]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
2004-05-11 Andrew Cagney <cagney@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "breakpoint.h"
32 #include "gdb_wait.h"
33 #include "gdbcore.h"
34 #include "gdbcmd.h"
35 #include "cli/cli-script.h"
36 #include "target.h"
37 #include "gdbthread.h"
38 #include "annotate.h"
39 #include "symfile.h"
40 #include "top.h"
41 #include <signal.h>
42 #include "inf-loop.h"
43 #include "regcache.h"
44 #include "value.h"
45 #include "observer.h"
46 #include "language.h"
47 #include "gdb_assert.h"
48
49 /* Prototypes for local functions */
50
51 static void signals_info (char *, int);
52
53 static void handle_command (char *, int);
54
55 static void sig_print_info (enum target_signal);
56
57 static void sig_print_header (void);
58
59 static void resume_cleanups (void *);
60
61 static int hook_stop_stub (void *);
62
63 static int restore_selected_frame (void *);
64
65 static void build_infrun (void);
66
67 static int follow_fork (void);
68
69 static void set_schedlock_func (char *args, int from_tty,
70 struct cmd_list_element *c);
71
72 struct execution_control_state;
73
74 static int currently_stepping (struct execution_control_state *ecs);
75
76 static void xdb_handle_command (char *args, int from_tty);
77
78 static int prepare_to_proceed (void);
79
80 void _initialize_infrun (void);
81
82 int inferior_ignoring_startup_exec_events = 0;
83 int inferior_ignoring_leading_exec_events = 0;
84
85 /* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88 int step_stop_if_no_debug = 0;
89
90 /* In asynchronous mode, but simulating synchronous execution. */
91
92 int sync_execution = 0;
93
94 /* wait_for_inferior and normal_stop use this to notify the user
95 when the inferior stopped in a different thread than it had been
96 running in. */
97
98 static ptid_t previous_inferior_ptid;
99
100 /* This is true for configurations that may follow through execl() and
101 similar functions. At present this is only true for HP-UX native. */
102
103 #ifndef MAY_FOLLOW_EXEC
104 #define MAY_FOLLOW_EXEC (0)
105 #endif
106
107 static int may_follow_exec = MAY_FOLLOW_EXEC;
108
109 /* If the program uses ELF-style shared libraries, then calls to
110 functions in shared libraries go through stubs, which live in a
111 table called the PLT (Procedure Linkage Table). The first time the
112 function is called, the stub sends control to the dynamic linker,
113 which looks up the function's real address, patches the stub so
114 that future calls will go directly to the function, and then passes
115 control to the function.
116
117 If we are stepping at the source level, we don't want to see any of
118 this --- we just want to skip over the stub and the dynamic linker.
119 The simple approach is to single-step until control leaves the
120 dynamic linker.
121
122 However, on some systems (e.g., Red Hat's 5.2 distribution) the
123 dynamic linker calls functions in the shared C library, so you
124 can't tell from the PC alone whether the dynamic linker is still
125 running. In this case, we use a step-resume breakpoint to get us
126 past the dynamic linker, as if we were using "next" to step over a
127 function call.
128
129 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
130 linker code or not. Normally, this means we single-step. However,
131 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
132 address where we can place a step-resume breakpoint to get past the
133 linker's symbol resolution function.
134
135 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
136 pretty portable way, by comparing the PC against the address ranges
137 of the dynamic linker's sections.
138
139 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
140 it depends on internal details of the dynamic linker. It's usually
141 not too hard to figure out where to put a breakpoint, but it
142 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
143 sanity checking. If it can't figure things out, returning zero and
144 getting the (possibly confusing) stepping behavior is better than
145 signalling an error, which will obscure the change in the
146 inferior's state. */
147
148 #ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
149 #define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
150 #endif
151
152 /* This function returns TRUE if pc is the address of an instruction
153 that lies within the dynamic linker (such as the event hook, or the
154 dld itself).
155
156 This function must be used only when a dynamic linker event has
157 been caught, and the inferior is being stepped out of the hook, or
158 undefined results are guaranteed. */
159
160 #ifndef SOLIB_IN_DYNAMIC_LINKER
161 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
162 #endif
163
164 /* On MIPS16, a function that returns a floating point value may call
165 a library helper function to copy the return value to a floating point
166 register. The IGNORE_HELPER_CALL macro returns non-zero if we
167 should ignore (i.e. step over) this function call. */
168 #ifndef IGNORE_HELPER_CALL
169 #define IGNORE_HELPER_CALL(pc) 0
170 #endif
171
172 /* On some systems, the PC may be left pointing at an instruction that won't
173 actually be executed. This is usually indicated by a bit in the PSW. If
174 we find ourselves in such a state, then we step the target beyond the
175 nullified instruction before returning control to the user so as to avoid
176 confusion. */
177
178 #ifndef INSTRUCTION_NULLIFIED
179 #define INSTRUCTION_NULLIFIED 0
180 #endif
181
182 /* We can't step off a permanent breakpoint in the ordinary way, because we
183 can't remove it. Instead, we have to advance the PC to the next
184 instruction. This macro should expand to a pointer to a function that
185 does that, or zero if we have no such function. If we don't have a
186 definition for it, we have to report an error. */
187 #ifndef SKIP_PERMANENT_BREAKPOINT
188 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
189 static void
190 default_skip_permanent_breakpoint (void)
191 {
192 error ("\
193 The program is stopped at a permanent breakpoint, but GDB does not know\n\
194 how to step past a permanent breakpoint on this architecture. Try using\n\
195 a command like `return' or `jump' to continue execution.");
196 }
197 #endif
198
199
200 /* Convert the #defines into values. This is temporary until wfi control
201 flow is completely sorted out. */
202
203 #ifndef HAVE_STEPPABLE_WATCHPOINT
204 #define HAVE_STEPPABLE_WATCHPOINT 0
205 #else
206 #undef HAVE_STEPPABLE_WATCHPOINT
207 #define HAVE_STEPPABLE_WATCHPOINT 1
208 #endif
209
210 #ifndef CANNOT_STEP_HW_WATCHPOINTS
211 #define CANNOT_STEP_HW_WATCHPOINTS 0
212 #else
213 #undef CANNOT_STEP_HW_WATCHPOINTS
214 #define CANNOT_STEP_HW_WATCHPOINTS 1
215 #endif
216
217 /* Tables of how to react to signals; the user sets them. */
218
219 static unsigned char *signal_stop;
220 static unsigned char *signal_print;
221 static unsigned char *signal_program;
222
223 #define SET_SIGS(nsigs,sigs,flags) \
224 do { \
225 int signum = (nsigs); \
226 while (signum-- > 0) \
227 if ((sigs)[signum]) \
228 (flags)[signum] = 1; \
229 } while (0)
230
231 #define UNSET_SIGS(nsigs,sigs,flags) \
232 do { \
233 int signum = (nsigs); \
234 while (signum-- > 0) \
235 if ((sigs)[signum]) \
236 (flags)[signum] = 0; \
237 } while (0)
238
239 /* Value to pass to target_resume() to cause all threads to resume */
240
241 #define RESUME_ALL (pid_to_ptid (-1))
242
243 /* Command list pointer for the "stop" placeholder. */
244
245 static struct cmd_list_element *stop_command;
246
247 /* Nonzero if breakpoints are now inserted in the inferior. */
248
249 static int breakpoints_inserted;
250
251 /* Function inferior was in as of last step command. */
252
253 static struct symbol *step_start_function;
254
255 /* Nonzero if we are expecting a trace trap and should proceed from it. */
256
257 static int trap_expected;
258
259 #ifdef SOLIB_ADD
260 /* Nonzero if we want to give control to the user when we're notified
261 of shared library events by the dynamic linker. */
262 static int stop_on_solib_events;
263 #endif
264
265 #ifdef HP_OS_BUG
266 /* Nonzero if the next time we try to continue the inferior, it will
267 step one instruction and generate a spurious trace trap.
268 This is used to compensate for a bug in HP-UX. */
269
270 static int trap_expected_after_continue;
271 #endif
272
273 /* Nonzero means expecting a trace trap
274 and should stop the inferior and return silently when it happens. */
275
276 int stop_after_trap;
277
278 /* Nonzero means expecting a trap and caller will handle it themselves.
279 It is used after attach, due to attaching to a process;
280 when running in the shell before the child program has been exec'd;
281 and when running some kinds of remote stuff (FIXME?). */
282
283 enum stop_kind stop_soon;
284
285 /* Nonzero if proceed is being used for a "finish" command or a similar
286 situation when stop_registers should be saved. */
287
288 int proceed_to_finish;
289
290 /* Save register contents here when about to pop a stack dummy frame,
291 if-and-only-if proceed_to_finish is set.
292 Thus this contains the return value from the called function (assuming
293 values are returned in a register). */
294
295 struct regcache *stop_registers;
296
297 /* Nonzero if program stopped due to error trying to insert breakpoints. */
298
299 static int breakpoints_failed;
300
301 /* Nonzero after stop if current stack frame should be printed. */
302
303 static int stop_print_frame;
304
305 static struct breakpoint *step_resume_breakpoint = NULL;
306
307 /* On some platforms (e.g., HP-UX), hardware watchpoints have bad
308 interactions with an inferior that is running a kernel function
309 (aka, a system call or "syscall"). wait_for_inferior therefore
310 may have a need to know when the inferior is in a syscall. This
311 is a count of the number of inferior threads which are known to
312 currently be running in a syscall. */
313 static int number_of_threads_in_syscalls;
314
315 /* This is a cached copy of the pid/waitstatus of the last event
316 returned by target_wait()/deprecated_target_wait_hook(). This
317 information is returned by get_last_target_status(). */
318 static ptid_t target_last_wait_ptid;
319 static struct target_waitstatus target_last_waitstatus;
320
321 /* This is used to remember when a fork, vfork or exec event
322 was caught by a catchpoint, and thus the event is to be
323 followed at the next resume of the inferior, and not
324 immediately. */
325 static struct
326 {
327 enum target_waitkind kind;
328 struct
329 {
330 int parent_pid;
331 int child_pid;
332 }
333 fork_event;
334 char *execd_pathname;
335 }
336 pending_follow;
337
338 static const char follow_fork_mode_child[] = "child";
339 static const char follow_fork_mode_parent[] = "parent";
340
341 static const char *follow_fork_mode_kind_names[] = {
342 follow_fork_mode_child,
343 follow_fork_mode_parent,
344 NULL
345 };
346
347 static const char *follow_fork_mode_string = follow_fork_mode_parent;
348 \f
349
350 static int
351 follow_fork (void)
352 {
353 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
354
355 return target_follow_fork (follow_child);
356 }
357
358 void
359 follow_inferior_reset_breakpoints (void)
360 {
361 /* Was there a step_resume breakpoint? (There was if the user
362 did a "next" at the fork() call.) If so, explicitly reset its
363 thread number.
364
365 step_resumes are a form of bp that are made to be per-thread.
366 Since we created the step_resume bp when the parent process
367 was being debugged, and now are switching to the child process,
368 from the breakpoint package's viewpoint, that's a switch of
369 "threads". We must update the bp's notion of which thread
370 it is for, or it'll be ignored when it triggers. */
371
372 if (step_resume_breakpoint)
373 breakpoint_re_set_thread (step_resume_breakpoint);
374
375 /* Reinsert all breakpoints in the child. The user may have set
376 breakpoints after catching the fork, in which case those
377 were never set in the child, but only in the parent. This makes
378 sure the inserted breakpoints match the breakpoint list. */
379
380 breakpoint_re_set ();
381 insert_breakpoints ();
382 }
383
384 /* EXECD_PATHNAME is assumed to be non-NULL. */
385
386 static void
387 follow_exec (int pid, char *execd_pathname)
388 {
389 int saved_pid = pid;
390 struct target_ops *tgt;
391
392 if (!may_follow_exec)
393 return;
394
395 /* This is an exec event that we actually wish to pay attention to.
396 Refresh our symbol table to the newly exec'd program, remove any
397 momentary bp's, etc.
398
399 If there are breakpoints, they aren't really inserted now,
400 since the exec() transformed our inferior into a fresh set
401 of instructions.
402
403 We want to preserve symbolic breakpoints on the list, since
404 we have hopes that they can be reset after the new a.out's
405 symbol table is read.
406
407 However, any "raw" breakpoints must be removed from the list
408 (e.g., the solib bp's), since their address is probably invalid
409 now.
410
411 And, we DON'T want to call delete_breakpoints() here, since
412 that may write the bp's "shadow contents" (the instruction
413 value that was overwritten witha TRAP instruction). Since
414 we now have a new a.out, those shadow contents aren't valid. */
415 update_breakpoints_after_exec ();
416
417 /* If there was one, it's gone now. We cannot truly step-to-next
418 statement through an exec(). */
419 step_resume_breakpoint = NULL;
420 step_range_start = 0;
421 step_range_end = 0;
422
423 /* What is this a.out's name? */
424 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
425
426 /* We've followed the inferior through an exec. Therefore, the
427 inferior has essentially been killed & reborn. */
428
429 /* First collect the run target in effect. */
430 tgt = find_run_target ();
431 /* If we can't find one, things are in a very strange state... */
432 if (tgt == NULL)
433 error ("Could find run target to save before following exec");
434
435 gdb_flush (gdb_stdout);
436 target_mourn_inferior ();
437 inferior_ptid = pid_to_ptid (saved_pid);
438 /* Because mourn_inferior resets inferior_ptid. */
439 push_target (tgt);
440
441 /* That a.out is now the one to use. */
442 exec_file_attach (execd_pathname, 0);
443
444 /* And also is where symbols can be found. */
445 symbol_file_add_main (execd_pathname, 0);
446
447 /* Reset the shared library package. This ensures that we get
448 a shlib event when the child reaches "_start", at which point
449 the dld will have had a chance to initialize the child. */
450 #if defined(SOLIB_RESTART)
451 SOLIB_RESTART ();
452 #endif
453 #ifdef SOLIB_CREATE_INFERIOR_HOOK
454 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
455 #endif
456
457 /* Reinsert all breakpoints. (Those which were symbolic have
458 been reset to the proper address in the new a.out, thanks
459 to symbol_file_command...) */
460 insert_breakpoints ();
461
462 /* The next resume of this inferior should bring it to the shlib
463 startup breakpoints. (If the user had also set bp's on
464 "main" from the old (parent) process, then they'll auto-
465 matically get reset there in the new process.) */
466 }
467
468 /* Non-zero if we just simulating a single-step. This is needed
469 because we cannot remove the breakpoints in the inferior process
470 until after the `wait' in `wait_for_inferior'. */
471 static int singlestep_breakpoints_inserted_p = 0;
472
473 /* The thread we inserted single-step breakpoints for. */
474 static ptid_t singlestep_ptid;
475
476 /* If another thread hit the singlestep breakpoint, we save the original
477 thread here so that we can resume single-stepping it later. */
478 static ptid_t saved_singlestep_ptid;
479 static int stepping_past_singlestep_breakpoint;
480 \f
481
482 /* Things to clean up if we QUIT out of resume (). */
483 static void
484 resume_cleanups (void *ignore)
485 {
486 normal_stop ();
487 }
488
489 static const char schedlock_off[] = "off";
490 static const char schedlock_on[] = "on";
491 static const char schedlock_step[] = "step";
492 static const char *scheduler_mode = schedlock_off;
493 static const char *scheduler_enums[] = {
494 schedlock_off,
495 schedlock_on,
496 schedlock_step,
497 NULL
498 };
499
500 static void
501 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
502 {
503 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
504 the set command passed as a parameter. The clone operation will
505 include (BUG?) any ``set'' command callback, if present.
506 Commands like ``info set'' call all the ``show'' command
507 callbacks. Unfortunately, for ``show'' commands cloned from
508 ``set'', this includes callbacks belonging to ``set'' commands.
509 Making this worse, this only occures if add_show_from_set() is
510 called after add_cmd_sfunc() (BUG?). */
511 if (cmd_type (c) == set_cmd)
512 if (!target_can_lock_scheduler)
513 {
514 scheduler_mode = schedlock_off;
515 error ("Target '%s' cannot support this command.", target_shortname);
516 }
517 }
518
519
520 /* Resume the inferior, but allow a QUIT. This is useful if the user
521 wants to interrupt some lengthy single-stepping operation
522 (for child processes, the SIGINT goes to the inferior, and so
523 we get a SIGINT random_signal, but for remote debugging and perhaps
524 other targets, that's not true).
525
526 STEP nonzero if we should step (zero to continue instead).
527 SIG is the signal to give the inferior (zero for none). */
528 void
529 resume (int step, enum target_signal sig)
530 {
531 int should_resume = 1;
532 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
533 QUIT;
534
535 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
536
537
538 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
539 over an instruction that causes a page fault without triggering
540 a hardware watchpoint. The kernel properly notices that it shouldn't
541 stop, because the hardware watchpoint is not triggered, but it forgets
542 the step request and continues the program normally.
