]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
2004-09-13 Andrew Cagney <cagney@gnu.org>
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "breakpoint.h"
32 #include "gdb_wait.h"
33 #include "gdbcore.h"
34 #include "gdbcmd.h"
35 #include "cli/cli-script.h"
36 #include "target.h"
37 #include "gdbthread.h"
38 #include "annotate.h"
39 #include "symfile.h"
40 #include "top.h"
41 #include <signal.h>
42 #include "inf-loop.h"
43 #include "regcache.h"
44 #include "value.h"
45 #include "observer.h"
46 #include "language.h"
47 #include "gdb_assert.h"
48
49 /* Prototypes for local functions */
50
51 static void signals_info (char *, int);
52
53 static void handle_command (char *, int);
54
55 static void sig_print_info (enum target_signal);
56
57 static void sig_print_header (void);
58
59 static void resume_cleanups (void *);
60
61 static int hook_stop_stub (void *);
62
63 static int restore_selected_frame (void *);
64
65 static void build_infrun (void);
66
67 static int follow_fork (void);
68
69 static void set_schedlock_func (char *args, int from_tty,
70 struct cmd_list_element *c);
71
72 struct execution_control_state;
73
74 static int currently_stepping (struct execution_control_state *ecs);
75
76 static void xdb_handle_command (char *args, int from_tty);
77
78 static int prepare_to_proceed (void);
79
80 void _initialize_infrun (void);
81
82 int inferior_ignoring_startup_exec_events = 0;
83 int inferior_ignoring_leading_exec_events = 0;
84
85 /* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88 int step_stop_if_no_debug = 0;
89
90 /* In asynchronous mode, but simulating synchronous execution. */
91
92 int sync_execution = 0;
93
94 /* wait_for_inferior and normal_stop use this to notify the user
95 when the inferior stopped in a different thread than it had been
96 running in. */
97
98 static ptid_t previous_inferior_ptid;
99
100 /* This is true for configurations that may follow through execl() and
101 similar functions. At present this is only true for HP-UX native. */
102
103 #ifndef MAY_FOLLOW_EXEC
104 #define MAY_FOLLOW_EXEC (0)
105 #endif
106
107 static int may_follow_exec = MAY_FOLLOW_EXEC;
108
109 /* If the program uses ELF-style shared libraries, then calls to
110 functions in shared libraries go through stubs, which live in a
111 table called the PLT (Procedure Linkage Table). The first time the
112 function is called, the stub sends control to the dynamic linker,
113 which looks up the function's real address, patches the stub so
114 that future calls will go directly to the function, and then passes
115 control to the function.
116
117 If we are stepping at the source level, we don't want to see any of
118 this --- we just want to skip over the stub and the dynamic linker.
119 The simple approach is to single-step until control leaves the
120 dynamic linker.
121
122 However, on some systems (e.g., Red Hat's 5.2 distribution) the
123 dynamic linker calls functions in the shared C library, so you
124 can't tell from the PC alone whether the dynamic linker is still
125 running. In this case, we use a step-resume breakpoint to get us
126 past the dynamic linker, as if we were using "next" to step over a
127 function call.
128
129 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
130 linker code or not. Normally, this means we single-step. However,
131 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
132 address where we can place a step-resume breakpoint to get past the
133 linker's symbol resolution function.
134
135 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
136 pretty portable way, by comparing the PC against the address ranges
137 of the dynamic linker's sections.
138
139 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
140 it depends on internal details of the dynamic linker. It's usually
141 not too hard to figure out where to put a breakpoint, but it
142 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
143 sanity checking. If it can't figure things out, returning zero and
144 getting the (possibly confusing) stepping behavior is better than
145 signalling an error, which will obscure the change in the
146 inferior's state. */
147
148 #ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
149 #define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
150 #endif
151
152 /* This function returns TRUE if pc is the address of an instruction
153 that lies within the dynamic linker (such as the event hook, or the
154 dld itself).
155
156 This function must be used only when a dynamic linker event has
157 been caught, and the inferior is being stepped out of the hook, or
158 undefined results are guaranteed. */
159
160 #ifndef SOLIB_IN_DYNAMIC_LINKER
161 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
162 #endif
163
164 /* On some systems, the PC may be left pointing at an instruction that won't
165 actually be executed. This is usually indicated by a bit in the PSW. If
166 we find ourselves in such a state, then we step the target beyond the
167 nullified instruction before returning control to the user so as to avoid
168 confusion. */
169
170 #ifndef INSTRUCTION_NULLIFIED
171 #define INSTRUCTION_NULLIFIED 0
172 #endif
173
174 /* We can't step off a permanent breakpoint in the ordinary way, because we
175 can't remove it. Instead, we have to advance the PC to the next
176 instruction. This macro should expand to a pointer to a function that
177 does that, or zero if we have no such function. If we don't have a
178 definition for it, we have to report an error. */
179 #ifndef SKIP_PERMANENT_BREAKPOINT
180 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
181 static void
182 default_skip_permanent_breakpoint (void)
183 {
184 error ("\
185 The program is stopped at a permanent breakpoint, but GDB does not know\n\
186 how to step past a permanent breakpoint on this architecture. Try using\n\
187 a command like `return' or `jump' to continue execution.");
188 }
189 #endif
190
191
192 /* Convert the #defines into values. This is temporary until wfi control
193 flow is completely sorted out. */
194
195 #ifndef HAVE_STEPPABLE_WATCHPOINT
196 #define HAVE_STEPPABLE_WATCHPOINT 0
197 #else
198 #undef HAVE_STEPPABLE_WATCHPOINT
199 #define HAVE_STEPPABLE_WATCHPOINT 1
200 #endif
201
202 #ifndef CANNOT_STEP_HW_WATCHPOINTS
203 #define CANNOT_STEP_HW_WATCHPOINTS 0
204 #else
205 #undef CANNOT_STEP_HW_WATCHPOINTS
206 #define CANNOT_STEP_HW_WATCHPOINTS 1
207 #endif
208
209 /* Tables of how to react to signals; the user sets them. */
210
211 static unsigned char *signal_stop;
212 static unsigned char *signal_print;
213 static unsigned char *signal_program;
214
215 #define SET_SIGS(nsigs,sigs,flags) \
216 do { \
217 int signum = (nsigs); \
218 while (signum-- > 0) \
219 if ((sigs)[signum]) \
220 (flags)[signum] = 1; \
221 } while (0)
222
223 #define UNSET_SIGS(nsigs,sigs,flags) \
224 do { \
225 int signum = (nsigs); \
226 while (signum-- > 0) \
227 if ((sigs)[signum]) \
228 (flags)[signum] = 0; \
229 } while (0)
230
231 /* Value to pass to target_resume() to cause all threads to resume */
232
233 #define RESUME_ALL (pid_to_ptid (-1))
234
235 /* Command list pointer for the "stop" placeholder. */
236
237 static struct cmd_list_element *stop_command;
238
239 /* Nonzero if breakpoints are now inserted in the inferior. */
240
241 static int breakpoints_inserted;
242
243 /* Function inferior was in as of last step command. */
244
245 static struct symbol *step_start_function;
246
247 /* Nonzero if we are expecting a trace trap and should proceed from it. */
248
249 static int trap_expected;
250
251 #ifdef SOLIB_ADD
252 /* Nonzero if we want to give control to the user when we're notified
253 of shared library events by the dynamic linker. */
254 static int stop_on_solib_events;
255 #endif
256
257 /* Nonzero means expecting a trace trap
258 and should stop the inferior and return silently when it happens. */
259
260 int stop_after_trap;
261
262 /* Nonzero means expecting a trap and caller will handle it themselves.
263 It is used after attach, due to attaching to a process;
264 when running in the shell before the child program has been exec'd;
265 and when running some kinds of remote stuff (FIXME?). */
266
267 enum stop_kind stop_soon;
268
269 /* Nonzero if proceed is being used for a "finish" command or a similar
270 situation when stop_registers should be saved. */
271
272 int proceed_to_finish;
273
274 /* Save register contents here when about to pop a stack dummy frame,
275 if-and-only-if proceed_to_finish is set.
276 Thus this contains the return value from the called function (assuming
277 values are returned in a register). */
278
279 struct regcache *stop_registers;
280
281 /* Nonzero if program stopped due to error trying to insert breakpoints. */
282
283 static int breakpoints_failed;
284
285 /* Nonzero after stop if current stack frame should be printed. */
286
287 static int stop_print_frame;
288
289 static struct breakpoint *step_resume_breakpoint = NULL;
290
291 /* On some platforms (e.g., HP-UX), hardware watchpoints have bad
292 interactions with an inferior that is running a kernel function
293 (aka, a system call or "syscall"). wait_for_inferior therefore
294 may have a need to know when the inferior is in a syscall. This
295 is a count of the number of inferior threads which are known to
296 currently be running in a syscall. */
297 static int number_of_threads_in_syscalls;
298
299 /* This is a cached copy of the pid/waitstatus of the last event
300 returned by target_wait()/deprecated_target_wait_hook(). This
301 information is returned by get_last_target_status(). */
302 static ptid_t target_last_wait_ptid;
303 static struct target_waitstatus target_last_waitstatus;
304
305 /* This is used to remember when a fork, vfork or exec event
306 was caught by a catchpoint, and thus the event is to be
307 followed at the next resume of the inferior, and not
308 immediately. */
309 static struct
310 {
311 enum target_waitkind kind;
312 struct
313 {
314 int parent_pid;
315 int child_pid;
316 }
317 fork_event;
318 char *execd_pathname;
319 }
320 pending_follow;
321
322 static const char follow_fork_mode_child[] = "child";
323 static const char follow_fork_mode_parent[] = "parent";
324
325 static const char *follow_fork_mode_kind_names[] = {
326 follow_fork_mode_child,
327 follow_fork_mode_parent,
328 NULL
329 };
330
331 static const char *follow_fork_mode_string = follow_fork_mode_parent;
332 \f
333
334 static int
335 follow_fork (void)
336 {
337 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
338
339 return target_follow_fork (follow_child);
340 }
341
342 void
343 follow_inferior_reset_breakpoints (void)
344 {
345 /* Was there a step_resume breakpoint? (There was if the user
346 did a "next" at the fork() call.) If so, explicitly reset its
347 thread number.
348
349 step_resumes are a form of bp that are made to be per-thread.
350 Since we created the step_resume bp when the parent process
351 was being debugged, and now are switching to the child process,
352 from the breakpoint package's viewpoint, that's a switch of
353 "threads". We must update the bp's notion of which thread
354 it is for, or it'll be ignored when it triggers. */
355
356 if (step_resume_breakpoint)
357 breakpoint_re_set_thread (step_resume_breakpoint);
358
359 /* Reinsert all breakpoints in the child. The user may have set
360 breakpoints after catching the fork, in which case those
361 were never set in the child, but only in the parent. This makes
362 sure the inserted breakpoints match the breakpoint list. */
363
364 breakpoint_re_set ();
365 insert_breakpoints ();
366 }
367
368 /* EXECD_PATHNAME is assumed to be non-NULL. */
369
370 static void
371 follow_exec (int pid, char *execd_pathname)
372 {
373 int saved_pid = pid;
374 struct target_ops *tgt;
375
376 if (!may_follow_exec)
377 return;
378
379 /* This is an exec event that we actually wish to pay attention to.
380 Refresh our symbol table to the newly exec'd program, remove any
381 momentary bp's, etc.
382
383 If there are breakpoints, they aren't really inserted now,
384 since the exec() transformed our inferior into a fresh set
385 of instructions.
386
387 We want to preserve symbolic breakpoints on the list, since
388 we have hopes that they can be reset after the new a.out's
389 symbol table is read.
390
391 However, any "raw" breakpoints must be removed from the list
392 (e.g., the solib bp's), since their address is probably invalid
393 now.
394
395 And, we DON'T want to call delete_breakpoints() here, since
396 that may write the bp's "shadow contents" (the instruction
397 value that was overwritten witha TRAP instruction). Since
398 we now have a new a.out, those shadow contents aren't valid. */
399 update_breakpoints_after_exec ();
400
401 /* If there was one, it's gone now. We cannot truly step-to-next
402 statement through an exec(). */
403 step_resume_breakpoint = NULL;
404 step_range_start = 0;
405 step_range_end = 0;
406
407 /* What is this a.out's name? */
408 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
409
410 /* We've followed the inferior through an exec. Therefore, the
411 inferior has essentially been killed & reborn. */
412
413 /* First collect the run target in effect. */
414 tgt = find_run_target ();
415 /* If we can't find one, things are in a very strange state... */
416 if (tgt == NULL)
417 error ("Could find run target to save before following exec");
418
419 gdb_flush (gdb_stdout);
420 target_mourn_inferior ();
421 inferior_ptid = pid_to_ptid (saved_pid);
422 /* Because mourn_inferior resets inferior_ptid. */
423 push_target (tgt);
424
425 /* That a.out is now the one to use. */
426 exec_file_attach (execd_pathname, 0);
427
428 /* And also is where symbols can be found. */
429 symbol_file_add_main (execd_pathname, 0);
430
431 /* Reset the shared library package. This ensures that we get
432 a shlib event when the child reaches "_start", at which point
433 the dld will have had a chance to initialize the child. */
434 #if defined(SOLIB_RESTART)
435 SOLIB_RESTART ();
436 #endif
437 #ifdef SOLIB_CREATE_INFERIOR_HOOK
438 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
439 #endif
440
441 /* Reinsert all breakpoints. (Those which were symbolic have
442 been reset to the proper address in the new a.out, thanks
443 to symbol_file_command...) */
444 insert_breakpoints ();
445
446 /* The next resume of this inferior should bring it to the shlib
447 startup breakpoints. (If the user had also set bp's on
448 "main" from the old (parent) process, then they'll auto-
449 matically get reset there in the new process.) */
450 }
451
452 /* Non-zero if we just simulating a single-step. This is needed
453 because we cannot remove the breakpoints in the inferior process
454 until after the `wait' in `wait_for_inferior'. */
455 static int singlestep_breakpoints_inserted_p = 0;
456
457 /* The thread we inserted single-step breakpoints for. */
458 static ptid_t singlestep_ptid;
459
460 /* If another thread hit the singlestep breakpoint, we save the original
461 thread here so that we can resume single-stepping it later. */
462 static ptid_t saved_singlestep_ptid;
463 static int stepping_past_singlestep_breakpoint;
464 \f
465
466 /* Things to clean up if we QUIT out of resume (). */
467 static void
468 resume_cleanups (void *ignore)
469 {
470 normal_stop ();
471 }
472
473 static const char schedlock_off[] = "off";
474 static const char schedlock_on[] = "on";
475 static const char schedlock_step[] = "step";
476 static const char *scheduler_mode = schedlock_off;
477 static const char *scheduler_enums[] = {
478 schedlock_off,
479 schedlock_on,
480 schedlock_step,
481 NULL
482 };
483
484 static void
485 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
486 {
487 /* NOTE: cagney/2002-03-17: The deprecated_add_show_from_set()
488 function clones the set command passed as a parameter. The clone
489 operation will include (BUG?) any ``set'' command callback, if
490 present. Commands like ``info set'' call all the ``show''
491 command callbacks. Unfortunately, for ``show'' commands cloned
492 from ``set'', this includes callbacks belonging to ``set''
493 commands. Making this worse, this only occures if
494 deprecated_add_show_from_set() is called after add_cmd_sfunc()
495 (BUG?). */
496 if (cmd_type (c) == set_cmd)
497 if (!target_can_lock_scheduler)
498 {
499 scheduler_mode = schedlock_off;
500 error ("Target '%s' cannot support this command.", target_shortname);
501 }
502 }
503
504
505 /* Resume the inferior, but allow a QUIT. This is useful if the user
506 wants to interrupt some lengthy single-stepping operation
507 (for child processes, the SIGINT goes to the inferior, and so
508 we get a SIGINT random_signal, but for remote debugging and perhaps
509 other targets, that's not true).
510
511 STEP nonzero if we should step (zero to continue instead).
512 SIG is the signal to give the inferior (zero for none). */
513 void
514 resume (int step, enum target_signal sig)
515 {
516 int should_resume = 1;
517 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
518 QUIT;
519
520 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
521
522
523 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
524 over an instruction that causes a page fault without triggering
525 a hardware watchpoint. The kernel properly notices that it shouldn't
526 stop, because the hardware watchpoint is not triggered, but it forgets
527 the step request and continues the program normally.
