]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
Rewrite non-continuable watchpoints handling
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2014 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63
64 /* Prototypes for local functions */
65
66 static void signals_info (char *, int);
67
68 static void handle_command (char *, int);
69
70 static void sig_print_info (enum gdb_signal);
71
72 static void sig_print_header (void);
73
74 static void resume_cleanups (void *);
75
76 static int hook_stop_stub (void *);
77
78 static int restore_selected_frame (void *);
79
80 static int follow_fork (void);
81
82 static int follow_fork_inferior (int follow_child, int detach_fork);
83
84 static void follow_inferior_reset_breakpoints (void);
85
86 static void set_schedlock_func (char *args, int from_tty,
87 struct cmd_list_element *c);
88
89 static int currently_stepping (struct thread_info *tp);
90
91 static void xdb_handle_command (char *args, int from_tty);
92
93 void _initialize_infrun (void);
94
95 void nullify_last_target_wait_ptid (void);
96
97 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
98
99 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
100
101 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
102
103 /* When set, stop the 'step' command if we enter a function which has
104 no line number information. The normal behavior is that we step
105 over such function. */
106 int step_stop_if_no_debug = 0;
107 static void
108 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
112 }
113
114 /* In asynchronous mode, but simulating synchronous execution. */
115
116 int sync_execution = 0;
117
118 /* proceed and normal_stop use this to notify the user when the
119 inferior stopped in a different thread than it had been running
120 in. */
121
122 static ptid_t previous_inferior_ptid;
123
124 /* If set (default for legacy reasons), when following a fork, GDB
125 will detach from one of the fork branches, child or parent.
126 Exactly which branch is detached depends on 'set follow-fork-mode'
127 setting. */
128
129 static int detach_fork = 1;
130
131 int debug_displaced = 0;
132 static void
133 show_debug_displaced (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c, const char *value)
135 {
136 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
137 }
138
139 unsigned int debug_infrun = 0;
140 static void
141 show_debug_infrun (struct ui_file *file, int from_tty,
142 struct cmd_list_element *c, const char *value)
143 {
144 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
145 }
146
147
148 /* Support for disabling address space randomization. */
149
150 int disable_randomization = 1;
151
152 static void
153 show_disable_randomization (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 if (target_supports_disable_randomization ())
157 fprintf_filtered (file,
158 _("Disabling randomization of debuggee's "
159 "virtual address space is %s.\n"),
160 value);
161 else
162 fputs_filtered (_("Disabling randomization of debuggee's "
163 "virtual address space is unsupported on\n"
164 "this platform.\n"), file);
165 }
166
167 static void
168 set_disable_randomization (char *args, int from_tty,
169 struct cmd_list_element *c)
170 {
171 if (!target_supports_disable_randomization ())
172 error (_("Disabling randomization of debuggee's "
173 "virtual address space is unsupported on\n"
174 "this platform."));
175 }
176
177 /* User interface for non-stop mode. */
178
179 int non_stop = 0;
180 static int non_stop_1 = 0;
181
182 static void
183 set_non_stop (char *args, int from_tty,
184 struct cmd_list_element *c)
185 {
186 if (target_has_execution)
187 {
188 non_stop_1 = non_stop;
189 error (_("Cannot change this setting while the inferior is running."));
190 }
191
192 non_stop = non_stop_1;
193 }
194
195 static void
196 show_non_stop (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198 {
199 fprintf_filtered (file,
200 _("Controlling the inferior in non-stop mode is %s.\n"),
201 value);
202 }
203
204 /* "Observer mode" is somewhat like a more extreme version of
205 non-stop, in which all GDB operations that might affect the
206 target's execution have been disabled. */
207
208 int observer_mode = 0;
209 static int observer_mode_1 = 0;
210
211 static void
212 set_observer_mode (char *args, int from_tty,
213 struct cmd_list_element *c)
214 {
215 if (target_has_execution)
216 {
217 observer_mode_1 = observer_mode;
218 error (_("Cannot change this setting while the inferior is running."));
219 }
220
221 observer_mode = observer_mode_1;
222
223 may_write_registers = !observer_mode;
224 may_write_memory = !observer_mode;
225 may_insert_breakpoints = !observer_mode;
226 may_insert_tracepoints = !observer_mode;
227 /* We can insert fast tracepoints in or out of observer mode,
228 but enable them if we're going into this mode. */
229 if (observer_mode)
230 may_insert_fast_tracepoints = 1;
231 may_stop = !observer_mode;
232 update_target_permissions ();
233
234 /* Going *into* observer mode we must force non-stop, then
235 going out we leave it that way. */
236 if (observer_mode)
237 {
238 pagination_enabled = 0;
239 non_stop = non_stop_1 = 1;
240 }
241
242 if (from_tty)
243 printf_filtered (_("Observer mode is now %s.\n"),
244 (observer_mode ? "on" : "off"));
245 }
246
247 static void
248 show_observer_mode (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250 {
251 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
252 }
253
254 /* This updates the value of observer mode based on changes in
255 permissions. Note that we are deliberately ignoring the values of
256 may-write-registers and may-write-memory, since the user may have
257 reason to enable these during a session, for instance to turn on a
258 debugging-related global. */
259
260 void
261 update_observer_mode (void)
262 {
263 int newval;
264
265 newval = (!may_insert_breakpoints
266 && !may_insert_tracepoints
267 && may_insert_fast_tracepoints
268 && !may_stop
269 && non_stop);
270
271 /* Let the user know if things change. */
272 if (newval != observer_mode)
273 printf_filtered (_("Observer mode is now %s.\n"),
274 (newval ? "on" : "off"));
275
276 observer_mode = observer_mode_1 = newval;
277 }
278
279 /* Tables of how to react to signals; the user sets them. */
280
281 static unsigned char *signal_stop;
282 static unsigned char *signal_print;
283 static unsigned char *signal_program;
284
285 /* Table of signals that are registered with "catch signal". A
286 non-zero entry indicates that the signal is caught by some "catch
287 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
288 signals. */
289 static unsigned char *signal_catch;
290
291 /* Table of signals that the target may silently handle.
292 This is automatically determined from the flags above,
293 and simply cached here. */
294 static unsigned char *signal_pass;
295
296 #define SET_SIGS(nsigs,sigs,flags) \
297 do { \
298 int signum = (nsigs); \
299 while (signum-- > 0) \
300 if ((sigs)[signum]) \
301 (flags)[signum] = 1; \
302 } while (0)
303
304 #define UNSET_SIGS(nsigs,sigs,flags) \
305 do { \
306 int signum = (nsigs); \
307 while (signum-- > 0) \
308 if ((sigs)[signum]) \
309 (flags)[signum] = 0; \
310 } while (0)
311
312 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
313 this function is to avoid exporting `signal_program'. */
314
315 void
316 update_signals_program_target (void)
317 {
318 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
319 }
320
321 /* Value to pass to target_resume() to cause all threads to resume. */
322
323 #define RESUME_ALL minus_one_ptid
324
325 /* Command list pointer for the "stop" placeholder. */
326
327 static struct cmd_list_element *stop_command;
328
329 /* Function inferior was in as of last step command. */
330
331 static struct symbol *step_start_function;
332
333 /* Nonzero if we want to give control to the user when we're notified
334 of shared library events by the dynamic linker. */
335 int stop_on_solib_events;
336
337 /* Enable or disable optional shared library event breakpoints
338 as appropriate when the above flag is changed. */
339
340 static void
341 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
342 {
343 update_solib_breakpoints ();
344 }
345
346 static void
347 show_stop_on_solib_events (struct ui_file *file, int from_tty,
348 struct cmd_list_element *c, const char *value)
349 {
350 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
351 value);
352 }
353
354 /* Nonzero means expecting a trace trap
355 and should stop the inferior and return silently when it happens. */
356
357 int stop_after_trap;
358
359 /* Save register contents here when executing a "finish" command or are
360 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
361 Thus this contains the return value from the called function (assuming
362 values are returned in a register). */
363
364 struct regcache *stop_registers;
365
366 /* Nonzero after stop if current stack frame should be printed. */
367
368 static int stop_print_frame;
369
370 /* This is a cached copy of the pid/waitstatus of the last event
371 returned by target_wait()/deprecated_target_wait_hook(). This
372 information is returned by get_last_target_status(). */
373 static ptid_t target_last_wait_ptid;
374 static struct target_waitstatus target_last_waitstatus;
375
376 static void context_switch (ptid_t ptid);
377
378 void init_thread_stepping_state (struct thread_info *tss);
379
380 static const char follow_fork_mode_child[] = "child";
381 static const char follow_fork_mode_parent[] = "parent";
382
383 static const char *const follow_fork_mode_kind_names[] = {
384 follow_fork_mode_child,
385 follow_fork_mode_parent,
386 NULL
387 };
388
389 static const char *follow_fork_mode_string = follow_fork_mode_parent;
390 static void
391 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
392 struct cmd_list_element *c, const char *value)
393 {
394 fprintf_filtered (file,
395 _("Debugger response to a program "
396 "call of fork or vfork is \"%s\".\n"),
397 value);
398 }
399 \f
400
401 /* Handle changes to the inferior list based on the type of fork,
402 which process is being followed, and whether the other process
403 should be detached. On entry inferior_ptid must be the ptid of
404 the fork parent. At return inferior_ptid is the ptid of the
405 followed inferior. */
406
407 static int
408 follow_fork_inferior (int follow_child, int detach_fork)
409 {
410 int has_vforked;
411 int parent_pid, child_pid;
412
413 has_vforked = (inferior_thread ()->pending_follow.kind
414 == TARGET_WAITKIND_VFORKED);
415 parent_pid = ptid_get_lwp (inferior_ptid);
416 if (parent_pid == 0)
417 parent_pid = ptid_get_pid (inferior_ptid);
418 child_pid
419 = ptid_get_pid (inferior_thread ()->pending_follow.value.related_pid);
420
421 if (has_vforked
422 && !non_stop /* Non-stop always resumes both branches. */
423 && (!target_is_async_p () || sync_execution)
424 && !(follow_child || detach_fork || sched_multi))
425 {
426 /* The parent stays blocked inside the vfork syscall until the
427 child execs or exits. If we don't let the child run, then
428 the parent stays blocked. If we're telling the parent to run
429 in the foreground, the user will not be able to ctrl-c to get
430 back the terminal, effectively hanging the debug session. */
431 fprintf_filtered (gdb_stderr, _("\
432 Can not resume the parent process over vfork in the foreground while\n\
433 holding the child stopped. Try \"set detach-on-fork\" or \
434 \"set schedule-multiple\".\n"));
435 /* FIXME output string > 80 columns. */
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
444 struct cleanup *old_chain;
445
446 /* Before detaching from the child, remove all breakpoints
447 from it. If we forked, then this has already been taken
448 care of by infrun.c. If we vforked however, any
449 breakpoint inserted in the parent is visible in the
450 child, even those added while stopped in a vfork
451 catchpoint. This will remove the breakpoints from the
452 parent also, but they'll be reinserted below. */
453 if (has_vforked)
454 {
455 /* Keep breakpoints list in sync. */
456 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
457 }
458
459 if (info_verbose || debug_infrun)
460 {
461 target_terminal_ours ();
462 fprintf_filtered (gdb_stdlog,
463 "Detaching after fork from "
464 "child process %d.\n",
465 child_pid);
466 }
467 }
468 else
469 {
470 struct inferior *parent_inf, *child_inf;
471 struct cleanup *old_chain;
472
473 /* Add process to GDB's tables. */
474 child_inf = add_inferior (child_pid);
475
476 parent_inf = current_inferior ();
477 child_inf->attach_flag = parent_inf->attach_flag;
478 copy_terminal_info (child_inf, parent_inf);
479 child_inf->gdbarch = parent_inf->gdbarch;
480 copy_inferior_target_desc_info (child_inf, parent_inf);
481
482 old_chain = save_inferior_ptid ();
483 save_current_program_space ();
484
485 inferior_ptid = ptid_build (child_pid, child_pid, 0);
486 add_thread (inferior_ptid);
487 child_inf->symfile_flags = SYMFILE_NO_READ;
488
489 /* If this is a vfork child, then the address-space is
490 shared with the parent. */
491 if (has_vforked)
492 {
493 child_inf->pspace = parent_inf->pspace;
494 child_inf->aspace = parent_inf->aspace;
495
496 /* The parent will be frozen until the child is done
497 with the shared region. Keep track of the
498 parent. */
499 child_inf->vfork_parent = parent_inf;
500 child_inf->pending_detach = 0;
501 parent_inf->vfork_child = child_inf;
502 parent_inf->pending_detach = 0;
503 }
504 else
505 {
506 child_inf->aspace = new_address_space ();
507 child_inf->pspace = add_program_space (child_inf->aspace);
508 child_inf->removable = 1;
509 set_current_program_space (child_inf->pspace);
510 clone_program_space (child_inf->pspace, parent_inf->pspace);
511
512 /* Let the shared library layer (e.g., solib-svr4) learn
513 about this new process, relocate the cloned exec, pull
514 in shared libraries, and install the solib event
515 breakpoint. If a "cloned-VM" event was propagated
516 better throughout the core, this wouldn't be
517 required. */
518 solib_create_inferior_hook (0);
519 }
520
521 do_cleanups (old_chain);
522 }
523
524 if (has_vforked)
525 {
526 struct inferior *parent_inf;
527
528 parent_inf = current_inferior ();
529
530 /* If we detached from the child, then we have to be careful
531 to not insert breakpoints in the parent until the child
532 is done with the shared memory region. However, if we're
533 staying attached to the child, then we can and should
534 insert breakpoints, so that we can debug it. A
535 subsequent child exec or exit is enough to know when does
536 the child stops using the parent's address space. */
537 parent_inf->waiting_for_vfork_done = detach_fork;
538 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
539 }
540 }
541 else
542 {
543 /* Follow the child. */
544 struct inferior *parent_inf, *child_inf;
545 struct program_space *parent_pspace;
546
547 if (info_verbose || debug_infrun)
548 {
549 target_terminal_ours ();
550 if (has_vforked)
551 fprintf_filtered (gdb_stdlog,
552 _("Attaching after process %d "
553 "vfork to child process %d.\n"),
554 parent_pid, child_pid);
555 else
556 fprintf_filtered (gdb_stdlog,
557 _("Attaching after process %d "
558 "fork to child process %d.\n"),
559 parent_pid, child_pid);
560 }
561
562 /* Add the new inferior first, so that the target_detach below
563 doesn't unpush the target. */
564
565 child_inf = add_inferior (child_pid);
566
567 parent_inf = current_inferior ();
568 child_inf->attach_flag = parent_inf->attach_flag;
569 copy_terminal_info (child_inf, parent_inf);
570 child_inf->gdbarch = parent_inf->gdbarch;
571 copy_inferior_target_desc_info (child_inf, parent_inf);
572
573 parent_pspace = parent_inf->pspace;
574
575 /* If we're vforking, we want to hold on to the parent until the
576 child exits or execs. At child exec or exit time we can
577 remove the old breakpoints from the parent and detach or
578 resume debugging it. Otherwise, detach the parent now; we'll
579 want to reuse it's program/address spaces, but we can't set
580 them to the child before removing breakpoints from the
581 parent, otherwise, the breakpoints module could decide to
582 remove breakpoints from the wrong process (since they'd be
583 assigned to the same address space). */
584
585 if (has_vforked)
586 {
587 gdb_assert (child_inf->vfork_parent == NULL);
588 gdb_assert (parent_inf->vfork_child == NULL);
589 child_inf->vfork_parent = parent_inf;
590 child_inf->pending_detach = 0;
591 parent_inf->vfork_child = child_inf;
592 parent_inf->pending_detach = detach_fork;
593 parent_inf->waiting_for_vfork_done = 0;
594 }
595 else if (detach_fork)
596 target_detach (NULL, 0);
597
598 /* Note that the detach above makes PARENT_INF dangling. */
599
600 /* Add the child thread to the appropriate lists, and switch to
601 this new thread, before cloning the program space, and
602 informing the solib layer about this new process. */
603
604 inferior_ptid = ptid_build (child_pid, child_pid, 0);
605 add_thread (inferior_ptid);
606
607 /* If this is a vfork child, then the address-space is shared
608 with the parent. If we detached from the parent, then we can
609 reuse the parent's program/address spaces. */
610 if (has_vforked || detach_fork)
611 {
612 child_inf->pspace = parent_pspace;
613 child_inf->aspace = child_inf->pspace->aspace;
614 }
615 else
616 {
617 child_inf->aspace = new_address_space ();
618 child_inf->pspace = add_program_space (child_inf->aspace);
619 child_inf->removable = 1;
620 child_inf->symfile_flags = SYMFILE_NO_READ;
621 set_current_program_space (child_inf->pspace);
622 clone_program_space (child_inf->pspace, parent_pspace);
623
624 /* Let the shared library layer (e.g., solib-svr4) learn
625 about this new process, relocate the cloned exec, pull in
626 shared libraries, and install the solib event breakpoint.
627 If a "cloned-VM" event was propagated better throughout
628 the core, this wouldn't be required. */
629 solib_create_inferior_hook (0);
630 }
631 }
632
633 return target_follow_fork (follow_child, detach_fork);
634 }
635
636 /* Tell the target to follow the fork we're stopped at. Returns true
637 if the inferior should be resumed; false, if the target for some
638 reason decided it's best not to resume. */
639
640 static int
641 follow_fork (void)
642 {
643 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
644 int should_resume = 1;
645 struct thread_info *tp;
646
647 /* Copy user stepping state to the new inferior thread. FIXME: the
648 followed fork child thread should have a copy of most of the
649 parent thread structure's run control related fields, not just these.
650 Initialized to avoid "may be used uninitialized" warnings from gcc. */
651 struct breakpoint *step_resume_breakpoint = NULL;
652 struct breakpoint *exception_resume_breakpoint = NULL;
653 CORE_ADDR step_range_start = 0;
654 CORE_ADDR step_range_end = 0;
655 struct frame_id step_frame_id = { 0 };
656 struct interp *command_interp = NULL;
657
658 if (!non_stop)
659 {
660 ptid_t wait_ptid;
661 struct target_waitstatus wait_status;
662
663 /* Get the last target status returned by target_wait(). */
664 get_last_target_status (&wait_ptid, &wait_status);
665
666 /* If not stopped at a fork event, then there's nothing else to
667 do. */
668 if (wait_status.kind != TARGET_WAITKIND_FORKED
669 && wait_status.kind != TARGET_WAITKIND_VFORKED)
670 return 1;
671
672 /* Check if we switched over from WAIT_PTID, since the event was
673 reported. */
674 if (!ptid_equal (wait_ptid, minus_one_ptid)
675 && !ptid_equal (inferior_ptid, wait_ptid))
676 {
677 /* We did. Switch back to WAIT_PTID thread, to tell the
678 target to follow it (in either direction). We'll
679 afterwards refuse to resume, and inform the user what
680 happened. */
681 switch_to_thread (wait_ptid);
682 should_resume = 0;
683 }
684 }
685
686 tp = inferior_thread ();
687
688 /* If there were any forks/vforks that were caught and are now to be
689 followed, then do so now. */
690 switch (tp->pending_follow.kind)
691 {
692 case TARGET_WAITKIND_FORKED:
693 case TARGET_WAITKIND_VFORKED:
694 {
695 ptid_t parent, child;
696
697 /* If the user did a next/step, etc, over a fork call,
698 preserve the stepping state in the fork child. */
699 if (follow_child && should_resume)
700 {
701 step_resume_breakpoint = clone_momentary_breakpoint
702 (tp->control.step_resume_breakpoint);
703 step_range_start = tp->control.step_range_start;
704 step_range_end = tp->control.step_range_end;
705 step_frame_id = tp->control.step_frame_id;
706 exception_resume_breakpoint
707 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
708 command_interp = tp->control.command_interp;
709
710 /* For now, delete the parent's sr breakpoint, otherwise,
711 parent/child sr breakpoints are considered duplicates,
712 and the child version will not be installed. Remove
713 this when the breakpoints module becomes aware of
714 inferiors and address spaces. */
715 delete_step_resume_breakpoint (tp);
716 tp->control.step_range_start = 0;
717 tp->control.step_range_end = 0;
718 tp->control.step_frame_id = null_frame_id;
719 delete_exception_resume_breakpoint (tp);
720 tp->control.command_interp = NULL;
721 }
722
723 parent = inferior_ptid;
724 child = tp->pending_follow.value.related_pid;
725
726 /* Set up inferior(s) as specified by the caller, and tell the
727 target to do whatever is necessary to follow either parent
728 or child. */
729 if (follow_fork_inferior (follow_child, detach_fork))
730 {
731 /* Target refused to follow, or there's some other reason
732 we shouldn't resume. */
733 should_resume = 0;
734 }
735 else
736 {
737 /* This pending follow fork event is now handled, one way
738 or another. The previous selected thread may be gone
739 from the lists by now, but if it is still around, need
740 to clear the pending follow request. */
741 tp = find_thread_ptid (parent);
742 if (tp)
743 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
744
745 /* This makes sure we don't try to apply the "Switched
746 over from WAIT_PID" logic above. */
747 nullify_last_target_wait_ptid ();
748
749 /* If we followed the child, switch to it... */
750 if (follow_child)
751 {
752 switch_to_thread (child);
753
754 /* ... and preserve the stepping state, in case the
755 user was stepping over the fork call. */
756 if (should_resume)
757 {
758 tp = inferior_thread ();
759 tp->control.step_resume_breakpoint
760 = step_resume_breakpoint;
761 tp->control.step_range_start = step_range_start;
762 tp->control.step_range_end = step_range_end;
763 tp->control.step_frame_id = step_frame_id;
764 tp->control.exception_resume_breakpoint
765 = exception_resume_breakpoint;
766 tp->control.command_interp = command_interp;
767 }
768 else
769 {
770 /* If we get here, it was because we're trying to
771 resume from a fork catchpoint, but, the user
772 has switched threads away from the thread that
773 forked. In that case, the resume command
774 issued is most likely not applicable to the
775 child, so just warn, and refuse to resume. */
776 warning (_("Not resuming: switched threads "
777 "before following fork child.\n"));
778 }
779
780 /* Reset breakpoints in the child as appropriate. */
781 follow_inferior_reset_breakpoints ();
782 }
783 else
784 switch_to_thread (parent);
785 }
786 }
787 break;
788 case TARGET_WAITKIND_SPURIOUS:
789 /* Nothing to follow. */
790 break;
791 default:
792 internal_error (__FILE__, __LINE__,
793 "Unexpected pending_follow.kind %d\n",
794 tp->pending_follow.kind);
795 break;
796 }
797
798 return should_resume;
799 }
800
801 static void
802 follow_inferior_reset_breakpoints (void)
803 {
804 struct thread_info *tp = inferior_thread ();
805
806 /* Was there a step_resume breakpoint? (There was if the user
807 did a "next" at the fork() call.) If so, explicitly reset its
808 thread number. Cloned step_resume breakpoints are disabled on
809 creation, so enable it here now that it is associated with the
810 correct thread.
811
812 step_resumes are a form of bp that are made to be per-thread.