543 Work around the problem by removing hardware watchpoints if a step is
544 requested, GDB will check for a hardware watchpoint trigger after the
545 step anyway. */
546 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
547 remove_hw_watchpoints ();
548
549
550 /* Normally, by the time we reach `resume', the breakpoints are either
551 removed or inserted, as appropriate. The exception is if we're sitting
552 at a permanent breakpoint; we need to step over it, but permanent
553 breakpoints can't be removed. So we have to test for it here. */
554 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
555 SKIP_PERMANENT_BREAKPOINT ();
556
557 if (SOFTWARE_SINGLE_STEP_P () && step)
558 {
559 /* Do it the hard way, w/temp breakpoints */
560 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
561 /* ...and don't ask hardware to do it. */
562 step = 0;
563 /* and do not pull these breakpoints until after a `wait' in
564 `wait_for_inferior' */
565 singlestep_breakpoints_inserted_p = 1;
566 singlestep_ptid = inferior_ptid;
567 }
568
569 /* If there were any forks/vforks/execs that were caught and are
570 now to be followed, then do so. */
571 switch (pending_follow.kind)
572 {
573 case TARGET_WAITKIND_FORKED:
574 case TARGET_WAITKIND_VFORKED:
575 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
576 if (follow_fork ())
577 should_resume = 0;
578 break;
579
580 case TARGET_WAITKIND_EXECD:
581 /* follow_exec is called as soon as the exec event is seen. */
582 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
583 break;
584
585 default:
586 break;
587 }
588
589 /* Install inferior's terminal modes. */
590 target_terminal_inferior ();
591
592 if (should_resume)
593 {
594 ptid_t resume_ptid;
595
596 resume_ptid = RESUME_ALL; /* Default */
597
598 if ((step || singlestep_breakpoints_inserted_p) &&
599 (stepping_past_singlestep_breakpoint
600 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
601 {
602 /* Stepping past a breakpoint without inserting breakpoints.
603 Make sure only the current thread gets to step, so that
604 other threads don't sneak past breakpoints while they are
605 not inserted. */
606
607 resume_ptid = inferior_ptid;
608 }
609
610 if ((scheduler_mode == schedlock_on) ||
611 (scheduler_mode == schedlock_step &&
612 (step || singlestep_breakpoints_inserted_p)))
613 {
614 /* User-settable 'scheduler' mode requires solo thread resume. */
615 resume_ptid = inferior_ptid;
616 }
617
618 if (CANNOT_STEP_BREAKPOINT)
619 {
620 /* Most targets can step a breakpoint instruction, thus
621 executing it normally. But if this one cannot, just
622 continue and we will hit it anyway. */
623 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
624 step = 0;
625 }
626 target_resume (resume_ptid, step, sig);
627 }
628
629 discard_cleanups (old_cleanups);
630 }
631 \f
632
633 /* Clear out all variables saying what to do when inferior is continued.
634 First do this, then set the ones you want, then call `proceed'. */
635
636 void
637 clear_proceed_status (void)
638 {
639 trap_expected = 0;
640 step_range_start = 0;
641 step_range_end = 0;
642 step_frame_id = null_frame_id;
643 step_over_calls = STEP_OVER_UNDEBUGGABLE;
644 stop_after_trap = 0;
645 stop_soon = NO_STOP_QUIETLY;
646 proceed_to_finish = 0;
647 breakpoint_proceeded = 1; /* We're about to proceed... */
648
649 /* Discard any remaining commands or status from previous stop. */
650 bpstat_clear (&stop_bpstat);
651 }
652
653 /* This should be suitable for any targets that support threads. */
654
655 static int
656 prepare_to_proceed (void)
657 {
658 ptid_t wait_ptid;
659 struct target_waitstatus wait_status;
660
661 /* Get the last target status returned by target_wait(). */
662 get_last_target_status (&wait_ptid, &wait_status);
663
664 /* Make sure we were stopped either at a breakpoint, or because
665 of a Ctrl-C. */
666 if (wait_status.kind != TARGET_WAITKIND_STOPPED
667 || (wait_status.value.sig != TARGET_SIGNAL_TRAP &&
668 wait_status.value.sig != TARGET_SIGNAL_INT))
669 {
670 return 0;
671 }
672
673 if (!ptid_equal (wait_ptid, minus_one_ptid)
674 && !ptid_equal (inferior_ptid, wait_ptid))
675 {
676 /* Switched over from WAIT_PID. */
677 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
678
679 if (wait_pc != read_pc ())
680 {
681 /* Switch back to WAIT_PID thread. */
682 inferior_ptid = wait_ptid;
683
684 /* FIXME: This stuff came from switch_to_thread() in
685 thread.c (which should probably be a public function). */
686 flush_cached_frames ();
687 registers_changed ();
688 stop_pc = wait_pc;
689 select_frame (get_current_frame ());
690 }
691
692 /* We return 1 to indicate that there is a breakpoint here,
693 so we need to step over it before continuing to avoid
694 hitting it straight away. */
695 if (breakpoint_here_p (wait_pc))
696 return 1;
697 }
698
699 return 0;
700
701 }
702
703 /* Record the pc of the program the last time it stopped. This is
704 just used internally by wait_for_inferior, but need to be preserved
705 over calls to it and cleared when the inferior is started. */
706 static CORE_ADDR prev_pc;
707
708 /* Basic routine for continuing the program in various fashions.
709
710 ADDR is the address to resume at, or -1 for resume where stopped.
711 SIGGNAL is the signal to give it, or 0 for none,
712 or -1 for act according to how it stopped.
713 STEP is nonzero if should trap after one instruction.
714 -1 means return after that and print nothing.
715 You should probably set various step_... variables
716 before calling here, if you are stepping.
717
718 You should call clear_proceed_status before calling proceed. */
719
720 void
721 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
722 {
723 int oneproc = 0;
724
725 if (step > 0)
726 step_start_function = find_pc_function (read_pc ());
727 if (step < 0)
728 stop_after_trap = 1;
729
730 if (addr == (CORE_ADDR) -1)
731 {
732 /* If there is a breakpoint at the address we will resume at,
733 step one instruction before inserting breakpoints
734 so that we do not stop right away (and report a second
735 hit at this breakpoint). */
736
737 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
738 oneproc = 1;
739
740 #ifndef STEP_SKIPS_DELAY
741 #define STEP_SKIPS_DELAY(pc) (0)
742 #define STEP_SKIPS_DELAY_P (0)
743 #endif
744 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
745 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
746 is slow (it needs to read memory from the target). */
747 if (STEP_SKIPS_DELAY_P
748 && breakpoint_here_p (read_pc () + 4)
749 && STEP_SKIPS_DELAY (read_pc ()))
750 oneproc = 1;
751 }
752 else
753 {
754 write_pc (addr);
755 }
756
757 /* In a multi-threaded task we may select another thread
758 and then continue or step.
759
760 But if the old thread was stopped at a breakpoint, it
761 will immediately cause another breakpoint stop without
762 any execution (i.e. it will report a breakpoint hit
763 incorrectly). So we must step over it first.
764
765 prepare_to_proceed checks the current thread against the thread
766 that reported the most recent event. If a step-over is required
767 it returns TRUE and sets the current thread to the old thread. */
768 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
769 oneproc = 1;
770
771 #ifdef HP_OS_BUG
772 if (trap_expected_after_continue)
773 {
774 /* If (step == 0), a trap will be automatically generated after
775 the first instruction is executed. Force step one
776 instruction to clear this condition. This should not occur
777 if step is nonzero, but it is harmless in that case. */
778 oneproc = 1;
779 trap_expected_after_continue = 0;
780 }
781 #endif /* HP_OS_BUG */
782
783 if (oneproc)
784 /* We will get a trace trap after one instruction.
785 Continue it automatically and insert breakpoints then. */
786 trap_expected = 1;
787 else
788 {
789 insert_breakpoints ();
790 /* If we get here there was no call to error() in
791 insert breakpoints -- so they were inserted. */
792 breakpoints_inserted = 1;
793 }
794
795 if (siggnal != TARGET_SIGNAL_DEFAULT)
796 stop_signal = siggnal;
797 /* If this signal should not be seen by program,
798 give it zero. Used for debugging signals. */
799 else if (!signal_program[stop_signal])
800 stop_signal = TARGET_SIGNAL_0;
801
802 annotate_starting ();
803
804 /* Make sure that output from GDB appears before output from the
805 inferior. */
806 gdb_flush (gdb_stdout);
807
808 /* Refresh prev_pc value just prior to resuming. This used to be
809 done in stop_stepping, however, setting prev_pc there did not handle
810 scenarios such as inferior function calls or returning from
811 a function via the return command. In those cases, the prev_pc
812 value was not set properly for subsequent commands. The prev_pc value
813 is used to initialize the starting line number in the ecs. With an
814 invalid value, the gdb next command ends up stopping at the position
815 represented by the next line table entry past our start position.
816 On platforms that generate one line table entry per line, this
817 is not a problem. However, on the ia64, the compiler generates
818 extraneous line table entries that do not increase the line number.
819 When we issue the gdb next command on the ia64 after an inferior call
820 or a return command, we often end up a few instructions forward, still
821 within the original line we started.
822
823 An attempt was made to have init_execution_control_state () refresh
824 the prev_pc value before calculating the line number. This approach
825 did not work because on platforms that use ptrace, the pc register
826 cannot be read unless the inferior is stopped. At that point, we
827 are not guaranteed the inferior is stopped and so the read_pc ()
828 call can fail. Setting the prev_pc value here ensures the value is
829 updated correctly when the inferior is stopped. */
830 prev_pc = read_pc ();
831
832 /* Resume inferior. */
833 resume (oneproc || step || bpstat_should_step (), stop_signal);
834
835 /* Wait for it to stop (if not standalone)
836 and in any case decode why it stopped, and act accordingly. */
837 /* Do this only if we are not using the event loop, or if the target
838 does not support asynchronous execution. */
839 if (!event_loop_p || !target_can_async_p ())
840 {
841 wait_for_inferior ();
842 normal_stop ();
843 }
844 }
845 \f
846
847 /* Start remote-debugging of a machine over a serial link. */
848
849 void
850 start_remote (void)
851 {
852 init_thread_list ();
853 init_wait_for_inferior ();
854 stop_soon = STOP_QUIETLY;
855 trap_expected = 0;
856
857 /* Always go on waiting for the target, regardless of the mode. */
858 /* FIXME: cagney/1999-09-23: At present it isn't possible to
859 indicate to wait_for_inferior that a target should timeout if
860 nothing is returned (instead of just blocking). Because of this,
861 targets expecting an immediate response need to, internally, set
862 things up so that the target_wait() is forced to eventually
863 timeout. */
864 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
865 differentiate to its caller what the state of the target is after
866 the initial open has been performed. Here we're assuming that
867 the target has stopped. It should be possible to eventually have
868 target_open() return to the caller an indication that the target
869 is currently running and GDB state should be set to the same as
870 for an async run. */
871 wait_for_inferior ();
872 normal_stop ();
873 }
874
875 /* Initialize static vars when a new inferior begins. */
876
877 void
878 init_wait_for_inferior (void)
879 {
880 /* These are meaningless until the first time through wait_for_inferior. */
881 prev_pc = 0;
882
883 #ifdef HP_OS_BUG
884 trap_expected_after_continue = 0;
885 #endif
886 breakpoints_inserted = 0;
887 breakpoint_init_inferior (inf_starting);
888
889 /* Don't confuse first call to proceed(). */
890 stop_signal = TARGET_SIGNAL_0;
891
892 /* The first resume is not following a fork/vfork/exec. */
893 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
894
895 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
896 number_of_threads_in_syscalls = 0;
897
898 clear_proceed_status ();
899
900 stepping_past_singlestep_breakpoint = 0;
901 }
902 \f
903 /* This enum encodes possible reasons for doing a target_wait, so that
904 wfi can call target_wait in one place. (Ultimately the call will be
905 moved out of the infinite loop entirely.) */
906
907 enum infwait_states
908 {
909 infwait_normal_state,
910 infwait_thread_hop_state,
911 infwait_nullified_state,
912 infwait_nonstep_watch_state
913 };
914
915 /* Why did the inferior stop? Used to print the appropriate messages
916 to the interface from within handle_inferior_event(). */
917 enum inferior_stop_reason
918 {
919 /* We don't know why. */
920 STOP_UNKNOWN,
921 /* Step, next, nexti, stepi finished. */
922 END_STEPPING_RANGE,
923 /* Found breakpoint. */
924 BREAKPOINT_HIT,
925 /* Inferior terminated by signal. */
926 SIGNAL_EXITED,
927 /* Inferior exited. */
928 EXITED,
929 /* Inferior received signal, and user asked to be notified. */
930 SIGNAL_RECEIVED
931 };
932
933 /* This structure contains what used to be local variables in
934 wait_for_inferior. Probably many of them can return to being
935 locals in handle_inferior_event. */
936
937 struct execution_control_state
938 {
939 struct target_waitstatus ws;
940 struct target_waitstatus *wp;
941 int another_trap;
942 int random_signal;
943 CORE_ADDR stop_func_start;
944 CORE_ADDR stop_func_end;
945 char *stop_func_name;
946 struct symtab_and_line sal;
947 int remove_breakpoints_on_following_step;
948 int current_line;
949 struct symtab *current_symtab;
950 int handling_longjmp; /* FIXME */
951 ptid_t ptid;
952 ptid_t saved_inferior_ptid;
953 int update_step_sp;
954 int stepping_through_solib_after_catch;
955 bpstat stepping_through_solib_catchpoints;
956 int enable_hw_watchpoints_after_wait;
957 int stepping_through_sigtramp;
958 int new_thread_event;
959 struct target_waitstatus tmpstatus;
960 enum infwait_states infwait_state;
961 ptid_t waiton_ptid;
962 int wait_some_more;
963 };
964
965 void init_execution_control_state (struct execution_control_state *ecs);
966
967 static void handle_step_into_function (struct execution_control_state *ecs);
968 void handle_inferior_event (struct execution_control_state *ecs);
969
970 static void step_into_function (struct execution_control_state *ecs);
971 static void step_over_function (struct execution_control_state *ecs);
972 static void insert_step_resume_breakpoint (struct frame_info *step_frame,
973 struct execution_control_state *ecs);
974 static void stop_stepping (struct execution_control_state *ecs);
975 static void prepare_to_wait (struct execution_control_state *ecs);
976 static void keep_going (struct execution_control_state *ecs);
977 static void print_stop_reason (enum inferior_stop_reason stop_reason,
978 int stop_info);
979
980 /* Wait for control to return from inferior to debugger.
981 If inferior gets a signal, we may decide to start it up again
982 instead of returning. That is why there is a loop in this function.
983 When this function actually returns it means the inferior
984 should be left stopped and GDB should read more commands. */
985
986 void
987 wait_for_inferior (void)
988 {
989 struct cleanup *old_cleanups;
990 struct execution_control_state ecss;
991 struct execution_control_state *ecs;
992
993 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
994 &step_resume_breakpoint);
995
996 /* wfi still stays in a loop, so it's OK just to take the address of
997 a local to get the ecs pointer. */
998 ecs = &ecss;
999
1000 /* Fill in with reasonable starting values. */
1001 init_execution_control_state (ecs);
1002
1003 /* We'll update this if & when we switch to a new thread. */
1004 previous_inferior_ptid = inferior_ptid;
1005
1006 overlay_cache_invalid = 1;
1007
1008 /* We have to invalidate the registers BEFORE calling target_wait
1009 because they can be loaded from the target while in target_wait.
1010 This makes remote debugging a bit more efficient for those
1011 targets that provide critical registers as part of their normal
1012 status mechanism. */
1013
1014 registers_changed ();
1015
1016 while (1)
1017 {
1018 if (deprecated_target_wait_hook)
1019 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
1020 else
1021 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1022
1023 /* Now figure out what to do with the result of the result. */
1024 handle_inferior_event (ecs);
1025
1026 if (!ecs->wait_some_more)
1027 break;
1028 }
1029 do_cleanups (old_cleanups);
1030 }
1031
1032 /* Asynchronous version of wait_for_inferior. It is called by the
1033 event loop whenever a change of state is detected on the file
1034 descriptor corresponding to the target. It can be called more than
1035 once to complete a single execution command. In such cases we need
1036 to keep the state in a global variable ASYNC_ECSS. If it is the
1037 last time that this function is called for a single execution
1038 command, then report to the user that the inferior has stopped, and
1039 do the necessary cleanups. */
1040
1041 struct execution_control_state async_ecss;
1042 struct execution_control_state *async_ecs;
1043
1044 void
1045 fetch_inferior_event (void *client_data)
1046 {
1047 static struct cleanup *old_cleanups;
1048
1049 async_ecs = &async_ecss;
1050
1051 if (!async_ecs->wait_some_more)
1052 {
1053 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1054 &step_resume_breakpoint);
1055
1056 /* Fill in with reasonable starting values. */
1057 init_execution_control_state (async_ecs);
1058
1059 /* We'll update this if & when we switch to a new thread. */
1060 previous_inferior_ptid = inferior_ptid;
1061
1062 overlay_cache_invalid = 1;
1063
1064 /* We have to invalidate the registers BEFORE calling target_wait
1065 because they can be loaded from the target while in target_wait.