528 Work around the problem by removing hardware watchpoints if a step is
529 requested, GDB will check for a hardware watchpoint trigger after the
530 step anyway. */
531 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
532 remove_hw_watchpoints ();
533
534
535 /* Normally, by the time we reach `resume', the breakpoints are either
536 removed or inserted, as appropriate. The exception is if we're sitting
537 at a permanent breakpoint; we need to step over it, but permanent
538 breakpoints can't be removed. So we have to test for it here. */
539 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
540 SKIP_PERMANENT_BREAKPOINT ();
541
542 if (SOFTWARE_SINGLE_STEP_P () && step)
543 {
544 /* Do it the hard way, w/temp breakpoints */
545 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
546 /* ...and don't ask hardware to do it. */
547 step = 0;
548 /* and do not pull these breakpoints until after a `wait' in
549 `wait_for_inferior' */
550 singlestep_breakpoints_inserted_p = 1;
551 singlestep_ptid = inferior_ptid;
552 }
553
554 /* If there were any forks/vforks/execs that were caught and are
555 now to be followed, then do so. */
556 switch (pending_follow.kind)
557 {
558 case TARGET_WAITKIND_FORKED:
559 case TARGET_WAITKIND_VFORKED:
560 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
561 if (follow_fork ())
562 should_resume = 0;
563 break;
564
565 case TARGET_WAITKIND_EXECD:
566 /* follow_exec is called as soon as the exec event is seen. */
567 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
568 break;
569
570 default:
571 break;
572 }
573
574 /* Install inferior's terminal modes. */
575 target_terminal_inferior ();
576
577 if (should_resume)
578 {
579 ptid_t resume_ptid;
580
581 resume_ptid = RESUME_ALL; /* Default */
582
583 if ((step || singlestep_breakpoints_inserted_p)
584 && (stepping_past_singlestep_breakpoint
585 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
586 {
587 /* Stepping past a breakpoint without inserting breakpoints.
588 Make sure only the current thread gets to step, so that
589 other threads don't sneak past breakpoints while they are
590 not inserted. */
591
592 resume_ptid = inferior_ptid;
593 }
594
595 if ((scheduler_mode == schedlock_on)
596 || (scheduler_mode == schedlock_step
597 && (step || singlestep_breakpoints_inserted_p)))
598 {
599 /* User-settable 'scheduler' mode requires solo thread resume. */
600 resume_ptid = inferior_ptid;
601 }
602
603 if (CANNOT_STEP_BREAKPOINT)
604 {
605 /* Most targets can step a breakpoint instruction, thus
606 executing it normally. But if this one cannot, just
607 continue and we will hit it anyway. */
608 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
609 step = 0;
610 }
611 target_resume (resume_ptid, step, sig);
612 }
613
614 discard_cleanups (old_cleanups);
615 }
616 \f
617
618 /* Clear out all variables saying what to do when inferior is continued.
619 First do this, then set the ones you want, then call `proceed'. */
620
621 void
622 clear_proceed_status (void)
623 {
624 trap_expected = 0;
625 step_range_start = 0;
626 step_range_end = 0;
627 step_frame_id = null_frame_id;
628 step_over_calls = STEP_OVER_UNDEBUGGABLE;
629 stop_after_trap = 0;
630 stop_soon = NO_STOP_QUIETLY;
631 proceed_to_finish = 0;
632 breakpoint_proceeded = 1; /* We're about to proceed... */
633
634 /* Discard any remaining commands or status from previous stop. */
635 bpstat_clear (&stop_bpstat);
636 }
637
638 /* This should be suitable for any targets that support threads. */
639
640 static int
641 prepare_to_proceed (void)
642 {
643 ptid_t wait_ptid;
644 struct target_waitstatus wait_status;
645
646 /* Get the last target status returned by target_wait(). */
647 get_last_target_status (&wait_ptid, &wait_status);
648
649 /* Make sure we were stopped either at a breakpoint, or because
650 of a Ctrl-C. */
651 if (wait_status.kind != TARGET_WAITKIND_STOPPED
652 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
653 && wait_status.value.sig != TARGET_SIGNAL_INT))
654 {
655 return 0;
656 }
657
658 if (!ptid_equal (wait_ptid, minus_one_ptid)
659 && !ptid_equal (inferior_ptid, wait_ptid))
660 {
661 /* Switched over from WAIT_PID. */
662 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
663
664 if (wait_pc != read_pc ())
665 {
666 /* Switch back to WAIT_PID thread. */
667 inferior_ptid = wait_ptid;
668
669 /* FIXME: This stuff came from switch_to_thread() in
670 thread.c (which should probably be a public function). */
671 flush_cached_frames ();
672 registers_changed ();
673 stop_pc = wait_pc;
674 select_frame (get_current_frame ());
675 }
676
677 /* We return 1 to indicate that there is a breakpoint here,
678 so we need to step over it before continuing to avoid
679 hitting it straight away. */
680 if (breakpoint_here_p (wait_pc))
681 return 1;
682 }
683
684 return 0;
685
686 }
687
688 /* Record the pc of the program the last time it stopped. This is
689 just used internally by wait_for_inferior, but need to be preserved
690 over calls to it and cleared when the inferior is started. */
691 static CORE_ADDR prev_pc;
692
693 /* Basic routine for continuing the program in various fashions.
694
695 ADDR is the address to resume at, or -1 for resume where stopped.
696 SIGGNAL is the signal to give it, or 0 for none,
697 or -1 for act according to how it stopped.
698 STEP is nonzero if should trap after one instruction.
699 -1 means return after that and print nothing.
700 You should probably set various step_... variables
701 before calling here, if you are stepping.
702
703 You should call clear_proceed_status before calling proceed. */
704
705 void
706 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
707 {
708 int oneproc = 0;
709
710 if (step > 0)
711 step_start_function = find_pc_function (read_pc ());
712 if (step < 0)
713 stop_after_trap = 1;
714
715 if (addr == (CORE_ADDR) -1)
716 {
717 /* If there is a breakpoint at the address we will resume at,
718 step one instruction before inserting breakpoints
719 so that we do not stop right away (and report a second
720 hit at this breakpoint). */
721
722 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
723 oneproc = 1;
724
725 #ifndef STEP_SKIPS_DELAY
726 #define STEP_SKIPS_DELAY(pc) (0)
727 #define STEP_SKIPS_DELAY_P (0)
728 #endif
729 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
730 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
731 is slow (it needs to read memory from the target). */
732 if (STEP_SKIPS_DELAY_P
733 && breakpoint_here_p (read_pc () + 4)
734 && STEP_SKIPS_DELAY (read_pc ()))
735 oneproc = 1;
736 }
737 else
738 {
739 write_pc (addr);
740 }
741
742 /* In a multi-threaded task we may select another thread
743 and then continue or step.
744
745 But if the old thread was stopped at a breakpoint, it
746 will immediately cause another breakpoint stop without
747 any execution (i.e. it will report a breakpoint hit
748 incorrectly). So we must step over it first.
749
750 prepare_to_proceed checks the current thread against the thread
751 that reported the most recent event. If a step-over is required
752 it returns TRUE and sets the current thread to the old thread. */
753 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
754 oneproc = 1;
755
756 if (oneproc)
757 /* We will get a trace trap after one instruction.
758 Continue it automatically and insert breakpoints then. */
759 trap_expected = 1;
760 else
761 {
762 insert_breakpoints ();
763 /* If we get here there was no call to error() in
764 insert breakpoints -- so they were inserted. */
765 breakpoints_inserted = 1;
766 }
767
768 if (siggnal != TARGET_SIGNAL_DEFAULT)
769 stop_signal = siggnal;
770 /* If this signal should not be seen by program,
771 give it zero. Used for debugging signals. */
772 else if (!signal_program[stop_signal])
773 stop_signal = TARGET_SIGNAL_0;
774
775 annotate_starting ();
776
777 /* Make sure that output from GDB appears before output from the
778 inferior. */
779 gdb_flush (gdb_stdout);
780
781 /* Refresh prev_pc value just prior to resuming. This used to be
782 done in stop_stepping, however, setting prev_pc there did not handle
783 scenarios such as inferior function calls or returning from
784 a function via the return command. In those cases, the prev_pc
785 value was not set properly for subsequent commands. The prev_pc value
786 is used to initialize the starting line number in the ecs. With an
787 invalid value, the gdb next command ends up stopping at the position
788 represented by the next line table entry past our start position.
789 On platforms that generate one line table entry per line, this
790 is not a problem. However, on the ia64, the compiler generates
791 extraneous line table entries that do not increase the line number.
792 When we issue the gdb next command on the ia64 after an inferior call
793 or a return command, we often end up a few instructions forward, still
794 within the original line we started.
795
796 An attempt was made to have init_execution_control_state () refresh
797 the prev_pc value before calculating the line number. This approach
798 did not work because on platforms that use ptrace, the pc register
799 cannot be read unless the inferior is stopped. At that point, we
800 are not guaranteed the inferior is stopped and so the read_pc ()
801 call can fail. Setting the prev_pc value here ensures the value is
802 updated correctly when the inferior is stopped. */
803 prev_pc = read_pc ();
804
805 /* Resume inferior. */
806 resume (oneproc || step || bpstat_should_step (), stop_signal);
807
808 /* Wait for it to stop (if not standalone)
809 and in any case decode why it stopped, and act accordingly. */
810 /* Do this only if we are not using the event loop, or if the target
811 does not support asynchronous execution. */
812 if (!target_can_async_p ())
813 {
814 wait_for_inferior ();
815 normal_stop ();
816 }
817 }
818 \f
819
820 /* Start remote-debugging of a machine over a serial link. */
821
822 void
823 start_remote (void)
824 {
825 init_thread_list ();
826 init_wait_for_inferior ();
827 stop_soon = STOP_QUIETLY;
828 trap_expected = 0;
829
830 /* Always go on waiting for the target, regardless of the mode. */
831 /* FIXME: cagney/1999-09-23: At present it isn't possible to
832 indicate to wait_for_inferior that a target should timeout if
833 nothing is returned (instead of just blocking). Because of this,
834 targets expecting an immediate response need to, internally, set
835 things up so that the target_wait() is forced to eventually
836 timeout. */
837 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
838 differentiate to its caller what the state of the target is after
839 the initial open has been performed. Here we're assuming that
840 the target has stopped. It should be possible to eventually have
841 target_open() return to the caller an indication that the target
842 is currently running and GDB state should be set to the same as
843 for an async run. */
844 wait_for_inferior ();
845 normal_stop ();
846 }
847
848 /* Initialize static vars when a new inferior begins. */
849
850 void
851 init_wait_for_inferior (void)
852 {
853 /* These are meaningless until the first time through wait_for_inferior. */
854 prev_pc = 0;
855
856 breakpoints_inserted = 0;
857 breakpoint_init_inferior (inf_starting);
858
859 /* Don't confuse first call to proceed(). */
860 stop_signal = TARGET_SIGNAL_0;
861
862 /* The first resume is not following a fork/vfork/exec. */
863 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
864
865 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
866 number_of_threads_in_syscalls = 0;
867
868 clear_proceed_status ();
869
870 stepping_past_singlestep_breakpoint = 0;
871 }
872 \f
873 /* This enum encodes possible reasons for doing a target_wait, so that
874 wfi can call target_wait in one place. (Ultimately the call will be
875 moved out of the infinite loop entirely.) */
876
877 enum infwait_states
878 {
879 infwait_normal_state,
880 infwait_thread_hop_state,
881 infwait_nullified_state,
882 infwait_nonstep_watch_state
883 };
884
885 /* Why did the inferior stop? Used to print the appropriate messages
886 to the interface from within handle_inferior_event(). */
887 enum inferior_stop_reason
888 {
889 /* We don't know why. */
890 STOP_UNKNOWN,
891 /* Step, next, nexti, stepi finished. */
892 END_STEPPING_RANGE,
893 /* Found breakpoint. */
894 BREAKPOINT_HIT,
895 /* Inferior terminated by signal. */
896 SIGNAL_EXITED,
897 /* Inferior exited. */
898 EXITED,
899 /* Inferior received signal, and user asked to be notified. */
900 SIGNAL_RECEIVED
901 };
902
903 /* This structure contains what used to be local variables in
904 wait_for_inferior. Probably many of them can return to being
905 locals in handle_inferior_event. */
906
907 struct execution_control_state
908 {
909 struct target_waitstatus ws;
910 struct target_waitstatus *wp;
911 int another_trap;
912 int random_signal;
913 CORE_ADDR stop_func_start;
914 CORE_ADDR stop_func_end;
915 char *stop_func_name;
916 struct symtab_and_line sal;
917 int current_line;
918 struct symtab *current_symtab;
919 int handling_longjmp; /* FIXME */
920 ptid_t ptid;
921 ptid_t saved_inferior_ptid;
922 int step_after_step_resume_breakpoint;
923 int stepping_through_solib_after_catch;
924 bpstat stepping_through_solib_catchpoints;
925 int enable_hw_watchpoints_after_wait;
926 int new_thread_event;
927 struct target_waitstatus tmpstatus;
928 enum infwait_states infwait_state;
929 ptid_t waiton_ptid;
930 int wait_some_more;
931 };
932
933 void init_execution_control_state (struct execution_control_state *ecs);
934
935 void handle_inferior_event (struct execution_control_state *ecs);
936
937 static void step_into_function (struct execution_control_state *ecs);
938 static void insert_step_resume_breakpoint (struct frame_info *step_frame,
939 struct execution_control_state
940 *ecs);
941 static void stop_stepping (struct execution_control_state *ecs);
942 static void prepare_to_wait (struct execution_control_state *ecs);
943 static void keep_going (struct execution_control_state *ecs);
944 static void print_stop_reason (enum inferior_stop_reason stop_reason,
945 int stop_info);
946
947 /* Wait for control to return from inferior to debugger.
948 If inferior gets a signal, we may decide to start it up again
949 instead of returning. That is why there is a loop in this function.
950 When this function actually returns it means the inferior
951 should be left stopped and GDB should read more commands. */
952
953 void
954 wait_for_inferior (void)
955 {
956 struct cleanup *old_cleanups;
957 struct execution_control_state ecss;
958 struct execution_control_state *ecs;
959
960 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
961 &step_resume_breakpoint);
962
963 /* wfi still stays in a loop, so it's OK just to take the address of
964 a local to get the ecs pointer. */
965 ecs = &ecss;
966
967 /* Fill in with reasonable starting values. */
968 init_execution_control_state (ecs);
969
970 /* We'll update this if & when we switch to a new thread. */
971 previous_inferior_ptid = inferior_ptid;
972
973 overlay_cache_invalid = 1;
974
975 /* We have to invalidate the registers BEFORE calling target_wait
976 because they can be loaded from the target while in target_wait.
977 This makes remote debugging a bit more efficient for those
978 targets that provide critical registers as part of their normal
979 status mechanism. */
980
981 registers_changed ();
982
983 while (1)
984 {
985 if (deprecated_target_wait_hook)
986 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
987 else
988 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
989
990 /* Now figure out what to do with the result of the result. */
991 handle_inferior_event (ecs);
992
993 if (!ecs->wait_some_more)
994 break;
995 }
996 do_cleanups (old_cleanups);
997 }
998
999 /* Asynchronous version of wait_for_inferior. It is called by the
1000 event loop whenever a change of state is detected on the file
1001 descriptor corresponding to the target. It can be called more than
1002 once to complete a single execution command. In such cases we need
1003 to keep the state in a global variable ASYNC_ECSS. If it is the
1004 last time that this function is called for a single execution
1005 command, then report to the user that the inferior has stopped, and
1006 do the necessary cleanups. */
1007
1008 struct execution_control_state async_ecss;
1009 struct execution_control_state *async_ecs;
1010
1011 void
1012 fetch_inferior_event (void *client_data)
1013 {
1014 static struct cleanup *old_cleanups;
1015
1016 async_ecs = &async_ecss;
1017
1018 if (!async_ecs->wait_some_more)
1019 {
1020 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1021 &step_resume_breakpoint);
1022
1023 /* Fill in with reasonable starting values. */
1024 init_execution_control_state (async_ecs);
1025
1026 /* We'll update this if & when we switch to a new thread. */
1027 previous_inferior_ptid = inferior_ptid;
1028
1029 overlay_cache_invalid = 1;
1030
1031 /* We have to invalidate the registers BEFORE calling target_wait
1032 because they can be loaded from the target while in target_wait.