813 Since we created the step_resume bp when the parent process
814 was being debugged, and now are switching to the child process,
815 from the breakpoint package's viewpoint, that's a switch of
816 "threads". We must update the bp's notion of which thread
817 it is for, or it'll be ignored when it triggers. */
818
819 if (tp->control.step_resume_breakpoint)
820 {
821 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
822 tp->control.step_resume_breakpoint->loc->enabled = 1;
823 }
824
825 /* Treat exception_resume breakpoints like step_resume breakpoints. */
826 if (tp->control.exception_resume_breakpoint)
827 {
828 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
829 tp->control.exception_resume_breakpoint->loc->enabled = 1;
830 }
831
832 /* Reinsert all breakpoints in the child. The user may have set
833 breakpoints after catching the fork, in which case those
834 were never set in the child, but only in the parent. This makes
835 sure the inserted breakpoints match the breakpoint list. */
836
837 breakpoint_re_set ();
838 insert_breakpoints ();
839 }
840
841 /* The child has exited or execed: resume threads of the parent the
842 user wanted to be executing. */
843
844 static int
845 proceed_after_vfork_done (struct thread_info *thread,
846 void *arg)
847 {
848 int pid = * (int *) arg;
849
850 if (ptid_get_pid (thread->ptid) == pid
851 && is_running (thread->ptid)
852 && !is_executing (thread->ptid)
853 && !thread->stop_requested
854 && thread->suspend.stop_signal == GDB_SIGNAL_0)
855 {
856 if (debug_infrun)
857 fprintf_unfiltered (gdb_stdlog,
858 "infrun: resuming vfork parent thread %s\n",
859 target_pid_to_str (thread->ptid));
860
861 switch_to_thread (thread->ptid);
862 clear_proceed_status (0);
863 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
864 }
865
866 return 0;
867 }
868
869 /* Called whenever we notice an exec or exit event, to handle
870 detaching or resuming a vfork parent. */
871
872 static void
873 handle_vfork_child_exec_or_exit (int exec)
874 {
875 struct inferior *inf = current_inferior ();
876
877 if (inf->vfork_parent)
878 {
879 int resume_parent = -1;
880
881 /* This exec or exit marks the end of the shared memory region
882 between the parent and the child. If the user wanted to
883 detach from the parent, now is the time. */
884
885 if (inf->vfork_parent->pending_detach)
886 {
887 struct thread_info *tp;
888 struct cleanup *old_chain;
889 struct program_space *pspace;
890 struct address_space *aspace;
891
892 /* follow-fork child, detach-on-fork on. */
893
894 inf->vfork_parent->pending_detach = 0;
895
896 if (!exec)
897 {
898 /* If we're handling a child exit, then inferior_ptid
899 points at the inferior's pid, not to a thread. */
900 old_chain = save_inferior_ptid ();
901 save_current_program_space ();
902 save_current_inferior ();
903 }
904 else
905 old_chain = save_current_space_and_thread ();
906
907 /* We're letting loose of the parent. */
908 tp = any_live_thread_of_process (inf->vfork_parent->pid);
909 switch_to_thread (tp->ptid);
910
911 /* We're about to detach from the parent, which implicitly
912 removes breakpoints from its address space. There's a
913 catch here: we want to reuse the spaces for the child,
914 but, parent/child are still sharing the pspace at this
915 point, although the exec in reality makes the kernel give
916 the child a fresh set of new pages. The problem here is
917 that the breakpoints module being unaware of this, would
918 likely chose the child process to write to the parent
919 address space. Swapping the child temporarily away from
920 the spaces has the desired effect. Yes, this is "sort
921 of" a hack. */
922
923 pspace = inf->pspace;
924 aspace = inf->aspace;
925 inf->aspace = NULL;
926 inf->pspace = NULL;
927
928 if (debug_infrun || info_verbose)
929 {
930 target_terminal_ours ();
931
932 if (exec)
933 fprintf_filtered (gdb_stdlog,
934 "Detaching vfork parent process "
935 "%d after child exec.\n",
936 inf->vfork_parent->pid);
937 else
938 fprintf_filtered (gdb_stdlog,
939 "Detaching vfork parent process "
940 "%d after child exit.\n",
941 inf->vfork_parent->pid);
942 }
943
944 target_detach (NULL, 0);
945
946 /* Put it back. */
947 inf->pspace = pspace;
948 inf->aspace = aspace;
949
950 do_cleanups (old_chain);
951 }
952 else if (exec)
953 {
954 /* We're staying attached to the parent, so, really give the
955 child a new address space. */
956 inf->pspace = add_program_space (maybe_new_address_space ());
957 inf->aspace = inf->pspace->aspace;
958 inf->removable = 1;
959 set_current_program_space (inf->pspace);
960
961 resume_parent = inf->vfork_parent->pid;
962
963 /* Break the bonds. */
964 inf->vfork_parent->vfork_child = NULL;
965 }
966 else
967 {
968 struct cleanup *old_chain;
969 struct program_space *pspace;
970
971 /* If this is a vfork child exiting, then the pspace and
972 aspaces were shared with the parent. Since we're
973 reporting the process exit, we'll be mourning all that is
974 found in the address space, and switching to null_ptid,
975 preparing to start a new inferior. But, since we don't
976 want to clobber the parent's address/program spaces, we
977 go ahead and create a new one for this exiting
978 inferior. */
979
980 /* Switch to null_ptid, so that clone_program_space doesn't want
981 to read the selected frame of a dead process. */
982 old_chain = save_inferior_ptid ();
983 inferior_ptid = null_ptid;
984
985 /* This inferior is dead, so avoid giving the breakpoints
986 module the option to write through to it (cloning a
987 program space resets breakpoints). */
988 inf->aspace = NULL;
989 inf->pspace = NULL;
990 pspace = add_program_space (maybe_new_address_space ());
991 set_current_program_space (pspace);
992 inf->removable = 1;
993 inf->symfile_flags = SYMFILE_NO_READ;
994 clone_program_space (pspace, inf->vfork_parent->pspace);
995 inf->pspace = pspace;
996 inf->aspace = pspace->aspace;
997
998 /* Put back inferior_ptid. We'll continue mourning this
999 inferior. */
1000 do_cleanups (old_chain);
1001
1002 resume_parent = inf->vfork_parent->pid;
1003 /* Break the bonds. */
1004 inf->vfork_parent->vfork_child = NULL;
1005 }
1006
1007 inf->vfork_parent = NULL;
1008
1009 gdb_assert (current_program_space == inf->pspace);
1010
1011 if (non_stop && resume_parent != -1)
1012 {
1013 /* If the user wanted the parent to be running, let it go
1014 free now. */
1015 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1016
1017 if (debug_infrun)
1018 fprintf_unfiltered (gdb_stdlog,
1019 "infrun: resuming vfork parent process %d\n",
1020 resume_parent);
1021
1022 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1023
1024 do_cleanups (old_chain);
1025 }
1026 }
1027 }
1028
1029 /* Enum strings for "set|show follow-exec-mode". */
1030
1031 static const char follow_exec_mode_new[] = "new";
1032 static const char follow_exec_mode_same[] = "same";
1033 static const char *const follow_exec_mode_names[] =
1034 {
1035 follow_exec_mode_new,
1036 follow_exec_mode_same,
1037 NULL,
1038 };
1039
1040 static const char *follow_exec_mode_string = follow_exec_mode_same;
1041 static void
1042 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1043 struct cmd_list_element *c, const char *value)
1044 {
1045 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1046 }
1047
1048 /* EXECD_PATHNAME is assumed to be non-NULL. */
1049
1050 static void
1051 follow_exec (ptid_t pid, char *execd_pathname)
1052 {
1053 struct thread_info *th = inferior_thread ();
1054 struct inferior *inf = current_inferior ();
1055
1056 /* This is an exec event that we actually wish to pay attention to.
1057 Refresh our symbol table to the newly exec'd program, remove any
1058 momentary bp's, etc.
1059
1060 If there are breakpoints, they aren't really inserted now,
1061 since the exec() transformed our inferior into a fresh set
1062 of instructions.
1063
1064 We want to preserve symbolic breakpoints on the list, since
1065 we have hopes that they can be reset after the new a.out's
1066 symbol table is read.
1067
1068 However, any "raw" breakpoints must be removed from the list
1069 (e.g., the solib bp's), since their address is probably invalid
1070 now.
1071
1072 And, we DON'T want to call delete_breakpoints() here, since
1073 that may write the bp's "shadow contents" (the instruction
1074 value that was overwritten witha TRAP instruction). Since
1075 we now have a new a.out, those shadow contents aren't valid. */
1076
1077 mark_breakpoints_out ();
1078
1079 update_breakpoints_after_exec ();
1080
1081 /* If there was one, it's gone now. We cannot truly step-to-next
1082 statement through an exec(). */
1083 th->control.step_resume_breakpoint = NULL;
1084 th->control.exception_resume_breakpoint = NULL;
1085 th->control.step_range_start = 0;
1086 th->control.step_range_end = 0;
1087
1088 /* The target reports the exec event to the main thread, even if
1089 some other thread does the exec, and even if the main thread was
1090 already stopped --- if debugging in non-stop mode, it's possible
1091 the user had the main thread held stopped in the previous image
1092 --- release it now. This is the same behavior as step-over-exec
1093 with scheduler-locking on in all-stop mode. */
1094 th->stop_requested = 0;
1095
1096 /* What is this a.out's name? */
1097 printf_unfiltered (_("%s is executing new program: %s\n"),
1098 target_pid_to_str (inferior_ptid),
1099 execd_pathname);
1100
1101 /* We've followed the inferior through an exec. Therefore, the
1102 inferior has essentially been killed & reborn. */
1103
1104 gdb_flush (gdb_stdout);
1105
1106 breakpoint_init_inferior (inf_execd);
1107
1108 if (gdb_sysroot && *gdb_sysroot)
1109 {
1110 char *name = alloca (strlen (gdb_sysroot)
1111 + strlen (execd_pathname)
1112 + 1);
1113
1114 strcpy (name, gdb_sysroot);
1115 strcat (name, execd_pathname);
1116 execd_pathname = name;
1117 }
1118
1119 /* Reset the shared library package. This ensures that we get a
1120 shlib event when the child reaches "_start", at which point the
1121 dld will have had a chance to initialize the child. */
1122 /* Also, loading a symbol file below may trigger symbol lookups, and
1123 we don't want those to be satisfied by the libraries of the
1124 previous incarnation of this process. */
1125 no_shared_libraries (NULL, 0);
1126
1127 if (follow_exec_mode_string == follow_exec_mode_new)
1128 {
1129 struct program_space *pspace;
1130
1131 /* The user wants to keep the old inferior and program spaces
1132 around. Create a new fresh one, and switch to it. */
1133
1134 inf = add_inferior (current_inferior ()->pid);
1135 pspace = add_program_space (maybe_new_address_space ());
1136 inf->pspace = pspace;
1137 inf->aspace = pspace->aspace;
1138
1139 exit_inferior_num_silent (current_inferior ()->num);
1140
1141 set_current_inferior (inf);
1142 set_current_program_space (pspace);
1143 }
1144 else
1145 {
1146 /* The old description may no longer be fit for the new image.
1147 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1148 old description; we'll read a new one below. No need to do
1149 this on "follow-exec-mode new", as the old inferior stays
1150 around (its description is later cleared/refetched on
1151 restart). */
1152 target_clear_description ();
1153 }
1154
1155 gdb_assert (current_program_space == inf->pspace);
1156
1157 /* That a.out is now the one to use. */
1158 exec_file_attach (execd_pathname, 0);
1159
1160 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1161 (Position Independent Executable) main symbol file will get applied by
1162 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1163 the breakpoints with the zero displacement. */
1164
1165 symbol_file_add (execd_pathname,
1166 (inf->symfile_flags
1167 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
1168 NULL, 0);
1169
1170 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1171 set_initial_language ();
1172
1173 /* If the target can specify a description, read it. Must do this
1174 after flipping to the new executable (because the target supplied
1175 description must be compatible with the executable's
1176 architecture, and the old executable may e.g., be 32-bit, while
1177 the new one 64-bit), and before anything involving memory or
1178 registers. */
1179 target_find_description ();
1180
1181 solib_create_inferior_hook (0);
1182
1183 jit_inferior_created_hook ();
1184
1185 breakpoint_re_set ();
1186
1187 /* Reinsert all breakpoints. (Those which were symbolic have
1188 been reset to the proper address in the new a.out, thanks
1189 to symbol_file_command...). */
1190 insert_breakpoints ();
1191
1192 /* The next resume of this inferior should bring it to the shlib
1193 startup breakpoints. (If the user had also set bp's on
1194 "main" from the old (parent) process, then they'll auto-
1195 matically get reset there in the new process.). */
1196 }
1197
1198 /* Non-zero if we just simulating a single-step. This is needed
1199 because we cannot remove the breakpoints in the inferior process
1200 until after the `wait' in `wait_for_inferior'. */
1201 static int singlestep_breakpoints_inserted_p = 0;
1202
1203 /* The thread we inserted single-step breakpoints for. */
1204 static ptid_t singlestep_ptid;
1205
1206 /* PC when we started this single-step. */
1207 static CORE_ADDR singlestep_pc;
1208
1209 /* Info about an instruction that is being stepped over. */
1210
1211 struct step_over_info
1212 {
1213 /* If we're stepping past a breakpoint, this is the address space
1214 and address of the instruction the breakpoint is set at. We'll
1215 skip inserting all breakpoints here. Valid iff ASPACE is
1216 non-NULL. */
1217 struct address_space *aspace;
1218 CORE_ADDR address;
1219
1220 /* The instruction being stepped over triggers a nonsteppable
1221 watchpoint. If true, we'll skip inserting watchpoints. */
1222 int nonsteppable_watchpoint_p;
1223 };
1224
1225 /* The step-over info of the location that is being stepped over.
1226
1227 Note that with async/breakpoint always-inserted mode, a user might
1228 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1229 being stepped over. As setting a new breakpoint inserts all
1230 breakpoints, we need to make sure the breakpoint being stepped over
1231 isn't inserted then. We do that by only clearing the step-over
1232 info when the step-over is actually finished (or aborted).
1233
1234 Presently GDB can only step over one breakpoint at any given time.
1235 Given threads that can't run code in the same address space as the
1236 breakpoint's can't really miss the breakpoint, GDB could be taught
1237 to step-over at most one breakpoint per address space (so this info
1238 could move to the address space object if/when GDB is extended).
1239 The set of breakpoints being stepped over will normally be much
1240 smaller than the set of all breakpoints, so a flag in the
1241 breakpoint location structure would be wasteful. A separate list
1242 also saves complexity and run-time, as otherwise we'd have to go
1243 through all breakpoint locations clearing their flag whenever we
1244 start a new sequence. Similar considerations weigh against storing
1245 this info in the thread object. Plus, not all step overs actually
1246 have breakpoint locations -- e.g., stepping past a single-step
1247 breakpoint, or stepping to complete a non-continuable
1248 watchpoint. */
1249 static struct step_over_info step_over_info;
1250
1251 /* Record the address of the breakpoint/instruction we're currently
1252 stepping over. */
1253
1254 static void
1255 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1256 int nonsteppable_watchpoint_p)
1257 {
1258 step_over_info.aspace = aspace;
1259 step_over_info.address = address;
1260 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1261 }
1262
1263 /* Called when we're not longer stepping over a breakpoint / an
1264 instruction, so all breakpoints are free to be (re)inserted. */
1265
1266 static void
1267 clear_step_over_info (void)
1268 {
1269 step_over_info.aspace = NULL;
1270 step_over_info.address = 0;
1271 step_over_info.nonsteppable_watchpoint_p = 0;
1272 }
1273
1274 /* See infrun.h. */
1275
1276 int
1277 stepping_past_instruction_at (struct address_space *aspace,
1278 CORE_ADDR address)
1279 {
1280 return (step_over_info.aspace != NULL
1281 && breakpoint_address_match (aspace, address,
1282 step_over_info.aspace,
1283 step_over_info.address));
1284 }
1285
1286 /* See infrun.h. */
1287
1288 int
1289 stepping_past_nonsteppable_watchpoint (void)
1290 {
1291 return step_over_info.nonsteppable_watchpoint_p;
1292 }
1293
1294 /* Returns true if step-over info is valid. */
1295
1296 static int
1297 step_over_info_valid_p (void)
1298 {
1299 return (step_over_info.aspace != NULL
1300 || stepping_past_nonsteppable_watchpoint ());
1301 }
1302
1303 \f
1304 /* Displaced stepping. */
1305
1306 /* In non-stop debugging mode, we must take special care to manage
1307 breakpoints properly; in particular, the traditional strategy for
1308 stepping a thread past a breakpoint it has hit is unsuitable.
1309 'Displaced stepping' is a tactic for stepping one thread past a
1310 breakpoint it has hit while ensuring that other threads running
1311 concurrently will hit the breakpoint as they should.
1312
1313 The traditional way to step a thread T off a breakpoint in a
1314 multi-threaded program in all-stop mode is as follows:
1315
1316 a0) Initially, all threads are stopped, and breakpoints are not
1317 inserted.
1318 a1) We single-step T, leaving breakpoints uninserted.
1319 a2) We insert breakpoints, and resume all threads.
1320
1321 In non-stop debugging, however, this strategy is unsuitable: we
1322 don't want to have to stop all threads in the system in order to
1323 continue or step T past a breakpoint. Instead, we use displaced
1324 stepping:
1325
1326 n0) Initially, T is stopped, other threads are running, and
1327 breakpoints are inserted.
1328 n1) We copy the instruction "under" the breakpoint to a separate
1329 location, outside the main code stream, making any adjustments
1330 to the instruction, register, and memory state as directed by
1331 T's architecture.
1332 n2) We single-step T over the instruction at its new location.
1333 n3) We adjust the resulting register and memory state as directed
1334 by T's architecture. This includes resetting T's PC to point
1335 back into the main instruction stream.
1336 n4) We resume T.
1337
1338 This approach depends on the following gdbarch methods:
1339
1340 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1341 indicate where to copy the instruction, and how much space must
1342 be reserved there. We use these in step n1.
1343
1344 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1345 address, and makes any necessary adjustments to the instruction,
1346 register contents, and memory. We use this in step n1.
1347
1348 - gdbarch_displaced_step_fixup adjusts registers and memory after
1349 we have successfuly single-stepped the instruction, to yield the
1350 same effect the instruction would have had if we had executed it
1351 at its original address. We use this in step n3.
1352
1353 - gdbarch_displaced_step_free_closure provides cleanup.
1354
1355 The gdbarch_displaced_step_copy_insn and
1356 gdbarch_displaced_step_fixup functions must be written so that
1357 copying an instruction with gdbarch_displaced_step_copy_insn,
1358 single-stepping across the copied instruction, and then applying
1359 gdbarch_displaced_insn_fixup should have the same effects on the
1360 thread's memory and registers as stepping the instruction in place
1361 would have. Exactly which responsibilities fall to the copy and
1362 which fall to the fixup is up to the author of those functions.
1363
1364 See the comments in gdbarch.sh for details.
1365
1366 Note that displaced stepping and software single-step cannot
1367 currently be used in combination, although with some care I think
1368 they could be made to. Software single-step works by placing
1369 breakpoints on all possible subsequent instructions; if the
1370 displaced instruction is a PC-relative jump, those breakpoints
1371 could fall in very strange places --- on pages that aren't
1372 executable, or at addresses that are not proper instruction
1373 boundaries. (We do generally let other threads run while we wait
1374 to hit the software single-step breakpoint, and they might
1375 encounter such a corrupted instruction.) One way to work around
1376 this would be to have gdbarch_displaced_step_copy_insn fully
1377 simulate the effect of PC-relative instructions (and return NULL)
1378 on architectures that use software single-stepping.
1379
1380 In non-stop mode, we can have independent and simultaneous step
1381 requests, so more than one thread may need to simultaneously step
1382 over a breakpoint. The current implementation assumes there is
1383 only one scratch space per process. In this case, we have to
1384 serialize access to the scratch space. If thread A wants to step
1385 over a breakpoint, but we are currently waiting for some other
1386 thread to complete a displaced step, we leave thread A stopped and
1387 place it in the displaced_step_request_queue. Whenever a displaced
1388 step finishes, we pick the next thread in the queue and start a new
1389 displaced step operation on it. See displaced_step_prepare and
1390 displaced_step_fixup for details. */
1391
1392 struct displaced_step_request
1393 {
1394 ptid_t ptid;
1395 struct displaced_step_request *next;
1396 };
1397
1398 /* Per-inferior displaced stepping state. */
1399 struct displaced_step_inferior_state
1400 {
1401 /* Pointer to next in linked list. */
1402 struct displaced_step_inferior_state *next;
1403
1404 /* The process this displaced step state refers to. */
1405 int pid;
1406
1407 /* A queue of pending displaced stepping requests. One entry per
1408 thread that needs to do a displaced step. */
1409 struct displaced_step_request *step_request_queue;
1410
1411 /* If this is not null_ptid, this is the thread carrying out a
1412 displaced single-step in process PID. This thread's state will
1413 require fixing up once it has completed its step. */
1414 ptid_t step_ptid;
1415
1416 /* The architecture the thread had when we stepped it. */
1417 struct gdbarch *step_gdbarch;
1418
1419 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1420 for post-step cleanup. */
1421 struct displaced_step_closure *step_closure;
1422
1423 /* The address of the original instruction, and the copy we
1424 made. */
1425 CORE_ADDR step_original, step_copy;
1426
1427 /* Saved contents of copy area. */
1428 gdb_byte *step_saved_copy;
1429 };
1430
1431 /* The list of states of processes involved in displaced stepping
1432 presently. */
1433 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1434
1435 /* Get the displaced stepping state of process PID. */
1436
1437 static struct displaced_step_inferior_state *
1438 get_displaced_stepping_state (int pid)
1439 {
1440 struct displaced_step_inferior_state *state;
1441
1442 for (state = displaced_step_inferior_states;
1443 state != NULL;
1444 state = state->next)
1445 if (state->pid == pid)
1446 return state;
1447
1448 return NULL;
1449 }
1450
1451 /* Add a new displaced stepping state for process PID to the displaced
1452 stepping state list, or return a pointer to an already existing
1453 entry, if it already exists. Never returns NULL. */
1454
1455 static struct displaced_step_inferior_state *
1456 add_displaced_stepping_state (int pid)
1457 {
1458 struct displaced_step_inferior_state *state;
1459
1460 for (state = displaced_step_inferior_states;
1461 state != NULL;
1462 state = state->next)
1463 if (state->pid == pid)
1464 return state;
1465
1466 state = xcalloc (1, sizeof (*state));
1467 state->pid = pid;
1468 state->next = displaced_step_inferior_states;
1469 displaced_step_inferior_states = state;
1470
1471 return state;
1472 }
1473
1474 /* If inferior is in displaced stepping, and ADDR equals to starting address
1475 of copy area, return corresponding displaced_step_closure. Otherwise,
1476 return NULL. */
1477
1478 struct displaced_step_closure*
1479 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1480 {
1481 struct displaced_step_inferior_state *displaced
1482 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1483
1484 /* If checking the mode of displaced instruction in copy area. */
1485 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1486 && (displaced->step_copy == addr))
1487 return displaced->step_closure;
1488
1489 return NULL;
1490 }
1491
1492 /* Remove the displaced stepping state of process PID. */
1493
1494 static void
1495 remove_displaced_stepping_state (int pid)
1496 {
1497 struct displaced_step_inferior_state *it, **prev_next_p;
1498
1499 gdb_assert (pid != 0);
1500
1501 it = displaced_step_inferior_states;
1502 prev_next_p = &displaced_step_inferior_states;
1503 while (it)
1504 {
1505 if (it->pid == pid)
1506 {
1507 *prev_next_p = it->next;
1508 xfree (it);
1509 return;
1510 }
1511
1512 prev_next_p = &it->next;
1513 it = *prev_next_p;
1514 }
1515 }
1516
1517 static void
1518 infrun_inferior_exit (struct inferior *inf)
1519 {
1520 remove_displaced_stepping_state (inf->pid);
1521 }
1522
1523 /* If ON, and the architecture supports it, GDB will use displaced
1524 stepping to step over breakpoints. If OFF, or if the architecture
1525 doesn't support it, GDB will instead use the traditional
1526 hold-and-step approach. If AUTO (which is the default), GDB will
1527 decide which technique to use to step over breakpoints depending on
1528 which of all-stop or non-stop mode is active --- displaced stepping
1529 in non-stop mode; hold-and-step in all-stop mode. */
1530
1531 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1532
1533 static void
1534 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1535 struct cmd_list_element *c,
1536 const char *value)
1537 {
1538 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1539 fprintf_filtered (file,
1540 _("Debugger's willingness to use displaced stepping "
1541 "to step over breakpoints is %s (currently %s).\n"),
1542 value, non_stop ? "on" : "off");
1543 else
1544 fprintf_filtered (file,
1545 _("Debugger's willingness to use displaced stepping "
1546 "to step over breakpoints is %s.\n"), value);
1547 }
1548
1549 /* Return non-zero if displaced stepping can/should be used to step
1550 over breakpoints. */
1551
1552 static int
1553 use_displaced_stepping (struct gdbarch *gdbarch)
1554 {
1555 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1556 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1557 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1558 && find_record_target () == NULL);
1559 }
1560
1561 /* Clean out any stray displaced stepping state. */
1562 static void
1563 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1564 {
1565 /* Indicate that there is no cleanup pending. */
1566 displaced->step_ptid = null_ptid;
1567
1568 if (displaced->step_closure)
1569 {
1570 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1571 displaced->step_closure);
1572 displaced->step_closure = NULL;
1573 }
1574 }
1575
1576 static void
1577 displaced_step_clear_cleanup (void *arg)
1578 {
1579 struct displaced_step_inferior_state *state = arg;
1580
1581 displaced_step_clear (state);
1582 }
1583
1584 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1585 void
1586 displaced_step_dump_bytes (struct ui_file *file,
1587 const gdb_byte *buf,
1588 size_t len)
1589 {
1590 int i;
1591
1592 for (i = 0; i < len; i++)
1593 fprintf_unfiltered (file, "%02x ", buf[i]);
1594 fputs_unfiltered ("\n", file);
1595 }
1596
1597 /* Prepare to single-step, using displaced stepping.
1598
1599 Note that we cannot use displaced stepping when we have a signal to
1600 deliver. If we have a signal to deliver and an instruction to step
1601 over, then after the step, there will be no indication from the
1602 target whether the thread entered a signal handler or ignored the
1603 signal and stepped over the instruction successfully --- both cases
1604 result in a simple SIGTRAP. In the first case we mustn't do a
1605 fixup, and in the second case we must --- but we can't tell which.
1606 Comments in the code for 'random signals' in handle_inferior_event
1607 explain how we handle this case instead.
