]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
* gdbarch.sh (GET_LONGJMP_TARGET): Replace by gdbarch_get_longjmp_target.
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "exceptions.h"
32 #include "breakpoint.h"
33 #include "gdb_wait.h"
34 #include "gdbcore.h"
35 #include "gdbcmd.h"
36 #include "cli/cli-script.h"
37 #include "target.h"
38 #include "gdbthread.h"
39 #include "annotate.h"
40 #include "symfile.h"
41 #include "top.h"
42 #include <signal.h>
43 #include "inf-loop.h"
44 #include "regcache.h"
45 #include "value.h"
46 #include "observer.h"
47 #include "language.h"
48 #include "solib.h"
49 #include "main.h"
50
51 #include "gdb_assert.h"
52 #include "mi/mi-common.h"
53
54 /* Prototypes for local functions */
55
56 static void signals_info (char *, int);
57
58 static void handle_command (char *, int);
59
60 static void sig_print_info (enum target_signal);
61
62 static void sig_print_header (void);
63
64 static void resume_cleanups (void *);
65
66 static int hook_stop_stub (void *);
67
68 static int restore_selected_frame (void *);
69
70 static void build_infrun (void);
71
72 static int follow_fork (void);
73
74 static void set_schedlock_func (char *args, int from_tty,
75 struct cmd_list_element *c);
76
77 struct execution_control_state;
78
79 static int currently_stepping (struct execution_control_state *ecs);
80
81 static void xdb_handle_command (char *args, int from_tty);
82
83 static int prepare_to_proceed (void);
84
85 void _initialize_infrun (void);
86
87 int inferior_ignoring_startup_exec_events = 0;
88 int inferior_ignoring_leading_exec_events = 0;
89
90 /* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93 int step_stop_if_no_debug = 0;
94 static void
95 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97 {
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99 }
100
101 /* In asynchronous mode, but simulating synchronous execution. */
102
103 int sync_execution = 0;
104
105 /* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
107 running in. */
108
109 static ptid_t previous_inferior_ptid;
110
111 /* This is true for configurations that may follow through execl() and
112 similar functions. At present this is only true for HP-UX native. */
113
114 #ifndef MAY_FOLLOW_EXEC
115 #define MAY_FOLLOW_EXEC (0)
116 #endif
117
118 static int may_follow_exec = MAY_FOLLOW_EXEC;
119
120 static int debug_infrun = 0;
121 static void
122 show_debug_infrun (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c, const char *value)
124 {
125 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
126 }
127
128 /* If the program uses ELF-style shared libraries, then calls to
129 functions in shared libraries go through stubs, which live in a
130 table called the PLT (Procedure Linkage Table). The first time the
131 function is called, the stub sends control to the dynamic linker,
132 which looks up the function's real address, patches the stub so
133 that future calls will go directly to the function, and then passes
134 control to the function.
135
136 If we are stepping at the source level, we don't want to see any of
137 this --- we just want to skip over the stub and the dynamic linker.
138 The simple approach is to single-step until control leaves the
139 dynamic linker.
140
141 However, on some systems (e.g., Red Hat's 5.2 distribution) the
142 dynamic linker calls functions in the shared C library, so you
143 can't tell from the PC alone whether the dynamic linker is still
144 running. In this case, we use a step-resume breakpoint to get us
145 past the dynamic linker, as if we were using "next" to step over a
146 function call.
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
149 linker code or not. Normally, this means we single-step. However,
150 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
151 address where we can place a step-resume breakpoint to get past the
152 linker's symbol resolution function.
153
154 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
155 pretty portable way, by comparing the PC against the address ranges
156 of the dynamic linker's sections.
157
158 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
159 it depends on internal details of the dynamic linker. It's usually
160 not too hard to figure out where to put a breakpoint, but it
161 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
162 sanity checking. If it can't figure things out, returning zero and
163 getting the (possibly confusing) stepping behavior is better than
164 signalling an error, which will obscure the change in the
165 inferior's state. */
166
167 /* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
169 dld itself).
170
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
174
175 #ifndef SOLIB_IN_DYNAMIC_LINKER
176 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
177 #endif
178
179
180 /* Convert the #defines into values. This is temporary until wfi control
181 flow is completely sorted out. */
182
183 #ifndef CANNOT_STEP_HW_WATCHPOINTS
184 #define CANNOT_STEP_HW_WATCHPOINTS 0
185 #else
186 #undef CANNOT_STEP_HW_WATCHPOINTS
187 #define CANNOT_STEP_HW_WATCHPOINTS 1
188 #endif
189
190 /* Tables of how to react to signals; the user sets them. */
191
192 static unsigned char *signal_stop;
193 static unsigned char *signal_print;
194 static unsigned char *signal_program;
195
196 #define SET_SIGS(nsigs,sigs,flags) \
197 do { \
198 int signum = (nsigs); \
199 while (signum-- > 0) \
200 if ((sigs)[signum]) \
201 (flags)[signum] = 1; \
202 } while (0)
203
204 #define UNSET_SIGS(nsigs,sigs,flags) \
205 do { \
206 int signum = (nsigs); \
207 while (signum-- > 0) \
208 if ((sigs)[signum]) \
209 (flags)[signum] = 0; \
210 } while (0)
211
212 /* Value to pass to target_resume() to cause all threads to resume */
213
214 #define RESUME_ALL (pid_to_ptid (-1))
215
216 /* Command list pointer for the "stop" placeholder. */
217
218 static struct cmd_list_element *stop_command;
219
220 /* Nonzero if breakpoints are now inserted in the inferior. */
221
222 static int breakpoints_inserted;
223
224 /* Function inferior was in as of last step command. */
225
226 static struct symbol *step_start_function;
227
228 /* Nonzero if we are expecting a trace trap and should proceed from it. */
229
230 static int trap_expected;
231
232 /* Nonzero if we want to give control to the user when we're notified
233 of shared library events by the dynamic linker. */
234 static int stop_on_solib_events;
235 static void
236 show_stop_on_solib_events (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238 {
239 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
240 value);
241 }
242
243 /* Nonzero means expecting a trace trap
244 and should stop the inferior and return silently when it happens. */
245
246 int stop_after_trap;
247
248 /* Nonzero means expecting a trap and caller will handle it themselves.
249 It is used after attach, due to attaching to a process;
250 when running in the shell before the child program has been exec'd;
251 and when running some kinds of remote stuff (FIXME?). */
252
253 enum stop_kind stop_soon;
254
255 /* Nonzero if proceed is being used for a "finish" command or a similar
256 situation when stop_registers should be saved. */
257
258 int proceed_to_finish;
259
260 /* Save register contents here when about to pop a stack dummy frame,
261 if-and-only-if proceed_to_finish is set.
262 Thus this contains the return value from the called function (assuming
263 values are returned in a register). */
264
265 struct regcache *stop_registers;
266
267 /* Nonzero after stop if current stack frame should be printed. */
268
269 static int stop_print_frame;
270
271 static struct breakpoint *step_resume_breakpoint = NULL;
272
273 /* This is a cached copy of the pid/waitstatus of the last event
274 returned by target_wait()/deprecated_target_wait_hook(). This
275 information is returned by get_last_target_status(). */
276 static ptid_t target_last_wait_ptid;
277 static struct target_waitstatus target_last_waitstatus;
278
279 /* This is used to remember when a fork, vfork or exec event
280 was caught by a catchpoint, and thus the event is to be
281 followed at the next resume of the inferior, and not
282 immediately. */
283 static struct
284 {
285 enum target_waitkind kind;
286 struct
287 {
288 int parent_pid;
289 int child_pid;
290 }
291 fork_event;
292 char *execd_pathname;
293 }
294 pending_follow;
295
296 static const char follow_fork_mode_child[] = "child";
297 static const char follow_fork_mode_parent[] = "parent";
298
299 static const char *follow_fork_mode_kind_names[] = {
300 follow_fork_mode_child,
301 follow_fork_mode_parent,
302 NULL
303 };
304
305 static const char *follow_fork_mode_string = follow_fork_mode_parent;
306 static void
307 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
308 struct cmd_list_element *c, const char *value)
309 {
310 fprintf_filtered (file, _("\
311 Debugger response to a program call of fork or vfork is \"%s\".\n"),
312 value);
313 }
314 \f
315
316 static int
317 follow_fork (void)
318 {
319 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
320
321 return target_follow_fork (follow_child);
322 }
323
324 void
325 follow_inferior_reset_breakpoints (void)
326 {
327 /* Was there a step_resume breakpoint? (There was if the user
328 did a "next" at the fork() call.) If so, explicitly reset its
329 thread number.
330
331 step_resumes are a form of bp that are made to be per-thread.
332 Since we created the step_resume bp when the parent process
333 was being debugged, and now are switching to the child process,
334 from the breakpoint package's viewpoint, that's a switch of
335 "threads". We must update the bp's notion of which thread
336 it is for, or it'll be ignored when it triggers. */
337
338 if (step_resume_breakpoint)
339 breakpoint_re_set_thread (step_resume_breakpoint);
340
341 /* Reinsert all breakpoints in the child. The user may have set
342 breakpoints after catching the fork, in which case those
343 were never set in the child, but only in the parent. This makes
344 sure the inserted breakpoints match the breakpoint list. */
345
346 breakpoint_re_set ();
347 insert_breakpoints ();
348 }
349
350 /* EXECD_PATHNAME is assumed to be non-NULL. */
351
352 static void
353 follow_exec (int pid, char *execd_pathname)
354 {
355 int saved_pid = pid;
356 struct target_ops *tgt;
357
358 if (!may_follow_exec)
359 return;
360
361 /* This is an exec event that we actually wish to pay attention to.
362 Refresh our symbol table to the newly exec'd program, remove any
363 momentary bp's, etc.
364
365 If there are breakpoints, they aren't really inserted now,
366 since the exec() transformed our inferior into a fresh set
367 of instructions.
368
369 We want to preserve symbolic breakpoints on the list, since
370 we have hopes that they can be reset after the new a.out's
371 symbol table is read.
372
373 However, any "raw" breakpoints must be removed from the list
374 (e.g., the solib bp's), since their address is probably invalid
375 now.
376
377 And, we DON'T want to call delete_breakpoints() here, since
378 that may write the bp's "shadow contents" (the instruction
379 value that was overwritten witha TRAP instruction). Since
380 we now have a new a.out, those shadow contents aren't valid. */
381 update_breakpoints_after_exec ();
382
383 /* If there was one, it's gone now. We cannot truly step-to-next
384 statement through an exec(). */
385 step_resume_breakpoint = NULL;
386 step_range_start = 0;
387 step_range_end = 0;
388
389 /* What is this a.out's name? */
390 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
391
392 /* We've followed the inferior through an exec. Therefore, the
393 inferior has essentially been killed & reborn. */
394
395 /* First collect the run target in effect. */
396 tgt = find_run_target ();
397 /* If we can't find one, things are in a very strange state... */
398 if (tgt == NULL)
399 error (_("Could find run target to save before following exec"));
400
401 gdb_flush (gdb_stdout);
402 target_mourn_inferior ();
403 inferior_ptid = pid_to_ptid (saved_pid);
404 /* Because mourn_inferior resets inferior_ptid. */
405 push_target (tgt);
406
407 /* That a.out is now the one to use. */
408 exec_file_attach (execd_pathname, 0);
409
410 /* And also is where symbols can be found. */
411 symbol_file_add_main (execd_pathname, 0);
412
413 /* Reset the shared library package. This ensures that we get
414 a shlib event when the child reaches "_start", at which point
415 the dld will have had a chance to initialize the child. */
416 #if defined(SOLIB_RESTART)
417 SOLIB_RESTART ();
418 #endif
419 #ifdef SOLIB_CREATE_INFERIOR_HOOK
420 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
421 #else
422 solib_create_inferior_hook ();
423 #endif
424
425 /* Reinsert all breakpoints. (Those which were symbolic have
426 been reset to the proper address in the new a.out, thanks
427 to symbol_file_command...) */
428 insert_breakpoints ();
429
430 /* The next resume of this inferior should bring it to the shlib
431 startup breakpoints. (If the user had also set bp's on
432 "main" from the old (parent) process, then they'll auto-
433 matically get reset there in the new process.) */
434 }
435
436 /* Non-zero if we just simulating a single-step. This is needed
437 because we cannot remove the breakpoints in the inferior process
438 until after the `wait' in `wait_for_inferior'. */
439 static int singlestep_breakpoints_inserted_p = 0;
440
441 /* The thread we inserted single-step breakpoints for. */
442 static ptid_t singlestep_ptid;
443
444 /* PC when we started this single-step. */
445 static CORE_ADDR singlestep_pc;
446
447 /* If another thread hit the singlestep breakpoint, we save the original
448 thread here so that we can resume single-stepping it later. */
449 static ptid_t saved_singlestep_ptid;
450 static int stepping_past_singlestep_breakpoint;
451 \f
452
453 /* Things to clean up if we QUIT out of resume (). */
454 static void
455 resume_cleanups (void *ignore)
456 {
457 normal_stop ();
458 }
459
460 static const char schedlock_off[] = "off";
461 static const char schedlock_on[] = "on";
462 static const char schedlock_step[] = "step";
463 static const char *scheduler_enums[] = {
464 schedlock_off,
465 schedlock_on,
466 schedlock_step,
467 NULL
468 };
469 static const char *scheduler_mode = schedlock_off;
470 static void
471 show_scheduler_mode (struct ui_file *file, int from_tty,
472 struct cmd_list_element *c, const char *value)
473 {
474 fprintf_filtered (file, _("\
475 Mode for locking scheduler during execution is \"%s\".\n"),
476 value);
477 }
478
479 static void
480 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
481 {
482 if (!target_can_lock_scheduler)
483 {
484 scheduler_mode = schedlock_off;
485 error (_("Target '%s' cannot support this command."), target_shortname);
486 }
487 }
488
489
490 /* Resume the inferior, but allow a QUIT. This is useful if the user
491 wants to interrupt some lengthy single-stepping operation
492 (for child processes, the SIGINT goes to the inferior, and so
493 we get a SIGINT random_signal, but for remote debugging and perhaps
494 other targets, that's not true).
495
496 STEP nonzero if we should step (zero to continue instead).
497 SIG is the signal to give the inferior (zero for none). */
498 void
499 resume (int step, enum target_signal sig)
500 {
501 int should_resume = 1;
502 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
503 QUIT;
504
505 if (debug_infrun)
506 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
507 step, sig);
508
509 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
510
511
512 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
513 over an instruction that causes a page fault without triggering
514 a hardware watchpoint. The kernel properly notices that it shouldn't
515 stop, because the hardware watchpoint is not triggered, but it forgets
516 the step request and continues the program normally.
517 Work around the problem by removing hardware watchpoints if a step is
518 requested, GDB will check for a hardware watchpoint trigger after the
519 step anyway. */
520 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
521 remove_hw_watchpoints ();
522
523
524 /* Normally, by the time we reach `resume', the breakpoints are either
525 removed or inserted, as appropriate. The exception is if we're sitting
526 at a permanent breakpoint; we need to step over it, but permanent
527 breakpoints can't be removed. So we have to test for it here. */
528 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
529 {
530 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
531 gdbarch_skip_permanent_breakpoint (current_gdbarch, current_regcache);
532 else
533 error (_("\
534 The program is stopped at a permanent breakpoint, but GDB does not know\n\
535 how to step past a permanent breakpoint on this architecture. Try using\n\
536 a command like `return' or `jump' to continue execution."));
537 }
538
539 if (SOFTWARE_SINGLE_STEP_P () && step)
540 {
541 /* Do it the hard way, w/temp breakpoints */
542 if (SOFTWARE_SINGLE_STEP (current_regcache))
543 {
544 /* ...and don't ask hardware to do it. */
545 step = 0;
546 /* and do not pull these breakpoints until after a `wait' in
547 `wait_for_inferior' */
548 singlestep_breakpoints_inserted_p = 1;
549 singlestep_ptid = inferior_ptid;
550 singlestep_pc = read_pc ();
551 }
552 }
553
554 /* If there were any forks/vforks/execs that were caught and are
555 now to be followed, then do so. */
556 switch (pending_follow.kind)
557 {
558 case TARGET_WAITKIND_FORKED:
559 case TARGET_WAITKIND_VFORKED:
560 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
561 if (follow_fork ())
562 should_resume = 0;
563 break;
564
565 case TARGET_WAITKIND_EXECD:
566 /* follow_exec is called as soon as the exec event is seen. */
567 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
568 break;
569
570 default:
571 break;
572 }
573
574 /* Install inferior's terminal modes. */
575 target_terminal_inferior ();
576
577 if (should_resume)
578 {
579 ptid_t resume_ptid;
580
581 resume_ptid = RESUME_ALL; /* Default */
582
583 if ((step || singlestep_breakpoints_inserted_p)
584 && (stepping_past_singlestep_breakpoint
585 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
586 {
587 /* Stepping past a breakpoint without inserting breakpoints.
