inferior_ptid = wait_ptid;
683
684 /* FIXME: This stuff came from switch_to_thread() in
685 thread.c (which should probably be a public function). */
686 flush_cached_frames ();
687 registers_changed ();
688 stop_pc = wait_pc;
689 select_frame (get_current_frame ());
690 }
691
692 /* We return 1 to indicate that there is a breakpoint here,
693 so we need to step over it before continuing to avoid
694 hitting it straight away. */
695 if (breakpoint_here_p (wait_pc))
696 return 1;
697 }
698
699 return 0;
700
701 }
702
703 /* Record the pc of the program the last time it stopped. This is
704 just used internally by wait_for_inferior, but need to be preserved
705 over calls to it and cleared when the inferior is started. */
706 static CORE_ADDR prev_pc;
707
708 /* Basic routine for continuing the program in various fashions.
709
710 ADDR is the address to resume at, or -1 for resume where stopped.
711 SIGGNAL is the signal to give it, or 0 for none,
712 or -1 for act according to how it stopped.
713 STEP is nonzero if should trap after one instruction.
714 -1 means return after that and print nothing.
715 You should probably set various step_... variables
716 before calling here, if you are stepping.
717
718 You should call clear_proceed_status before calling proceed. */
719
720 void
721 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
722 {
723 int oneproc = 0;
724
725 if (step > 0)
726 step_start_function = find_pc_function (read_pc ());
727 if (step < 0)
728 stop_after_trap = 1;
729
730 if (addr == (CORE_ADDR) -1)
731 {
732 /* If there is a breakpoint at the address we will resume at,
733 step one instruction before inserting breakpoints
734 so that we do not stop right away (and report a second
735 hit at this breakpoint). */
736
737 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
738 oneproc = 1;
739
740 #ifndef STEP_SKIPS_DELAY
741 #define STEP_SKIPS_DELAY(pc) (0)
742 #define STEP_SKIPS_DELAY_P (0)
743 #endif
744 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
745 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
746 is slow (it needs to read memory from the target). */
747 if (STEP_SKIPS_DELAY_P
748 && breakpoint_here_p (read_pc () + 4)
749 && STEP_SKIPS_DELAY (read_pc ()))
750 oneproc = 1;
751 }
752 else
753 {
754 write_pc (addr);
755 }
756
757 /* In a multi-threaded task we may select another thread
758 and then continue or step.
759
760 But if the old thread was stopped at a breakpoint, it
761 will immediately cause another breakpoint stop without
762 any execution (i.e. it will report a breakpoint hit
763 incorrectly). So we must step over it first.
764
765 prepare_to_proceed checks the current thread against the thread
766 that reported the most recent event. If a step-over is required
767 it returns TRUE and sets the current thread to the old thread. */
768 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
769 oneproc = 1;
770
771 #ifdef HP_OS_BUG
772 if (trap_expected_after_continue)
773 {
774 /* If (step == 0), a trap will be automatically generated after
775 the first instruction is executed. Force step one
776 instruction to clear this condition. This should not occur
777 if step is nonzero, but it is harmless in that case. */
778 oneproc = 1;
779 trap_expected_after_continue = 0;
780 }
781 #endif /* HP_OS_BUG */
782
783 if (oneproc)
784 /* We will get a trace trap after one instruction.
785 Continue it automatically and insert breakpoints then. */
786 trap_expected = 1;
787 else
788 {
789 insert_breakpoints ();
790 /* If we get here there was no call to error() in
791 insert breakpoints -- so they were inserted. */
792 breakpoints_inserted = 1;
793 }
794
795 if (siggnal != TARGET_SIGNAL_DEFAULT)
796 stop_signal = siggnal;
797 /* If this signal should not be seen by program,
798 give it zero. Used for debugging signals. */
799 else if (!signal_program[stop_signal])
800 stop_signal = TARGET_SIGNAL_0;
801
802 annotate_starting ();
803
804 /* Make sure that output from GDB appears before output from the
805 inferior. */
806 gdb_flush (gdb_stdout);
807
808 /* Refresh prev_pc value just prior to resuming. This used to be
809 done in stop_stepping, however, setting prev_pc there did not handle
810 scenarios such as inferior function calls or returning from
811 a function via the return command. In those cases, the prev_pc
812 value was not set properly for subsequent commands. The prev_pc value
813 is used to initialize the starting line number in the ecs. With an
814 invalid value, the gdb next command ends up stopping at the position
815 represented by the next line table entry past our start position.
816 On platforms that generate one line table entry per line, this
817 is not a problem. However, on the ia64, the compiler generates
818 extraneous line table entries that do not increase the line number.
819 When we issue the gdb next command on the ia64 after an inferior call
820 or a return command, we often end up a few instructions forward, still
821 within the original line we started.
822
823 An attempt was made to have init_execution_control_state () refresh
824 the prev_pc value before calculating the line number. This approach
825 did not work because on platforms that use ptrace, the pc register
826 cannot be read unless the inferior is stopped. At that point, we
827 are not guaranteed the inferior is stopped and so the read_pc ()
828 call can fail. Setting the prev_pc value here ensures the value is
829 updated correctly when the inferior is stopped. */
830 prev_pc = read_pc ();
831
832 /* Resume inferior. */
833 resume (oneproc || step || bpstat_should_step (), stop_signal);
834
835 /* Wait for it to stop (if not standalone)
836 and in any case decode why it stopped, and act accordingly. */
837 /* Do this only if we are not using the event loop, or if the target
838 does not support asynchronous execution. */
839 if (!event_loop_p || !target_can_async_p ())
840 {
841 wait_for_inferior ();
842 normal_stop ();
843 }
844 }
845 \f
846
847 /* Start remote-debugging of a machine over a serial link. */
848
849 void
850 start_remote (void)
851 {
852 init_thread_list ();
853 init_wait_for_inferior ();
854 stop_soon = STOP_QUIETLY;
855 trap_expected = 0;
856
857 /* Always go on waiting for the target, regardless of the mode. */
858 /* FIXME: cagney/1999-09-23: At present it isn't possible to
859 indicate to wait_for_inferior that a target should timeout if
860 nothing is returned (instead of just blocking). Because of this,
861 targets expecting an immediate response need to, internally, set
862 things up so that the target_wait() is forced to eventually
863 timeout. */
864 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
865 differentiate to its caller what the state of the target is after
866 the initial open has been performed. Here we're assuming that
867 the target has stopped. It should be possible to eventually have
868 target_open() return to the caller an indication that the target
869 is currently running and GDB state should be set to the same as
870 for an async run. */
871 wait_for_inferior ();
872 normal_stop ();
873 }
874
875 /* Initialize static vars when a new inferior begins. */
876
877 void
878 init_wait_for_inferior (void)
879 {
880 /* These are meaningless until the first time through wait_for_inferior. */
881 prev_pc = 0;
882
883 #ifdef HP_OS_BUG
884 trap_expected_after_continue = 0;
885 #endif
886 breakpoints_inserted = 0;
887 breakpoint_init_inferior (inf_starting);
888
889 /* Don't confuse first call to proceed(). */
890 stop_signal = TARGET_SIGNAL_0;
891
892 /* The first resume is not following a fork/vfork/exec. */
893 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
894
895 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
896 number_of_threads_in_syscalls = 0;
897
898 clear_proceed_status ();
899
900 stepping_past_singlestep_breakpoint = 0;
901 }
902 \f
903 /* This enum encodes possible reasons for doing a target_wait, so that
904 wfi can call target_wait in one place. (Ultimately the call will be
905 moved out of the infinite loop entirely.) */
906
907 enum infwait_states
908 {
909 infwait_normal_state,
910 infwait_thread_hop_state,
911 infwait_nullified_state,
912 infwait_nonstep_watch_state
913 };
914
915 /* Why did the inferior stop? Used to print the appropriate messages
916 to the interface from within handle_inferior_event(). */
917 enum inferior_stop_reason
918 {
919 /* We don't know why. */
920 STOP_UNKNOWN,
921 /* Step, next, nexti, stepi finished. */
922 END_STEPPING_RANGE,
923 /* Found breakpoint. */
924 BREAKPOINT_HIT,
925 /* Inferior terminated by signal. */
926 SIGNAL_EXITED,
927 /* Inferior exited. */
928 EXITED,
929 /* Inferior received signal, and user asked to be notified. */
930 SIGNAL_RECEIVED
931 };
932
933 /* This structure contains what used to be local variables in
934 wait_for_inferior. Probably many of them can return to being
935 locals in handle_inferior_event. */
936
937 struct execution_control_state
938 {
939 struct target_waitstatus ws;
940 struct target_waitstatus *wp;
941 int another_trap;
942 int random_signal;
943 CORE_ADDR stop_func_start;
944 CORE_ADDR stop_func_end;
945 char *stop_func_name;
946 struct symtab_and_line sal;
947 int remove_breakpoints_on_following_step;
948 int current_line;
949 struct symtab *current_symtab;
950 int handling_longjmp; /* FIXME */
951 ptid_t ptid;
952 ptid_t saved_inferior_ptid;
953 int stepping_through_solib_after_catch;
954 bpstat stepping_through_solib_catchpoints;
955 int enable_hw_watchpoints_after_wait;
956 int stepping_through_sigtramp;
957 int new_thread_event;
958 struct target_waitstatus tmpstatus;
959 enum infwait_states infwait_state;
960 ptid_t waiton_ptid;
961 int wait_some_more;
962 };
963
964 void init_execution_control_state (struct execution_control_state *ecs);
965
966 static void handle_step_into_function (struct execution_control_state *ecs);
967 void handle_inferior_event (struct execution_control_state *ecs);
968
969 static void step_into_function (struct execution_control_state *ecs);
970 static void insert_step_resume_breakpoint (struct frame_info *step_frame,
971 struct execution_control_state *ecs);
972 static void stop_stepping (struct execution_control_state *ecs);
973 static void prepare_to_wait (struct execution_control_state *ecs);
974 static void keep_going (struct execution_control_state *ecs);
975 static void print_stop_reason (enum inferior_stop_reason stop_reason,
976 int stop_info);
977
978 /* Wait for control to return from inferior to debugger.
979 If inferior gets a signal, we may decide to start it up again
980 instead of returning. That is why there is a loop in this function.
981 When this function actually returns it means the inferior
982 should be left stopped and GDB should read more commands. */
983
984 void
985 wait_for_inferior (void)
986 {
987 struct cleanup *old_cleanups;
988 struct execution_control_state ecss;
989 struct execution_control_state *ecs;
990
991 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
992 &step_resume_breakpoint);
993
994 /* wfi still stays in a loop, so it's OK just to take the address of
995 a local to get the ecs pointer. */
996 ecs = &ecss;
997
998 /* Fill in with reasonable starting values. */
999 init_execution_control_state (ecs);
1000
1001 /* We'll update this if & when we switch to a new thread. */
1002 previous_inferior_ptid = inferior_ptid;
1003
1004 overlay_cache_invalid = 1;
1005
1006 /* We have to invalidate the registers BEFORE calling target_wait
1007 because they can be loaded from the target while in target_wait.
1008 This makes remote debugging a bit more efficient for those
1009 targets that provide critical registers as part of their normal
1010 status mechanism. */
1011
1012 registers_changed ();
1013
1014 while (1)
1015 {
1016 if (deprecated_target_wait_hook)
1017 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
1018 else
1019 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1020
1021 /* Now figure out what to do with the result of the result. */
1022 handle_inferior_event (ecs);
1023
1024 if (!ecs->wait_some_more)
1025 break;
1026 }
1027 do_cleanups (old_cleanups);
1028 }
1029
1030 /* Asynchronous version of wait_for_inferior. It is called by the
1031 event loop whenever a change of state is detected on the file
1032 descriptor corresponding to the target. It can be called more than
1033 once to complete a single execution command. In such cases we need
1034 to keep the state in a global variable ASYNC_ECSS. If it is the
1035 last time that this function is called for a single execution
1036 command, then report to the user that the inferior has stopped, and
1037 do the necessary cleanups. */
1038
1039 struct execution_control_state async_ecss;
1040 struct execution_control_state *async_ecs;
1041
1042 void
1043 fetch_inferior_event (void *client_data)
1044 {
1045 static struct cleanup *old_cleanups;
1046
1047 async_ecs = &async_ecss;
1048
1049 if (!async_ecs->wait_some_more)
1050 {
1051 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1052 &step_resume_breakpoint);
1053
1054 /* Fill in with reasonable starting values. */
1055 init_execution_control_state (async_ecs);
1056
1057 /* We'll update this if & when we switch to a new thread. */
1058 previous_inferior_ptid = inferior_ptid;
1059
1060 overlay_cache_invalid = 1;
1061
1062 /* We have to invalidate the registers BEFORE calling target_wait
1063 because they can be loaded from the target while in target_wait.