1033 This makes remote debugging a bit more efficient for those
1034 targets that provide critical registers as part of their normal
1035 status mechanism. */
1036
1037 registers_changed ();
1038 }
1039
1040 if (deprecated_target_wait_hook)
1041 async_ecs->ptid =
1042 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1043 else
1044 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1045
1046 /* Now figure out what to do with the result of the result. */
1047 handle_inferior_event (async_ecs);
1048
1049 if (!async_ecs->wait_some_more)
1050 {
1051 /* Do only the cleanups that have been added by this
1052 function. Let the continuations for the commands do the rest,
1053 if there are any. */
1054 do_exec_cleanups (old_cleanups);
1055 normal_stop ();
1056 if (step_multi && stop_step)
1057 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1058 else
1059 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1060 }
1061 }
1062
1063 /* Prepare an execution control state for looping through a
1064 wait_for_inferior-type loop. */
1065
1066 void
1067 init_execution_control_state (struct execution_control_state *ecs)
1068 {
1069 /* ecs->another_trap? */
1070 ecs->random_signal = 0;
1071 ecs->step_after_step_resume_breakpoint = 0;
1072 ecs->handling_longjmp = 0; /* FIXME */
1073 ecs->stepping_through_solib_after_catch = 0;
1074 ecs->stepping_through_solib_catchpoints = NULL;
1075 ecs->enable_hw_watchpoints_after_wait = 0;
1076 ecs->sal = find_pc_line (prev_pc, 0);
1077 ecs->current_line = ecs->sal.line;
1078 ecs->current_symtab = ecs->sal.symtab;
1079 ecs->infwait_state = infwait_normal_state;
1080 ecs->waiton_ptid = pid_to_ptid (-1);
1081 ecs->wp = &(ecs->ws);
1082 }
1083
1084 /* Call this function before setting step_resume_breakpoint, as a
1085 sanity check. There should never be more than one step-resume
1086 breakpoint per thread, so we should never be setting a new
1087 step_resume_breakpoint when one is already active. */
1088 static void
1089 check_for_old_step_resume_breakpoint (void)
1090 {
1091 if (step_resume_breakpoint)
1092 warning
1093 ("GDB bug: infrun.c (wait_for_inferior): dropping old step_resume breakpoint");
1094 }
1095
1096 /* Return the cached copy of the last pid/waitstatus returned by
1097 target_wait()/deprecated_target_wait_hook(). The data is actually
1098 cached by handle_inferior_event(), which gets called immediately
1099 after target_wait()/deprecated_target_wait_hook(). */
1100
1101 void
1102 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1103 {
1104 *ptidp = target_last_wait_ptid;
1105 *status = target_last_waitstatus;
1106 }
1107
1108 /* Switch thread contexts, maintaining "infrun state". */
1109
1110 static void
1111 context_switch (struct execution_control_state *ecs)
1112 {
1113 /* Caution: it may happen that the new thread (or the old one!)
1114 is not in the thread list. In this case we must not attempt
1115 to "switch context", or we run the risk that our context may
1116 be lost. This may happen as a result of the target module
1117 mishandling thread creation. */
1118
1119 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1120 { /* Perform infrun state context switch: */
1121 /* Save infrun state for the old thread. */
1122 save_infrun_state (inferior_ptid, prev_pc,
1123 trap_expected, step_resume_breakpoint,
1124 step_range_start,
1125 step_range_end, &step_frame_id,
1126 ecs->handling_longjmp, ecs->another_trap,
1127 ecs->stepping_through_solib_after_catch,
1128 ecs->stepping_through_solib_catchpoints,
1129 ecs->current_line, ecs->current_symtab);
1130
1131 /* Load infrun state for the new thread. */
1132 load_infrun_state (ecs->ptid, &prev_pc,
1133 &trap_expected, &step_resume_breakpoint,
1134 &step_range_start,
1135 &step_range_end, &step_frame_id,
1136 &ecs->handling_longjmp, &ecs->another_trap,
1137 &ecs->stepping_through_solib_after_catch,
1138 &ecs->stepping_through_solib_catchpoints,
1139 &ecs->current_line, &ecs->current_symtab);
1140 }
1141 inferior_ptid = ecs->ptid;
1142 }
1143
1144 static void
1145 adjust_pc_after_break (struct execution_control_state *ecs)
1146 {
1147 CORE_ADDR breakpoint_pc;
1148
1149 /* If this target does not decrement the PC after breakpoints, then
1150 we have nothing to do. */
1151 if (DECR_PC_AFTER_BREAK == 0)
1152 return;
1153
1154 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1155 we aren't, just return.
1156
1157 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1158 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1159 by software breakpoints should be handled through the normal breakpoint
1160 layer.
1161
1162 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1163 different signals (SIGILL or SIGEMT for instance), but it is less
1164 clear where the PC is pointing afterwards. It may not match
1165 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1166 these signals at breakpoints (the code has been in GDB since at least
1167 1992) so I can not guess how to handle them here.
1168
1169 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1170 would have the PC after hitting a watchpoint affected by
1171 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1172 in GDB history, and it seems unlikely to be correct, so
1173 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1174
1175 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1176 return;
1177
1178 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1179 return;
1180
1181 /* Find the location where (if we've hit a breakpoint) the
1182 breakpoint would be. */
1183 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1184
1185 if (SOFTWARE_SINGLE_STEP_P ())
1186 {
1187 /* When using software single-step, a SIGTRAP can only indicate
1188 an inserted breakpoint. This actually makes things
1189 easier. */
1190 if (singlestep_breakpoints_inserted_p)
1191 /* When software single stepping, the instruction at [prev_pc]
1192 is never a breakpoint, but the instruction following
1193 [prev_pc] (in program execution order) always is. Assume
1194 that following instruction was reached and hence a software
1195 breakpoint was hit. */
1196 write_pc_pid (breakpoint_pc, ecs->ptid);
1197 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1198 /* The inferior was free running (i.e., no single-step
1199 breakpoints inserted) and it hit a software breakpoint. */
1200 write_pc_pid (breakpoint_pc, ecs->ptid);
1201 }
1202 else
1203 {
1204 /* When using hardware single-step, a SIGTRAP is reported for
1205 both a completed single-step and a software breakpoint. Need
1206 to differentiate between the two as the latter needs
1207 adjusting but the former does not. */
1208 if (currently_stepping (ecs))
1209 {
1210 if (prev_pc == breakpoint_pc
1211 && software_breakpoint_inserted_here_p (breakpoint_pc))
1212 /* Hardware single-stepped a software breakpoint (as
1213 occures when the inferior is resumed with PC pointing
1214 at not-yet-hit software breakpoint). Since the
1215 breakpoint really is executed, the inferior needs to be
1216 backed up to the breakpoint address. */
1217 write_pc_pid (breakpoint_pc, ecs->ptid);
1218 }
1219 else
1220 {
1221 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1222 /* The inferior was free running (i.e., no hardware
1223 single-step and no possibility of a false SIGTRAP) and
1224 hit a software breakpoint. */
1225 write_pc_pid (breakpoint_pc, ecs->ptid);
1226 }
1227 }
1228 }
1229
1230 /* Given an execution control state that has been freshly filled in
1231 by an event from the inferior, figure out what it means and take
1232 appropriate action. */
1233
1234 int stepped_after_stopped_by_watchpoint;
1235
1236 void
1237 handle_inferior_event (struct execution_control_state *ecs)
1238 {
1239 /* NOTE: cagney/2003-03-28: If you're looking at this code and
1240 thinking that the variable stepped_after_stopped_by_watchpoint
1241 isn't used, then you're wrong! The macro STOPPED_BY_WATCHPOINT,
1242 defined in the file "config/pa/nm-hppah.h", accesses the variable
1243 indirectly. Mutter something rude about the HP merge. */
1244 int sw_single_step_trap_p = 0;
1245 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1246
1247 /* Cache the last pid/waitstatus. */
1248 target_last_wait_ptid = ecs->ptid;
1249 target_last_waitstatus = *ecs->wp;
1250
1251 adjust_pc_after_break (ecs);
1252
1253 switch (ecs->infwait_state)
1254 {
1255 case infwait_thread_hop_state:
1256 /* Cancel the waiton_ptid. */
1257 ecs->waiton_ptid = pid_to_ptid (-1);
1258 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1259 is serviced in this loop, below. */
1260 if (ecs->enable_hw_watchpoints_after_wait)
1261 {
1262 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1263 ecs->enable_hw_watchpoints_after_wait = 0;
1264 }
1265 stepped_after_stopped_by_watchpoint = 0;
1266 break;
1267
1268 case infwait_normal_state:
1269 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1270 is serviced in this loop, below. */
1271 if (ecs->enable_hw_watchpoints_after_wait)
1272 {
1273 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1274 ecs->enable_hw_watchpoints_after_wait = 0;
1275 }
1276 stepped_after_stopped_by_watchpoint = 0;
1277 break;
1278
1279 case infwait_nullified_state:
1280 stepped_after_stopped_by_watchpoint = 0;
1281 break;
1282
1283 case infwait_nonstep_watch_state:
1284 insert_breakpoints ();
1285
1286 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1287 handle things like signals arriving and other things happening
1288 in combination correctly? */
1289 stepped_after_stopped_by_watchpoint = 1;
1290 break;
1291
1292 default:
1293 internal_error (__FILE__, __LINE__, "bad switch");
1294 }
1295 ecs->infwait_state = infwait_normal_state;
1296
1297 flush_cached_frames ();
1298
1299 /* If it's a new process, add it to the thread database */
1300
1301 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1302 && !ptid_equal (ecs->ptid, minus_one_ptid)
1303 && !in_thread_list (ecs->ptid));
1304
1305 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1306 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1307 {
1308 add_thread (ecs->ptid);
1309
1310 ui_out_text (uiout, "[New ");
1311 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1312 ui_out_text (uiout, "]\n");
1313 }
1314
1315 switch (ecs->ws.kind)
1316 {
1317 case TARGET_WAITKIND_LOADED:
1318 /* Ignore gracefully during startup of the inferior, as it
1319 might be the shell which has just loaded some objects,
1320 otherwise add the symbols for the newly loaded objects. */
1321 #ifdef SOLIB_ADD
1322 if (stop_soon == NO_STOP_QUIETLY)
1323 {
1324 /* Remove breakpoints, SOLIB_ADD might adjust
1325 breakpoint addresses via breakpoint_re_set. */
1326 if (breakpoints_inserted)
1327 remove_breakpoints ();
1328
1329 /* Check for any newly added shared libraries if we're
1330 supposed to be adding them automatically. Switch
1331 terminal for any messages produced by
1332 breakpoint_re_set. */
1333 target_terminal_ours_for_output ();
1334 /* NOTE: cagney/2003-11-25: Make certain that the target
1335 stack's section table is kept up-to-date. Architectures,
1336 (e.g., PPC64), use the section table to perform
1337 operations such as address => section name and hence
1338 require the table to contain all sections (including
1339 those found in shared libraries). */
1340 /* NOTE: cagney/2003-11-25: Pass current_target and not
1341 exec_ops to SOLIB_ADD. This is because current GDB is
1342 only tooled to propagate section_table changes out from
1343 the "current_target" (see target_resize_to_sections), and
1344 not up from the exec stratum. This, of course, isn't
1345 right. "infrun.c" should only interact with the
1346 exec/process stratum, instead relying on the target stack
1347 to propagate relevant changes (stop, section table
1348 changed, ...) up to other layers. */
1349 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1350 target_terminal_inferior ();
1351
1352 /* Reinsert breakpoints and continue. */
1353 if (breakpoints_inserted)
1354 insert_breakpoints ();
1355 }
1356 #endif
1357 resume (0, TARGET_SIGNAL_0);
1358 prepare_to_wait (ecs);
1359 return;
1360
1361 case TARGET_WAITKIND_SPURIOUS:
1362 resume (0, TARGET_SIGNAL_0);
1363 prepare_to_wait (ecs);
1364 return;
1365
1366 case TARGET_WAITKIND_EXITED:
1367 target_terminal_ours (); /* Must do this before mourn anyway */
1368 print_stop_reason (EXITED, ecs->ws.value.integer);
1369
1370 /* Record the exit code in the convenience variable $_exitcode, so
1371 that the user can inspect this again later. */
1372 set_internalvar (lookup_internalvar ("_exitcode"),
1373 value_from_longest (builtin_type_int,
1374 (LONGEST) ecs->ws.value.integer));
1375 gdb_flush (gdb_stdout);
1376 target_mourn_inferior ();
1377 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1378 stop_print_frame = 0;
1379 stop_stepping (ecs);
1380 return;
1381
1382 case TARGET_WAITKIND_SIGNALLED:
1383 stop_print_frame = 0;
1384 stop_signal = ecs->ws.value.sig;
1385 target_terminal_ours (); /* Must do this before mourn anyway */
1386
1387 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1388 reach here unless the inferior is dead. However, for years
1389 target_kill() was called here, which hints that fatal signals aren't
1390 really fatal on some systems. If that's true, then some changes
1391 may be needed. */
1392 target_mourn_inferior ();
1393
1394 print_stop_reason (SIGNAL_EXITED, stop_signal);
1395 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1396 stop_stepping (ecs);
1397 return;
1398
1399 /* The following are the only cases in which we keep going;
1400 the above cases end in a continue or goto. */
1401 case TARGET_WAITKIND_FORKED:
1402 case TARGET_WAITKIND_VFORKED:
1403 stop_signal = TARGET_SIGNAL_TRAP;
1404 pending_follow.kind = ecs->ws.kind;
1405
1406 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1407 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1408
1409 stop_pc = read_pc ();
1410
1411 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1412
1413 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1414
1415 /* If no catchpoint triggered for this, then keep going. */
1416 if (ecs->random_signal)
1417 {
1418 stop_signal = TARGET_SIGNAL_0;
1419 keep_going (ecs);
1420 return;
1421 }
1422 goto process_event_stop_test;
1423
1424 case TARGET_WAITKIND_EXECD:
1425 stop_signal = TARGET_SIGNAL_TRAP;
1426
1427 /* NOTE drow/2002-12-05: This code should be pushed down into the
1428 target_wait function. Until then following vfork on HP/UX 10.20
1429 is probably broken by this. Of course, it's broken anyway. */
1430 /* Is this a target which reports multiple exec events per actual
1431 call to exec()? (HP-UX using ptrace does, for example.) If so,
1432 ignore all but the last one. Just resume the exec'r, and wait
1433 for the next exec event. */
1434 if (inferior_ignoring_leading_exec_events)
1435 {
1436 inferior_ignoring_leading_exec_events--;
1437 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1438 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1439 parent_pid);
1440 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1441 prepare_to_wait (ecs);
1442 return;
1443 }
1444 inferior_ignoring_leading_exec_events =
1445 target_reported_exec_events_per_exec_call () - 1;
1446
1447 pending_follow.execd_pathname =
1448 savestring (ecs->ws.value.execd_pathname,
1449 strlen (ecs->ws.value.execd_pathname));
1450
1451 /* This causes the eventpoints and symbol table to be reset. Must
1452 do this now, before trying to determine whether to stop. */
1453 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1454 xfree (pending_follow.execd_pathname);
1455
1456 stop_pc = read_pc_pid (ecs->ptid);
1457 ecs->saved_inferior_ptid = inferior_ptid;
1458 inferior_ptid = ecs->ptid;
1459
1460 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1461
1462 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1463 inferior_ptid = ecs->saved_inferior_ptid;
1464
1465 /* If no catchpoint triggered for this, then keep going. */
1466 if (ecs->random_signal)
1467 {
1468 stop_signal = TARGET_SIGNAL_0;
1469 keep_going (ecs);
1470 return;
1471 }
1472 goto process_event_stop_test;
1473
1474 /* These syscall events are returned on HP-UX, as part of its
1475 implementation of page-protection-based "hardware" watchpoints.
1476 HP-UX has unfortunate interactions between page-protections and
1477 some system calls. Our solution is to disable hardware watches
1478 when a system call is entered, and reenable them when the syscall
1479 completes. The downside of this is that we may miss the precise
1480 point at which a watched piece of memory is modified. "Oh well."
1481
1482 Note that we may have multiple threads running, which may each
1483 enter syscalls at roughly the same time. Since we don't have a
1484 good notion currently of whether a watched piece of memory is
1485 thread-private, we'd best not have any page-protections active
1486 when any thread is in a syscall. Thus, we only want to reenable
1487 hardware watches when no threads are in a syscall.