1066 This makes remote debugging a bit more efficient for those
1067 targets that provide critical registers as part of their normal
1068 status mechanism. */
1069
1070 registers_changed ();
1071 }
1072
1073 if (deprecated_target_wait_hook)
1074 async_ecs->ptid =
1075 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1076 else
1077 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1078
1079 /* Now figure out what to do with the result of the result. */
1080 handle_inferior_event (async_ecs);
1081
1082 if (!async_ecs->wait_some_more)
1083 {
1084 /* Do only the cleanups that have been added by this
1085 function. Let the continuations for the commands do the rest,
1086 if there are any. */
1087 do_exec_cleanups (old_cleanups);
1088 normal_stop ();
1089 if (step_multi && stop_step)
1090 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1091 else
1092 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1093 }
1094 }
1095
1096 /* Prepare an execution control state for looping through a
1097 wait_for_inferior-type loop. */
1098
1099 void
1100 init_execution_control_state (struct execution_control_state *ecs)
1101 {
1102 /* ecs->another_trap? */
1103 ecs->random_signal = 0;
1104 ecs->remove_breakpoints_on_following_step = 0;
1105 ecs->handling_longjmp = 0; /* FIXME */
1106 ecs->update_step_sp = 0;
1107 ecs->stepping_through_solib_after_catch = 0;
1108 ecs->stepping_through_solib_catchpoints = NULL;
1109 ecs->enable_hw_watchpoints_after_wait = 0;
1110 ecs->stepping_through_sigtramp = 0;
1111 ecs->sal = find_pc_line (prev_pc, 0);
1112 ecs->current_line = ecs->sal.line;
1113 ecs->current_symtab = ecs->sal.symtab;
1114 ecs->infwait_state = infwait_normal_state;
1115 ecs->waiton_ptid = pid_to_ptid (-1);
1116 ecs->wp = &(ecs->ws);
1117 }
1118
1119 /* Call this function before setting step_resume_breakpoint, as a
1120 sanity check. There should never be more than one step-resume
1121 breakpoint per thread, so we should never be setting a new
1122 step_resume_breakpoint when one is already active. */
1123 static void
1124 check_for_old_step_resume_breakpoint (void)
1125 {
1126 if (step_resume_breakpoint)
1127 warning
1128 ("GDB bug: infrun.c (wait_for_inferior): dropping old step_resume breakpoint");
1129 }
1130
1131 /* Return the cached copy of the last pid/waitstatus returned by
1132 target_wait()/deprecated_target_wait_hook(). The data is actually
1133 cached by handle_inferior_event(), which gets called immediately
1134 after target_wait()/deprecated_target_wait_hook(). */
1135
1136 void
1137 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1138 {
1139 *ptidp = target_last_wait_ptid;
1140 *status = target_last_waitstatus;
1141 }
1142
1143 /* Switch thread contexts, maintaining "infrun state". */
1144
1145 static void
1146 context_switch (struct execution_control_state *ecs)
1147 {
1148 /* Caution: it may happen that the new thread (or the old one!)
1149 is not in the thread list. In this case we must not attempt
1150 to "switch context", or we run the risk that our context may
1151 be lost. This may happen as a result of the target module
1152 mishandling thread creation. */
1153
1154 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1155 { /* Perform infrun state context switch: */
1156 /* Save infrun state for the old thread. */
1157 save_infrun_state (inferior_ptid, prev_pc,
1158 trap_expected, step_resume_breakpoint,
1159 step_range_start,
1160 step_range_end, &step_frame_id,
1161 ecs->handling_longjmp, ecs->another_trap,
1162 ecs->stepping_through_solib_after_catch,
1163 ecs->stepping_through_solib_catchpoints,
1164 ecs->stepping_through_sigtramp,
1165 ecs->current_line, ecs->current_symtab, step_sp);
1166
1167 /* Load infrun state for the new thread. */
1168 load_infrun_state (ecs->ptid, &prev_pc,
1169 &trap_expected, &step_resume_breakpoint,
1170 &step_range_start,
1171 &step_range_end, &step_frame_id,
1172 &ecs->handling_longjmp, &ecs->another_trap,
1173 &ecs->stepping_through_solib_after_catch,
1174 &ecs->stepping_through_solib_catchpoints,
1175 &ecs->stepping_through_sigtramp,
1176 &ecs->current_line, &ecs->current_symtab, &step_sp);
1177 }
1178 inferior_ptid = ecs->ptid;
1179 }
1180
1181 /* Handle the inferior event in the cases when we just stepped
1182 into a function. */
1183
1184 static void
1185 handle_step_into_function (struct execution_control_state *ecs)
1186 {
1187 CORE_ADDR real_stop_pc;
1188
1189 if ((step_over_calls == STEP_OVER_NONE)
1190 || ((step_range_end == 1)
1191 && in_prologue (prev_pc, ecs->stop_func_start)))
1192 {
1193 /* I presume that step_over_calls is only 0 when we're
1194 supposed to be stepping at the assembly language level
1195 ("stepi"). Just stop. */
1196 /* Also, maybe we just did a "nexti" inside a prolog,
1197 so we thought it was a subroutine call but it was not.
1198 Stop as well. FENN */
1199 stop_step = 1;
1200 print_stop_reason (END_STEPPING_RANGE, 0);
1201 stop_stepping (ecs);
1202 return;
1203 }
1204
1205 if (step_over_calls == STEP_OVER_ALL || IGNORE_HELPER_CALL (stop_pc))
1206 {
1207 /* We're doing a "next". */
1208 step_over_function (ecs);
1209 keep_going (ecs);
1210 return;
1211 }
1212
1213 /* If we are in a function call trampoline (a stub between
1214 the calling routine and the real function), locate the real
1215 function. That's what tells us (a) whether we want to step
1216 into it at all, and (b) what prologue we want to run to
1217 the end of, if we do step into it. */
1218 real_stop_pc = skip_language_trampoline (stop_pc);
1219 if (real_stop_pc == 0)
1220 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
1221 if (real_stop_pc != 0)
1222 ecs->stop_func_start = real_stop_pc;
1223
1224 /* If we have line number information for the function we
1225 are thinking of stepping into, step into it.
1226
1227 If there are several symtabs at that PC (e.g. with include
1228 files), just want to know whether *any* of them have line
1229 numbers. find_pc_line handles this. */
1230 {
1231 struct symtab_and_line tmp_sal;
1232
1233 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
1234 if (tmp_sal.line != 0)
1235 {
1236 step_into_function (ecs);
1237 return;
1238 }
1239 }
1240
1241 /* If we have no line number and the step-stop-if-no-debug
1242 is set, we stop the step so that the user has a chance to
1243 switch in assembly mode. */
1244 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
1245 {
1246 stop_step = 1;
1247 print_stop_reason (END_STEPPING_RANGE, 0);
1248 stop_stepping (ecs);
1249 return;
1250 }
1251
1252 step_over_function (ecs);
1253 keep_going (ecs);
1254 return;
1255 }
1256
1257 static void
1258 adjust_pc_after_break (struct execution_control_state *ecs)
1259 {
1260 CORE_ADDR stop_pc;
1261
1262 /* If this target does not decrement the PC after breakpoints, then
1263 we have nothing to do. */
1264 if (DECR_PC_AFTER_BREAK == 0)
1265 return;
1266
1267 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1268 we aren't, just return.
1269
1270 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1271 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1272 by software breakpoints should be handled through the normal breakpoint
1273 layer.
1274
1275 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1276 different signals (SIGILL or SIGEMT for instance), but it is less
1277 clear where the PC is pointing afterwards. It may not match
1278 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1279 these signals at breakpoints (the code has been in GDB since at least
1280 1992) so I can not guess how to handle them here.
1281
1282 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1283 would have the PC after hitting a watchpoint affected by
1284 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1285 in GDB history, and it seems unlikely to be correct, so
1286 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1287
1288 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1289 return;
1290
1291 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1292 return;
1293
1294 /* Find the location where (if we've hit a breakpoint) the breakpoint would
1295 be. */
1296 stop_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1297
1298 /* If we're software-single-stepping, then assume this is a breakpoint.
1299 NOTE drow/2004-01-17: This doesn't check that the PC matches, or that
1300 we're even in the right thread. The software-single-step code needs
1301 some modernization.
1302
1303 If we're not software-single-stepping, then we first check that there
1304 is an enabled software breakpoint at this address. If there is, and
1305 we weren't using hardware-single-step, then we've hit the breakpoint.
1306
1307 If we were using hardware-single-step, we check prev_pc; if we just
1308 stepped over an inserted software breakpoint, then we should decrement
1309 the PC and eventually report hitting the breakpoint. The prev_pc check
1310 prevents us from decrementing the PC if we just stepped over a jump
1311 instruction and landed on the instruction after a breakpoint.
1312
1313 The last bit checks that we didn't hit a breakpoint in a signal handler
1314 without an intervening stop in sigtramp, which is detected by a new
1315 stack pointer value below any usual function calling stack adjustments.
1316
1317 NOTE drow/2004-01-17: I'm not sure that this is necessary. The check
1318 predates checking for software single step at the same time. Also,
1319 if we've moved into a signal handler we should have seen the
1320 signal. */
1321
1322 if ((SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1323 || (software_breakpoint_inserted_here_p (stop_pc)
1324 && !(currently_stepping (ecs)
1325 && prev_pc != stop_pc
1326 && !(step_range_end && INNER_THAN (read_sp (), (step_sp - 16))))))
1327 write_pc_pid (stop_pc, ecs->ptid);
1328 }
1329
1330 /* Given an execution control state that has been freshly filled in
1331 by an event from the inferior, figure out what it means and take
1332 appropriate action. */
1333
1334 int stepped_after_stopped_by_watchpoint;
1335
1336 void
1337 handle_inferior_event (struct execution_control_state *ecs)
1338 {
1339 /* NOTE: cagney/2003-03-28: If you're looking at this code and
1340 thinking that the variable stepped_after_stopped_by_watchpoint
1341 isn't used, then you're wrong! The macro STOPPED_BY_WATCHPOINT,
1342 defined in the file "config/pa/nm-hppah.h", accesses the variable
1343 indirectly. Mutter something rude about the HP merge. */
1344 int sw_single_step_trap_p = 0;
1345
1346 /* Cache the last pid/waitstatus. */
1347 target_last_wait_ptid = ecs->ptid;
1348 target_last_waitstatus = *ecs->wp;
1349
1350 adjust_pc_after_break (ecs);
1351
1352 switch (ecs->infwait_state)
1353 {
1354 case infwait_thread_hop_state:
1355 /* Cancel the waiton_ptid. */
1356 ecs->waiton_ptid = pid_to_ptid (-1);
1357 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1358 is serviced in this loop, below. */
1359 if (ecs->enable_hw_watchpoints_after_wait)
1360 {
1361 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1362 ecs->enable_hw_watchpoints_after_wait = 0;
1363 }
1364 stepped_after_stopped_by_watchpoint = 0;
1365 break;
1366
1367 case infwait_normal_state:
1368 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1369 is serviced in this loop, below. */
1370 if (ecs->enable_hw_watchpoints_after_wait)
1371 {
1372 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1373 ecs->enable_hw_watchpoints_after_wait = 0;
1374 }
1375 stepped_after_stopped_by_watchpoint = 0;
1376 break;
1377
1378 case infwait_nullified_state:
1379 stepped_after_stopped_by_watchpoint = 0;
1380 break;
1381
1382 case infwait_nonstep_watch_state:
1383 insert_breakpoints ();
1384
1385 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1386 handle things like signals arriving and other things happening
1387 in combination correctly? */
1388 stepped_after_stopped_by_watchpoint = 1;
1389 break;
1390
1391 default:
1392 internal_error (__FILE__, __LINE__, "bad switch");
1393 }
1394 ecs->infwait_state = infwait_normal_state;
1395
1396 flush_cached_frames ();
1397
1398 /* If it's a new process, add it to the thread database */
1399
1400 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1401 && !in_thread_list (ecs->ptid));
1402
1403 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1404 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1405 {
1406 add_thread (ecs->ptid);
1407
1408 ui_out_text (uiout, "[New ");
1409 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1410 ui_out_text (uiout, "]\n");
1411
1412 #if 0
1413 /* NOTE: This block is ONLY meant to be invoked in case of a
1414 "thread creation event"! If it is invoked for any other
1415 sort of event (such as a new thread landing on a breakpoint),
1416 the event will be discarded, which is almost certainly
1417 a bad thing!
1418
1419 To avoid this, the low-level module (eg. target_wait)
1420 should call in_thread_list and add_thread, so that the
1421 new thread is known by the time we get here. */
1422
1423 /* We may want to consider not doing a resume here in order
1424 to give the user a chance to play with the new thread.
1425 It might be good to make that a user-settable option. */
1426
1427 /* At this point, all threads are stopped (happens
1428 automatically in either the OS or the native code).
1429 Therefore we need to continue all threads in order to
1430 make progress. */
1431
1432 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1433 prepare_to_wait (ecs);
1434 return;
1435 #endif
1436 }
1437
1438 switch (ecs->ws.kind)
1439 {
1440 case TARGET_WAITKIND_LOADED:
1441 /* Ignore gracefully during startup of the inferior, as it
1442 might be the shell which has just loaded some objects,
1443 otherwise add the symbols for the newly loaded objects. */
1444 #ifdef SOLIB_ADD
1445 if (stop_soon == NO_STOP_QUIETLY)
1446 {
1447 /* Remove breakpoints, SOLIB_ADD might adjust
1448 breakpoint addresses via breakpoint_re_set. */
1449 if (breakpoints_inserted)
1450 remove_breakpoints ();
1451
1452 /* Check for any newly added shared libraries if we're
1453 supposed to be adding them automatically. Switch
1454 terminal for any messages produced by
1455 breakpoint_re_set. */
1456 target_terminal_ours_for_output ();
1457 /* NOTE: cagney/2003-11-25: Make certain that the target
1458 stack's section table is kept up-to-date. Architectures,
1459 (e.g., PPC64), use the section table to perform
1460 operations such as address => section name and hence
1461 require the table to contain all sections (including
1462 those found in shared libraries). */
1463 /* NOTE: cagney/2003-11-25: Pass current_target and not
1464 exec_ops to SOLIB_ADD. This is because current GDB is
1465 only tooled to propagate section_table changes out from
1466 the "current_target" (see target_resize_to_sections), and
1467 not up from the exec stratum. This, of course, isn't
1468 right. "infrun.c" should only interact with the
1469 exec/process stratum, instead relying on the target stack
1470 to propagate relevant changes (stop, section table
1471 changed, ...) up to other layers. */
1472 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1473 target_terminal_inferior ();
1474
1475 /* Reinsert breakpoints and continue. */
1476 if (breakpoints_inserted)
1477 insert_breakpoints ();
1478 }
1479 #endif
1480 resume (0, TARGET_SIGNAL_0);
1481 prepare_to_wait (ecs);
1482 return;
1483
1484 case TARGET_WAITKIND_SPURIOUS:
1485 resume (0, TARGET_SIGNAL_0);
1486 prepare_to_wait (ecs);
1487 return;
1488
1489 case TARGET_WAITKIND_EXITED:
1490 target_terminal_ours (); /* Must do this before mourn anyway */
1491 print_stop_reason (EXITED, ecs->ws.value.integer);
1492
1493 /* Record the exit code in the convenience variable $_exitcode, so
1494 that the user can inspect this again later. */
1495 set_internalvar (lookup_internalvar ("_exitcode"),
1496 value_from_longest (builtin_type_int,
1497 (LONGEST) ecs->ws.value.integer));
1498 gdb_flush (gdb_stdout);
1499 target_mourn_inferior ();
1500 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1501 stop_print_frame = 0;
1502 stop_stepping (ecs);
1503 return;
1504
1505 case TARGET_WAITKIND_SIGNALLED:
1506 stop_print_frame = 0;
1507 stop_signal = ecs->ws.value.sig;
1508 target_terminal_ours (); /* Must do this before mourn anyway */
1509
1510 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1511 reach here unless the inferior is dead. However, for years
1512 target_kill() was called here, which hints that fatal signals aren't
1513 really fatal on some systems. If that's true, then some changes
1514 may be needed. */
1515 target_mourn_inferior ();
1516
1517 print_stop_reason (SIGNAL_EXITED, stop_signal);
1518 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1519 stop_stepping (ecs);
1520 return;
1521
1522 /* The following are the only cases in which we keep going;
1523 the above cases end in a continue or goto. */
1524 case TARGET_WAITKIND_FORKED:
1525 case TARGET_WAITKIND_VFORKED:
1526 stop_signal = TARGET_SIGNAL_TRAP;
1527 pending_follow.kind = ecs->ws.kind;
1528
1529 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1530 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1531
1532 stop_pc = read_pc ();
1533
1534 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1535
1536 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1537
1538 /* If no catchpoint triggered for this, then keep going. */
1539 if (ecs->random_signal)
1540 {
1541 stop_signal = TARGET_SIGNAL_0;
1542 keep_going (ecs);
1543 return;
1544 }
1545 goto process_event_stop_test;
1546
1547 case TARGET_WAITKIND_EXECD:
1548 stop_signal = TARGET_SIGNAL_TRAP;
1549
1550 /* NOTE drow/2002-12-05: This code should be pushed down into the
1551 target_wait function. Until then following vfork on HP/UX 10.20
1552 is probably broken by this. Of course, it's broken anyway. */
1553 /* Is this a target which reports multiple exec events per actual
1554 call to exec()? (HP-UX using ptrace does, for example.) If so,
1555 ignore all but the last one. Just resume the exec'r, and wait
1556 for the next exec event. */
1557 if (inferior_ignoring_leading_exec_events)
1558 {
1559 inferior_ignoring_leading_exec_events--;
1560 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1561 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1562 parent_pid);
1563 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1564 prepare_to_wait (ecs);
1565 return;
1566 }
1567 inferior_ignoring_leading_exec_events =
1568 target_reported_exec_events_per_exec_call () - 1;
1569
1570 pending_follow.execd_pathname =
1571 savestring (ecs->ws.value.execd_pathname,
1572 strlen (ecs->ws.value.execd_pathname));
1573
1574 /* This causes the eventpoints and symbol table to be reset. Must
1575 do this now, before trying to determine whether to stop. */
1576 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1577 xfree (pending_follow.execd_pathname);
1578
1579 stop_pc = read_pc_pid (ecs->ptid);
1580 ecs->saved_inferior_ptid = inferior_ptid;
1581 inferior_ptid = ecs->ptid;
1582
1583 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1584
1585 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1586 inferior_ptid = ecs->saved_inferior_ptid;
1587
1588 /* If no catchpoint triggered for this, then keep going. */
1589 if (ecs->random_signal)
1590 {
1591 stop_signal = TARGET_SIGNAL_0;
1592 keep_going (ecs);
1593 return;
1594 }
1595 goto process_event_stop_test;
1596
1597 /* These syscall events are returned on HP-UX, as part of its
1598 implementation of page-protection-based "hardware" watchpoints.