1064 This makes remote debugging a bit more efficient for those
1065 targets that provide critical registers as part of their normal
1066 status mechanism. */
1067
1068 registers_changed ();
1069 }
1070
1071 if (deprecated_target_wait_hook)
1072 async_ecs->ptid =
1073 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1074 else
1075 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1076
1077 /* Now figure out what to do with the result of the result. */
1078 handle_inferior_event (async_ecs);
1079
1080 if (!async_ecs->wait_some_more)
1081 {
1082 /* Do only the cleanups that have been added by this
1083 function. Let the continuations for the commands do the rest,
1084 if there are any. */
1085 do_exec_cleanups (old_cleanups);
1086 normal_stop ();
1087 if (step_multi && stop_step)
1088 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1089 else
1090 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1091 }
1092 }
1093
1094 /* Prepare an execution control state for looping through a
1095 wait_for_inferior-type loop. */
1096
1097 void
1098 init_execution_control_state (struct execution_control_state *ecs)
1099 {
1100 /* ecs->another_trap? */
1101 ecs->random_signal = 0;
1102 ecs->remove_breakpoints_on_following_step = 0;
1103 ecs->handling_longjmp = 0; /* FIXME */
1104 ecs->stepping_through_solib_after_catch = 0;
1105 ecs->stepping_through_solib_catchpoints = NULL;
1106 ecs->enable_hw_watchpoints_after_wait = 0;
1107 ecs->stepping_through_sigtramp = 0;
1108 ecs->sal = find_pc_line (prev_pc, 0);
1109 ecs->current_line = ecs->sal.line;
1110 ecs->current_symtab = ecs->sal.symtab;
1111 ecs->infwait_state = infwait_normal_state;
1112 ecs->waiton_ptid = pid_to_ptid (-1);
1113 ecs->wp = &(ecs->ws);
1114 }
1115
1116 /* Call this function before setting step_resume_breakpoint, as a
1117 sanity check. There should never be more than one step-resume
1118 breakpoint per thread, so we should never be setting a new
1119 step_resume_breakpoint when one is already active. */
1120 static void
1121 check_for_old_step_resume_breakpoint (void)
1122 {
1123 if (step_resume_breakpoint)
1124 warning
1125 ("GDB bug: infrun.c (wait_for_inferior): dropping old step_resume breakpoint");
1126 }
1127
1128 /* Return the cached copy of the last pid/waitstatus returned by
1129 target_wait()/deprecated_target_wait_hook(). The data is actually
1130 cached by handle_inferior_event(), which gets called immediately
1131 after target_wait()/deprecated_target_wait_hook(). */
1132
1133 void
1134 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1135 {
1136 *ptidp = target_last_wait_ptid;
1137 *status = target_last_waitstatus;
1138 }
1139
1140 /* Switch thread contexts, maintaining "infrun state". */
1141
1142 static void
1143 context_switch (struct execution_control_state *ecs)
1144 {
1145 /* Caution: it may happen that the new thread (or the old one!)
1146 is not in the thread list. In this case we must not attempt
1147 to "switch context", or we run the risk that our context may
1148 be lost. This may happen as a result of the target module
1149 mishandling thread creation. */
1150
1151 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1152 { /* Perform infrun state context switch: */
1153 /* Save infrun state for the old thread. */
1154 save_infrun_state (inferior_ptid, prev_pc,
1155 trap_expected, step_resume_breakpoint,
1156 step_range_start,
1157 step_range_end, &step_frame_id,
1158 ecs->handling_longjmp, ecs->another_trap,
1159 ecs->stepping_through_solib_after_catch,
1160 ecs->stepping_through_solib_catchpoints,
1161 ecs->stepping_through_sigtramp,
1162 ecs->current_line, ecs->current_symtab);
1163
1164 /* Load infrun state for the new thread. */
1165 load_infrun_state (ecs->ptid, &prev_pc,
1166 &trap_expected, &step_resume_breakpoint,
1167 &step_range_start,
1168 &step_range_end, &step_frame_id,
1169 &ecs->handling_longjmp, &ecs->another_trap,
1170 &ecs->stepping_through_solib_after_catch,
1171 &ecs->stepping_through_solib_catchpoints,
1172 &ecs->stepping_through_sigtramp,
1173 &ecs->current_line, &ecs->current_symtab);
1174 }
1175 inferior_ptid = ecs->ptid;
1176 }
1177
1178 /* Handle the inferior event in the cases when we just stepped
1179 into a function. */
1180
1181 static void
1182 handle_step_into_function (struct execution_control_state *ecs)
1183 {
1184 CORE_ADDR real_stop_pc;
1185
1186 if ((step_over_calls == STEP_OVER_NONE)
1187 || ((step_range_end == 1)
1188 && in_prologue (prev_pc, ecs->stop_func_start)))
1189 {
1190 /* I presume that step_over_calls is only 0 when we're
1191 supposed to be stepping at the assembly language level
1192 ("stepi"). Just stop. */
1193 /* Also, maybe we just did a "nexti" inside a prolog,
1194 so we thought it was a subroutine call but it was not.
1195 Stop as well. FENN */
1196 stop_step = 1;
1197 print_stop_reason (END_STEPPING_RANGE, 0);
1198 stop_stepping (ecs);
1199 return;
1200 }
1201
1202 if (step_over_calls == STEP_OVER_ALL || IGNORE_HELPER_CALL (stop_pc))
1203 {
1204 /* We're doing a "next", set a breakpoint at callee's return
1205 address (the address at which the caller will resume). */
1206 insert_step_resume_breakpoint (get_prev_frame (get_current_frame ()),
1207 ecs);
1208 keep_going (ecs);
1209 return;
1210 }
1211
1212 /* If we are in a function call trampoline (a stub between
1213 the calling routine and the real function), locate the real
1214 function. That's what tells us (a) whether we want to step
1215 into it at all, and (b) what prologue we want to run to
1216 the end of, if we do step into it. */
1217 real_stop_pc = skip_language_trampoline (stop_pc);
1218 if (real_stop_pc == 0)
1219 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
1220 if (real_stop_pc != 0)
1221 ecs->stop_func_start = real_stop_pc;
1222
1223 /* If we have line number information for the function we
1224 are thinking of stepping into, step into it.
1225
1226 If there are several symtabs at that PC (e.g. with include
1227 files), just want to know whether *any* of them have line
1228 numbers. find_pc_line handles this. */
1229 {
1230 struct symtab_and_line tmp_sal;
1231
1232 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
1233 if (tmp_sal.line != 0)
1234 {
1235 step_into_function (ecs);
1236 return;
1237 }
1238 }
1239
1240 /* If we have no line number and the step-stop-if-no-debug
1241 is set, we stop the step so that the user has a chance to
1242 switch in assembly mode. */
1243 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
1244 {
1245 stop_step = 1;
1246 print_stop_reason (END_STEPPING_RANGE, 0);
1247 stop_stepping (ecs);
1248 return;
1249 }
1250
1251 /* Set a breakpoint at callee's return address (the address at which
1252 the caller will resume). */
1253 insert_step_resume_breakpoint (get_prev_frame (get_current_frame ()), ecs);
1254 keep_going (ecs);
1255 return;
1256 }
1257
1258 static void
1259 adjust_pc_after_break (struct execution_control_state *ecs)
1260 {
1261 CORE_ADDR breakpoint_pc;
1262
1263 /* If this target does not decrement the PC after breakpoints, then
1264 we have nothing to do. */
1265 if (DECR_PC_AFTER_BREAK == 0)
1266 return;
1267
1268 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1269 we aren't, just return.
1270
1271 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1272 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1273 by software breakpoints should be handled through the normal breakpoint
1274 layer.
1275
1276 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1277 different signals (SIGILL or SIGEMT for instance), but it is less
1278 clear where the PC is pointing afterwards. It may not match
1279 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1280 these signals at breakpoints (the code has been in GDB since at least
1281 1992) so I can not guess how to handle them here.
1282
1283 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1284 would have the PC after hitting a watchpoint affected by
1285 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1286 in GDB history, and it seems unlikely to be correct, so
1287 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1288
1289 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1290 return;
1291
1292 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1293 return;
1294
1295 /* Find the location where (if we've hit a breakpoint) the
1296 breakpoint would be. */
1297 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1298
1299 if (SOFTWARE_SINGLE_STEP_P ())
1300 {
1301 /* When using software single-step, a SIGTRAP can only indicate
1302 an inserted breakpoint. This actually makes things
1303 easier. */
1304 if (singlestep_breakpoints_inserted_p)
1305 /* When software single stepping, the instruction at [prev_pc]
1306 is never a breakpoint, but the instruction following
1307 [prev_pc] (in program execution order) always is. Assume
1308 that following instruction was reached and hence a software
1309 breakpoint was hit. */
1310 write_pc_pid (breakpoint_pc, ecs->ptid);
1311 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1312 /* The inferior was free running (i.e., no single-step
1313 breakpoints inserted) and it hit a software breakpoint. */
1314 write_pc_pid (breakpoint_pc, ecs->ptid);
1315 }
1316 else
1317 {
1318 /* When using hardware single-step, a SIGTRAP is reported for
1319 both a completed single-step and a software breakpoint. Need
1320 to differentiate between the two as the latter needs
1321 adjusting but the former does not. */
1322 if (currently_stepping (ecs))
1323 {
1324 if (prev_pc == breakpoint_pc
1325 && software_breakpoint_inserted_here_p (breakpoint_pc))
1326 /* Hardware single-stepped a software breakpoint (as
1327 occures when the inferior is resumed with PC pointing
1328 at not-yet-hit software breakpoint). Since the
1329 breakpoint really is executed, the inferior needs to be
1330 backed up to the breakpoint address. */
1331 write_pc_pid (breakpoint_pc, ecs->ptid);
1332 }
1333 else
1334 {
1335 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1336 /* The inferior was free running (i.e., no hardware
1337 single-step and no possibility of a false SIGTRAP) and
1338 hit a software breakpoint. */
1339 write_pc_pid (breakpoint_pc, ecs->ptid);
1340 }
1341 }
1342 }
1343
1344 /* Given an execution control state that has been freshly filled in
1345 by an event from the inferior, figure out what it means and take
1346 appropriate action. */
1347
1348 int stepped_after_stopped_by_watchpoint;
1349
1350 void
1351 handle_inferior_event (struct execution_control_state *ecs)
1352 {
1353 /* NOTE: cagney/2003-03-28: If you're looking at this code and
1354 thinking that the variable stepped_after_stopped_by_watchpoint
1355 isn't used, then you're wrong! The macro STOPPED_BY_WATCHPOINT,
1356 defined in the file "config/pa/nm-hppah.h", accesses the variable
1357 indirectly. Mutter something rude about the HP merge. */
1358 int sw_single_step_trap_p = 0;
1359 int stopped_by_watchpoint = 0;
1360
1361 /* Cache the last pid/waitstatus. */
1362 target_last_wait_ptid = ecs->ptid;
1363 target_last_waitstatus = *ecs->wp;
1364
1365 adjust_pc_after_break (ecs);
1366
1367 switch (ecs->infwait_state)
1368 {
1369 case infwait_thread_hop_state:
1370 /* Cancel the waiton_ptid. */
1371 ecs->waiton_ptid = pid_to_ptid (-1);
1372 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1373 is serviced in this loop, below. */
1374 if (ecs->enable_hw_watchpoints_after_wait)
1375 {
1376 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1377 ecs->enable_hw_watchpoints_after_wait = 0;
1378 }
1379 stepped_after_stopped_by_watchpoint = 0;
1380 break;
1381
1382 case infwait_normal_state:
1383 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1384 is serviced in this loop, below. */
1385 if (ecs->enable_hw_watchpoints_after_wait)
1386 {
1387 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1388 ecs->enable_hw_watchpoints_after_wait = 0;
1389 }
1390 stepped_after_stopped_by_watchpoint = 0;
1391 break;
1392
1393 case infwait_nullified_state:
1394 stepped_after_stopped_by_watchpoint = 0;
1395 break;
1396
1397 case infwait_nonstep_watch_state:
1398 insert_breakpoints ();
1399
1400 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1401 handle things like signals arriving and other things happening
1402 in combination correctly? */
1403 stepped_after_stopped_by_watchpoint = 1;
1404 break;
1405
1406 default:
1407 internal_error (__FILE__, __LINE__, "bad switch");
1408 }
1409 ecs->infwait_state = infwait_normal_state;
1410
1411 flush_cached_frames ();
1412
1413 /* If it's a new process, add it to the thread database */
1414
1415 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1416 && !in_thread_list (ecs->ptid));
1417
1418 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1419 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1420 {
1421 add_thread (ecs->ptid);
1422
1423 ui_out_text (uiout, "[New ");
1424 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1425 ui_out_text (uiout, "]\n");
1426
1427 #if 0
1428 /* NOTE: This block is ONLY meant to be invoked in case of a
1429 "thread creation event"! If it is invoked for any other
1430 sort of event (such as a new thread landing on a breakpoint),
1431 the event will be discarded, which is almost certainly
1432 a bad thing!
1433
1434 To avoid this, the low-level module (eg. target_wait)
1435 should call in_thread_list and add_thread, so that the
1436 new thread is known by the time we get here. */
1437
1438 /* We may want to consider not doing a resume here in order
1439 to give the user a chance to play with the new thread.
1440 It might be good to make that a user-settable option. */
1441
1442 /* At this point, all threads are stopped (happens
1443 automatically in either the OS or the native code).