1608
1609 Returns 1 if preparing was successful -- this thread is going to be
1610 stepped now; or 0 if displaced stepping this thread got queued. */
1611 static int
1612 displaced_step_prepare (ptid_t ptid)
1613 {
1614 struct cleanup *old_cleanups, *ignore_cleanups;
1615 struct thread_info *tp = find_thread_ptid (ptid);
1616 struct regcache *regcache = get_thread_regcache (ptid);
1617 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1618 CORE_ADDR original, copy;
1619 ULONGEST len;
1620 struct displaced_step_closure *closure;
1621 struct displaced_step_inferior_state *displaced;
1622 int status;
1623
1624 /* We should never reach this function if the architecture does not
1625 support displaced stepping. */
1626 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1627
1628 /* Disable range stepping while executing in the scratch pad. We
1629 want a single-step even if executing the displaced instruction in
1630 the scratch buffer lands within the stepping range (e.g., a
1631 jump/branch). */
1632 tp->control.may_range_step = 0;
1633
1634 /* We have to displaced step one thread at a time, as we only have
1635 access to a single scratch space per inferior. */
1636
1637 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1638
1639 if (!ptid_equal (displaced->step_ptid, null_ptid))
1640 {
1641 /* Already waiting for a displaced step to finish. Defer this
1642 request and place in queue. */
1643 struct displaced_step_request *req, *new_req;
1644
1645 if (debug_displaced)
1646 fprintf_unfiltered (gdb_stdlog,
1647 "displaced: defering step of %s\n",
1648 target_pid_to_str (ptid));
1649
1650 new_req = xmalloc (sizeof (*new_req));
1651 new_req->ptid = ptid;
1652 new_req->next = NULL;
1653
1654 if (displaced->step_request_queue)
1655 {
1656 for (req = displaced->step_request_queue;
1657 req && req->next;
1658 req = req->next)
1659 ;
1660 req->next = new_req;
1661 }
1662 else
1663 displaced->step_request_queue = new_req;
1664
1665 return 0;
1666 }
1667 else
1668 {
1669 if (debug_displaced)
1670 fprintf_unfiltered (gdb_stdlog,
1671 "displaced: stepping %s now\n",
1672 target_pid_to_str (ptid));
1673 }
1674
1675 displaced_step_clear (displaced);
1676
1677 old_cleanups = save_inferior_ptid ();
1678 inferior_ptid = ptid;
1679
1680 original = regcache_read_pc (regcache);
1681
1682 copy = gdbarch_displaced_step_location (gdbarch);
1683 len = gdbarch_max_insn_length (gdbarch);
1684
1685 /* Save the original contents of the copy area. */
1686 displaced->step_saved_copy = xmalloc (len);
1687 ignore_cleanups = make_cleanup (free_current_contents,
1688 &displaced->step_saved_copy);
1689 status = target_read_memory (copy, displaced->step_saved_copy, len);
1690 if (status != 0)
1691 throw_error (MEMORY_ERROR,
1692 _("Error accessing memory address %s (%s) for "
1693 "displaced-stepping scratch space."),
1694 paddress (gdbarch, copy), safe_strerror (status));
1695 if (debug_displaced)
1696 {
1697 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1698 paddress (gdbarch, copy));
1699 displaced_step_dump_bytes (gdb_stdlog,
1700 displaced->step_saved_copy,
1701 len);
1702 };
1703
1704 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1705 original, copy, regcache);
1706
1707 /* We don't support the fully-simulated case at present. */
1708 gdb_assert (closure);
1709
1710 /* Save the information we need to fix things up if the step
1711 succeeds. */
1712 displaced->step_ptid = ptid;
1713 displaced->step_gdbarch = gdbarch;
1714 displaced->step_closure = closure;
1715 displaced->step_original = original;
1716 displaced->step_copy = copy;
1717
1718 make_cleanup (displaced_step_clear_cleanup, displaced);
1719
1720 /* Resume execution at the copy. */
1721 regcache_write_pc (regcache, copy);
1722
1723 discard_cleanups (ignore_cleanups);
1724
1725 do_cleanups (old_cleanups);
1726
1727 if (debug_displaced)
1728 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1729 paddress (gdbarch, copy));
1730
1731 return 1;
1732 }
1733
1734 static void
1735 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1736 const gdb_byte *myaddr, int len)
1737 {
1738 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1739
1740 inferior_ptid = ptid;
1741 write_memory (memaddr, myaddr, len);
1742 do_cleanups (ptid_cleanup);
1743 }
1744
1745 /* Restore the contents of the copy area for thread PTID. */
1746
1747 static void
1748 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1749 ptid_t ptid)
1750 {
1751 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1752
1753 write_memory_ptid (ptid, displaced->step_copy,
1754 displaced->step_saved_copy, len);
1755 if (debug_displaced)
1756 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1757 target_pid_to_str (ptid),
1758 paddress (displaced->step_gdbarch,
1759 displaced->step_copy));
1760 }
1761
1762 static void
1763 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1764 {
1765 struct cleanup *old_cleanups;
1766 struct displaced_step_inferior_state *displaced
1767 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1768
1769 /* Was any thread of this process doing a displaced step? */
1770 if (displaced == NULL)
1771 return;
1772
1773 /* Was this event for the pid we displaced? */
1774 if (ptid_equal (displaced->step_ptid, null_ptid)
1775 || ! ptid_equal (displaced->step_ptid, event_ptid))
1776 return;
1777
1778 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1779
1780 displaced_step_restore (displaced, displaced->step_ptid);
1781
1782 /* Did the instruction complete successfully? */
1783 if (signal == GDB_SIGNAL_TRAP)
1784 {
1785 /* Fix up the resulting state. */
1786 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1787 displaced->step_closure,
1788 displaced->step_original,
1789 displaced->step_copy,
1790 get_thread_regcache (displaced->step_ptid));
1791 }
1792 else
1793 {
1794 /* Since the instruction didn't complete, all we can do is
1795 relocate the PC. */
1796 struct regcache *regcache = get_thread_regcache (event_ptid);
1797 CORE_ADDR pc = regcache_read_pc (regcache);
1798
1799 pc = displaced->step_original + (pc - displaced->step_copy);
1800 regcache_write_pc (regcache, pc);
1801 }
1802
1803 do_cleanups (old_cleanups);
1804
1805 displaced->step_ptid = null_ptid;
1806
1807 /* Are there any pending displaced stepping requests? If so, run
1808 one now. Leave the state object around, since we're likely to
1809 need it again soon. */
1810 while (displaced->step_request_queue)
1811 {
1812 struct displaced_step_request *head;
1813 ptid_t ptid;
1814 struct regcache *regcache;
1815 struct gdbarch *gdbarch;
1816 CORE_ADDR actual_pc;
1817 struct address_space *aspace;
1818
1819 head = displaced->step_request_queue;
1820 ptid = head->ptid;
1821 displaced->step_request_queue = head->next;
1822 xfree (head);
1823
1824 context_switch (ptid);
1825
1826 regcache = get_thread_regcache (ptid);
1827 actual_pc = regcache_read_pc (regcache);
1828 aspace = get_regcache_aspace (regcache);
1829
1830 if (breakpoint_here_p (aspace, actual_pc))
1831 {
1832 if (debug_displaced)
1833 fprintf_unfiltered (gdb_stdlog,
1834 "displaced: stepping queued %s now\n",
1835 target_pid_to_str (ptid));
1836
1837 displaced_step_prepare (ptid);
1838
1839 gdbarch = get_regcache_arch (regcache);
1840
1841 if (debug_displaced)
1842 {
1843 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1844 gdb_byte buf[4];
1845
1846 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1847 paddress (gdbarch, actual_pc));
1848 read_memory (actual_pc, buf, sizeof (buf));
1849 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1850 }
1851
1852 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1853 displaced->step_closure))
1854 target_resume (ptid, 1, GDB_SIGNAL_0);
1855 else
1856 target_resume (ptid, 0, GDB_SIGNAL_0);
1857
1858 /* Done, we're stepping a thread. */
1859 break;
1860 }
1861 else
1862 {
1863 int step;
1864 struct thread_info *tp = inferior_thread ();
1865
1866 /* The breakpoint we were sitting under has since been
1867 removed. */
1868 tp->control.trap_expected = 0;
1869
1870 /* Go back to what we were trying to do. */
1871 step = currently_stepping (tp);
1872
1873 if (debug_displaced)
1874 fprintf_unfiltered (gdb_stdlog,
1875 "displaced: breakpoint is gone: %s, step(%d)\n",
1876 target_pid_to_str (tp->ptid), step);
1877
1878 target_resume (ptid, step, GDB_SIGNAL_0);
1879 tp->suspend.stop_signal = GDB_SIGNAL_0;
1880
1881 /* This request was discarded. See if there's any other
1882 thread waiting for its turn. */
1883 }
1884 }
1885 }
1886
1887 /* Update global variables holding ptids to hold NEW_PTID if they were
1888 holding OLD_PTID. */
1889 static void
1890 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1891 {
1892 struct displaced_step_request *it;
1893 struct displaced_step_inferior_state *displaced;
1894
1895 if (ptid_equal (inferior_ptid, old_ptid))
1896 inferior_ptid = new_ptid;
1897
1898 if (ptid_equal (singlestep_ptid, old_ptid))
1899 singlestep_ptid = new_ptid;
1900
1901 for (displaced = displaced_step_inferior_states;
1902 displaced;
1903 displaced = displaced->next)
1904 {
1905 if (ptid_equal (displaced->step_ptid, old_ptid))
1906 displaced->step_ptid = new_ptid;
1907
1908 for (it = displaced->step_request_queue; it; it = it->next)
1909 if (ptid_equal (it->ptid, old_ptid))
1910 it->ptid = new_ptid;
1911 }
1912 }
1913
1914 \f
1915 /* Resuming. */
1916
1917 /* Things to clean up if we QUIT out of resume (). */
1918 static void
1919 resume_cleanups (void *ignore)
1920 {
1921 normal_stop ();
1922 }
1923
1924 static const char schedlock_off[] = "off";
1925 static const char schedlock_on[] = "on";
1926 static const char schedlock_step[] = "step";
1927 static const char *const scheduler_enums[] = {
1928 schedlock_off,
1929 schedlock_on,
1930 schedlock_step,
1931 NULL
1932 };
1933 static const char *scheduler_mode = schedlock_off;
1934 static void
1935 show_scheduler_mode (struct ui_file *file, int from_tty,
1936 struct cmd_list_element *c, const char *value)
1937 {
1938 fprintf_filtered (file,
1939 _("Mode for locking scheduler "
1940 "during execution is \"%s\".\n"),
1941 value);
1942 }
1943
1944 static void
1945 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1946 {
1947 if (!target_can_lock_scheduler)
1948 {
1949 scheduler_mode = schedlock_off;
1950 error (_("Target '%s' cannot support this command."), target_shortname);
1951 }
1952 }
1953
1954 /* True if execution commands resume all threads of all processes by
1955 default; otherwise, resume only threads of the current inferior
1956 process. */
1957 int sched_multi = 0;
1958
1959 /* Try to setup for software single stepping over the specified location.
1960 Return 1 if target_resume() should use hardware single step.
1961
1962 GDBARCH the current gdbarch.
1963 PC the location to step over. */
1964
1965 static int
1966 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1967 {
1968 int hw_step = 1;
1969
1970 if (execution_direction == EXEC_FORWARD
1971 && gdbarch_software_single_step_p (gdbarch)
1972 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1973 {
1974 hw_step = 0;
1975 /* Do not pull these breakpoints until after a `wait' in
1976 `wait_for_inferior'. */
1977 singlestep_breakpoints_inserted_p = 1;
1978 singlestep_ptid = inferior_ptid;
1979 singlestep_pc = pc;
1980 }
1981 return hw_step;
1982 }
1983
1984 ptid_t
1985 user_visible_resume_ptid (int step)
1986 {
1987 /* By default, resume all threads of all processes. */
1988 ptid_t resume_ptid = RESUME_ALL;
1989
1990 /* Maybe resume only all threads of the current process. */
1991 if (!sched_multi && target_supports_multi_process ())
1992 {
1993 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1994 }
1995
1996 /* Maybe resume a single thread after all. */
1997 if (non_stop)
1998 {
1999 /* With non-stop mode on, threads are always handled
2000 individually. */
2001 resume_ptid = inferior_ptid;
2002 }
2003 else if ((scheduler_mode == schedlock_on)
2004 || (scheduler_mode == schedlock_step && step))
2005 {
2006 /* User-settable 'scheduler' mode requires solo thread resume. */
2007 resume_ptid = inferior_ptid;
2008 }
2009
2010 /* We may actually resume fewer threads at first, e.g., if a thread
2011 is stopped at a breakpoint that needs stepping-off, but that
2012 should not be visible to the user/frontend, and neither should
2013 the frontend/user be allowed to proceed any of the threads that
2014 happen to be stopped for internal run control handling, if a
2015 previous command wanted them resumed. */
2016 return resume_ptid;
2017 }
2018
2019 /* Resume the inferior, but allow a QUIT. This is useful if the user
2020 wants to interrupt some lengthy single-stepping operation
2021 (for child processes, the SIGINT goes to the inferior, and so
2022 we get a SIGINT random_signal, but for remote debugging and perhaps
2023 other targets, that's not true).
2024
2025 STEP nonzero if we should step (zero to continue instead).
2026 SIG is the signal to give the inferior (zero for none). */
2027 void
2028 resume (int step, enum gdb_signal sig)
2029 {
2030 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2031 struct regcache *regcache = get_current_regcache ();
2032 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2033 struct thread_info *tp = inferior_thread ();
2034 CORE_ADDR pc = regcache_read_pc (regcache);
2035 struct address_space *aspace = get_regcache_aspace (regcache);
2036 ptid_t resume_ptid;
2037 /* From here on, this represents the caller's step vs continue
2038 request, while STEP represents what we'll actually request the
2039 target to do. STEP can decay from a step to a continue, if e.g.,
2040 we need to implement single-stepping with breakpoints (software
2041 single-step). When deciding whether "set scheduler-locking step"
2042 applies, it's the callers intention that counts. */
2043 const int entry_step = step;
2044
2045 QUIT;
2046
2047 if (current_inferior ()->waiting_for_vfork_done)
2048 {
2049 /* Don't try to single-step a vfork parent that is waiting for
2050 the child to get out of the shared memory region (by exec'ing
2051 or exiting). This is particularly important on software
2052 single-step archs, as the child process would trip on the
2053 software single step breakpoint inserted for the parent
2054 process. Since the parent will not actually execute any
2055 instruction until the child is out of the shared region (such
2056 are vfork's semantics), it is safe to simply continue it.
2057 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2058 the parent, and tell it to `keep_going', which automatically
2059 re-sets it stepping. */
2060 if (debug_infrun)
2061 fprintf_unfiltered (gdb_stdlog,
2062 "infrun: resume : clear step\n");
2063 step = 0;
2064 }
2065
2066 if (debug_infrun)
2067 fprintf_unfiltered (gdb_stdlog,
2068 "infrun: resume (step=%d, signal=%s), "
2069 "trap_expected=%d, current thread [%s] at %s\n",
2070 step, gdb_signal_to_symbol_string (sig),
2071 tp->control.trap_expected,
2072 target_pid_to_str (inferior_ptid),
2073 paddress (gdbarch, pc));
2074
2075 /* Normally, by the time we reach `resume', the breakpoints are either
2076 removed or inserted, as appropriate. The exception is if we're sitting
2077 at a permanent breakpoint; we need to step over it, but permanent
2078 breakpoints can't be removed. So we have to test for it here. */
2079 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2080 {
2081 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
2082 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2083 else
2084 error (_("\
2085 The program is stopped at a permanent breakpoint, but GDB does not know\n\
2086 how to step past a permanent breakpoint on this architecture. Try using\n\
2087 a command like `return' or `jump' to continue execution."));
2088 }
2089
2090 /* If we have a breakpoint to step over, make sure to do a single
2091 step only. Same if we have software watchpoints. */
2092 if (tp->control.trap_expected || bpstat_should_step ())
2093 tp->control.may_range_step = 0;
2094
2095 /* If enabled, step over breakpoints by executing a copy of the
2096 instruction at a different address.
2097
2098 We can't use displaced stepping when we have a signal to deliver;
2099 the comments for displaced_step_prepare explain why. The
2100 comments in the handle_inferior event for dealing with 'random
2101 signals' explain what we do instead.
2102
2103 We can't use displaced stepping when we are waiting for vfork_done
2104 event, displaced stepping breaks the vfork child similarly as single
2105 step software breakpoint. */
2106 if (use_displaced_stepping (gdbarch)
2107 && (tp->control.trap_expected
2108 || (step && gdbarch_software_single_step_p (gdbarch)))
2109 && sig == GDB_SIGNAL_0
2110 && !current_inferior ()->waiting_for_vfork_done)
2111 {
2112 struct displaced_step_inferior_state *displaced;
2113
2114 if (!displaced_step_prepare (inferior_ptid))
2115 {
2116 /* Got placed in displaced stepping queue. Will be resumed
2117 later when all the currently queued displaced stepping
2118 requests finish. The thread is not executing at this
2119 point, and the call to set_executing will be made later.
2120 But we need to call set_running here, since from the
2121 user/frontend's point of view, threads were set running.
2122 Unless we're calling an inferior function, as in that
2123 case we pretend the inferior doesn't run at all. */
2124 if (!tp->control.in_infcall)
2125 set_running (user_visible_resume_ptid (entry_step), 1);
2126 discard_cleanups (old_cleanups);
2127 return;
2128 }
2129
2130 /* Update pc to reflect the new address from which we will execute
2131 instructions due to displaced stepping. */
2132 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2133
2134 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2135 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2136 displaced->step_closure);
2137 }
2138
2139 /* Do we need to do it the hard way, w/temp breakpoints? */
2140 else if (step)
2141 step = maybe_software_singlestep (gdbarch, pc);
2142
2143 /* Currently, our software single-step implementation leads to different
2144 results than hardware single-stepping in one situation: when stepping
2145 into delivering a signal which has an associated signal handler,
2146 hardware single-step will stop at the first instruction of the handler,
2147 while software single-step will simply skip execution of the handler.
2148
2149 For now, this difference in behavior is accepted since there is no
2150 easy way to actually implement single-stepping into a signal handler
2151 without kernel support.
2152
2153 However, there is one scenario where this difference leads to follow-on
2154 problems: if we're stepping off a breakpoint by removing all breakpoints
2155 and then single-stepping. In this case, the software single-step
2156 behavior means that even if there is a *breakpoint* in the signal
2157 handler, GDB still would not stop.
2158
2159 Fortunately, we can at least fix this particular issue. We detect
2160 here the case where we are about to deliver a signal while software
2161 single-stepping with breakpoints removed. In this situation, we
2162 revert the decisions to remove all breakpoints and insert single-
2163 step breakpoints, and instead we install a step-resume breakpoint
2164 at the current address, deliver the signal without stepping, and
2165 once we arrive back at the step-resume breakpoint, actually step
2166 over the breakpoint we originally wanted to step over. */
2167 if (singlestep_breakpoints_inserted_p
2168 && sig != GDB_SIGNAL_0
2169 && step_over_info_valid_p ())
2170 {
2171 /* If we have nested signals or a pending signal is delivered
2172 immediately after a handler returns, might might already have
2173 a step-resume breakpoint set on the earlier handler. We cannot
2174 set another step-resume breakpoint; just continue on until the
2175 original breakpoint is hit. */
2176 if (tp->control.step_resume_breakpoint == NULL)
2177 {
2178 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2179 tp->step_after_step_resume_breakpoint = 1;
2180 }
2181
2182 remove_single_step_breakpoints ();
2183 singlestep_breakpoints_inserted_p = 0;
2184
2185 clear_step_over_info ();
2186 tp->control.trap_expected = 0;
2187
2188 insert_breakpoints ();
2189 }
2190
2191 /* If STEP is set, it's a request to use hardware stepping
2192 facilities. But in that case, we should never
2193 use singlestep breakpoint. */
2194 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
2195
2196 /* Decide the set of threads to ask the target to resume. Start
2197 by assuming everything will be resumed, than narrow the set
2198 by applying increasingly restricting conditions. */
2199 resume_ptid = user_visible_resume_ptid (entry_step);
2200
2201 /* Even if RESUME_PTID is a wildcard, and we end up resuming less
2202 (e.g., we might need to step over a breakpoint), from the
2203 user/frontend's point of view, all threads in RESUME_PTID are now
2204 running. Unless we're calling an inferior function, as in that
2205 case pretend we inferior doesn't run at all. */
2206 if (!tp->control.in_infcall)
2207 set_running (resume_ptid, 1);
2208
2209 /* Maybe resume a single thread after all. */
2210 if ((step || singlestep_breakpoints_inserted_p)
2211 && tp->control.trap_expected)
2212 {
2213 /* We're allowing a thread to run past a breakpoint it has
2214 hit, by single-stepping the thread with the breakpoint
2215 removed. In which case, we need to single-step only this
2216 thread, and keep others stopped, as they can miss this
2217 breakpoint if allowed to run. */
2218 resume_ptid = inferior_ptid;
2219 }
2220
2221 if (gdbarch_cannot_step_breakpoint (gdbarch))
2222 {
2223 /* Most targets can step a breakpoint instruction, thus
2224 executing it normally. But if this one cannot, just
2225 continue and we will hit it anyway. */
2226 if (step && breakpoint_inserted_here_p (aspace, pc))
2227 step = 0;
2228 }
2229
2230 if (debug_displaced
2231 && use_displaced_stepping (gdbarch)
2232 && tp->control.trap_expected)
2233 {
2234 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
2235 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2236 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2237 gdb_byte buf[4];
2238
2239 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2240 paddress (resume_gdbarch, actual_pc));
2241 read_memory (actual_pc, buf, sizeof (buf));
2242 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2243 }
2244
2245 if (tp->control.may_range_step)
2246 {
2247 /* If we're resuming a thread with the PC out of the step
2248 range, then we're doing some nested/finer run control
2249 operation, like stepping the thread out of the dynamic
2250 linker or the displaced stepping scratch pad. We
2251 shouldn't have allowed a range step then. */
2252 gdb_assert (pc_in_thread_step_range (pc, tp));
2253 }
2254
2255 /* Install inferior's terminal modes. */
2256 target_terminal_inferior ();
2257
2258 /* Avoid confusing the next resume, if the next stop/resume
2259 happens to apply to another thread. */
2260 tp->suspend.stop_signal = GDB_SIGNAL_0;
2261
2262 /* Advise target which signals may be handled silently. If we have
2263 removed breakpoints because we are stepping over one (in any
2264 thread), we need to receive all signals to avoid accidentally
2265 skipping a breakpoint during execution of a signal handler. */
2266 if (step_over_info_valid_p ())
2267 target_pass_signals (0, NULL);
2268 else
2269 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2270
2271 target_resume (resume_ptid, step, sig);
2272
2273 discard_cleanups (old_cleanups);
2274 }
2275 \f
2276 /* Proceeding. */
2277
2278 /* Clear out all variables saying what to do when inferior is continued.
2279 First do this, then set the ones you want, then call `proceed'. */
2280
2281 static void
2282 clear_proceed_status_thread (struct thread_info *tp)
2283 {
2284 if (debug_infrun)
2285 fprintf_unfiltered (gdb_stdlog,
2286 "infrun: clear_proceed_status_thread (%s)\n",
2287 target_pid_to_str (tp->ptid));
2288
2289 /* If this signal should not be seen by program, give it zero.