1599 HP-UX has unfortunate interactions between page-protections and
1600 some system calls. Our solution is to disable hardware watches
1601 when a system call is entered, and reenable them when the syscall
1602 completes. The downside of this is that we may miss the precise
1603 point at which a watched piece of memory is modified. "Oh well."
1604
1605 Note that we may have multiple threads running, which may each
1606 enter syscalls at roughly the same time. Since we don't have a
1607 good notion currently of whether a watched piece of memory is
1608 thread-private, we'd best not have any page-protections active
1609 when any thread is in a syscall. Thus, we only want to reenable
1610 hardware watches when no threads are in a syscall.
1611
1612 Also, be careful not to try to gather much state about a thread
1613 that's in a syscall. It's frequently a losing proposition. */
1614 case TARGET_WAITKIND_SYSCALL_ENTRY:
1615 number_of_threads_in_syscalls++;
1616 if (number_of_threads_in_syscalls == 1)
1617 {
1618 TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1619 }
1620 resume (0, TARGET_SIGNAL_0);
1621 prepare_to_wait (ecs);
1622 return;
1623
1624 /* Before examining the threads further, step this thread to
1625 get it entirely out of the syscall. (We get notice of the
1626 event when the thread is just on the verge of exiting a
1627 syscall. Stepping one instruction seems to get it back
1628 into user code.)
1629
1630 Note that although the logical place to reenable h/w watches
1631 is here, we cannot. We cannot reenable them before stepping
1632 the thread (this causes the next wait on the thread to hang).
1633
1634 Nor can we enable them after stepping until we've done a wait.
1635 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
1636 here, which will be serviced immediately after the target
1637 is waited on. */
1638 case TARGET_WAITKIND_SYSCALL_RETURN:
1639 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1640
1641 if (number_of_threads_in_syscalls > 0)
1642 {
1643 number_of_threads_in_syscalls--;
1644 ecs->enable_hw_watchpoints_after_wait =
1645 (number_of_threads_in_syscalls == 0);
1646 }
1647 prepare_to_wait (ecs);
1648 return;
1649
1650 case TARGET_WAITKIND_STOPPED:
1651 stop_signal = ecs->ws.value.sig;
1652 break;
1653
1654 /* We had an event in the inferior, but we are not interested
1655 in handling it at this level. The lower layers have already
1656 done what needs to be done, if anything.
1657
1658 One of the possible circumstances for this is when the
1659 inferior produces output for the console. The inferior has
1660 not stopped, and we are ignoring the event. Another possible
1661 circumstance is any event which the lower level knows will be
1662 reported multiple times without an intervening resume. */
1663 case TARGET_WAITKIND_IGNORE:
1664 prepare_to_wait (ecs);
1665 return;
1666 }
1667
1668 /* We may want to consider not doing a resume here in order to give
1669 the user a chance to play with the new thread. It might be good
1670 to make that a user-settable option. */
1671
1672 /* At this point, all threads are stopped (happens automatically in
1673 either the OS or the native code). Therefore we need to continue
1674 all threads in order to make progress. */
1675 if (ecs->new_thread_event)
1676 {
1677 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1678 prepare_to_wait (ecs);
1679 return;
1680 }
1681
1682 stop_pc = read_pc_pid (ecs->ptid);
1683
1684 if (stepping_past_singlestep_breakpoint)
1685 {
1686 gdb_assert (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p);
1687 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1688 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1689
1690 stepping_past_singlestep_breakpoint = 0;
1691
1692 /* We've either finished single-stepping past the single-step
1693 breakpoint, or stopped for some other reason. It would be nice if
1694 we could tell, but we can't reliably. */
1695 if (stop_signal == TARGET_SIGNAL_TRAP)
1696 {
1697 /* Pull the single step breakpoints out of the target. */
1698 SOFTWARE_SINGLE_STEP (0, 0);
1699 singlestep_breakpoints_inserted_p = 0;
1700
1701 ecs->random_signal = 0;
1702
1703 ecs->ptid = saved_singlestep_ptid;
1704 context_switch (ecs);
1705 if (deprecated_context_hook)
1706 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1707
1708 resume (1, TARGET_SIGNAL_0);
1709 prepare_to_wait (ecs);
1710 return;
1711 }
1712 }
1713
1714 stepping_past_singlestep_breakpoint = 0;
1715
1716 /* See if a thread hit a thread-specific breakpoint that was meant for
1717 another thread. If so, then step that thread past the breakpoint,
1718 and continue it. */
1719
1720 if (stop_signal == TARGET_SIGNAL_TRAP)
1721 {
1722 int thread_hop_needed = 0;
1723
1724 /* Check if a regular breakpoint has been hit before checking
1725 for a potential single step breakpoint. Otherwise, GDB will
1726 not see this breakpoint hit when stepping onto breakpoints. */
1727 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1728 {
1729 ecs->random_signal = 0;
1730 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1731 thread_hop_needed = 1;
1732 }
1733 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1734 {
1735 ecs->random_signal = 0;
1736 /* The call to in_thread_list is necessary because PTIDs sometimes
1737 change when we go from single-threaded to multi-threaded. If
1738 the singlestep_ptid is still in the list, assume that it is
1739 really different from ecs->ptid. */
1740 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1741 && in_thread_list (singlestep_ptid))
1742 {
1743 thread_hop_needed = 1;
1744 stepping_past_singlestep_breakpoint = 1;
1745 saved_singlestep_ptid = singlestep_ptid;
1746 }
1747 }
1748
1749 if (thread_hop_needed)
1750 {
1751 int remove_status;
1752
1753 /* Saw a breakpoint, but it was hit by the wrong thread.
1754 Just continue. */
1755
1756 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1757 {
1758 /* Pull the single step breakpoints out of the target. */
1759 SOFTWARE_SINGLE_STEP (0, 0);
1760 singlestep_breakpoints_inserted_p = 0;
1761 }
1762
1763 remove_status = remove_breakpoints ();
1764 /* Did we fail to remove breakpoints? If so, try
1765 to set the PC past the bp. (There's at least
1766 one situation in which we can fail to remove
1767 the bp's: On HP-UX's that use ttrace, we can't
1768 change the address space of a vforking child
1769 process until the child exits (well, okay, not
1770 then either :-) or execs. */
1771 if (remove_status != 0)
1772 {
1773 /* FIXME! This is obviously non-portable! */
1774 write_pc_pid (stop_pc + 4, ecs->ptid);
1775 /* We need to restart all the threads now,
1776 * unles we're running in scheduler-locked mode.
1777 * Use currently_stepping to determine whether to
1778 * step or continue.
1779 */
1780 /* FIXME MVS: is there any reason not to call resume()? */
1781 if (scheduler_mode == schedlock_on)
1782 target_resume (ecs->ptid,
1783 currently_stepping (ecs), TARGET_SIGNAL_0);
1784 else
1785 target_resume (RESUME_ALL,
1786 currently_stepping (ecs), TARGET_SIGNAL_0);
1787 prepare_to_wait (ecs);
1788 return;
1789 }
1790 else
1791 { /* Single step */
1792 breakpoints_inserted = 0;
1793 if (!ptid_equal (inferior_ptid, ecs->ptid))
1794 context_switch (ecs);
1795 ecs->waiton_ptid = ecs->ptid;
1796 ecs->wp = &(ecs->ws);
1797 ecs->another_trap = 1;
1798
1799 ecs->infwait_state = infwait_thread_hop_state;
1800 keep_going (ecs);
1801 registers_changed ();
1802 return;
1803 }
1804 }
1805 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1806 {
1807 sw_single_step_trap_p = 1;
1808 ecs->random_signal = 0;
1809 }
1810 }
1811 else
1812 ecs->random_signal = 1;
1813
1814 /* See if something interesting happened to the non-current thread. If
1815 so, then switch to that thread. */
1816 if (!ptid_equal (ecs->ptid, inferior_ptid))
1817 {
1818 context_switch (ecs);
1819
1820 if (deprecated_context_hook)
1821 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1822
1823 flush_cached_frames ();
1824 }
1825
1826 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1827 {
1828 /* Pull the single step breakpoints out of the target. */
1829 SOFTWARE_SINGLE_STEP (0, 0);
1830 singlestep_breakpoints_inserted_p = 0;
1831 }
1832
1833 /* If PC is pointing at a nullified instruction, then step beyond
1834 it so that the user won't be confused when GDB appears to be ready
1835 to execute it. */
1836
1837 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1838 if (INSTRUCTION_NULLIFIED)
1839 {
1840 registers_changed ();
1841 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1842
1843 /* We may have received a signal that we want to pass to
1844 the inferior; therefore, we must not clobber the waitstatus
1845 in WS. */
1846
1847 ecs->infwait_state = infwait_nullified_state;
1848 ecs->waiton_ptid = ecs->ptid;
1849 ecs->wp = &(ecs->tmpstatus);
1850 prepare_to_wait (ecs);
1851 return;
1852 }
1853
1854 /* It may not be necessary to disable the watchpoint to stop over
1855 it. For example, the PA can (with some kernel cooperation)
1856 single step over a watchpoint without disabling the watchpoint. */
1857 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1858 {
1859 resume (1, 0);
1860 prepare_to_wait (ecs);
1861 return;
1862 }
1863
1864 /* It is far more common to need to disable a watchpoint to step
1865 the inferior over it. FIXME. What else might a debug
1866 register or page protection watchpoint scheme need here? */
1867 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1868 {
1869 /* At this point, we are stopped at an instruction which has
1870 attempted to write to a piece of memory under control of
1871 a watchpoint. The instruction hasn't actually executed
1872 yet. If we were to evaluate the watchpoint expression
1873 now, we would get the old value, and therefore no change
1874 would seem to have occurred.
1875
1876 In order to make watchpoints work `right', we really need
1877 to complete the memory write, and then evaluate the
1878 watchpoint expression. The following code does that by
1879 removing the watchpoint (actually, all watchpoints and
1880 breakpoints), single-stepping the target, re-inserting
1881 watchpoints, and then falling through to let normal
1882 single-step processing handle proceed. Since this
1883 includes evaluating watchpoints, things will come to a
1884 stop in the correct manner. */
1885
1886 remove_breakpoints ();
1887 registers_changed ();
1888 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1889
1890 ecs->waiton_ptid = ecs->ptid;
1891 ecs->wp = &(ecs->ws);
1892 ecs->infwait_state = infwait_nonstep_watch_state;
1893 prepare_to_wait (ecs);
1894 return;
1895 }
1896
1897 /* It may be possible to simply continue after a watchpoint. */
1898 if (HAVE_CONTINUABLE_WATCHPOINT)
1899 STOPPED_BY_WATCHPOINT (ecs->ws);
1900
1901 ecs->stop_func_start = 0;
1902 ecs->stop_func_end = 0;
1903 ecs->stop_func_name = 0;
1904 /* Don't care about return value; stop_func_start and stop_func_name
1905 will both be 0 if it doesn't work. */
1906 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1907 &ecs->stop_func_start, &ecs->stop_func_end);
1908 ecs->stop_func_start += FUNCTION_START_OFFSET;
1909 ecs->another_trap = 0;
1910 bpstat_clear (&stop_bpstat);
1911 stop_step = 0;
1912 stop_stack_dummy = 0;
1913 stop_print_frame = 1;
1914 ecs->random_signal = 0;
1915 stopped_by_random_signal = 0;
1916 breakpoints_failed = 0;
1917
1918 /* Look at the cause of the stop, and decide what to do.
1919 The alternatives are:
1920 1) break; to really stop and return to the debugger,
1921 2) drop through to start up again
1922 (set ecs->another_trap to 1 to single step once)
1923 3) set ecs->random_signal to 1, and the decision between 1 and 2
1924 will be made according to the signal handling tables. */
1925
1926 /* First, distinguish signals caused by the debugger from signals
1927 that have to do with the program's own actions. Note that
1928 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1929 on the operating system version. Here we detect when a SIGILL or
1930 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1931 something similar for SIGSEGV, since a SIGSEGV will be generated
1932 when we're trying to execute a breakpoint instruction on a
1933 non-executable stack. This happens for call dummy breakpoints
1934 for architectures like SPARC that place call dummies on the
1935 stack. */
1936
1937 if (stop_signal == TARGET_SIGNAL_TRAP
1938 || (breakpoints_inserted &&
1939 (stop_signal == TARGET_SIGNAL_ILL
1940 || stop_signal == TARGET_SIGNAL_SEGV
1941 || stop_signal == TARGET_SIGNAL_EMT))
1942 || stop_soon == STOP_QUIETLY
1943 || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1944 {
1945 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1946 {
1947 stop_print_frame = 0;
1948 stop_stepping (ecs);
1949 return;
1950 }
1951
1952 /* This is originated from start_remote(), start_inferior() and
1953 shared libraries hook functions. */
1954 if (stop_soon == STOP_QUIETLY)
1955 {
1956 stop_stepping (ecs);
1957 return;
1958 }
1959
1960 /* This originates from attach_command(). We need to overwrite
1961 the stop_signal here, because some kernels don't ignore a
1962 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1963 See more comments in inferior.h. */
1964 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1965 {
1966 stop_stepping (ecs);
1967 if (stop_signal == TARGET_SIGNAL_STOP)
1968 stop_signal = TARGET_SIGNAL_0;
1969 return;
1970 }
1971
1972 /* Don't even think about breakpoints if just proceeded over a
1973 breakpoint. */
1974 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1975 bpstat_clear (&stop_bpstat);
1976 else
1977 {
1978 /* See if there is a breakpoint at the current PC. */
1979 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1980
1981 /* Following in case break condition called a
1982 function. */
1983 stop_print_frame = 1;
1984 }
1985
1986 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1987 at one stage in the past included checks for an inferior
1988 function call's call dummy's return breakpoint. The original
1989 comment, that went with the test, read:
1990
1991 ``End of a stack dummy. Some systems (e.g. Sony news) give
1992 another signal besides SIGTRAP, so check here as well as
1993 above.''