588 Make sure only the current thread gets to step, so that
589 other threads don't sneak past breakpoints while they are
590 not inserted. */
591
592 resume_ptid = inferior_ptid;
593 }
594
595 if ((scheduler_mode == schedlock_on)
596 || (scheduler_mode == schedlock_step
597 && (step || singlestep_breakpoints_inserted_p)))
598 {
599 /* User-settable 'scheduler' mode requires solo thread resume. */
600 resume_ptid = inferior_ptid;
601 }
602
603 if (CANNOT_STEP_BREAKPOINT)
604 {
605 /* Most targets can step a breakpoint instruction, thus
606 executing it normally. But if this one cannot, just
607 continue and we will hit it anyway. */
608 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
609 step = 0;
610 }
611 target_resume (resume_ptid, step, sig);
612 }
613
614 discard_cleanups (old_cleanups);
615 }
616 \f
617
618 /* Clear out all variables saying what to do when inferior is continued.
619 First do this, then set the ones you want, then call `proceed'. */
620
621 void
622 clear_proceed_status (void)
623 {
624 trap_expected = 0;
625 step_range_start = 0;
626 step_range_end = 0;
627 step_frame_id = null_frame_id;
628 step_over_calls = STEP_OVER_UNDEBUGGABLE;
629 stop_after_trap = 0;
630 stop_soon = NO_STOP_QUIETLY;
631 proceed_to_finish = 0;
632 breakpoint_proceeded = 1; /* We're about to proceed... */
633
634 /* Discard any remaining commands or status from previous stop. */
635 bpstat_clear (&stop_bpstat);
636 }
637
638 /* This should be suitable for any targets that support threads. */
639
640 static int
641 prepare_to_proceed (void)
642 {
643 ptid_t wait_ptid;
644 struct target_waitstatus wait_status;
645
646 /* Get the last target status returned by target_wait(). */
647 get_last_target_status (&wait_ptid, &wait_status);
648
649 /* Make sure we were stopped either at a breakpoint, or because
650 of a Ctrl-C. */
651 if (wait_status.kind != TARGET_WAITKIND_STOPPED
652 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
653 && wait_status.value.sig != TARGET_SIGNAL_INT))
654 {
655 return 0;
656 }
657
658 if (!ptid_equal (wait_ptid, minus_one_ptid)
659 && !ptid_equal (inferior_ptid, wait_ptid))
660 {
661 /* Switched over from WAIT_PID. */
662 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
663
664 if (wait_pc != read_pc ())
665 {
666 /* Switch back to WAIT_PID thread. */
667 inferior_ptid = wait_ptid;
668
669 /* FIXME: This stuff came from switch_to_thread() in
670 thread.c (which should probably be a public function). */
671 reinit_frame_cache ();
672 registers_changed ();
673 stop_pc = wait_pc;
674 }
675
676 /* We return 1 to indicate that there is a breakpoint here,
677 so we need to step over it before continuing to avoid
678 hitting it straight away. */
679 if (breakpoint_here_p (wait_pc))
680 return 1;
681 }
682
683 return 0;
684
685 }
686
687 /* Record the pc of the program the last time it stopped. This is
688 just used internally by wait_for_inferior, but need to be preserved
689 over calls to it and cleared when the inferior is started. */
690 static CORE_ADDR prev_pc;
691
692 /* Basic routine for continuing the program in various fashions.
693
694 ADDR is the address to resume at, or -1 for resume where stopped.
695 SIGGNAL is the signal to give it, or 0 for none,
696 or -1 for act according to how it stopped.
697 STEP is nonzero if should trap after one instruction.
698 -1 means return after that and print nothing.
699 You should probably set various step_... variables
700 before calling here, if you are stepping.
701
702 You should call clear_proceed_status before calling proceed. */
703
704 void
705 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
706 {
707 int oneproc = 0;
708
709 if (step > 0)
710 step_start_function = find_pc_function (read_pc ());
711 if (step < 0)
712 stop_after_trap = 1;
713
714 if (addr == (CORE_ADDR) -1)
715 {
716 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
717 /* There is a breakpoint at the address we will resume at,
718 step one instruction before inserting breakpoints so that
719 we do not stop right away (and report a second hit at this
720 breakpoint). */
721 oneproc = 1;
722 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
723 && gdbarch_single_step_through_delay (current_gdbarch,
724 get_current_frame ()))
725 /* We stepped onto an instruction that needs to be stepped
726 again before re-inserting the breakpoint, do so. */
727 oneproc = 1;
728 }
729 else
730 {
731 write_pc (addr);
732 }
733
734 if (debug_infrun)
735 fprintf_unfiltered (gdb_stdlog,
736 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
737 paddr_nz (addr), siggnal, step);
738
739 /* In a multi-threaded task we may select another thread
740 and then continue or step.
741
742 But if the old thread was stopped at a breakpoint, it
743 will immediately cause another breakpoint stop without
744 any execution (i.e. it will report a breakpoint hit
745 incorrectly). So we must step over it first.
746
747 prepare_to_proceed checks the current thread against the thread
748 that reported the most recent event. If a step-over is required
749 it returns TRUE and sets the current thread to the old thread. */
750 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
751 oneproc = 1;
752
753 if (oneproc)
754 /* We will get a trace trap after one instruction.
755 Continue it automatically and insert breakpoints then. */
756 trap_expected = 1;
757 else
758 {
759 insert_breakpoints ();
760 /* If we get here there was no call to error() in
761 insert breakpoints -- so they were inserted. */
762 breakpoints_inserted = 1;
763 }
764
765 if (siggnal != TARGET_SIGNAL_DEFAULT)
766 stop_signal = siggnal;
767 /* If this signal should not be seen by program,
768 give it zero. Used for debugging signals. */
769 else if (!signal_program[stop_signal])
770 stop_signal = TARGET_SIGNAL_0;
771
772 annotate_starting ();
773
774 /* Make sure that output from GDB appears before output from the
775 inferior. */
776 gdb_flush (gdb_stdout);
777
778 /* Refresh prev_pc value just prior to resuming. This used to be
779 done in stop_stepping, however, setting prev_pc there did not handle
780 scenarios such as inferior function calls or returning from
781 a function via the return command. In those cases, the prev_pc
782 value was not set properly for subsequent commands. The prev_pc value
783 is used to initialize the starting line number in the ecs. With an
784 invalid value, the gdb next command ends up stopping at the position
785 represented by the next line table entry past our start position.
786 On platforms that generate one line table entry per line, this
787 is not a problem. However, on the ia64, the compiler generates
788 extraneous line table entries that do not increase the line number.
789 When we issue the gdb next command on the ia64 after an inferior call
790 or a return command, we often end up a few instructions forward, still
791 within the original line we started.
792
793 An attempt was made to have init_execution_control_state () refresh
794 the prev_pc value before calculating the line number. This approach
795 did not work because on platforms that use ptrace, the pc register
796 cannot be read unless the inferior is stopped. At that point, we
797 are not guaranteed the inferior is stopped and so the read_pc ()
798 call can fail. Setting the prev_pc value here ensures the value is
799 updated correctly when the inferior is stopped. */
800 prev_pc = read_pc ();
801
802 /* Resume inferior. */
803 resume (oneproc || step || bpstat_should_step (), stop_signal);
804
805 /* Wait for it to stop (if not standalone)
806 and in any case decode why it stopped, and act accordingly. */
807 /* Do this only if we are not using the event loop, or if the target
808 does not support asynchronous execution. */
809 if (!target_can_async_p ())
810 {
811 wait_for_inferior ();
812 normal_stop ();
813 }
814 }
815 \f
816
817 /* Start remote-debugging of a machine over a serial link. */
818
819 void
820 start_remote (int from_tty)
821 {
822 init_thread_list ();
823 init_wait_for_inferior ();
824 stop_soon = STOP_QUIETLY;
825 trap_expected = 0;
826
827 /* Always go on waiting for the target, regardless of the mode. */
828 /* FIXME: cagney/1999-09-23: At present it isn't possible to
829 indicate to wait_for_inferior that a target should timeout if
830 nothing is returned (instead of just blocking). Because of this,
831 targets expecting an immediate response need to, internally, set
832 things up so that the target_wait() is forced to eventually
833 timeout. */
834 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
835 differentiate to its caller what the state of the target is after
836 the initial open has been performed. Here we're assuming that
837 the target has stopped. It should be possible to eventually have
838 target_open() return to the caller an indication that the target
839 is currently running and GDB state should be set to the same as
840 for an async run. */
841 wait_for_inferior ();
842
843 /* Now that the inferior has stopped, do any bookkeeping like
844 loading shared libraries. We want to do this before normal_stop,
845 so that the displayed frame is up to date. */
846 post_create_inferior (&current_target, from_tty);
847
848 normal_stop ();
849 }
850
851 /* Initialize static vars when a new inferior begins. */
852
853 void
854 init_wait_for_inferior (void)
855 {
856 /* These are meaningless until the first time through wait_for_inferior. */
857 prev_pc = 0;
858
859 breakpoints_inserted = 0;
860 breakpoint_init_inferior (inf_starting);
861
862 /* Don't confuse first call to proceed(). */
863 stop_signal = TARGET_SIGNAL_0;
864
865 /* The first resume is not following a fork/vfork/exec. */
866 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
867
868 clear_proceed_status ();
869
870 stepping_past_singlestep_breakpoint = 0;
871 }
872 \f
873 /* This enum encodes possible reasons for doing a target_wait, so that
874 wfi can call target_wait in one place. (Ultimately the call will be
875 moved out of the infinite loop entirely.) */
876
877 enum infwait_states
878 {
879 infwait_normal_state,
880 infwait_thread_hop_state,
881 infwait_nonstep_watch_state
882 };
883
884 /* Why did the inferior stop? Used to print the appropriate messages
885 to the interface from within handle_inferior_event(). */
886 enum inferior_stop_reason
887 {
888 /* Step, next, nexti, stepi finished. */
889 END_STEPPING_RANGE,
890 /* Inferior terminated by signal. */
891 SIGNAL_EXITED,
892 /* Inferior exited. */
893 EXITED,
894 /* Inferior received signal, and user asked to be notified. */
895 SIGNAL_RECEIVED
896 };
897
898 /* This structure contains what used to be local variables in
899 wait_for_inferior. Probably many of them can return to being
900 locals in handle_inferior_event. */
901
902 struct execution_control_state
903 {
904 struct target_waitstatus ws;
905 struct target_waitstatus *wp;
906 int another_trap;
907 int random_signal;
908 CORE_ADDR stop_func_start;
909 CORE_ADDR stop_func_end;
910 char *stop_func_name;
911 struct symtab_and_line sal;
912 int current_line;
913 struct symtab *current_symtab;
914 int handling_longjmp; /* FIXME */
915 ptid_t ptid;
916 ptid_t saved_inferior_ptid;
917 int step_after_step_resume_breakpoint;
918 int stepping_through_solib_after_catch;
919 bpstat stepping_through_solib_catchpoints;
920 int new_thread_event;
921 struct target_waitstatus tmpstatus;
922 enum infwait_states infwait_state;
923 ptid_t waiton_ptid;
924 int wait_some_more;
925 };
926
927 void init_execution_control_state (struct execution_control_state *ecs);
928
929 void handle_inferior_event (struct execution_control_state *ecs);
930
931 static void step_into_function (struct execution_control_state *ecs);
932 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
933 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
934 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
935 struct frame_id sr_id);
936 static void stop_stepping (struct execution_control_state *ecs);
937 static void prepare_to_wait (struct execution_control_state *ecs);
938 static void keep_going (struct execution_control_state *ecs);
939 static void print_stop_reason (enum inferior_stop_reason stop_reason,
940 int stop_info);
941
942 /* Wait for control to return from inferior to debugger.
943 If inferior gets a signal, we may decide to start it up again
944 instead of returning. That is why there is a loop in this function.
945 When this function actually returns it means the inferior
946 should be left stopped and GDB should read more commands. */
947
948 void
949 wait_for_inferior (void)
950 {
951 struct cleanup *old_cleanups;
952 struct execution_control_state ecss;
953 struct execution_control_state *ecs;
954
955 if (debug_infrun)
956 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
957
958 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
959 &step_resume_breakpoint);
960
961 /* wfi still stays in a loop, so it's OK just to take the address of
962 a local to get the ecs pointer. */
963 ecs = &ecss;
964
965 /* Fill in with reasonable starting values. */
966 init_execution_control_state (ecs);
967
968 /* We'll update this if & when we switch to a new thread. */
969 previous_inferior_ptid = inferior_ptid;
970
971 overlay_cache_invalid = 1;
972
973 /* We have to invalidate the registers BEFORE calling target_wait
974 because they can be loaded from the target while in target_wait.
975 This makes remote debugging a bit more efficient for those
976 targets that provide critical registers as part of their normal
977 status mechanism. */
978
979 registers_changed ();
980
981 while (1)
982 {
983 if (deprecated_target_wait_hook)
984 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
985 else
986 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
987
988 /* Now figure out what to do with the result of the result. */
989 handle_inferior_event (ecs);
990
991 if (!ecs->wait_some_more)
992 break;
993 }
994 do_cleanups (old_cleanups);
995 }
996
997 /* Asynchronous version of wait_for_inferior. It is called by the
998 event loop whenever a change of state is detected on the file
999 descriptor corresponding to the target. It can be called more than
1000 once to complete a single execution command. In such cases we need
1001 to keep the state in a global variable ASYNC_ECSS. If it is the
1002 last time that this function is called for a single execution
1003 command, then report to the user that the inferior has stopped, and
1004 do the necessary cleanups. */
1005
1006 struct execution_control_state async_ecss;
1007 struct execution_control_state *async_ecs;
1008
1009 void
1010 fetch_inferior_event (void *client_data)
1011 {
1012 static struct cleanup *old_cleanups;
1013
1014 async_ecs = &async_ecss;
1015
1016 if (!async_ecs->wait_some_more)
1017 {
1018 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1019 &step_resume_breakpoint);
1020
1021 /* Fill in with reasonable starting values. */
1022 init_execution_control_state (async_ecs);
1023
1024 /* We'll update this if & when we switch to a new thread. */
1025 previous_inferior_ptid = inferior_ptid;
1026
1027 overlay_cache_invalid = 1;
1028
1029 /* We have to invalidate the registers BEFORE calling target_wait
1030 because they can be loaded from the target while in target_wait.
1031 This makes remote debugging a bit more efficient for those
1032 targets that provide critical registers as part of their normal
1033 status mechanism. */
1034
1035 registers_changed ();
1036 }
1037
1038 if (deprecated_target_wait_hook)
1039 async_ecs->ptid =
1040 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1041 else
1042 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1043
1044 /* Now figure out what to do with the result of the result. */
1045 handle_inferior_event (async_ecs);
1046
1047 if (!async_ecs->wait_some_more)
1048 {
1049 /* Do only the cleanups that have been added by this
1050 function. Let the continuations for the commands do the rest,
1051 if there are any. */
1052 do_exec_cleanups (old_cleanups);
1053 normal_stop ();
1054 if (step_multi && stop_step)
1055 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1056 else
1057 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1058 }
1059 }
1060
1061 /* Prepare an execution control state for looping through a
1062 wait_for_inferior-type loop. */
1063
1064 void
1065 init_execution_control_state (struct execution_control_state *ecs)
1066 {
1067 ecs->another_trap = 0;
1068 ecs->random_signal = 0;
1069 ecs->step_after_step_resume_breakpoint = 0;
1070 ecs->handling_longjmp = 0; /* FIXME */
1071 ecs->stepping_through_solib_after_catch = 0;
1072 ecs->stepping_through_solib_catchpoints = NULL;
1073 ecs->sal = find_pc_line (prev_pc, 0);
1074 ecs->current_line = ecs->sal.line;
1075 ecs->current_symtab = ecs->sal.symtab;
1076 ecs->infwait_state = infwait_normal_state;
1077 ecs->waiton_ptid = pid_to_ptid (-1);
1078 ecs->wp = &(ecs->ws);
1079 }
1080
1081 /* Return the cached copy of the last pid/waitstatus returned by
1082 target_wait()/deprecated_target_wait_hook(). The data is actually
1083 cached by handle_inferior_event(), which gets called immediately
1084 after target_wait()/deprecated_target_wait_hook(). */
1085
1086 void
1087 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1088 {
1089 *ptidp = target_last_wait_ptid;
1090 *status = target_last_waitstatus;
1091 }
1092
1093 void
1094 nullify_last_target_wait_ptid (void)
1095 {
1096 target_last_wait_ptid = minus_one_ptid;
1097 }
1098
1099 /* Switch thread contexts, maintaining "infrun state". */
1100
1101 static void
1102 context_switch (struct execution_control_state *ecs)
1103 {
1104 /* Caution: it may happen that the new thread (or the old one!)