1488
1489 Also, be careful not to try to gather much state about a thread
1490 that's in a syscall. It's frequently a losing proposition. */
1491 case TARGET_WAITKIND_SYSCALL_ENTRY:
1492 number_of_threads_in_syscalls++;
1493 if (number_of_threads_in_syscalls == 1)
1494 {
1495 TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1496 }
1497 resume (0, TARGET_SIGNAL_0);
1498 prepare_to_wait (ecs);
1499 return;
1500
1501 /* Before examining the threads further, step this thread to
1502 get it entirely out of the syscall. (We get notice of the
1503 event when the thread is just on the verge of exiting a
1504 syscall. Stepping one instruction seems to get it back
1505 into user code.)
1506
1507 Note that although the logical place to reenable h/w watches
1508 is here, we cannot. We cannot reenable them before stepping
1509 the thread (this causes the next wait on the thread to hang).
1510
1511 Nor can we enable them after stepping until we've done a wait.
1512 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
1513 here, which will be serviced immediately after the target
1514 is waited on. */
1515 case TARGET_WAITKIND_SYSCALL_RETURN:
1516 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1517
1518 if (number_of_threads_in_syscalls > 0)
1519 {
1520 number_of_threads_in_syscalls--;
1521 ecs->enable_hw_watchpoints_after_wait =
1522 (number_of_threads_in_syscalls == 0);
1523 }
1524 prepare_to_wait (ecs);
1525 return;
1526
1527 case TARGET_WAITKIND_STOPPED:
1528 stop_signal = ecs->ws.value.sig;
1529 break;
1530
1531 /* We had an event in the inferior, but we are not interested
1532 in handling it at this level. The lower layers have already
1533 done what needs to be done, if anything.
1534
1535 One of the possible circumstances for this is when the
1536 inferior produces output for the console. The inferior has
1537 not stopped, and we are ignoring the event. Another possible
1538 circumstance is any event which the lower level knows will be
1539 reported multiple times without an intervening resume. */
1540 case TARGET_WAITKIND_IGNORE:
1541 prepare_to_wait (ecs);
1542 return;
1543 }
1544
1545 /* We may want to consider not doing a resume here in order to give
1546 the user a chance to play with the new thread. It might be good
1547 to make that a user-settable option. */
1548
1549 /* At this point, all threads are stopped (happens automatically in
1550 either the OS or the native code). Therefore we need to continue
1551 all threads in order to make progress. */
1552 if (ecs->new_thread_event)
1553 {
1554 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1555 prepare_to_wait (ecs);
1556 return;
1557 }
1558
1559 stop_pc = read_pc_pid (ecs->ptid);
1560
1561 if (stepping_past_singlestep_breakpoint)
1562 {
1563 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1564 && singlestep_breakpoints_inserted_p);
1565 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1566 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1567
1568 stepping_past_singlestep_breakpoint = 0;
1569
1570 /* We've either finished single-stepping past the single-step
1571 breakpoint, or stopped for some other reason. It would be nice if
1572 we could tell, but we can't reliably. */
1573 if (stop_signal == TARGET_SIGNAL_TRAP)
1574 {
1575 /* Pull the single step breakpoints out of the target. */
1576 SOFTWARE_SINGLE_STEP (0, 0);
1577 singlestep_breakpoints_inserted_p = 0;
1578
1579 ecs->random_signal = 0;
1580
1581 ecs->ptid = saved_singlestep_ptid;
1582 context_switch (ecs);
1583 if (deprecated_context_hook)
1584 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1585
1586 resume (1, TARGET_SIGNAL_0);
1587 prepare_to_wait (ecs);
1588 return;
1589 }
1590 }
1591
1592 stepping_past_singlestep_breakpoint = 0;
1593
1594 /* See if a thread hit a thread-specific breakpoint that was meant for
1595 another thread. If so, then step that thread past the breakpoint,
1596 and continue it. */
1597
1598 if (stop_signal == TARGET_SIGNAL_TRAP)
1599 {
1600 int thread_hop_needed = 0;
1601
1602 /* Check if a regular breakpoint has been hit before checking
1603 for a potential single step breakpoint. Otherwise, GDB will
1604 not see this breakpoint hit when stepping onto breakpoints. */
1605 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1606 {
1607 ecs->random_signal = 0;
1608 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1609 thread_hop_needed = 1;
1610 }
1611 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1612 {
1613 ecs->random_signal = 0;
1614 /* The call to in_thread_list is necessary because PTIDs sometimes
1615 change when we go from single-threaded to multi-threaded. If
1616 the singlestep_ptid is still in the list, assume that it is
1617 really different from ecs->ptid. */
1618 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1619 && in_thread_list (singlestep_ptid))
1620 {
1621 thread_hop_needed = 1;
1622 stepping_past_singlestep_breakpoint = 1;
1623 saved_singlestep_ptid = singlestep_ptid;
1624 }
1625 }
1626
1627 if (thread_hop_needed)
1628 {
1629 int remove_status;
1630
1631 /* Saw a breakpoint, but it was hit by the wrong thread.
1632 Just continue. */
1633
1634 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1635 {
1636 /* Pull the single step breakpoints out of the target. */
1637 SOFTWARE_SINGLE_STEP (0, 0);
1638 singlestep_breakpoints_inserted_p = 0;
1639 }
1640
1641 remove_status = remove_breakpoints ();
1642 /* Did we fail to remove breakpoints? If so, try
1643 to set the PC past the bp. (There's at least
1644 one situation in which we can fail to remove
1645 the bp's: On HP-UX's that use ttrace, we can't
1646 change the address space of a vforking child
1647 process until the child exits (well, okay, not
1648 then either :-) or execs. */
1649 if (remove_status != 0)
1650 {
1651 /* FIXME! This is obviously non-portable! */
1652 write_pc_pid (stop_pc + 4, ecs->ptid);
1653 /* We need to restart all the threads now,
1654 * unles we're running in scheduler-locked mode.
1655 * Use currently_stepping to determine whether to
1656 * step or continue.
1657 */
1658 /* FIXME MVS: is there any reason not to call resume()? */
1659 if (scheduler_mode == schedlock_on)
1660 target_resume (ecs->ptid,
1661 currently_stepping (ecs), TARGET_SIGNAL_0);
1662 else
1663 target_resume (RESUME_ALL,
1664 currently_stepping (ecs), TARGET_SIGNAL_0);
1665 prepare_to_wait (ecs);
1666 return;
1667 }
1668 else
1669 { /* Single step */
1670 breakpoints_inserted = 0;
1671 if (!ptid_equal (inferior_ptid, ecs->ptid))
1672 context_switch (ecs);
1673 ecs->waiton_ptid = ecs->ptid;
1674 ecs->wp = &(ecs->ws);
1675 ecs->another_trap = 1;
1676
1677 ecs->infwait_state = infwait_thread_hop_state;
1678 keep_going (ecs);
1679 registers_changed ();
1680 return;
1681 }
1682 }
1683 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1684 {
1685 sw_single_step_trap_p = 1;
1686 ecs->random_signal = 0;
1687 }
1688 }
1689 else
1690 ecs->random_signal = 1;
1691
1692 /* See if something interesting happened to the non-current thread. If
1693 so, then switch to that thread. */
1694 if (!ptid_equal (ecs->ptid, inferior_ptid))
1695 {
1696 context_switch (ecs);
1697
1698 if (deprecated_context_hook)
1699 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1700
1701 flush_cached_frames ();
1702 }
1703
1704 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1705 {
1706 /* Pull the single step breakpoints out of the target. */
1707 SOFTWARE_SINGLE_STEP (0, 0);
1708 singlestep_breakpoints_inserted_p = 0;
1709 }
1710
1711 /* If PC is pointing at a nullified instruction, then step beyond
1712 it so that the user won't be confused when GDB appears to be ready
1713 to execute it. */
1714
1715 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1716 if (INSTRUCTION_NULLIFIED)
1717 {
1718 registers_changed ();
1719 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1720
1721 /* We may have received a signal that we want to pass to
1722 the inferior; therefore, we must not clobber the waitstatus
1723 in WS. */
1724
1725 ecs->infwait_state = infwait_nullified_state;
1726 ecs->waiton_ptid = ecs->ptid;
1727 ecs->wp = &(ecs->tmpstatus);
1728 prepare_to_wait (ecs);
1729 return;
1730 }
1731
1732 /* It may not be necessary to disable the watchpoint to stop over
1733 it. For example, the PA can (with some kernel cooperation)
1734 single step over a watchpoint without disabling the watchpoint. */
1735 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1736 {
1737 resume (1, 0);
1738 prepare_to_wait (ecs);
1739 return;
1740 }
1741
1742 /* It is far more common to need to disable a watchpoint to step
1743 the inferior over it. FIXME. What else might a debug
1744 register or page protection watchpoint scheme need here? */
1745 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1746 {
1747 /* At this point, we are stopped at an instruction which has
1748 attempted to write to a piece of memory under control of
1749 a watchpoint. The instruction hasn't actually executed
1750 yet. If we were to evaluate the watchpoint expression
1751 now, we would get the old value, and therefore no change
1752 would seem to have occurred.
1753
1754 In order to make watchpoints work `right', we really need
1755 to complete the memory write, and then evaluate the
1756 watchpoint expression. The following code does that by
1757 removing the watchpoint (actually, all watchpoints and
1758 breakpoints), single-stepping the target, re-inserting
1759 watchpoints, and then falling through to let normal
1760 single-step processing handle proceed. Since this
1761 includes evaluating watchpoints, things will come to a
1762 stop in the correct manner. */
1763
1764 remove_breakpoints ();
1765 registers_changed ();
1766 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1767
1768 ecs->waiton_ptid = ecs->ptid;
1769 ecs->wp = &(ecs->ws);
1770 ecs->infwait_state = infwait_nonstep_watch_state;
1771 prepare_to_wait (ecs);
1772 return;
1773 }
1774
1775 /* It may be possible to simply continue after a watchpoint. */
1776 if (HAVE_CONTINUABLE_WATCHPOINT)
1777 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1778
1779 ecs->stop_func_start = 0;
1780 ecs->stop_func_end = 0;
1781 ecs->stop_func_name = 0;
1782 /* Don't care about return value; stop_func_start and stop_func_name
1783 will both be 0 if it doesn't work. */
1784 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1785 &ecs->stop_func_start, &ecs->stop_func_end);
1786 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1787 ecs->another_trap = 0;
1788 bpstat_clear (&stop_bpstat);
1789 stop_step = 0;
1790 stop_stack_dummy = 0;
1791 stop_print_frame = 1;
1792 ecs->random_signal = 0;
1793 stopped_by_random_signal = 0;
1794 breakpoints_failed = 0;
1795
1796 /* Look at the cause of the stop, and decide what to do.
1797 The alternatives are:
1798 1) break; to really stop and return to the debugger,
1799 2) drop through to start up again
1800 (set ecs->another_trap to 1 to single step once)
1801 3) set ecs->random_signal to 1, and the decision between 1 and 2
1802 will be made according to the signal handling tables. */
1803
1804 /* First, distinguish signals caused by the debugger from signals
1805 that have to do with the program's own actions. Note that
1806 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1807 on the operating system version. Here we detect when a SIGILL or
1808 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1809 something similar for SIGSEGV, since a SIGSEGV will be generated
1810 when we're trying to execute a breakpoint instruction on a
1811 non-executable stack. This happens for call dummy breakpoints
1812 for architectures like SPARC that place call dummies on the
1813 stack. */
1814
1815 if (stop_signal == TARGET_SIGNAL_TRAP
1816 || (breakpoints_inserted
1817 && (stop_signal == TARGET_SIGNAL_ILL
1818 || stop_signal == TARGET_SIGNAL_SEGV
1819 || stop_signal == TARGET_SIGNAL_EMT))
1820 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1821 {
1822 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1823 {
1824 stop_print_frame = 0;
1825 stop_stepping (ecs);
1826 return;
1827 }
1828
1829 /* This is originated from start_remote(), start_inferior() and
1830 shared libraries hook functions. */
1831 if (stop_soon == STOP_QUIETLY)
1832 {
1833 stop_stepping (ecs);
1834 return;
1835 }
1836
1837 /* This originates from attach_command(). We need to overwrite
1838 the stop_signal here, because some kernels don't ignore a
1839 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1840 See more comments in inferior.h. */
1841 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1842 {
1843 stop_stepping (ecs);
1844 if (stop_signal == TARGET_SIGNAL_STOP)
1845 stop_signal = TARGET_SIGNAL_0;
1846 return;
1847 }
1848
1849 /* Don't even think about breakpoints if just proceeded over a
1850 breakpoint. */
1851 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1852 bpstat_clear (&stop_bpstat);
1853 else
1854 {
1855 /* See if there is a breakpoint at the current PC. */
1856 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1857 stopped_by_watchpoint);
1858
1859 /* Following in case break condition called a
1860 function. */
1861 stop_print_frame = 1;
1862 }
1863
1864 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1865 at one stage in the past included checks for an inferior
1866 function call's call dummy's return breakpoint. The original
1867 comment, that went with the test, read:
1868
1869 ``End of a stack dummy. Some systems (e.g. Sony news) give
1870 another signal besides SIGTRAP, so check here as well as
1871 above.''
1872
1873 If someone ever tries to get get call dummys on a
1874 non-executable stack to work (where the target would stop
1875 with something like a SIGSEGV), then those tests might need
1876 to be re-instated. Given, however, that the tests were only
1877 enabled when momentary breakpoints were not being used, I
1878 suspect that it won't be the case.
1879
1880 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1881 be necessary for call dummies on a non-executable stack on
1882 SPARC. */
1883
1884 if (stop_signal == TARGET_SIGNAL_TRAP)
1885 ecs->random_signal
1886 = !(bpstat_explains_signal (stop_bpstat)
1887 || trap_expected
1888 || (step_range_end && step_resume_breakpoint == NULL));
1889 else
1890 {
1891 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1892 if (!ecs->random_signal)
1893 stop_signal = TARGET_SIGNAL_TRAP;
1894 }
1895 }
1896
1897 /* When we reach this point, we've pretty much decided
1898 that the reason for stopping must've been a random
1899 (unexpected) signal. */
1900
1901 else
1902 ecs->random_signal = 1;
1903
1904 process_event_stop_test:
1905 /* For the program's own signals, act according to
1906 the signal handling tables. */
1907
1908 if (ecs->random_signal)
1909 {
1910 /* Signal not for debugging purposes. */
1911 int printed = 0;
1912
1913 stopped_by_random_signal = 1;
1914
1915 if (signal_print[stop_signal])
1916 {
1917 printed = 1;
1918 target_terminal_ours_for_output ();
1919 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1920 }
1921 if (signal_stop[stop_signal])
1922 {
1923 stop_stepping (ecs);
1924 return;
1925 }
1926 /* If not going to stop, give terminal back
1927 if we took it away. */
1928 else if (printed)
1929 target_terminal_inferior ();
1930
1931 /* Clear the signal if it should not be passed. */
1932 if (signal_program[stop_signal] == 0)
1933 stop_signal = TARGET_SIGNAL_0;
1934
1935 if (prev_pc == read_pc ()
1936 && !breakpoints_inserted
1937 && breakpoint_here_p (read_pc ())
1938 && step_resume_breakpoint == NULL)
1939 {
1940 /* We were just starting a new sequence, attempting to
1941 single-step off of a breakpoint and expecting a SIGTRAP.
1942 Intead this signal arrives. This signal will take us out
1943 of the stepping range so GDB needs to remember to, when
1944 the signal handler returns, resume stepping off that
1945 breakpoint. */
1946 /* To simplify things, "continue" is forced to use the same
1947 code paths as single-step - set a breakpoint at the
1948 signal return address and then, once hit, step off that
1949 breakpoint. */
1950 insert_step_resume_breakpoint (get_current_frame (), ecs);
1951 ecs->step_after_step_resume_breakpoint = 1;
1952 }
1953 else if (step_range_end != 0
1954 && stop_signal != TARGET_SIGNAL_0
1955 && stop_pc >= step_range_start && stop_pc < step_range_end
1956 && frame_id_eq (get_frame_id (get_current_frame ()),
1957 step_frame_id))
1958 {
1959 /* The inferior is about to take a signal that will take it
1960 out of the single step range. Set a breakpoint at the
1961 current PC (which is presumably where the signal handler
1962 will eventually return) and then allow the inferior to
1963 run free.