1994
1995 If someone ever tries to get get call dummys on a
1996 non-executable stack to work (where the target would stop
1997 with something like a SIGSEGV), then those tests might need
1998 to be re-instated. Given, however, that the tests were only
1999 enabled when momentary breakpoints were not being used, I
2000 suspect that it won't be the case.
2001
2002 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2003 be necessary for call dummies on a non-executable stack on
2004 SPARC. */
2005
2006 if (stop_signal == TARGET_SIGNAL_TRAP)
2007 ecs->random_signal
2008 = !(bpstat_explains_signal (stop_bpstat)
2009 || trap_expected
2010 || (step_range_end && step_resume_breakpoint == NULL));
2011 else
2012 {
2013 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2014 if (!ecs->random_signal)
2015 stop_signal = TARGET_SIGNAL_TRAP;
2016 }
2017 }
2018
2019 /* When we reach this point, we've pretty much decided
2020 that the reason for stopping must've been a random
2021 (unexpected) signal. */
2022
2023 else
2024 ecs->random_signal = 1;
2025
2026 process_event_stop_test:
2027 /* For the program's own signals, act according to
2028 the signal handling tables. */
2029
2030 if (ecs->random_signal)
2031 {
2032 /* Signal not for debugging purposes. */
2033 int printed = 0;
2034
2035 stopped_by_random_signal = 1;
2036
2037 if (signal_print[stop_signal])
2038 {
2039 printed = 1;
2040 target_terminal_ours_for_output ();
2041 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2042 }
2043 if (signal_stop[stop_signal])
2044 {
2045 stop_stepping (ecs);
2046 return;
2047 }
2048 /* If not going to stop, give terminal back
2049 if we took it away. */
2050 else if (printed)
2051 target_terminal_inferior ();
2052
2053 /* Clear the signal if it should not be passed. */
2054 if (signal_program[stop_signal] == 0)
2055 stop_signal = TARGET_SIGNAL_0;
2056
2057 if (step_range_end != 0
2058 && stop_signal != TARGET_SIGNAL_0
2059 && stop_pc >= step_range_start && stop_pc < step_range_end
2060 && frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id))
2061 {
2062 /* The inferior is about to take a signal that will take it
2063 out of the single step range. Set a breakpoint at the
2064 current PC (which is presumably where the signal handler
2065 will eventually return) and then allow the inferior to
2066 run free.
2067
2068 Note that this is only needed for a signal delivered
2069 while in the single-step range. Nested signals aren't a
2070 problem as they eventually all return. */
2071 insert_step_resume_breakpoint (get_current_frame (), ecs);
2072 }
2073 keep_going (ecs);
2074 return;
2075 }
2076
2077 /* Handle cases caused by hitting a breakpoint. */
2078 {
2079 CORE_ADDR jmp_buf_pc;
2080 struct bpstat_what what;
2081
2082 what = bpstat_what (stop_bpstat);
2083
2084 if (what.call_dummy)
2085 {
2086 stop_stack_dummy = 1;
2087 #ifdef HP_OS_BUG
2088 trap_expected_after_continue = 1;
2089 #endif
2090 }
2091
2092 switch (what.main_action)
2093 {
2094 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2095 /* If we hit the breakpoint at longjmp, disable it for the
2096 duration of this command. Then, install a temporary
2097 breakpoint at the target of the jmp_buf. */
2098 disable_longjmp_breakpoint ();
2099 remove_breakpoints ();
2100 breakpoints_inserted = 0;
2101 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
2102 {
2103 keep_going (ecs);
2104 return;
2105 }
2106
2107 /* Need to blow away step-resume breakpoint, as it
2108 interferes with us */
2109 if (step_resume_breakpoint != NULL)
2110 {
2111 delete_step_resume_breakpoint (&step_resume_breakpoint);
2112 }
2113
2114 #if 0
2115 /* FIXME - Need to implement nested temporary breakpoints */
2116 if (step_over_calls > 0)
2117 set_longjmp_resume_breakpoint (jmp_buf_pc, get_current_frame ());
2118 else
2119 #endif /* 0 */
2120 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2121 ecs->handling_longjmp = 1; /* FIXME */
2122 keep_going (ecs);
2123 return;
2124
2125 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2126 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2127 remove_breakpoints ();
2128 breakpoints_inserted = 0;
2129 #if 0
2130 /* FIXME - Need to implement nested temporary breakpoints */
2131 if (step_over_calls
2132 && (frame_id_inner (get_frame_id (get_current_frame ()),
2133 step_frame_id)))
2134 {
2135 ecs->another_trap = 1;
2136 keep_going (ecs);
2137 return;
2138 }
2139 #endif /* 0 */
2140 disable_longjmp_breakpoint ();
2141 ecs->handling_longjmp = 0; /* FIXME */
2142 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2143 break;
2144 /* else fallthrough */
2145
2146 case BPSTAT_WHAT_SINGLE:
2147 if (breakpoints_inserted)
2148 {
2149 remove_breakpoints ();
2150 }
2151 breakpoints_inserted = 0;
2152 ecs->another_trap = 1;
2153 /* Still need to check other stuff, at least the case
2154 where we are stepping and step out of the right range. */
2155 break;
2156
2157 case BPSTAT_WHAT_STOP_NOISY:
2158 stop_print_frame = 1;
2159
2160 /* We are about to nuke the step_resume_breakpointt via the
2161 cleanup chain, so no need to worry about it here. */
2162
2163 stop_stepping (ecs);
2164 return;
2165
2166 case BPSTAT_WHAT_STOP_SILENT:
2167 stop_print_frame = 0;
2168
2169 /* We are about to nuke the step_resume_breakpoin via the
2170 cleanup chain, so no need to worry about it here. */
2171
2172 stop_stepping (ecs);
2173 return;
2174
2175 case BPSTAT_WHAT_STEP_RESUME:
2176 /* This proably demands a more elegant solution, but, yeah
2177 right...
2178
2179 This function's use of the simple variable
2180 step_resume_breakpoint doesn't seem to accomodate
2181 simultaneously active step-resume bp's, although the
2182 breakpoint list certainly can.
2183
2184 If we reach here and step_resume_breakpoint is already
2185 NULL, then apparently we have multiple active
2186 step-resume bp's. We'll just delete the breakpoint we
2187 stopped at, and carry on.
2188
2189 Correction: what the code currently does is delete a
2190 step-resume bp, but it makes no effort to ensure that
2191 the one deleted is the one currently stopped at. MVS */
2192
2193 if (step_resume_breakpoint == NULL)
2194 {
2195 step_resume_breakpoint =
2196 bpstat_find_step_resume_breakpoint (stop_bpstat);
2197 }
2198 delete_step_resume_breakpoint (&step_resume_breakpoint);
2199 break;
2200
2201 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2202 /* If were waiting for a trap, hitting the step_resume_break
2203 doesn't count as getting it. */
2204 if (trap_expected)
2205 ecs->another_trap = 1;
2206 break;
2207
2208 case BPSTAT_WHAT_CHECK_SHLIBS:
2209 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2210 #ifdef SOLIB_ADD
2211 {
2212 /* Remove breakpoints, we eventually want to step over the
2213 shlib event breakpoint, and SOLIB_ADD might adjust
2214 breakpoint addresses via breakpoint_re_set. */
2215 if (breakpoints_inserted)
2216 remove_breakpoints ();
2217 breakpoints_inserted = 0;
2218
2219 /* Check for any newly added shared libraries if we're
2220 supposed to be adding them automatically. Switch
2221 terminal for any messages produced by
2222 breakpoint_re_set. */
2223 target_terminal_ours_for_output ();
2224 /* NOTE: cagney/2003-11-25: Make certain that the target
2225 stack's section table is kept up-to-date. Architectures,
2226 (e.g., PPC64), use the section table to perform
2227 operations such as address => section name and hence
2228 require the table to contain all sections (including
2229 those found in shared libraries). */
2230 /* NOTE: cagney/2003-11-25: Pass current_target and not
2231 exec_ops to SOLIB_ADD. This is because current GDB is
2232 only tooled to propagate section_table changes out from
2233 the "current_target" (see target_resize_to_sections), and
2234 not up from the exec stratum. This, of course, isn't
2235 right. "infrun.c" should only interact with the
2236 exec/process stratum, instead relying on the target stack
2237 to propagate relevant changes (stop, section table
2238 changed, ...) up to other layers. */
2239 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2240 target_terminal_inferior ();
2241
2242 /* Try to reenable shared library breakpoints, additional
2243 code segments in shared libraries might be mapped in now. */
2244 re_enable_breakpoints_in_shlibs ();
2245
2246 /* If requested, stop when the dynamic linker notifies
2247 gdb of events. This allows the user to get control
2248 and place breakpoints in initializer routines for
2249 dynamically loaded objects (among other things). */
2250 if (stop_on_solib_events || stop_stack_dummy)
2251 {
2252 stop_stepping (ecs);
2253 return;
2254 }
2255
2256 /* If we stopped due to an explicit catchpoint, then the
2257 (see above) call to SOLIB_ADD pulled in any symbols
2258 from a newly-loaded library, if appropriate.
2259
2260 We do want the inferior to stop, but not where it is
2261 now, which is in the dynamic linker callback. Rather,
2262 we would like it stop in the user's program, just after
2263 the call that caused this catchpoint to trigger. That
2264 gives the user a more useful vantage from which to
2265 examine their program's state. */
2266 else if (what.main_action ==
2267 BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2268 {
2269 /* ??rehrauer: If I could figure out how to get the
2270 right return PC from here, we could just set a temp
2271 breakpoint and resume. I'm not sure we can without
2272 cracking open the dld's shared libraries and sniffing
2273 their unwind tables and text/data ranges, and that's
2274 not a terribly portable notion.
2275
2276 Until that time, we must step the inferior out of the
2277 dld callback, and also out of the dld itself (and any
2278 code or stubs in libdld.sl, such as "shl_load" and
2279 friends) until we reach non-dld code. At that point,
2280 we can stop stepping. */
2281 bpstat_get_triggered_catchpoints (stop_bpstat,
2282 &ecs->
2283 stepping_through_solib_catchpoints);
2284 ecs->stepping_through_solib_after_catch = 1;
2285
2286 /* Be sure to lift all breakpoints, so the inferior does
2287 actually step past this point... */
2288 ecs->another_trap = 1;
2289 break;
2290 }
2291 else
2292 {
2293 /* We want to step over this breakpoint, then keep going. */
2294 ecs->another_trap = 1;
2295 break;
2296 }
2297 }
2298 #endif
2299 break;
2300
2301 case BPSTAT_WHAT_LAST:
2302 /* Not a real code, but listed here to shut up gcc -Wall. */
2303
2304 case BPSTAT_WHAT_KEEP_CHECKING:
2305 break;
2306 }
2307 }
2308
2309 /* We come here if we hit a breakpoint but should not
2310 stop for it. Possibly we also were stepping
2311 and should stop for that. So fall through and
2312 test for stepping. But, if not stepping,
2313 do not stop. */
2314
2315 /* Are we stepping to get the inferior out of the dynamic
2316 linker's hook (and possibly the dld itself) after catching
2317 a shlib event? */
2318 if (ecs->stepping_through_solib_after_catch)
2319 {
2320 #if defined(SOLIB_ADD)
2321 /* Have we reached our destination? If not, keep going. */
2322 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2323 {
2324 ecs->another_trap = 1;
2325 keep_going (ecs);
2326 return;
2327 }
2328 #endif
2329 /* Else, stop and report the catchpoint(s) whose triggering
2330 caused us to begin stepping. */
2331 ecs->stepping_through_solib_after_catch = 0;
2332 bpstat_clear (&stop_bpstat);
2333 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2334 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2335 stop_print_frame = 1;
2336 stop_stepping (ecs);
2337 return;
2338 }
2339
2340 if (step_resume_breakpoint)
2341 {
2342 /* Having a step-resume breakpoint overrides anything
2343 else having to do with stepping commands until
2344 that breakpoint is reached. */
2345 keep_going (ecs);
2346 return;
2347 }
2348
2349 if (step_range_end == 0)
2350 {
2351 /* Likewise if we aren't even stepping. */
2352 keep_going (ecs);
2353 return;
2354 }
2355
2356 /* If stepping through a line, keep going if still within it.
2357
2358 Note that step_range_end is the address of the first instruction
2359 beyond the step range, and NOT the address of the last instruction
2360 within it! */
2361 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2362 {
2363 keep_going (ecs);
2364 return;
2365 }
2366
2367 /* We stepped out of the stepping range. */
2368
2369 /* If we are stepping at the source level and entered the runtime
2370 loader dynamic symbol resolution code, we keep on single stepping
2371 until we exit the run time loader code and reach the callee's
2372 address. */
2373 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2374 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2375 {
2376 CORE_ADDR pc_after_resolver =
2377 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2378
2379 if (pc_after_resolver)
2380 {
2381 /* Set up a step-resume breakpoint at the address
2382 indicated by SKIP_SOLIB_RESOLVER. */
2383 struct symtab_and_line sr_sal;
2384 init_sal (&sr_sal);
2385 sr_sal.pc = pc_after_resolver;
2386
2387 check_for_old_step_resume_breakpoint ();
2388 step_resume_breakpoint =
2389 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2390 if (breakpoints_inserted)
2391 insert_breakpoints ();
2392 }
2393
2394 keep_going (ecs);
2395 return;
2396 }
2397
2398 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2399 && ecs->stop_func_name == NULL)
2400 {
2401 /* There is no symbol, not even a minimal symbol, corresponding
2402 to the address where we just stopped. So we just stepped
2403 inside undebuggable code. Since we want to step over this
2404 kind of code, we keep going until the inferior returns from
2405 the current function. */
2406 handle_step_into_function (ecs);
2407 return;
2408 }
2409
2410 /* We can't update step_sp every time through the loop, because
2411 reading the stack pointer would slow down stepping too much.
2412 But we can update it every time we leave the step range. */
2413 ecs->update_step_sp = 1;
2414
2415 if (step_range_end != 1
2416 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2417 || step_over_calls == STEP_OVER_ALL)
2418 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2419 {
2420 /* The inferior, while doing a "step" or "next", has ended up in
2421 a signal trampoline (either by a signal being delivered or by
2422 the signal handler returning). Just single-step until the
2423 inferior leaves the trampoline (either by calling the handler
2424 or returning). */
2425 keep_going (ecs);
2426 return;
2427 }
2428
2429 if (frame_id_eq (get_frame_id (get_prev_frame (get_current_frame ())),
2430 step_frame_id))
2431 {
2432 /* It's a subroutine call. */
2433 handle_step_into_function (ecs);
2434 return;
2435 }
2436
2437 /* We've wandered out of the step range. */
2438
2439 ecs->sal = find_pc_line (stop_pc, 0);
2440
2441 if (step_range_end == 1)
2442 {
2443 /* It is stepi or nexti. We always want to stop stepping after
2444 one instruction. */
2445 stop_step = 1;
2446 print_stop_reason (END_STEPPING_RANGE, 0);
2447 stop_stepping (ecs);
2448 return;
2449 }
2450
2451 /* If we're in the return path from a shared library trampoline,
2452 we want to proceed through the trampoline when stepping. */
2453 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2454 {
2455 /* Determine where this trampoline returns. */
2456 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2457
2458 /* Only proceed through if we know where it's going. */
2459 if (real_stop_pc)
2460 {
2461 /* And put the step-breakpoint there and go until there. */
2462 struct symtab_and_line sr_sal;
2463
2464 init_sal (&sr_sal); /* initialize to zeroes */
2465 sr_sal.pc = real_stop_pc;
2466 sr_sal.section = find_pc_overlay (sr_sal.pc);
2467 /* Do not specify what the fp should be when we stop
2468 since on some machines the prologue
2469 is where the new fp value is established. */
2470 check_for_old_step_resume_breakpoint ();
2471 step_resume_breakpoint =
2472 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2473 if (breakpoints_inserted)
2474 insert_breakpoints ();
2475
2476 /* Restart without fiddling with the step ranges or
2477 other state. */
2478 keep_going (ecs);
2479 return;
2480 }
2481 }
2482
2483 if (ecs->sal.line == 0)
2484 {
2485 /* We have no line number information. That means to stop
2486 stepping (does this always happen right after one instruction,
2487 when we do "s" in a function with no line numbers,
2488 or can this happen as a result of a return or longjmp?). */
2489 stop_step = 1;
2490 print_stop_reason (END_STEPPING_RANGE, 0);
2491 stop_stepping (ecs);
2492 return;
2493 }
2494
2495 if ((stop_pc == ecs->sal.pc)
2496 && (ecs->current_line != ecs->sal.line
2497 || ecs->current_symtab != ecs->sal.symtab))
2498 {
2499 /* We are at the start of a different line. So stop. Note that
2500 we don't stop if we step into the middle of a different line.