1105 is not in the thread list. In this case we must not attempt
1106 to "switch context", or we run the risk that our context may
1107 be lost. This may happen as a result of the target module
1108 mishandling thread creation. */
1109
1110 if (debug_infrun)
1111 {
1112 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1113 target_pid_to_str (inferior_ptid));
1114 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1115 target_pid_to_str (ecs->ptid));
1116 }
1117
1118 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1119 { /* Perform infrun state context switch: */
1120 /* Save infrun state for the old thread. */
1121 save_infrun_state (inferior_ptid, prev_pc,
1122 trap_expected, step_resume_breakpoint,
1123 step_range_start,
1124 step_range_end, &step_frame_id,
1125 ecs->handling_longjmp, ecs->another_trap,
1126 ecs->stepping_through_solib_after_catch,
1127 ecs->stepping_through_solib_catchpoints,
1128 ecs->current_line, ecs->current_symtab);
1129
1130 /* Load infrun state for the new thread. */
1131 load_infrun_state (ecs->ptid, &prev_pc,
1132 &trap_expected, &step_resume_breakpoint,
1133 &step_range_start,
1134 &step_range_end, &step_frame_id,
1135 &ecs->handling_longjmp, &ecs->another_trap,
1136 &ecs->stepping_through_solib_after_catch,
1137 &ecs->stepping_through_solib_catchpoints,
1138 &ecs->current_line, &ecs->current_symtab);
1139 }
1140 inferior_ptid = ecs->ptid;
1141 reinit_frame_cache ();
1142 }
1143
1144 static void
1145 adjust_pc_after_break (struct execution_control_state *ecs)
1146 {
1147 CORE_ADDR breakpoint_pc;
1148
1149 /* If this target does not decrement the PC after breakpoints, then
1150 we have nothing to do. */
1151 if (DECR_PC_AFTER_BREAK == 0)
1152 return;
1153
1154 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1155 we aren't, just return.
1156
1157 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1158 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1159 by software breakpoints should be handled through the normal breakpoint
1160 layer.
1161
1162 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1163 different signals (SIGILL or SIGEMT for instance), but it is less
1164 clear where the PC is pointing afterwards. It may not match
1165 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1166 these signals at breakpoints (the code has been in GDB since at least
1167 1992) so I can not guess how to handle them here.
1168
1169 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1170 would have the PC after hitting a watchpoint affected by
1171 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1172 in GDB history, and it seems unlikely to be correct, so
1173 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1174
1175 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1176 return;
1177
1178 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1179 return;
1180
1181 /* Find the location where (if we've hit a breakpoint) the
1182 breakpoint would be. */
1183 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1184
1185 if (SOFTWARE_SINGLE_STEP_P ())
1186 {
1187 /* When using software single-step, a SIGTRAP can only indicate
1188 an inserted breakpoint. This actually makes things
1189 easier. */
1190 if (singlestep_breakpoints_inserted_p)
1191 /* When software single stepping, the instruction at [prev_pc]
1192 is never a breakpoint, but the instruction following
1193 [prev_pc] (in program execution order) always is. Assume
1194 that following instruction was reached and hence a software
1195 breakpoint was hit. */
1196 write_pc_pid (breakpoint_pc, ecs->ptid);
1197 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1198 /* The inferior was free running (i.e., no single-step
1199 breakpoints inserted) and it hit a software breakpoint. */
1200 write_pc_pid (breakpoint_pc, ecs->ptid);
1201 }
1202 else
1203 {
1204 /* When using hardware single-step, a SIGTRAP is reported for
1205 both a completed single-step and a software breakpoint. Need
1206 to differentiate between the two as the latter needs
1207 adjusting but the former does not.
1208
1209 When the thread to be examined does not match the current thread
1210 context we can't use currently_stepping, so assume no
1211 single-stepping in this case. */
1212 if (ptid_equal (ecs->ptid, inferior_ptid) && currently_stepping (ecs))
1213 {
1214 if (prev_pc == breakpoint_pc
1215 && software_breakpoint_inserted_here_p (breakpoint_pc))
1216 /* Hardware single-stepped a software breakpoint (as
1217 occures when the inferior is resumed with PC pointing
1218 at not-yet-hit software breakpoint). Since the
1219 breakpoint really is executed, the inferior needs to be
1220 backed up to the breakpoint address. */
1221 write_pc_pid (breakpoint_pc, ecs->ptid);
1222 }
1223 else
1224 {
1225 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1226 /* The inferior was free running (i.e., no hardware
1227 single-step and no possibility of a false SIGTRAP) and
1228 hit a software breakpoint. */
1229 write_pc_pid (breakpoint_pc, ecs->ptid);
1230 }
1231 }
1232 }
1233
1234 /* Given an execution control state that has been freshly filled in
1235 by an event from the inferior, figure out what it means and take
1236 appropriate action. */
1237
1238 int stepped_after_stopped_by_watchpoint;
1239
1240 void
1241 handle_inferior_event (struct execution_control_state *ecs)
1242 {
1243 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1244 that the variable stepped_after_stopped_by_watchpoint isn't used,
1245 then you're wrong! See remote.c:remote_stopped_data_address. */
1246
1247 int sw_single_step_trap_p = 0;
1248 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1249
1250 /* Cache the last pid/waitstatus. */
1251 target_last_wait_ptid = ecs->ptid;
1252 target_last_waitstatus = *ecs->wp;
1253
1254 adjust_pc_after_break (ecs);
1255
1256 switch (ecs->infwait_state)
1257 {
1258 case infwait_thread_hop_state:
1259 if (debug_infrun)
1260 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1261 /* Cancel the waiton_ptid. */
1262 ecs->waiton_ptid = pid_to_ptid (-1);
1263 break;
1264
1265 case infwait_normal_state:
1266 if (debug_infrun)
1267 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1268 stepped_after_stopped_by_watchpoint = 0;
1269 break;
1270
1271 case infwait_nonstep_watch_state:
1272 if (debug_infrun)
1273 fprintf_unfiltered (gdb_stdlog,
1274 "infrun: infwait_nonstep_watch_state\n");
1275 insert_breakpoints ();
1276
1277 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1278 handle things like signals arriving and other things happening
1279 in combination correctly? */
1280 stepped_after_stopped_by_watchpoint = 1;
1281 break;
1282
1283 default:
1284 internal_error (__FILE__, __LINE__, _("bad switch"));
1285 }
1286 ecs->infwait_state = infwait_normal_state;
1287
1288 reinit_frame_cache ();
1289
1290 /* If it's a new process, add it to the thread database */
1291
1292 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1293 && !ptid_equal (ecs->ptid, minus_one_ptid)
1294 && !in_thread_list (ecs->ptid));
1295
1296 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1297 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1298 {
1299 add_thread (ecs->ptid);
1300
1301 ui_out_text (uiout, "[New ");
1302 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1303 ui_out_text (uiout, "]\n");
1304 }
1305
1306 switch (ecs->ws.kind)
1307 {
1308 case TARGET_WAITKIND_LOADED:
1309 if (debug_infrun)
1310 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1311 /* Ignore gracefully during startup of the inferior, as it
1312 might be the shell which has just loaded some objects,
1313 otherwise add the symbols for the newly loaded objects. */
1314 #ifdef SOLIB_ADD
1315 if (stop_soon == NO_STOP_QUIETLY)
1316 {
1317 /* Remove breakpoints, SOLIB_ADD might adjust
1318 breakpoint addresses via breakpoint_re_set. */
1319 if (breakpoints_inserted)
1320 remove_breakpoints ();
1321
1322 /* Check for any newly added shared libraries if we're
1323 supposed to be adding them automatically. Switch
1324 terminal for any messages produced by
1325 breakpoint_re_set. */
1326 target_terminal_ours_for_output ();
1327 /* NOTE: cagney/2003-11-25: Make certain that the target
1328 stack's section table is kept up-to-date. Architectures,
1329 (e.g., PPC64), use the section table to perform
1330 operations such as address => section name and hence
1331 require the table to contain all sections (including
1332 those found in shared libraries). */
1333 /* NOTE: cagney/2003-11-25: Pass current_target and not
1334 exec_ops to SOLIB_ADD. This is because current GDB is
1335 only tooled to propagate section_table changes out from
1336 the "current_target" (see target_resize_to_sections), and
1337 not up from the exec stratum. This, of course, isn't
1338 right. "infrun.c" should only interact with the
1339 exec/process stratum, instead relying on the target stack
1340 to propagate relevant changes (stop, section table
1341 changed, ...) up to other layers. */
1342 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1343 target_terminal_inferior ();
1344
1345 /* Reinsert breakpoints and continue. */
1346 if (breakpoints_inserted)
1347 insert_breakpoints ();
1348 }
1349 #endif
1350 resume (0, TARGET_SIGNAL_0);
1351 prepare_to_wait (ecs);
1352 return;
1353
1354 case TARGET_WAITKIND_SPURIOUS:
1355 if (debug_infrun)
1356 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1357 resume (0, TARGET_SIGNAL_0);
1358 prepare_to_wait (ecs);
1359 return;
1360
1361 case TARGET_WAITKIND_EXITED:
1362 if (debug_infrun)
1363 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1364 target_terminal_ours (); /* Must do this before mourn anyway */
1365 print_stop_reason (EXITED, ecs->ws.value.integer);
1366
1367 /* Record the exit code in the convenience variable $_exitcode, so
1368 that the user can inspect this again later. */
1369 set_internalvar (lookup_internalvar ("_exitcode"),
1370 value_from_longest (builtin_type_int,
1371 (LONGEST) ecs->ws.value.integer));
1372 gdb_flush (gdb_stdout);
1373 target_mourn_inferior ();
1374 singlestep_breakpoints_inserted_p = 0; /* SOFTWARE_SINGLE_STEP_P() */
1375 stop_print_frame = 0;
1376 stop_stepping (ecs);
1377 return;
1378
1379 case TARGET_WAITKIND_SIGNALLED:
1380 if (debug_infrun)
1381 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1382 stop_print_frame = 0;
1383 stop_signal = ecs->ws.value.sig;
1384 target_terminal_ours (); /* Must do this before mourn anyway */
1385
1386 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1387 reach here unless the inferior is dead. However, for years
1388 target_kill() was called here, which hints that fatal signals aren't
1389 really fatal on some systems. If that's true, then some changes
1390 may be needed. */
1391 target_mourn_inferior ();
1392
1393 print_stop_reason (SIGNAL_EXITED, stop_signal);
1394 singlestep_breakpoints_inserted_p = 0; /* SOFTWARE_SINGLE_STEP_P() */
1395 stop_stepping (ecs);
1396 return;
1397
1398 /* The following are the only cases in which we keep going;
1399 the above cases end in a continue or goto. */
1400 case TARGET_WAITKIND_FORKED:
1401 case TARGET_WAITKIND_VFORKED:
1402 if (debug_infrun)
1403 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1404 stop_signal = TARGET_SIGNAL_TRAP;
1405 pending_follow.kind = ecs->ws.kind;
1406
1407 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1408 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1409
1410 if (!ptid_equal (ecs->ptid, inferior_ptid))
1411 {
1412 context_switch (ecs);
1413 reinit_frame_cache ();
1414 }
1415
1416 stop_pc = read_pc ();
1417
1418 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1419
1420 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1421
1422 /* If no catchpoint triggered for this, then keep going. */
1423 if (ecs->random_signal)
1424 {
1425 stop_signal = TARGET_SIGNAL_0;
1426 keep_going (ecs);
1427 return;
1428 }
1429 goto process_event_stop_test;
1430
1431 case TARGET_WAITKIND_EXECD:
1432 if (debug_infrun)
1433 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1434 stop_signal = TARGET_SIGNAL_TRAP;
1435
1436 /* NOTE drow/2002-12-05: This code should be pushed down into the
1437 target_wait function. Until then following vfork on HP/UX 10.20
1438 is probably broken by this. Of course, it's broken anyway. */
1439 /* Is this a target which reports multiple exec events per actual
1440 call to exec()? (HP-UX using ptrace does, for example.) If so,
1441 ignore all but the last one. Just resume the exec'r, and wait
1442 for the next exec event. */
1443 if (inferior_ignoring_leading_exec_events)
1444 {
1445 inferior_ignoring_leading_exec_events--;
1446 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1447 prepare_to_wait (ecs);
1448 return;
1449 }
1450 inferior_ignoring_leading_exec_events =
1451 target_reported_exec_events_per_exec_call () - 1;
1452
1453 pending_follow.execd_pathname =
1454 savestring (ecs->ws.value.execd_pathname,
1455 strlen (ecs->ws.value.execd_pathname));
1456
1457 /* This causes the eventpoints and symbol table to be reset. Must
1458 do this now, before trying to determine whether to stop. */
1459 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1460 xfree (pending_follow.execd_pathname);
1461
1462 stop_pc = read_pc_pid (ecs->ptid);
1463 ecs->saved_inferior_ptid = inferior_ptid;
1464 inferior_ptid = ecs->ptid;
1465
1466 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1467
1468 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1469 inferior_ptid = ecs->saved_inferior_ptid;
1470
1471 if (!ptid_equal (ecs->ptid, inferior_ptid))
1472 {
1473 context_switch (ecs);
1474 reinit_frame_cache ();
1475 }
1476
1477 /* If no catchpoint triggered for this, then keep going. */
1478 if (ecs->random_signal)
1479 {
1480 stop_signal = TARGET_SIGNAL_0;
1481 keep_going (ecs);
1482 return;
1483 }
1484 goto process_event_stop_test;
1485
1486 /* Be careful not to try to gather much state about a thread
1487 that's in a syscall. It's frequently a losing proposition. */
1488 case TARGET_WAITKIND_SYSCALL_ENTRY:
1489 if (debug_infrun)
1490 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1491 resume (0, TARGET_SIGNAL_0);
1492 prepare_to_wait (ecs);
1493 return;
1494
1495 /* Before examining the threads further, step this thread to
1496 get it entirely out of the syscall. (We get notice of the
1497 event when the thread is just on the verge of exiting a
1498 syscall. Stepping one instruction seems to get it back
1499 into user code.) */
1500 case TARGET_WAITKIND_SYSCALL_RETURN:
1501 if (debug_infrun)
1502 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1503 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1504 prepare_to_wait (ecs);
1505 return;
1506
1507 case TARGET_WAITKIND_STOPPED:
1508 if (debug_infrun)
1509 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1510 stop_signal = ecs->ws.value.sig;
1511 break;
1512
1513 /* We had an event in the inferior, but we are not interested
1514 in handling it at this level. The lower layers have already
1515 done what needs to be done, if anything.