1964
1965 Note that this is only needed for a signal delivered
1966 while in the single-step range. Nested signals aren't a
1967 problem as they eventually all return. */
1968 insert_step_resume_breakpoint (get_current_frame (), ecs);
1969 }
1970 keep_going (ecs);
1971 return;
1972 }
1973
1974 /* Handle cases caused by hitting a breakpoint. */
1975 {
1976 CORE_ADDR jmp_buf_pc;
1977 struct bpstat_what what;
1978
1979 what = bpstat_what (stop_bpstat);
1980
1981 if (what.call_dummy)
1982 {
1983 stop_stack_dummy = 1;
1984 }
1985
1986 switch (what.main_action)
1987 {
1988 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
1989 /* If we hit the breakpoint at longjmp, disable it for the
1990 duration of this command. Then, install a temporary
1991 breakpoint at the target of the jmp_buf. */
1992 disable_longjmp_breakpoint ();
1993 remove_breakpoints ();
1994 breakpoints_inserted = 0;
1995 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
1996 {
1997 keep_going (ecs);
1998 return;
1999 }
2000
2001 /* Need to blow away step-resume breakpoint, as it
2002 interferes with us */
2003 if (step_resume_breakpoint != NULL)
2004 {
2005 delete_step_resume_breakpoint (&step_resume_breakpoint);
2006 }
2007
2008 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2009 ecs->handling_longjmp = 1; /* FIXME */
2010 keep_going (ecs);
2011 return;
2012
2013 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2014 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2015 remove_breakpoints ();
2016 breakpoints_inserted = 0;
2017 disable_longjmp_breakpoint ();
2018 ecs->handling_longjmp = 0; /* FIXME */
2019 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2020 break;
2021 /* else fallthrough */
2022
2023 case BPSTAT_WHAT_SINGLE:
2024 if (breakpoints_inserted)
2025 {
2026 remove_breakpoints ();
2027 }
2028 breakpoints_inserted = 0;
2029 ecs->another_trap = 1;
2030 /* Still need to check other stuff, at least the case
2031 where we are stepping and step out of the right range. */
2032 break;
2033
2034 case BPSTAT_WHAT_STOP_NOISY:
2035 stop_print_frame = 1;
2036
2037 /* We are about to nuke the step_resume_breakpointt via the
2038 cleanup chain, so no need to worry about it here. */
2039
2040 stop_stepping (ecs);
2041 return;
2042
2043 case BPSTAT_WHAT_STOP_SILENT:
2044 stop_print_frame = 0;
2045
2046 /* We are about to nuke the step_resume_breakpoin via the
2047 cleanup chain, so no need to worry about it here. */
2048
2049 stop_stepping (ecs);
2050 return;
2051
2052 case BPSTAT_WHAT_STEP_RESUME:
2053 /* This proably demands a more elegant solution, but, yeah
2054 right...
2055
2056 This function's use of the simple variable
2057 step_resume_breakpoint doesn't seem to accomodate
2058 simultaneously active step-resume bp's, although the
2059 breakpoint list certainly can.
2060
2061 If we reach here and step_resume_breakpoint is already
2062 NULL, then apparently we have multiple active
2063 step-resume bp's. We'll just delete the breakpoint we
2064 stopped at, and carry on.
2065
2066 Correction: what the code currently does is delete a
2067 step-resume bp, but it makes no effort to ensure that
2068 the one deleted is the one currently stopped at. MVS */
2069
2070 if (step_resume_breakpoint == NULL)
2071 {
2072 step_resume_breakpoint =
2073 bpstat_find_step_resume_breakpoint (stop_bpstat);
2074 }
2075 delete_step_resume_breakpoint (&step_resume_breakpoint);
2076 if (ecs->step_after_step_resume_breakpoint)
2077 {
2078 /* Back when the step-resume breakpoint was inserted, we
2079 were trying to single-step off a breakpoint. Go back
2080 to doing that. */
2081 ecs->step_after_step_resume_breakpoint = 0;
2082 remove_breakpoints ();
2083 breakpoints_inserted = 0;
2084 ecs->another_trap = 1;
2085 keep_going (ecs);
2086 return;
2087 }
2088 break;
2089
2090 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2091 /* If were waiting for a trap, hitting the step_resume_break
2092 doesn't count as getting it. */
2093 if (trap_expected)
2094 ecs->another_trap = 1;
2095 break;
2096
2097 case BPSTAT_WHAT_CHECK_SHLIBS:
2098 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2099 #ifdef SOLIB_ADD
2100 {
2101 /* Remove breakpoints, we eventually want to step over the
2102 shlib event breakpoint, and SOLIB_ADD might adjust
2103 breakpoint addresses via breakpoint_re_set. */
2104 if (breakpoints_inserted)
2105 remove_breakpoints ();
2106 breakpoints_inserted = 0;
2107
2108 /* Check for any newly added shared libraries if we're
2109 supposed to be adding them automatically. Switch
2110 terminal for any messages produced by
2111 breakpoint_re_set. */
2112 target_terminal_ours_for_output ();
2113 /* NOTE: cagney/2003-11-25: Make certain that the target
2114 stack's section table is kept up-to-date. Architectures,
2115 (e.g., PPC64), use the section table to perform
2116 operations such as address => section name and hence
2117 require the table to contain all sections (including
2118 those found in shared libraries). */
2119 /* NOTE: cagney/2003-11-25: Pass current_target and not
2120 exec_ops to SOLIB_ADD. This is because current GDB is
2121 only tooled to propagate section_table changes out from
2122 the "current_target" (see target_resize_to_sections), and
2123 not up from the exec stratum. This, of course, isn't
2124 right. "infrun.c" should only interact with the
2125 exec/process stratum, instead relying on the target stack
2126 to propagate relevant changes (stop, section table
2127 changed, ...) up to other layers. */
2128 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2129 target_terminal_inferior ();
2130
2131 /* Try to reenable shared library breakpoints, additional
2132 code segments in shared libraries might be mapped in now. */
2133 re_enable_breakpoints_in_shlibs ();
2134
2135 /* If requested, stop when the dynamic linker notifies
2136 gdb of events. This allows the user to get control
2137 and place breakpoints in initializer routines for
2138 dynamically loaded objects (among other things). */
2139 if (stop_on_solib_events || stop_stack_dummy)
2140 {
2141 stop_stepping (ecs);
2142 return;
2143 }
2144
2145 /* If we stopped due to an explicit catchpoint, then the
2146 (see above) call to SOLIB_ADD pulled in any symbols
2147 from a newly-loaded library, if appropriate.
2148
2149 We do want the inferior to stop, but not where it is
2150 now, which is in the dynamic linker callback. Rather,
2151 we would like it stop in the user's program, just after
2152 the call that caused this catchpoint to trigger. That
2153 gives the user a more useful vantage from which to
2154 examine their program's state. */
2155 else if (what.main_action
2156 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2157 {
2158 /* ??rehrauer: If I could figure out how to get the
2159 right return PC from here, we could just set a temp
2160 breakpoint and resume. I'm not sure we can without
2161 cracking open the dld's shared libraries and sniffing
2162 their unwind tables and text/data ranges, and that's
2163 not a terribly portable notion.
2164
2165 Until that time, we must step the inferior out of the
2166 dld callback, and also out of the dld itself (and any
2167 code or stubs in libdld.sl, such as "shl_load" and
2168 friends) until we reach non-dld code. At that point,
2169 we can stop stepping. */
2170 bpstat_get_triggered_catchpoints (stop_bpstat,
2171 &ecs->
2172 stepping_through_solib_catchpoints);
2173 ecs->stepping_through_solib_after_catch = 1;
2174
2175 /* Be sure to lift all breakpoints, so the inferior does
2176 actually step past this point... */
2177 ecs->another_trap = 1;
2178 break;
2179 }
2180 else
2181 {
2182 /* We want to step over this breakpoint, then keep going. */
2183 ecs->another_trap = 1;
2184 break;
2185 }
2186 }
2187 #endif
2188 break;
2189
2190 case BPSTAT_WHAT_LAST:
2191 /* Not a real code, but listed here to shut up gcc -Wall. */
2192
2193 case BPSTAT_WHAT_KEEP_CHECKING:
2194 break;
2195 }
2196 }
2197
2198 /* We come here if we hit a breakpoint but should not
2199 stop for it. Possibly we also were stepping
2200 and should stop for that. So fall through and
2201 test for stepping. But, if not stepping,
2202 do not stop. */
2203
2204 /* Are we stepping to get the inferior out of the dynamic
2205 linker's hook (and possibly the dld itself) after catching
2206 a shlib event? */
2207 if (ecs->stepping_through_solib_after_catch)
2208 {
2209 #if defined(SOLIB_ADD)
2210 /* Have we reached our destination? If not, keep going. */
2211 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2212 {
2213 ecs->another_trap = 1;
2214 keep_going (ecs);
2215 return;
2216 }
2217 #endif
2218 /* Else, stop and report the catchpoint(s) whose triggering
2219 caused us to begin stepping. */
2220 ecs->stepping_through_solib_after_catch = 0;
2221 bpstat_clear (&stop_bpstat);
2222 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2223 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2224 stop_print_frame = 1;
2225 stop_stepping (ecs);
2226 return;
2227 }
2228
2229 if (step_resume_breakpoint)
2230 {
2231 /* Having a step-resume breakpoint overrides anything
2232 else having to do with stepping commands until
2233 that breakpoint is reached. */
2234 keep_going (ecs);
2235 return;
2236 }
2237
2238 if (step_range_end == 0)
2239 {
2240 /* Likewise if we aren't even stepping. */
2241 keep_going (ecs);
2242 return;
2243 }
2244
2245 /* If stepping through a line, keep going if still within it.
2246
2247 Note that step_range_end is the address of the first instruction
2248 beyond the step range, and NOT the address of the last instruction
2249 within it! */
2250 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2251 {
2252 keep_going (ecs);
2253 return;
2254 }
2255
2256 /* We stepped out of the stepping range. */
2257
2258 /* If we are stepping at the source level and entered the runtime
2259 loader dynamic symbol resolution code, we keep on single stepping
2260 until we exit the run time loader code and reach the callee's
2261 address. */
2262 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2263 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2264 {
2265 CORE_ADDR pc_after_resolver =
2266 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2267
2268 if (pc_after_resolver)
2269 {
2270 /* Set up a step-resume breakpoint at the address
2271 indicated by SKIP_SOLIB_RESOLVER. */
2272 struct symtab_and_line sr_sal;
2273 init_sal (&sr_sal);
2274 sr_sal.pc = pc_after_resolver;
2275
2276 check_for_old_step_resume_breakpoint ();
2277 step_resume_breakpoint =
2278 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2279 if (breakpoints_inserted)
2280 insert_breakpoints ();
2281 }
2282
2283 keep_going (ecs);
2284 return;
2285 }
2286
2287 if (step_range_end != 1
2288 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2289 || step_over_calls == STEP_OVER_ALL)
2290 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2291 {
2292 /* The inferior, while doing a "step" or "next", has ended up in
2293 a signal trampoline (either by a signal being delivered or by
2294 the signal handler returning). Just single-step until the
2295 inferior leaves the trampoline (either by calling the handler
2296 or returning). */
2297 keep_going (ecs);
2298 return;
2299 }
2300
2301 if (frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2302 {
2303 /* It's a subroutine call. */
2304 CORE_ADDR real_stop_pc;
2305
2306 if ((step_over_calls == STEP_OVER_NONE)
2307 || ((step_range_end == 1)
2308 && in_prologue (prev_pc, ecs->stop_func_start)))
2309 {
2310 /* I presume that step_over_calls is only 0 when we're
2311 supposed to be stepping at the assembly language level
2312 ("stepi"). Just stop. */
2313 /* Also, maybe we just did a "nexti" inside a prolog, so we
2314 thought it was a subroutine call but it was not. Stop as
2315 well. FENN */
2316 stop_step = 1;
2317 print_stop_reason (END_STEPPING_RANGE, 0);
2318 stop_stepping (ecs);
2319 return;
2320 }
2321
2322 #ifdef DEPRECATED_IGNORE_HELPER_CALL
2323 /* On MIPS16, a function that returns a floating point value may
2324 call a library helper function to copy the return value to a
2325 floating point register. The DEPRECATED_IGNORE_HELPER_CALL
2326 macro returns non-zero if we should ignore (i.e. step over)
2327 this function call. */
2328 /* FIXME: cagney/2004-07-21: These custom ``ignore frame when
2329 stepping'' function attributes (SIGTRAMP_FRAME,
2330 DEPRECATED_IGNORE_HELPER_CALL, SKIP_TRAMPOLINE_CODE,
2331 skip_language_trampoline frame, et.al.) need to be replaced
2332 with generic attributes bound to the frame's function. */
2333 if (DEPRECATED_IGNORE_HELPER_CALL (stop_pc))
2334 {
2335 /* We're doing a "next", set a breakpoint at callee's return
2336 address (the address at which the caller will
2337 resume). */
2338 insert_step_resume_breakpoint (get_prev_frame
2339 (get_current_frame ()), ecs);
2340 keep_going (ecs);
2341 return;
2342 }
2343 #endif
2344 if (step_over_calls == STEP_OVER_ALL)
2345 {
2346 /* We're doing a "next", set a breakpoint at callee's return
2347 address (the address at which the caller will
2348 resume). */
2349 insert_step_resume_breakpoint (get_prev_frame
2350 (get_current_frame ()), ecs);
2351 keep_going (ecs);
2352 return;
2353 }
2354
2355 /* If we are in a function call trampoline (a stub between the
2356 calling routine and the real function), locate the real
2357 function. That's what tells us (a) whether we want to step
2358 into it at all, and (b) what prologue we want to run to the
2359 end of, if we do step into it. */
2360 real_stop_pc = skip_language_trampoline (stop_pc);
2361 if (real_stop_pc == 0)
2362 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2363 if (real_stop_pc != 0)
2364 ecs->stop_func_start = real_stop_pc;
2365
2366 if (IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start))
2367 {
2368 struct symtab_and_line sr_sal;
2369 init_sal (&sr_sal);
2370 sr_sal.pc = ecs->stop_func_start;
2371
2372 check_for_old_step_resume_breakpoint ();
2373 step_resume_breakpoint =
2374 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2375 if (breakpoints_inserted)
2376 insert_breakpoints ();
2377
2378 keep_going (ecs);
2379 return;
2380 }
2381
2382 /* If we have line number information for the function we are
2383 thinking of stepping into, step into it.