2501 That is said to make things like for (;;) statements work
2502 better. */
2503 stop_step = 1;
2504 print_stop_reason (END_STEPPING_RANGE, 0);
2505 stop_stepping (ecs);
2506 return;
2507 }
2508
2509 /* We aren't done stepping.
2510
2511 Optimize by setting the stepping range to the line.
2512 (We might not be in the original line, but if we entered a
2513 new line in mid-statement, we continue stepping. This makes
2514 things like for(;;) statements work better.) */
2515
2516 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2517 {
2518 /* If this is the last line of the function, don't keep stepping
2519 (it would probably step us out of the function).
2520 This is particularly necessary for a one-line function,
2521 in which after skipping the prologue we better stop even though
2522 we will be in mid-line. */
2523 stop_step = 1;
2524 print_stop_reason (END_STEPPING_RANGE, 0);
2525 stop_stepping (ecs);
2526 return;
2527 }
2528 step_range_start = ecs->sal.pc;
2529 step_range_end = ecs->sal.end;
2530 step_frame_id = get_frame_id (get_current_frame ());
2531 ecs->current_line = ecs->sal.line;
2532 ecs->current_symtab = ecs->sal.symtab;
2533
2534 /* In the case where we just stepped out of a function into the
2535 middle of a line of the caller, continue stepping, but
2536 step_frame_id must be modified to current frame */
2537 #if 0
2538 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2539 generous. It will trigger on things like a step into a frameless
2540 stackless leaf function. I think the logic should instead look
2541 at the unwound frame ID has that should give a more robust
2542 indication of what happened. */
2543 if (step-ID == current-ID)
2544 still stepping in same function;
2545 else if (step-ID == unwind (current-ID))
2546 stepped into a function;
2547 else
2548 stepped out of a function;
2549 /* Of course this assumes that the frame ID unwind code is robust
2550 and we're willing to introduce frame unwind logic into this
2551 function. Fortunately, those days are nearly upon us. */
2552 #endif
2553 {
2554 struct frame_id current_frame = get_frame_id (get_current_frame ());
2555 if (!(frame_id_inner (current_frame, step_frame_id)))
2556 step_frame_id = current_frame;
2557 }
2558
2559 keep_going (ecs);
2560 }
2561
2562 /* Are we in the middle of stepping? */
2563
2564 static int
2565 currently_stepping (struct execution_control_state *ecs)
2566 {
2567 return ((!ecs->handling_longjmp
2568 && ((step_range_end && step_resume_breakpoint == NULL)
2569 || trap_expected))
2570 || ecs->stepping_through_solib_after_catch
2571 || bpstat_should_step ());
2572 }
2573
2574 /* Subroutine call with source code we should not step over. Do step
2575 to the first line of code in it. */
2576
2577 static void
2578 step_into_function (struct execution_control_state *ecs)
2579 {
2580 struct symtab *s;
2581 struct symtab_and_line sr_sal;
2582
2583 s = find_pc_symtab (stop_pc);
2584 if (s && s->language != language_asm)
2585 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2586
2587 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2588 /* Use the step_resume_break to step until the end of the prologue,
2589 even if that involves jumps (as it seems to on the vax under
2590 4.2). */
2591 /* If the prologue ends in the middle of a source line, continue to
2592 the end of that source line (if it is still within the function).
2593 Otherwise, just go to end of prologue. */
2594 if (ecs->sal.end
2595 && ecs->sal.pc != ecs->stop_func_start
2596 && ecs->sal.end < ecs->stop_func_end)
2597 ecs->stop_func_start = ecs->sal.end;
2598
2599 /* Architectures which require breakpoint adjustment might not be able
2600 to place a breakpoint at the computed address. If so, the test
2601 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2602 ecs->stop_func_start to an address at which a breakpoint may be
2603 legitimately placed.
2604
2605 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2606 made, GDB will enter an infinite loop when stepping through
2607 optimized code consisting of VLIW instructions which contain
2608 subinstructions corresponding to different source lines. On
2609 FR-V, it's not permitted to place a breakpoint on any but the
2610 first subinstruction of a VLIW instruction. When a breakpoint is
2611 set, GDB will adjust the breakpoint address to the beginning of
2612 the VLIW instruction. Thus, we need to make the corresponding
2613 adjustment here when computing the stop address. */
2614
2615 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2616 {
2617 ecs->stop_func_start
2618 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2619 ecs->stop_func_start);
2620 }
2621
2622 if (ecs->stop_func_start == stop_pc)
2623 {
2624 /* We are already there: stop now. */
2625 stop_step = 1;
2626 print_stop_reason (END_STEPPING_RANGE, 0);
2627 stop_stepping (ecs);
2628 return;
2629 }
2630 else
2631 {
2632 /* Put the step-breakpoint there and go until there. */
2633 init_sal (&sr_sal); /* initialize to zeroes */
2634 sr_sal.pc = ecs->stop_func_start;
2635 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2636 /* Do not specify what the fp should be when we stop since on
2637 some machines the prologue is where the new fp value is
2638 established. */
2639 check_for_old_step_resume_breakpoint ();
2640 step_resume_breakpoint =
2641 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2642 if (breakpoints_inserted)
2643 insert_breakpoints ();
2644
2645 /* And make sure stepping stops right away then. */
2646 step_range_end = step_range_start;
2647 }
2648 keep_going (ecs);
2649 }
2650
2651 /* The inferior, as a result of a function call (has left) or signal
2652 (about to leave) the single-step range. Set a momentary breakpoint
2653 within the step range where the inferior is expected to later
2654 return. */
2655
2656 static void
2657 insert_step_resume_breakpoint (struct frame_info *step_frame,
2658 struct execution_control_state *ecs)
2659 {
2660 struct symtab_and_line sr_sal;
2661
2662 /* This is only used within the step-resume range/frame. */
2663 gdb_assert (frame_id_eq (step_frame_id, get_frame_id (step_frame)));
2664 gdb_assert (step_range_end != 0);
2665 gdb_assert (get_frame_pc (step_frame) >= step_range_start
2666 && get_frame_pc (step_frame) < step_range_end);
2667
2668 init_sal (&sr_sal); /* initialize to zeros */
2669
2670 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (step_frame));
2671 sr_sal.section = find_pc_overlay (sr_sal.pc);
2672
2673 check_for_old_step_resume_breakpoint ();
2674
2675 step_resume_breakpoint
2676 = set_momentary_breakpoint (sr_sal, get_frame_id (step_frame),
2677 bp_step_resume);
2678
2679 if (breakpoints_inserted)
2680 insert_breakpoints ();
2681 }
2682
2683 /* We've just entered a callee, and we wish to resume until it returns
2684 to the caller. Setting a step_resume breakpoint on the return
2685 address will catch a return from the callee.
2686
2687 However, if the callee is recursing, we want to be careful not to
2688 catch returns of those recursive calls, but only of THIS instance
2689 of the caller.
2690
2691 To do this, we set the step_resume bp's frame to our current
2692 caller's frame (obtained by doing a frame ID unwind). */
2693
2694 static void
2695 step_over_function (struct execution_control_state *ecs)
2696 {
2697 struct symtab_and_line sr_sal;
2698 struct frame_id sr_id;
2699
2700 init_sal (&sr_sal); /* initialize to zeros */
2701
2702 /* NOTE: cagney/2003-04-06:
2703
2704 At this point the equality get_frame_pc() == get_frame_func()
2705 should hold. This may make it possible for this code to tell the
2706 frame where it's function is, instead of the reverse. This would
2707 avoid the need to search for the frame's function, which can get
2708 very messy when there is no debug info available (look at the
2709 heuristic find pc start code found in targets like the MIPS). */
2710
2711 /* NOTE: cagney/2003-04-06:
2712
2713 The intent of DEPRECATED_SAVED_PC_AFTER_CALL was to:
2714
2715 - provide a very light weight equivalent to frame_unwind_pc()
2716 (nee FRAME_SAVED_PC) that avoids the prologue analyzer
2717
2718 - avoid handling the case where the PC hasn't been saved in the
2719 prologue analyzer
2720
2721 Unfortunately, not five lines further down, is a call to
2722 get_frame_id() and that is guarenteed to trigger the prologue
2723 analyzer.
2724
2725 The `correct fix' is for the prologe analyzer to handle the case
2726 where the prologue is incomplete (PC in prologue) and,
2727 consequently, the return pc has not yet been saved. It should be
2728 noted that the prologue analyzer needs to handle this case
2729 anyway: frameless leaf functions that don't save the return PC;
2730 single stepping through a prologue.
2731
2732 The d10v handles all this by bailing out of the prologue analsis
2733 when it reaches the current instruction. */
2734
2735 if (DEPRECATED_SAVED_PC_AFTER_CALL_P ())
2736 sr_sal.pc = ADDR_BITS_REMOVE (DEPRECATED_SAVED_PC_AFTER_CALL (get_current_frame ()));
2737 else
2738 sr_sal.pc = ADDR_BITS_REMOVE (frame_pc_unwind (get_current_frame ()));
2739 sr_sal.section = find_pc_overlay (sr_sal.pc);
2740
2741 check_for_old_step_resume_breakpoint ();
2742
2743 /* NOTE: cagney/2004-03-31: Code using the current value of
2744 "step_frame_id", instead of unwinding that frame ID, removed. On
2745 s390 GNU/Linux, after taking a signal, the program is directly
2746 resumed at the signal handler and, consequently, the PC would
2747 point at at the first instruction of that signal handler but
2748 STEP_FRAME_ID would [incorrectly] at the interrupted code when it
2749 should point at the signal trampoline. By always and locally
2750 doing a frame ID unwind, it's possible to assert that the code is
2751 always using the correct ID. */
2752 sr_id = frame_unwind_id (get_current_frame ());
2753
2754 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
2755
2756 if (breakpoints_inserted)
2757 insert_breakpoints ();
2758 }
2759
2760 static void
2761 stop_stepping (struct execution_control_state *ecs)
2762 {
2763 /* Let callers know we don't want to wait for the inferior anymore. */
2764 ecs->wait_some_more = 0;
2765 }
2766
2767 /* This function handles various cases where we need to continue
2768 waiting for the inferior. */
2769 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2770
2771 static void
2772 keep_going (struct execution_control_state *ecs)
2773 {
2774 /* Save the pc before execution, to compare with pc after stop. */
2775 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2776
2777 if (ecs->update_step_sp)
2778 step_sp = read_sp ();
2779 ecs->update_step_sp = 0;
2780
2781 /* If we did not do break;, it means we should keep running the
2782 inferior and not return to debugger. */
2783
2784 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2785 {
2786 /* We took a signal (which we are supposed to pass through to
2787 the inferior, else we'd have done a break above) and we
2788 haven't yet gotten our trap. Simply continue. */
2789 resume (currently_stepping (ecs), stop_signal);
2790 }
2791 else
2792 {
2793 /* Either the trap was not expected, but we are continuing
2794 anyway (the user asked that this signal be passed to the
2795 child)
2796 -- or --
2797 The signal was SIGTRAP, e.g. it was our signal, but we
2798 decided we should resume from it.
2799
2800 We're going to run this baby now!
2801
2802 Insert breakpoints now, unless we are trying to one-proceed
2803 past a breakpoint. */
2804 /* If we've just finished a special step resume and we don't
2805 want to hit a breakpoint, pull em out. */
2806 if (step_resume_breakpoint == NULL
2807 && ecs->remove_breakpoints_on_following_step)
2808 {
2809 ecs->remove_breakpoints_on_following_step = 0;
2810 remove_breakpoints ();
2811 breakpoints_inserted = 0;
2812 }
2813 else if (!breakpoints_inserted && !ecs->another_trap)
2814 {
2815 breakpoints_failed = insert_breakpoints ();
2816 if (breakpoints_failed)
2817 {
2818 stop_stepping (ecs);
2819 return;
2820 }
2821 breakpoints_inserted = 1;
2822 }
2823
2824 trap_expected = ecs->another_trap;
2825
2826 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2827 specifies that such a signal should be delivered to the
2828 target program).
2829
2830 Typically, this would occure when a user is debugging a
2831 target monitor on a simulator: the target monitor sets a
2832 breakpoint; the simulator encounters this break-point and
2833 halts the simulation handing control to GDB; GDB, noteing
2834 that the break-point isn't valid, returns control back to the
2835 simulator; the simulator then delivers the hardware
2836 equivalent of a SIGNAL_TRAP to the program being debugged. */
2837
2838 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2839 stop_signal = TARGET_SIGNAL_0;
2840
2841
2842 resume (currently_stepping (ecs), stop_signal);
2843 }
2844
2845 prepare_to_wait (ecs);
2846 }
2847
2848 /* This function normally comes after a resume, before
2849 handle_inferior_event exits. It takes care of any last bits of
2850 housekeeping, and sets the all-important wait_some_more flag. */
2851
2852 static void
2853 prepare_to_wait (struct execution_control_state *ecs)
2854 {
2855 if (ecs->infwait_state == infwait_normal_state)
2856 {
2857 overlay_cache_invalid = 1;
2858
2859 /* We have to invalidate the registers BEFORE calling
2860 target_wait because they can be loaded from the target while
2861 in target_wait. This makes remote debugging a bit more
2862 efficient for those targets that provide critical registers
2863 as part of their normal status mechanism. */
2864
2865 registers_changed ();
2866 ecs->waiton_ptid = pid_to_ptid (-1);
2867 ecs->wp = &(ecs->ws);
2868 }
2869 /* This is the old end of the while loop. Let everybody know we
2870 want to wait for the inferior some more and get called again
2871 soon. */
2872 ecs->wait_some_more = 1;
2873 }
2874
2875 /* Print why the inferior has stopped. We always print something when
2876 the inferior exits, or receives a signal. The rest of the cases are
2877 dealt with later on in normal_stop() and print_it_typical(). Ideally
2878 there should be a call to this function from handle_inferior_event()
2879 each time stop_stepping() is called.*/
2880 static void
2881 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2882 {
2883 switch (stop_reason)
2884 {
2885 case STOP_UNKNOWN:
2886 /* We don't deal with these cases from handle_inferior_event()
2887 yet. */
2888 break;
2889 case END_STEPPING_RANGE:
2890 /* We are done with a step/next/si/ni command. */
2891 /* For now print nothing. */
2892 /* Print a message only if not in the middle of doing a "step n"
2893 operation for n > 1 */
2894 if (!step_multi || !stop_step)
2895 if (ui_out_is_mi_like_p (uiout))
2896 ui_out_field_string (uiout, "reason", "end-stepping-range");
2897 break;
2898 case BREAKPOINT_HIT:
2899 /* We found a breakpoint. */
2900 /* For now print nothing. */
2901 break;
2902 case SIGNAL_EXITED:
2903 /* The inferior was terminated by a signal. */
2904 annotate_signalled ();
2905 if (ui_out_is_mi_like_p (uiout))
2906 ui_out_field_string (uiout, "reason", "exited-signalled");
2907 ui_out_text (uiout, "\nProgram terminated with signal ");
2908 annotate_signal_name ();
2909 ui_out_field_string (uiout, "signal-name",
2910 target_signal_to_name (stop_info));
2911 annotate_signal_name_end ();
2912 ui_out_text (uiout, ", ");
2913 annotate_signal_string ();
2914 ui_out_field_string (uiout, "signal-meaning",
2915 target_signal_to_string (stop_info));
2916 annotate_signal_string_end ();
2917 ui_out_text (uiout, ".\n");
2918 ui_out_text (uiout, "The program no longer exists.\n");
2919 break;
2920 case EXITED:
2921 /* The inferior program is finished. */
2922 annotate_exited (stop_info);
2923 if (stop_info)
2924 {
2925 if (ui_out_is_mi_like_p (uiout))
2926 ui_out_field_string (uiout, "reason", "exited");
2927 ui_out_text (uiout, "\nProgram exited with code ");
2928 ui_out_field_fmt (uiout, "exit-code", "0%o",
2929 (unsigned int) stop_info);
2930 ui_out_text (uiout, ".\n");
2931 }
2932 else
2933 {
2934 if (ui_out_is_mi_like_p (uiout))
2935 ui_out_field_string (uiout, "reason", "exited-normally");
2936 ui_out_text (uiout, "\nProgram exited normally.\n");
2937 }
2938 break;
2939 case SIGNAL_RECEIVED:
2940 /* Signal received. The signal table tells us to print about
2941 it. */
2942 annotate_signal ();
2943 ui_out_text (uiout, "\nProgram received signal ");
2944 annotate_signal_name ();
2945 if (ui_out_is_mi_like_p (uiout))
2946 ui_out_field_string (uiout, "reason", "signal-received");
2947 ui_out_field_string (uiout, "signal-name",
2948 target_signal_to_name (stop_info));
2949 annotate_signal_name_end ();
2950 ui_out_text (uiout, ", ");
2951 annotate_signal_string ();
2952 ui_out_field_string (uiout, "signal-meaning",
2953 target_signal_to_string (stop_info));
2954 annotate_signal_string_end ();
2955 ui_out_text (uiout, ".\n");
2956 break;
2957 default:
2958 internal_error (__FILE__, __LINE__,
2959 "print_stop_reason: unrecognized enum value");
2960 break;
2961 }
2962 }
2963 \f
2964
2965 /* Here to return control to GDB when the inferior stops for real.