1516
1517 One of the possible circumstances for this is when the
1518 inferior produces output for the console. The inferior has
1519 not stopped, and we are ignoring the event. Another possible
1520 circumstance is any event which the lower level knows will be
1521 reported multiple times without an intervening resume. */
1522 case TARGET_WAITKIND_IGNORE:
1523 if (debug_infrun)
1524 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1525 prepare_to_wait (ecs);
1526 return;
1527 }
1528
1529 /* We may want to consider not doing a resume here in order to give
1530 the user a chance to play with the new thread. It might be good
1531 to make that a user-settable option. */
1532
1533 /* At this point, all threads are stopped (happens automatically in
1534 either the OS or the native code). Therefore we need to continue
1535 all threads in order to make progress. */
1536 if (ecs->new_thread_event)
1537 {
1538 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1539 prepare_to_wait (ecs);
1540 return;
1541 }
1542
1543 stop_pc = read_pc_pid (ecs->ptid);
1544
1545 if (debug_infrun)
1546 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1547
1548 if (stepping_past_singlestep_breakpoint)
1549 {
1550 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1551 && singlestep_breakpoints_inserted_p);
1552 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1553 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1554
1555 stepping_past_singlestep_breakpoint = 0;
1556
1557 /* We've either finished single-stepping past the single-step
1558 breakpoint, or stopped for some other reason. It would be nice if
1559 we could tell, but we can't reliably. */
1560 if (stop_signal == TARGET_SIGNAL_TRAP)
1561 {
1562 if (debug_infrun)
1563 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1564 /* Pull the single step breakpoints out of the target. */
1565 remove_single_step_breakpoints ();
1566 singlestep_breakpoints_inserted_p = 0;
1567
1568 ecs->random_signal = 0;
1569
1570 ecs->ptid = saved_singlestep_ptid;
1571 context_switch (ecs);
1572 if (deprecated_context_hook)
1573 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1574
1575 resume (1, TARGET_SIGNAL_0);
1576 prepare_to_wait (ecs);
1577 return;
1578 }
1579 }
1580
1581 stepping_past_singlestep_breakpoint = 0;
1582
1583 /* See if a thread hit a thread-specific breakpoint that was meant for
1584 another thread. If so, then step that thread past the breakpoint,
1585 and continue it. */
1586
1587 if (stop_signal == TARGET_SIGNAL_TRAP)
1588 {
1589 int thread_hop_needed = 0;
1590
1591 /* Check if a regular breakpoint has been hit before checking
1592 for a potential single step breakpoint. Otherwise, GDB will
1593 not see this breakpoint hit when stepping onto breakpoints. */
1594 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1595 {
1596 ecs->random_signal = 0;
1597 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1598 thread_hop_needed = 1;
1599 }
1600 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1601 {
1602 /* We have not context switched yet, so this should be true
1603 no matter which thread hit the singlestep breakpoint. */
1604 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1605 if (debug_infrun)
1606 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1607 "trap for %s\n",
1608 target_pid_to_str (ecs->ptid));
1609
1610 ecs->random_signal = 0;
1611 /* The call to in_thread_list is necessary because PTIDs sometimes
1612 change when we go from single-threaded to multi-threaded. If
1613 the singlestep_ptid is still in the list, assume that it is
1614 really different from ecs->ptid. */
1615 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1616 && in_thread_list (singlestep_ptid))
1617 {
1618 /* If the PC of the thread we were trying to single-step
1619 has changed, discard this event (which we were going
1620 to ignore anyway), and pretend we saw that thread
1621 trap. This prevents us continuously moving the
1622 single-step breakpoint forward, one instruction at a
1623 time. If the PC has changed, then the thread we were
1624 trying to single-step has trapped or been signalled,
1625 but the event has not been reported to GDB yet.
1626
1627 There might be some cases where this loses signal
1628 information, if a signal has arrived at exactly the
1629 same time that the PC changed, but this is the best
1630 we can do with the information available. Perhaps we
1631 should arrange to report all events for all threads
1632 when they stop, or to re-poll the remote looking for
1633 this particular thread (i.e. temporarily enable
1634 schedlock). */
1635 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1636 {
1637 if (debug_infrun)
1638 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1639 " but expected thread advanced also\n");
1640
1641 /* The current context still belongs to
1642 singlestep_ptid. Don't swap here, since that's
1643 the context we want to use. Just fudge our
1644 state and continue. */
1645 ecs->ptid = singlestep_ptid;
1646 stop_pc = read_pc_pid (ecs->ptid);
1647 }
1648 else
1649 {
1650 if (debug_infrun)
1651 fprintf_unfiltered (gdb_stdlog,
1652 "infrun: unexpected thread\n");
1653
1654 thread_hop_needed = 1;
1655 stepping_past_singlestep_breakpoint = 1;
1656 saved_singlestep_ptid = singlestep_ptid;
1657 }
1658 }
1659 }
1660
1661 if (thread_hop_needed)
1662 {
1663 int remove_status;
1664
1665 if (debug_infrun)
1666 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1667
1668 /* Saw a breakpoint, but it was hit by the wrong thread.
1669 Just continue. */
1670
1671 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1672 {
1673 /* Pull the single step breakpoints out of the target. */
1674 remove_single_step_breakpoints ();
1675 singlestep_breakpoints_inserted_p = 0;
1676 }
1677
1678 remove_status = remove_breakpoints ();
1679 /* Did we fail to remove breakpoints? If so, try
1680 to set the PC past the bp. (There's at least
1681 one situation in which we can fail to remove
1682 the bp's: On HP-UX's that use ttrace, we can't
1683 change the address space of a vforking child
1684 process until the child exits (well, okay, not
1685 then either :-) or execs. */
1686 if (remove_status != 0)
1687 {
1688 /* FIXME! This is obviously non-portable! */
1689 write_pc_pid (stop_pc + 4, ecs->ptid);
1690 /* We need to restart all the threads now,
1691 * unles we're running in scheduler-locked mode.
1692 * Use currently_stepping to determine whether to
1693 * step or continue.
1694 */
1695 /* FIXME MVS: is there any reason not to call resume()? */
1696 if (scheduler_mode == schedlock_on)
1697 target_resume (ecs->ptid,
1698 currently_stepping (ecs), TARGET_SIGNAL_0);
1699 else
1700 target_resume (RESUME_ALL,
1701 currently_stepping (ecs), TARGET_SIGNAL_0);
1702 prepare_to_wait (ecs);
1703 return;
1704 }
1705 else
1706 { /* Single step */
1707 breakpoints_inserted = 0;
1708 if (!ptid_equal (inferior_ptid, ecs->ptid))
1709 context_switch (ecs);
1710 ecs->waiton_ptid = ecs->ptid;
1711 ecs->wp = &(ecs->ws);
1712 ecs->another_trap = 1;
1713
1714 ecs->infwait_state = infwait_thread_hop_state;
1715 keep_going (ecs);
1716 registers_changed ();
1717 return;
1718 }
1719 }
1720 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1721 {
1722 sw_single_step_trap_p = 1;
1723 ecs->random_signal = 0;
1724 }
1725 }
1726 else
1727 ecs->random_signal = 1;
1728
1729 /* See if something interesting happened to the non-current thread. If
1730 so, then switch to that thread. */
1731 if (!ptid_equal (ecs->ptid, inferior_ptid))
1732 {
1733 if (debug_infrun)
1734 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1735
1736 context_switch (ecs);
1737
1738 if (deprecated_context_hook)
1739 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1740 }
1741
1742 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1743 {
1744 /* Pull the single step breakpoints out of the target. */
1745 remove_single_step_breakpoints ();
1746 singlestep_breakpoints_inserted_p = 0;
1747 }
1748
1749 /* It may not be necessary to disable the watchpoint to stop over
1750 it. For example, the PA can (with some kernel cooperation)
1751 single step over a watchpoint without disabling the watchpoint. */
1752 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1753 {
1754 if (debug_infrun)
1755 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1756 resume (1, 0);
1757 prepare_to_wait (ecs);
1758 return;
1759 }
1760
1761 /* It is far more common to need to disable a watchpoint to step
1762 the inferior over it. FIXME. What else might a debug
1763 register or page protection watchpoint scheme need here? */
1764 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1765 {
1766 /* At this point, we are stopped at an instruction which has
1767 attempted to write to a piece of memory under control of
1768 a watchpoint. The instruction hasn't actually executed
1769 yet. If we were to evaluate the watchpoint expression
1770 now, we would get the old value, and therefore no change
1771 would seem to have occurred.
1772
1773 In order to make watchpoints work `right', we really need
1774 to complete the memory write, and then evaluate the
1775 watchpoint expression. The following code does that by
1776 removing the watchpoint (actually, all watchpoints and
1777 breakpoints), single-stepping the target, re-inserting
1778 watchpoints, and then falling through to let normal
1779 single-step processing handle proceed. Since this
1780 includes evaluating watchpoints, things will come to a
1781 stop in the correct manner. */
1782
1783 if (debug_infrun)
1784 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1785 remove_breakpoints ();
1786 registers_changed ();
1787 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1788
1789 ecs->waiton_ptid = ecs->ptid;
1790 ecs->wp = &(ecs->ws);
1791 ecs->infwait_state = infwait_nonstep_watch_state;
1792 prepare_to_wait (ecs);
1793 return;
1794 }
1795
1796 /* It may be possible to simply continue after a watchpoint. */
1797 if (HAVE_CONTINUABLE_WATCHPOINT)
1798 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1799
1800 ecs->stop_func_start = 0;
1801 ecs->stop_func_end = 0;
1802 ecs->stop_func_name = 0;
1803 /* Don't care about return value; stop_func_start and stop_func_name
1804 will both be 0 if it doesn't work. */
1805 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1806 &ecs->stop_func_start, &ecs->stop_func_end);
1807 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1808 ecs->another_trap = 0;
1809 bpstat_clear (&stop_bpstat);
1810 stop_step = 0;
1811 stop_stack_dummy = 0;
1812 stop_print_frame = 1;
1813 ecs->random_signal = 0;
1814 stopped_by_random_signal = 0;
1815
1816 if (stop_signal == TARGET_SIGNAL_TRAP
1817 && trap_expected
1818 && gdbarch_single_step_through_delay_p (current_gdbarch)
1819 && currently_stepping (ecs))
1820 {
1821 /* We're trying to step of a breakpoint. Turns out that we're
1822 also on an instruction that needs to be stepped multiple
1823 times before it's been fully executing. E.g., architectures
1824 with a delay slot. It needs to be stepped twice, once for
1825 the instruction and once for the delay slot. */
1826 int step_through_delay
1827 = gdbarch_single_step_through_delay (current_gdbarch,
1828 get_current_frame ());
1829 if (debug_infrun && step_through_delay)
1830 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1831 if (step_range_end == 0 && step_through_delay)
1832 {
1833 /* The user issued a continue when stopped at a breakpoint.
1834 Set up for another trap and get out of here. */
1835 ecs->another_trap = 1;
1836 keep_going (ecs);
1837 return;
1838 }
1839 else if (step_through_delay)
1840 {
1841 /* The user issued a step when stopped at a breakpoint.
1842 Maybe we should stop, maybe we should not - the delay
1843 slot *might* correspond to a line of source. In any
1844 case, don't decide that here, just set ecs->another_trap,
1845 making sure we single-step again before breakpoints are
1846 re-inserted. */
1847 ecs->another_trap = 1;
1848 }
1849 }
1850
1851 /* Look at the cause of the stop, and decide what to do.
1852 The alternatives are:
1853 1) break; to really stop and return to the debugger,
1854 2) drop through to start up again
1855 (set ecs->another_trap to 1 to single step once)
1856 3) set ecs->random_signal to 1, and the decision between 1 and 2
1857 will be made according to the signal handling tables. */
1858
1859 /* First, distinguish signals caused by the debugger from signals
1860 that have to do with the program's own actions. Note that
1861 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1862 on the operating system version. Here we detect when a SIGILL or
1863 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1864 something similar for SIGSEGV, since a SIGSEGV will be generated
1865 when we're trying to execute a breakpoint instruction on a
1866 non-executable stack. This happens for call dummy breakpoints
1867 for architectures like SPARC that place call dummies on the
1868 stack. */
1869
1870 if (stop_signal == TARGET_SIGNAL_TRAP
1871 || (breakpoints_inserted
1872 && (stop_signal == TARGET_SIGNAL_ILL
1873 || stop_signal == TARGET_SIGNAL_SEGV
1874 || stop_signal == TARGET_SIGNAL_EMT))
1875 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1876 {
1877 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1878 {
1879 if (debug_infrun)
1880 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1881 stop_print_frame = 0;
1882 stop_stepping (ecs);
1883 return;
1884 }
1885
1886 /* This is originated from start_remote(), start_inferior() and
1887 shared libraries hook functions. */
1888 if (stop_soon == STOP_QUIETLY)
1889 {
1890 if (debug_infrun)
1891 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1892 stop_stepping (ecs);
1893 return;
1894 }
1895
1896 /* This originates from attach_command(). We need to overwrite
1897 the stop_signal here, because some kernels don't ignore a
1898 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1899 See more comments in inferior.h. */
1900 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1901 {
1902 stop_stepping (ecs);
1903 if (stop_signal == TARGET_SIGNAL_STOP)
1904 stop_signal = TARGET_SIGNAL_0;
1905 return;
1906 }
1907
1908 /* Don't even think about breakpoints if just proceeded over a
1909 breakpoint. */
1910 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1911 {
1912 if (debug_infrun)
1913 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1914 bpstat_clear (&stop_bpstat);
1915 }
1916 else
1917 {
1918 /* See if there is a breakpoint at the current PC. */
1919 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1920 stopped_by_watchpoint);
1921
1922 /* Following in case break condition called a
1923 function. */
1924 stop_print_frame = 1;
1925 }
1926
1927 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1928 at one stage in the past included checks for an inferior
1929 function call's call dummy's return breakpoint. The original
1930 comment, that went with the test, read:
1931
1932 ``End of a stack dummy. Some systems (e.g. Sony news) give
1933 another signal besides SIGTRAP, so check here as well as
1934 above.''
1935
1936 If someone ever tries to get get call dummys on a
1937 non-executable stack to work (where the target would stop
1938 with something like a SIGSEGV), then those tests might need
1939 to be re-instated. Given, however, that the tests were only
1940 enabled when momentary breakpoints were not being used, I
1941 suspect that it won't be the case.
1942
1943 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1944 be necessary for call dummies on a non-executable stack on
1945 SPARC. */
1946
1947 if (stop_signal == TARGET_SIGNAL_TRAP)
1948 ecs->random_signal
1949 = !(bpstat_explains_signal (stop_bpstat)
1950 || trap_expected
1951 || (step_range_end && step_resume_breakpoint == NULL));
1952 else
1953 {
1954 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1955 if (!ecs->random_signal)
1956 stop_signal = TARGET_SIGNAL_TRAP;
1957 }
1958 }
1959
1960 /* When we reach this point, we've pretty much decided
1961 that the reason for stopping must've been a random
1962 (unexpected) signal. */
1963
1964 else
1965 ecs->random_signal = 1;
1966
1967 process_event_stop_test:
1968 /* For the program's own signals, act according to
1969 the signal handling tables. */
1970
1971 if (ecs->random_signal)
1972 {
1973 /* Signal not for debugging purposes. */
1974 int printed = 0;
1975
1976 if (debug_infrun)
1977 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
1978
1979 stopped_by_random_signal = 1;
1980
1981 if (signal_print[stop_signal])
1982 {
1983 printed = 1;
1984 target_terminal_ours_for_output ();
1985 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1986 }
1987 if (signal_stop[stop_signal])
1988 {
1989 stop_stepping (ecs);
1990 return;
1991 }
1992 /* If not going to stop, give terminal back
1993 if we took it away. */
1994 else if (printed)
1995 target_terminal_inferior ();
1996
1997 /* Clear the signal if it should not be passed. */
1998 if (signal_program[stop_signal] == 0)
1999 stop_signal = TARGET_SIGNAL_0;
2000
2001 if (prev_pc == read_pc ()
2002 && !breakpoints_inserted
2003 && breakpoint_here_p (read_pc ())
2004 && step_resume_breakpoint == NULL)
2005 {
2006 /* We were just starting a new sequence, attempting to
2007 single-step off of a breakpoint and expecting a SIGTRAP.
2008 Intead this signal arrives. This signal will take us out
2009 of the stepping range so GDB needs to remember to, when
2010 the signal handler returns, resume stepping off that
2011 breakpoint. */
2012 /* To simplify things, "continue" is forced to use the same
2013 code paths as single-step - set a breakpoint at the
2014 signal return address and then, once hit, step off that
2015 breakpoint. */
2016
2017 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2018 ecs->step_after_step_resume_breakpoint = 1;
2019 keep_going (ecs);
2020 return;
2021 }
2022
2023 if (step_range_end != 0
2024 && stop_signal != TARGET_SIGNAL_0
2025 && stop_pc >= step_range_start && stop_pc < step_range_end
2026 && frame_id_eq (get_frame_id (get_current_frame ()),
2027 step_frame_id)
2028 && step_resume_breakpoint == NULL)
2029 {
2030 /* The inferior is about to take a signal that will take it
2031 out of the single step range. Set a breakpoint at the
2032 current PC (which is presumably where the signal handler
2033 will eventually return) and then allow the inferior to
2034 run free.