2384
2385 If there are several symtabs at that PC (e.g. with include
2386 files), just want to know whether *any* of them have line
2387 numbers. find_pc_line handles this. */
2388 {
2389 struct symtab_and_line tmp_sal;
2390
2391 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2392 if (tmp_sal.line != 0)
2393 {
2394 step_into_function (ecs);
2395 return;
2396 }
2397 }
2398
2399 /* If we have no line number and the step-stop-if-no-debug is
2400 set, we stop the step so that the user has a chance to switch
2401 in assembly mode. */
2402 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2403 {
2404 stop_step = 1;
2405 print_stop_reason (END_STEPPING_RANGE, 0);
2406 stop_stepping (ecs);
2407 return;
2408 }
2409
2410 /* Set a breakpoint at callee's return address (the address at
2411 which the caller will resume). */
2412 insert_step_resume_breakpoint (get_prev_frame (get_current_frame ()),
2413 ecs);
2414 keep_going (ecs);
2415 return;
2416 }
2417
2418 /* If we're in the return path from a shared library trampoline,
2419 we want to proceed through the trampoline when stepping. */
2420 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2421 {
2422 /* Determine where this trampoline returns. */
2423 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2424
2425 /* Only proceed through if we know where it's going. */
2426 if (real_stop_pc)
2427 {
2428 /* And put the step-breakpoint there and go until there. */
2429 struct symtab_and_line sr_sal;
2430
2431 init_sal (&sr_sal); /* initialize to zeroes */
2432 sr_sal.pc = real_stop_pc;
2433 sr_sal.section = find_pc_overlay (sr_sal.pc);
2434 /* Do not specify what the fp should be when we stop
2435 since on some machines the prologue
2436 is where the new fp value is established. */
2437 check_for_old_step_resume_breakpoint ();
2438 step_resume_breakpoint =
2439 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2440 if (breakpoints_inserted)
2441 insert_breakpoints ();
2442
2443 /* Restart without fiddling with the step ranges or
2444 other state. */
2445 keep_going (ecs);
2446 return;
2447 }
2448 }
2449
2450 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2451 the trampoline processing logic, however, there are some trampolines
2452 that have no names, so we should do trampoline handling first. */
2453 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2454 && ecs->stop_func_name == NULL)
2455 {
2456 /* The inferior just stepped into, or returned to, an
2457 undebuggable function (where there is no symbol, not even a
2458 minimal symbol, corresponding to the address where the
2459 inferior stopped). Since we want to skip this kind of code,
2460 we keep going until the inferior returns from this
2461 function. */
2462 if (step_stop_if_no_debug)
2463 {
2464 /* If we have no line number and the step-stop-if-no-debug
2465 is set, we stop the step so that the user has a chance to
2466 switch in assembly mode. */
2467 stop_step = 1;
2468 print_stop_reason (END_STEPPING_RANGE, 0);
2469 stop_stepping (ecs);
2470 return;
2471 }
2472 else
2473 {
2474 /* Set a breakpoint at callee's return address (the address
2475 at which the caller will resume). */
2476 insert_step_resume_breakpoint (get_prev_frame
2477 (get_current_frame ()), ecs);
2478 keep_going (ecs);
2479 return;
2480 }
2481 }
2482
2483 if (step_range_end == 1)
2484 {
2485 /* It is stepi or nexti. We always want to stop stepping after
2486 one instruction. */
2487 stop_step = 1;
2488 print_stop_reason (END_STEPPING_RANGE, 0);
2489 stop_stepping (ecs);
2490 return;
2491 }
2492
2493 ecs->sal = find_pc_line (stop_pc, 0);
2494
2495 if (ecs->sal.line == 0)
2496 {
2497 /* We have no line number information. That means to stop
2498 stepping (does this always happen right after one instruction,
2499 when we do "s" in a function with no line numbers,
2500 or can this happen as a result of a return or longjmp?). */
2501 stop_step = 1;
2502 print_stop_reason (END_STEPPING_RANGE, 0);
2503 stop_stepping (ecs);
2504 return;
2505 }
2506
2507 if ((stop_pc == ecs->sal.pc)
2508 && (ecs->current_line != ecs->sal.line
2509 || ecs->current_symtab != ecs->sal.symtab))
2510 {
2511 /* We are at the start of a different line. So stop. Note that
2512 we don't stop if we step into the middle of a different line.
2513 That is said to make things like for (;;) statements work
2514 better. */
2515 stop_step = 1;
2516 print_stop_reason (END_STEPPING_RANGE, 0);
2517 stop_stepping (ecs);
2518 return;
2519 }
2520
2521 /* We aren't done stepping.
2522
2523 Optimize by setting the stepping range to the line.
2524 (We might not be in the original line, but if we entered a
2525 new line in mid-statement, we continue stepping. This makes
2526 things like for(;;) statements work better.) */
2527
2528 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2529 {
2530 /* If this is the last line of the function, don't keep stepping
2531 (it would probably step us out of the function).
2532 This is particularly necessary for a one-line function,
2533 in which after skipping the prologue we better stop even though
2534 we will be in mid-line. */
2535 stop_step = 1;
2536 print_stop_reason (END_STEPPING_RANGE, 0);
2537 stop_stepping (ecs);
2538 return;
2539 }
2540 step_range_start = ecs->sal.pc;
2541 step_range_end = ecs->sal.end;
2542 step_frame_id = get_frame_id (get_current_frame ());
2543 ecs->current_line = ecs->sal.line;
2544 ecs->current_symtab = ecs->sal.symtab;
2545
2546 /* In the case where we just stepped out of a function into the
2547 middle of a line of the caller, continue stepping, but
2548 step_frame_id must be modified to current frame */
2549 #if 0
2550 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2551 generous. It will trigger on things like a step into a frameless
2552 stackless leaf function. I think the logic should instead look
2553 at the unwound frame ID has that should give a more robust
2554 indication of what happened. */
2555 if (step - ID == current - ID)
2556 still stepping in same function;
2557 else if (step - ID == unwind (current - ID))
2558 stepped into a function;
2559 else
2560 stepped out of a function;
2561 /* Of course this assumes that the frame ID unwind code is robust
2562 and we're willing to introduce frame unwind logic into this
2563 function. Fortunately, those days are nearly upon us. */
2564 #endif
2565 {
2566 struct frame_id current_frame = get_frame_id (get_current_frame ());
2567 if (!(frame_id_inner (current_frame, step_frame_id)))
2568 step_frame_id = current_frame;
2569 }
2570
2571 keep_going (ecs);
2572 }
2573
2574 /* Are we in the middle of stepping? */
2575
2576 static int
2577 currently_stepping (struct execution_control_state *ecs)
2578 {
2579 return ((!ecs->handling_longjmp
2580 && ((step_range_end && step_resume_breakpoint == NULL)
2581 || trap_expected))
2582 || ecs->stepping_through_solib_after_catch
2583 || bpstat_should_step ());
2584 }
2585
2586 /* Subroutine call with source code we should not step over. Do step
2587 to the first line of code in it. */
2588
2589 static void
2590 step_into_function (struct execution_control_state *ecs)
2591 {
2592 struct symtab *s;
2593 struct symtab_and_line sr_sal;
2594
2595 s = find_pc_symtab (stop_pc);
2596 if (s && s->language != language_asm)
2597 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2598
2599 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2600 /* Use the step_resume_break to step until the end of the prologue,
2601 even if that involves jumps (as it seems to on the vax under
2602 4.2). */
2603 /* If the prologue ends in the middle of a source line, continue to
2604 the end of that source line (if it is still within the function).
2605 Otherwise, just go to end of prologue. */
2606 if (ecs->sal.end
2607 && ecs->sal.pc != ecs->stop_func_start
2608 && ecs->sal.end < ecs->stop_func_end)
2609 ecs->stop_func_start = ecs->sal.end;
2610
2611 /* Architectures which require breakpoint adjustment might not be able
2612 to place a breakpoint at the computed address. If so, the test
2613 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2614 ecs->stop_func_start to an address at which a breakpoint may be
2615 legitimately placed.
2616
2617 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2618 made, GDB will enter an infinite loop when stepping through
2619 optimized code consisting of VLIW instructions which contain
2620 subinstructions corresponding to different source lines. On
2621 FR-V, it's not permitted to place a breakpoint on any but the
2622 first subinstruction of a VLIW instruction. When a breakpoint is
2623 set, GDB will adjust the breakpoint address to the beginning of
2624 the VLIW instruction. Thus, we need to make the corresponding
2625 adjustment here when computing the stop address. */
2626
2627 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2628 {
2629 ecs->stop_func_start
2630 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2631 ecs->stop_func_start);
2632 }
2633
2634 if (ecs->stop_func_start == stop_pc)
2635 {
2636 /* We are already there: stop now. */
2637 stop_step = 1;
2638 print_stop_reason (END_STEPPING_RANGE, 0);
2639 stop_stepping (ecs);
2640 return;
2641 }
2642 else
2643 {
2644 /* Put the step-breakpoint there and go until there. */
2645 init_sal (&sr_sal); /* initialize to zeroes */
2646 sr_sal.pc = ecs->stop_func_start;
2647 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2648 /* Do not specify what the fp should be when we stop since on
2649 some machines the prologue is where the new fp value is
2650 established. */
2651 check_for_old_step_resume_breakpoint ();
2652 step_resume_breakpoint =
2653 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2654 if (breakpoints_inserted)
2655 insert_breakpoints ();
2656
2657 /* And make sure stepping stops right away then. */
2658 step_range_end = step_range_start;
2659 }
2660 keep_going (ecs);
2661 }
2662
2663 /* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2664 to skip a function (next, skip-no-debug) or signal. It's assumed
2665 that the function/signal handler being skipped eventually returns
2666 to the breakpoint inserted at RETURN_FRAME.pc.
2667
2668 For the skip-function case, the function may have been reached by
2669 either single stepping a call / return / signal-return instruction,
2670 or by hitting a breakpoint. In all cases, the RETURN_FRAME belongs
2671 to the skip-function's caller.
2672
2673 For the signals case, this is called with the interrupted
2674 function's frame. The signal handler, when it returns, will resume
2675 the interrupted function at RETURN_FRAME.pc. */
2676
2677 static void
2678 insert_step_resume_breakpoint (struct frame_info *return_frame,
2679 struct execution_control_state *ecs)
2680 {
2681 struct symtab_and_line sr_sal;
2682
2683 init_sal (&sr_sal); /* initialize to zeros */
2684
2685 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
2686 sr_sal.section = find_pc_overlay (sr_sal.pc);
2687
2688 check_for_old_step_resume_breakpoint ();
2689
2690 step_resume_breakpoint
2691 = set_momentary_breakpoint (sr_sal, get_frame_id (return_frame),
2692 bp_step_resume);
2693
2694 if (breakpoints_inserted)
2695 insert_breakpoints ();
2696 }
2697
2698 static void
2699 stop_stepping (struct execution_control_state *ecs)
2700 {
2701 /* Let callers know we don't want to wait for the inferior anymore. */
2702 ecs->wait_some_more = 0;
2703 }
2704
2705 /* This function handles various cases where we need to continue
2706 waiting for the inferior. */
2707 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2708
2709 static void
2710 keep_going (struct execution_control_state *ecs)
2711 {
2712 /* Save the pc before execution, to compare with pc after stop. */
2713 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2714
2715 /* If we did not do break;, it means we should keep running the
2716 inferior and not return to debugger. */
2717
2718 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2719 {
2720 /* We took a signal (which we are supposed to pass through to
2721 the inferior, else we'd have done a break above) and we
2722 haven't yet gotten our trap. Simply continue. */
2723 resume (currently_stepping (ecs), stop_signal);
2724 }
2725 else
2726 {
2727 /* Either the trap was not expected, but we are continuing
2728 anyway (the user asked that this signal be passed to the
2729 child)
2730 -- or --
2731 The signal was SIGTRAP, e.g. it was our signal, but we
2732 decided we should resume from it.
2733
2734 We're going to run this baby now! */
2735
2736 if (!breakpoints_inserted && !ecs->another_trap)
2737 {
2738 breakpoints_failed = insert_breakpoints ();
2739 if (breakpoints_failed)
2740 {
2741 stop_stepping (ecs);
2742 return;
2743 }
2744 breakpoints_inserted = 1;
2745 }
2746
2747 trap_expected = ecs->another_trap;
2748
2749 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2750 specifies that such a signal should be delivered to the
2751 target program).
2752
2753 Typically, this would occure when a user is debugging a
2754 target monitor on a simulator: the target monitor sets a
2755 breakpoint; the simulator encounters this break-point and
2756 halts the simulation handing control to GDB; GDB, noteing
2757 that the break-point isn't valid, returns control back to the
2758 simulator; the simulator then delivers the hardware
2759 equivalent of a SIGNAL_TRAP to the program being debugged. */
2760
2761 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2762 stop_signal = TARGET_SIGNAL_0;
2763
2764
2765 resume (currently_stepping (ecs), stop_signal);
2766 }
2767
2768 prepare_to_wait (ecs);
2769 }
2770
2771 /* This function normally comes after a resume, before
2772 handle_inferior_event exits. It takes care of any last bits of
2773 housekeeping, and sets the all-important wait_some_more flag. */
2774
2775 static void
2776 prepare_to_wait (struct execution_control_state *ecs)
2777 {
2778 if (ecs->infwait_state == infwait_normal_state)
2779 {
2780 overlay_cache_invalid = 1;
2781
2782 /* We have to invalidate the registers BEFORE calling
2783 target_wait because they can be loaded from the target while
2784 in target_wait. This makes remote debugging a bit more
2785 efficient for those targets that provide critical registers
2786 as part of their normal status mechanism. */
2787
2788 registers_changed ();
2789 ecs->waiton_ptid = pid_to_ptid (-1);
2790 ecs->wp = &(ecs->ws);
2791 }
2792 /* This is the old end of the while loop. Let everybody know we
2793 want to wait for the inferior some more and get called again
2794 soon. */
2795 ecs->wait_some_more = 1;
2796 }
2797
2798 /* Print why the inferior has stopped. We always print something when
2799 the inferior exits, or receives a signal. The rest of the cases are
2800 dealt with later on in normal_stop() and print_it_typical(). Ideally
2801 there should be a call to this function from handle_inferior_event()
2802 each time stop_stepping() is called.*/
2803 static void
2804 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2805 {
2806 switch (stop_reason)
2807 {
2808 case STOP_UNKNOWN:
2809 /* We don't deal with these cases from handle_inferior_event()
2810 yet. */
2811 break;
2812 case END_STEPPING_RANGE:
2813 /* We are done with a step/next/si/ni command. */
2814 /* For now print nothing. */
2815 /* Print a message only if not in the middle of doing a "step n"
2816 operation for n > 1 */
2817 if (!step_multi || !stop_step)
2818 if (ui_out_is_mi_like_p (uiout))
2819 ui_out_field_string (uiout, "reason", "end-stepping-range");
2820 break;
2821 case BREAKPOINT_HIT:
2822 /* We found a breakpoint. */
2823 /* For now print nothing. */
2824 break;
2825 case SIGNAL_EXITED:
2826 /* The inferior was terminated by a signal. */
2827 annotate_signalled ();
2828 if (ui_out_is_mi_like_p (uiout))
2829 ui_out_field_string (uiout, "reason", "exited-signalled");
2830 ui_out_text (uiout, "\nProgram terminated with signal ");
2831 annotate_signal_name ();
2832 ui_out_field_string (uiout, "signal-name",
2833 target_signal_to_name (stop_info));
2834 annotate_signal_name_end ();
2835 ui_out_text (uiout, ", ");
2836 annotate_signal_string ();
2837 ui_out_field_string (uiout, "signal-meaning",
2838 target_signal_to_string (stop_info));
2839 annotate_signal_string_end ();
2840 ui_out_text (uiout, ".\n");
2841 ui_out_text (uiout, "The program no longer exists.\n");
2842 break;
2843 case EXITED:
2844 /* The inferior program is finished. */
2845 annotate_exited (stop_info);
2846 if (stop_info)
2847 {
2848 if (ui_out_is_mi_like_p (uiout))
2849 ui_out_field_string (uiout, "reason", "exited");
2850 ui_out_text (uiout, "\nProgram exited with code ");
2851 ui_out_field_fmt (uiout, "exit-code", "0%o",
2852 (unsigned int) stop_info);
2853 ui_out_text (uiout, ".\n");
2854 }
2855 else
2856 {
2857 if (ui_out_is_mi_like_p (uiout))
2858 ui_out_field_string (uiout, "reason", "exited-normally");
2859 ui_out_text (uiout, "\nProgram exited normally.\n");
2860 }
2861 break;
2862 case SIGNAL_RECEIVED:
2863 /* Signal received. The signal table tells us to print about
2864 it. */
2865 annotate_signal ();
2866 ui_out_text (uiout, "\nProgram received signal ");
2867 annotate_signal_name ();
2868 if (ui_out_is_mi_like_p (uiout))
2869 ui_out_field_string (uiout, "reason", "signal-received");
2870 ui_out_field_string (uiout, "signal-name",
2871 target_signal_to_name (stop_info));
2872 annotate_signal_name_end ();
2873 ui_out_text (uiout, ", ");
2874 annotate_signal_string ();
2875 ui_out_field_string (uiout, "signal-meaning",
2876 target_signal_to_string (stop_info));
2877 annotate_signal_string_end ();
2878 ui_out_text (uiout, ".\n");
2879 break;
2880 default:
2881 internal_error (__FILE__, __LINE__,
2882 "print_stop_reason: unrecognized enum value");
2883 break;
2884 }
2885 }
2886 \f
2887
2888 /* Here to return control to GDB when the inferior stops for real.
2889 Print appropriate messages, remove breakpoints, give terminal our modes.
2890
2891 STOP_PRINT_FRAME nonzero means print the executing frame
2892 (pc, function, args, file, line number and line text).
2893 BREAKPOINTS_FAILED nonzero means stop was due to error
2894 attempting to insert breakpoints. */
2895
2896 void
2897 normal_stop (void)
2898 {
2899 struct target_waitstatus last;
2900 ptid_t last_ptid;
2901
2902 get_last_target_status (&last_ptid, &last);
2903
2904 /* As with the notification of thread events, we want to delay
2905 notifying the user that we've switched thread context until
2906 the inferior actually stops.