2290 Used for debugging signals. */
2291 if (!signal_pass_state (tp->suspend.stop_signal))
2292 tp->suspend.stop_signal = GDB_SIGNAL_0;
2293
2294 tp->control.trap_expected = 0;
2295 tp->control.step_range_start = 0;
2296 tp->control.step_range_end = 0;
2297 tp->control.may_range_step = 0;
2298 tp->control.step_frame_id = null_frame_id;
2299 tp->control.step_stack_frame_id = null_frame_id;
2300 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2301 tp->stop_requested = 0;
2302
2303 tp->control.stop_step = 0;
2304
2305 tp->control.proceed_to_finish = 0;
2306
2307 tp->control.command_interp = NULL;
2308
2309 /* Discard any remaining commands or status from previous stop. */
2310 bpstat_clear (&tp->control.stop_bpstat);
2311 }
2312
2313 void
2314 clear_proceed_status (int step)
2315 {
2316 if (!non_stop)
2317 {
2318 struct thread_info *tp;
2319 ptid_t resume_ptid;
2320
2321 resume_ptid = user_visible_resume_ptid (step);
2322
2323 /* In all-stop mode, delete the per-thread status of all threads
2324 we're about to resume, implicitly and explicitly. */
2325 ALL_NON_EXITED_THREADS (tp)
2326 {
2327 if (!ptid_match (tp->ptid, resume_ptid))
2328 continue;
2329 clear_proceed_status_thread (tp);
2330 }
2331 }
2332
2333 if (!ptid_equal (inferior_ptid, null_ptid))
2334 {
2335 struct inferior *inferior;
2336
2337 if (non_stop)
2338 {
2339 /* If in non-stop mode, only delete the per-thread status of
2340 the current thread. */
2341 clear_proceed_status_thread (inferior_thread ());
2342 }
2343
2344 inferior = current_inferior ();
2345 inferior->control.stop_soon = NO_STOP_QUIETLY;
2346 }
2347
2348 stop_after_trap = 0;
2349
2350 clear_step_over_info ();
2351
2352 observer_notify_about_to_proceed ();
2353
2354 if (stop_registers)
2355 {
2356 regcache_xfree (stop_registers);
2357 stop_registers = NULL;
2358 }
2359 }
2360
2361 /* Returns true if TP is still stopped at a breakpoint that needs
2362 stepping-over in order to make progress. If the breakpoint is gone
2363 meanwhile, we can skip the whole step-over dance. */
2364
2365 static int
2366 thread_still_needs_step_over (struct thread_info *tp)
2367 {
2368 if (tp->stepping_over_breakpoint)
2369 {
2370 struct regcache *regcache = get_thread_regcache (tp->ptid);
2371
2372 if (breakpoint_here_p (get_regcache_aspace (regcache),
2373 regcache_read_pc (regcache)))
2374 return 1;
2375
2376 tp->stepping_over_breakpoint = 0;
2377 }
2378
2379 return 0;
2380 }
2381
2382 /* Returns true if scheduler locking applies. STEP indicates whether
2383 we're about to do a step/next-like command to a thread. */
2384
2385 static int
2386 schedlock_applies (int step)
2387 {
2388 return (scheduler_mode == schedlock_on
2389 || (scheduler_mode == schedlock_step
2390 && step));
2391 }
2392
2393 /* Look a thread other than EXCEPT that has previously reported a
2394 breakpoint event, and thus needs a step-over in order to make
2395 progress. Returns NULL is none is found. STEP indicates whether
2396 we're about to step the current thread, in order to decide whether
2397 "set scheduler-locking step" applies. */
2398
2399 static struct thread_info *
2400 find_thread_needs_step_over (int step, struct thread_info *except)
2401 {
2402 struct thread_info *tp, *current;
2403
2404 /* With non-stop mode on, threads are always handled individually. */
2405 gdb_assert (! non_stop);
2406
2407 current = inferior_thread ();
2408
2409 /* If scheduler locking applies, we can avoid iterating over all
2410 threads. */
2411 if (schedlock_applies (step))
2412 {
2413 if (except != current
2414 && thread_still_needs_step_over (current))
2415 return current;
2416
2417 return NULL;
2418 }
2419
2420 ALL_NON_EXITED_THREADS (tp)
2421 {
2422 /* Ignore the EXCEPT thread. */
2423 if (tp == except)
2424 continue;
2425 /* Ignore threads of processes we're not resuming. */
2426 if (!sched_multi
2427 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
2428 continue;
2429
2430 if (thread_still_needs_step_over (tp))
2431 return tp;
2432 }
2433
2434 return NULL;
2435 }
2436
2437 /* Basic routine for continuing the program in various fashions.
2438
2439 ADDR is the address to resume at, or -1 for resume where stopped.
2440 SIGGNAL is the signal to give it, or 0 for none,
2441 or -1 for act according to how it stopped.
2442 STEP is nonzero if should trap after one instruction.
2443 -1 means return after that and print nothing.
2444 You should probably set various step_... variables
2445 before calling here, if you are stepping.
2446
2447 You should call clear_proceed_status before calling proceed. */
2448
2449 void
2450 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2451 {
2452 struct regcache *regcache;
2453 struct gdbarch *gdbarch;
2454 struct thread_info *tp;
2455 CORE_ADDR pc;
2456 struct address_space *aspace;
2457
2458 /* If we're stopped at a fork/vfork, follow the branch set by the
2459 "set follow-fork-mode" command; otherwise, we'll just proceed
2460 resuming the current thread. */
2461 if (!follow_fork ())
2462 {
2463 /* The target for some reason decided not to resume. */
2464 normal_stop ();
2465 if (target_can_async_p ())
2466 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2467 return;
2468 }
2469
2470 /* We'll update this if & when we switch to a new thread. */
2471 previous_inferior_ptid = inferior_ptid;
2472
2473 regcache = get_current_regcache ();
2474 gdbarch = get_regcache_arch (regcache);
2475 aspace = get_regcache_aspace (regcache);
2476 pc = regcache_read_pc (regcache);
2477 tp = inferior_thread ();
2478
2479 if (step > 0)
2480 step_start_function = find_pc_function (pc);
2481 if (step < 0)
2482 stop_after_trap = 1;
2483
2484 /* Fill in with reasonable starting values. */
2485 init_thread_stepping_state (tp);
2486
2487 if (addr == (CORE_ADDR) -1)
2488 {
2489 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2490 && execution_direction != EXEC_REVERSE)
2491 /* There is a breakpoint at the address we will resume at,
2492 step one instruction before inserting breakpoints so that
2493 we do not stop right away (and report a second hit at this
2494 breakpoint).
2495
2496 Note, we don't do this in reverse, because we won't
2497 actually be executing the breakpoint insn anyway.
2498 We'll be (un-)executing the previous instruction. */
2499 tp->stepping_over_breakpoint = 1;
2500 else if (gdbarch_single_step_through_delay_p (gdbarch)
2501 && gdbarch_single_step_through_delay (gdbarch,
2502 get_current_frame ()))
2503 /* We stepped onto an instruction that needs to be stepped
2504 again before re-inserting the breakpoint, do so. */
2505 tp->stepping_over_breakpoint = 1;
2506 }
2507 else
2508 {
2509 regcache_write_pc (regcache, addr);
2510 }
2511
2512 if (siggnal != GDB_SIGNAL_DEFAULT)
2513 tp->suspend.stop_signal = siggnal;
2514
2515 /* Record the interpreter that issued the execution command that
2516 caused this thread to resume. If the top level interpreter is
2517 MI/async, and the execution command was a CLI command
2518 (next/step/etc.), we'll want to print stop event output to the MI
2519 console channel (the stepped-to line, etc.), as if the user
2520 entered the execution command on a real GDB console. */
2521 inferior_thread ()->control.command_interp = command_interp ();
2522
2523 if (debug_infrun)
2524 fprintf_unfiltered (gdb_stdlog,
2525 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2526 paddress (gdbarch, addr),
2527 gdb_signal_to_symbol_string (siggnal), step);
2528
2529 if (non_stop)
2530 /* In non-stop, each thread is handled individually. The context
2531 must already be set to the right thread here. */
2532 ;
2533 else
2534 {
2535 struct thread_info *step_over;
2536
2537 /* In a multi-threaded task we may select another thread and
2538 then continue or step.
2539
2540 But if the old thread was stopped at a breakpoint, it will
2541 immediately cause another breakpoint stop without any
2542 execution (i.e. it will report a breakpoint hit incorrectly).
2543 So we must step over it first.
2544
2545 Look for a thread other than the current (TP) that reported a
2546 breakpoint hit and hasn't been resumed yet since. */
2547 step_over = find_thread_needs_step_over (step, tp);
2548 if (step_over != NULL)
2549 {
2550 if (debug_infrun)
2551 fprintf_unfiltered (gdb_stdlog,
2552 "infrun: need to step-over [%s] first\n",
2553 target_pid_to_str (step_over->ptid));
2554
2555 /* Store the prev_pc for the stepping thread too, needed by
2556 switch_back_to_stepping thread. */
2557 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2558 switch_to_thread (step_over->ptid);
2559 tp = step_over;
2560 }
2561 }
2562
2563 /* If we need to step over a breakpoint, and we're not using
2564 displaced stepping to do so, insert all breakpoints (watchpoints,
2565 etc.) but the one we're stepping over, step one instruction, and
2566 then re-insert the breakpoint when that step is finished. */
2567 if (tp->stepping_over_breakpoint && !use_displaced_stepping (gdbarch))
2568 {
2569 struct regcache *regcache = get_current_regcache ();
2570
2571 set_step_over_info (get_regcache_aspace (regcache),
2572 regcache_read_pc (regcache), 0);
2573 }
2574 else
2575 clear_step_over_info ();
2576
2577 insert_breakpoints ();
2578
2579 tp->control.trap_expected = tp->stepping_over_breakpoint;
2580
2581 annotate_starting ();
2582
2583 /* Make sure that output from GDB appears before output from the
2584 inferior. */
2585 gdb_flush (gdb_stdout);
2586
2587 /* Refresh prev_pc value just prior to resuming. This used to be
2588 done in stop_waiting, however, setting prev_pc there did not handle
2589 scenarios such as inferior function calls or returning from
2590 a function via the return command. In those cases, the prev_pc
2591 value was not set properly for subsequent commands. The prev_pc value
2592 is used to initialize the starting line number in the ecs. With an
2593 invalid value, the gdb next command ends up stopping at the position
2594 represented by the next line table entry past our start position.
2595 On platforms that generate one line table entry per line, this
2596 is not a problem. However, on the ia64, the compiler generates
2597 extraneous line table entries that do not increase the line number.
2598 When we issue the gdb next command on the ia64 after an inferior call
2599 or a return command, we often end up a few instructions forward, still
2600 within the original line we started.
2601
2602 An attempt was made to refresh the prev_pc at the same time the
2603 execution_control_state is initialized (for instance, just before
2604 waiting for an inferior event). But this approach did not work
2605 because of platforms that use ptrace, where the pc register cannot
2606 be read unless the inferior is stopped. At that point, we are not
2607 guaranteed the inferior is stopped and so the regcache_read_pc() call
2608 can fail. Setting the prev_pc value here ensures the value is updated
2609 correctly when the inferior is stopped. */
2610 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2611
2612 /* Resume inferior. */
2613 resume (tp->control.trap_expected || step || bpstat_should_step (),
2614 tp->suspend.stop_signal);
2615
2616 /* Wait for it to stop (if not standalone)
2617 and in any case decode why it stopped, and act accordingly. */
2618 /* Do this only if we are not using the event loop, or if the target
2619 does not support asynchronous execution. */
2620 if (!target_can_async_p ())
2621 {
2622 wait_for_inferior ();
2623 normal_stop ();
2624 }
2625 }
2626 \f
2627
2628 /* Start remote-debugging of a machine over a serial link. */
2629
2630 void
2631 start_remote (int from_tty)
2632 {
2633 struct inferior *inferior;
2634
2635 inferior = current_inferior ();
2636 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2637
2638 /* Always go on waiting for the target, regardless of the mode. */
2639 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2640 indicate to wait_for_inferior that a target should timeout if
2641 nothing is returned (instead of just blocking). Because of this,
2642 targets expecting an immediate response need to, internally, set
2643 things up so that the target_wait() is forced to eventually
2644 timeout. */
2645 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2646 differentiate to its caller what the state of the target is after
2647 the initial open has been performed. Here we're assuming that
2648 the target has stopped. It should be possible to eventually have
2649 target_open() return to the caller an indication that the target
2650 is currently running and GDB state should be set to the same as
2651 for an async run. */
2652 wait_for_inferior ();
2653
2654 /* Now that the inferior has stopped, do any bookkeeping like
2655 loading shared libraries. We want to do this before normal_stop,
2656 so that the displayed frame is up to date. */
2657 post_create_inferior (&current_target, from_tty);
2658
2659 normal_stop ();
2660 }
2661
2662 /* Initialize static vars when a new inferior begins. */
2663
2664 void
2665 init_wait_for_inferior (void)
2666 {
2667 /* These are meaningless until the first time through wait_for_inferior. */
2668
2669 breakpoint_init_inferior (inf_starting);
2670
2671 clear_proceed_status (0);
2672
2673 target_last_wait_ptid = minus_one_ptid;
2674
2675 previous_inferior_ptid = inferior_ptid;
2676
2677 /* Discard any skipped inlined frames. */
2678 clear_inline_frame_state (minus_one_ptid);
2679
2680 singlestep_ptid = null_ptid;
2681 singlestep_pc = 0;
2682 }
2683
2684 \f
2685 /* This enum encodes possible reasons for doing a target_wait, so that
2686 wfi can call target_wait in one place. (Ultimately the call will be
2687 moved out of the infinite loop entirely.) */
2688
2689 enum infwait_states
2690 {
2691 infwait_normal_state,
2692 infwait_step_watch_state,
2693 infwait_nonstep_watch_state
2694 };
2695
2696 /* Current inferior wait state. */
2697 static enum infwait_states infwait_state;
2698
2699 /* Data to be passed around while handling an event. This data is
2700 discarded between events. */
2701 struct execution_control_state
2702 {
2703 ptid_t ptid;
2704 /* The thread that got the event, if this was a thread event; NULL
2705 otherwise. */
2706 struct thread_info *event_thread;
2707
2708 struct target_waitstatus ws;
2709 int stop_func_filled_in;
2710 CORE_ADDR stop_func_start;
2711 CORE_ADDR stop_func_end;
2712 const char *stop_func_name;
2713 int wait_some_more;
2714
2715 /* True if the event thread hit the single-step breakpoint of
2716 another thread. Thus the event doesn't cause a stop, the thread
2717 needs to be single-stepped past the single-step breakpoint before
2718 we can switch back to the original stepping thread. */
2719 int hit_singlestep_breakpoint;
2720 };
2721
2722 static void handle_inferior_event (struct execution_control_state *ecs);
2723
2724 static void handle_step_into_function (struct gdbarch *gdbarch,
2725 struct execution_control_state *ecs);
2726 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2727 struct execution_control_state *ecs);
2728 static void handle_signal_stop (struct execution_control_state *ecs);
2729 static void check_exception_resume (struct execution_control_state *,
2730 struct frame_info *);
2731
2732 static void end_stepping_range (struct execution_control_state *ecs);
2733 static void stop_waiting (struct execution_control_state *ecs);
2734 static void prepare_to_wait (struct execution_control_state *ecs);
2735 static void keep_going (struct execution_control_state *ecs);
2736 static void process_event_stop_test (struct execution_control_state *ecs);
2737 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
2738
2739 /* Callback for iterate over threads. If the thread is stopped, but
2740 the user/frontend doesn't know about that yet, go through
2741 normal_stop, as if the thread had just stopped now. ARG points at
2742 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2743 ptid_is_pid(PTID) is true, applies to all threads of the process
2744 pointed at by PTID. Otherwise, apply only to the thread pointed by
2745 PTID. */
2746
2747 static int
2748 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2749 {
2750 ptid_t ptid = * (ptid_t *) arg;
2751
2752 if ((ptid_equal (info->ptid, ptid)
2753 || ptid_equal (minus_one_ptid, ptid)
2754 || (ptid_is_pid (ptid)
2755 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2756 && is_running (info->ptid)
2757 && !is_executing (info->ptid))
2758 {
2759 struct cleanup *old_chain;
2760 struct execution_control_state ecss;
2761 struct execution_control_state *ecs = &ecss;
2762
2763 memset (ecs, 0, sizeof (*ecs));
2764
2765 old_chain = make_cleanup_restore_current_thread ();
2766
2767 overlay_cache_invalid = 1;
2768 /* Flush target cache before starting to handle each event.
2769 Target was running and cache could be stale. This is just a
2770 heuristic. Running threads may modify target memory, but we
2771 don't get any event. */
2772 target_dcache_invalidate ();
2773
2774 /* Go through handle_inferior_event/normal_stop, so we always
2775 have consistent output as if the stop event had been
2776 reported. */
2777 ecs->ptid = info->ptid;
2778 ecs->event_thread = find_thread_ptid (info->ptid);
2779 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2780 ecs->ws.value.sig = GDB_SIGNAL_0;
2781
2782 handle_inferior_event (ecs);
2783
2784 if (!ecs->wait_some_more)
2785 {
2786 struct thread_info *tp;
2787
2788 normal_stop ();
2789
2790 /* Finish off the continuations. */
2791 tp = inferior_thread ();
2792 do_all_intermediate_continuations_thread (tp, 1);
2793 do_all_continuations_thread (tp, 1);
2794 }
2795
2796 do_cleanups (old_chain);
2797 }
2798
2799 return 0;
2800 }
2801
2802 /* This function is attached as a "thread_stop_requested" observer.
2803 Cleanup local state that assumed the PTID was to be resumed, and
2804 report the stop to the frontend. */
2805
2806 static void
2807 infrun_thread_stop_requested (ptid_t ptid)
2808 {
2809 struct displaced_step_inferior_state *displaced;
2810
2811 /* PTID was requested to stop. Remove it from the displaced
2812 stepping queue, so we don't try to resume it automatically. */
2813
2814 for (displaced = displaced_step_inferior_states;
2815 displaced;
2816 displaced = displaced->next)
2817 {
2818 struct displaced_step_request *it, **prev_next_p;
2819
2820 it = displaced->step_request_queue;
2821 prev_next_p = &displaced->step_request_queue;
2822 while (it)
2823 {
2824 if (ptid_match (it->ptid, ptid))
2825 {
2826 *prev_next_p = it->next;
2827 it->next = NULL;
2828 xfree (it);
2829 }
2830 else
2831 {
2832 prev_next_p = &it->next;
2833 }
2834
2835 it = *prev_next_p;
2836 }
2837 }
2838
2839 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2840 }
2841
2842 static void
2843 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2844 {
2845 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2846 nullify_last_target_wait_ptid ();
2847 }
2848
2849 /* Callback for iterate_over_threads. */
2850
2851 static int
2852 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2853 {
2854 if (is_exited (info->ptid))
2855 return 0;
2856
2857 delete_step_resume_breakpoint (info);
2858 delete_exception_resume_breakpoint (info);
2859 return 0;
2860 }
2861
2862 /* In all-stop, delete the step resume breakpoint of any thread that
2863 had one. In non-stop, delete the step resume breakpoint of the
2864 thread that just stopped. */
2865
2866 static void
2867 delete_step_thread_step_resume_breakpoint (void)
2868 {
2869 if (!target_has_execution
2870 || ptid_equal (inferior_ptid, null_ptid))
2871 /* If the inferior has exited, we have already deleted the step
2872 resume breakpoints out of GDB's lists. */
2873 return;
2874
2875 if (non_stop)
2876 {
2877 /* If in non-stop mode, only delete the step-resume or
2878 longjmp-resume breakpoint of the thread that just stopped
2879 stepping. */
2880 struct thread_info *tp = inferior_thread ();
2881
2882 delete_step_resume_breakpoint (tp);
2883 delete_exception_resume_breakpoint (tp);
2884 }
2885 else
2886 /* In all-stop mode, delete all step-resume and longjmp-resume
2887 breakpoints of any thread that had them. */
2888 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2889 }
2890
2891 /* A cleanup wrapper. */
2892
2893 static void
2894 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2895 {
2896 delete_step_thread_step_resume_breakpoint ();
2897 }
2898
2899 /* Pretty print the results of target_wait, for debugging purposes. */
2900
2901 static void
2902 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2903 const struct target_waitstatus *ws)
2904 {
2905 char *status_string = target_waitstatus_to_string (ws);
2906 struct ui_file *tmp_stream = mem_fileopen ();
2907 char *text;
2908
2909 /* The text is split over several lines because it was getting too long.
2910 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2911 output as a unit; we want only one timestamp printed if debug_timestamp
2912 is set. */
2913
2914 fprintf_unfiltered (tmp_stream,
2915 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
2916 if (ptid_get_pid (waiton_ptid) != -1)
2917 fprintf_unfiltered (tmp_stream,
2918 " [%s]", target_pid_to_str (waiton_ptid));
2919 fprintf_unfiltered (tmp_stream, ", status) =\n");
2920 fprintf_unfiltered (tmp_stream,
2921 "infrun: %d [%s],\n",
2922 ptid_get_pid (result_ptid),
2923 target_pid_to_str (result_ptid));
2924 fprintf_unfiltered (tmp_stream,
2925 "infrun: %s\n",
2926 status_string);
2927
2928 text = ui_file_xstrdup (tmp_stream, NULL);
2929
2930 /* This uses %s in part to handle %'s in the text, but also to avoid
2931 a gcc error: the format attribute requires a string literal. */
2932 fprintf_unfiltered (gdb_stdlog, "%s", text);
2933
2934 xfree (status_string);
2935 xfree (text);
2936 ui_file_delete (tmp_stream);
2937 }
2938
2939 /* Prepare and stabilize the inferior for detaching it. E.g.,
2940 detaching while a thread is displaced stepping is a recipe for
2941 crashing it, as nothing would readjust the PC out of the scratch
2942 pad. */
2943
2944 void
2945 prepare_for_detach (void)
2946 {
2947 struct inferior *inf = current_inferior ();
2948 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2949 struct cleanup *old_chain_1;
2950 struct displaced_step_inferior_state *displaced;
2951
2952 displaced = get_displaced_stepping_state (inf->pid);
2953
2954 /* Is any thread of this process displaced stepping? If not,
2955 there's nothing else to do. */
2956 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2957 return;
2958
2959 if (debug_infrun)
2960 fprintf_unfiltered (gdb_stdlog,
2961 "displaced-stepping in-process while detaching");
2962
2963 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2964 inf->detaching = 1;
2965
2966 while (!ptid_equal (displaced->step_ptid, null_ptid))
2967 {
2968 struct cleanup *old_chain_2;
2969 struct execution_control_state ecss;
2970 struct execution_control_state *ecs;
2971
2972 ecs = &ecss;
2973 memset (ecs, 0, sizeof (*ecs));
2974
2975 overlay_cache_invalid = 1;
2976 /* Flush target cache before starting to handle each event.
2977 Target was running and cache could be stale. This is just a
2978 heuristic. Running threads may modify target memory, but we
2979 don't get any event. */
2980 target_dcache_invalidate ();
2981
2982 if (deprecated_target_wait_hook)
2983 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2984 else
2985 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2986
2987 if (debug_infrun)
2988 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2989
2990 /* If an error happens while handling the event, propagate GDB's
2991 knowledge of the executing state to the frontend/user running
2992 state. */
2993 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2994 &minus_one_ptid);
2995
2996 /* Now figure out what to do with the result of the result. */
2997 handle_inferior_event (ecs);
2998
2999 /* No error, don't finish the state yet. */
3000 discard_cleanups (old_chain_2);
3001
3002 /* Breakpoints and watchpoints are not installed on the target
3003 at this point, and signals are passed directly to the
3004 inferior, so this must mean the process is gone. */
3005 if (!ecs->wait_some_more)
3006 {
3007 discard_cleanups (old_chain_1);
3008 error (_("Program exited while detaching"));
3009 }
3010 }
3011
3012 discard_cleanups (old_chain_1);
3013 }
3014
3015 /* Wait for control to return from inferior to debugger.
3016
3017 If inferior gets a signal, we may decide to start it up again
3018 instead of returning. That is why there is a loop in this function.
3019 When this function actually returns it means the inferior
3020 should be left stopped and GDB should read more commands. */
3021
3022 void
3023 wait_for_inferior (void)
3024 {
3025 struct cleanup *old_cleanups;
3026
3027 if (debug_infrun)
3028 fprintf_unfiltered
3029 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3030
3031 old_cleanups =
3032 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
3033
3034 while (1)
3035 {
3036 struct execution_control_state ecss;
3037 struct execution_control_state *ecs = &ecss;
3038 struct cleanup *old_chain;
3039 ptid_t waiton_ptid = minus_one_ptid;
3040
3041 memset (ecs, 0, sizeof (*ecs));
3042
3043 overlay_cache_invalid = 1;
3044
3045 /* Flush target cache before starting to handle each event.
3046 Target was running and cache could be stale. This is just a
3047 heuristic. Running threads may modify target memory, but we
3048 don't get any event. */
3049 target_dcache_invalidate ();
3050
3051 if (deprecated_target_wait_hook)
3052 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
3053 else
3054 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
3055
3056 if (debug_infrun)
3057 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3058
3059 /* If an error happens while handling the event, propagate GDB's
3060 knowledge of the executing state to the frontend/user running
3061 state. */
3062 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3063
3064 /* Now figure out what to do with the result of the result. */
3065 handle_inferior_event (ecs);
3066
3067 /* No error, don't finish the state yet. */
3068 discard_cleanups (old_chain);
3069
3070 if (!ecs->wait_some_more)
3071 break;
3072 }
3073
3074 do_cleanups (old_cleanups);
3075 }
3076
3077 /* Asynchronous version of wait_for_inferior. It is called by the
3078 event loop whenever a change of state is detected on the file
3079 descriptor corresponding to the target. It can be called more than
3080 once to complete a single execution command. In such cases we need
3081 to keep the state in a global variable ECSS. If it is the last time
3082 that this function is called for a single execution command, then
3083 report to the user that the inferior has stopped, and do the
3084 necessary cleanups. */
3085
3086 void
3087 fetch_inferior_event (void *client_data)
3088 {
3089 struct execution_control_state ecss;
3090 struct execution_control_state *ecs = &ecss;
3091 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3092 struct cleanup *ts_old_chain;
3093 int was_sync = sync_execution;
3094 int cmd_done = 0;
3095 ptid_t waiton_ptid = minus_one_ptid;
3096
3097 memset (ecs, 0, sizeof (*ecs));
3098
3099 /* We're handling a live event, so make sure we're doing live
3100 debugging. If we're looking at traceframes while the target is
3101 running, we're going to need to get back to that mode after
3102 handling the event. */
3103 if (non_stop)
3104 {
3105 make_cleanup_restore_current_traceframe ();
3106 set_current_traceframe (-1);
3107 }
3108
3109 if (non_stop)
3110 /* In non-stop mode, the user/frontend should not notice a thread
3111 switch due to internal events. Make sure we reverse to the
3112 user selected thread and frame after handling the event and
3113 running any breakpoint commands. */
3114 make_cleanup_restore_current_thread ();
3115
3116 overlay_cache_invalid = 1;
3117 /* Flush target cache before starting to handle each event. Target
3118 was running and cache could be stale. This is just a heuristic.