2035
2036 Note that this is only needed for a signal delivered
2037 while in the single-step range. Nested signals aren't a
2038 problem as they eventually all return. */
2039 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2040 keep_going (ecs);
2041 return;
2042 }
2043
2044 /* Note: step_resume_breakpoint may be non-NULL. This occures
2045 when either there's a nested signal, or when there's a
2046 pending signal enabled just as the signal handler returns
2047 (leaving the inferior at the step-resume-breakpoint without
2048 actually executing it). Either way continue until the
2049 breakpoint is really hit. */
2050 keep_going (ecs);
2051 return;
2052 }
2053
2054 /* Handle cases caused by hitting a breakpoint. */
2055 {
2056 CORE_ADDR jmp_buf_pc;
2057 struct bpstat_what what;
2058
2059 what = bpstat_what (stop_bpstat);
2060
2061 if (what.call_dummy)
2062 {
2063 stop_stack_dummy = 1;
2064 }
2065
2066 switch (what.main_action)
2067 {
2068 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2069 /* If we hit the breakpoint at longjmp, disable it for the
2070 duration of this command. Then, install a temporary
2071 breakpoint at the target of the jmp_buf. */
2072 if (debug_infrun)
2073 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2074 disable_longjmp_breakpoint ();
2075 remove_breakpoints ();
2076 breakpoints_inserted = 0;
2077 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2078 || !gdbarch_get_longjmp_target (current_gdbarch, &jmp_buf_pc))
2079 {
2080 keep_going (ecs);
2081 return;
2082 }
2083
2084 /* Need to blow away step-resume breakpoint, as it
2085 interferes with us */
2086 if (step_resume_breakpoint != NULL)
2087 {
2088 delete_step_resume_breakpoint (&step_resume_breakpoint);
2089 }
2090
2091 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2092 ecs->handling_longjmp = 1; /* FIXME */
2093 keep_going (ecs);
2094 return;
2095
2096 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2097 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2098 if (debug_infrun)
2099 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2100 remove_breakpoints ();
2101 breakpoints_inserted = 0;
2102 disable_longjmp_breakpoint ();
2103 ecs->handling_longjmp = 0; /* FIXME */
2104 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2105 break;
2106 /* else fallthrough */
2107
2108 case BPSTAT_WHAT_SINGLE:
2109 if (debug_infrun)
2110 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2111 if (breakpoints_inserted)
2112 remove_breakpoints ();
2113 breakpoints_inserted = 0;
2114 ecs->another_trap = 1;
2115 /* Still need to check other stuff, at least the case
2116 where we are stepping and step out of the right range. */
2117 break;
2118
2119 case BPSTAT_WHAT_STOP_NOISY:
2120 if (debug_infrun)
2121 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2122 stop_print_frame = 1;
2123
2124 /* We are about to nuke the step_resume_breakpointt via the
2125 cleanup chain, so no need to worry about it here. */
2126
2127 stop_stepping (ecs);
2128 return;
2129
2130 case BPSTAT_WHAT_STOP_SILENT:
2131 if (debug_infrun)
2132 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2133 stop_print_frame = 0;
2134
2135 /* We are about to nuke the step_resume_breakpoin via the
2136 cleanup chain, so no need to worry about it here. */
2137
2138 stop_stepping (ecs);
2139 return;
2140
2141 case BPSTAT_WHAT_STEP_RESUME:
2142 /* This proably demands a more elegant solution, but, yeah
2143 right...
2144
2145 This function's use of the simple variable
2146 step_resume_breakpoint doesn't seem to accomodate
2147 simultaneously active step-resume bp's, although the
2148 breakpoint list certainly can.
2149
2150 If we reach here and step_resume_breakpoint is already
2151 NULL, then apparently we have multiple active
2152 step-resume bp's. We'll just delete the breakpoint we
2153 stopped at, and carry on.
2154
2155 Correction: what the code currently does is delete a
2156 step-resume bp, but it makes no effort to ensure that
2157 the one deleted is the one currently stopped at. MVS */
2158
2159 if (debug_infrun)
2160 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2161
2162 if (step_resume_breakpoint == NULL)
2163 {
2164 step_resume_breakpoint =
2165 bpstat_find_step_resume_breakpoint (stop_bpstat);
2166 }
2167 delete_step_resume_breakpoint (&step_resume_breakpoint);
2168 if (ecs->step_after_step_resume_breakpoint)
2169 {
2170 /* Back when the step-resume breakpoint was inserted, we
2171 were trying to single-step off a breakpoint. Go back
2172 to doing that. */
2173 ecs->step_after_step_resume_breakpoint = 0;
2174 remove_breakpoints ();
2175 breakpoints_inserted = 0;
2176 ecs->another_trap = 1;
2177 keep_going (ecs);
2178 return;
2179 }
2180 break;
2181
2182 case BPSTAT_WHAT_CHECK_SHLIBS:
2183 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2184 {
2185 if (debug_infrun)
2186 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2187 /* Remove breakpoints, we eventually want to step over the
2188 shlib event breakpoint, and SOLIB_ADD might adjust
2189 breakpoint addresses via breakpoint_re_set. */
2190 if (breakpoints_inserted)
2191 remove_breakpoints ();
2192 breakpoints_inserted = 0;
2193
2194 /* Check for any newly added shared libraries if we're
2195 supposed to be adding them automatically. Switch
2196 terminal for any messages produced by
2197 breakpoint_re_set. */
2198 target_terminal_ours_for_output ();
2199 /* NOTE: cagney/2003-11-25: Make certain that the target
2200 stack's section table is kept up-to-date. Architectures,
2201 (e.g., PPC64), use the section table to perform
2202 operations such as address => section name and hence
2203 require the table to contain all sections (including
2204 those found in shared libraries). */
2205 /* NOTE: cagney/2003-11-25: Pass current_target and not
2206 exec_ops to SOLIB_ADD. This is because current GDB is
2207 only tooled to propagate section_table changes out from
2208 the "current_target" (see target_resize_to_sections), and
2209 not up from the exec stratum. This, of course, isn't
2210 right. "infrun.c" should only interact with the
2211 exec/process stratum, instead relying on the target stack
2212 to propagate relevant changes (stop, section table
2213 changed, ...) up to other layers. */
2214 #ifdef SOLIB_ADD
2215 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2216 #else
2217 solib_add (NULL, 0, &current_target, auto_solib_add);
2218 #endif
2219 target_terminal_inferior ();
2220
2221 /* Try to reenable shared library breakpoints, additional
2222 code segments in shared libraries might be mapped in now. */
2223 re_enable_breakpoints_in_shlibs ();
2224
2225 /* If requested, stop when the dynamic linker notifies
2226 gdb of events. This allows the user to get control
2227 and place breakpoints in initializer routines for
2228 dynamically loaded objects (among other things). */
2229 if (stop_on_solib_events || stop_stack_dummy)
2230 {
2231 stop_stepping (ecs);
2232 return;
2233 }
2234
2235 /* If we stopped due to an explicit catchpoint, then the
2236 (see above) call to SOLIB_ADD pulled in any symbols
2237 from a newly-loaded library, if appropriate.
2238
2239 We do want the inferior to stop, but not where it is
2240 now, which is in the dynamic linker callback. Rather,
2241 we would like it stop in the user's program, just after
2242 the call that caused this catchpoint to trigger. That
2243 gives the user a more useful vantage from which to
2244 examine their program's state. */
2245 else if (what.main_action
2246 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2247 {
2248 /* ??rehrauer: If I could figure out how to get the
2249 right return PC from here, we could just set a temp
2250 breakpoint and resume. I'm not sure we can without
2251 cracking open the dld's shared libraries and sniffing
2252 their unwind tables and text/data ranges, and that's
2253 not a terribly portable notion.
2254
2255 Until that time, we must step the inferior out of the
2256 dld callback, and also out of the dld itself (and any
2257 code or stubs in libdld.sl, such as "shl_load" and
2258 friends) until we reach non-dld code. At that point,
2259 we can stop stepping. */
2260 bpstat_get_triggered_catchpoints (stop_bpstat,
2261 &ecs->
2262 stepping_through_solib_catchpoints);
2263 ecs->stepping_through_solib_after_catch = 1;
2264
2265 /* Be sure to lift all breakpoints, so the inferior does
2266 actually step past this point... */
2267 ecs->another_trap = 1;
2268 break;
2269 }
2270 else
2271 {
2272 /* We want to step over this breakpoint, then keep going. */
2273 ecs->another_trap = 1;
2274 break;
2275 }
2276 }
2277 break;
2278
2279 case BPSTAT_WHAT_LAST:
2280 /* Not a real code, but listed here to shut up gcc -Wall. */
2281
2282 case BPSTAT_WHAT_KEEP_CHECKING:
2283 break;
2284 }
2285 }
2286
2287 /* We come here if we hit a breakpoint but should not
2288 stop for it. Possibly we also were stepping
2289 and should stop for that. So fall through and
2290 test for stepping. But, if not stepping,
2291 do not stop. */
2292
2293 /* Are we stepping to get the inferior out of the dynamic linker's
2294 hook (and possibly the dld itself) after catching a shlib
2295 event? */
2296 if (ecs->stepping_through_solib_after_catch)
2297 {
2298 #if defined(SOLIB_ADD)
2299 /* Have we reached our destination? If not, keep going. */
2300 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2301 {
2302 if (debug_infrun)
2303 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2304 ecs->another_trap = 1;
2305 keep_going (ecs);
2306 return;
2307 }
2308 #endif
2309 if (debug_infrun)
2310 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2311 /* Else, stop and report the catchpoint(s) whose triggering
2312 caused us to begin stepping. */
2313 ecs->stepping_through_solib_after_catch = 0;
2314 bpstat_clear (&stop_bpstat);
2315 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2316 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2317 stop_print_frame = 1;
2318 stop_stepping (ecs);
2319 return;
2320 }
2321
2322 if (step_resume_breakpoint)
2323 {
2324 if (debug_infrun)
2325 fprintf_unfiltered (gdb_stdlog,
2326 "infrun: step-resume breakpoint is inserted\n");
2327
2328 /* Having a step-resume breakpoint overrides anything
2329 else having to do with stepping commands until
2330 that breakpoint is reached. */
2331 keep_going (ecs);
2332 return;
2333 }
2334
2335 if (step_range_end == 0)
2336 {
2337 if (debug_infrun)
2338 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2339 /* Likewise if we aren't even stepping. */
2340 keep_going (ecs);
2341 return;
2342 }
2343
2344 /* If stepping through a line, keep going if still within it.
2345
2346 Note that step_range_end is the address of the first instruction
2347 beyond the step range, and NOT the address of the last instruction
2348 within it! */
2349 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2350 {
2351 if (debug_infrun)
2352 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2353 paddr_nz (step_range_start),
2354 paddr_nz (step_range_end));
2355 keep_going (ecs);
2356 return;
2357 }
2358
2359 /* We stepped out of the stepping range. */
2360
2361 /* If we are stepping at the source level and entered the runtime
2362 loader dynamic symbol resolution code, we keep on single stepping
2363 until we exit the run time loader code and reach the callee's
2364 address. */
2365 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2366 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2367 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2368 #else
2369 && in_solib_dynsym_resolve_code (stop_pc)
2370 #endif
2371 )
2372 {
2373 CORE_ADDR pc_after_resolver =
2374 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2375
2376 if (debug_infrun)
2377 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2378
2379 if (pc_after_resolver)
2380 {
2381 /* Set up a step-resume breakpoint at the address
2382 indicated by SKIP_SOLIB_RESOLVER. */
2383 struct symtab_and_line sr_sal;
2384 init_sal (&sr_sal);
2385 sr_sal.pc = pc_after_resolver;
2386
2387 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2388 }
2389
2390 keep_going (ecs);
2391 return;
2392 }
2393
2394 if (step_range_end != 1
2395 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2396 || step_over_calls == STEP_OVER_ALL)
2397 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2398 {
2399 if (debug_infrun)
2400 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2401 /* The inferior, while doing a "step" or "next", has ended up in
2402 a signal trampoline (either by a signal being delivered or by
2403 the signal handler returning). Just single-step until the
2404 inferior leaves the trampoline (either by calling the handler
2405 or returning). */
2406 keep_going (ecs);
2407 return;
2408 }
2409
2410 /* Check for subroutine calls. The check for the current frame
2411 equalling the step ID is not necessary - the check of the
2412 previous frame's ID is sufficient - but it is a common case and
2413 cheaper than checking the previous frame's ID.
2414
2415 NOTE: frame_id_eq will never report two invalid frame IDs as
2416 being equal, so to get into this block, both the current and
2417 previous frame must have valid frame IDs. */
2418 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2419 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2420 {
2421 CORE_ADDR real_stop_pc;
2422
2423 if (debug_infrun)
2424 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2425
2426 if ((step_over_calls == STEP_OVER_NONE)
2427 || ((step_range_end == 1)
2428 && in_prologue (prev_pc, ecs->stop_func_start)))
2429 {
2430 /* I presume that step_over_calls is only 0 when we're
2431 supposed to be stepping at the assembly language level
2432 ("stepi"). Just stop. */
2433 /* Also, maybe we just did a "nexti" inside a prolog, so we
2434 thought it was a subroutine call but it was not. Stop as
2435 well. FENN */
2436 stop_step = 1;
2437 print_stop_reason (END_STEPPING_RANGE, 0);
2438 stop_stepping (ecs);
2439 return;
2440 }
2441
2442 if (step_over_calls == STEP_OVER_ALL)
2443 {
2444 /* We're doing a "next", set a breakpoint at callee's return
2445 address (the address at which the caller will
2446 resume). */
2447 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2448 keep_going (ecs);
2449 return;
2450 }
2451
2452 /* If we are in a function call trampoline (a stub between the
2453 calling routine and the real function), locate the real
2454 function. That's what tells us (a) whether we want to step
2455 into it at all, and (b) what prologue we want to run to the
2456 end of, if we do step into it. */
2457 real_stop_pc = skip_language_trampoline (stop_pc);
2458 if (real_stop_pc == 0)
2459 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2460 if (real_stop_pc != 0)
2461 ecs->stop_func_start = real_stop_pc;
2462
2463 if (
2464 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2465 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2466 #else
2467 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2468 #endif
2469 )
2470 {
2471 struct symtab_and_line sr_sal;
2472 init_sal (&sr_sal);
2473 sr_sal.pc = ecs->stop_func_start;
2474
2475 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2476 keep_going (ecs);
2477 return;
2478 }
2479
2480 /* If we have line number information for the function we are
2481 thinking of stepping into, step into it.
2482
2483 If there are several symtabs at that PC (e.g. with include
2484 files), just want to know whether *any* of them have line
2485 numbers. find_pc_line handles this. */
2486 {
2487 struct symtab_and_line tmp_sal;
2488
2489 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2490 if (tmp_sal.line != 0)
2491 {
2492 step_into_function (ecs);
2493 return;
2494 }
2495 }
2496
2497 /* If we have no line number and the step-stop-if-no-debug is
2498 set, we stop the step so that the user has a chance to switch
2499 in assembly mode. */
2500 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2501 {
2502 stop_step = 1;
2503 print_stop_reason (END_STEPPING_RANGE, 0);
2504 stop_stepping (ecs);
2505 return;
2506 }
2507
2508 /* Set a breakpoint at callee's return address (the address at
2509 which the caller will resume). */
2510 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2511 keep_going (ecs);
2512 return;
2513 }
2514
2515 /* If we're in the return path from a shared library trampoline,
2516 we want to proceed through the trampoline when stepping. */
2517 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2518 {
2519 /* Determine where this trampoline returns. */
2520 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2521
2522 if (debug_infrun)
2523 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2524
2525 /* Only proceed through if we know where it's going. */
2526 if (real_stop_pc)
2527 {
2528 /* And put the step-breakpoint there and go until there. */
2529 struct symtab_and_line sr_sal;
2530
2531 init_sal (&sr_sal); /* initialize to zeroes */
2532 sr_sal.pc = real_stop_pc;
2533 sr_sal.section = find_pc_overlay (sr_sal.pc);
2534
2535 /* Do not specify what the fp should be when we stop since
2536 on some machines the prologue is where the new fp value
2537 is established. */
2538 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2539
2540 /* Restart without fiddling with the step ranges or
2541 other state. */
2542 keep_going (ecs);
2543 return;
2544 }
2545 }
2546
2547 ecs->sal = find_pc_line (stop_pc, 0);
2548
2549 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2550 the trampoline processing logic, however, there are some trampolines
2551 that have no names, so we should do trampoline handling first. */
2552 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2553 && ecs->stop_func_name == NULL
2554 && ecs->sal.line == 0)
2555 {
2556 if (debug_infrun)
2557 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2558
2559 /* The inferior just stepped into, or returned to, an
2560 undebuggable function (where there is no debugging information
2561 and no line number corresponding to the address where the
2562 inferior stopped). Since we want to skip this kind of code,
2563 we keep going until the inferior returns from this
2564 function - unless the user has asked us not to (via
2565 set step-mode) or we no longer know how to get back
2566 to the call site. */
2567 if (step_stop_if_no_debug
2568 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2569 {
2570 /* If we have no line number and the step-stop-if-no-debug
2571 is set, we stop the step so that the user has a chance to
2572 switch in assembly mode. */
2573 stop_step = 1;
2574 print_stop_reason (END_STEPPING_RANGE, 0);
2575 stop_stepping (ecs);
2576 return;
2577 }
2578 else
2579 {
2580 /* Set a breakpoint at callee's return address (the address
2581 at which the caller will resume). */
2582 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2583 keep_going (ecs);
2584 return;
2585 }
2586 }
2587
2588 if (step_range_end == 1)
2589 {
2590 /* It is stepi or nexti. We always want to stop stepping after
2591 one instruction. */
2592 if (debug_infrun)
2593 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2594 stop_step = 1;
2595 print_stop_reason (END_STEPPING_RANGE, 0);
2596 stop_stepping (ecs);
2597 return;
2598 }
2599
2600 if (ecs->sal.line == 0)
2601 {
2602 /* We have no line number information. That means to stop
2603 stepping (does this always happen right after one instruction,
2604 when we do "s" in a function with no line numbers,
2605 or can this happen as a result of a return or longjmp?). */
2606 if (debug_infrun)
2607 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2608 stop_step = 1;
2609 print_stop_reason (END_STEPPING_RANGE, 0);
2610 stop_stepping (ecs);
2611 return;
2612 }
2613
2614 if ((stop_pc == ecs->sal.pc)
2615 && (ecs->current_line != ecs->sal.line
2616 || ecs->current_symtab != ecs->sal.symtab))
2617 {
2618 /* We are at the start of a different line. So stop. Note that
2619 we don't stop if we step into the middle of a different line.