1444 Therefore we need to continue all threads in order to
1445 make progress. */
1446
1447 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1448 prepare_to_wait (ecs);
1449 return;
1450 #endif
1451 }
1452
1453 switch (ecs->ws.kind)
1454 {
1455 case TARGET_WAITKIND_LOADED:
1456 /* Ignore gracefully during startup of the inferior, as it
1457 might be the shell which has just loaded some objects,
1458 otherwise add the symbols for the newly loaded objects. */
1459 #ifdef SOLIB_ADD
1460 if (stop_soon == NO_STOP_QUIETLY)
1461 {
1462 /* Remove breakpoints, SOLIB_ADD might adjust
1463 breakpoint addresses via breakpoint_re_set. */
1464 if (breakpoints_inserted)
1465 remove_breakpoints ();
1466
1467 /* Check for any newly added shared libraries if we're
1468 supposed to be adding them automatically. Switch
1469 terminal for any messages produced by
1470 breakpoint_re_set. */
1471 target_terminal_ours_for_output ();
1472 /* NOTE: cagney/2003-11-25: Make certain that the target
1473 stack's section table is kept up-to-date. Architectures,
1474 (e.g., PPC64), use the section table to perform
1475 operations such as address => section name and hence
1476 require the table to contain all sections (including
1477 those found in shared libraries). */
1478 /* NOTE: cagney/2003-11-25: Pass current_target and not
1479 exec_ops to SOLIB_ADD. This is because current GDB is
1480 only tooled to propagate section_table changes out from
1481 the "current_target" (see target_resize_to_sections), and
1482 not up from the exec stratum. This, of course, isn't
1483 right. "infrun.c" should only interact with the
1484 exec/process stratum, instead relying on the target stack
1485 to propagate relevant changes (stop, section table
1486 changed, ...) up to other layers. */
1487 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1488 target_terminal_inferior ();
1489
1490 /* Reinsert breakpoints and continue. */
1491 if (breakpoints_inserted)
1492 insert_breakpoints ();
1493 }
1494 #endif
1495 resume (0, TARGET_SIGNAL_0);
1496 prepare_to_wait (ecs);
1497 return;
1498
1499 case TARGET_WAITKIND_SPURIOUS:
1500 resume (0, TARGET_SIGNAL_0);
1501 prepare_to_wait (ecs);
1502 return;
1503
1504 case TARGET_WAITKIND_EXITED:
1505 target_terminal_ours (); /* Must do this before mourn anyway */
1506 print_stop_reason (EXITED, ecs->ws.value.integer);
1507
1508 /* Record the exit code in the convenience variable $_exitcode, so
1509 that the user can inspect this again later. */
1510 set_internalvar (lookup_internalvar ("_exitcode"),
1511 value_from_longest (builtin_type_int,
1512 (LONGEST) ecs->ws.value.integer));
1513 gdb_flush (gdb_stdout);
1514 target_mourn_inferior ();
1515 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1516 stop_print_frame = 0;
1517 stop_stepping (ecs);
1518 return;
1519
1520 case TARGET_WAITKIND_SIGNALLED:
1521 stop_print_frame = 0;
1522 stop_signal = ecs->ws.value.sig;
1523 target_terminal_ours (); /* Must do this before mourn anyway */
1524
1525 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1526 reach here unless the inferior is dead. However, for years
1527 target_kill() was called here, which hints that fatal signals aren't
1528 really fatal on some systems. If that's true, then some changes
1529 may be needed. */
1530 target_mourn_inferior ();
1531
1532 print_stop_reason (SIGNAL_EXITED, stop_signal);
1533 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1534 stop_stepping (ecs);
1535 return;
1536
1537 /* The following are the only cases in which we keep going;
1538 the above cases end in a continue or goto. */
1539 case TARGET_WAITKIND_FORKED:
1540 case TARGET_WAITKIND_VFORKED:
1541 stop_signal = TARGET_SIGNAL_TRAP;
1542 pending_follow.kind = ecs->ws.kind;
1543
1544 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1545 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1546
1547 stop_pc = read_pc ();
1548
1549 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1550
1551 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1552
1553 /* If no catchpoint triggered for this, then keep going. */
1554 if (ecs->random_signal)
1555 {
1556 stop_signal = TARGET_SIGNAL_0;
1557 keep_going (ecs);
1558 return;
1559 }
1560 goto process_event_stop_test;
1561
1562 case TARGET_WAITKIND_EXECD:
1563 stop_signal = TARGET_SIGNAL_TRAP;
1564
1565 /* NOTE drow/2002-12-05: This code should be pushed down into the
1566 target_wait function. Until then following vfork on HP/UX 10.20
1567 is probably broken by this. Of course, it's broken anyway. */
1568 /* Is this a target which reports multiple exec events per actual
1569 call to exec()? (HP-UX using ptrace does, for example.) If so,
1570 ignore all but the last one. Just resume the exec'r, and wait
1571 for the next exec event. */
1572 if (inferior_ignoring_leading_exec_events)
1573 {
1574 inferior_ignoring_leading_exec_events--;
1575 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1576 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1577 parent_pid);
1578 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1579 prepare_to_wait (ecs);
1580 return;
1581 }
1582 inferior_ignoring_leading_exec_events =
1583 target_reported_exec_events_per_exec_call () - 1;
1584
1585 pending_follow.execd_pathname =
1586 savestring (ecs->ws.value.execd_pathname,
1587 strlen (ecs->ws.value.execd_pathname));
1588
1589 /* This causes the eventpoints and symbol table to be reset. Must
1590 do this now, before trying to determine whether to stop. */
1591 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1592 xfree (pending_follow.execd_pathname);
1593
1594 stop_pc = read_pc_pid (ecs->ptid);
1595 ecs->saved_inferior_ptid = inferior_ptid;
1596 inferior_ptid = ecs->ptid;
1597
1598 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1599
1600 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1601 inferior_ptid = ecs->saved_inferior_ptid;
1602
1603 /* If no catchpoint triggered for this, then keep going. */
1604 if (ecs->random_signal)
1605 {
1606 stop_signal = TARGET_SIGNAL_0;
1607 keep_going (ecs);
1608 return;
1609 }
1610 goto process_event_stop_test;
1611
1612 /* These syscall events are returned on HP-UX, as part of its
1613 implementation of page-protection-based "hardware" watchpoints.
1614 HP-UX has unfortunate interactions between page-protections and
1615 some system calls. Our solution is to disable hardware watches
1616 when a system call is entered, and reenable them when the syscall
1617 completes. The downside of this is that we may miss the precise
1618 point at which a watched piece of memory is modified. "Oh well."
1619
1620 Note that we may have multiple threads running, which may each
1621 enter syscalls at roughly the same time. Since we don't have a
1622 good notion currently of whether a watched piece of memory is
1623 thread-private, we'd best not have any page-protections active
1624 when any thread is in a syscall. Thus, we only want to reenable
1625 hardware watches when no threads are in a syscall.
1626
1627 Also, be careful not to try to gather much state about a thread
1628 that's in a syscall. It's frequently a losing proposition. */
1629 case TARGET_WAITKIND_SYSCALL_ENTRY:
1630 number_of_threads_in_syscalls++;
1631 if (number_of_threads_in_syscalls == 1)
1632 {
1633 TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1634 }
1635 resume (0, TARGET_SIGNAL_0);
1636 prepare_to_wait (ecs);
1637 return;
1638
1639 /* Before examining the threads further, step this thread to
1640 get it entirely out of the syscall. (We get notice of the
1641 event when the thread is just on the verge of exiting a
1642 syscall. Stepping one instruction seems to get it back
1643 into user code.)
1644
1645 Note that although the logical place to reenable h/w watches
1646 is here, we cannot. We cannot reenable them before stepping
1647 the thread (this causes the next wait on the thread to hang).
1648
1649 Nor can we enable them after stepping until we've done a wait.
1650 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
1651 here, which will be serviced immediately after the target
1652 is waited on. */
1653 case TARGET_WAITKIND_SYSCALL_RETURN:
1654 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1655
1656 if (number_of_threads_in_syscalls > 0)
1657 {
1658 number_of_threads_in_syscalls--;
1659 ecs->enable_hw_watchpoints_after_wait =
1660 (number_of_threads_in_syscalls == 0);
1661 }
1662 prepare_to_wait (ecs);
1663 return;
1664
1665 case TARGET_WAITKIND_STOPPED:
1666 stop_signal = ecs->ws.value.sig;
1667 break;
1668
1669 /* We had an event in the inferior, but we are not interested
1670 in handling it at this level. The lower layers have already
1671 done what needs to be done, if anything.
1672
1673 One of the possible circumstances for this is when the
1674 inferior produces output for the console. The inferior has
1675 not stopped, and we are ignoring the event. Another possible
1676 circumstance is any event which the lower level knows will be
1677 reported multiple times without an intervening resume. */
1678 case TARGET_WAITKIND_IGNORE:
1679 prepare_to_wait (ecs);
1680 return;
1681 }
1682
1683 /* We may want to consider not doing a resume here in order to give
1684 the user a chance to play with the new thread. It might be good
1685 to make that a user-settable option. */
1686
1687 /* At this point, all threads are stopped (happens automatically in
1688 either the OS or the native code). Therefore we need to continue
1689 all threads in order to make progress. */
1690 if (ecs->new_thread_event)
1691 {
1692 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1693 prepare_to_wait (ecs);
1694 return;
1695 }
1696
1697 stop_pc = read_pc_pid (ecs->ptid);
1698
1699 if (stepping_past_singlestep_breakpoint)
1700 {
1701 gdb_assert (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p);
1702 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1703 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1704
1705 stepping_past_singlestep_breakpoint = 0;
1706
1707 /* We've either finished single-stepping past the single-step
1708 breakpoint, or stopped for some other reason. It would be nice if
1709 we could tell, but we can't reliably. */
1710 if (stop_signal == TARGET_SIGNAL_TRAP)
1711 {
1712 /* Pull the single step breakpoints out of the target. */
1713 SOFTWARE_SINGLE_STEP (0, 0);
1714 singlestep_breakpoints_inserted_p = 0;
1715
1716 ecs->random_signal = 0;
1717
1718 ecs->ptid = saved_singlestep_ptid;
1719 context_switch (ecs);
1720 if (deprecated_context_hook)
1721 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1722
1723 resume (1, TARGET_SIGNAL_0);
1724 prepare_to_wait (ecs);
1725 return;
1726 }
1727 }
1728
1729 stepping_past_singlestep_breakpoint = 0;
1730
1731 /* See if a thread hit a thread-specific breakpoint that was meant for
1732 another thread. If so, then step that thread past the breakpoint,
1733 and continue it. */
1734
1735 if (stop_signal == TARGET_SIGNAL_TRAP)
1736 {
1737 int thread_hop_needed = 0;
1738
1739 /* Check if a regular breakpoint has been hit before checking
1740 for a potential single step breakpoint. Otherwise, GDB will
1741 not see this breakpoint hit when stepping onto breakpoints. */
1742 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1743 {
1744 ecs->random_signal = 0;
1745 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1746 thread_hop_needed = 1;
1747 }
1748 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1749 {
1750 ecs->random_signal = 0;
1751 /* The call to in_thread_list is necessary because PTIDs sometimes
1752 change when we go from single-threaded to multi-threaded. If
1753 the singlestep_ptid is still in the list, assume that it is
1754 really different from ecs->ptid. */
1755 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1756 && in_thread_list (singlestep_ptid))
1757 {
1758 thread_hop_needed = 1;
1759 stepping_past_singlestep_breakpoint = 1;
1760 saved_singlestep_ptid = singlestep_ptid;
1761 }
1762 }
1763
1764 if (thread_hop_needed)
1765 {
1766 int remove_status;
1767
1768 /* Saw a breakpoint, but it was hit by the wrong thread.
1769 Just continue. */
1770
1771 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1772 {
1773 /* Pull the single step breakpoints out of the target. */
1774 SOFTWARE_SINGLE_STEP (0, 0);
1775 singlestep_breakpoints_inserted_p = 0;
1776 }
1777
1778 remove_status = remove_breakpoints ();
1779 /* Did we fail to remove breakpoints? If so, try
1780 to set the PC past the bp. (There's at least
1781 one situation in which we can fail to remove
1782 the bp's: On HP-UX's that use ttrace, we can't
1783 change the address space of a vforking child
1784 process until the child exits (well, okay, not
1785 then either :-) or execs. */
1786 if (remove_status != 0)
1787 {
1788 /* FIXME! This is obviously non-portable! */
1789 write_pc_pid (stop_pc + 4, ecs->ptid);
1790 /* We need to restart all the threads now,
1791 * unles we're running in scheduler-locked mode.
1792 * Use currently_stepping to determine whether to
1793 * step or continue.
1794 */
1795 /* FIXME MVS: is there any reason not to call resume()? */
1796 if (scheduler_mode == schedlock_on)
1797 target_resume (ecs->ptid,
1798 currently_stepping (ecs), TARGET_SIGNAL_0);
1799 else
1800 target_resume (RESUME_ALL,
1801 currently_stepping (ecs), TARGET_SIGNAL_0);
1802 prepare_to_wait (ecs);
1803 return;
1804 }
1805 else
1806 { /* Single step */
1807 breakpoints_inserted = 0;
1808 if (!ptid_equal (inferior_ptid, ecs->ptid))
1809 context_switch (ecs);
1810 ecs->waiton_ptid = ecs->ptid;
1811 ecs->wp = &(ecs->ws);
1812 ecs->another_trap = 1;
1813
1814 ecs->infwait_state = infwait_thread_hop_state;
1815 keep_going (ecs);
1816 registers_changed ();
1817 return;
1818 }
1819 }
1820 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1821 {
1822 sw_single_step_trap_p = 1;
1823 ecs->random_signal = 0;
1824 }
1825 }
1826 else
1827 ecs->random_signal = 1;
1828
1829 /* See if something interesting happened to the non-current thread. If
1830 so, then switch to that thread. */
1831 if (!ptid_equal (ecs->ptid, inferior_ptid))
1832 {
1833 context_switch (ecs);
1834
1835 if (deprecated_context_hook)
1836 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1837
1838 flush_cached_frames ();
1839 }
1840
1841 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1842 {
1843 /* Pull the single step breakpoints out of the target. */
1844 SOFTWARE_SINGLE_STEP (0, 0);
1845 singlestep_breakpoints_inserted_p = 0;
1846 }
1847
1848 /* If PC is pointing at a nullified instruction, then step beyond
1849 it so that the user won't be confused when GDB appears to be ready
1850 to execute it. */
1851
1852 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1853 if (INSTRUCTION_NULLIFIED)
1854 {
1855 registers_changed ();
1856 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1857
1858 /* We may have received a signal that we want to pass to
1859 the inferior; therefore, we must not clobber the waitstatus
1860 in WS. */
1861
1862 ecs->infwait_state = infwait_nullified_state;
1863 ecs->waiton_ptid = ecs->ptid;
1864 ecs->wp = &(ecs->tmpstatus);
1865 prepare_to_wait (ecs);
1866 return;
1867 }
1868
1869 /* It may not be necessary to disable the watchpoint to stop over
1870 it. For example, the PA can (with some kernel cooperation)
1871 single step over a watchpoint without disabling the watchpoint. */
1872 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1873 {
1874 resume (1, 0);
1875 prepare_to_wait (ecs);
1876 return;
1877 }
1878
1879 /* It is far more common to need to disable a watchpoint to step
1880 the inferior over it. FIXME. What else might a debug
1881 register or page protection watchpoint scheme need here? */
1882 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1883 {
1884 /* At this point, we are stopped at an instruction which has
1885 attempted to write to a piece of memory under control of
1886 a watchpoint. The instruction hasn't actually executed
1887 yet. If we were to evaluate the watchpoint expression
1888 now, we would get the old value, and therefore no change
1889 would seem to have occurred.