2907
2908 There's no point in saying anything if the inferior has exited.
2909 Note that SIGNALLED here means "exited with a signal", not
2910 "received a signal". */
2911 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
2912 && target_has_execution
2913 && last.kind != TARGET_WAITKIND_SIGNALLED
2914 && last.kind != TARGET_WAITKIND_EXITED)
2915 {
2916 target_terminal_ours_for_output ();
2917 printf_filtered ("[Switching to %s]\n",
2918 target_pid_or_tid_to_str (inferior_ptid));
2919 previous_inferior_ptid = inferior_ptid;
2920 }
2921
2922 /* NOTE drow/2004-01-17: Is this still necessary? */
2923 /* Make sure that the current_frame's pc is correct. This
2924 is a correction for setting up the frame info before doing
2925 DECR_PC_AFTER_BREAK */
2926 if (target_has_execution)
2927 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
2928 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
2929 frame code to check for this and sort out any resultant mess.
2930 DECR_PC_AFTER_BREAK needs to just go away. */
2931 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
2932
2933 if (target_has_execution && breakpoints_inserted)
2934 {
2935 if (remove_breakpoints ())
2936 {
2937 target_terminal_ours_for_output ();
2938 printf_filtered ("Cannot remove breakpoints because ");
2939 printf_filtered ("program is no longer writable.\n");
2940 printf_filtered ("It might be running in another process.\n");
2941 printf_filtered ("Further execution is probably impossible.\n");
2942 }
2943 }
2944 breakpoints_inserted = 0;
2945
2946 /* Delete the breakpoint we stopped at, if it wants to be deleted.
2947 Delete any breakpoint that is to be deleted at the next stop. */
2948
2949 breakpoint_auto_delete (stop_bpstat);
2950
2951 /* If an auto-display called a function and that got a signal,
2952 delete that auto-display to avoid an infinite recursion. */
2953
2954 if (stopped_by_random_signal)
2955 disable_current_display ();
2956
2957 /* Don't print a message if in the middle of doing a "step n"
2958 operation for n > 1 */
2959 if (step_multi && stop_step)
2960 goto done;
2961
2962 target_terminal_ours ();
2963
2964 /* Look up the hook_stop and run it (CLI internally handles problem
2965 of stop_command's pre-hook not existing). */
2966 if (stop_command)
2967 catch_errors (hook_stop_stub, stop_command,
2968 "Error while running hook_stop:\n", RETURN_MASK_ALL);
2969
2970 if (!target_has_stack)
2971 {
2972
2973 goto done;
2974 }
2975
2976 /* Select innermost stack frame - i.e., current frame is frame 0,
2977 and current location is based on that.
2978 Don't do this on return from a stack dummy routine,
2979 or if the program has exited. */
2980
2981 if (!stop_stack_dummy)
2982 {
2983 select_frame (get_current_frame ());
2984
2985 /* Print current location without a level number, if
2986 we have changed functions or hit a breakpoint.
2987 Print source line if we have one.
2988 bpstat_print() contains the logic deciding in detail
2989 what to print, based on the event(s) that just occurred. */
2990
2991 if (stop_print_frame && deprecated_selected_frame)
2992 {
2993 int bpstat_ret;
2994 int source_flag;
2995 int do_frame_printing = 1;
2996
2997 bpstat_ret = bpstat_print (stop_bpstat);
2998 switch (bpstat_ret)
2999 {
3000 case PRINT_UNKNOWN:
3001 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3002 (or should) carry around the function and does (or
3003 should) use that when doing a frame comparison. */
3004 if (stop_step
3005 && frame_id_eq (step_frame_id,
3006 get_frame_id (get_current_frame ()))
3007 && step_start_function == find_pc_function (stop_pc))
3008 source_flag = SRC_LINE; /* finished step, just print source line */
3009 else
3010 source_flag = SRC_AND_LOC; /* print location and source line */
3011 break;
3012 case PRINT_SRC_AND_LOC:
3013 source_flag = SRC_AND_LOC; /* print location and source line */
3014 break;
3015 case PRINT_SRC_ONLY:
3016 source_flag = SRC_LINE;
3017 break;
3018 case PRINT_NOTHING:
3019 source_flag = SRC_LINE; /* something bogus */
3020 do_frame_printing = 0;
3021 break;
3022 default:
3023 internal_error (__FILE__, __LINE__, "Unknown value.");
3024 }
3025 /* For mi, have the same behavior every time we stop:
3026 print everything but the source line. */
3027 if (ui_out_is_mi_like_p (uiout))
3028 source_flag = LOC_AND_ADDRESS;
3029
3030 if (ui_out_is_mi_like_p (uiout))
3031 ui_out_field_int (uiout, "thread-id",
3032 pid_to_thread_id (inferior_ptid));
3033 /* The behavior of this routine with respect to the source
3034 flag is:
3035 SRC_LINE: Print only source line
3036 LOCATION: Print only location
3037 SRC_AND_LOC: Print location and source line */
3038 if (do_frame_printing)
3039 print_stack_frame (get_selected_frame (), 0, source_flag);
3040
3041 /* Display the auto-display expressions. */
3042 do_displays ();
3043 }
3044 }
3045
3046 /* Save the function value return registers, if we care.
3047 We might be about to restore their previous contents. */
3048 if (proceed_to_finish)
3049 /* NB: The copy goes through to the target picking up the value of
3050 all the registers. */
3051 regcache_cpy (stop_registers, current_regcache);
3052
3053 if (stop_stack_dummy)
3054 {
3055 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3056 ends with a setting of the current frame, so we can use that
3057 next. */
3058 frame_pop (get_current_frame ());
3059 /* Set stop_pc to what it was before we called the function.
3060 Can't rely on restore_inferior_status because that only gets
3061 called if we don't stop in the called function. */
3062 stop_pc = read_pc ();
3063 select_frame (get_current_frame ());
3064 }
3065
3066 done:
3067 annotate_stopped ();
3068 observer_notify_normal_stop (stop_bpstat);
3069 }
3070
3071 static int
3072 hook_stop_stub (void *cmd)
3073 {
3074 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3075 return (0);
3076 }
3077 \f
3078 int
3079 signal_stop_state (int signo)
3080 {
3081 return signal_stop[signo];
3082 }
3083
3084 int
3085 signal_print_state (int signo)
3086 {
3087 return signal_print[signo];
3088 }
3089
3090 int
3091 signal_pass_state (int signo)
3092 {
3093 return signal_program[signo];
3094 }
3095
3096 int
3097 signal_stop_update (int signo, int state)
3098 {
3099 int ret = signal_stop[signo];
3100 signal_stop[signo] = state;
3101 return ret;
3102 }
3103
3104 int
3105 signal_print_update (int signo, int state)
3106 {
3107 int ret = signal_print[signo];
3108 signal_print[signo] = state;
3109 return ret;
3110 }
3111
3112 int
3113 signal_pass_update (int signo, int state)
3114 {
3115 int ret = signal_program[signo];
3116 signal_program[signo] = state;
3117 return ret;
3118 }
3119
3120 static void
3121 sig_print_header (void)
3122 {
3123 printf_filtered ("\
3124 Signal Stop\tPrint\tPass to program\tDescription\n");
3125 }
3126
3127 static void
3128 sig_print_info (enum target_signal oursig)
3129 {
3130 char *name = target_signal_to_name (oursig);
3131 int name_padding = 13 - strlen (name);
3132
3133 if (name_padding <= 0)
3134 name_padding = 0;
3135
3136 printf_filtered ("%s", name);
3137 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3138 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3139 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3140 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3141 printf_filtered ("%s\n", target_signal_to_string (oursig));
3142 }
3143
3144 /* Specify how various signals in the inferior should be handled. */
3145
3146 static void
3147 handle_command (char *args, int from_tty)
3148 {
3149 char **argv;
3150 int digits, wordlen;
3151 int sigfirst, signum, siglast;
3152 enum target_signal oursig;
3153 int allsigs;
3154 int nsigs;
3155 unsigned char *sigs;
3156 struct cleanup *old_chain;
3157
3158 if (args == NULL)
3159 {
3160 error_no_arg ("signal to handle");
3161 }
3162
3163 /* Allocate and zero an array of flags for which signals to handle. */
3164
3165 nsigs = (int) TARGET_SIGNAL_LAST;
3166 sigs = (unsigned char *) alloca (nsigs);
3167 memset (sigs, 0, nsigs);
3168
3169 /* Break the command line up into args. */
3170
3171 argv = buildargv (args);
3172 if (argv == NULL)
3173 {
3174 nomem (0);
3175 }
3176 old_chain = make_cleanup_freeargv (argv);
3177
3178 /* Walk through the args, looking for signal oursigs, signal names, and
3179 actions. Signal numbers and signal names may be interspersed with
3180 actions, with the actions being performed for all signals cumulatively
3181 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3182
3183 while (*argv != NULL)
3184 {
3185 wordlen = strlen (*argv);
3186 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3187 {;
3188 }
3189 allsigs = 0;
3190 sigfirst = siglast = -1;
3191
3192 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3193 {
3194 /* Apply action to all signals except those used by the
3195 debugger. Silently skip those. */
3196 allsigs = 1;
3197 sigfirst = 0;
3198 siglast = nsigs - 1;
3199 }
3200 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3201 {
3202 SET_SIGS (nsigs, sigs, signal_stop);
3203 SET_SIGS (nsigs, sigs, signal_print);
3204 }
3205 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3206 {
3207 UNSET_SIGS (nsigs, sigs, signal_program);
3208 }
3209 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3210 {
3211 SET_SIGS (nsigs, sigs, signal_print);
3212 }
3213 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3214 {
3215 SET_SIGS (nsigs, sigs, signal_program);
3216 }
3217 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3218 {
3219 UNSET_SIGS (nsigs, sigs, signal_stop);
3220 }
3221 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3222 {
3223 SET_SIGS (nsigs, sigs, signal_program);
3224 }
3225 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3226 {
3227 UNSET_SIGS (nsigs, sigs, signal_print);
3228 UNSET_SIGS (nsigs, sigs, signal_stop);
3229 }
3230 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3231 {
3232 UNSET_SIGS (nsigs, sigs, signal_program);
3233 }
3234 else if (digits > 0)
3235 {
3236 /* It is numeric. The numeric signal refers to our own
3237 internal signal numbering from target.h, not to host/target
3238 signal number. This is a feature; users really should be
3239 using symbolic names anyway, and the common ones like
3240 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3241
3242 sigfirst = siglast = (int)
3243 target_signal_from_command (atoi (*argv));
3244 if ((*argv)[digits] == '-')
3245 {
3246 siglast = (int)
3247 target_signal_from_command (atoi ((*argv) + digits + 1));
3248 }
3249 if (sigfirst > siglast)
3250 {
3251 /* Bet he didn't figure we'd think of this case... */
3252 signum = sigfirst;
3253 sigfirst = siglast;
3254 siglast = signum;
3255 }
3256 }
3257 else
3258 {
3259 oursig = target_signal_from_name (*argv);
3260 if (oursig != TARGET_SIGNAL_UNKNOWN)
3261 {
3262 sigfirst = siglast = (int) oursig;
3263 }
3264 else
3265 {
3266 /* Not a number and not a recognized flag word => complain. */
3267 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3268 }
3269 }
3270
3271 /* If any signal numbers or symbol names were found, set flags for
3272 which signals to apply actions to. */
3273
3274 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3275 {
3276 switch ((enum target_signal) signum)
3277 {
3278 case TARGET_SIGNAL_TRAP:
3279 case TARGET_SIGNAL_INT:
3280 if (!allsigs && !sigs[signum])
3281 {
3282 if (query ("%s is used by the debugger.\n\
3283 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3284 {
3285 sigs[signum] = 1;
3286 }
3287 else
3288 {
3289 printf_unfiltered ("Not confirmed, unchanged.\n");
3290 gdb_flush (gdb_stdout);
3291 }
3292 }
3293 break;
3294 case TARGET_SIGNAL_0:
3295 case TARGET_SIGNAL_DEFAULT:
3296 case TARGET_SIGNAL_UNKNOWN:
3297 /* Make sure that "all" doesn't print these. */
3298 break;
3299 default:
3300 sigs[signum] = 1;
3301 break;
3302 }
3303 }
3304
3305 argv++;
3306 }
3307
3308 target_notice_signals (inferior_ptid);
3309
3310 if (from_tty)
3311 {
3312 /* Show the results. */
3313 sig_print_header ();
3314 for (signum = 0; signum < nsigs; signum++)
3315 {
3316 if (sigs[signum])
3317 {
3318 sig_print_info (signum);
3319 }
3320 }
3321 }
3322
3323 do_cleanups (old_chain);
3324 }
3325
3326 static void
3327 xdb_handle_command (char *args, int from_tty)
3328 {
3329 char **argv;
3330 struct cleanup *old_chain;
3331
3332 /* Break the command line up into args. */
3333
3334 argv = buildargv (args);
3335 if (argv == NULL)
3336 {
3337 nomem (0);
3338 }
3339 old_chain = make_cleanup_freeargv (argv);
3340 if (argv[1] != (char *) NULL)
3341 {
3342 char *argBuf;
3343 int bufLen;
3344
3345 bufLen = strlen (argv[0]) + 20;
3346 argBuf = (char *) xmalloc (bufLen);
3347 if (argBuf)
3348 {
3349 int validFlag = 1;
3350 enum target_signal oursig;
3351
3352 oursig = target_signal_from_name (argv[0]);
3353 memset (argBuf, 0, bufLen);
3354 if (strcmp (argv[1], "Q") == 0)
3355 sprintf (argBuf, "%s %s", argv[0], "noprint");
3356 else
3357 {
3358 if (strcmp (argv[1], "s") == 0)
3359 {
3360 if (!signal_stop[oursig])
3361 sprintf (argBuf, "%s %s", argv[0], "stop");
3362 else
3363 sprintf (argBuf, "%s %s", argv[0], "nostop");
3364 }
3365 else if (strcmp (argv[1], "i") == 0)
3366 {
3367 if (!signal_program[oursig])
3368 sprintf (argBuf, "%s %s", argv[0], "pass");
3369 else
3370 sprintf (argBuf, "%s %s", argv[0], "nopass");
3371 }
3372 else if (strcmp (argv[1], "r") == 0)
3373 {
3374 if (!signal_print[oursig])
3375 sprintf (argBuf, "%s %s", argv[0], "print");
3376 else
3377 sprintf (argBuf, "%s %s", argv[0], "noprint");
3378 }
3379 else
3380 validFlag = 0;
3381 }
3382 if (validFlag)
3383 handle_command (argBuf, from_tty);
3384 else
3385 printf_filtered ("Invalid signal handling flag.\n");
3386 if (argBuf)
3387 xfree (argBuf);
3388 }
3389 }
3390 do_cleanups (old_chain);
3391 }
3392
3393 /* Print current contents of the tables set by the handle command.