2620 That is said to make things like for (;;) statements work
2621 better. */
2622 if (debug_infrun)
2623 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2624 stop_step = 1;
2625 print_stop_reason (END_STEPPING_RANGE, 0);
2626 stop_stepping (ecs);
2627 return;
2628 }
2629
2630 /* We aren't done stepping.
2631
2632 Optimize by setting the stepping range to the line.
2633 (We might not be in the original line, but if we entered a
2634 new line in mid-statement, we continue stepping. This makes
2635 things like for(;;) statements work better.) */
2636
2637 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2638 {
2639 /* If this is the last line of the function, don't keep stepping
2640 (it would probably step us out of the function).
2641 This is particularly necessary for a one-line function,
2642 in which after skipping the prologue we better stop even though
2643 we will be in mid-line. */
2644 if (debug_infrun)
2645 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2646 stop_step = 1;
2647 print_stop_reason (END_STEPPING_RANGE, 0);
2648 stop_stepping (ecs);
2649 return;
2650 }
2651 step_range_start = ecs->sal.pc;
2652 step_range_end = ecs->sal.end;
2653 step_frame_id = get_frame_id (get_current_frame ());
2654 ecs->current_line = ecs->sal.line;
2655 ecs->current_symtab = ecs->sal.symtab;
2656
2657 /* In the case where we just stepped out of a function into the
2658 middle of a line of the caller, continue stepping, but
2659 step_frame_id must be modified to current frame */
2660 #if 0
2661 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2662 generous. It will trigger on things like a step into a frameless
2663 stackless leaf function. I think the logic should instead look
2664 at the unwound frame ID has that should give a more robust
2665 indication of what happened. */
2666 if (step - ID == current - ID)
2667 still stepping in same function;
2668 else if (step - ID == unwind (current - ID))
2669 stepped into a function;
2670 else
2671 stepped out of a function;
2672 /* Of course this assumes that the frame ID unwind code is robust
2673 and we're willing to introduce frame unwind logic into this
2674 function. Fortunately, those days are nearly upon us. */
2675 #endif
2676 {
2677 struct frame_id current_frame = get_frame_id (get_current_frame ());
2678 if (!(frame_id_inner (current_frame, step_frame_id)))
2679 step_frame_id = current_frame;
2680 }
2681
2682 if (debug_infrun)
2683 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2684 keep_going (ecs);
2685 }
2686
2687 /* Are we in the middle of stepping? */
2688
2689 static int
2690 currently_stepping (struct execution_control_state *ecs)
2691 {
2692 return ((!ecs->handling_longjmp
2693 && ((step_range_end && step_resume_breakpoint == NULL)
2694 || trap_expected))
2695 || ecs->stepping_through_solib_after_catch
2696 || bpstat_should_step ());
2697 }
2698
2699 /* Subroutine call with source code we should not step over. Do step
2700 to the first line of code in it. */
2701
2702 static void
2703 step_into_function (struct execution_control_state *ecs)
2704 {
2705 struct symtab *s;
2706 struct symtab_and_line sr_sal;
2707
2708 s = find_pc_symtab (stop_pc);
2709 if (s && s->language != language_asm)
2710 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2711
2712 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2713 /* Use the step_resume_break to step until the end of the prologue,
2714 even if that involves jumps (as it seems to on the vax under
2715 4.2). */
2716 /* If the prologue ends in the middle of a source line, continue to
2717 the end of that source line (if it is still within the function).
2718 Otherwise, just go to end of prologue. */
2719 if (ecs->sal.end
2720 && ecs->sal.pc != ecs->stop_func_start
2721 && ecs->sal.end < ecs->stop_func_end)
2722 ecs->stop_func_start = ecs->sal.end;
2723
2724 /* Architectures which require breakpoint adjustment might not be able
2725 to place a breakpoint at the computed address. If so, the test
2726 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2727 ecs->stop_func_start to an address at which a breakpoint may be
2728 legitimately placed.
2729
2730 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2731 made, GDB will enter an infinite loop when stepping through
2732 optimized code consisting of VLIW instructions which contain
2733 subinstructions corresponding to different source lines. On
2734 FR-V, it's not permitted to place a breakpoint on any but the
2735 first subinstruction of a VLIW instruction. When a breakpoint is
2736 set, GDB will adjust the breakpoint address to the beginning of
2737 the VLIW instruction. Thus, we need to make the corresponding
2738 adjustment here when computing the stop address. */
2739
2740 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2741 {
2742 ecs->stop_func_start
2743 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2744 ecs->stop_func_start);
2745 }
2746
2747 if (ecs->stop_func_start == stop_pc)
2748 {
2749 /* We are already there: stop now. */
2750 stop_step = 1;
2751 print_stop_reason (END_STEPPING_RANGE, 0);
2752 stop_stepping (ecs);
2753 return;
2754 }
2755 else
2756 {
2757 /* Put the step-breakpoint there and go until there. */
2758 init_sal (&sr_sal); /* initialize to zeroes */
2759 sr_sal.pc = ecs->stop_func_start;
2760 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2761
2762 /* Do not specify what the fp should be when we stop since on
2763 some machines the prologue is where the new fp value is
2764 established. */
2765 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2766
2767 /* And make sure stepping stops right away then. */
2768 step_range_end = step_range_start;
2769 }
2770 keep_going (ecs);
2771 }
2772
2773 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
2774 This is used to both functions and to skip over code. */
2775
2776 static void
2777 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2778 struct frame_id sr_id)
2779 {
2780 /* There should never be more than one step-resume breakpoint per
2781 thread, so we should never be setting a new
2782 step_resume_breakpoint when one is already active. */
2783 gdb_assert (step_resume_breakpoint == NULL);
2784
2785 if (debug_infrun)
2786 fprintf_unfiltered (gdb_stdlog,
2787 "infrun: inserting step-resume breakpoint at 0x%s\n",
2788 paddr_nz (sr_sal.pc));
2789
2790 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2791 bp_step_resume);
2792 if (breakpoints_inserted)
2793 insert_breakpoints ();
2794 }
2795
2796 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
2797 to skip a potential signal handler.
2798
2799 This is called with the interrupted function's frame. The signal
2800 handler, when it returns, will resume the interrupted function at
2801 RETURN_FRAME.pc. */
2802
2803 static void
2804 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2805 {
2806 struct symtab_and_line sr_sal;
2807
2808 init_sal (&sr_sal); /* initialize to zeros */
2809
2810 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
2811 sr_sal.section = find_pc_overlay (sr_sal.pc);
2812
2813 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2814 }
2815
2816 /* Similar to insert_step_resume_breakpoint_at_frame, except
2817 but a breakpoint at the previous frame's PC. This is used to
2818 skip a function after stepping into it (for "next" or if the called
2819 function has no debugging information).
2820
2821 The current function has almost always been reached by single
2822 stepping a call or return instruction. NEXT_FRAME belongs to the
2823 current function, and the breakpoint will be set at the caller's
2824 resume address.
2825
2826 This is a separate function rather than reusing
2827 insert_step_resume_breakpoint_at_frame in order to avoid
2828 get_prev_frame, which may stop prematurely (see the implementation
2829 of frame_unwind_id for an example). */
2830
2831 static void
2832 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2833 {
2834 struct symtab_and_line sr_sal;
2835
2836 /* We shouldn't have gotten here if we don't know where the call site
2837 is. */
2838 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2839
2840 init_sal (&sr_sal); /* initialize to zeros */
2841
2842 sr_sal.pc = ADDR_BITS_REMOVE (frame_pc_unwind (next_frame));
2843 sr_sal.section = find_pc_overlay (sr_sal.pc);
2844
2845 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2846 }
2847
2848 static void
2849 stop_stepping (struct execution_control_state *ecs)
2850 {
2851 if (debug_infrun)
2852 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2853
2854 /* Let callers know we don't want to wait for the inferior anymore. */
2855 ecs->wait_some_more = 0;
2856 }
2857
2858 /* This function handles various cases where we need to continue
2859 waiting for the inferior. */
2860 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2861
2862 static void
2863 keep_going (struct execution_control_state *ecs)
2864 {
2865 /* Save the pc before execution, to compare with pc after stop. */
2866 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2867
2868 /* If we did not do break;, it means we should keep running the
2869 inferior and not return to debugger. */
2870
2871 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2872 {
2873 /* We took a signal (which we are supposed to pass through to
2874 the inferior, else we'd have done a break above) and we
2875 haven't yet gotten our trap. Simply continue. */
2876 resume (currently_stepping (ecs), stop_signal);
2877 }
2878 else
2879 {
2880 /* Either the trap was not expected, but we are continuing
2881 anyway (the user asked that this signal be passed to the
2882 child)
2883 -- or --
2884 The signal was SIGTRAP, e.g. it was our signal, but we
2885 decided we should resume from it.
2886
2887 We're going to run this baby now! */
2888
2889 if (!breakpoints_inserted && !ecs->another_trap)
2890 {
2891 /* Stop stepping when inserting breakpoints
2892 has failed. */
2893 if (insert_breakpoints () != 0)
2894 {
2895 stop_stepping (ecs);
2896 return;
2897 }
2898 breakpoints_inserted = 1;
2899 }
2900
2901 trap_expected = ecs->another_trap;
2902
2903 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2904 specifies that such a signal should be delivered to the
2905 target program).
2906
2907 Typically, this would occure when a user is debugging a
2908 target monitor on a simulator: the target monitor sets a
2909 breakpoint; the simulator encounters this break-point and
2910 halts the simulation handing control to GDB; GDB, noteing
2911 that the break-point isn't valid, returns control back to the
2912 simulator; the simulator then delivers the hardware
2913 equivalent of a SIGNAL_TRAP to the program being debugged. */
2914
2915 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2916 stop_signal = TARGET_SIGNAL_0;
2917
2918
2919 resume (currently_stepping (ecs), stop_signal);
2920 }
2921
2922 prepare_to_wait (ecs);
2923 }
2924
2925 /* This function normally comes after a resume, before
2926 handle_inferior_event exits. It takes care of any last bits of
2927 housekeeping, and sets the all-important wait_some_more flag. */
2928
2929 static void
2930 prepare_to_wait (struct execution_control_state *ecs)
2931 {
2932 if (debug_infrun)
2933 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2934 if (ecs->infwait_state == infwait_normal_state)
2935 {
2936 overlay_cache_invalid = 1;
2937
2938 /* We have to invalidate the registers BEFORE calling
2939 target_wait because they can be loaded from the target while
2940 in target_wait. This makes remote debugging a bit more
2941 efficient for those targets that provide critical registers
2942 as part of their normal status mechanism. */
2943
2944 registers_changed ();
2945 ecs->waiton_ptid = pid_to_ptid (-1);
2946 ecs->wp = &(ecs->ws);
2947 }
2948 /* This is the old end of the while loop. Let everybody know we
2949 want to wait for the inferior some more and get called again
2950 soon. */
2951 ecs->wait_some_more = 1;
2952 }
2953
2954 /* Print why the inferior has stopped. We always print something when
2955 the inferior exits, or receives a signal. The rest of the cases are
2956 dealt with later on in normal_stop() and print_it_typical(). Ideally
2957 there should be a call to this function from handle_inferior_event()
2958 each time stop_stepping() is called.*/
2959 static void
2960 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2961 {
2962 switch (stop_reason)
2963 {
2964 case END_STEPPING_RANGE:
2965 /* We are done with a step/next/si/ni command. */
2966 /* For now print nothing. */
2967 /* Print a message only if not in the middle of doing a "step n"
2968 operation for n > 1 */
2969 if (!step_multi || !stop_step)
2970 if (ui_out_is_mi_like_p (uiout))
2971 ui_out_field_string
2972 (uiout, "reason",
2973 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
2974 break;
2975 case SIGNAL_EXITED:
2976 /* The inferior was terminated by a signal. */
2977 annotate_signalled ();
2978 if (ui_out_is_mi_like_p (uiout))
2979 ui_out_field_string
2980 (uiout, "reason",
2981 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
2982 ui_out_text (uiout, "\nProgram terminated with signal ");
2983 annotate_signal_name ();
2984 ui_out_field_string (uiout, "signal-name",
2985 target_signal_to_name (stop_info));
2986 annotate_signal_name_end ();
2987 ui_out_text (uiout, ", ");
2988 annotate_signal_string ();
2989 ui_out_field_string (uiout, "signal-meaning",
2990 target_signal_to_string (stop_info));
2991 annotate_signal_string_end ();
2992 ui_out_text (uiout, ".\n");
2993 ui_out_text (uiout, "The program no longer exists.\n");
2994 break;
2995 case EXITED:
2996 /* The inferior program is finished. */
2997 annotate_exited (stop_info);
2998 if (stop_info)
2999 {
3000 if (ui_out_is_mi_like_p (uiout))
3001 ui_out_field_string (uiout, "reason",
3002 async_reason_lookup (EXEC_ASYNC_EXITED));
3003 ui_out_text (uiout, "\nProgram exited with code ");
3004 ui_out_field_fmt (uiout, "exit-code", "0%o",
3005 (unsigned int) stop_info);
3006 ui_out_text (uiout, ".\n");
3007 }
3008 else
3009 {
3010 if (ui_out_is_mi_like_p (uiout))
3011 ui_out_field_string
3012 (uiout, "reason",
3013 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3014 ui_out_text (uiout, "\nProgram exited normally.\n");
3015 }
3016 /* Support the --return-child-result option. */
3017 return_child_result_value = stop_info;
3018 break;
3019 case SIGNAL_RECEIVED:
3020 /* Signal received. The signal table tells us to print about
3021 it. */
3022 annotate_signal ();
3023 ui_out_text (uiout, "\nProgram received signal ");
3024 annotate_signal_name ();
3025 if (ui_out_is_mi_like_p (uiout))
3026 ui_out_field_string
3027 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3028 ui_out_field_string (uiout, "signal-name",
3029 target_signal_to_name (stop_info));
3030 annotate_signal_name_end ();
3031 ui_out_text (uiout, ", ");
3032 annotate_signal_string ();
3033 ui_out_field_string (uiout, "signal-meaning",
3034 target_signal_to_string (stop_info));
3035 annotate_signal_string_end ();
3036 ui_out_text (uiout, ".\n");
3037 break;
3038 default:
3039 internal_error (__FILE__, __LINE__,
3040 _("print_stop_reason: unrecognized enum value"));
3041 break;
3042 }
3043 }
3044 \f
3045
3046 /* Here to return control to GDB when the inferior stops for real.
3047 Print appropriate messages, remove breakpoints, give terminal our modes.
3048
3049 STOP_PRINT_FRAME nonzero means print the executing frame
3050 (pc, function, args, file, line number and line text).
3051 BREAKPOINTS_FAILED nonzero means stop was due to error
3052 attempting to insert breakpoints. */
3053
3054 void
3055 normal_stop (void)
3056 {
3057 struct target_waitstatus last;
3058 ptid_t last_ptid;
3059
3060 get_last_target_status (&last_ptid, &last);
3061
3062 /* As with the notification of thread events, we want to delay
3063 notifying the user that we've switched thread context until
3064 the inferior actually stops.