1890
1891 In order to make watchpoints work `right', we really need
1892 to complete the memory write, and then evaluate the
1893 watchpoint expression. The following code does that by
1894 removing the watchpoint (actually, all watchpoints and
1895 breakpoints), single-stepping the target, re-inserting
1896 watchpoints, and then falling through to let normal
1897 single-step processing handle proceed. Since this
1898 includes evaluating watchpoints, things will come to a
1899 stop in the correct manner. */
1900
1901 remove_breakpoints ();
1902 registers_changed ();
1903 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1904
1905 ecs->waiton_ptid = ecs->ptid;
1906 ecs->wp = &(ecs->ws);
1907 ecs->infwait_state = infwait_nonstep_watch_state;
1908 prepare_to_wait (ecs);
1909 return;
1910 }
1911
1912 /* It may be possible to simply continue after a watchpoint. */
1913 if (HAVE_CONTINUABLE_WATCHPOINT)
1914 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1915
1916 ecs->stop_func_start = 0;
1917 ecs->stop_func_end = 0;
1918 ecs->stop_func_name = 0;
1919 /* Don't care about return value; stop_func_start and stop_func_name
1920 will both be 0 if it doesn't work. */
1921 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1922 &ecs->stop_func_start, &ecs->stop_func_end);
1923 ecs->stop_func_start += FUNCTION_START_OFFSET;
1924 ecs->another_trap = 0;
1925 bpstat_clear (&stop_bpstat);
1926 stop_step = 0;
1927 stop_stack_dummy = 0;
1928 stop_print_frame = 1;
1929 ecs->random_signal = 0;
1930 stopped_by_random_signal = 0;
1931 breakpoints_failed = 0;
1932
1933 /* Look at the cause of the stop, and decide what to do.
1934 The alternatives are:
1935 1) break; to really stop and return to the debugger,
1936 2) drop through to start up again
1937 (set ecs->another_trap to 1 to single step once)
1938 3) set ecs->random_signal to 1, and the decision between 1 and 2
1939 will be made according to the signal handling tables. */
1940
1941 /* First, distinguish signals caused by the debugger from signals
1942 that have to do with the program's own actions. Note that
1943 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1944 on the operating system version. Here we detect when a SIGILL or
1945 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1946 something similar for SIGSEGV, since a SIGSEGV will be generated
1947 when we're trying to execute a breakpoint instruction on a
1948 non-executable stack. This happens for call dummy breakpoints
1949 for architectures like SPARC that place call dummies on the
1950 stack. */
1951
1952 if (stop_signal == TARGET_SIGNAL_TRAP
1953 || (breakpoints_inserted &&
1954 (stop_signal == TARGET_SIGNAL_ILL
1955 || stop_signal == TARGET_SIGNAL_SEGV
1956 || stop_signal == TARGET_SIGNAL_EMT))
1957 || stop_soon == STOP_QUIETLY
1958 || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1959 {
1960 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1961 {
1962 stop_print_frame = 0;
1963 stop_stepping (ecs);
1964 return;
1965 }
1966
1967 /* This is originated from start_remote(), start_inferior() and
1968 shared libraries hook functions. */
1969 if (stop_soon == STOP_QUIETLY)
1970 {
1971 stop_stepping (ecs);
1972 return;
1973 }
1974
1975 /* This originates from attach_command(). We need to overwrite
1976 the stop_signal here, because some kernels don't ignore a
1977 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1978 See more comments in inferior.h. */
1979 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1980 {
1981 stop_stepping (ecs);
1982 if (stop_signal == TARGET_SIGNAL_STOP)
1983 stop_signal = TARGET_SIGNAL_0;
1984 return;
1985 }
1986
1987 /* Don't even think about breakpoints if just proceeded over a
1988 breakpoint. */
1989 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1990 bpstat_clear (&stop_bpstat);
1991 else
1992 {
1993 /* See if there is a breakpoint at the current PC. */
1994 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1995 stopped_by_watchpoint);
1996
1997 /* Following in case break condition called a
1998 function. */
1999 stop_print_frame = 1;
2000 }
2001
2002 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2003 at one stage in the past included checks for an inferior
2004 function call's call dummy's return breakpoint. The original
2005 comment, that went with the test, read:
2006
2007 ``End of a stack dummy. Some systems (e.g. Sony news) give
2008 another signal besides SIGTRAP, so check here as well as
2009 above.''
2010
2011 If someone ever tries to get get call dummys on a
2012 non-executable stack to work (where the target would stop
2013 with something like a SIGSEGV), then those tests might need
2014 to be re-instated. Given, however, that the tests were only
2015 enabled when momentary breakpoints were not being used, I
2016 suspect that it won't be the case.
2017
2018 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2019 be necessary for call dummies on a non-executable stack on
2020 SPARC. */
2021
2022 if (stop_signal == TARGET_SIGNAL_TRAP)
2023 ecs->random_signal
2024 = !(bpstat_explains_signal (stop_bpstat)
2025 || trap_expected
2026 || (step_range_end && step_resume_breakpoint == NULL));
2027 else
2028 {
2029 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2030 if (!ecs->random_signal)
2031 stop_signal = TARGET_SIGNAL_TRAP;
2032 }
2033 }
2034
2035 /* When we reach this point, we've pretty much decided
2036 that the reason for stopping must've been a random
2037 (unexpected) signal. */
2038
2039 else
2040 ecs->random_signal = 1;
2041
2042 process_event_stop_test:
2043 /* For the program's own signals, act according to
2044 the signal handling tables. */
2045
2046 if (ecs->random_signal)
2047 {
2048 /* Signal not for debugging purposes. */
2049 int printed = 0;
2050
2051 stopped_by_random_signal = 1;
2052
2053 if (signal_print[stop_signal])
2054 {
2055 printed = 1;
2056 target_terminal_ours_for_output ();
2057 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2058 }
2059 if (signal_stop[stop_signal])
2060 {
2061 stop_stepping (ecs);
2062 return;
2063 }
2064 /* If not going to stop, give terminal back
2065 if we took it away. */
2066 else if (printed)
2067 target_terminal_inferior ();
2068
2069 /* Clear the signal if it should not be passed. */
2070 if (signal_program[stop_signal] == 0)
2071 stop_signal = TARGET_SIGNAL_0;
2072
2073 if (step_range_end != 0
2074 && stop_signal != TARGET_SIGNAL_0
2075 && stop_pc >= step_range_start && stop_pc < step_range_end
2076 && frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id))
2077 {
2078 /* The inferior is about to take a signal that will take it
2079 out of the single step range. Set a breakpoint at the
2080 current PC (which is presumably where the signal handler
2081 will eventually return) and then allow the inferior to
2082 run free.
2083
2084 Note that this is only needed for a signal delivered
2085 while in the single-step range. Nested signals aren't a
2086 problem as they eventually all return. */
2087 insert_step_resume_breakpoint (get_current_frame (), ecs);
2088 }
2089 keep_going (ecs);
2090 return;
2091 }
2092
2093 /* Handle cases caused by hitting a breakpoint. */
2094 {
2095 CORE_ADDR jmp_buf_pc;
2096 struct bpstat_what what;
2097
2098 what = bpstat_what (stop_bpstat);
2099
2100 if (what.call_dummy)
2101 {
2102 stop_stack_dummy = 1;
2103 #ifdef HP_OS_BUG
2104 trap_expected_after_continue = 1;
2105 #endif
2106 }
2107
2108 switch (what.main_action)
2109 {
2110 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2111 /* If we hit the breakpoint at longjmp, disable it for the
2112 duration of this command. Then, install a temporary
2113 breakpoint at the target of the jmp_buf. */
2114 disable_longjmp_breakpoint ();
2115 remove_breakpoints ();
2116 breakpoints_inserted = 0;
2117 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
2118 {
2119 keep_going (ecs);
2120 return;
2121 }
2122
2123 /* Need to blow away step-resume breakpoint, as it
2124 interferes with us */
2125 if (step_resume_breakpoint != NULL)
2126 {
2127 delete_step_resume_breakpoint (&step_resume_breakpoint);
2128 }
2129
2130 #if 0
2131 /* FIXME - Need to implement nested temporary breakpoints */
2132 if (step_over_calls > 0)
2133 set_longjmp_resume_breakpoint (jmp_buf_pc, get_current_frame ());
2134 else
2135 #endif /* 0 */
2136 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2137 ecs->handling_longjmp = 1; /* FIXME */
2138 keep_going (ecs);
2139 return;
2140
2141 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2142 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2143 remove_breakpoints ();
2144 breakpoints_inserted = 0;
2145 #if 0
2146 /* FIXME - Need to implement nested temporary breakpoints */
2147 if (step_over_calls
2148 && (frame_id_inner (get_frame_id (get_current_frame ()),
2149 step_frame_id)))
2150 {
2151 ecs->another_trap = 1;
2152 keep_going (ecs);
2153 return;
2154 }
2155 #endif /* 0 */
2156 disable_longjmp_breakpoint ();
2157 ecs->handling_longjmp = 0; /* FIXME */
2158 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2159 break;
2160 /* else fallthrough */
2161
2162 case BPSTAT_WHAT_SINGLE:
2163 if (breakpoints_inserted)
2164 {
2165 remove_breakpoints ();
2166 }
2167 breakpoints_inserted = 0;
2168 ecs->another_trap = 1;
2169 /* Still need to check other stuff, at least the case
2170 where we are stepping and step out of the right range. */
2171 break;
2172
2173 case BPSTAT_WHAT_STOP_NOISY:
2174 stop_print_frame = 1;
2175
2176 /* We are about to nuke the step_resume_breakpointt via the
2177 cleanup chain, so no need to worry about it here. */
2178
2179 stop_stepping (ecs);
2180 return;
2181
2182 case BPSTAT_WHAT_STOP_SILENT:
2183 stop_print_frame = 0;
2184
2185 /* We are about to nuke the step_resume_breakpoin via the
2186 cleanup chain, so no need to worry about it here. */
2187
2188 stop_stepping (ecs);
2189 return;
2190
2191 case BPSTAT_WHAT_STEP_RESUME:
2192 /* This proably demands a more elegant solution, but, yeah
2193 right...
2194
2195 This function's use of the simple variable
2196 step_resume_breakpoint doesn't seem to accomodate
2197 simultaneously active step-resume bp's, although the
2198 breakpoint list certainly can.
2199
2200 If we reach here and step_resume_breakpoint is already
2201 NULL, then apparently we have multiple active
2202 step-resume bp's. We'll just delete the breakpoint we
2203 stopped at, and carry on.
2204
2205 Correction: what the code currently does is delete a
2206 step-resume bp, but it makes no effort to ensure that
2207 the one deleted is the one currently stopped at. MVS */
2208
2209 if (step_resume_breakpoint == NULL)
2210 {
2211 step_resume_breakpoint =
2212 bpstat_find_step_resume_breakpoint (stop_bpstat);
2213 }
2214 delete_step_resume_breakpoint (&step_resume_breakpoint);
2215 break;
2216
2217 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2218 /* If were waiting for a trap, hitting the step_resume_break
2219 doesn't count as getting it. */
2220 if (trap_expected)
2221 ecs->another_trap = 1;
2222 break;
2223
2224 case BPSTAT_WHAT_CHECK_SHLIBS:
2225 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2226 #ifdef SOLIB_ADD
2227 {
2228 /* Remove breakpoints, we eventually want to step over the
2229 shlib event breakpoint, and SOLIB_ADD might adjust
2230 breakpoint addresses via breakpoint_re_set. */
2231 if (breakpoints_inserted)
2232 remove_breakpoints ();
2233 breakpoints_inserted = 0;
2234
2235 /* Check for any newly added shared libraries if we're
2236 supposed to be adding them automatically. Switch
2237 terminal for any messages produced by
2238 breakpoint_re_set. */
2239 target_terminal_ours_for_output ();
2240 /* NOTE: cagney/2003-11-25: Make certain that the target
2241 stack's section table is kept up-to-date. Architectures,
2242 (e.g., PPC64), use the section table to perform
2243 operations such as address => section name and hence
2244 require the table to contain all sections (including
2245 those found in shared libraries). */
2246 /* NOTE: cagney/2003-11-25: Pass current_target and not
2247 exec_ops to SOLIB_ADD. This is because current GDB is
2248 only tooled to propagate section_table changes out from
2249 the "current_target" (see target_resize_to_sections), and
2250 not up from the exec stratum. This, of course, isn't
2251 right. "infrun.c" should only interact with the
2252 exec/process stratum, instead relying on the target stack
2253 to propagate relevant changes (stop, section table
2254 changed, ...) up to other layers. */
2255 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2256 target_terminal_inferior ();
2257
2258 /* Try to reenable shared library breakpoints, additional
2259 code segments in shared libraries might be mapped in now. */
2260 re_enable_breakpoints_in_shlibs ();
2261
2262 /* If requested, stop when the dynamic linker notifies
2263 gdb of events. This allows the user to get control
2264 and place breakpoints in initializer routines for
2265 dynamically loaded objects (among other things). */
2266 if (stop_on_solib_events || stop_stack_dummy)
2267 {
2268 stop_stepping (ecs);
2269 return;
2270 }
2271
2272 /* If we stopped due to an explicit catchpoint, then the
2273 (see above) call to SOLIB_ADD pulled in any symbols
2274 from a newly-loaded library, if appropriate.