3394 It is possible we should just be printing signals actually used
3395 by the current target (but for things to work right when switching
3396 targets, all signals should be in the signal tables). */
3397
3398 static void
3399 signals_info (char *signum_exp, int from_tty)
3400 {
3401 enum target_signal oursig;
3402 sig_print_header ();
3403
3404 if (signum_exp)
3405 {
3406 /* First see if this is a symbol name. */
3407 oursig = target_signal_from_name (signum_exp);
3408 if (oursig == TARGET_SIGNAL_UNKNOWN)
3409 {
3410 /* No, try numeric. */
3411 oursig =
3412 target_signal_from_command (parse_and_eval_long (signum_exp));
3413 }
3414 sig_print_info (oursig);
3415 return;
3416 }
3417
3418 printf_filtered ("\n");
3419 /* These ugly casts brought to you by the native VAX compiler. */
3420 for (oursig = TARGET_SIGNAL_FIRST;
3421 (int) oursig < (int) TARGET_SIGNAL_LAST;
3422 oursig = (enum target_signal) ((int) oursig + 1))
3423 {
3424 QUIT;
3425
3426 if (oursig != TARGET_SIGNAL_UNKNOWN
3427 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3428 sig_print_info (oursig);
3429 }
3430
3431 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3432 }
3433 \f
3434 struct inferior_status
3435 {
3436 enum target_signal stop_signal;
3437 CORE_ADDR stop_pc;
3438 bpstat stop_bpstat;
3439 int stop_step;
3440 int stop_stack_dummy;
3441 int stopped_by_random_signal;
3442 int trap_expected;
3443 CORE_ADDR step_range_start;
3444 CORE_ADDR step_range_end;
3445 struct frame_id step_frame_id;
3446 enum step_over_calls_kind step_over_calls;
3447 CORE_ADDR step_resume_break_address;
3448 int stop_after_trap;
3449 int stop_soon;
3450 struct regcache *stop_registers;
3451
3452 /* These are here because if call_function_by_hand has written some
3453 registers and then decides to call error(), we better not have changed
3454 any registers. */
3455 struct regcache *registers;
3456
3457 /* A frame unique identifier. */
3458 struct frame_id selected_frame_id;
3459
3460 int breakpoint_proceeded;
3461 int restore_stack_info;
3462 int proceed_to_finish;
3463 };
3464
3465 void
3466 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3467 LONGEST val)
3468 {
3469 int size = register_size (current_gdbarch, regno);
3470 void *buf = alloca (size);
3471 store_signed_integer (buf, size, val);
3472 regcache_raw_write (inf_status->registers, regno, buf);
3473 }
3474
3475 /* Save all of the information associated with the inferior<==>gdb
3476 connection. INF_STATUS is a pointer to a "struct inferior_status"
3477 (defined in inferior.h). */
3478
3479 struct inferior_status *
3480 save_inferior_status (int restore_stack_info)
3481 {
3482 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3483
3484 inf_status->stop_signal = stop_signal;
3485 inf_status->stop_pc = stop_pc;
3486 inf_status->stop_step = stop_step;
3487 inf_status->stop_stack_dummy = stop_stack_dummy;
3488 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3489 inf_status->trap_expected = trap_expected;
3490 inf_status->step_range_start = step_range_start;
3491 inf_status->step_range_end = step_range_end;
3492 inf_status->step_frame_id = step_frame_id;
3493 inf_status->step_over_calls = step_over_calls;
3494 inf_status->stop_after_trap = stop_after_trap;
3495 inf_status->stop_soon = stop_soon;
3496 /* Save original bpstat chain here; replace it with copy of chain.
3497 If caller's caller is walking the chain, they'll be happier if we
3498 hand them back the original chain when restore_inferior_status is
3499 called. */
3500 inf_status->stop_bpstat = stop_bpstat;
3501 stop_bpstat = bpstat_copy (stop_bpstat);
3502 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3503 inf_status->restore_stack_info = restore_stack_info;
3504 inf_status->proceed_to_finish = proceed_to_finish;
3505
3506 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3507
3508 inf_status->registers = regcache_dup (current_regcache);
3509
3510 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
3511 return inf_status;
3512 }
3513
3514 static int
3515 restore_selected_frame (void *args)
3516 {
3517 struct frame_id *fid = (struct frame_id *) args;
3518 struct frame_info *frame;
3519
3520 frame = frame_find_by_id (*fid);
3521
3522 /* If inf_status->selected_frame_id is NULL, there was no previously
3523 selected frame. */
3524 if (frame == NULL)
3525 {
3526 warning ("Unable to restore previously selected frame.\n");
3527 return 0;
3528 }
3529
3530 select_frame (frame);
3531
3532 return (1);
3533 }
3534
3535 void
3536 restore_inferior_status (struct inferior_status *inf_status)
3537 {
3538 stop_signal = inf_status->stop_signal;
3539 stop_pc = inf_status->stop_pc;
3540 stop_step = inf_status->stop_step;
3541 stop_stack_dummy = inf_status->stop_stack_dummy;
3542 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3543 trap_expected = inf_status->trap_expected;
3544 step_range_start = inf_status->step_range_start;
3545 step_range_end = inf_status->step_range_end;
3546 step_frame_id = inf_status->step_frame_id;
3547 step_over_calls = inf_status->step_over_calls;
3548 stop_after_trap = inf_status->stop_after_trap;
3549 stop_soon = inf_status->stop_soon;
3550 bpstat_clear (&stop_bpstat);
3551 stop_bpstat = inf_status->stop_bpstat;
3552 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3553 proceed_to_finish = inf_status->proceed_to_finish;
3554
3555 /* FIXME: Is the restore of stop_registers always needed. */
3556 regcache_xfree (stop_registers);
3557 stop_registers = inf_status->stop_registers;
3558
3559 /* The inferior can be gone if the user types "print exit(0)"
3560 (and perhaps other times). */
3561 if (target_has_execution)
3562 /* NB: The register write goes through to the target. */
3563 regcache_cpy (current_regcache, inf_status->registers);
3564 regcache_xfree (inf_status->registers);
3565
3566 /* FIXME: If we are being called after stopping in a function which
3567 is called from gdb, we should not be trying to restore the
3568 selected frame; it just prints a spurious error message (The
3569 message is useful, however, in detecting bugs in gdb (like if gdb
3570 clobbers the stack)). In fact, should we be restoring the
3571 inferior status at all in that case? . */
3572
3573 if (target_has_stack && inf_status->restore_stack_info)
3574 {
3575 /* The point of catch_errors is that if the stack is clobbered,
3576 walking the stack might encounter a garbage pointer and
3577 error() trying to dereference it. */
3578 if (catch_errors
3579 (restore_selected_frame, &inf_status->selected_frame_id,
3580 "Unable to restore previously selected frame:\n",
3581 RETURN_MASK_ERROR) == 0)
3582 /* Error in restoring the selected frame. Select the innermost
3583 frame. */
3584 select_frame (get_current_frame ());
3585
3586 }
3587
3588 xfree (inf_status);
3589 }
3590
3591 static void
3592 do_restore_inferior_status_cleanup (void *sts)
3593 {
3594 restore_inferior_status (sts);
3595 }
3596
3597 struct cleanup *
3598 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3599 {
3600 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3601 }
3602
3603 void
3604 discard_inferior_status (struct inferior_status *inf_status)
3605 {
3606 /* See save_inferior_status for info on stop_bpstat. */
3607 bpstat_clear (&inf_status->stop_bpstat);
3608 regcache_xfree (inf_status->registers);
3609 regcache_xfree (inf_status->stop_registers);
3610 xfree (inf_status);
3611 }
3612
3613 int
3614 inferior_has_forked (int pid, int *child_pid)
3615 {
3616 struct target_waitstatus last;
3617 ptid_t last_ptid;
3618
3619 get_last_target_status (&last_ptid, &last);
3620
3621 if (last.kind != TARGET_WAITKIND_FORKED)
3622 return 0;
3623
3624 if (ptid_get_pid (last_ptid) != pid)
3625 return 0;
3626
3627 *child_pid = last.value.related_pid;
3628 return 1;
3629 }
3630
3631 int
3632 inferior_has_vforked (int pid, int *child_pid)
3633 {
3634 struct target_waitstatus last;
3635 ptid_t last_ptid;
3636
3637 get_last_target_status (&last_ptid, &last);
3638
3639 if (last.kind != TARGET_WAITKIND_VFORKED)
3640 return 0;
3641
3642 if (ptid_get_pid (last_ptid) != pid)
3643 return 0;
3644
3645 *child_pid = last.value.related_pid;
3646 return 1;
3647 }
3648
3649 int
3650 inferior_has_execd (int pid, char **execd_pathname)
3651 {
3652 struct target_waitstatus last;
3653 ptid_t last_ptid;
3654
3655 get_last_target_status (&last_ptid, &last);
3656
3657 if (last.kind != TARGET_WAITKIND_EXECD)
3658 return 0;
3659
3660 if (ptid_get_pid (last_ptid) != pid)
3661 return 0;
3662
3663 *execd_pathname = xstrdup (last.value.execd_pathname);
3664 return 1;
3665 }
3666
3667 /* Oft used ptids */
3668 ptid_t null_ptid;
3669 ptid_t minus_one_ptid;
3670
3671 /* Create a ptid given the necessary PID, LWP, and TID components. */
3672
3673 ptid_t
3674 ptid_build (int pid, long lwp, long tid)
3675 {
3676 ptid_t ptid;
3677
3678 ptid.pid = pid;
3679 ptid.lwp = lwp;
3680 ptid.tid = tid;
3681 return ptid;
3682 }
3683
3684 /* Create a ptid from just a pid. */
3685
3686 ptid_t
3687 pid_to_ptid (int pid)
3688 {
3689 return ptid_build (pid, 0, 0);
3690 }
3691
3692 /* Fetch the pid (process id) component from a ptid. */
3693
3694 int
3695 ptid_get_pid (ptid_t ptid)
3696 {
3697 return ptid.pid;
3698 }
3699
3700 /* Fetch the lwp (lightweight process) component from a ptid. */
3701
3702 long
3703 ptid_get_lwp (ptid_t ptid)
3704 {
3705 return ptid.lwp;
3706 }
3707
3708 /* Fetch the tid (thread id) component from a ptid. */
3709
3710 long
3711 ptid_get_tid (ptid_t ptid)
3712 {
3713 return ptid.tid;
3714 }
3715
3716 /* ptid_equal() is used to test equality of two ptids. */
3717
3718 int
3719 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3720 {
3721 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3722 && ptid1.tid == ptid2.tid);
3723 }
3724
3725 /* restore_inferior_ptid() will be used by the cleanup machinery
3726 to restore the inferior_ptid value saved in a call to
3727 save_inferior_ptid(). */
3728
3729 static void
3730 restore_inferior_ptid (void *arg)
3731 {
3732 ptid_t *saved_ptid_ptr = arg;
3733 inferior_ptid = *saved_ptid_ptr;
3734 xfree (arg);
3735 }
3736
3737 /* Save the value of inferior_ptid so that it may be restored by a
3738 later call to do_cleanups(). Returns the struct cleanup pointer
3739 needed for later doing the cleanup. */
3740
3741 struct cleanup *
3742 save_inferior_ptid (void)
3743 {
3744 ptid_t *saved_ptid_ptr;
3745
3746 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3747 *saved_ptid_ptr = inferior_ptid;
3748 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3749 }
3750 \f
3751
3752 static void
3753 build_infrun (void)
3754 {
3755 stop_registers = regcache_xmalloc (current_gdbarch);
3756 }
3757
3758 void
3759 _initialize_infrun (void)
3760 {
3761 int i;
3762 int numsigs;
3763 struct cmd_list_element *c;
3764
3765 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3766 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3767
3768 add_info ("signals", signals_info,
3769 "What debugger does when program gets various signals.\n\
3770 Specify a signal as argument to print info on that signal only.");
3771 add_info_alias ("handle", "signals", 0);
3772
3773 add_com ("handle", class_run, handle_command,
3774 concat ("Specify how to handle a signal.\n\
3775 Args are signals and actions to apply to those signals.\n\
3776 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3777 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3778 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3779 The special arg \"all\" is recognized to mean all signals except those\n\
3780 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3781 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3782 Stop means reenter debugger if this signal happens (implies print).\n\
3783 Print means print a message if this signal happens.\n\
3784 Pass means let program see this signal; otherwise program doesn't know.\n\
3785 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3786 Pass and Stop may be combined.", NULL));
3787 if (xdb_commands)
3788 {
3789 add_com ("lz", class_info, signals_info,
3790 "What debugger does when program gets various signals.\n\
3791 Specify a signal as argument to print info on that signal only.");
3792 add_com ("z", class_run, xdb_handle_command,
3793 concat ("Specify how to handle a signal.\n\
3794 Args are signals and actions to apply to those signals.\n\
3795 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3796 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3797 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3798 The special arg \"all\" is recognized to mean all signals except those\n\
3799 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
3800 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3801 nopass), \"Q\" (noprint)\n\
3802 Stop means reenter debugger if this signal happens (implies print).\n\
3803 Print means print a message if this signal happens.\n\
3804 Pass means let program see this signal; otherwise program doesn't know.\n\
3805 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3806 Pass and Stop may be combined.", NULL));
3807 }
3808
3809 if (!dbx_commands)
3810 stop_command =
3811 add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\
3812 This allows you to set a list of commands to be run each time execution\n\
3813 of the program stops.", &cmdlist);
3814
3815 numsigs = (int) TARGET_SIGNAL_LAST;
3816 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3817 signal_print = (unsigned char *)
3818 xmalloc (sizeof (signal_print[0]) * numsigs);
3819 signal_program = (unsigned char *)
3820 xmalloc (sizeof (signal_program[0]) * numsigs);
3821 for (i = 0; i < numsigs; i++)
3822 {
3823 signal_stop[i] = 1;
3824 signal_print[i] = 1;
3825 signal_program[i] = 1;
3826 }
3827
3828 /* Signals caused by debugger's own actions
3829 should not be given to the program afterwards. */
3830 signal_program[TARGET_SIGNAL_TRAP] = 0;
3831 signal_program[TARGET_SIGNAL_INT] = 0;
3832
3833 /* Signals that are not errors should not normally enter the debugger. */
3834 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3835 signal_print[TARGET_SIGNAL_ALRM] = 0;
3836 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3837 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3838 signal_stop[TARGET_SIGNAL_PROF] = 0;
3839 signal_print[TARGET_SIGNAL_PROF] = 0;
3840 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3841 signal_print[TARGET_SIGNAL_CHLD] = 0;
3842 signal_stop[TARGET_SIGNAL_IO] = 0;
3843 signal_print[TARGET_SIGNAL_IO] = 0;
3844 signal_stop[TARGET_SIGNAL_POLL] = 0;
3845 signal_print[TARGET_SIGNAL_POLL] = 0;
3846 signal_stop[TARGET_SIGNAL_URG] = 0;
3847 signal_print[TARGET_SIGNAL_URG] = 0;
3848 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3849 signal_print[TARGET_SIGNAL_WINCH] = 0;
3850
3851 /* These signals are used internally by user-level thread
3852 implementations. (See signal(5) on Solaris.) Like the above
3853 signals, a healthy program receives and handles them as part of
3854 its normal operation. */
3855 signal_stop[TARGET_SIGNAL_LWP] = 0;
3856 signal_print[TARGET_SIGNAL_LWP] = 0;
3857 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3858 signal_print[TARGET_SIGNAL_WAITING] = 0;
3859 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3860 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3861
3862 #ifdef SOLIB_ADD
3863 deprecated_add_show_from_set
3864 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
3865 (char *) &stop_on_solib_events,
3866 "Set stopping for shared library events.\n\
3867 If nonzero, gdb will give control to the user when the dynamic linker\n\
3868 notifies gdb of shared library events. The most common event of interest\n\
3869 to the user would be loading/unloading of a new library.\n", &setlist), &showlist);
3870 #endif
3871
3872 c = add_set_enum_cmd ("follow-fork-mode",
3873 class_run,
3874 follow_fork_mode_kind_names, &follow_fork_mode_string,
3875 "Set debugger response to a program call of fork \
3876 or vfork.\n\
3877 A fork or vfork creates a new process. follow-fork-mode can be:\n\
3878 parent - the original process is debugged after a fork\n\
3879 child - the new process is debugged after a fork\n\
3880 The unfollowed process will continue to run.\n\
3881 By default, the debugger will follow the parent process.", &setlist);
3882 deprecated_add_show_from_set (c, &showlist);
3883
3884 c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums, /* array of string names */
3885 &scheduler_mode, /* current mode */
3886 "Set mode for locking scheduler during execution.\n\
3887 off == no locking (threads may preempt at any time)\n\
3888 on == full locking (no thread except the current thread may run)\n\
3889 step == scheduler locked during every single-step operation.\n\
3890 In this mode, no other thread may run during a step command.\n\
3891 Other threads may run while stepping over a function call ('next').", &setlist);
3892
3893 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
3894 deprecated_add_show_from_set (c, &showlist);
3895
3896 c = add_set_cmd ("step-mode", class_run,
3897 var_boolean, (char *) &step_stop_if_no_debug,
3898 "Set mode of the step operation. When set, doing a step over a\n\
3899 function without debug line information will stop at the first\n\
3900 instruction of that function. Otherwise, the function is skipped and\n\
3901 the step command stops at a different source line.", &setlist);
3902 deprecated_add_show_from_set (c, &showlist);
3903
3904 /* ptid initializations */
3905 null_ptid = ptid_build (0, 0, 0);
3906 minus_one_ptid = ptid_build (-1, 0, 0);
3907 inferior_ptid = null_ptid;
3908 target_last_wait_ptid = minus_one_ptid;
3909 }