3119 Running threads may modify target memory, but we don't get any
3120 event. */
3121 target_dcache_invalidate ();
3122
3123 make_cleanup_restore_integer (&execution_direction);
3124 execution_direction = target_execution_direction ();
3125
3126 if (deprecated_target_wait_hook)
3127 ecs->ptid =
3128 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
3129 else
3130 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
3131
3132 if (debug_infrun)
3133 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3134
3135 /* If an error happens while handling the event, propagate GDB's
3136 knowledge of the executing state to the frontend/user running
3137 state. */
3138 if (!non_stop)
3139 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3140 else
3141 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3142
3143 /* Get executed before make_cleanup_restore_current_thread above to apply
3144 still for the thread which has thrown the exception. */
3145 make_bpstat_clear_actions_cleanup ();
3146
3147 /* Now figure out what to do with the result of the result. */
3148 handle_inferior_event (ecs);
3149
3150 if (!ecs->wait_some_more)
3151 {
3152 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3153
3154 delete_step_thread_step_resume_breakpoint ();
3155
3156 /* We may not find an inferior if this was a process exit. */
3157 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3158 normal_stop ();
3159
3160 if (target_has_execution
3161 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
3162 && ecs->ws.kind != TARGET_WAITKIND_EXITED
3163 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3164 && ecs->event_thread->step_multi
3165 && ecs->event_thread->control.stop_step)
3166 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
3167 else
3168 {
3169 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3170 cmd_done = 1;
3171 }
3172 }
3173
3174 /* No error, don't finish the thread states yet. */
3175 discard_cleanups (ts_old_chain);
3176
3177 /* Revert thread and frame. */
3178 do_cleanups (old_chain);
3179
3180 /* If the inferior was in sync execution mode, and now isn't,
3181 restore the prompt (a synchronous execution command has finished,
3182 and we're ready for input). */
3183 if (interpreter_async && was_sync && !sync_execution)
3184 observer_notify_sync_execution_done ();
3185
3186 if (cmd_done
3187 && !was_sync
3188 && exec_done_display_p
3189 && (ptid_equal (inferior_ptid, null_ptid)
3190 || !is_running (inferior_ptid)))
3191 printf_unfiltered (_("completed.\n"));
3192 }
3193
3194 /* Record the frame and location we're currently stepping through. */
3195 void
3196 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3197 {
3198 struct thread_info *tp = inferior_thread ();
3199
3200 tp->control.step_frame_id = get_frame_id (frame);
3201 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3202
3203 tp->current_symtab = sal.symtab;
3204 tp->current_line = sal.line;
3205 }
3206
3207 /* Clear context switchable stepping state. */
3208
3209 void
3210 init_thread_stepping_state (struct thread_info *tss)
3211 {
3212 tss->stepping_over_breakpoint = 0;
3213 tss->stepping_over_watchpoint = 0;
3214 tss->step_after_step_resume_breakpoint = 0;
3215 }
3216
3217 /* Set the cached copy of the last ptid/waitstatus. */
3218
3219 static void
3220 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3221 {
3222 target_last_wait_ptid = ptid;
3223 target_last_waitstatus = status;
3224 }
3225
3226 /* Return the cached copy of the last pid/waitstatus returned by
3227 target_wait()/deprecated_target_wait_hook(). The data is actually
3228 cached by handle_inferior_event(), which gets called immediately
3229 after target_wait()/deprecated_target_wait_hook(). */
3230
3231 void
3232 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
3233 {
3234 *ptidp = target_last_wait_ptid;
3235 *status = target_last_waitstatus;
3236 }
3237
3238 void
3239 nullify_last_target_wait_ptid (void)
3240 {
3241 target_last_wait_ptid = minus_one_ptid;
3242 }
3243
3244 /* Switch thread contexts. */
3245
3246 static void
3247 context_switch (ptid_t ptid)
3248 {
3249 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
3250 {
3251 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3252 target_pid_to_str (inferior_ptid));
3253 fprintf_unfiltered (gdb_stdlog, "to %s\n",
3254 target_pid_to_str (ptid));
3255 }
3256
3257 switch_to_thread (ptid);
3258 }
3259
3260 static void
3261 adjust_pc_after_break (struct execution_control_state *ecs)
3262 {
3263 struct regcache *regcache;
3264 struct gdbarch *gdbarch;
3265 struct address_space *aspace;
3266 CORE_ADDR breakpoint_pc, decr_pc;
3267
3268 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3269 we aren't, just return.
3270
3271 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
3272 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3273 implemented by software breakpoints should be handled through the normal
3274 breakpoint layer.
3275
3276 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3277 different signals (SIGILL or SIGEMT for instance), but it is less
3278 clear where the PC is pointing afterwards. It may not match
3279 gdbarch_decr_pc_after_break. I don't know any specific target that
3280 generates these signals at breakpoints (the code has been in GDB since at
3281 least 1992) so I can not guess how to handle them here.
3282
3283 In earlier versions of GDB, a target with
3284 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
3285 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3286 target with both of these set in GDB history, and it seems unlikely to be
3287 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
3288
3289 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
3290 return;
3291
3292 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
3293 return;
3294
3295 /* In reverse execution, when a breakpoint is hit, the instruction
3296 under it has already been de-executed. The reported PC always
3297 points at the breakpoint address, so adjusting it further would
3298 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3299 architecture:
3300
3301 B1 0x08000000 : INSN1
3302 B2 0x08000001 : INSN2
3303 0x08000002 : INSN3
3304 PC -> 0x08000003 : INSN4
3305
3306 Say you're stopped at 0x08000003 as above. Reverse continuing
3307 from that point should hit B2 as below. Reading the PC when the
3308 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3309 been de-executed already.
3310
3311 B1 0x08000000 : INSN1
3312 B2 PC -> 0x08000001 : INSN2
3313 0x08000002 : INSN3
3314 0x08000003 : INSN4
3315
3316 We can't apply the same logic as for forward execution, because
3317 we would wrongly adjust the PC to 0x08000000, since there's a
3318 breakpoint at PC - 1. We'd then report a hit on B1, although
3319 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3320 behaviour. */
3321 if (execution_direction == EXEC_REVERSE)
3322 return;
3323
3324 /* If this target does not decrement the PC after breakpoints, then
3325 we have nothing to do. */
3326 regcache = get_thread_regcache (ecs->ptid);
3327 gdbarch = get_regcache_arch (regcache);
3328
3329 decr_pc = target_decr_pc_after_break (gdbarch);
3330 if (decr_pc == 0)
3331 return;
3332
3333 aspace = get_regcache_aspace (regcache);
3334
3335 /* Find the location where (if we've hit a breakpoint) the
3336 breakpoint would be. */
3337 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
3338
3339 /* Check whether there actually is a software breakpoint inserted at
3340 that location.
3341
3342 If in non-stop mode, a race condition is possible where we've
3343 removed a breakpoint, but stop events for that breakpoint were
3344 already queued and arrive later. To suppress those spurious
3345 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3346 and retire them after a number of stop events are reported. */
3347 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3348 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3349 {
3350 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
3351
3352 if (record_full_is_used ())
3353 record_full_gdb_operation_disable_set ();
3354
3355 /* When using hardware single-step, a SIGTRAP is reported for both
3356 a completed single-step and a software breakpoint. Need to
3357 differentiate between the two, as the latter needs adjusting
3358 but the former does not.
3359
3360 The SIGTRAP can be due to a completed hardware single-step only if
3361 - we didn't insert software single-step breakpoints
3362 - the thread to be examined is still the current thread
3363 - this thread is currently being stepped
3364
3365 If any of these events did not occur, we must have stopped due
3366 to hitting a software breakpoint, and have to back up to the
3367 breakpoint address.
3368
3369 As a special case, we could have hardware single-stepped a
3370 software breakpoint. In this case (prev_pc == breakpoint_pc),
3371 we also need to back up to the breakpoint address. */
3372
3373 if (singlestep_breakpoints_inserted_p
3374 || !ptid_equal (ecs->ptid, inferior_ptid)
3375 || !currently_stepping (ecs->event_thread)
3376 || ecs->event_thread->prev_pc == breakpoint_pc)
3377 regcache_write_pc (regcache, breakpoint_pc);
3378
3379 do_cleanups (old_cleanups);
3380 }
3381 }
3382
3383 static int
3384 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3385 {
3386 for (frame = get_prev_frame (frame);
3387 frame != NULL;
3388 frame = get_prev_frame (frame))
3389 {
3390 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3391 return 1;
3392 if (get_frame_type (frame) != INLINE_FRAME)
3393 break;
3394 }
3395
3396 return 0;
3397 }
3398
3399 /* Auxiliary function that handles syscall entry/return events.
3400 It returns 1 if the inferior should keep going (and GDB
3401 should ignore the event), or 0 if the event deserves to be
3402 processed. */
3403
3404 static int
3405 handle_syscall_event (struct execution_control_state *ecs)
3406 {
3407 struct regcache *regcache;
3408 int syscall_number;
3409
3410 if (!ptid_equal (ecs->ptid, inferior_ptid))
3411 context_switch (ecs->ptid);
3412
3413 regcache = get_thread_regcache (ecs->ptid);
3414 syscall_number = ecs->ws.value.syscall_number;
3415 stop_pc = regcache_read_pc (regcache);
3416
3417 if (catch_syscall_enabled () > 0
3418 && catching_syscall_number (syscall_number) > 0)
3419 {
3420 if (debug_infrun)
3421 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3422 syscall_number);
3423
3424 ecs->event_thread->control.stop_bpstat
3425 = bpstat_stop_status (get_regcache_aspace (regcache),
3426 stop_pc, ecs->ptid, &ecs->ws);
3427
3428 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3429 {
3430 /* Catchpoint hit. */
3431 return 0;
3432 }
3433 }
3434
3435 /* If no catchpoint triggered for this, then keep going. */
3436 keep_going (ecs);
3437 return 1;
3438 }
3439
3440 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3441
3442 static void
3443 fill_in_stop_func (struct gdbarch *gdbarch,
3444 struct execution_control_state *ecs)
3445 {
3446 if (!ecs->stop_func_filled_in)
3447 {
3448 /* Don't care about return value; stop_func_start and stop_func_name
3449 will both be 0 if it doesn't work. */
3450 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3451 &ecs->stop_func_start, &ecs->stop_func_end);
3452 ecs->stop_func_start
3453 += gdbarch_deprecated_function_start_offset (gdbarch);
3454
3455 if (gdbarch_skip_entrypoint_p (gdbarch))
3456 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
3457 ecs->stop_func_start);
3458
3459 ecs->stop_func_filled_in = 1;
3460 }
3461 }
3462
3463
3464 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
3465
3466 static enum stop_kind
3467 get_inferior_stop_soon (ptid_t ptid)
3468 {
3469 struct inferior *inf = find_inferior_pid (ptid_get_pid (ptid));
3470
3471 gdb_assert (inf != NULL);
3472 return inf->control.stop_soon;
3473 }
3474
3475 /* Given an execution control state that has been freshly filled in by
3476 an event from the inferior, figure out what it means and take
3477 appropriate action.
3478
3479 The alternatives are:
3480
3481 1) stop_waiting and return; to really stop and return to the
3482 debugger.
3483
3484 2) keep_going and return; to wait for the next event (set
3485 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3486 once). */
3487
3488 static void
3489 handle_inferior_event (struct execution_control_state *ecs)
3490 {
3491 enum stop_kind stop_soon;
3492
3493 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3494 {
3495 /* We had an event in the inferior, but we are not interested in
3496 handling it at this level. The lower layers have already
3497 done what needs to be done, if anything.
3498
3499 One of the possible circumstances for this is when the
3500 inferior produces output for the console. The inferior has
3501 not stopped, and we are ignoring the event. Another possible
3502 circumstance is any event which the lower level knows will be
3503 reported multiple times without an intervening resume. */
3504 if (debug_infrun)
3505 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3506 prepare_to_wait (ecs);
3507 return;
3508 }
3509
3510 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3511 && target_can_async_p () && !sync_execution)
3512 {
3513 /* There were no unwaited-for children left in the target, but,
3514 we're not synchronously waiting for events either. Just
3515 ignore. Otherwise, if we were running a synchronous
3516 execution command, we need to cancel it and give the user
3517 back the terminal. */
3518 if (debug_infrun)
3519 fprintf_unfiltered (gdb_stdlog,
3520 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3521 prepare_to_wait (ecs);
3522 return;
3523 }
3524
3525 /* Cache the last pid/waitstatus. */
3526 set_last_target_status (ecs->ptid, ecs->ws);
3527
3528 /* Always clear state belonging to the previous time we stopped. */
3529 stop_stack_dummy = STOP_NONE;
3530
3531 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3532 {
3533 /* No unwaited-for children left. IOW, all resumed children
3534 have exited. */
3535 if (debug_infrun)
3536 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3537
3538 stop_print_frame = 0;
3539 stop_waiting (ecs);
3540 return;
3541 }
3542
3543 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3544 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3545 {
3546 ecs->event_thread = find_thread_ptid (ecs->ptid);
3547 /* If it's a new thread, add it to the thread database. */
3548 if (ecs->event_thread == NULL)
3549 ecs->event_thread = add_thread (ecs->ptid);
3550
3551 /* Disable range stepping. If the next step request could use a
3552 range, this will be end up re-enabled then. */
3553 ecs->event_thread->control.may_range_step = 0;
3554 }
3555
3556 /* Dependent on valid ECS->EVENT_THREAD. */
3557 adjust_pc_after_break (ecs);
3558
3559 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3560 reinit_frame_cache ();
3561
3562 breakpoint_retire_moribund ();
3563
3564 /* First, distinguish signals caused by the debugger from signals
3565 that have to do with the program's own actions. Note that
3566 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3567 on the operating system version. Here we detect when a SIGILL or
3568 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3569 something similar for SIGSEGV, since a SIGSEGV will be generated
3570 when we're trying to execute a breakpoint instruction on a
3571 non-executable stack. This happens for call dummy breakpoints
3572 for architectures like SPARC that place call dummies on the
3573 stack. */
3574 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3575 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3576 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3577 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3578 {
3579 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3580
3581 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3582 regcache_read_pc (regcache)))
3583 {
3584 if (debug_infrun)
3585 fprintf_unfiltered (gdb_stdlog,
3586 "infrun: Treating signal as SIGTRAP\n");
3587 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3588 }
3589 }
3590
3591 /* Mark the non-executing threads accordingly. In all-stop, all
3592 threads of all processes are stopped when we get any event
3593 reported. In non-stop mode, only the event thread stops. If
3594 we're handling a process exit in non-stop mode, there's nothing
3595 to do, as threads of the dead process are gone, and threads of
3596 any other process were left running. */
3597 if (!non_stop)
3598 set_executing (minus_one_ptid, 0);
3599 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3600 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3601 set_executing (ecs->ptid, 0);
3602
3603 switch (ecs->ws.kind)
3604 {
3605 case TARGET_WAITKIND_LOADED:
3606 if (debug_infrun)
3607 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3608 if (!ptid_equal (ecs->ptid, inferior_ptid))
3609 context_switch (ecs->ptid);
3610 /* Ignore gracefully during startup of the inferior, as it might
3611 be the shell which has just loaded some objects, otherwise
3612 add the symbols for the newly loaded objects. Also ignore at
3613 the beginning of an attach or remote session; we will query
3614 the full list of libraries once the connection is
3615 established. */
3616
3617 stop_soon = get_inferior_stop_soon (ecs->ptid);
3618 if (stop_soon == NO_STOP_QUIETLY)
3619 {
3620 struct regcache *regcache;
3621
3622 regcache = get_thread_regcache (ecs->ptid);
3623
3624 handle_solib_event ();
3625
3626 ecs->event_thread->control.stop_bpstat
3627 = bpstat_stop_status (get_regcache_aspace (regcache),
3628 stop_pc, ecs->ptid, &ecs->ws);
3629
3630 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3631 {
3632 /* A catchpoint triggered. */
3633 process_event_stop_test (ecs);
3634 return;
3635 }
3636
3637 /* If requested, stop when the dynamic linker notifies
3638 gdb of events. This allows the user to get control
3639 and place breakpoints in initializer routines for
3640 dynamically loaded objects (among other things). */
3641 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3642 if (stop_on_solib_events)
3643 {
3644 /* Make sure we print "Stopped due to solib-event" in
3645 normal_stop. */
3646 stop_print_frame = 1;
3647
3648 stop_waiting (ecs);
3649 return;
3650 }
3651 }
3652
3653 /* If we are skipping through a shell, or through shared library
3654 loading that we aren't interested in, resume the program. If
3655 we're running the program normally, also resume. */
3656 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3657 {
3658 /* Loading of shared libraries might have changed breakpoint
3659 addresses. Make sure new breakpoints are inserted. */
3660 if (stop_soon == NO_STOP_QUIETLY)
3661 insert_breakpoints ();
3662 resume (0, GDB_SIGNAL_0);
3663 prepare_to_wait (ecs);
3664 return;
3665 }
3666
3667 /* But stop if we're attaching or setting up a remote
3668 connection. */
3669 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3670 || stop_soon == STOP_QUIETLY_REMOTE)
3671 {
3672 if (debug_infrun)
3673 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3674 stop_waiting (ecs);
3675 return;
3676 }
3677
3678 internal_error (__FILE__, __LINE__,
3679 _("unhandled stop_soon: %d"), (int) stop_soon);
3680
3681 case TARGET_WAITKIND_SPURIOUS:
3682 if (debug_infrun)
3683 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3684 if (!ptid_equal (ecs->ptid, inferior_ptid))
3685 context_switch (ecs->ptid);
3686 resume (0, GDB_SIGNAL_0);
3687 prepare_to_wait (ecs);
3688 return;
3689
3690 case TARGET_WAITKIND_EXITED:
3691 case TARGET_WAITKIND_SIGNALLED:
3692 if (debug_infrun)
3693 {
3694 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3695 fprintf_unfiltered (gdb_stdlog,
3696 "infrun: TARGET_WAITKIND_EXITED\n");
3697 else
3698 fprintf_unfiltered (gdb_stdlog,
3699 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3700 }
3701
3702 inferior_ptid = ecs->ptid;
3703 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3704 set_current_program_space (current_inferior ()->pspace);
3705 handle_vfork_child_exec_or_exit (0);
3706 target_terminal_ours (); /* Must do this before mourn anyway. */
3707
3708 /* Clearing any previous state of convenience variables. */
3709 clear_exit_convenience_vars ();
3710
3711 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3712 {
3713 /* Record the exit code in the convenience variable $_exitcode, so
3714 that the user can inspect this again later. */
3715 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3716 (LONGEST) ecs->ws.value.integer);
3717
3718 /* Also record this in the inferior itself. */
3719 current_inferior ()->has_exit_code = 1;
3720 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3721
3722 /* Support the --return-child-result option. */
3723 return_child_result_value = ecs->ws.value.integer;
3724
3725 observer_notify_exited (ecs->ws.value.integer);
3726 }
3727 else
3728 {
3729 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3730 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3731
3732 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3733 {
3734 /* Set the value of the internal variable $_exitsignal,
3735 which holds the signal uncaught by the inferior. */
3736 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3737 gdbarch_gdb_signal_to_target (gdbarch,
3738 ecs->ws.value.sig));
3739 }
3740 else
3741 {
3742 /* We don't have access to the target's method used for
3743 converting between signal numbers (GDB's internal
3744 representation <-> target's representation).
3745 Therefore, we cannot do a good job at displaying this
3746 information to the user. It's better to just warn
3747 her about it (if infrun debugging is enabled), and
3748 give up. */
3749 if (debug_infrun)
3750 fprintf_filtered (gdb_stdlog, _("\
3751 Cannot fill $_exitsignal with the correct signal number.\n"));
3752 }
3753
3754 observer_notify_signal_exited (ecs->ws.value.sig);
3755 }
3756
3757 gdb_flush (gdb_stdout);
3758 target_mourn_inferior ();
3759 singlestep_breakpoints_inserted_p = 0;
3760 cancel_single_step_breakpoints ();
3761 stop_print_frame = 0;
3762 stop_waiting (ecs);
3763 return;
3764
3765 /* The following are the only cases in which we keep going;
3766 the above cases end in a continue or goto. */
3767 case TARGET_WAITKIND_FORKED:
3768 case TARGET_WAITKIND_VFORKED:
3769 if (debug_infrun)
3770 {
3771 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3772 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3773 else
3774 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3775 }
3776
3777 /* Check whether the inferior is displaced stepping. */
3778 {
3779 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3780 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3781 struct displaced_step_inferior_state *displaced
3782 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3783
3784 /* If checking displaced stepping is supported, and thread
3785 ecs->ptid is displaced stepping. */
3786 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3787 {
3788 struct inferior *parent_inf
3789 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3790 struct regcache *child_regcache;
3791 CORE_ADDR parent_pc;
3792
3793 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3794 indicating that the displaced stepping of syscall instruction
3795 has been done. Perform cleanup for parent process here. Note
3796 that this operation also cleans up the child process for vfork,
3797 because their pages are shared. */
3798 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3799
3800 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3801 {
3802 /* Restore scratch pad for child process. */
3803 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3804 }
3805
3806 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3807 the child's PC is also within the scratchpad. Set the child's PC
3808 to the parent's PC value, which has already been fixed up.
3809 FIXME: we use the parent's aspace here, although we're touching
3810 the child, because the child hasn't been added to the inferior
3811 list yet at this point. */
3812
3813 child_regcache
3814 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3815 gdbarch,
3816 parent_inf->aspace);
3817 /* Read PC value of parent process. */
3818 parent_pc = regcache_read_pc (regcache);
3819
3820 if (debug_displaced)
3821 fprintf_unfiltered (gdb_stdlog,
3822 "displaced: write child pc from %s to %s\n",
3823 paddress (gdbarch,
3824 regcache_read_pc (child_regcache)),
3825 paddress (gdbarch, parent_pc));
3826
3827 regcache_write_pc (child_regcache, parent_pc);
3828 }
3829 }
3830
3831 if (!ptid_equal (ecs->ptid, inferior_ptid))
3832 context_switch (ecs->ptid);
3833
3834 /* Immediately detach breakpoints from the child before there's
3835 any chance of letting the user delete breakpoints from the
3836 breakpoint lists. If we don't do this early, it's easy to
3837 leave left over traps in the child, vis: "break foo; catch
3838 fork; c; <fork>; del; c; <child calls foo>". We only follow
3839 the fork on the last `continue', and by that time the
3840 breakpoint at "foo" is long gone from the breakpoint table.
3841 If we vforked, then we don't need to unpatch here, since both
3842 parent and child are sharing the same memory pages; we'll
3843 need to unpatch at follow/detach time instead to be certain
3844 that new breakpoints added between catchpoint hit time and
3845 vfork follow are detached. */
3846 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3847 {
3848 /* This won't actually modify the breakpoint list, but will
3849 physically remove the breakpoints from the child. */
3850 detach_breakpoints (ecs->ws.value.related_pid);
3851 }
3852
3853 if (singlestep_breakpoints_inserted_p)
3854 {
3855 /* Pull the single step breakpoints out of the target. */
3856 remove_single_step_breakpoints ();
3857 singlestep_breakpoints_inserted_p = 0;
3858 }
3859
3860 /* In case the event is caught by a catchpoint, remember that
3861 the event is to be followed at the next resume of the thread,
3862 and not immediately. */
3863 ecs->event_thread->pending_follow = ecs->ws;
3864
3865 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3866
3867 ecs->event_thread->control.stop_bpstat
3868 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3869 stop_pc, ecs->ptid, &ecs->ws);
3870
3871 /* If no catchpoint triggered for this, then keep going. Note
3872 that we're interested in knowing the bpstat actually causes a
3873 stop, not just if it may explain the signal. Software
3874 watchpoints, for example, always appear in the bpstat. */
3875 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3876 {
3877 ptid_t parent;
3878 ptid_t child;
3879 int should_resume;
3880 int follow_child
3881 = (follow_fork_mode_string == follow_fork_mode_child);
3882
3883 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3884
3885 should_resume = follow_fork ();
3886
3887 parent = ecs->ptid;
3888 child = ecs->ws.value.related_pid;
3889
3890 /* In non-stop mode, also resume the other branch. */
3891 if (non_stop && !detach_fork)
3892 {
3893 if (follow_child)
3894 switch_to_thread (parent);
3895 else
3896 switch_to_thread (child);
3897
3898 ecs->event_thread = inferior_thread ();
3899 ecs->ptid = inferior_ptid;
3900 keep_going (ecs);
3901 }
3902
3903 if (follow_child)
3904 switch_to_thread (child);
3905 else
3906 switch_to_thread (parent);
3907
3908 ecs->event_thread = inferior_thread ();
3909 ecs->ptid = inferior_ptid;
3910
3911 if (should_resume)
3912 keep_going (ecs);
3913 else
3914 stop_waiting (ecs);
3915 return;
3916 }
3917 process_event_stop_test (ecs);
3918 return;
3919
3920 case TARGET_WAITKIND_VFORK_DONE:
3921 /* Done with the shared memory region. Re-insert breakpoints in
3922 the parent, and keep going. */
3923
3924 if (debug_infrun)
3925 fprintf_unfiltered (gdb_stdlog,
3926 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3927
3928 if (!ptid_equal (ecs->ptid, inferior_ptid))
3929 context_switch (ecs->ptid);
3930
3931 current_inferior ()->waiting_for_vfork_done = 0;
3932 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3933 /* This also takes care of reinserting breakpoints in the
3934 previously locked inferior. */
3935 keep_going (ecs);
3936 return;
3937
3938 case TARGET_WAITKIND_EXECD:
3939 if (debug_infrun)
3940 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3941
3942 if (!ptid_equal (ecs->ptid, inferior_ptid))
3943 context_switch (ecs->ptid);
3944
3945 singlestep_breakpoints_inserted_p = 0;
3946 cancel_single_step_breakpoints ();
3947
3948 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3949
3950 /* Do whatever is necessary to the parent branch of the vfork. */
3951 handle_vfork_child_exec_or_exit (1);
3952
3953 /* This causes the eventpoints and symbol table to be reset.