2275
2276 We do want the inferior to stop, but not where it is
2277 now, which is in the dynamic linker callback. Rather,
2278 we would like it stop in the user's program, just after
2279 the call that caused this catchpoint to trigger. That
2280 gives the user a more useful vantage from which to
2281 examine their program's state. */
2282 else if (what.main_action ==
2283 BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2284 {
2285 /* ??rehrauer: If I could figure out how to get the
2286 right return PC from here, we could just set a temp
2287 breakpoint and resume. I'm not sure we can without
2288 cracking open the dld's shared libraries and sniffing
2289 their unwind tables and text/data ranges, and that's
2290 not a terribly portable notion.
2291
2292 Until that time, we must step the inferior out of the
2293 dld callback, and also out of the dld itself (and any
2294 code or stubs in libdld.sl, such as "shl_load" and
2295 friends) until we reach non-dld code. At that point,
2296 we can stop stepping. */
2297 bpstat_get_triggered_catchpoints (stop_bpstat,
2298 &ecs->
2299 stepping_through_solib_catchpoints);
2300 ecs->stepping_through_solib_after_catch = 1;
2301
2302 /* Be sure to lift all breakpoints, so the inferior does
2303 actually step past this point... */
2304 ecs->another_trap = 1;
2305 break;
2306 }
2307 else
2308 {
2309 /* We want to step over this breakpoint, then keep going. */
2310 ecs->another_trap = 1;
2311 break;
2312 }
2313 }
2314 #endif
2315 break;
2316
2317 case BPSTAT_WHAT_LAST:
2318 /* Not a real code, but listed here to shut up gcc -Wall. */
2319
2320 case BPSTAT_WHAT_KEEP_CHECKING:
2321 break;
2322 }
2323 }
2324
2325 /* We come here if we hit a breakpoint but should not
2326 stop for it. Possibly we also were stepping
2327 and should stop for that. So fall through and
2328 test for stepping. But, if not stepping,
2329 do not stop. */
2330
2331 /* Are we stepping to get the inferior out of the dynamic
2332 linker's hook (and possibly the dld itself) after catching
2333 a shlib event? */
2334 if (ecs->stepping_through_solib_after_catch)
2335 {
2336 #if defined(SOLIB_ADD)
2337 /* Have we reached our destination? If not, keep going. */
2338 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2339 {
2340 ecs->another_trap = 1;
2341 keep_going (ecs);
2342 return;
2343 }
2344 #endif
2345 /* Else, stop and report the catchpoint(s) whose triggering
2346 caused us to begin stepping. */
2347 ecs->stepping_through_solib_after_catch = 0;
2348 bpstat_clear (&stop_bpstat);
2349 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2350 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2351 stop_print_frame = 1;
2352 stop_stepping (ecs);
2353 return;
2354 }
2355
2356 if (step_resume_breakpoint)
2357 {
2358 /* Having a step-resume breakpoint overrides anything
2359 else having to do with stepping commands until
2360 that breakpoint is reached. */
2361 keep_going (ecs);
2362 return;
2363 }
2364
2365 if (step_range_end == 0)
2366 {
2367 /* Likewise if we aren't even stepping. */
2368 keep_going (ecs);
2369 return;
2370 }
2371
2372 /* If stepping through a line, keep going if still within it.
2373
2374 Note that step_range_end is the address of the first instruction
2375 beyond the step range, and NOT the address of the last instruction
2376 within it! */
2377 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2378 {
2379 keep_going (ecs);
2380 return;
2381 }
2382
2383 /* We stepped out of the stepping range. */
2384
2385 /* If we are stepping at the source level and entered the runtime
2386 loader dynamic symbol resolution code, we keep on single stepping
2387 until we exit the run time loader code and reach the callee's
2388 address. */
2389 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2390 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2391 {
2392 CORE_ADDR pc_after_resolver =
2393 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2394
2395 if (pc_after_resolver)
2396 {
2397 /* Set up a step-resume breakpoint at the address
2398 indicated by SKIP_SOLIB_RESOLVER. */
2399 struct symtab_and_line sr_sal;
2400 init_sal (&sr_sal);
2401 sr_sal.pc = pc_after_resolver;
2402
2403 check_for_old_step_resume_breakpoint ();
2404 step_resume_breakpoint =
2405 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2406 if (breakpoints_inserted)
2407 insert_breakpoints ();
2408 }
2409
2410 keep_going (ecs);
2411 return;
2412 }
2413
2414 if (step_range_end != 1
2415 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2416 || step_over_calls == STEP_OVER_ALL)
2417 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2418 {
2419 /* The inferior, while doing a "step" or "next", has ended up in
2420 a signal trampoline (either by a signal being delivered or by
2421 the signal handler returning). Just single-step until the
2422 inferior leaves the trampoline (either by calling the handler
2423 or returning). */
2424 keep_going (ecs);
2425 return;
2426 }
2427
2428 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2429 && ecs->stop_func_name == NULL)
2430 {
2431 /* The inferior just stepped into, or returned to, an
2432 undebuggable function (where there is no symbol, not even a
2433 minimal symbol, corresponding to the address where the
2434 inferior stopped). Since we want to skip this kind of code,
2435 we keep going until the inferior returns from this
2436 function. */
2437 /* NOTE: cagney/2004-05-12: This test is performed after the
2438 sigtramp test as often sigtramps, while recognized by GDB,
2439 have no symbol information. */
2440 handle_step_into_function (ecs);
2441 return;
2442 }
2443
2444 if (frame_id_eq (frame_unwind_id (get_current_frame ()),
2445 step_frame_id))
2446 {
2447 /* It's a subroutine call. */
2448 handle_step_into_function (ecs);
2449 return;
2450 }
2451
2452 /* We've wandered out of the step range. */
2453
2454 ecs->sal = find_pc_line (stop_pc, 0);
2455
2456 if (step_range_end == 1)
2457 {
2458 /* It is stepi or nexti. We always want to stop stepping after
2459 one instruction. */
2460 stop_step = 1;
2461 print_stop_reason (END_STEPPING_RANGE, 0);
2462 stop_stepping (ecs);
2463 return;
2464 }
2465
2466 /* If we're in the return path from a shared library trampoline,
2467 we want to proceed through the trampoline when stepping. */
2468 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2469 {
2470 /* Determine where this trampoline returns. */
2471 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2472
2473 /* Only proceed through if we know where it's going. */
2474 if (real_stop_pc)
2475 {
2476 /* And put the step-breakpoint there and go until there. */
2477 struct symtab_and_line sr_sal;
2478
2479 init_sal (&sr_sal); /* initialize to zeroes */
2480 sr_sal.pc = real_stop_pc;
2481 sr_sal.section = find_pc_overlay (sr_sal.pc);
2482 /* Do not specify what the fp should be when we stop
2483 since on some machines the prologue
2484 is where the new fp value is established. */
2485 check_for_old_step_resume_breakpoint ();
2486 step_resume_breakpoint =
2487 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2488 if (breakpoints_inserted)
2489 insert_breakpoints ();
2490
2491 /* Restart without fiddling with the step ranges or
2492 other state. */
2493 keep_going (ecs);
2494 return;
2495 }
2496 }
2497
2498 if (ecs->sal.line == 0)
2499 {
2500 /* We have no line number information. That means to stop
2501 stepping (does this always happen right after one instruction,
2502 when we do "s" in a function with no line numbers,
2503 or can this happen as a result of a return or longjmp?). */
2504 stop_step = 1;
2505 print_stop_reason (END_STEPPING_RANGE, 0);
2506 stop_stepping (ecs);
2507 return;
2508 }
2509
2510 if ((stop_pc == ecs->sal.pc)
2511 && (ecs->current_line != ecs->sal.line
2512 || ecs->current_symtab != ecs->sal.symtab))
2513 {
2514 /* We are at the start of a different line. So stop. Note that
2515 we don't stop if we step into the middle of a different line.
2516 That is said to make things like for (;;) statements work
2517 better. */
2518 stop_step = 1;
2519 print_stop_reason (END_STEPPING_RANGE, 0);
2520 stop_stepping (ecs);
2521 return;
2522 }
2523
2524 /* We aren't done stepping.
2525
2526 Optimize by setting the stepping range to the line.
2527 (We might not be in the original line, but if we entered a
2528 new line in mid-statement, we continue stepping. This makes
2529 things like for(;;) statements work better.) */
2530
2531 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2532 {
2533 /* If this is the last line of the function, don't keep stepping
2534 (it would probably step us out of the function).
2535 This is particularly necessary for a one-line function,
2536 in which after skipping the prologue we better stop even though
2537 we will be in mid-line. */
2538 stop_step = 1;
2539 print_stop_reason (END_STEPPING_RANGE, 0);
2540 stop_stepping (ecs);
2541 return;
2542 }
2543 step_range_start = ecs->sal.pc;
2544 step_range_end = ecs->sal.end;
2545 step_frame_id = get_frame_id (get_current_frame ());
2546 ecs->current_line = ecs->sal.line;
2547 ecs->current_symtab = ecs->sal.symtab;
2548
2549 /* In the case where we just stepped out of a function into the
2550 middle of a line of the caller, continue stepping, but
2551 step_frame_id must be modified to current frame */
2552 #if 0
2553 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2554 generous. It will trigger on things like a step into a frameless
2555 stackless leaf function. I think the logic should instead look
2556 at the unwound frame ID has that should give a more robust
2557 indication of what happened. */
2558 if (step-ID == current-ID)
2559 still stepping in same function;
2560 else if (step-ID == unwind (current-ID))
2561 stepped into a function;
2562 else
2563 stepped out of a function;
2564 /* Of course this assumes that the frame ID unwind code is robust
2565 and we're willing to introduce frame unwind logic into this
2566 function. Fortunately, those days are nearly upon us. */
2567 #endif
2568 {
2569 struct frame_id current_frame = get_frame_id (get_current_frame ());
2570 if (!(frame_id_inner (current_frame, step_frame_id)))
2571 step_frame_id = current_frame;
2572 }
2573
2574 keep_going (ecs);
2575 }
2576
2577 /* Are we in the middle of stepping? */
2578
2579 static int
2580 currently_stepping (struct execution_control_state *ecs)
2581 {
2582 return ((!ecs->handling_longjmp
2583 && ((step_range_end && step_resume_breakpoint == NULL)
2584 || trap_expected))
2585 || ecs->stepping_through_solib_after_catch
2586 || bpstat_should_step ());
2587 }
2588
2589 /* Subroutine call with source code we should not step over. Do step
2590 to the first line of code in it. */
2591
2592 static void
2593 step_into_function (struct execution_control_state *ecs)
2594 {
2595 struct symtab *s;
2596 struct symtab_and_line sr_sal;
2597
2598 s = find_pc_symtab (stop_pc);
2599 if (s && s->language != language_asm)
2600 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2601
2602 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2603 /* Use the step_resume_break to step until the end of the prologue,
2604 even if that involves jumps (as it seems to on the vax under
2605 4.2). */
2606 /* If the prologue ends in the middle of a source line, continue to
2607 the end of that source line (if it is still within the function).
2608 Otherwise, just go to end of prologue. */
2609 if (ecs->sal.end
2610 && ecs->sal.pc != ecs->stop_func_start
2611 && ecs->sal.end < ecs->stop_func_end)
2612 ecs->stop_func_start = ecs->sal.end;
2613
2614 /* Architectures which require breakpoint adjustment might not be able
2615 to place a breakpoint at the computed address. If so, the test
2616 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2617 ecs->stop_func_start to an address at which a breakpoint may be
2618 legitimately placed.
2619
2620 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2621 made, GDB will enter an infinite loop when stepping through
2622 optimized code consisting of VLIW instructions which contain
2623 subinstructions corresponding to different source lines. On
2624 FR-V, it's not permitted to place a breakpoint on any but the
2625 first subinstruction of a VLIW instruction. When a breakpoint is
2626 set, GDB will adjust the breakpoint address to the beginning of
2627 the VLIW instruction. Thus, we need to make the corresponding
2628 adjustment here when computing the stop address. */
2629
2630 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2631 {
2632 ecs->stop_func_start
2633 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2634 ecs->stop_func_start);
2635 }
2636
2637 if (ecs->stop_func_start == stop_pc)
2638 {
2639 /* We are already there: stop now. */
2640 stop_step = 1;
2641 print_stop_reason (END_STEPPING_RANGE, 0);
2642 stop_stepping (ecs);
2643 return;
2644 }
2645 else
2646 {
2647 /* Put the step-breakpoint there and go until there. */
2648 init_sal (&sr_sal); /* initialize to zeroes */
2649 sr_sal.pc = ecs->stop_func_start;
2650 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2651 /* Do not specify what the fp should be when we stop since on
2652 some machines the prologue is where the new fp value is
2653 established. */
2654 check_for_old_step_resume_breakpoint ();
2655 step_resume_breakpoint =
2656 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2657 if (breakpoints_inserted)
2658 insert_breakpoints ();
2659
2660 /* And make sure stepping stops right away then. */
2661 step_range_end = step_range_start;
2662 }
2663 keep_going (ecs);
2664 }
2665
2666 /* The inferior, as a result of a function call (has left) or signal
2667 (about to leave) the single-step range. Set a momentary breakpoint
2668 within the step range where the inferior is expected to later
2669 return. */
2670
2671 static void
2672 insert_step_resume_breakpoint (struct frame_info *step_frame,
2673 struct execution_control_state *ecs)
2674 {
2675 struct symtab_and_line sr_sal;
2676
2677 /* This is only used within the step-resume range/frame. */
2678 gdb_assert (frame_id_eq (step_frame_id, get_frame_id (step_frame)));
2679 gdb_assert (step_range_end != 0);
2680 /* Remember, if the call instruction is the last in the step range,
2681 the breakpoint will land just beyond that. Hence ``<=
2682 step_range_end''. Also, ignore check when "nexti". */
2683 gdb_assert (step_range_start == step_range_end
2684 || (get_frame_pc (step_frame) >= step_range_start
2685 && get_frame_pc (step_frame) <= step_range_end));
2686
2687 init_sal (&sr_sal); /* initialize to zeros */
2688
2689 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (step_frame));
2690 sr_sal.section = find_pc_overlay (sr_sal.pc);
2691
2692 check_for_old_step_resume_breakpoint ();
2693
2694 step_resume_breakpoint
2695 = set_momentary_breakpoint (sr_sal, get_frame_id (step_frame),
2696 bp_step_resume);
2697
2698 if (breakpoints_inserted)
2699 insert_breakpoints ();
2700 }
2701
2702 static void
2703 stop_stepping (struct execution_control_state *ecs)
2704 {
2705 /* Let callers know we don't want to wait for the inferior anymore. */
2706 ecs->wait_some_more = 0;
2707 }
2708
2709 /* This function handles various cases where we need to continue
2710 waiting for the inferior. */
2711 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2712
2713 static void
2714 keep_going (struct execution_control_state *ecs)
2715 {
2716 /* Save the pc before execution, to compare with pc after stop. */
2717 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2718
2719 /* If we did not do break;, it means we should keep running the
2720 inferior and not return to debugger. */
2721
2722 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2723 {
2724 /* We took a signal (which we are supposed to pass through to
2725 the inferior, else we'd have done a break above) and we
2726 haven't yet gotten our trap. Simply continue. */
2727 resume (currently_stepping (ecs), stop_signal);
2728 }
2729 else
2730 {
2731 /* Either the trap was not expected, but we are continuing
2732 anyway (the user asked that this signal be passed to the
2733 child)
2734 -- or --
2735 The signal was SIGTRAP, e.g. it was our signal, but we
2736 decided we should resume from it.