3065
3066 There's no point in saying anything if the inferior has exited.
3067 Note that SIGNALLED here means "exited with a signal", not
3068 "received a signal". */
3069 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3070 && target_has_execution
3071 && last.kind != TARGET_WAITKIND_SIGNALLED
3072 && last.kind != TARGET_WAITKIND_EXITED)
3073 {
3074 target_terminal_ours_for_output ();
3075 printf_filtered (_("[Switching to %s]\n"),
3076 target_pid_or_tid_to_str (inferior_ptid));
3077 previous_inferior_ptid = inferior_ptid;
3078 }
3079
3080 /* NOTE drow/2004-01-17: Is this still necessary? */
3081 /* Make sure that the current_frame's pc is correct. This
3082 is a correction for setting up the frame info before doing
3083 DECR_PC_AFTER_BREAK */
3084 if (target_has_execution)
3085 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3086 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3087 frame code to check for this and sort out any resultant mess.
3088 DECR_PC_AFTER_BREAK needs to just go away. */
3089 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3090
3091 if (target_has_execution && breakpoints_inserted)
3092 {
3093 if (remove_breakpoints ())
3094 {
3095 target_terminal_ours_for_output ();
3096 printf_filtered (_("\
3097 Cannot remove breakpoints because program is no longer writable.\n\
3098 It might be running in another process.\n\
3099 Further execution is probably impossible.\n"));
3100 }
3101 }
3102 breakpoints_inserted = 0;
3103
3104 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3105 Delete any breakpoint that is to be deleted at the next stop. */
3106
3107 breakpoint_auto_delete (stop_bpstat);
3108
3109 /* If an auto-display called a function and that got a signal,
3110 delete that auto-display to avoid an infinite recursion. */
3111
3112 if (stopped_by_random_signal)
3113 disable_current_display ();
3114
3115 /* Don't print a message if in the middle of doing a "step n"
3116 operation for n > 1 */
3117 if (step_multi && stop_step)
3118 goto done;
3119
3120 target_terminal_ours ();
3121
3122 /* Set the current source location. This will also happen if we
3123 display the frame below, but the current SAL will be incorrect
3124 during a user hook-stop function. */
3125 if (target_has_stack && !stop_stack_dummy)
3126 set_current_sal_from_frame (get_current_frame (), 1);
3127
3128 /* Look up the hook_stop and run it (CLI internally handles problem
3129 of stop_command's pre-hook not existing). */
3130 if (stop_command)
3131 catch_errors (hook_stop_stub, stop_command,
3132 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3133
3134 if (!target_has_stack)
3135 {
3136
3137 goto done;
3138 }
3139
3140 /* Select innermost stack frame - i.e., current frame is frame 0,
3141 and current location is based on that.
3142 Don't do this on return from a stack dummy routine,
3143 or if the program has exited. */
3144
3145 if (!stop_stack_dummy)
3146 {
3147 select_frame (get_current_frame ());
3148
3149 /* Print current location without a level number, if
3150 we have changed functions or hit a breakpoint.
3151 Print source line if we have one.
3152 bpstat_print() contains the logic deciding in detail
3153 what to print, based on the event(s) that just occurred. */
3154
3155 if (stop_print_frame)
3156 {
3157 int bpstat_ret;
3158 int source_flag;
3159 int do_frame_printing = 1;
3160
3161 bpstat_ret = bpstat_print (stop_bpstat);
3162 switch (bpstat_ret)
3163 {
3164 case PRINT_UNKNOWN:
3165 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3166 (or should) carry around the function and does (or
3167 should) use that when doing a frame comparison. */
3168 if (stop_step
3169 && frame_id_eq (step_frame_id,
3170 get_frame_id (get_current_frame ()))
3171 && step_start_function == find_pc_function (stop_pc))
3172 source_flag = SRC_LINE; /* finished step, just print source line */
3173 else
3174 source_flag = SRC_AND_LOC; /* print location and source line */
3175 break;
3176 case PRINT_SRC_AND_LOC:
3177 source_flag = SRC_AND_LOC; /* print location and source line */
3178 break;
3179 case PRINT_SRC_ONLY:
3180 source_flag = SRC_LINE;
3181 break;
3182 case PRINT_NOTHING:
3183 source_flag = SRC_LINE; /* something bogus */
3184 do_frame_printing = 0;
3185 break;
3186 default:
3187 internal_error (__FILE__, __LINE__, _("Unknown value."));
3188 }
3189
3190 if (ui_out_is_mi_like_p (uiout))
3191 ui_out_field_int (uiout, "thread-id",
3192 pid_to_thread_id (inferior_ptid));
3193 /* The behavior of this routine with respect to the source
3194 flag is:
3195 SRC_LINE: Print only source line
3196 LOCATION: Print only location
3197 SRC_AND_LOC: Print location and source line */
3198 if (do_frame_printing)
3199 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3200
3201 /* Display the auto-display expressions. */
3202 do_displays ();
3203 }
3204 }
3205
3206 /* Save the function value return registers, if we care.
3207 We might be about to restore their previous contents. */
3208 if (proceed_to_finish)
3209 /* NB: The copy goes through to the target picking up the value of
3210 all the registers. */
3211 regcache_cpy (stop_registers, current_regcache);
3212
3213 if (stop_stack_dummy)
3214 {
3215 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3216 ends with a setting of the current frame, so we can use that
3217 next. */
3218 frame_pop (get_current_frame ());
3219 /* Set stop_pc to what it was before we called the function.
3220 Can't rely on restore_inferior_status because that only gets
3221 called if we don't stop in the called function. */
3222 stop_pc = read_pc ();
3223 select_frame (get_current_frame ());
3224 }
3225
3226 done:
3227 annotate_stopped ();
3228 observer_notify_normal_stop (stop_bpstat);
3229 }
3230
3231 static int
3232 hook_stop_stub (void *cmd)
3233 {
3234 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3235 return (0);
3236 }
3237 \f
3238 int
3239 signal_stop_state (int signo)
3240 {
3241 return signal_stop[signo];
3242 }
3243
3244 int
3245 signal_print_state (int signo)
3246 {
3247 return signal_print[signo];
3248 }
3249
3250 int
3251 signal_pass_state (int signo)
3252 {
3253 return signal_program[signo];
3254 }
3255
3256 int
3257 signal_stop_update (int signo, int state)
3258 {
3259 int ret = signal_stop[signo];
3260 signal_stop[signo] = state;
3261 return ret;
3262 }
3263
3264 int
3265 signal_print_update (int signo, int state)
3266 {
3267 int ret = signal_print[signo];
3268 signal_print[signo] = state;
3269 return ret;
3270 }
3271
3272 int
3273 signal_pass_update (int signo, int state)
3274 {
3275 int ret = signal_program[signo];
3276 signal_program[signo] = state;
3277 return ret;
3278 }
3279
3280 static void
3281 sig_print_header (void)
3282 {
3283 printf_filtered (_("\
3284 Signal Stop\tPrint\tPass to program\tDescription\n"));
3285 }
3286
3287 static void
3288 sig_print_info (enum target_signal oursig)
3289 {
3290 char *name = target_signal_to_name (oursig);
3291 int name_padding = 13 - strlen (name);
3292
3293 if (name_padding <= 0)
3294 name_padding = 0;
3295
3296 printf_filtered ("%s", name);
3297 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3298 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3299 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3300 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3301 printf_filtered ("%s\n", target_signal_to_string (oursig));
3302 }
3303
3304 /* Specify how various signals in the inferior should be handled. */
3305
3306 static void
3307 handle_command (char *args, int from_tty)
3308 {
3309 char **argv;
3310 int digits, wordlen;
3311 int sigfirst, signum, siglast;
3312 enum target_signal oursig;
3313 int allsigs;
3314 int nsigs;
3315 unsigned char *sigs;
3316 struct cleanup *old_chain;
3317
3318 if (args == NULL)
3319 {
3320 error_no_arg (_("signal to handle"));
3321 }
3322
3323 /* Allocate and zero an array of flags for which signals to handle. */
3324
3325 nsigs = (int) TARGET_SIGNAL_LAST;
3326 sigs = (unsigned char *) alloca (nsigs);
3327 memset (sigs, 0, nsigs);
3328
3329 /* Break the command line up into args. */
3330
3331 argv = buildargv (args);
3332 if (argv == NULL)
3333 {
3334 nomem (0);
3335 }
3336 old_chain = make_cleanup_freeargv (argv);
3337
3338 /* Walk through the args, looking for signal oursigs, signal names, and
3339 actions. Signal numbers and signal names may be interspersed with
3340 actions, with the actions being performed for all signals cumulatively
3341 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3342
3343 while (*argv != NULL)
3344 {
3345 wordlen = strlen (*argv);
3346 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3347 {;
3348 }
3349 allsigs = 0;
3350 sigfirst = siglast = -1;
3351
3352 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3353 {
3354 /* Apply action to all signals except those used by the
3355 debugger. Silently skip those. */
3356 allsigs = 1;
3357 sigfirst = 0;
3358 siglast = nsigs - 1;
3359 }
3360 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3361 {
3362 SET_SIGS (nsigs, sigs, signal_stop);
3363 SET_SIGS (nsigs, sigs, signal_print);
3364 }
3365 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3366 {
3367 UNSET_SIGS (nsigs, sigs, signal_program);
3368 }
3369 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3370 {
3371 SET_SIGS (nsigs, sigs, signal_print);
3372 }
3373 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3374 {
3375 SET_SIGS (nsigs, sigs, signal_program);
3376 }
3377 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3378 {
3379 UNSET_SIGS (nsigs, sigs, signal_stop);
3380 }
3381 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3382 {
3383 SET_SIGS (nsigs, sigs, signal_program);
3384 }
3385 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3386 {
3387 UNSET_SIGS (nsigs, sigs, signal_print);
3388 UNSET_SIGS (nsigs, sigs, signal_stop);
3389 }
3390 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3391 {
3392 UNSET_SIGS (nsigs, sigs, signal_program);
3393 }
3394 else if (digits > 0)
3395 {
3396 /* It is numeric. The numeric signal refers to our own
3397 internal signal numbering from target.h, not to host/target
3398 signal number. This is a feature; users really should be
3399 using symbolic names anyway, and the common ones like
3400 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3401
3402 sigfirst = siglast = (int)
3403 target_signal_from_command (atoi (*argv));
3404 if ((*argv)[digits] == '-')
3405 {
3406 siglast = (int)
3407 target_signal_from_command (atoi ((*argv) + digits + 1));
3408 }
3409 if (sigfirst > siglast)
3410 {
3411 /* Bet he didn't figure we'd think of this case... */
3412 signum = sigfirst;
3413 sigfirst = siglast;
3414 siglast = signum;
3415 }
3416 }
3417 else
3418 {
3419 oursig = target_signal_from_name (*argv);
3420 if (oursig != TARGET_SIGNAL_UNKNOWN)
3421 {
3422 sigfirst = siglast = (int) oursig;
3423 }
3424 else
3425 {
3426 /* Not a number and not a recognized flag word => complain. */
3427 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3428 }
3429 }
3430
3431 /* If any signal numbers or symbol names were found, set flags for
3432 which signals to apply actions to. */
3433
3434 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3435 {
3436 switch ((enum target_signal) signum)
3437 {
3438 case TARGET_SIGNAL_TRAP:
3439 case TARGET_SIGNAL_INT:
3440 if (!allsigs && !sigs[signum])
3441 {
3442 if (query ("%s is used by the debugger.\n\
3443 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3444 {
3445 sigs[signum] = 1;
3446 }
3447 else
3448 {
3449 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3450 gdb_flush (gdb_stdout);
3451 }
3452 }
3453 break;
3454 case TARGET_SIGNAL_0:
3455 case TARGET_SIGNAL_DEFAULT:
3456 case TARGET_SIGNAL_UNKNOWN:
3457 /* Make sure that "all" doesn't print these. */
3458 break;
3459 default:
3460 sigs[signum] = 1;
3461 break;
3462 }
3463 }
3464
3465 argv++;
3466 }
3467
3468 target_notice_signals (inferior_ptid);
3469
3470 if (from_tty)
3471 {
3472 /* Show the results. */
3473 sig_print_header ();
3474 for (signum = 0; signum < nsigs; signum++)
3475 {
3476 if (sigs[signum])
3477 {
3478 sig_print_info (signum);
3479 }
3480 }
3481 }
3482
3483 do_cleanups (old_chain);
3484 }
3485
3486 static void
3487 xdb_handle_command (char *args, int from_tty)
3488 {
3489 char **argv;
3490 struct cleanup *old_chain;
3491
3492 /* Break the command line up into args. */
3493
3494 argv = buildargv (args);
3495 if (argv == NULL)
3496 {
3497 nomem (0);
3498 }
3499 old_chain = make_cleanup_freeargv (argv);
3500 if (argv[1] != (char *) NULL)
3501 {
3502 char *argBuf;
3503 int bufLen;
3504
3505 bufLen = strlen (argv[0]) + 20;
3506 argBuf = (char *) xmalloc (bufLen);
3507 if (argBuf)
3508 {
3509 int validFlag = 1;
3510 enum target_signal oursig;
3511
3512 oursig = target_signal_from_name (argv[0]);
3513 memset (argBuf, 0, bufLen);
3514 if (strcmp (argv[1], "Q") == 0)
3515 sprintf (argBuf, "%s %s", argv[0], "noprint");
3516 else
3517 {
3518 if (strcmp (argv[1], "s") == 0)
3519 {
3520 if (!signal_stop[oursig])
3521 sprintf (argBuf, "%s %s", argv[0], "stop");
3522 else
3523 sprintf (argBuf, "%s %s", argv[0], "nostop");
3524 }
3525 else if (strcmp (argv[1], "i") == 0)
3526 {
3527 if (!signal_program[oursig])
3528 sprintf (argBuf, "%s %s", argv[0], "pass");
3529 else
3530 sprintf (argBuf, "%s %s", argv[0], "nopass");
3531 }
3532 else if (strcmp (argv[1], "r") == 0)
3533 {
3534 if (!signal_print[oursig])
3535 sprintf (argBuf, "%s %s", argv[0], "print");
3536 else
3537 sprintf (argBuf, "%s %s", argv[0], "noprint");
3538 }
3539 else
3540 validFlag = 0;
3541 }
3542 if (validFlag)
3543 handle_command (argBuf, from_tty);
3544 else
3545 printf_filtered (_("Invalid signal handling flag.\n"));
3546 if (argBuf)
3547 xfree (argBuf);
3548 }
3549 }
3550 do_cleanups (old_chain);
3551 }
3552
3553 /* Print current contents of the tables set by the handle command.
3554 It is possible we should just be printing signals actually used
3555 by the current target (but for things to work right when switching
3556 targets, all signals should be in the signal tables). */
3557
3558 static void
3559 signals_info (char *signum_exp, int from_tty)
3560 {
3561 enum target_signal oursig;
3562 sig_print_header ();
3563
3564 if (signum_exp)
3565 {
3566 /* First see if this is a symbol name. */
3567 oursig = target_signal_from_name (signum_exp);
3568 if (oursig == TARGET_SIGNAL_UNKNOWN)
3569 {
3570 /* No, try numeric. */
3571 oursig =
3572 target_signal_from_command (parse_and_eval_long (signum_exp));
3573 }
3574 sig_print_info (oursig);
3575 return;
3576 }
3577
3578 printf_filtered ("\n");
3579 /* These ugly casts brought to you by the native VAX compiler. */
3580 for (oursig = TARGET_SIGNAL_FIRST;
3581 (int) oursig < (int) TARGET_SIGNAL_LAST;
3582 oursig = (enum target_signal) ((int) oursig + 1))
3583 {
3584 QUIT;
3585
3586 if (oursig != TARGET_SIGNAL_UNKNOWN
3587 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3588 sig_print_info (oursig);
3589 }
3590
3591 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3592 }
3593 \f
3594 struct inferior_status
3595 {
3596 enum target_signal stop_signal;
3597 CORE_ADDR stop_pc;
3598 bpstat stop_bpstat;
3599 int stop_step;
3600 int stop_stack_dummy;
3601 int stopped_by_random_signal;
3602 int trap_expected;
3603 CORE_ADDR step_range_start;
3604 CORE_ADDR step_range_end;
3605 struct frame_id step_frame_id;
3606 enum step_over_calls_kind step_over_calls;
3607 CORE_ADDR step_resume_break_address;
3608 int stop_after_trap;
3609 int stop_soon;
3610 struct regcache *stop_registers;
3611
3612 /* These are here because if call_function_by_hand has written some
3613 registers and then decides to call error(), we better not have changed
3614 any registers. */
3615 struct regcache *registers;
3616
3617 /* A frame unique identifier. */
3618 struct frame_id selected_frame_id;
3619
3620 int breakpoint_proceeded;
3621 int restore_stack_info;
3622 int proceed_to_finish;
3623 };
3624
3625 void
3626 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3627 LONGEST val)
3628 {
3629 int size = register_size (current_gdbarch, regno);
3630 void *buf = alloca (size);
3631 store_signed_integer (buf, size, val);
3632 regcache_raw_write (inf_status->registers, regno, buf);
3633 }
3634
3635 /* Save all of the information associated with the inferior<==>gdb
3636 connection. INF_STATUS is a pointer to a "struct inferior_status"
3637 (defined in inferior.h). */
3638
3639 struct inferior_status *
3640 save_inferior_status (int restore_stack_info)
3641 {
3642 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3643
3644 inf_status->stop_signal = stop_signal;
3645 inf_status->stop_pc = stop_pc;
3646 inf_status->stop_step = stop_step;
3647 inf_status->stop_stack_dummy = stop_stack_dummy;
3648 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3649 inf_status->trap_expected = trap_expected;
3650 inf_status->step_range_start = step_range_start;
3651 inf_status->step_range_end = step_range_end;
3652 inf_status->step_frame_id = step_frame_id;
3653 inf_status->step_over_calls = step_over_calls;
3654 inf_status->stop_after_trap = stop_after_trap;
3655 inf_status->stop_soon = stop_soon;
3656 /* Save original bpstat chain here; replace it with copy of chain.