3954 Must do this now, before trying to determine whether to
3955 stop. */
3956 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3957
3958 ecs->event_thread->control.stop_bpstat
3959 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3960 stop_pc, ecs->ptid, &ecs->ws);
3961
3962 /* Note that this may be referenced from inside
3963 bpstat_stop_status above, through inferior_has_execd. */
3964 xfree (ecs->ws.value.execd_pathname);
3965 ecs->ws.value.execd_pathname = NULL;
3966
3967 /* If no catchpoint triggered for this, then keep going. */
3968 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3969 {
3970 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3971 keep_going (ecs);
3972 return;
3973 }
3974 process_event_stop_test (ecs);
3975 return;
3976
3977 /* Be careful not to try to gather much state about a thread
3978 that's in a syscall. It's frequently a losing proposition. */
3979 case TARGET_WAITKIND_SYSCALL_ENTRY:
3980 if (debug_infrun)
3981 fprintf_unfiltered (gdb_stdlog,
3982 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3983 /* Getting the current syscall number. */
3984 if (handle_syscall_event (ecs) == 0)
3985 process_event_stop_test (ecs);
3986 return;
3987
3988 /* Before examining the threads further, step this thread to
3989 get it entirely out of the syscall. (We get notice of the
3990 event when the thread is just on the verge of exiting a
3991 syscall. Stepping one instruction seems to get it back
3992 into user code.) */
3993 case TARGET_WAITKIND_SYSCALL_RETURN:
3994 if (debug_infrun)
3995 fprintf_unfiltered (gdb_stdlog,
3996 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3997 if (handle_syscall_event (ecs) == 0)
3998 process_event_stop_test (ecs);
3999 return;
4000
4001 case TARGET_WAITKIND_STOPPED:
4002 if (debug_infrun)
4003 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4004 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4005 handle_signal_stop (ecs);
4006 return;
4007
4008 case TARGET_WAITKIND_NO_HISTORY:
4009 if (debug_infrun)
4010 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
4011 /* Reverse execution: target ran out of history info. */
4012
4013 /* Pull the single step breakpoints out of the target. */
4014 if (singlestep_breakpoints_inserted_p)
4015 {
4016 if (!ptid_equal (ecs->ptid, inferior_ptid))
4017 context_switch (ecs->ptid);
4018 remove_single_step_breakpoints ();
4019 singlestep_breakpoints_inserted_p = 0;
4020 }
4021 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4022 observer_notify_no_history ();
4023 stop_waiting (ecs);
4024 return;
4025 }
4026 }
4027
4028 /* Come here when the program has stopped with a signal. */
4029
4030 static void
4031 handle_signal_stop (struct execution_control_state *ecs)
4032 {
4033 struct frame_info *frame;
4034 struct gdbarch *gdbarch;
4035 int stopped_by_watchpoint;
4036 enum stop_kind stop_soon;
4037 int random_signal;
4038
4039 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
4040
4041 /* Do we need to clean up the state of a thread that has
4042 completed a displaced single-step? (Doing so usually affects
4043 the PC, so do it here, before we set stop_pc.) */
4044 displaced_step_fixup (ecs->ptid,
4045 ecs->event_thread->suspend.stop_signal);
4046
4047 /* If we either finished a single-step or hit a breakpoint, but
4048 the user wanted this thread to be stopped, pretend we got a
4049 SIG0 (generic unsignaled stop). */
4050 if (ecs->event_thread->stop_requested
4051 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4052 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4053
4054 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4055
4056 if (debug_infrun)
4057 {
4058 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4059 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4060 struct cleanup *old_chain = save_inferior_ptid ();
4061
4062 inferior_ptid = ecs->ptid;
4063
4064 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
4065 paddress (gdbarch, stop_pc));
4066 if (target_stopped_by_watchpoint ())
4067 {
4068 CORE_ADDR addr;
4069
4070 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
4071
4072 if (target_stopped_data_address (&current_target, &addr))
4073 fprintf_unfiltered (gdb_stdlog,
4074 "infrun: stopped data address = %s\n",
4075 paddress (gdbarch, addr));
4076 else
4077 fprintf_unfiltered (gdb_stdlog,
4078 "infrun: (no data address available)\n");
4079 }
4080
4081 do_cleanups (old_chain);
4082 }
4083
4084 /* This is originated from start_remote(), start_inferior() and
4085 shared libraries hook functions. */
4086 stop_soon = get_inferior_stop_soon (ecs->ptid);
4087 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4088 {
4089 if (!ptid_equal (ecs->ptid, inferior_ptid))
4090 context_switch (ecs->ptid);
4091 if (debug_infrun)
4092 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4093 stop_print_frame = 1;
4094 stop_waiting (ecs);
4095 return;
4096 }
4097
4098 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4099 && stop_after_trap)
4100 {
4101 if (!ptid_equal (ecs->ptid, inferior_ptid))
4102 context_switch (ecs->ptid);
4103 if (debug_infrun)
4104 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4105 stop_print_frame = 0;
4106 stop_waiting (ecs);
4107 return;
4108 }
4109
4110 /* This originates from attach_command(). We need to overwrite
4111 the stop_signal here, because some kernels don't ignore a
4112 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4113 See more comments in inferior.h. On the other hand, if we
4114 get a non-SIGSTOP, report it to the user - assume the backend
4115 will handle the SIGSTOP if it should show up later.
4116
4117 Also consider that the attach is complete when we see a
4118 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4119 target extended-remote report it instead of a SIGSTOP
4120 (e.g. gdbserver). We already rely on SIGTRAP being our
4121 signal, so this is no exception.
4122
4123 Also consider that the attach is complete when we see a
4124 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4125 the target to stop all threads of the inferior, in case the
4126 low level attach operation doesn't stop them implicitly. If
4127 they weren't stopped implicitly, then the stub will report a
4128 GDB_SIGNAL_0, meaning: stopped for no particular reason
4129 other than GDB's request. */
4130 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4131 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4132 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4133 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4134 {
4135 stop_print_frame = 1;
4136 stop_waiting (ecs);
4137 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4138 return;
4139 }
4140
4141 /* See if something interesting happened to the non-current thread. If
4142 so, then switch to that thread. */
4143 if (!ptid_equal (ecs->ptid, inferior_ptid))
4144 {
4145 if (debug_infrun)
4146 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
4147
4148 context_switch (ecs->ptid);
4149
4150 if (deprecated_context_hook)
4151 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
4152 }
4153
4154 /* At this point, get hold of the now-current thread's frame. */
4155 frame = get_current_frame ();
4156 gdbarch = get_frame_arch (frame);
4157
4158 /* Pull the single step breakpoints out of the target. */
4159 if (singlestep_breakpoints_inserted_p)
4160 {
4161 /* However, before doing so, if this single-step breakpoint was
4162 actually for another thread, set this thread up for moving
4163 past it. */
4164 if (!ptid_equal (ecs->ptid, singlestep_ptid)
4165 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4166 {
4167 struct regcache *regcache;
4168 struct address_space *aspace;
4169 CORE_ADDR pc;
4170
4171 regcache = get_thread_regcache (ecs->ptid);
4172 aspace = get_regcache_aspace (regcache);
4173 pc = regcache_read_pc (regcache);
4174 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4175 {
4176 if (debug_infrun)
4177 {
4178 fprintf_unfiltered (gdb_stdlog,
4179 "infrun: [%s] hit step over single-step"
4180 " breakpoint of [%s]\n",
4181 target_pid_to_str (ecs->ptid),
4182 target_pid_to_str (singlestep_ptid));
4183 }
4184 ecs->hit_singlestep_breakpoint = 1;
4185 }
4186 }
4187
4188 remove_single_step_breakpoints ();
4189 singlestep_breakpoints_inserted_p = 0;
4190 }
4191
4192 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4193 && ecs->event_thread->control.trap_expected
4194 && ecs->event_thread->stepping_over_watchpoint)
4195 stopped_by_watchpoint = 0;
4196 else
4197 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4198
4199 /* If necessary, step over this watchpoint. We'll be back to display
4200 it in a moment. */
4201 if (stopped_by_watchpoint
4202 && (target_have_steppable_watchpoint
4203 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4204 {
4205 /* At this point, we are stopped at an instruction which has
4206 attempted to write to a piece of memory under control of
4207 a watchpoint. The instruction hasn't actually executed
4208 yet. If we were to evaluate the watchpoint expression
4209 now, we would get the old value, and therefore no change
4210 would seem to have occurred.
4211
4212 In order to make watchpoints work `right', we really need
4213 to complete the memory write, and then evaluate the
4214 watchpoint expression. We do this by single-stepping the
4215 target.
4216
4217 It may not be necessary to disable the watchpoint to step over
4218 it. For example, the PA can (with some kernel cooperation)
4219 single step over a watchpoint without disabling the watchpoint.
4220
4221 It is far more common to need to disable a watchpoint to step
4222 the inferior over it. If we have non-steppable watchpoints,
4223 we must disable the current watchpoint; it's simplest to
4224 disable all watchpoints.
4225
4226 Any breakpoint at PC must also be stepped over -- if there's
4227 one, it will have already triggered before the watchpoint
4228 triggered, and we either already reported it to the user, or
4229 it didn't cause a stop and we called keep_going. In either
4230 case, if there was a breakpoint at PC, we must be trying to
4231 step past it. */
4232 ecs->event_thread->stepping_over_watchpoint = 1;
4233 keep_going (ecs);
4234 return;
4235 }
4236
4237 ecs->event_thread->stepping_over_breakpoint = 0;
4238 ecs->event_thread->stepping_over_watchpoint = 0;
4239 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4240 ecs->event_thread->control.stop_step = 0;
4241 stop_print_frame = 1;
4242 stopped_by_random_signal = 0;
4243
4244 /* Hide inlined functions starting here, unless we just performed stepi or
4245 nexti. After stepi and nexti, always show the innermost frame (not any
4246 inline function call sites). */
4247 if (ecs->event_thread->control.step_range_end != 1)
4248 {
4249 struct address_space *aspace =
4250 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4251
4252 /* skip_inline_frames is expensive, so we avoid it if we can
4253 determine that the address is one where functions cannot have
4254 been inlined. This improves performance with inferiors that
4255 load a lot of shared libraries, because the solib event
4256 breakpoint is defined as the address of a function (i.e. not
4257 inline). Note that we have to check the previous PC as well
4258 as the current one to catch cases when we have just
4259 single-stepped off a breakpoint prior to reinstating it.
4260 Note that we're assuming that the code we single-step to is
4261 not inline, but that's not definitive: there's nothing
4262 preventing the event breakpoint function from containing
4263 inlined code, and the single-step ending up there. If the
4264 user had set a breakpoint on that inlined code, the missing
4265 skip_inline_frames call would break things. Fortunately
4266 that's an extremely unlikely scenario. */
4267 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4268 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4269 && ecs->event_thread->control.trap_expected
4270 && pc_at_non_inline_function (aspace,
4271 ecs->event_thread->prev_pc,
4272 &ecs->ws)))
4273 {
4274 skip_inline_frames (ecs->ptid);
4275
4276 /* Re-fetch current thread's frame in case that invalidated
4277 the frame cache. */
4278 frame = get_current_frame ();
4279 gdbarch = get_frame_arch (frame);
4280 }
4281 }
4282
4283 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4284 && ecs->event_thread->control.trap_expected
4285 && gdbarch_single_step_through_delay_p (gdbarch)
4286 && currently_stepping (ecs->event_thread))
4287 {
4288 /* We're trying to step off a breakpoint. Turns out that we're
4289 also on an instruction that needs to be stepped multiple
4290 times before it's been fully executing. E.g., architectures
4291 with a delay slot. It needs to be stepped twice, once for
4292 the instruction and once for the delay slot. */
4293 int step_through_delay
4294 = gdbarch_single_step_through_delay (gdbarch, frame);
4295
4296 if (debug_infrun && step_through_delay)
4297 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4298 if (ecs->event_thread->control.step_range_end == 0
4299 && step_through_delay)
4300 {
4301 /* The user issued a continue when stopped at a breakpoint.
4302 Set up for another trap and get out of here. */
4303 ecs->event_thread->stepping_over_breakpoint = 1;
4304 keep_going (ecs);
4305 return;
4306 }
4307 else if (step_through_delay)
4308 {
4309 /* The user issued a step when stopped at a breakpoint.
4310 Maybe we should stop, maybe we should not - the delay
4311 slot *might* correspond to a line of source. In any
4312 case, don't decide that here, just set
4313 ecs->stepping_over_breakpoint, making sure we
4314 single-step again before breakpoints are re-inserted. */
4315 ecs->event_thread->stepping_over_breakpoint = 1;
4316 }
4317 }
4318
4319 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4320 handles this event. */
4321 ecs->event_thread->control.stop_bpstat
4322 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4323 stop_pc, ecs->ptid, &ecs->ws);
4324
4325 /* Following in case break condition called a
4326 function. */
4327 stop_print_frame = 1;
4328
4329 /* This is where we handle "moribund" watchpoints. Unlike
4330 software breakpoints traps, hardware watchpoint traps are
4331 always distinguishable from random traps. If no high-level
4332 watchpoint is associated with the reported stop data address
4333 anymore, then the bpstat does not explain the signal ---
4334 simply make sure to ignore it if `stopped_by_watchpoint' is
4335 set. */
4336
4337 if (debug_infrun
4338 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4339 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4340 GDB_SIGNAL_TRAP)
4341 && stopped_by_watchpoint)
4342 fprintf_unfiltered (gdb_stdlog,
4343 "infrun: no user watchpoint explains "
4344 "watchpoint SIGTRAP, ignoring\n");
4345
4346 /* NOTE: cagney/2003-03-29: These checks for a random signal
4347 at one stage in the past included checks for an inferior
4348 function call's call dummy's return breakpoint. The original
4349 comment, that went with the test, read:
4350
4351 ``End of a stack dummy. Some systems (e.g. Sony news) give
4352 another signal besides SIGTRAP, so check here as well as
4353 above.''
4354
4355 If someone ever tries to get call dummys on a
4356 non-executable stack to work (where the target would stop
4357 with something like a SIGSEGV), then those tests might need
4358 to be re-instated. Given, however, that the tests were only
4359 enabled when momentary breakpoints were not being used, I
4360 suspect that it won't be the case.
4361
4362 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4363 be necessary for call dummies on a non-executable stack on
4364 SPARC. */
4365
4366 /* See if the breakpoints module can explain the signal. */
4367 random_signal
4368 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4369 ecs->event_thread->suspend.stop_signal);
4370
4371 /* If not, perhaps stepping/nexting can. */
4372 if (random_signal)
4373 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4374 && currently_stepping (ecs->event_thread));
4375
4376 /* Perhaps the thread hit a single-step breakpoint of _another_
4377 thread. Single-step breakpoints are transparent to the
4378 breakpoints module. */
4379 if (random_signal)
4380 random_signal = !ecs->hit_singlestep_breakpoint;
4381
4382 /* No? Perhaps we got a moribund watchpoint. */
4383 if (random_signal)
4384 random_signal = !stopped_by_watchpoint;
4385
4386 /* For the program's own signals, act according to
4387 the signal handling tables. */
4388
4389 if (random_signal)
4390 {
4391 /* Signal not for debugging purposes. */
4392 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4393 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
4394
4395 if (debug_infrun)
4396 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4397 gdb_signal_to_symbol_string (stop_signal));
4398
4399 stopped_by_random_signal = 1;
4400
4401 /* Always stop on signals if we're either just gaining control
4402 of the program, or the user explicitly requested this thread
4403 to remain stopped. */
4404 if (stop_soon != NO_STOP_QUIETLY
4405 || ecs->event_thread->stop_requested
4406 || (!inf->detaching
4407 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4408 {
4409 stop_waiting (ecs);
4410 return;
4411 }
4412
4413 /* Notify observers the signal has "handle print" set. Note we
4414 returned early above if stopping; normal_stop handles the
4415 printing in that case. */
4416 if (signal_print[ecs->event_thread->suspend.stop_signal])
4417 {
4418 /* The signal table tells us to print about this signal. */
4419 target_terminal_ours_for_output ();
4420 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
4421 target_terminal_inferior ();
4422 }
4423
4424 /* Clear the signal if it should not be passed. */
4425 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4426 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4427
4428 if (ecs->event_thread->prev_pc == stop_pc
4429 && ecs->event_thread->control.trap_expected
4430 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4431 {
4432 /* We were just starting a new sequence, attempting to
4433 single-step off of a breakpoint and expecting a SIGTRAP.
4434 Instead this signal arrives. This signal will take us out
4435 of the stepping range so GDB needs to remember to, when
4436 the signal handler returns, resume stepping off that
4437 breakpoint. */
4438 /* To simplify things, "continue" is forced to use the same
4439 code paths as single-step - set a breakpoint at the
4440 signal return address and then, once hit, step off that
4441 breakpoint. */
4442 if (debug_infrun)
4443 fprintf_unfiltered (gdb_stdlog,
4444 "infrun: signal arrived while stepping over "
4445 "breakpoint\n");
4446
4447 insert_hp_step_resume_breakpoint_at_frame (frame);
4448 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4449 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4450 ecs->event_thread->control.trap_expected = 0;
4451
4452 /* If we were nexting/stepping some other thread, switch to
4453 it, so that we don't continue it, losing control. */
4454 if (!switch_back_to_stepped_thread (ecs))
4455 keep_going (ecs);
4456 return;
4457 }
4458
4459 if (ecs->event_thread->control.step_range_end != 0
4460 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4461 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
4462 && frame_id_eq (get_stack_frame_id (frame),
4463 ecs->event_thread->control.step_stack_frame_id)
4464 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4465 {
4466 /* The inferior is about to take a signal that will take it
4467 out of the single step range. Set a breakpoint at the
4468 current PC (which is presumably where the signal handler
4469 will eventually return) and then allow the inferior to
4470 run free.
4471
4472 Note that this is only needed for a signal delivered
4473 while in the single-step range. Nested signals aren't a
4474 problem as they eventually all return. */
4475 if (debug_infrun)
4476 fprintf_unfiltered (gdb_stdlog,
4477 "infrun: signal may take us out of "
4478 "single-step range\n");
4479
4480 insert_hp_step_resume_breakpoint_at_frame (frame);
4481 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4482 ecs->event_thread->control.trap_expected = 0;
4483 keep_going (ecs);
4484 return;
4485 }
4486
4487 /* Note: step_resume_breakpoint may be non-NULL. This occures
4488 when either there's a nested signal, or when there's a
4489 pending signal enabled just as the signal handler returns
4490 (leaving the inferior at the step-resume-breakpoint without
4491 actually executing it). Either way continue until the
4492 breakpoint is really hit. */
4493
4494 if (!switch_back_to_stepped_thread (ecs))
4495 {
4496 if (debug_infrun)
4497 fprintf_unfiltered (gdb_stdlog,
4498 "infrun: random signal, keep going\n");
4499
4500 keep_going (ecs);
4501 }
4502 return;
4503 }
4504
4505 process_event_stop_test (ecs);
4506 }
4507
4508 /* Come here when we've got some debug event / signal we can explain
4509 (IOW, not a random signal), and test whether it should cause a
4510 stop, or whether we should resume the inferior (transparently).
4511 E.g., could be a breakpoint whose condition evaluates false; we
4512 could be still stepping within the line; etc. */
4513
4514 static void
4515 process_event_stop_test (struct execution_control_state *ecs)
4516 {
4517 struct symtab_and_line stop_pc_sal;
4518 struct frame_info *frame;
4519 struct gdbarch *gdbarch;
4520 CORE_ADDR jmp_buf_pc;
4521 struct bpstat_what what;
4522
4523 /* Handle cases caused by hitting a breakpoint. */
4524
4525 frame = get_current_frame ();
4526 gdbarch = get_frame_arch (frame);
4527
4528 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4529
4530 if (what.call_dummy)
4531 {
4532 stop_stack_dummy = what.call_dummy;
4533 }
4534
4535 /* If we hit an internal event that triggers symbol changes, the
4536 current frame will be invalidated within bpstat_what (e.g., if we
4537 hit an internal solib event). Re-fetch it. */
4538 frame = get_current_frame ();
4539 gdbarch = get_frame_arch (frame);
4540
4541 switch (what.main_action)
4542 {
4543 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4544 /* If we hit the breakpoint at longjmp while stepping, we
4545 install a momentary breakpoint at the target of the
4546 jmp_buf. */
4547
4548 if (debug_infrun)
4549 fprintf_unfiltered (gdb_stdlog,
4550 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4551
4552 ecs->event_thread->stepping_over_breakpoint = 1;
4553
4554 if (what.is_longjmp)
4555 {
4556 struct value *arg_value;
4557
4558 /* If we set the longjmp breakpoint via a SystemTap probe,
4559 then use it to extract the arguments. The destination PC
4560 is the third argument to the probe. */
4561 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4562 if (arg_value)
4563 {
4564 jmp_buf_pc = value_as_address (arg_value);
4565 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
4566 }
4567 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4568 || !gdbarch_get_longjmp_target (gdbarch,
4569 frame, &jmp_buf_pc))
4570 {
4571 if (debug_infrun)
4572 fprintf_unfiltered (gdb_stdlog,
4573 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4574 "(!gdbarch_get_longjmp_target)\n");
4575 keep_going (ecs);
4576 return;
4577 }
4578
4579 /* Insert a breakpoint at resume address. */
4580 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4581 }
4582 else
4583 check_exception_resume (ecs, frame);
4584 keep_going (ecs);
4585 return;
4586
4587 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4588 {
4589 struct frame_info *init_frame;
4590
4591 /* There are several cases to consider.
4592
4593 1. The initiating frame no longer exists. In this case we
4594 must stop, because the exception or longjmp has gone too
4595 far.
4596
4597 2. The initiating frame exists, and is the same as the
4598 current frame. We stop, because the exception or longjmp
4599 has been caught.
4600
4601 3. The initiating frame exists and is different from the
4602 current frame. This means the exception or longjmp has
4603 been caught beneath the initiating frame, so keep going.