2737
2738 We're going to run this baby now!
2739
2740 Insert breakpoints now, unless we are trying to one-proceed
2741 past a breakpoint. */
2742 /* If we've just finished a special step resume and we don't
2743 want to hit a breakpoint, pull em out. */
2744 if (step_resume_breakpoint == NULL
2745 && ecs->remove_breakpoints_on_following_step)
2746 {
2747 ecs->remove_breakpoints_on_following_step = 0;
2748 remove_breakpoints ();
2749 breakpoints_inserted = 0;
2750 }
2751 else if (!breakpoints_inserted && !ecs->another_trap)
2752 {
2753 breakpoints_failed = insert_breakpoints ();
2754 if (breakpoints_failed)
2755 {
2756 stop_stepping (ecs);
2757 return;
2758 }
2759 breakpoints_inserted = 1;
2760 }
2761
2762 trap_expected = ecs->another_trap;
2763
2764 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2765 specifies that such a signal should be delivered to the
2766 target program).
2767
2768 Typically, this would occure when a user is debugging a
2769 target monitor on a simulator: the target monitor sets a
2770 breakpoint; the simulator encounters this break-point and
2771 halts the simulation handing control to GDB; GDB, noteing
2772 that the break-point isn't valid, returns control back to the
2773 simulator; the simulator then delivers the hardware
2774 equivalent of a SIGNAL_TRAP to the program being debugged. */
2775
2776 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2777 stop_signal = TARGET_SIGNAL_0;
2778
2779
2780 resume (currently_stepping (ecs), stop_signal);
2781 }
2782
2783 prepare_to_wait (ecs);
2784 }
2785
2786 /* This function normally comes after a resume, before
2787 handle_inferior_event exits. It takes care of any last bits of
2788 housekeeping, and sets the all-important wait_some_more flag. */
2789
2790 static void
2791 prepare_to_wait (struct execution_control_state *ecs)
2792 {
2793 if (ecs->infwait_state == infwait_normal_state)
2794 {
2795 overlay_cache_invalid = 1;
2796
2797 /* We have to invalidate the registers BEFORE calling
2798 target_wait because they can be loaded from the target while
2799 in target_wait. This makes remote debugging a bit more
2800 efficient for those targets that provide critical registers
2801 as part of their normal status mechanism. */
2802
2803 registers_changed ();
2804 ecs->waiton_ptid = pid_to_ptid (-1);
2805 ecs->wp = &(ecs->ws);
2806 }
2807 /* This is the old end of the while loop. Let everybody know we
2808 want to wait for the inferior some more and get called again
2809 soon. */
2810 ecs->wait_some_more = 1;
2811 }
2812
2813 /* Print why the inferior has stopped. We always print something when
2814 the inferior exits, or receives a signal. The rest of the cases are
2815 dealt with later on in normal_stop() and print_it_typical(). Ideally
2816 there should be a call to this function from handle_inferior_event()
2817 each time stop_stepping() is called.*/
2818 static void
2819 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2820 {
2821 switch (stop_reason)
2822 {
2823 case STOP_UNKNOWN:
2824 /* We don't deal with these cases from handle_inferior_event()
2825 yet. */
2826 break;
2827 case END_STEPPING_RANGE:
2828 /* We are done with a step/next/si/ni command. */
2829 /* For now print nothing. */
2830 /* Print a message only if not in the middle of doing a "step n"
2831 operation for n > 1 */
2832 if (!step_multi || !stop_step)
2833 if (ui_out_is_mi_like_p (uiout))
2834 ui_out_field_string (uiout, "reason", "end-stepping-range");
2835 break;
2836 case BREAKPOINT_HIT:
2837 /* We found a breakpoint. */
2838 /* For now print nothing. */
2839 break;
2840 case SIGNAL_EXITED:
2841 /* The inferior was terminated by a signal. */
2842 annotate_signalled ();
2843 if (ui_out_is_mi_like_p (uiout))
2844 ui_out_field_string (uiout, "reason", "exited-signalled");
2845 ui_out_text (uiout, "\nProgram terminated with signal ");
2846 annotate_signal_name ();
2847 ui_out_field_string (uiout, "signal-name",
2848 target_signal_to_name (stop_info));
2849 annotate_signal_name_end ();
2850 ui_out_text (uiout, ", ");
2851 annotate_signal_string ();
2852 ui_out_field_string (uiout, "signal-meaning",
2853 target_signal_to_string (stop_info));
2854 annotate_signal_string_end ();
2855 ui_out_text (uiout, ".\n");
2856 ui_out_text (uiout, "The program no longer exists.\n");
2857 break;
2858 case EXITED:
2859 /* The inferior program is finished. */
2860 annotate_exited (stop_info);
2861 if (stop_info)
2862 {
2863 if (ui_out_is_mi_like_p (uiout))
2864 ui_out_field_string (uiout, "reason", "exited");
2865 ui_out_text (uiout, "\nProgram exited with code ");
2866 ui_out_field_fmt (uiout, "exit-code", "0%o",
2867 (unsigned int) stop_info);
2868 ui_out_text (uiout, ".\n");
2869 }
2870 else
2871 {
2872 if (ui_out_is_mi_like_p (uiout))
2873 ui_out_field_string (uiout, "reason", "exited-normally");
2874 ui_out_text (uiout, "\nProgram exited normally.\n");
2875 }
2876 break;
2877 case SIGNAL_RECEIVED:
2878 /* Signal received. The signal table tells us to print about
2879 it. */
2880 annotate_signal ();
2881 ui_out_text (uiout, "\nProgram received signal ");
2882 annotate_signal_name ();
2883 if (ui_out_is_mi_like_p (uiout))
2884 ui_out_field_string (uiout, "reason", "signal-received");
2885 ui_out_field_string (uiout, "signal-name",
2886 target_signal_to_name (stop_info));
2887 annotate_signal_name_end ();
2888 ui_out_text (uiout, ", ");
2889 annotate_signal_string ();
2890 ui_out_field_string (uiout, "signal-meaning",
2891 target_signal_to_string (stop_info));
2892 annotate_signal_string_end ();
2893 ui_out_text (uiout, ".\n");
2894 break;
2895 default:
2896 internal_error (__FILE__, __LINE__,
2897 "print_stop_reason: unrecognized enum value");
2898 break;
2899 }
2900 }
2901 \f
2902
2903 /* Here to return control to GDB when the inferior stops for real.
2904 Print appropriate messages, remove breakpoints, give terminal our modes.
2905
2906 STOP_PRINT_FRAME nonzero means print the executing frame
2907 (pc, function, args, file, line number and line text).
2908 BREAKPOINTS_FAILED nonzero means stop was due to error
2909 attempting to insert breakpoints. */
2910
2911 void
2912 normal_stop (void)
2913 {
2914 struct target_waitstatus last;
2915 ptid_t last_ptid;
2916
2917 get_last_target_status (&last_ptid, &last);
2918
2919 /* As with the notification of thread events, we want to delay
2920 notifying the user that we've switched thread context until
2921 the inferior actually stops.
2922
2923 There's no point in saying anything if the inferior has exited.
2924 Note that SIGNALLED here means "exited with a signal", not
2925 "received a signal". */
2926 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
2927 && target_has_execution
2928 && last.kind != TARGET_WAITKIND_SIGNALLED
2929 && last.kind != TARGET_WAITKIND_EXITED)
2930 {
2931 target_terminal_ours_for_output ();
2932 printf_filtered ("[Switching to %s]\n",
2933 target_pid_or_tid_to_str (inferior_ptid));
2934 previous_inferior_ptid = inferior_ptid;
2935 }
2936
2937 /* NOTE drow/2004-01-17: Is this still necessary? */
2938 /* Make sure that the current_frame's pc is correct. This
2939 is a correction for setting up the frame info before doing
2940 DECR_PC_AFTER_BREAK */
2941 if (target_has_execution)
2942 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
2943 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
2944 frame code to check for this and sort out any resultant mess.
2945 DECR_PC_AFTER_BREAK needs to just go away. */
2946 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
2947
2948 if (target_has_execution && breakpoints_inserted)
2949 {
2950 if (remove_breakpoints ())
2951 {
2952 target_terminal_ours_for_output ();
2953 printf_filtered ("Cannot remove breakpoints because ");
2954 printf_filtered ("program is no longer writable.\n");
2955 printf_filtered ("It might be running in another process.\n");
2956 printf_filtered ("Further execution is probably impossible.\n");
2957 }
2958 }
2959 breakpoints_inserted = 0;
2960
2961 /* Delete the breakpoint we stopped at, if it wants to be deleted.
2962 Delete any breakpoint that is to be deleted at the next stop. */
2963
2964 breakpoint_auto_delete (stop_bpstat);
2965
2966 /* If an auto-display called a function and that got a signal,
2967 delete that auto-display to avoid an infinite recursion. */
2968
2969 if (stopped_by_random_signal)
2970 disable_current_display ();
2971
2972 /* Don't print a message if in the middle of doing a "step n"
2973 operation for n > 1 */
2974 if (step_multi && stop_step)
2975 goto done;
2976
2977 target_terminal_ours ();
2978
2979 /* Look up the hook_stop and run it (CLI internally handles problem
2980 of stop_command's pre-hook not existing). */
2981 if (stop_command)
2982 catch_errors (hook_stop_stub, stop_command,
2983 "Error while running hook_stop:\n", RETURN_MASK_ALL);
2984
2985 if (!target_has_stack)
2986 {
2987
2988 goto done;
2989 }
2990
2991 /* Select innermost stack frame - i.e., current frame is frame 0,
2992 and current location is based on that.
2993 Don't do this on return from a stack dummy routine,
2994 or if the program has exited. */
2995
2996 if (!stop_stack_dummy)
2997 {
2998 select_frame (get_current_frame ());
2999
3000 /* Print current location without a level number, if
3001 we have changed functions or hit a breakpoint.
3002 Print source line if we have one.
3003 bpstat_print() contains the logic deciding in detail
3004 what to print, based on the event(s) that just occurred. */
3005
3006 if (stop_print_frame && deprecated_selected_frame)
3007 {
3008 int bpstat_ret;
3009 int source_flag;
3010 int do_frame_printing = 1;
3011
3012 bpstat_ret = bpstat_print (stop_bpstat);
3013 switch (bpstat_ret)
3014 {
3015 case PRINT_UNKNOWN:
3016 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3017 (or should) carry around the function and does (or
3018 should) use that when doing a frame comparison. */
3019 if (stop_step
3020 && frame_id_eq (step_frame_id,
3021 get_frame_id (get_current_frame ()))
3022 && step_start_function == find_pc_function (stop_pc))
3023 source_flag = SRC_LINE; /* finished step, just print source line */
3024 else
3025 source_flag = SRC_AND_LOC; /* print location and source line */
3026 break;
3027 case PRINT_SRC_AND_LOC:
3028 source_flag = SRC_AND_LOC; /* print location and source line */
3029 break;
3030 case PRINT_SRC_ONLY:
3031 source_flag = SRC_LINE;
3032 break;
3033 case PRINT_NOTHING:
3034 source_flag = SRC_LINE; /* something bogus */
3035 do_frame_printing = 0;
3036 break;
3037 default:
3038 internal_error (__FILE__, __LINE__, "Unknown value.");
3039 }
3040 /* For mi, have the same behavior every time we stop:
3041 print everything but the source line. */
3042 if (ui_out_is_mi_like_p (uiout))
3043 source_flag = LOC_AND_ADDRESS;
3044
3045 if (ui_out_is_mi_like_p (uiout))
3046 ui_out_field_int (uiout, "thread-id",
3047 pid_to_thread_id (inferior_ptid));
3048 /* The behavior of this routine with respect to the source
3049 flag is:
3050 SRC_LINE: Print only source line
3051 LOCATION: Print only location
3052 SRC_AND_LOC: Print location and source line */
3053 if (do_frame_printing)
3054 print_stack_frame (get_selected_frame (), 0, source_flag);
3055
3056 /* Display the auto-display expressions. */
3057 do_displays ();
3058 }
3059 }
3060
3061 /* Save the function value return registers, if we care.