2966 Print appropriate messages, remove breakpoints, give terminal our modes.
2967
2968 STOP_PRINT_FRAME nonzero means print the executing frame
2969 (pc, function, args, file, line number and line text).
2970 BREAKPOINTS_FAILED nonzero means stop was due to error
2971 attempting to insert breakpoints. */
2972
2973 void
2974 normal_stop (void)
2975 {
2976 struct target_waitstatus last;
2977 ptid_t last_ptid;
2978
2979 get_last_target_status (&last_ptid, &last);
2980
2981 /* As with the notification of thread events, we want to delay
2982 notifying the user that we've switched thread context until
2983 the inferior actually stops.
2984
2985 There's no point in saying anything if the inferior has exited.
2986 Note that SIGNALLED here means "exited with a signal", not
2987 "received a signal". */
2988 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
2989 && target_has_execution
2990 && last.kind != TARGET_WAITKIND_SIGNALLED
2991 && last.kind != TARGET_WAITKIND_EXITED)
2992 {
2993 target_terminal_ours_for_output ();
2994 printf_filtered ("[Switching to %s]\n",
2995 target_pid_or_tid_to_str (inferior_ptid));
2996 previous_inferior_ptid = inferior_ptid;
2997 }
2998
2999 /* NOTE drow/2004-01-17: Is this still necessary? */
3000 /* Make sure that the current_frame's pc is correct. This
3001 is a correction for setting up the frame info before doing
3002 DECR_PC_AFTER_BREAK */
3003 if (target_has_execution)
3004 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3005 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3006 frame code to check for this and sort out any resultant mess.
3007 DECR_PC_AFTER_BREAK needs to just go away. */
3008 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3009
3010 if (target_has_execution && breakpoints_inserted)
3011 {
3012 if (remove_breakpoints ())
3013 {
3014 target_terminal_ours_for_output ();
3015 printf_filtered ("Cannot remove breakpoints because ");
3016 printf_filtered ("program is no longer writable.\n");
3017 printf_filtered ("It might be running in another process.\n");
3018 printf_filtered ("Further execution is probably impossible.\n");
3019 }
3020 }
3021 breakpoints_inserted = 0;
3022
3023 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3024 Delete any breakpoint that is to be deleted at the next stop. */
3025
3026 breakpoint_auto_delete (stop_bpstat);
3027
3028 /* If an auto-display called a function and that got a signal,
3029 delete that auto-display to avoid an infinite recursion. */
3030
3031 if (stopped_by_random_signal)
3032 disable_current_display ();
3033
3034 /* Don't print a message if in the middle of doing a "step n"
3035 operation for n > 1 */
3036 if (step_multi && stop_step)
3037 goto done;
3038
3039 target_terminal_ours ();
3040
3041 /* Look up the hook_stop and run it (CLI internally handles problem
3042 of stop_command's pre-hook not existing). */
3043 if (stop_command)
3044 catch_errors (hook_stop_stub, stop_command,
3045 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3046
3047 if (!target_has_stack)
3048 {
3049
3050 goto done;
3051 }
3052
3053 /* Select innermost stack frame - i.e., current frame is frame 0,
3054 and current location is based on that.
3055 Don't do this on return from a stack dummy routine,
3056 or if the program has exited. */
3057
3058 if (!stop_stack_dummy)
3059 {
3060 select_frame (get_current_frame ());
3061
3062 /* Print current location without a level number, if
3063 we have changed functions or hit a breakpoint.
3064 Print source line if we have one.
3065 bpstat_print() contains the logic deciding in detail
3066 what to print, based on the event(s) that just occurred. */
3067
3068 if (stop_print_frame && deprecated_selected_frame)
3069 {
3070 int bpstat_ret;
3071 int source_flag;
3072 int do_frame_printing = 1;
3073
3074 bpstat_ret = bpstat_print (stop_bpstat);
3075 switch (bpstat_ret)
3076 {
3077 case PRINT_UNKNOWN:
3078 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3079 (or should) carry around the function and does (or
3080 should) use that when doing a frame comparison. */
3081 if (stop_step
3082 && frame_id_eq (step_frame_id,
3083 get_frame_id (get_current_frame ()))
3084 && step_start_function == find_pc_function (stop_pc))
3085 source_flag = SRC_LINE; /* finished step, just print source line */
3086 else
3087 source_flag = SRC_AND_LOC; /* print location and source line */
3088 break;
3089 case PRINT_SRC_AND_LOC:
3090 source_flag = SRC_AND_LOC; /* print location and source line */
3091 break;
3092 case PRINT_SRC_ONLY:
3093 source_flag = SRC_LINE;
3094 break;
3095 case PRINT_NOTHING:
3096 source_flag = SRC_LINE; /* something bogus */
3097 do_frame_printing = 0;
3098 break;
3099 default:
3100 internal_error (__FILE__, __LINE__, "Unknown value.");
3101 }
3102 /* For mi, have the same behavior every time we stop:
3103 print everything but the source line. */
3104 if (ui_out_is_mi_like_p (uiout))
3105 source_flag = LOC_AND_ADDRESS;
3106
3107 if (ui_out_is_mi_like_p (uiout))
3108 ui_out_field_int (uiout, "thread-id",
3109 pid_to_thread_id (inferior_ptid));
3110 /* The behavior of this routine with respect to the source
3111 flag is:
3112 SRC_LINE: Print only source line
3113 LOCATION: Print only location
3114 SRC_AND_LOC: Print location and source line */
3115 if (do_frame_printing)
3116 print_stack_frame (get_selected_frame (), 0, source_flag);
3117
3118 /* Display the auto-display expressions. */
3119 do_displays ();
3120 }
3121 }
3122
3123 /* Save the function value return registers, if we care.
3124 We might be about to restore their previous contents. */
3125 if (proceed_to_finish)
3126 /* NB: The copy goes through to the target picking up the value of
3127 all the registers. */
3128 regcache_cpy (stop_registers, current_regcache);
3129
3130 if (stop_stack_dummy)
3131 {
3132 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3133 ends with a setting of the current frame, so we can use that
3134 next. */
3135 frame_pop (get_current_frame ());
3136 /* Set stop_pc to what it was before we called the function.
3137 Can't rely on restore_inferior_status because that only gets
3138 called if we don't stop in the called function. */
3139 stop_pc = read_pc ();
3140 select_frame (get_current_frame ());
3141 }
3142
3143 done:
3144 annotate_stopped ();
3145 observer_notify_normal_stop (stop_bpstat);
3146 }
3147
3148 static int
3149 hook_stop_stub (void *cmd)
3150 {
3151 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3152 return (0);
3153 }
3154 \f
3155 int
3156 signal_stop_state (int signo)
3157 {
3158 return signal_stop[signo];
3159 }
3160
3161 int
3162 signal_print_state (int signo)
3163 {
3164 return signal_print[signo];
3165 }
3166
3167 int
3168 signal_pass_state (int signo)
3169 {
3170 return signal_program[signo];
3171 }
3172
3173 int
3174 signal_stop_update (int signo, int state)
3175 {
3176 int ret = signal_stop[signo];
3177 signal_stop[signo] = state;
3178 return ret;
3179 }
3180
3181 int
3182 signal_print_update (int signo, int state)
3183 {
3184 int ret = signal_print[signo];
3185 signal_print[signo] = state;
3186 return ret;
3187 }
3188
3189 int
3190 signal_pass_update (int signo, int state)
3191 {
3192 int ret = signal_program[signo];
3193 signal_program[signo] = state;
3194 return ret;
3195 }
3196
3197 static void
3198 sig_print_header (void)
3199 {
3200 printf_filtered ("\
3201 Signal Stop\tPrint\tPass to program\tDescription\n");
3202 }
3203
3204 static void
3205 sig_print_info (enum target_signal oursig)
3206 {
3207 char *name = target_signal_to_name (oursig);
3208 int name_padding = 13 - strlen (name);
3209
3210 if (name_padding <= 0)
3211 name_padding = 0;
3212
3213 printf_filtered ("%s", name);
3214 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3215 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3216 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3217 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3218 printf_filtered ("%s\n", target_signal_to_string (oursig));
3219 }
3220
3221 /* Specify how various signals in the inferior should be handled. */
3222
3223 static void
3224 handle_command (char *args, int from_tty)
3225 {
3226 char **argv;
3227 int digits, wordlen;
3228 int sigfirst, signum, siglast;
3229 enum target_signal oursig;
3230 int allsigs;
3231 int nsigs;
3232 unsigned char *sigs;
3233 struct cleanup *old_chain;
3234
3235 if (args == NULL)
3236 {
3237 error_no_arg ("signal to handle");
3238 }
3239
3240 /* Allocate and zero an array of flags for which signals to handle. */
3241
3242 nsigs = (int) TARGET_SIGNAL_LAST;
3243 sigs = (unsigned char *) alloca (nsigs);
3244 memset (sigs, 0, nsigs);
3245
3246 /* Break the command line up into args. */
3247
3248 argv = buildargv (args);
3249 if (argv == NULL)
3250 {
3251 nomem (0);
3252 }
3253 old_chain = make_cleanup_freeargv (argv);
3254
3255 /* Walk through the args, looking for signal oursigs, signal names, and
3256 actions. Signal numbers and signal names may be interspersed with
3257 actions, with the actions being performed for all signals cumulatively
3258 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3259
3260 while (*argv != NULL)
3261 {
3262 wordlen = strlen (*argv);
3263 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3264 {;
3265 }
3266 allsigs = 0;
3267 sigfirst = siglast = -1;
3268
3269 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3270 {
3271 /* Apply action to all signals except those used by the
3272 debugger. Silently skip those. */
3273 allsigs = 1;
3274 sigfirst = 0;
3275 siglast = nsigs - 1;
3276 }
3277 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3278 {
3279 SET_SIGS (nsigs, sigs, signal_stop);
3280 SET_SIGS (nsigs, sigs, signal_print);
3281 }
3282 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3283 {
3284 UNSET_SIGS (nsigs, sigs, signal_program);
3285 }
3286 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3287 {
3288 SET_SIGS (nsigs, sigs, signal_print);
3289 }
3290 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3291 {
3292 SET_SIGS (nsigs, sigs, signal_program);
3293 }
3294 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3295 {
3296 UNSET_SIGS (nsigs, sigs, signal_stop);
3297 }
3298 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3299 {
3300 SET_SIGS (nsigs, sigs, signal_program);
3301 }
3302 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3303 {
3304 UNSET_SIGS (nsigs, sigs, signal_print);
3305 UNSET_SIGS (nsigs, sigs, signal_stop);
3306 }
3307 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3308 {
3309 UNSET_SIGS (nsigs, sigs, signal_program);
3310 }
3311 else if (digits > 0)
3312 {
3313 /* It is numeric. The numeric signal refers to our own
3314 internal signal numbering from target.h, not to host/target
3315 signal number. This is a feature; users really should be
3316 using symbolic names anyway, and the common ones like
3317 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3318
3319 sigfirst = siglast = (int)
3320 target_signal_from_command (atoi (*argv));
3321 if ((*argv)[digits] == '-')
3322 {
3323 siglast = (int)
3324 target_signal_from_command (atoi ((*argv) + digits + 1));
3325 }
3326 if (sigfirst > siglast)
3327 {
3328 /* Bet he didn't figure we'd think of this case... */
3329 signum = sigfirst;
3330 sigfirst = siglast;
3331 siglast = signum;
3332 }
3333 }
3334 else
3335 {
3336 oursig = target_signal_from_name (*argv);
3337 if (oursig != TARGET_SIGNAL_UNKNOWN)
3338 {
3339 sigfirst = siglast = (int) oursig;
3340 }
3341 else
3342 {
3343 /* Not a number and not a recognized flag word => complain. */
3344 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3345 }
3346 }
3347
3348 /* If any signal numbers or symbol names were found, set flags for
3349 which signals to apply actions to. */
3350
3351 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3352 {
3353 switch ((enum target_signal) signum)
3354 {
3355 case TARGET_SIGNAL_TRAP:
3356 case TARGET_SIGNAL_INT:
3357 if (!allsigs && !sigs[signum])
3358 {
3359 if (query ("%s is used by the debugger.\n\
3360 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3361 {
3362 sigs[signum] = 1;
3363 }
3364 else
3365 {
3366 printf_unfiltered ("Not confirmed, unchanged.\n");
3367 gdb_flush (gdb_stdout);
3368 }
3369 }
3370 break;
3371 case TARGET_SIGNAL_0:
3372 case TARGET_SIGNAL_DEFAULT:
3373 case TARGET_SIGNAL_UNKNOWN:
3374 /* Make sure that "all" doesn't print these. */
3375 break;
3376 default:
3377 sigs[signum] = 1;
3378 break;
3379 }
3380 }
3381
3382 argv++;
3383 }
3384
3385 target_notice_signals (inferior_ptid);
3386
3387 if (from_tty)
3388 {
3389 /* Show the results. */
3390 sig_print_header ();
3391 for (signum = 0; signum < nsigs; signum++)
3392 {
3393 if (sigs[signum])
3394 {
3395 sig_print_info (signum);
3396 }
3397 }
3398 }
3399
3400 do_cleanups (old_chain);
3401 }
3402
3403 static void
3404 xdb_handle_command (char *args, int from_tty)
3405 {
3406 char **argv;
3407 struct cleanup *old_chain;
3408
3409 /* Break the command line up into args. */
3410
3411 argv = buildargv (args);
3412 if (argv == NULL)
3413 {
3414 nomem (0);
3415 }
3416 old_chain = make_cleanup_freeargv (argv);
3417 if (argv[1] != (char *) NULL)
3418 {
3419 char *argBuf;
3420 int bufLen;
3421
3422 bufLen = strlen (argv[0]) + 20;
3423 argBuf = (char *) xmalloc (bufLen);
3424 if (argBuf)
3425 {
3426 int validFlag = 1;
3427 enum target_signal oursig;
3428
3429 oursig = target_signal_from_name (argv[0]);
3430 memset (argBuf, 0, bufLen);
3431 if (strcmp (argv[1], "Q") == 0)
3432 sprintf (argBuf, "%s %s", argv[0], "noprint");
3433 else
3434 {
3435 if (strcmp (argv[1], "s") == 0)
3436 {
3437 if (!signal_stop[oursig])
3438 sprintf (argBuf, "%s %s", argv[0], "stop");
3439 else
3440 sprintf (argBuf, "%s %s", argv[0], "nostop");
3441 }
3442 else if (strcmp (argv[1], "i") == 0)
3443 {
3444 if (!signal_program[oursig])
3445 sprintf (argBuf, "%s %s", argv[0], "pass");
3446 else
3447 sprintf (argBuf, "%s %s", argv[0], "nopass");
3448 }
3449 else if (strcmp (argv[1], "r") == 0)
3450 {
3451 if (!signal_print[oursig])
3452 sprintf (argBuf, "%s %s", argv[0], "print");
3453 else
3454 sprintf (argBuf, "%s %s", argv[0], "noprint");
3455 }
3456 else
3457 validFlag = 0;
3458 }
3459 if (validFlag)
3460 handle_command (argBuf, from_tty);
3461 else
3462 printf_filtered ("Invalid signal handling flag.\n");
3463 if (argBuf)
3464 xfree (argBuf);
3465 }
3466 }
3467 do_cleanups (old_chain);
3468 }
3469
3470 /* Print current contents of the tables set by the handle command.