3657 If caller's caller is walking the chain, they'll be happier if we
3658 hand them back the original chain when restore_inferior_status is
3659 called. */
3660 inf_status->stop_bpstat = stop_bpstat;
3661 stop_bpstat = bpstat_copy (stop_bpstat);
3662 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3663 inf_status->restore_stack_info = restore_stack_info;
3664 inf_status->proceed_to_finish = proceed_to_finish;
3665
3666 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3667
3668 inf_status->registers = regcache_dup (current_regcache);
3669
3670 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
3671 return inf_status;
3672 }
3673
3674 static int
3675 restore_selected_frame (void *args)
3676 {
3677 struct frame_id *fid = (struct frame_id *) args;
3678 struct frame_info *frame;
3679
3680 frame = frame_find_by_id (*fid);
3681
3682 /* If inf_status->selected_frame_id is NULL, there was no previously
3683 selected frame. */
3684 if (frame == NULL)
3685 {
3686 warning (_("Unable to restore previously selected frame."));
3687 return 0;
3688 }
3689
3690 select_frame (frame);
3691
3692 return (1);
3693 }
3694
3695 void
3696 restore_inferior_status (struct inferior_status *inf_status)
3697 {
3698 stop_signal = inf_status->stop_signal;
3699 stop_pc = inf_status->stop_pc;
3700 stop_step = inf_status->stop_step;
3701 stop_stack_dummy = inf_status->stop_stack_dummy;
3702 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3703 trap_expected = inf_status->trap_expected;
3704 step_range_start = inf_status->step_range_start;
3705 step_range_end = inf_status->step_range_end;
3706 step_frame_id = inf_status->step_frame_id;
3707 step_over_calls = inf_status->step_over_calls;
3708 stop_after_trap = inf_status->stop_after_trap;
3709 stop_soon = inf_status->stop_soon;
3710 bpstat_clear (&stop_bpstat);
3711 stop_bpstat = inf_status->stop_bpstat;
3712 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3713 proceed_to_finish = inf_status->proceed_to_finish;
3714
3715 /* FIXME: Is the restore of stop_registers always needed. */
3716 regcache_xfree (stop_registers);
3717 stop_registers = inf_status->stop_registers;
3718
3719 /* The inferior can be gone if the user types "print exit(0)"
3720 (and perhaps other times). */
3721 if (target_has_execution)
3722 /* NB: The register write goes through to the target. */
3723 regcache_cpy (current_regcache, inf_status->registers);
3724 regcache_xfree (inf_status->registers);
3725
3726 /* FIXME: If we are being called after stopping in a function which
3727 is called from gdb, we should not be trying to restore the
3728 selected frame; it just prints a spurious error message (The
3729 message is useful, however, in detecting bugs in gdb (like if gdb
3730 clobbers the stack)). In fact, should we be restoring the
3731 inferior status at all in that case? . */
3732
3733 if (target_has_stack && inf_status->restore_stack_info)
3734 {
3735 /* The point of catch_errors is that if the stack is clobbered,
3736 walking the stack might encounter a garbage pointer and
3737 error() trying to dereference it. */
3738 if (catch_errors
3739 (restore_selected_frame, &inf_status->selected_frame_id,
3740 "Unable to restore previously selected frame:\n",
3741 RETURN_MASK_ERROR) == 0)
3742 /* Error in restoring the selected frame. Select the innermost
3743 frame. */
3744 select_frame (get_current_frame ());
3745
3746 }
3747
3748 xfree (inf_status);
3749 }
3750
3751 static void
3752 do_restore_inferior_status_cleanup (void *sts)
3753 {
3754 restore_inferior_status (sts);
3755 }
3756
3757 struct cleanup *
3758 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3759 {
3760 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3761 }
3762
3763 void
3764 discard_inferior_status (struct inferior_status *inf_status)
3765 {
3766 /* See save_inferior_status for info on stop_bpstat. */
3767 bpstat_clear (&inf_status->stop_bpstat);
3768 regcache_xfree (inf_status->registers);
3769 regcache_xfree (inf_status->stop_registers);
3770 xfree (inf_status);
3771 }
3772
3773 int
3774 inferior_has_forked (int pid, int *child_pid)
3775 {
3776 struct target_waitstatus last;
3777 ptid_t last_ptid;
3778
3779 get_last_target_status (&last_ptid, &last);
3780
3781 if (last.kind != TARGET_WAITKIND_FORKED)
3782 return 0;
3783
3784 if (ptid_get_pid (last_ptid) != pid)
3785 return 0;
3786
3787 *child_pid = last.value.related_pid;
3788 return 1;
3789 }
3790
3791 int
3792 inferior_has_vforked (int pid, int *child_pid)
3793 {
3794 struct target_waitstatus last;
3795 ptid_t last_ptid;
3796
3797 get_last_target_status (&last_ptid, &last);
3798
3799 if (last.kind != TARGET_WAITKIND_VFORKED)
3800 return 0;
3801
3802 if (ptid_get_pid (last_ptid) != pid)
3803 return 0;
3804
3805 *child_pid = last.value.related_pid;
3806 return 1;
3807 }
3808
3809 int
3810 inferior_has_execd (int pid, char **execd_pathname)
3811 {
3812 struct target_waitstatus last;
3813 ptid_t last_ptid;
3814
3815 get_last_target_status (&last_ptid, &last);
3816
3817 if (last.kind != TARGET_WAITKIND_EXECD)
3818 return 0;
3819
3820 if (ptid_get_pid (last_ptid) != pid)
3821 return 0;
3822
3823 *execd_pathname = xstrdup (last.value.execd_pathname);
3824 return 1;
3825 }
3826
3827 /* Oft used ptids */
3828 ptid_t null_ptid;
3829 ptid_t minus_one_ptid;
3830
3831 /* Create a ptid given the necessary PID, LWP, and TID components. */
3832
3833 ptid_t
3834 ptid_build (int pid, long lwp, long tid)
3835 {
3836 ptid_t ptid;
3837
3838 ptid.pid = pid;
3839 ptid.lwp = lwp;
3840 ptid.tid = tid;
3841 return ptid;
3842 }
3843
3844 /* Create a ptid from just a pid. */
3845
3846 ptid_t
3847 pid_to_ptid (int pid)
3848 {
3849 return ptid_build (pid, 0, 0);
3850 }
3851
3852 /* Fetch the pid (process id) component from a ptid. */
3853
3854 int
3855 ptid_get_pid (ptid_t ptid)
3856 {
3857 return ptid.pid;
3858 }
3859
3860 /* Fetch the lwp (lightweight process) component from a ptid. */
3861
3862 long
3863 ptid_get_lwp (ptid_t ptid)
3864 {
3865 return ptid.lwp;
3866 }
3867
3868 /* Fetch the tid (thread id) component from a ptid. */
3869
3870 long
3871 ptid_get_tid (ptid_t ptid)
3872 {
3873 return ptid.tid;
3874 }
3875
3876 /* ptid_equal() is used to test equality of two ptids. */
3877
3878 int
3879 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3880 {
3881 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3882 && ptid1.tid == ptid2.tid);
3883 }
3884
3885 /* restore_inferior_ptid() will be used by the cleanup machinery
3886 to restore the inferior_ptid value saved in a call to
3887 save_inferior_ptid(). */
3888
3889 static void
3890 restore_inferior_ptid (void *arg)
3891 {
3892 ptid_t *saved_ptid_ptr = arg;
3893 inferior_ptid = *saved_ptid_ptr;
3894 xfree (arg);
3895 }
3896
3897 /* Save the value of inferior_ptid so that it may be restored by a
3898 later call to do_cleanups(). Returns the struct cleanup pointer
3899 needed for later doing the cleanup. */
3900
3901 struct cleanup *
3902 save_inferior_ptid (void)
3903 {
3904 ptid_t *saved_ptid_ptr;
3905
3906 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3907 *saved_ptid_ptr = inferior_ptid;
3908 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3909 }
3910 \f
3911
3912 static void
3913 build_infrun (void)
3914 {
3915 stop_registers = regcache_xmalloc (current_gdbarch);
3916 }
3917
3918 void
3919 _initialize_infrun (void)
3920 {
3921 int i;
3922 int numsigs;
3923 struct cmd_list_element *c;
3924
3925 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3926 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3927
3928 add_info ("signals", signals_info, _("\
3929 What debugger does when program gets various signals.\n\
3930 Specify a signal as argument to print info on that signal only."));
3931 add_info_alias ("handle", "signals", 0);
3932
3933 add_com ("handle", class_run, handle_command, _("\
3934 Specify how to handle a signal.\n\
3935 Args are signals and actions to apply to those signals.\n\
3936 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3937 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3938 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3939 The special arg \"all\" is recognized to mean all signals except those\n\
3940 used by the debugger, typically SIGTRAP and SIGINT.\n\
3941 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3942 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3943 Stop means reenter debugger if this signal happens (implies print).\n\
3944 Print means print a message if this signal happens.\n\
3945 Pass means let program see this signal; otherwise program doesn't know.\n\
3946 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3947 Pass and Stop may be combined."));
3948 if (xdb_commands)
3949 {
3950 add_com ("lz", class_info, signals_info, _("\
3951 What debugger does when program gets various signals.\n\
3952 Specify a signal as argument to print info on that signal only."));
3953 add_com ("z", class_run, xdb_handle_command, _("\
3954 Specify how to handle a signal.\n\
3955 Args are signals and actions to apply to those signals.\n\
3956 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3957 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3958 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3959 The special arg \"all\" is recognized to mean all signals except those\n\
3960 used by the debugger, typically SIGTRAP and SIGINT.\n\
3961 Recognized actions include \"s\" (toggles between stop and nostop), \n\
3962 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3963 nopass), \"Q\" (noprint)\n\
3964 Stop means reenter debugger if this signal happens (implies print).\n\
3965 Print means print a message if this signal happens.\n\
3966 Pass means let program see this signal; otherwise program doesn't know.\n\
3967 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3968 Pass and Stop may be combined."));
3969 }
3970
3971 if (!dbx_commands)
3972 stop_command = add_cmd ("stop", class_obscure,
3973 not_just_help_class_command, _("\
3974 There is no `stop' command, but you can set a hook on `stop'.\n\
3975 This allows you to set a list of commands to be run each time execution\n\
3976 of the program stops."), &cmdlist);
3977
3978 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
3979 Set inferior debugging."), _("\
3980 Show inferior debugging."), _("\
3981 When non-zero, inferior specific debugging is enabled."),
3982 NULL,
3983 show_debug_infrun,
3984 &setdebuglist, &showdebuglist);
3985
3986 numsigs = (int) TARGET_SIGNAL_LAST;
3987 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3988 signal_print = (unsigned char *)
3989 xmalloc (sizeof (signal_print[0]) * numsigs);
3990 signal_program = (unsigned char *)
3991 xmalloc (sizeof (signal_program[0]) * numsigs);
3992 for (i = 0; i < numsigs; i++)
3993 {
3994 signal_stop[i] = 1;
3995 signal_print[i] = 1;
3996 signal_program[i] = 1;
3997 }
3998
3999 /* Signals caused by debugger's own actions
4000 should not be given to the program afterwards. */
4001 signal_program[TARGET_SIGNAL_TRAP] = 0;
4002 signal_program[TARGET_SIGNAL_INT] = 0;
4003
4004 /* Signals that are not errors should not normally enter the debugger. */
4005 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4006 signal_print[TARGET_SIGNAL_ALRM] = 0;
4007 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4008 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4009 signal_stop[TARGET_SIGNAL_PROF] = 0;
4010 signal_print[TARGET_SIGNAL_PROF] = 0;
4011 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4012 signal_print[TARGET_SIGNAL_CHLD] = 0;
4013 signal_stop[TARGET_SIGNAL_IO] = 0;
4014 signal_print[TARGET_SIGNAL_IO] = 0;
4015 signal_stop[TARGET_SIGNAL_POLL] = 0;
4016 signal_print[TARGET_SIGNAL_POLL] = 0;
4017 signal_stop[TARGET_SIGNAL_URG] = 0;
4018 signal_print[TARGET_SIGNAL_URG] = 0;
4019 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4020 signal_print[TARGET_SIGNAL_WINCH] = 0;
4021
4022 /* These signals are used internally by user-level thread
4023 implementations. (See signal(5) on Solaris.) Like the above
4024 signals, a healthy program receives and handles them as part of
4025 its normal operation. */
4026 signal_stop[TARGET_SIGNAL_LWP] = 0;
4027 signal_print[TARGET_SIGNAL_LWP] = 0;
4028 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4029 signal_print[TARGET_SIGNAL_WAITING] = 0;
4030 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4031 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4032
4033 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4034 &stop_on_solib_events, _("\
4035 Set stopping for shared library events."), _("\
4036 Show stopping for shared library events."), _("\
4037 If nonzero, gdb will give control to the user when the dynamic linker\n\
4038 notifies gdb of shared library events. The most common event of interest\n\
4039 to the user would be loading/unloading of a new library."),
4040 NULL,
4041 show_stop_on_solib_events,
4042 &setlist, &showlist);
4043
4044 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4045 follow_fork_mode_kind_names,
4046 &follow_fork_mode_string, _("\
4047 Set debugger response to a program call of fork or vfork."), _("\
4048 Show debugger response to a program call of fork or vfork."), _("\
4049 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4050 parent - the original process is debugged after a fork\n\
4051 child - the new process is debugged after a fork\n\
4052 The unfollowed process will continue to run.\n\
4053 By default, the debugger will follow the parent process."),
4054 NULL,
4055 show_follow_fork_mode_string,
4056 &setlist, &showlist);
4057
4058 add_setshow_enum_cmd ("scheduler-locking", class_run,
4059 scheduler_enums, &scheduler_mode, _("\
4060 Set mode for locking scheduler during execution."), _("\
4061 Show mode for locking scheduler during execution."), _("\
4062 off == no locking (threads may preempt at any time)\n\
4063 on == full locking (no thread except the current thread may run)\n\
4064 step == scheduler locked during every single-step operation.\n\
4065 In this mode, no other thread may run during a step command.\n\
4066 Other threads may run while stepping over a function call ('next')."),
4067 set_schedlock_func, /* traps on target vector */
4068 show_scheduler_mode,
4069 &setlist, &showlist);
4070
4071 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4072 Set mode of the step operation."), _("\
4073 Show mode of the step operation."), _("\
4074 When set, doing a step over a function without debug line information\n\
4075 will stop at the first instruction of that function. Otherwise, the\n\
4076 function is skipped and the step command stops at a different source line."),
4077 NULL,
4078 show_step_stop_if_no_debug,
4079 &setlist, &showlist);
4080
4081 /* ptid initializations */
4082 null_ptid = ptid_build (0, 0, 0);
4083 minus_one_ptid = ptid_build (-1, 0, 0);
4084 inferior_ptid = null_ptid;
4085 target_last_wait_ptid = minus_one_ptid;
4086 }