3062 We might be about to restore their previous contents. */
3063 if (proceed_to_finish)
3064 /* NB: The copy goes through to the target picking up the value of
3065 all the registers. */
3066 regcache_cpy (stop_registers, current_regcache);
3067
3068 if (stop_stack_dummy)
3069 {
3070 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3071 ends with a setting of the current frame, so we can use that
3072 next. */
3073 frame_pop (get_current_frame ());
3074 /* Set stop_pc to what it was before we called the function.
3075 Can't rely on restore_inferior_status because that only gets
3076 called if we don't stop in the called function. */
3077 stop_pc = read_pc ();
3078 select_frame (get_current_frame ());
3079 }
3080
3081 done:
3082 annotate_stopped ();
3083 observer_notify_normal_stop (stop_bpstat);
3084 }
3085
3086 static int
3087 hook_stop_stub (void *cmd)
3088 {
3089 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3090 return (0);
3091 }
3092 \f
3093 int
3094 signal_stop_state (int signo)
3095 {
3096 return signal_stop[signo];
3097 }
3098
3099 int
3100 signal_print_state (int signo)
3101 {
3102 return signal_print[signo];
3103 }
3104
3105 int
3106 signal_pass_state (int signo)
3107 {
3108 return signal_program[signo];
3109 }
3110
3111 int
3112 signal_stop_update (int signo, int state)
3113 {
3114 int ret = signal_stop[signo];
3115 signal_stop[signo] = state;
3116 return ret;
3117 }
3118
3119 int
3120 signal_print_update (int signo, int state)
3121 {
3122 int ret = signal_print[signo];
3123 signal_print[signo] = state;
3124 return ret;
3125 }
3126
3127 int
3128 signal_pass_update (int signo, int state)
3129 {
3130 int ret = signal_program[signo];
3131 signal_program[signo] = state;
3132 return ret;
3133 }
3134
3135 static void
3136 sig_print_header (void)
3137 {
3138 printf_filtered ("\
3139 Signal Stop\tPrint\tPass to program\tDescription\n");
3140 }
3141
3142 static void
3143 sig_print_info (enum target_signal oursig)
3144 {
3145 char *name = target_signal_to_name (oursig);
3146 int name_padding = 13 - strlen (name);
3147
3148 if (name_padding <= 0)
3149 name_padding = 0;
3150
3151 printf_filtered ("%s", name);
3152 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3153 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3154 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3155 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3156 printf_filtered ("%s\n", target_signal_to_string (oursig));
3157 }
3158
3159 /* Specify how various signals in the inferior should be handled. */
3160
3161 static void
3162 handle_command (char *args, int from_tty)
3163 {
3164 char **argv;
3165 int digits, wordlen;
3166 int sigfirst, signum, siglast;
3167 enum target_signal oursig;
3168 int allsigs;
3169 int nsigs;
3170 unsigned char *sigs;
3171 struct cleanup *old_chain;
3172
3173 if (args == NULL)
3174 {
3175 error_no_arg ("signal to handle");
3176 }
3177
3178 /* Allocate and zero an array of flags for which signals to handle. */
3179
3180 nsigs = (int) TARGET_SIGNAL_LAST;
3181 sigs = (unsigned char *) alloca (nsigs);
3182 memset (sigs, 0, nsigs);
3183
3184 /* Break the command line up into args. */
3185
3186 argv = buildargv (args);
3187 if (argv == NULL)
3188 {
3189 nomem (0);
3190 }
3191 old_chain = make_cleanup_freeargv (argv);
3192
3193 /* Walk through the args, looking for signal oursigs, signal names, and
3194 actions. Signal numbers and signal names may be interspersed with
3195 actions, with the actions being performed for all signals cumulatively
3196 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3197
3198 while (*argv != NULL)
3199 {
3200 wordlen = strlen (*argv);
3201 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3202 {;
3203 }
3204 allsigs = 0;
3205 sigfirst = siglast = -1;
3206
3207 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3208 {
3209 /* Apply action to all signals except those used by the
3210 debugger. Silently skip those. */
3211 allsigs = 1;
3212 sigfirst = 0;
3213 siglast = nsigs - 1;
3214 }
3215 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3216 {
3217 SET_SIGS (nsigs, sigs, signal_stop);
3218 SET_SIGS (nsigs, sigs, signal_print);
3219 }
3220 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3221 {
3222 UNSET_SIGS (nsigs, sigs, signal_program);
3223 }
3224 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3225 {
3226 SET_SIGS (nsigs, sigs, signal_print);
3227 }
3228 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3229 {
3230 SET_SIGS (nsigs, sigs, signal_program);
3231 }
3232 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3233 {
3234 UNSET_SIGS (nsigs, sigs, signal_stop);
3235 }
3236 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3237 {
3238 SET_SIGS (nsigs, sigs, signal_program);
3239 }
3240 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3241 {
3242 UNSET_SIGS (nsigs, sigs, signal_print);
3243 UNSET_SIGS (nsigs, sigs, signal_stop);
3244 }
3245 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3246 {
3247 UNSET_SIGS (nsigs, sigs, signal_program);
3248 }
3249 else if (digits > 0)
3250 {
3251 /* It is numeric. The numeric signal refers to our own
3252 internal signal numbering from target.h, not to host/target
3253 signal number. This is a feature; users really should be
3254 using symbolic names anyway, and the common ones like
3255 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3256
3257 sigfirst = siglast = (int)
3258 target_signal_from_command (atoi (*argv));
3259 if ((*argv)[digits] == '-')
3260 {
3261 siglast = (int)
3262 target_signal_from_command (atoi ((*argv) + digits + 1));
3263 }
3264 if (sigfirst > siglast)
3265 {
3266 /* Bet he didn't figure we'd think of this case... */
3267 signum = sigfirst;
3268 sigfirst = siglast;
3269 siglast = signum;
3270 }
3271 }
3272 else
3273 {
3274 oursig = target_signal_from_name (*argv);
3275 if (oursig != TARGET_SIGNAL_UNKNOWN)
3276 {
3277 sigfirst = siglast = (int) oursig;
3278 }
3279 else
3280 {
3281 /* Not a number and not a recognized flag word => complain. */
3282 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3283 }
3284 }
3285
3286 /* If any signal numbers or symbol names were found, set flags for
3287 which signals to apply actions to. */
3288
3289 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3290 {
3291 switch ((enum target_signal) signum)
3292 {
3293 case TARGET_SIGNAL_TRAP:
3294 case TARGET_SIGNAL_INT:
3295 if (!allsigs && !sigs[signum])
3296 {
3297 if (query ("%s is used by the debugger.\n\
3298 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3299 {
3300 sigs[signum] = 1;
3301 }
3302 else
3303 {
3304 printf_unfiltered ("Not confirmed, unchanged.\n");
3305 gdb_flush (gdb_stdout);
3306 }
3307 }
3308 break;
3309 case TARGET_SIGNAL_0:
3310 case TARGET_SIGNAL_DEFAULT:
3311 case TARGET_SIGNAL_UNKNOWN:
3312 /* Make sure that "all" doesn't print these. */
3313 break;
3314 default:
3315 sigs[signum] = 1;
3316 break;
3317 }
3318 }
3319
3320 argv++;
3321 }
3322
3323 target_notice_signals (inferior_ptid);
3324
3325 if (from_tty)
3326 {
3327 /* Show the results. */
3328 sig_print_header ();
3329 for (signum = 0; signum < nsigs; signum++)
3330 {
3331 if (sigs[signum])
3332 {
3333 sig_print_info (signum);
3334 }
3335 }
3336 }
3337
3338 do_cleanups (old_chain);
3339 }
3340
3341 static void
3342 xdb_handle_command (char *args, int from_tty)
3343 {
3344 char **argv;
3345 struct cleanup *old_chain;
3346
3347 /* Break the command line up into args. */
3348
3349 argv = buildargv (args);
3350 if (argv == NULL)
3351 {
3352 nomem (0);
3353 }
3354 old_chain = make_cleanup_freeargv (argv);
3355 if (argv[1] != (char *) NULL)
3356 {
3357 char *argBuf;
3358 int bufLen;
3359
3360 bufLen = strlen (argv[0]) + 20;
3361 argBuf = (char *) xmalloc (bufLen);
3362 if (argBuf)
3363 {
3364 int validFlag = 1;
3365 enum target_signal oursig;
3366
3367 oursig = target_signal_from_name (argv[0]);
3368 memset (argBuf, 0, bufLen);
3369 if (strcmp (argv[1], "Q") == 0)
3370 sprintf (argBuf, "%s %s", argv[0], "noprint");
3371 else
3372 {
3373 if (strcmp (argv[1], "s") == 0)
3374 {
3375 if (!signal_stop[oursig])
3376 sprintf (argBuf, "%s %s", argv[0], "stop");
3377 else
3378 sprintf (argBuf, "%s %s", argv[0], "nostop");
3379 }
3380 else if (strcmp (argv[1], "i") == 0)
3381 {
3382 if (!signal_program[oursig])
3383 sprintf (argBuf, "%s %s", argv[0], "pass");
3384 else
3385 sprintf (argBuf, "%s %s", argv[0], "nopass");
3386 }
3387 else if (strcmp (argv[1], "r") == 0)
3388 {
3389 if (!signal_print[oursig])
3390 sprintf (argBuf, "%s %s", argv[0], "print");
3391 else
3392 sprintf (argBuf, "%s %s", argv[0], "noprint");
3393 }
3394 else
3395 validFlag = 0;
3396 }
3397 if (validFlag)
3398 handle_command (argBuf, from_tty);
3399 else
3400 printf_filtered ("Invalid signal handling flag.\n");
3401 if (argBuf)
3402 xfree (argBuf);
3403 }
3404 }
3405 do_cleanups (old_chain);
3406 }
3407
3408 /* Print current contents of the tables set by the handle command.
3409 It is possible we should just be printing signals actually used
3410 by the current target (but for things to work right when switching
3411 targets, all signals should be in the signal tables). */
3412
3413 static void
3414 signals_info (char *signum_exp, int from_tty)
3415 {
3416 enum target_signal oursig;
3417 sig_print_header ();
3418
3419 if (signum_exp)
3420 {
3421 /* First see if this is a symbol name. */
3422 oursig = target_signal_from_name (signum_exp);
3423 if (oursig == TARGET_SIGNAL_UNKNOWN)
3424 {
3425 /* No, try numeric. */
3426 oursig =
3427 target_signal_from_command (parse_and_eval_long (signum_exp));
3428 }
3429 sig_print_info (oursig);
3430 return;
3431 }
3432
3433 printf_filtered ("\n");
3434 /* These ugly casts brought to you by the native VAX compiler. */
3435 for (oursig = TARGET_SIGNAL_FIRST;
3436 (int) oursig < (int) TARGET_SIGNAL_LAST;
3437 oursig = (enum target_signal) ((int) oursig + 1))
3438 {
3439 QUIT;
3440
3441 if (oursig != TARGET_SIGNAL_UNKNOWN
3442 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3443 sig_print_info (oursig);
3444 }
3445
3446 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3447 }
3448 \f
3449 struct inferior_status
3450 {
3451 enum target_signal stop_signal;
3452 CORE_ADDR stop_pc;
3453 bpstat stop_bpstat;
3454 int stop_step;
3455 int stop_stack_dummy;
3456 int stopped_by_random_signal;
3457 int trap_expected;
3458 CORE_ADDR step_range_start;
3459 CORE_ADDR step_range_end;
3460 struct frame_id step_frame_id;
3461 enum step_over_calls_kind step_over_calls;
3462 CORE_ADDR step_resume_break_address;
3463 int stop_after_trap;
3464 int stop_soon;
3465 struct regcache *stop_registers;
3466
3467 /* These are here because if call_function_by_hand has written some
3468 registers and then decides to call error(), we better not have changed
3469 any registers. */
3470 struct regcache *registers;
3471
3472 /* A frame unique identifier. */
3473 struct frame_id selected_frame_id;
3474
3475 int breakpoint_proceeded;
3476 int restore_stack_info;
3477 int proceed_to_finish;
3478 };
3479
3480 void
3481 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3482 LONGEST val)
3483 {
3484 int size = DEPRECATED_REGISTER_RAW_SIZE (regno);
3485 void *buf = alloca (size);
3486 store_signed_integer (buf, size, val);
3487 regcache_raw_write (inf_status->registers, regno, buf);
3488 }
3489
3490 /* Save all of the information associated with the inferior<==>gdb
3491 connection. INF_STATUS is a pointer to a "struct inferior_status"
3492 (defined in inferior.h). */
3493
3494 struct inferior_status *
3495 save_inferior_status (int restore_stack_info)
3496 {
3497 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3498
3499 inf_status->stop_signal = stop_signal;
3500 inf_status->stop_pc = stop_pc;
3501 inf_status->stop_step = stop_step;
3502 inf_status->stop_stack_dummy = stop_stack_dummy;
3503 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3504 inf_status->trap_expected = trap_expected;
3505 inf_status->step_range_start = step_range_start;
3506 inf_status->step_range_end = step_range_end;
3507 inf_status->step_frame_id = step_frame_id;
3508 inf_status->step_over_calls = step_over_calls;
3509 inf_status->stop_after_trap = stop_after_trap;
3510 inf_status->stop_soon = stop_soon;
3511 /* Save original bpstat chain here; replace it with copy of chain.