3471 It is possible we should just be printing signals actually used
3472 by the current target (but for things to work right when switching
3473 targets, all signals should be in the signal tables). */
3474
3475 static void
3476 signals_info (char *signum_exp, int from_tty)
3477 {
3478 enum target_signal oursig;
3479 sig_print_header ();
3480
3481 if (signum_exp)
3482 {
3483 /* First see if this is a symbol name. */
3484 oursig = target_signal_from_name (signum_exp);
3485 if (oursig == TARGET_SIGNAL_UNKNOWN)
3486 {
3487 /* No, try numeric. */
3488 oursig =
3489 target_signal_from_command (parse_and_eval_long (signum_exp));
3490 }
3491 sig_print_info (oursig);
3492 return;
3493 }
3494
3495 printf_filtered ("\n");
3496 /* These ugly casts brought to you by the native VAX compiler. */
3497 for (oursig = TARGET_SIGNAL_FIRST;
3498 (int) oursig < (int) TARGET_SIGNAL_LAST;
3499 oursig = (enum target_signal) ((int) oursig + 1))
3500 {
3501 QUIT;
3502
3503 if (oursig != TARGET_SIGNAL_UNKNOWN
3504 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3505 sig_print_info (oursig);
3506 }
3507
3508 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3509 }
3510 \f
3511 struct inferior_status
3512 {
3513 enum target_signal stop_signal;
3514 CORE_ADDR stop_pc;
3515 bpstat stop_bpstat;
3516 int stop_step;
3517 int stop_stack_dummy;
3518 int stopped_by_random_signal;
3519 int trap_expected;
3520 CORE_ADDR step_range_start;
3521 CORE_ADDR step_range_end;
3522 struct frame_id step_frame_id;
3523 enum step_over_calls_kind step_over_calls;
3524 CORE_ADDR step_resume_break_address;
3525 int stop_after_trap;
3526 int stop_soon;
3527 struct regcache *stop_registers;
3528
3529 /* These are here because if call_function_by_hand has written some
3530 registers and then decides to call error(), we better not have changed
3531 any registers. */
3532 struct regcache *registers;
3533
3534 /* A frame unique identifier. */
3535 struct frame_id selected_frame_id;
3536
3537 int breakpoint_proceeded;
3538 int restore_stack_info;
3539 int proceed_to_finish;
3540 };
3541
3542 void
3543 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3544 LONGEST val)
3545 {
3546 int size = DEPRECATED_REGISTER_RAW_SIZE (regno);
3547 void *buf = alloca (size);
3548 store_signed_integer (buf, size, val);
3549 regcache_raw_write (inf_status->registers, regno, buf);
3550 }
3551
3552 /* Save all of the information associated with the inferior<==>gdb
3553 connection. INF_STATUS is a pointer to a "struct inferior_status"
3554 (defined in inferior.h). */
3555
3556 struct inferior_status *
3557 save_inferior_status (int restore_stack_info)
3558 {
3559 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3560
3561 inf_status->stop_signal = stop_signal;
3562 inf_status->stop_pc = stop_pc;
3563 inf_status->stop_step = stop_step;
3564 inf_status->stop_stack_dummy = stop_stack_dummy;
3565 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3566 inf_status->trap_expected = trap_expected;
3567 inf_status->step_range_start = step_range_start;
3568 inf_status->step_range_end = step_range_end;
3569 inf_status->step_frame_id = step_frame_id;
3570 inf_status->step_over_calls = step_over_calls;
3571 inf_status->stop_after_trap = stop_after_trap;
3572 inf_status->stop_soon = stop_soon;
3573 /* Save original bpstat chain here; replace it with copy of chain.
3574 If caller's caller is walking the chain, they'll be happier if we
3575 hand them back the original chain when restore_inferior_status is
3576 called. */
3577 inf_status->stop_bpstat = stop_bpstat;
3578 stop_bpstat = bpstat_copy (stop_bpstat);
3579 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3580 inf_status->restore_stack_info = restore_stack_info;
3581 inf_status->proceed_to_finish = proceed_to_finish;
3582
3583 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3584
3585 inf_status->registers = regcache_dup (current_regcache);
3586
3587 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
3588 return inf_status;
3589 }
3590
3591 static int
3592 restore_selected_frame (void *args)
3593 {
3594 struct frame_id *fid = (struct frame_id *) args;
3595 struct frame_info *frame;
3596
3597 frame = frame_find_by_id (*fid);
3598
3599 /* If inf_status->selected_frame_id is NULL, there was no previously
3600 selected frame. */
3601 if (frame == NULL)
3602 {
3603 warning ("Unable to restore previously selected frame.\n");
3604 return 0;
3605 }
3606
3607 select_frame (frame);
3608
3609 return (1);
3610 }
3611
3612 void
3613 restore_inferior_status (struct inferior_status *inf_status)
3614 {
3615 stop_signal = inf_status->stop_signal;
3616 stop_pc = inf_status->stop_pc;
3617 stop_step = inf_status->stop_step;
3618 stop_stack_dummy = inf_status->stop_stack_dummy;
3619 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3620 trap_expected = inf_status->trap_expected;
3621 step_range_start = inf_status->step_range_start;
3622 step_range_end = inf_status->step_range_end;
3623 step_frame_id = inf_status->step_frame_id;
3624 step_over_calls = inf_status->step_over_calls;
3625 stop_after_trap = inf_status->stop_after_trap;
3626 stop_soon = inf_status->stop_soon;
3627 bpstat_clear (&stop_bpstat);
3628 stop_bpstat = inf_status->stop_bpstat;
3629 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3630 proceed_to_finish = inf_status->proceed_to_finish;
3631
3632 /* FIXME: Is the restore of stop_registers always needed. */
3633 regcache_xfree (stop_registers);
3634 stop_registers = inf_status->stop_registers;
3635
3636 /* The inferior can be gone if the user types "print exit(0)"
3637 (and perhaps other times). */
3638 if (target_has_execution)
3639 /* NB: The register write goes through to the target. */
3640 regcache_cpy (current_regcache, inf_status->registers);
3641 regcache_xfree (inf_status->registers);
3642
3643 /* FIXME: If we are being called after stopping in a function which
3644 is called from gdb, we should not be trying to restore the
3645 selected frame; it just prints a spurious error message (The
3646 message is useful, however, in detecting bugs in gdb (like if gdb
3647 clobbers the stack)). In fact, should we be restoring the
3648 inferior status at all in that case? . */
3649
3650 if (target_has_stack && inf_status->restore_stack_info)
3651 {
3652 /* The point of catch_errors is that if the stack is clobbered,
3653 walking the stack might encounter a garbage pointer and
3654 error() trying to dereference it. */
3655 if (catch_errors
3656 (restore_selected_frame, &inf_status->selected_frame_id,
3657 "Unable to restore previously selected frame:\n",
3658 RETURN_MASK_ERROR) == 0)
3659 /* Error in restoring the selected frame. Select the innermost
3660 frame. */
3661 select_frame (get_current_frame ());
3662
3663 }
3664
3665 xfree (inf_status);
3666 }
3667
3668 static void
3669 do_restore_inferior_status_cleanup (void *sts)
3670 {
3671 restore_inferior_status (sts);
3672 }
3673
3674 struct cleanup *
3675 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3676 {
3677 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3678 }
3679
3680 void
3681 discard_inferior_status (struct inferior_status *inf_status)
3682 {
3683 /* See save_inferior_status for info on stop_bpstat. */
3684 bpstat_clear (&inf_status->stop_bpstat);
3685 regcache_xfree (inf_status->registers);
3686 regcache_xfree (inf_status->stop_registers);
3687 xfree (inf_status);
3688 }
3689
3690 int
3691 inferior_has_forked (int pid, int *child_pid)
3692 {
3693 struct target_waitstatus last;
3694 ptid_t last_ptid;
3695
3696 get_last_target_status (&last_ptid, &last);
3697
3698 if (last.kind != TARGET_WAITKIND_FORKED)
3699 return 0;
3700
3701 if (ptid_get_pid (last_ptid) != pid)
3702 return 0;
3703
3704 *child_pid = last.value.related_pid;
3705 return 1;
3706 }
3707
3708 int
3709 inferior_has_vforked (int pid, int *child_pid)
3710 {
3711 struct target_waitstatus last;
3712 ptid_t last_ptid;
3713
3714 get_last_target_status (&last_ptid, &last);
3715
3716 if (last.kind != TARGET_WAITKIND_VFORKED)
3717 return 0;
3718
3719 if (ptid_get_pid (last_ptid) != pid)
3720 return 0;
3721
3722 *child_pid = last.value.related_pid;
3723 return 1;
3724 }
3725
3726 int
3727 inferior_has_execd (int pid, char **execd_pathname)
3728 {
3729 struct target_waitstatus last;
3730 ptid_t last_ptid;
3731
3732 get_last_target_status (&last_ptid, &last);
3733
3734 if (last.kind != TARGET_WAITKIND_EXECD)
3735 return 0;
3736
3737 if (ptid_get_pid (last_ptid) != pid)
3738 return 0;
3739
3740 *execd_pathname = xstrdup (last.value.execd_pathname);
3741 return 1;
3742 }
3743
3744 /* Oft used ptids */
3745 ptid_t null_ptid;
3746 ptid_t minus_one_ptid;
3747
3748 /* Create a ptid given the necessary PID, LWP, and TID components. */
3749
3750 ptid_t
3751 ptid_build (int pid, long lwp, long tid)
3752 {
3753 ptid_t ptid;
3754
3755 ptid.pid = pid;
3756 ptid.lwp = lwp;
3757 ptid.tid = tid;
3758 return ptid;
3759 }
3760
3761 /* Create a ptid from just a pid. */
3762
3763 ptid_t
3764 pid_to_ptid (int pid)
3765 {
3766 return ptid_build (pid, 0, 0);
3767 }
3768
3769 /* Fetch the pid (process id) component from a ptid. */
3770
3771 int
3772 ptid_get_pid (ptid_t ptid)
3773 {
3774 return ptid.pid;
3775 }
3776
3777 /* Fetch the lwp (lightweight process) component from a ptid. */
3778
3779 long
3780 ptid_get_lwp (ptid_t ptid)
3781 {
3782 return ptid.lwp;
3783 }
3784
3785 /* Fetch the tid (thread id) component from a ptid. */
3786
3787 long
3788 ptid_get_tid (ptid_t ptid)
3789 {
3790 return ptid.tid;
3791 }
3792
3793 /* ptid_equal() is used to test equality of two ptids. */
3794
3795 int
3796 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3797 {
3798 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3799 && ptid1.tid == ptid2.tid);
3800 }
3801
3802 /* restore_inferior_ptid() will be used by the cleanup machinery
3803 to restore the inferior_ptid value saved in a call to
3804 save_inferior_ptid(). */
3805
3806 static void
3807 restore_inferior_ptid (void *arg)
3808 {
3809 ptid_t *saved_ptid_ptr = arg;
3810 inferior_ptid = *saved_ptid_ptr;
3811 xfree (arg);
3812 }
3813
3814 /* Save the value of inferior_ptid so that it may be restored by a
3815 later call to do_cleanups(). Returns the struct cleanup pointer
3816 needed for later doing the cleanup. */
3817
3818 struct cleanup *
3819 save_inferior_ptid (void)
3820 {
3821 ptid_t *saved_ptid_ptr;
3822
3823 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3824 *saved_ptid_ptr = inferior_ptid;
3825 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3826 }
3827 \f
3828
3829 static void
3830 build_infrun (void)
3831 {
3832 stop_registers = regcache_xmalloc (current_gdbarch);
3833 }
3834
3835 void
3836 _initialize_infrun (void)
3837 {
3838 int i;
3839 int numsigs;
3840 struct cmd_list_element *c;
3841
3842 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3843 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3844
3845 add_info ("signals", signals_info,
3846 "What debugger does when program gets various signals.\n\
3847 Specify a signal as argument to print info on that signal only.");
3848 add_info_alias ("handle", "signals", 0);
3849
3850 add_com ("handle", class_run, handle_command,
3851 concat ("Specify how to handle a signal.\n\
3852 Args are signals and actions to apply to those signals.\n\
3853 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3854 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3855 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3856 The special arg \"all\" is recognized to mean all signals except those\n\
3857 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3858 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3859 Stop means reenter debugger if this signal happens (implies print).\n\
3860 Print means print a message if this signal happens.\n\
3861 Pass means let program see this signal; otherwise program doesn't know.\n\
3862 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3863 Pass and Stop may be combined.", NULL));
3864 if (xdb_commands)
3865 {
3866 add_com ("lz", class_info, signals_info,
3867 "What debugger does when program gets various signals.\n\
3868 Specify a signal as argument to print info on that signal only.");
3869 add_com ("z", class_run, xdb_handle_command,
3870 concat ("Specify how to handle a signal.\n\
3871 Args are signals and actions to apply to those signals.\n\
3872 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3873 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3874 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3875 The special arg \"all\" is recognized to mean all signals except those\n\
3876 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
3877 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3878 nopass), \"Q\" (noprint)\n\
3879 Stop means reenter debugger if this signal happens (implies print).\n\
3880 Print means print a message if this signal happens.\n\
3881 Pass means let program see this signal; otherwise program doesn't know.\n\
3882 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3883 Pass and Stop may be combined.", NULL));
3884 }
3885
3886 if (!dbx_commands)
3887 stop_command =
3888 add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\
3889 This allows you to set a list of commands to be run each time execution\n\
3890 of the program stops.", &cmdlist);
3891
3892 numsigs = (int) TARGET_SIGNAL_LAST;
3893 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3894 signal_print = (unsigned char *)
3895 xmalloc (sizeof (signal_print[0]) * numsigs);
3896 signal_program = (unsigned char *)
3897 xmalloc (sizeof (signal_program[0]) * numsigs);
3898 for (i = 0; i < numsigs; i++)
3899 {
3900 signal_stop[i] = 1;
3901 signal_print[i] = 1;
3902 signal_program[i] = 1;
3903 }
3904
3905 /* Signals caused by debugger's own actions
3906 should not be given to the program afterwards. */
3907 signal_program[TARGET_SIGNAL_TRAP] = 0;
3908 signal_program[TARGET_SIGNAL_INT] = 0;
3909
3910 /* Signals that are not errors should not normally enter the debugger. */
3911 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3912 signal_print[TARGET_SIGNAL_ALRM] = 0;
3913 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3914 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3915 signal_stop[TARGET_SIGNAL_PROF] = 0;
3916 signal_print[TARGET_SIGNAL_PROF] = 0;
3917 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3918 signal_print[TARGET_SIGNAL_CHLD] = 0;
3919 signal_stop[TARGET_SIGNAL_IO] = 0;
3920 signal_print[TARGET_SIGNAL_IO] = 0;
3921 signal_stop[TARGET_SIGNAL_POLL] = 0;
3922 signal_print[TARGET_SIGNAL_POLL] = 0;
3923 signal_stop[TARGET_SIGNAL_URG] = 0;
3924 signal_print[TARGET_SIGNAL_URG] = 0;
3925 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3926 signal_print[TARGET_SIGNAL_WINCH] = 0;
3927
3928 /* These signals are used internally by user-level thread
3929 implementations. (See signal(5) on Solaris.) Like the above
3930 signals, a healthy program receives and handles them as part of
3931 its normal operation. */
3932 signal_stop[TARGET_SIGNAL_LWP] = 0;
3933 signal_print[TARGET_SIGNAL_LWP] = 0;
3934 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3935 signal_print[TARGET_SIGNAL_WAITING] = 0;
3936 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3937 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3938
3939 #ifdef SOLIB_ADD
3940 add_show_from_set
3941 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
3942 (char *) &stop_on_solib_events,
3943 "Set stopping for shared library events.\n\
3944 If nonzero, gdb will give control to the user when the dynamic linker\n\
3945 notifies gdb of shared library events. The most common event of interest\n\
3946 to the user would be loading/unloading of a new library.\n", &setlist), &showlist);
3947 #endif
3948
3949 c = add_set_enum_cmd ("follow-fork-mode",
3950 class_run,
3951 follow_fork_mode_kind_names, &follow_fork_mode_string,
3952 "Set debugger response to a program call of fork \
3953 or vfork.\n\
3954 A fork or vfork creates a new process. follow-fork-mode can be:\n\
3955 parent - the original process is debugged after a fork\n\
3956 child - the new process is debugged after a fork\n\
3957 The unfollowed process will continue to run.\n\
3958 By default, the debugger will follow the parent process.", &setlist);
3959 add_show_from_set (c, &showlist);
3960
3961 c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums, /* array of string names */
3962 &scheduler_mode, /* current mode */
3963 "Set mode for locking scheduler during execution.\n\
3964 off == no locking (threads may preempt at any time)\n\
3965 on == full locking (no thread except the current thread may run)\n\
3966 step == scheduler locked during every single-step operation.\n\
3967 In this mode, no other thread may run during a step command.\n\
3968 Other threads may run while stepping over a function call ('next').", &setlist);
3969
3970 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
3971 add_show_from_set (c, &showlist);
3972
3973 c = add_set_cmd ("step-mode", class_run,
3974 var_boolean, (char *) &step_stop_if_no_debug,
3975 "Set mode of the step operation. When set, doing a step over a\n\
3976 function without debug line information will stop at the first\n\
3977 instruction of that function. Otherwise, the function is skipped and\n\
3978 the step command stops at a different source line.", &setlist);
3979 add_show_from_set (c, &showlist);
3980
3981 /* ptid initializations */
3982 null_ptid = ptid_build (0, 0, 0);
3983 minus_one_ptid = ptid_build (-1, 0, 0);
3984 inferior_ptid = null_ptid;
3985 target_last_wait_ptid = minus_one_ptid;
3986 }