4604
4605 4. longjmp breakpoint has been placed just to protect
4606 against stale dummy frames and user is not interested in
4607 stopping around longjmps. */
4608
4609 if (debug_infrun)
4610 fprintf_unfiltered (gdb_stdlog,
4611 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4612
4613 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4614 != NULL);
4615 delete_exception_resume_breakpoint (ecs->event_thread);
4616
4617 if (what.is_longjmp)
4618 {
4619 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
4620
4621 if (!frame_id_p (ecs->event_thread->initiating_frame))
4622 {
4623 /* Case 4. */
4624 keep_going (ecs);
4625 return;
4626 }
4627 }
4628
4629 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4630
4631 if (init_frame)
4632 {
4633 struct frame_id current_id
4634 = get_frame_id (get_current_frame ());
4635 if (frame_id_eq (current_id,
4636 ecs->event_thread->initiating_frame))
4637 {
4638 /* Case 2. Fall through. */
4639 }
4640 else
4641 {
4642 /* Case 3. */
4643 keep_going (ecs);
4644 return;
4645 }
4646 }
4647
4648 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4649 exists. */
4650 delete_step_resume_breakpoint (ecs->event_thread);
4651
4652 end_stepping_range (ecs);
4653 }
4654 return;
4655
4656 case BPSTAT_WHAT_SINGLE:
4657 if (debug_infrun)
4658 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4659 ecs->event_thread->stepping_over_breakpoint = 1;
4660 /* Still need to check other stuff, at least the case where we
4661 are stepping and step out of the right range. */
4662 break;
4663
4664 case BPSTAT_WHAT_STEP_RESUME:
4665 if (debug_infrun)
4666 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4667
4668 delete_step_resume_breakpoint (ecs->event_thread);
4669 if (ecs->event_thread->control.proceed_to_finish
4670 && execution_direction == EXEC_REVERSE)
4671 {
4672 struct thread_info *tp = ecs->event_thread;
4673
4674 /* We are finishing a function in reverse, and just hit the
4675 step-resume breakpoint at the start address of the
4676 function, and we're almost there -- just need to back up
4677 by one more single-step, which should take us back to the
4678 function call. */
4679 tp->control.step_range_start = tp->control.step_range_end = 1;
4680 keep_going (ecs);
4681 return;
4682 }
4683 fill_in_stop_func (gdbarch, ecs);
4684 if (stop_pc == ecs->stop_func_start
4685 && execution_direction == EXEC_REVERSE)
4686 {
4687 /* We are stepping over a function call in reverse, and just
4688 hit the step-resume breakpoint at the start address of
4689 the function. Go back to single-stepping, which should
4690 take us back to the function call. */
4691 ecs->event_thread->stepping_over_breakpoint = 1;
4692 keep_going (ecs);
4693 return;
4694 }
4695 break;
4696
4697 case BPSTAT_WHAT_STOP_NOISY:
4698 if (debug_infrun)
4699 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4700 stop_print_frame = 1;
4701
4702 /* Assume the thread stopped for a breapoint. We'll still check
4703 whether a/the breakpoint is there when the thread is next
4704 resumed. */
4705 ecs->event_thread->stepping_over_breakpoint = 1;
4706
4707 stop_waiting (ecs);
4708 return;
4709
4710 case BPSTAT_WHAT_STOP_SILENT:
4711 if (debug_infrun)
4712 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4713 stop_print_frame = 0;
4714
4715 /* Assume the thread stopped for a breapoint. We'll still check
4716 whether a/the breakpoint is there when the thread is next
4717 resumed. */
4718 ecs->event_thread->stepping_over_breakpoint = 1;
4719 stop_waiting (ecs);
4720 return;
4721
4722 case BPSTAT_WHAT_HP_STEP_RESUME:
4723 if (debug_infrun)
4724 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4725
4726 delete_step_resume_breakpoint (ecs->event_thread);
4727 if (ecs->event_thread->step_after_step_resume_breakpoint)
4728 {
4729 /* Back when the step-resume breakpoint was inserted, we
4730 were trying to single-step off a breakpoint. Go back to
4731 doing that. */
4732 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4733 ecs->event_thread->stepping_over_breakpoint = 1;
4734 keep_going (ecs);
4735 return;
4736 }
4737 break;
4738
4739 case BPSTAT_WHAT_KEEP_CHECKING:
4740 break;
4741 }
4742
4743 /* We come here if we hit a breakpoint but should not stop for it.
4744 Possibly we also were stepping and should stop for that. So fall
4745 through and test for stepping. But, if not stepping, do not
4746 stop. */
4747
4748 /* In all-stop mode, if we're currently stepping but have stopped in
4749 some other thread, we need to switch back to the stepped thread. */
4750 if (switch_back_to_stepped_thread (ecs))
4751 return;
4752
4753 if (ecs->event_thread->control.step_resume_breakpoint)
4754 {
4755 if (debug_infrun)
4756 fprintf_unfiltered (gdb_stdlog,
4757 "infrun: step-resume breakpoint is inserted\n");
4758
4759 /* Having a step-resume breakpoint overrides anything
4760 else having to do with stepping commands until
4761 that breakpoint is reached. */
4762 keep_going (ecs);
4763 return;
4764 }
4765
4766 if (ecs->event_thread->control.step_range_end == 0)
4767 {
4768 if (debug_infrun)
4769 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4770 /* Likewise if we aren't even stepping. */
4771 keep_going (ecs);
4772 return;
4773 }
4774
4775 /* Re-fetch current thread's frame in case the code above caused
4776 the frame cache to be re-initialized, making our FRAME variable
4777 a dangling pointer. */
4778 frame = get_current_frame ();
4779 gdbarch = get_frame_arch (frame);
4780 fill_in_stop_func (gdbarch, ecs);
4781
4782 /* If stepping through a line, keep going if still within it.
4783
4784 Note that step_range_end is the address of the first instruction
4785 beyond the step range, and NOT the address of the last instruction
4786 within it!
4787
4788 Note also that during reverse execution, we may be stepping
4789 through a function epilogue and therefore must detect when
4790 the current-frame changes in the middle of a line. */
4791
4792 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4793 && (execution_direction != EXEC_REVERSE
4794 || frame_id_eq (get_frame_id (frame),
4795 ecs->event_thread->control.step_frame_id)))
4796 {
4797 if (debug_infrun)
4798 fprintf_unfiltered
4799 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4800 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4801 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4802
4803 /* Tentatively re-enable range stepping; `resume' disables it if
4804 necessary (e.g., if we're stepping over a breakpoint or we
4805 have software watchpoints). */
4806 ecs->event_thread->control.may_range_step = 1;
4807
4808 /* When stepping backward, stop at beginning of line range
4809 (unless it's the function entry point, in which case
4810 keep going back to the call point). */
4811 if (stop_pc == ecs->event_thread->control.step_range_start
4812 && stop_pc != ecs->stop_func_start
4813 && execution_direction == EXEC_REVERSE)
4814 end_stepping_range (ecs);
4815 else
4816 keep_going (ecs);
4817
4818 return;
4819 }
4820
4821 /* We stepped out of the stepping range. */
4822
4823 /* If we are stepping at the source level and entered the runtime
4824 loader dynamic symbol resolution code...
4825
4826 EXEC_FORWARD: we keep on single stepping until we exit the run
4827 time loader code and reach the callee's address.
4828
4829 EXEC_REVERSE: we've already executed the callee (backward), and
4830 the runtime loader code is handled just like any other
4831 undebuggable function call. Now we need only keep stepping
4832 backward through the trampoline code, and that's handled further
4833 down, so there is nothing for us to do here. */
4834
4835 if (execution_direction != EXEC_REVERSE
4836 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4837 && in_solib_dynsym_resolve_code (stop_pc))
4838 {
4839 CORE_ADDR pc_after_resolver =
4840 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4841
4842 if (debug_infrun)
4843 fprintf_unfiltered (gdb_stdlog,
4844 "infrun: stepped into dynsym resolve code\n");
4845
4846 if (pc_after_resolver)
4847 {
4848 /* Set up a step-resume breakpoint at the address
4849 indicated by SKIP_SOLIB_RESOLVER. */
4850 struct symtab_and_line sr_sal;
4851
4852 init_sal (&sr_sal);
4853 sr_sal.pc = pc_after_resolver;
4854 sr_sal.pspace = get_frame_program_space (frame);
4855
4856 insert_step_resume_breakpoint_at_sal (gdbarch,
4857 sr_sal, null_frame_id);
4858 }
4859
4860 keep_going (ecs);
4861 return;
4862 }
4863
4864 if (ecs->event_thread->control.step_range_end != 1
4865 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4866 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4867 && get_frame_type (frame) == SIGTRAMP_FRAME)
4868 {
4869 if (debug_infrun)
4870 fprintf_unfiltered (gdb_stdlog,
4871 "infrun: stepped into signal trampoline\n");
4872 /* The inferior, while doing a "step" or "next", has ended up in
4873 a signal trampoline (either by a signal being delivered or by
4874 the signal handler returning). Just single-step until the
4875 inferior leaves the trampoline (either by calling the handler
4876 or returning). */
4877 keep_going (ecs);
4878 return;
4879 }
4880
4881 /* If we're in the return path from a shared library trampoline,
4882 we want to proceed through the trampoline when stepping. */
4883 /* macro/2012-04-25: This needs to come before the subroutine
4884 call check below as on some targets return trampolines look
4885 like subroutine calls (MIPS16 return thunks). */
4886 if (gdbarch_in_solib_return_trampoline (gdbarch,
4887 stop_pc, ecs->stop_func_name)
4888 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4889 {
4890 /* Determine where this trampoline returns. */
4891 CORE_ADDR real_stop_pc;
4892
4893 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4894
4895 if (debug_infrun)
4896 fprintf_unfiltered (gdb_stdlog,
4897 "infrun: stepped into solib return tramp\n");
4898
4899 /* Only proceed through if we know where it's going. */
4900 if (real_stop_pc)
4901 {
4902 /* And put the step-breakpoint there and go until there. */
4903 struct symtab_and_line sr_sal;
4904
4905 init_sal (&sr_sal); /* initialize to zeroes */
4906 sr_sal.pc = real_stop_pc;
4907 sr_sal.section = find_pc_overlay (sr_sal.pc);
4908 sr_sal.pspace = get_frame_program_space (frame);
4909
4910 /* Do not specify what the fp should be when we stop since
4911 on some machines the prologue is where the new fp value
4912 is established. */
4913 insert_step_resume_breakpoint_at_sal (gdbarch,
4914 sr_sal, null_frame_id);
4915
4916 /* Restart without fiddling with the step ranges or
4917 other state. */
4918 keep_going (ecs);
4919 return;
4920 }
4921 }
4922
4923 /* Check for subroutine calls. The check for the current frame
4924 equalling the step ID is not necessary - the check of the
4925 previous frame's ID is sufficient - but it is a common case and
4926 cheaper than checking the previous frame's ID.
4927
4928 NOTE: frame_id_eq will never report two invalid frame IDs as
4929 being equal, so to get into this block, both the current and
4930 previous frame must have valid frame IDs. */
4931 /* The outer_frame_id check is a heuristic to detect stepping
4932 through startup code. If we step over an instruction which
4933 sets the stack pointer from an invalid value to a valid value,
4934 we may detect that as a subroutine call from the mythical
4935 "outermost" function. This could be fixed by marking
4936 outermost frames as !stack_p,code_p,special_p. Then the
4937 initial outermost frame, before sp was valid, would
4938 have code_addr == &_start. See the comment in frame_id_eq
4939 for more. */
4940 if (!frame_id_eq (get_stack_frame_id (frame),
4941 ecs->event_thread->control.step_stack_frame_id)
4942 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4943 ecs->event_thread->control.step_stack_frame_id)
4944 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4945 outer_frame_id)
4946 || step_start_function != find_pc_function (stop_pc))))
4947 {
4948 CORE_ADDR real_stop_pc;
4949
4950 if (debug_infrun)
4951 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4952
4953 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4954 || ((ecs->event_thread->control.step_range_end == 1)
4955 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4956 ecs->stop_func_start)))
4957 {
4958 /* I presume that step_over_calls is only 0 when we're
4959 supposed to be stepping at the assembly language level
4960 ("stepi"). Just stop. */
4961 /* Also, maybe we just did a "nexti" inside a prolog, so we
4962 thought it was a subroutine call but it was not. Stop as
4963 well. FENN */
4964 /* And this works the same backward as frontward. MVS */
4965 end_stepping_range (ecs);
4966 return;
4967 }
4968
4969 /* Reverse stepping through solib trampolines. */
4970
4971 if (execution_direction == EXEC_REVERSE
4972 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4973 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4974 || (ecs->stop_func_start == 0
4975 && in_solib_dynsym_resolve_code (stop_pc))))
4976 {
4977 /* Any solib trampoline code can be handled in reverse
4978 by simply continuing to single-step. We have already
4979 executed the solib function (backwards), and a few
4980 steps will take us back through the trampoline to the
4981 caller. */
4982 keep_going (ecs);
4983 return;
4984 }
4985
4986 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4987 {
4988 /* We're doing a "next".
4989
4990 Normal (forward) execution: set a breakpoint at the
4991 callee's return address (the address at which the caller
4992 will resume).
4993
4994 Reverse (backward) execution. set the step-resume
4995 breakpoint at the start of the function that we just
4996 stepped into (backwards), and continue to there. When we
4997 get there, we'll need to single-step back to the caller. */
4998
4999 if (execution_direction == EXEC_REVERSE)
5000 {
5001 /* If we're already at the start of the function, we've either
5002 just stepped backward into a single instruction function,
5003 or stepped back out of a signal handler to the first instruction
5004 of the function. Just keep going, which will single-step back
5005 to the caller. */
5006 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
5007 {
5008 struct symtab_and_line sr_sal;
5009
5010 /* Normal function call return (static or dynamic). */
5011 init_sal (&sr_sal);
5012 sr_sal.pc = ecs->stop_func_start;
5013 sr_sal.pspace = get_frame_program_space (frame);
5014 insert_step_resume_breakpoint_at_sal (gdbarch,
5015 sr_sal, null_frame_id);
5016 }
5017 }
5018 else
5019 insert_step_resume_breakpoint_at_caller (frame);
5020
5021 keep_going (ecs);
5022 return;
5023 }
5024
5025 /* If we are in a function call trampoline (a stub between the
5026 calling routine and the real function), locate the real
5027 function. That's what tells us (a) whether we want to step
5028 into it at all, and (b) what prologue we want to run to the
5029 end of, if we do step into it. */
5030 real_stop_pc = skip_language_trampoline (frame, stop_pc);
5031 if (real_stop_pc == 0)
5032 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5033 if (real_stop_pc != 0)
5034 ecs->stop_func_start = real_stop_pc;
5035
5036 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
5037 {
5038 struct symtab_and_line sr_sal;
5039
5040 init_sal (&sr_sal);
5041 sr_sal.pc = ecs->stop_func_start;
5042 sr_sal.pspace = get_frame_program_space (frame);
5043
5044 insert_step_resume_breakpoint_at_sal (gdbarch,
5045 sr_sal, null_frame_id);
5046 keep_going (ecs);
5047 return;
5048 }
5049
5050 /* If we have line number information for the function we are
5051 thinking of stepping into and the function isn't on the skip
5052 list, step into it.
5053
5054 If there are several symtabs at that PC (e.g. with include
5055 files), just want to know whether *any* of them have line
5056 numbers. find_pc_line handles this. */
5057 {
5058 struct symtab_and_line tmp_sal;
5059
5060 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
5061 if (tmp_sal.line != 0
5062 && !function_name_is_marked_for_skip (ecs->stop_func_name,
5063 &tmp_sal))
5064 {
5065 if (execution_direction == EXEC_REVERSE)
5066 handle_step_into_function_backward (gdbarch, ecs);
5067 else
5068 handle_step_into_function (gdbarch, ecs);
5069 return;
5070 }
5071 }
5072
5073 /* If we have no line number and the step-stop-if-no-debug is
5074 set, we stop the step so that the user has a chance to switch
5075 in assembly mode. */
5076 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5077 && step_stop_if_no_debug)
5078 {
5079 end_stepping_range (ecs);
5080 return;
5081 }
5082
5083 if (execution_direction == EXEC_REVERSE)
5084 {
5085 /* If we're already at the start of the function, we've either just
5086 stepped backward into a single instruction function without line
5087 number info, or stepped back out of a signal handler to the first
5088 instruction of the function without line number info. Just keep
5089 going, which will single-step back to the caller. */
5090 if (ecs->stop_func_start != stop_pc)
5091 {
5092 /* Set a breakpoint at callee's start address.
5093 From there we can step once and be back in the caller. */
5094 struct symtab_and_line sr_sal;
5095
5096 init_sal (&sr_sal);
5097 sr_sal.pc = ecs->stop_func_start;
5098 sr_sal.pspace = get_frame_program_space (frame);
5099 insert_step_resume_breakpoint_at_sal (gdbarch,
5100 sr_sal, null_frame_id);
5101 }
5102 }
5103 else
5104 /* Set a breakpoint at callee's return address (the address
5105 at which the caller will resume). */
5106 insert_step_resume_breakpoint_at_caller (frame);
5107
5108 keep_going (ecs);
5109 return;
5110 }
5111
5112 /* Reverse stepping through solib trampolines. */
5113
5114 if (execution_direction == EXEC_REVERSE
5115 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5116 {
5117 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5118 || (ecs->stop_func_start == 0
5119 && in_solib_dynsym_resolve_code (stop_pc)))
5120 {
5121 /* Any solib trampoline code can be handled in reverse
5122 by simply continuing to single-step. We have already
5123 executed the solib function (backwards), and a few
5124 steps will take us back through the trampoline to the
5125 caller. */
5126 keep_going (ecs);
5127 return;
5128 }
5129 else if (in_solib_dynsym_resolve_code (stop_pc))
5130 {
5131 /* Stepped backward into the solib dynsym resolver.
5132 Set a breakpoint at its start and continue, then
5133 one more step will take us out. */
5134 struct symtab_and_line sr_sal;
5135
5136 init_sal (&sr_sal);
5137 sr_sal.pc = ecs->stop_func_start;
5138 sr_sal.pspace = get_frame_program_space (frame);
5139 insert_step_resume_breakpoint_at_sal (gdbarch,
5140 sr_sal, null_frame_id);
5141 keep_going (ecs);
5142 return;
5143 }
5144 }
5145
5146 stop_pc_sal = find_pc_line (stop_pc, 0);
5147
5148 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5149 the trampoline processing logic, however, there are some trampolines
5150 that have no names, so we should do trampoline handling first. */
5151 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5152 && ecs->stop_func_name == NULL
5153 && stop_pc_sal.line == 0)
5154 {
5155 if (debug_infrun)
5156 fprintf_unfiltered (gdb_stdlog,
5157 "infrun: stepped into undebuggable function\n");
5158
5159 /* The inferior just stepped into, or returned to, an
5160 undebuggable function (where there is no debugging information
5161 and no line number corresponding to the address where the
5162 inferior stopped). Since we want to skip this kind of code,
5163 we keep going until the inferior returns from this
5164 function - unless the user has asked us not to (via
5165 set step-mode) or we no longer know how to get back
5166 to the call site. */
5167 if (step_stop_if_no_debug
5168 || !frame_id_p (frame_unwind_caller_id (frame)))
5169 {
5170 /* If we have no line number and the step-stop-if-no-debug
5171 is set, we stop the step so that the user has a chance to
5172 switch in assembly mode. */
5173 end_stepping_range (ecs);
5174 return;
5175 }
5176 else
5177 {
5178 /* Set a breakpoint at callee's return address (the address
5179 at which the caller will resume). */
5180 insert_step_resume_breakpoint_at_caller (frame);
5181 keep_going (ecs);
5182 return;
5183 }
5184 }
5185
5186 if (ecs->event_thread->control.step_range_end == 1)
5187 {
5188 /* It is stepi or nexti. We always want to stop stepping after
5189 one instruction. */
5190 if (debug_infrun)
5191 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5192 end_stepping_range (ecs);
5193 return;
5194 }
5195
5196 if (stop_pc_sal.line == 0)
5197 {
5198 /* We have no line number information. That means to stop
5199 stepping (does this always happen right after one instruction,
5200 when we do "s" in a function with no line numbers,
5201 or can this happen as a result of a return or longjmp?). */
5202 if (debug_infrun)
5203 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5204 end_stepping_range (ecs);
5205 return;
5206 }
5207
5208 /* Look for "calls" to inlined functions, part one. If the inline
5209 frame machinery detected some skipped call sites, we have entered
5210 a new inline function. */
5211
5212 if (frame_id_eq (get_frame_id (get_current_frame ()),
5213 ecs->event_thread->control.step_frame_id)
5214 && inline_skipped_frames (ecs->ptid))
5215 {
5216 struct symtab_and_line call_sal;
5217
5218 if (debug_infrun)
5219 fprintf_unfiltered (gdb_stdlog,
5220 "infrun: stepped into inlined function\n");
5221
5222 find_frame_sal (get_current_frame (), &call_sal);
5223
5224 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5225 {
5226 /* For "step", we're going to stop. But if the call site
5227 for this inlined function is on the same source line as
5228 we were previously stepping, go down into the function
5229 first. Otherwise stop at the call site. */
5230
5231 if (call_sal.line == ecs->event_thread->current_line
5232 && call_sal.symtab == ecs->event_thread->current_symtab)
5233 step_into_inline_frame (ecs->ptid);
5234
5235 end_stepping_range (ecs);
5236 return;
5237 }
5238 else
5239 {
5240 /* For "next", we should stop at the call site if it is on a
5241 different source line. Otherwise continue through the
5242 inlined function. */
5243 if (call_sal.line == ecs->event_thread->current_line
5244 && call_sal.symtab == ecs->event_thread->current_symtab)
5245 keep_going (ecs);
5246 else
5247 end_stepping_range (ecs);
5248 return;
5249 }
5250 }
5251
5252 /* Look for "calls" to inlined functions, part two. If we are still
5253 in the same real function we were stepping through, but we have
5254 to go further up to find the exact frame ID, we are stepping
5255 through a more inlined call beyond its call site. */
5256
5257 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5258 && !frame_id_eq (get_frame_id (get_current_frame ()),
5259 ecs->event_thread->control.step_frame_id)
5260 && stepped_in_from (get_current_frame (),
5261 ecs->event_thread->control.step_frame_id))
5262 {
5263 if (debug_infrun)
5264 fprintf_unfiltered (gdb_stdlog,
5265 "infrun: stepping through inlined function\n");
5266
5267 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5268 keep_going (ecs);
5269 else
5270 end_stepping_range (ecs);
5271 return;
5272 }
5273
5274 if ((stop_pc == stop_pc_sal.pc)
5275 && (ecs->event_thread->current_line != stop_pc_sal.line
5276 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5277 {
5278 /* We are at the start of a different line. So stop. Note that
5279 we don't stop if we step into the middle of a different line.
5280 That is said to make things like for (;;) statements work
5281 better. */
5282 if (debug_infrun)
5283 fprintf_unfiltered (gdb_stdlog,
5284 "infrun: stepped to a different line\n");
5285 end_stepping_range (ecs);
5286 return;
5287 }
5288
5289 /* We aren't done stepping.
5290
5291 Optimize by setting the stepping range to the line.
5292 (We might not be in the original line, but if we entered a
5293 new line in mid-statement, we continue stepping. This makes
5294 things like for(;;) statements work better.) */
5295
5296 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5297 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5298 ecs->event_thread->control.may_range_step = 1;
5299 set_step_info (frame, stop_pc_sal);
5300
5301 if (debug_infrun)
5302 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5303 keep_going (ecs);
5304 }
5305
5306 /* In all-stop mode, if we're currently stepping but have stopped in
5307 some other thread, we may need to switch back to the stepped
5308 thread. Returns true we set the inferior running, false if we left
5309 it stopped (and the event needs further processing). */
5310
5311 static int
5312 switch_back_to_stepped_thread (struct execution_control_state *ecs)
5313 {
5314 if (!non_stop)
5315 {
5316 struct thread_info *tp;
5317 struct thread_info *stepping_thread;
5318 struct thread_info *step_over;
5319
5320 /* If any thread is blocked on some internal breakpoint, and we
5321 simply need to step over that breakpoint to get it going
5322 again, do that first. */
5323
5324 /* However, if we see an event for the stepping thread, then we
5325 know all other threads have been moved past their breakpoints
5326 already. Let the caller check whether the step is finished,
5327 etc., before deciding to move it past a breakpoint. */
5328 if (ecs->event_thread->control.step_range_end != 0)
5329 return 0;
5330
5331 /* Check if the current thread is blocked on an incomplete
5332 step-over, interrupted by a random signal. */
5333 if (ecs->event_thread->control.trap_expected
5334 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5335 {
5336 if (debug_infrun)
5337 {
5338 fprintf_unfiltered (gdb_stdlog,
5339 "infrun: need to finish step-over of [%s]\n",
5340 target_pid_to_str (ecs->event_thread->ptid));
5341 }
5342 keep_going (ecs);
5343 return 1;
5344 }
5345
5346 /* Check if the current thread is blocked by a single-step
5347 breakpoint of another thread. */
5348 if (ecs->hit_singlestep_breakpoint)
5349 {
5350 if (debug_infrun)
5351 {
5352 fprintf_unfiltered (gdb_stdlog,
5353 "infrun: need to step [%s] over single-step "
5354 "breakpoint\n",
5355 target_pid_to_str (ecs->ptid));
5356 }
5357 keep_going (ecs);
5358 return 1;
5359 }
5360
5361 /* Otherwise, we no longer expect a trap in the current thread.
5362 Clear the trap_expected flag before switching back -- this is
5363 what keep_going does as well, if we call it. */
5364 ecs->event_thread->control.trap_expected = 0;
5365
5366 /* Likewise, clear the signal if it should not be passed. */
5367 if (!signal_program[ecs->event_thread->suspend.stop_signal])
5368 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5369
5370 /* If scheduler locking applies even if not stepping, there's no
5371 need to walk over threads. Above we've checked whether the
5372 current thread is stepping. If some other thread not the
5373 event thread is stepping, then it must be that scheduler
5374 locking is not in effect. */
5375 if (schedlock_applies (0))
5376 return 0;
5377
5378 /* Look for the stepping/nexting thread, and check if any other
5379 thread other than the stepping thread needs to start a
5380 step-over. Do all step-overs before actually proceeding with
5381 step/next/etc. */
5382 stepping_thread = NULL;
5383 step_over = NULL;
5384 ALL_NON_EXITED_THREADS (tp)
5385 {
5386 /* Ignore threads of processes we're not resuming. */
5387 if (!sched_multi
5388 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
5389 continue;
5390
5391 /* When stepping over a breakpoint, we lock all threads
5392 except the one that needs to move past the breakpoint.