3512 If caller's caller is walking the chain, they'll be happier if we
3513 hand them back the original chain when restore_inferior_status is
3514 called. */
3515 inf_status->stop_bpstat = stop_bpstat;
3516 stop_bpstat = bpstat_copy (stop_bpstat);
3517 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3518 inf_status->restore_stack_info = restore_stack_info;
3519 inf_status->proceed_to_finish = proceed_to_finish;
3520
3521 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3522
3523 inf_status->registers = regcache_dup (current_regcache);
3524
3525 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
3526 return inf_status;
3527 }
3528
3529 static int
3530 restore_selected_frame (void *args)
3531 {
3532 struct frame_id *fid = (struct frame_id *) args;
3533 struct frame_info *frame;
3534
3535 frame = frame_find_by_id (*fid);
3536
3537 /* If inf_status->selected_frame_id is NULL, there was no previously
3538 selected frame. */
3539 if (frame == NULL)
3540 {
3541 warning ("Unable to restore previously selected frame.\n");
3542 return 0;
3543 }
3544
3545 select_frame (frame);
3546
3547 return (1);
3548 }
3549
3550 void
3551 restore_inferior_status (struct inferior_status *inf_status)
3552 {
3553 stop_signal = inf_status->stop_signal;
3554 stop_pc = inf_status->stop_pc;
3555 stop_step = inf_status->stop_step;
3556 stop_stack_dummy = inf_status->stop_stack_dummy;
3557 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3558 trap_expected = inf_status->trap_expected;
3559 step_range_start = inf_status->step_range_start;
3560 step_range_end = inf_status->step_range_end;
3561 step_frame_id = inf_status->step_frame_id;
3562 step_over_calls = inf_status->step_over_calls;
3563 stop_after_trap = inf_status->stop_after_trap;
3564 stop_soon = inf_status->stop_soon;
3565 bpstat_clear (&stop_bpstat);
3566 stop_bpstat = inf_status->stop_bpstat;
3567 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3568 proceed_to_finish = inf_status->proceed_to_finish;
3569
3570 /* FIXME: Is the restore of stop_registers always needed. */
3571 regcache_xfree (stop_registers);
3572 stop_registers = inf_status->stop_registers;
3573
3574 /* The inferior can be gone if the user types "print exit(0)"
3575 (and perhaps other times). */
3576 if (target_has_execution)
3577 /* NB: The register write goes through to the target. */
3578 regcache_cpy (current_regcache, inf_status->registers);
3579 regcache_xfree (inf_status->registers);
3580
3581 /* FIXME: If we are being called after stopping in a function which
3582 is called from gdb, we should not be trying to restore the
3583 selected frame; it just prints a spurious error message (The
3584 message is useful, however, in detecting bugs in gdb (like if gdb
3585 clobbers the stack)). In fact, should we be restoring the
3586 inferior status at all in that case? . */
3587
3588 if (target_has_stack && inf_status->restore_stack_info)
3589 {
3590 /* The point of catch_errors is that if the stack is clobbered,
3591 walking the stack might encounter a garbage pointer and
3592 error() trying to dereference it. */
3593 if (catch_errors
3594 (restore_selected_frame, &inf_status->selected_frame_id,
3595 "Unable to restore previously selected frame:\n",
3596 RETURN_MASK_ERROR) == 0)
3597 /* Error in restoring the selected frame. Select the innermost
3598 frame. */
3599 select_frame (get_current_frame ());
3600
3601 }
3602
3603 xfree (inf_status);
3604 }
3605
3606 static void
3607 do_restore_inferior_status_cleanup (void *sts)
3608 {
3609 restore_inferior_status (sts);
3610 }
3611
3612 struct cleanup *
3613 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3614 {
3615 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3616 }
3617
3618 void
3619 discard_inferior_status (struct inferior_status *inf_status)
3620 {
3621 /* See save_inferior_status for info on stop_bpstat. */
3622 bpstat_clear (&inf_status->stop_bpstat);
3623 regcache_xfree (inf_status->registers);
3624 regcache_xfree (inf_status->stop_registers);
3625 xfree (inf_status);
3626 }
3627
3628 int
3629 inferior_has_forked (int pid, int *child_pid)
3630 {
3631 struct target_waitstatus last;
3632 ptid_t last_ptid;
3633
3634 get_last_target_status (&last_ptid, &last);
3635
3636 if (last.kind != TARGET_WAITKIND_FORKED)
3637 return 0;
3638
3639 if (ptid_get_pid (last_ptid) != pid)
3640 return 0;
3641
3642 *child_pid = last.value.related_pid;
3643 return 1;
3644 }
3645
3646 int
3647 inferior_has_vforked (int pid, int *child_pid)
3648 {
3649 struct target_waitstatus last;
3650 ptid_t last_ptid;
3651
3652 get_last_target_status (&last_ptid, &last);
3653
3654 if (last.kind != TARGET_WAITKIND_VFORKED)
3655 return 0;
3656
3657 if (ptid_get_pid (last_ptid) != pid)
3658 return 0;
3659
3660 *child_pid = last.value.related_pid;
3661 return 1;
3662 }
3663
3664 int
3665 inferior_has_execd (int pid, char **execd_pathname)
3666 {
3667 struct target_waitstatus last;
3668 ptid_t last_ptid;
3669
3670 get_last_target_status (&last_ptid, &last);
3671
3672 if (last.kind != TARGET_WAITKIND_EXECD)
3673 return 0;
3674
3675 if (ptid_get_pid (last_ptid) != pid)
3676 return 0;
3677
3678 *execd_pathname = xstrdup (last.value.execd_pathname);
3679 return 1;
3680 }
3681
3682 /* Oft used ptids */
3683 ptid_t null_ptid;
3684 ptid_t minus_one_ptid;
3685
3686 /* Create a ptid given the necessary PID, LWP, and TID components. */
3687
3688 ptid_t
3689 ptid_build (int pid, long lwp, long tid)
3690 {
3691 ptid_t ptid;
3692
3693 ptid.pid = pid;
3694 ptid.lwp = lwp;
3695 ptid.tid = tid;
3696 return ptid;
3697 }
3698
3699 /* Create a ptid from just a pid. */
3700
3701 ptid_t
3702 pid_to_ptid (int pid)
3703 {
3704 return ptid_build (pid, 0, 0);
3705 }
3706
3707 /* Fetch the pid (process id) component from a ptid. */
3708
3709 int
3710 ptid_get_pid (ptid_t ptid)
3711 {
3712 return ptid.pid;
3713 }
3714
3715 /* Fetch the lwp (lightweight process) component from a ptid. */
3716
3717 long
3718 ptid_get_lwp (ptid_t ptid)
3719 {
3720 return ptid.lwp;
3721 }
3722
3723 /* Fetch the tid (thread id) component from a ptid. */
3724
3725 long
3726 ptid_get_tid (ptid_t ptid)
3727 {
3728 return ptid.tid;
3729 }
3730
3731 /* ptid_equal() is used to test equality of two ptids. */
3732
3733 int
3734 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3735 {
3736 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3737 && ptid1.tid == ptid2.tid);
3738 }
3739
3740 /* restore_inferior_ptid() will be used by the cleanup machinery
3741 to restore the inferior_ptid value saved in a call to
3742 save_inferior_ptid(). */
3743
3744 static void
3745 restore_inferior_ptid (void *arg)
3746 {
3747 ptid_t *saved_ptid_ptr = arg;
3748 inferior_ptid = *saved_ptid_ptr;
3749 xfree (arg);
3750 }
3751
3752 /* Save the value of inferior_ptid so that it may be restored by a
3753 later call to do_cleanups(). Returns the struct cleanup pointer
3754 needed for later doing the cleanup. */
3755
3756 struct cleanup *
3757 save_inferior_ptid (void)
3758 {
3759 ptid_t *saved_ptid_ptr;
3760
3761 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3762 *saved_ptid_ptr = inferior_ptid;
3763 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3764 }
3765 \f
3766
3767 static void
3768 build_infrun (void)
3769 {
3770 stop_registers = regcache_xmalloc (current_gdbarch);
3771 }
3772
3773 void
3774 _initialize_infrun (void)
3775 {
3776 int i;
3777 int numsigs;
3778 struct cmd_list_element *c;
3779
3780 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3781 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3782
3783 add_info ("signals", signals_info,
3784 "What debugger does when program gets various signals.\n\
3785 Specify a signal as argument to print info on that signal only.");
3786 add_info_alias ("handle", "signals", 0);
3787
3788 add_com ("handle", class_run, handle_command,
3789 concat ("Specify how to handle a signal.\n\
3790 Args are signals and actions to apply to those signals.\n\
3791 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3792 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3793 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3794 The special arg \"all\" is recognized to mean all signals except those\n\
3795 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3796 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3797 Stop means reenter debugger if this signal happens (implies print).\n\
3798 Print means print a message if this signal happens.\n\
3799 Pass means let program see this signal; otherwise program doesn't know.\n\
3800 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3801 Pass and Stop may be combined.", NULL));
3802 if (xdb_commands)
3803 {
3804 add_com ("lz", class_info, signals_info,
3805 "What debugger does when program gets various signals.\n\
3806 Specify a signal as argument to print info on that signal only.");
3807 add_com ("z", class_run, xdb_handle_command,
3808 concat ("Specify how to handle a signal.\n\
3809 Args are signals and actions to apply to those signals.\n\
3810 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3811 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3812 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3813 The special arg \"all\" is recognized to mean all signals except those\n\
3814 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
3815 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3816 nopass), \"Q\" (noprint)\n\
3817 Stop means reenter debugger if this signal happens (implies print).\n\
3818 Print means print a message if this signal happens.\n\
3819 Pass means let program see this signal; otherwise program doesn't know.\n\
3820 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3821 Pass and Stop may be combined.", NULL));
3822 }
3823
3824 if (!dbx_commands)
3825 stop_command =
3826 add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\
3827 This allows you to set a list of commands to be run each time execution\n\
3828 of the program stops.", &cmdlist);
3829
3830 numsigs = (int) TARGET_SIGNAL_LAST;
3831 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3832 signal_print = (unsigned char *)
3833 xmalloc (sizeof (signal_print[0]) * numsigs);
3834 signal_program = (unsigned char *)
3835 xmalloc (sizeof (signal_program[0]) * numsigs);
3836 for (i = 0; i < numsigs; i++)
3837 {
3838 signal_stop[i] = 1;
3839 signal_print[i] = 1;
3840 signal_program[i] = 1;
3841 }
3842
3843 /* Signals caused by debugger's own actions
3844 should not be given to the program afterwards. */
3845 signal_program[TARGET_SIGNAL_TRAP] = 0;
3846 signal_program[TARGET_SIGNAL_INT] = 0;
3847
3848 /* Signals that are not errors should not normally enter the debugger. */
3849 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3850 signal_print[TARGET_SIGNAL_ALRM] = 0;
3851 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3852 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3853 signal_stop[TARGET_SIGNAL_PROF] = 0;
3854 signal_print[TARGET_SIGNAL_PROF] = 0;
3855 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3856 signal_print[TARGET_SIGNAL_CHLD] = 0;
3857 signal_stop[TARGET_SIGNAL_IO] = 0;
3858 signal_print[TARGET_SIGNAL_IO] = 0;
3859 signal_stop[TARGET_SIGNAL_POLL] = 0;
3860 signal_print[TARGET_SIGNAL_POLL] = 0;
3861 signal_stop[TARGET_SIGNAL_URG] = 0;
3862 signal_print[TARGET_SIGNAL_URG] = 0;
3863 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3864 signal_print[TARGET_SIGNAL_WINCH] = 0;
3865
3866 /* These signals are used internally by user-level thread
3867 implementations. (See signal(5) on Solaris.) Like the above
3868 signals, a healthy program receives and handles them as part of
3869 its normal operation. */
3870 signal_stop[TARGET_SIGNAL_LWP] = 0;
3871 signal_print[TARGET_SIGNAL_LWP] = 0;
3872 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3873 signal_print[TARGET_SIGNAL_WAITING] = 0;
3874 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3875 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3876
3877 #ifdef SOLIB_ADD
3878 add_show_from_set
3879 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
3880 (char *) &stop_on_solib_events,
3881 "Set stopping for shared library events.\n\
3882 If nonzero, gdb will give control to the user when the dynamic linker\n\
3883 notifies gdb of shared library events. The most common event of interest\n\
3884 to the user would be loading/unloading of a new library.\n", &setlist), &showlist);
3885 #endif
3886
3887 c = add_set_enum_cmd ("follow-fork-mode",
3888 class_run,
3889 follow_fork_mode_kind_names, &follow_fork_mode_string,
3890 "Set debugger response to a program call of fork \
3891 or vfork.\n\
3892 A fork or vfork creates a new process. follow-fork-mode can be:\n\
3893 parent - the original process is debugged after a fork\n\
3894 child - the new process is debugged after a fork\n\
3895 The unfollowed process will continue to run.\n\
3896 By default, the debugger will follow the parent process.", &setlist);
3897 add_show_from_set (c, &showlist);
3898
3899 c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums, /* array of string names */
3900 &scheduler_mode, /* current mode */
3901 "Set mode for locking scheduler during execution.\n\
3902 off == no locking (threads may preempt at any time)\n\
3903 on == full locking (no thread except the current thread may run)\n\
3904 step == scheduler locked during every single-step operation.\n\
3905 In this mode, no other thread may run during a step command.\n\
3906 Other threads may run while stepping over a function call ('next').", &setlist);
3907
3908 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
3909 add_show_from_set (c, &showlist);
3910
3911 c = add_set_cmd ("step-mode", class_run,
3912 var_boolean, (char *) &step_stop_if_no_debug,
3913 "Set mode of the step operation. When set, doing a step over a\n\
3914 function without debug line information will stop at the first\n\
3915 instruction of that function. Otherwise, the function is skipped and\n\
3916 the step command stops at a different source line.", &setlist);
3917 add_show_from_set (c, &showlist);
3918
3919 /* ptid initializations */
3920 null_ptid = ptid_build (0, 0, 0);
3921 minus_one_ptid = ptid_build (-1, 0, 0);
3922 inferior_ptid = null_ptid;
3923 target_last_wait_ptid = minus_one_ptid;
3924 }