5393 If a non-event thread has this set, the "incomplete
5394 step-over" check above should have caught it earlier. */
5395 gdb_assert (!tp->control.trap_expected);
5396
5397 /* Did we find the stepping thread? */
5398 if (tp->control.step_range_end)
5399 {
5400 /* Yep. There should only one though. */
5401 gdb_assert (stepping_thread == NULL);
5402
5403 /* The event thread is handled at the top, before we
5404 enter this loop. */
5405 gdb_assert (tp != ecs->event_thread);
5406
5407 /* If some thread other than the event thread is
5408 stepping, then scheduler locking can't be in effect,
5409 otherwise we wouldn't have resumed the current event
5410 thread in the first place. */
5411 gdb_assert (!schedlock_applies (1));
5412
5413 stepping_thread = tp;
5414 }
5415 else if (thread_still_needs_step_over (tp))
5416 {
5417 step_over = tp;
5418
5419 /* At the top we've returned early if the event thread
5420 is stepping. If some other thread not the event
5421 thread is stepping, then scheduler locking can't be
5422 in effect, and we can resume this thread. No need to
5423 keep looking for the stepping thread then. */
5424 break;
5425 }
5426 }
5427
5428 if (step_over != NULL)
5429 {
5430 tp = step_over;
5431 if (debug_infrun)
5432 {
5433 fprintf_unfiltered (gdb_stdlog,
5434 "infrun: need to step-over [%s]\n",
5435 target_pid_to_str (tp->ptid));
5436 }
5437
5438 /* Only the stepping thread should have this set. */
5439 gdb_assert (tp->control.step_range_end == 0);
5440
5441 ecs->ptid = tp->ptid;
5442 ecs->event_thread = tp;
5443 switch_to_thread (ecs->ptid);
5444 keep_going (ecs);
5445 return 1;
5446 }
5447
5448 if (stepping_thread != NULL)
5449 {
5450 struct frame_info *frame;
5451 struct gdbarch *gdbarch;
5452
5453 tp = stepping_thread;
5454
5455 /* If the stepping thread exited, then don't try to switch
5456 back and resume it, which could fail in several different
5457 ways depending on the target. Instead, just keep going.
5458
5459 We can find a stepping dead thread in the thread list in
5460 two cases:
5461
5462 - The target supports thread exit events, and when the
5463 target tries to delete the thread from the thread list,
5464 inferior_ptid pointed at the exiting thread. In such
5465 case, calling delete_thread does not really remove the
5466 thread from the list; instead, the thread is left listed,
5467 with 'exited' state.
5468
5469 - The target's debug interface does not support thread
5470 exit events, and so we have no idea whatsoever if the
5471 previously stepping thread is still alive. For that
5472 reason, we need to synchronously query the target
5473 now. */
5474 if (is_exited (tp->ptid)
5475 || !target_thread_alive (tp->ptid))
5476 {
5477 if (debug_infrun)
5478 fprintf_unfiltered (gdb_stdlog,
5479 "infrun: not switching back to "
5480 "stepped thread, it has vanished\n");
5481
5482 delete_thread (tp->ptid);
5483 keep_going (ecs);
5484 return 1;
5485 }
5486
5487 if (debug_infrun)
5488 fprintf_unfiltered (gdb_stdlog,
5489 "infrun: switching back to stepped thread\n");
5490
5491 ecs->event_thread = tp;
5492 ecs->ptid = tp->ptid;
5493 context_switch (ecs->ptid);
5494
5495 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5496 frame = get_current_frame ();
5497 gdbarch = get_frame_arch (frame);
5498
5499 /* If the PC of the thread we were trying to single-step has
5500 changed, then that thread has trapped or been signaled,
5501 but the event has not been reported to GDB yet. Re-poll
5502 the target looking for this particular thread's event
5503 (i.e. temporarily enable schedlock) by:
5504
5505 - setting a break at the current PC
5506 - resuming that particular thread, only (by setting
5507 trap expected)
5508
5509 This prevents us continuously moving the single-step
5510 breakpoint forward, one instruction at a time,
5511 overstepping. */
5512
5513 if (gdbarch_software_single_step_p (gdbarch)
5514 && stop_pc != tp->prev_pc)
5515 {
5516 if (debug_infrun)
5517 fprintf_unfiltered (gdb_stdlog,
5518 "infrun: expected thread advanced also\n");
5519
5520 insert_single_step_breakpoint (get_frame_arch (frame),
5521 get_frame_address_space (frame),
5522 stop_pc);
5523 singlestep_breakpoints_inserted_p = 1;
5524 ecs->event_thread->control.trap_expected = 1;
5525 singlestep_ptid = inferior_ptid;
5526 singlestep_pc = stop_pc;
5527
5528 resume (0, GDB_SIGNAL_0);
5529 prepare_to_wait (ecs);
5530 }
5531 else
5532 {
5533 if (debug_infrun)
5534 fprintf_unfiltered (gdb_stdlog,
5535 "infrun: expected thread still "
5536 "hasn't advanced\n");
5537 keep_going (ecs);
5538 }
5539
5540 return 1;
5541 }
5542 }
5543 return 0;
5544 }
5545
5546 /* Is thread TP in the middle of single-stepping? */
5547
5548 static int
5549 currently_stepping (struct thread_info *tp)
5550 {
5551 return ((tp->control.step_range_end
5552 && tp->control.step_resume_breakpoint == NULL)
5553 || tp->control.trap_expected
5554 || bpstat_should_step ());
5555 }
5556
5557 /* Inferior has stepped into a subroutine call with source code that
5558 we should not step over. Do step to the first line of code in
5559 it. */
5560
5561 static void
5562 handle_step_into_function (struct gdbarch *gdbarch,
5563 struct execution_control_state *ecs)
5564 {
5565 struct symtab *s;
5566 struct symtab_and_line stop_func_sal, sr_sal;
5567
5568 fill_in_stop_func (gdbarch, ecs);
5569
5570 s = find_pc_symtab (stop_pc);
5571 if (s && s->language != language_asm)
5572 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5573 ecs->stop_func_start);
5574
5575 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5576 /* Use the step_resume_break to step until the end of the prologue,
5577 even if that involves jumps (as it seems to on the vax under
5578 4.2). */
5579 /* If the prologue ends in the middle of a source line, continue to
5580 the end of that source line (if it is still within the function).
5581 Otherwise, just go to end of prologue. */
5582 if (stop_func_sal.end
5583 && stop_func_sal.pc != ecs->stop_func_start
5584 && stop_func_sal.end < ecs->stop_func_end)
5585 ecs->stop_func_start = stop_func_sal.end;
5586
5587 /* Architectures which require breakpoint adjustment might not be able
5588 to place a breakpoint at the computed address. If so, the test
5589 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5590 ecs->stop_func_start to an address at which a breakpoint may be
5591 legitimately placed.
5592
5593 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5594 made, GDB will enter an infinite loop when stepping through
5595 optimized code consisting of VLIW instructions which contain
5596 subinstructions corresponding to different source lines. On
5597 FR-V, it's not permitted to place a breakpoint on any but the
5598 first subinstruction of a VLIW instruction. When a breakpoint is
5599 set, GDB will adjust the breakpoint address to the beginning of
5600 the VLIW instruction. Thus, we need to make the corresponding
5601 adjustment here when computing the stop address. */
5602
5603 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5604 {
5605 ecs->stop_func_start
5606 = gdbarch_adjust_breakpoint_address (gdbarch,
5607 ecs->stop_func_start);
5608 }
5609
5610 if (ecs->stop_func_start == stop_pc)
5611 {
5612 /* We are already there: stop now. */
5613 end_stepping_range (ecs);
5614 return;
5615 }
5616 else
5617 {
5618 /* Put the step-breakpoint there and go until there. */
5619 init_sal (&sr_sal); /* initialize to zeroes */
5620 sr_sal.pc = ecs->stop_func_start;
5621 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5622 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5623
5624 /* Do not specify what the fp should be when we stop since on
5625 some machines the prologue is where the new fp value is
5626 established. */
5627 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5628
5629 /* And make sure stepping stops right away then. */
5630 ecs->event_thread->control.step_range_end
5631 = ecs->event_thread->control.step_range_start;
5632 }
5633 keep_going (ecs);
5634 }
5635
5636 /* Inferior has stepped backward into a subroutine call with source
5637 code that we should not step over. Do step to the beginning of the
5638 last line of code in it. */
5639
5640 static void
5641 handle_step_into_function_backward (struct gdbarch *gdbarch,
5642 struct execution_control_state *ecs)
5643 {
5644 struct symtab *s;
5645 struct symtab_and_line stop_func_sal;
5646
5647 fill_in_stop_func (gdbarch, ecs);
5648
5649 s = find_pc_symtab (stop_pc);
5650 if (s && s->language != language_asm)
5651 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5652 ecs->stop_func_start);
5653
5654 stop_func_sal = find_pc_line (stop_pc, 0);
5655
5656 /* OK, we're just going to keep stepping here. */
5657 if (stop_func_sal.pc == stop_pc)
5658 {
5659 /* We're there already. Just stop stepping now. */
5660 end_stepping_range (ecs);
5661 }
5662 else
5663 {
5664 /* Else just reset the step range and keep going.
5665 No step-resume breakpoint, they don't work for
5666 epilogues, which can have multiple entry paths. */
5667 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5668 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5669 keep_going (ecs);
5670 }
5671 return;
5672 }
5673
5674 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5675 This is used to both functions and to skip over code. */
5676
5677 static void
5678 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5679 struct symtab_and_line sr_sal,
5680 struct frame_id sr_id,
5681 enum bptype sr_type)
5682 {
5683 /* There should never be more than one step-resume or longjmp-resume
5684 breakpoint per thread, so we should never be setting a new
5685 step_resume_breakpoint when one is already active. */
5686 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5687 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5688
5689 if (debug_infrun)
5690 fprintf_unfiltered (gdb_stdlog,
5691 "infrun: inserting step-resume breakpoint at %s\n",
5692 paddress (gdbarch, sr_sal.pc));
5693
5694 inferior_thread ()->control.step_resume_breakpoint
5695 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5696 }
5697
5698 void
5699 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5700 struct symtab_and_line sr_sal,
5701 struct frame_id sr_id)
5702 {
5703 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5704 sr_sal, sr_id,
5705 bp_step_resume);
5706 }
5707
5708 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5709 This is used to skip a potential signal handler.
5710
5711 This is called with the interrupted function's frame. The signal
5712 handler, when it returns, will resume the interrupted function at
5713 RETURN_FRAME.pc. */
5714
5715 static void
5716 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5717 {
5718 struct symtab_and_line sr_sal;
5719 struct gdbarch *gdbarch;
5720
5721 gdb_assert (return_frame != NULL);
5722 init_sal (&sr_sal); /* initialize to zeros */
5723
5724 gdbarch = get_frame_arch (return_frame);
5725 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5726 sr_sal.section = find_pc_overlay (sr_sal.pc);
5727 sr_sal.pspace = get_frame_program_space (return_frame);
5728
5729 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5730 get_stack_frame_id (return_frame),
5731 bp_hp_step_resume);
5732 }
5733
5734 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5735 is used to skip a function after stepping into it (for "next" or if
5736 the called function has no debugging information).
5737
5738 The current function has almost always been reached by single
5739 stepping a call or return instruction. NEXT_FRAME belongs to the
5740 current function, and the breakpoint will be set at the caller's
5741 resume address.
5742
5743 This is a separate function rather than reusing
5744 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5745 get_prev_frame, which may stop prematurely (see the implementation
5746 of frame_unwind_caller_id for an example). */
5747
5748 static void
5749 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5750 {
5751 struct symtab_and_line sr_sal;
5752 struct gdbarch *gdbarch;
5753
5754 /* We shouldn't have gotten here if we don't know where the call site
5755 is. */
5756 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5757
5758 init_sal (&sr_sal); /* initialize to zeros */
5759
5760 gdbarch = frame_unwind_caller_arch (next_frame);
5761 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5762 frame_unwind_caller_pc (next_frame));
5763 sr_sal.section = find_pc_overlay (sr_sal.pc);
5764 sr_sal.pspace = frame_unwind_program_space (next_frame);
5765
5766 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5767 frame_unwind_caller_id (next_frame));
5768 }
5769
5770 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5771 new breakpoint at the target of a jmp_buf. The handling of
5772 longjmp-resume uses the same mechanisms used for handling
5773 "step-resume" breakpoints. */
5774
5775 static void
5776 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5777 {
5778 /* There should never be more than one longjmp-resume breakpoint per
5779 thread, so we should never be setting a new
5780 longjmp_resume_breakpoint when one is already active. */
5781 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5782
5783 if (debug_infrun)
5784 fprintf_unfiltered (gdb_stdlog,
5785 "infrun: inserting longjmp-resume breakpoint at %s\n",
5786 paddress (gdbarch, pc));
5787
5788 inferior_thread ()->control.exception_resume_breakpoint =
5789 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5790 }
5791
5792 /* Insert an exception resume breakpoint. TP is the thread throwing
5793 the exception. The block B is the block of the unwinder debug hook
5794 function. FRAME is the frame corresponding to the call to this
5795 function. SYM is the symbol of the function argument holding the
5796 target PC of the exception. */
5797
5798 static void
5799 insert_exception_resume_breakpoint (struct thread_info *tp,
5800 const struct block *b,
5801 struct frame_info *frame,
5802 struct symbol *sym)
5803 {
5804 volatile struct gdb_exception e;
5805
5806 /* We want to ignore errors here. */
5807 TRY_CATCH (e, RETURN_MASK_ERROR)
5808 {
5809 struct symbol *vsym;
5810 struct value *value;
5811 CORE_ADDR handler;
5812 struct breakpoint *bp;
5813
5814 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5815 value = read_var_value (vsym, frame);
5816 /* If the value was optimized out, revert to the old behavior. */
5817 if (! value_optimized_out (value))
5818 {
5819 handler = value_as_address (value);
5820
5821 if (debug_infrun)
5822 fprintf_unfiltered (gdb_stdlog,
5823 "infrun: exception resume at %lx\n",
5824 (unsigned long) handler);
5825
5826 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5827 handler, bp_exception_resume);
5828
5829 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5830 frame = NULL;
5831
5832 bp->thread = tp->num;
5833 inferior_thread ()->control.exception_resume_breakpoint = bp;
5834 }
5835 }
5836 }
5837
5838 /* A helper for check_exception_resume that sets an
5839 exception-breakpoint based on a SystemTap probe. */
5840
5841 static void
5842 insert_exception_resume_from_probe (struct thread_info *tp,
5843 const struct bound_probe *probe,
5844 struct frame_info *frame)
5845 {
5846 struct value *arg_value;
5847 CORE_ADDR handler;
5848 struct breakpoint *bp;
5849
5850 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5851 if (!arg_value)
5852 return;
5853
5854 handler = value_as_address (arg_value);
5855
5856 if (debug_infrun)
5857 fprintf_unfiltered (gdb_stdlog,
5858 "infrun: exception resume at %s\n",
5859 paddress (get_objfile_arch (probe->objfile),
5860 handler));
5861
5862 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5863 handler, bp_exception_resume);
5864 bp->thread = tp->num;
5865 inferior_thread ()->control.exception_resume_breakpoint = bp;
5866 }
5867
5868 /* This is called when an exception has been intercepted. Check to
5869 see whether the exception's destination is of interest, and if so,
5870 set an exception resume breakpoint there. */
5871
5872 static void
5873 check_exception_resume (struct execution_control_state *ecs,
5874 struct frame_info *frame)
5875 {
5876 volatile struct gdb_exception e;
5877 struct bound_probe probe;
5878 struct symbol *func;
5879
5880 /* First see if this exception unwinding breakpoint was set via a
5881 SystemTap probe point. If so, the probe has two arguments: the
5882 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5883 set a breakpoint there. */
5884 probe = find_probe_by_pc (get_frame_pc (frame));
5885 if (probe.probe)
5886 {
5887 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
5888 return;
5889 }
5890
5891 func = get_frame_function (frame);
5892 if (!func)
5893 return;
5894
5895 TRY_CATCH (e, RETURN_MASK_ERROR)
5896 {
5897 const struct block *b;
5898 struct block_iterator iter;
5899 struct symbol *sym;
5900 int argno = 0;
5901
5902 /* The exception breakpoint is a thread-specific breakpoint on
5903 the unwinder's debug hook, declared as:
5904
5905 void _Unwind_DebugHook (void *cfa, void *handler);
5906
5907 The CFA argument indicates the frame to which control is
5908 about to be transferred. HANDLER is the destination PC.
5909
5910 We ignore the CFA and set a temporary breakpoint at HANDLER.
5911 This is not extremely efficient but it avoids issues in gdb
5912 with computing the DWARF CFA, and it also works even in weird
5913 cases such as throwing an exception from inside a signal
5914 handler. */
5915
5916 b = SYMBOL_BLOCK_VALUE (func);
5917 ALL_BLOCK_SYMBOLS (b, iter, sym)
5918 {
5919 if (!SYMBOL_IS_ARGUMENT (sym))
5920 continue;
5921
5922 if (argno == 0)
5923 ++argno;
5924 else
5925 {
5926 insert_exception_resume_breakpoint (ecs->event_thread,
5927 b, frame, sym);
5928 break;
5929 }
5930 }
5931 }
5932 }
5933
5934 static void
5935 stop_waiting (struct execution_control_state *ecs)
5936 {
5937 if (debug_infrun)
5938 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
5939
5940 clear_step_over_info ();
5941
5942 /* Let callers know we don't want to wait for the inferior anymore. */
5943 ecs->wait_some_more = 0;
5944 }
5945
5946 /* Called when we should continue running the inferior, because the
5947 current event doesn't cause a user visible stop. This does the
5948 resuming part; waiting for the next event is done elsewhere. */
5949
5950 static void
5951 keep_going (struct execution_control_state *ecs)
5952 {
5953 /* Make sure normal_stop is called if we get a QUIT handled before
5954 reaching resume. */
5955 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5956
5957 /* Save the pc before execution, to compare with pc after stop. */
5958 ecs->event_thread->prev_pc
5959 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5960
5961 if (ecs->event_thread->control.trap_expected
5962 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5963 {
5964 /* We haven't yet gotten our trap, and either: intercepted a
5965 non-signal event (e.g., a fork); or took a signal which we
5966 are supposed to pass through to the inferior. Simply
5967 continue. */
5968 discard_cleanups (old_cleanups);
5969 resume (currently_stepping (ecs->event_thread),
5970 ecs->event_thread->suspend.stop_signal);
5971 }
5972 else
5973 {
5974 volatile struct gdb_exception e;
5975 struct regcache *regcache = get_current_regcache ();
5976 int remove_bp;
5977 int remove_wps;
5978
5979 /* Either the trap was not expected, but we are continuing
5980 anyway (if we got a signal, the user asked it be passed to
5981 the child)
5982 -- or --
5983 We got our expected trap, but decided we should resume from
5984 it.
5985
5986 We're going to run this baby now!
5987
5988 Note that insert_breakpoints won't try to re-insert
5989 already inserted breakpoints. Therefore, we don't
5990 care if breakpoints were already inserted, or not. */
5991
5992 /* If we need to step over a breakpoint, and we're not using
5993 displaced stepping to do so, insert all breakpoints
5994 (watchpoints, etc.) but the one we're stepping over, step one
5995 instruction, and then re-insert the breakpoint when that step
5996 is finished. */
5997
5998 remove_bp = (ecs->hit_singlestep_breakpoint
5999 || thread_still_needs_step_over (ecs->event_thread));
6000 remove_wps = (ecs->event_thread->stepping_over_watchpoint
6001 && !target_have_steppable_watchpoint);
6002
6003 if (remove_bp && !use_displaced_stepping (get_regcache_arch (regcache)))
6004 {
6005 set_step_over_info (get_regcache_aspace (regcache),
6006 regcache_read_pc (regcache), remove_wps);
6007 }
6008 else if (remove_wps)
6009 set_step_over_info (NULL, 0, remove_wps);
6010 else
6011 clear_step_over_info ();
6012
6013 /* Stop stepping if inserting breakpoints fails. */
6014 TRY_CATCH (e, RETURN_MASK_ERROR)
6015 {
6016 insert_breakpoints ();
6017 }
6018 if (e.reason < 0)
6019 {
6020 exception_print (gdb_stderr, e);
6021 stop_waiting (ecs);
6022 return;
6023 }
6024
6025 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
6026
6027 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
6028 explicitly specifies that such a signal should be delivered
6029 to the target program). Typically, that would occur when a
6030 user is debugging a target monitor on a simulator: the target
6031 monitor sets a breakpoint; the simulator encounters this
6032 breakpoint and halts the simulation handing control to GDB;
6033 GDB, noting that the stop address doesn't map to any known
6034 breakpoint, returns control back to the simulator; the
6035 simulator then delivers the hardware equivalent of a
6036 GDB_SIGNAL_TRAP to the program being debugged. */
6037 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6038 && !signal_program[ecs->event_thread->suspend.stop_signal])
6039 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6040
6041 discard_cleanups (old_cleanups);
6042 resume (currently_stepping (ecs->event_thread),
6043 ecs->event_thread->suspend.stop_signal);
6044 }
6045
6046 prepare_to_wait (ecs);
6047 }
6048
6049 /* This function normally comes after a resume, before
6050 handle_inferior_event exits. It takes care of any last bits of
6051 housekeeping, and sets the all-important wait_some_more flag. */
6052
6053 static void
6054 prepare_to_wait (struct execution_control_state *ecs)
6055 {
6056 if (debug_infrun)
6057 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
6058
6059 /* This is the old end of the while loop. Let everybody know we
6060 want to wait for the inferior some more and get called again
6061 soon. */
6062 ecs->wait_some_more = 1;
6063 }
6064
6065 /* We are done with the step range of a step/next/si/ni command.
6066 Called once for each n of a "step n" operation. */
6067
6068 static void
6069 end_stepping_range (struct execution_control_state *ecs)
6070 {
6071 ecs->event_thread->control.stop_step = 1;
6072 stop_waiting (ecs);
6073 }
6074
6075 /* Several print_*_reason functions to print why the inferior has stopped.
6076 We always print something when the inferior exits, or receives a signal.
6077 The rest of the cases are dealt with later on in normal_stop and
6078 print_it_typical. Ideally there should be a call to one of these
6079 print_*_reason functions functions from handle_inferior_event each time
6080 stop_waiting is called.
6081
6082 Note that we don't call these directly, instead we delegate that to
6083 the interpreters, through observers. Interpreters then call these
6084 with whatever uiout is right. */
6085
6086 void
6087 print_end_stepping_range_reason (struct ui_out *uiout)
6088 {
6089 /* For CLI-like interpreters, print nothing. */
6090
6091 if (ui_out_is_mi_like_p (uiout))
6092 {
6093 ui_out_field_string (uiout, "reason",
6094 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
6095 }
6096 }
6097
6098 void
6099 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
6100 {
6101 annotate_signalled ();
6102 if (ui_out_is_mi_like_p (uiout))
6103 ui_out_field_string
6104 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
6105 ui_out_text (uiout, "\nProgram terminated with signal ");
6106 annotate_signal_name ();
6107 ui_out_field_string (uiout, "signal-name",
6108 gdb_signal_to_name (siggnal));
6109 annotate_signal_name_end ();
6110 ui_out_text (uiout, ", ");
6111 annotate_signal_string ();
6112 ui_out_field_string (uiout, "signal-meaning",
6113 gdb_signal_to_string (siggnal));
6114 annotate_signal_string_end ();
6115 ui_out_text (uiout, ".\n");
6116 ui_out_text (uiout, "The program no longer exists.\n");
6117 }
6118
6119 void
6120 print_exited_reason (struct ui_out *uiout, int exitstatus)
6121 {
6122 struct inferior *inf = current_inferior ();
6123 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
6124
6125 annotate_exited (exitstatus);
6126 if (exitstatus)
6127 {
6128 if (ui_out_is_mi_like_p (uiout))
6129 ui_out_field_string (uiout, "reason",
6130 async_reason_lookup (EXEC_ASYNC_EXITED));
6131 ui_out_text (uiout, "[Inferior ");
6132 ui_out_text (uiout, plongest (inf->num));
6133 ui_out_text (uiout, " (");
6134 ui_out_text (uiout, pidstr);
6135 ui_out_text (uiout, ") exited with code ");
6136 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
6137 ui_out_text (uiout, "]\n");
6138 }
6139 else
6140 {
6141 if (ui_out_is_mi_like_p (uiout))
6142 ui_out_field_string
6143 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6144 ui_out_text (uiout, "[Inferior ");
6145 ui_out_text (uiout, plongest (inf->num));
6146 ui_out_text (uiout, " (");
6147 ui_out_text (uiout, pidstr);
6148 ui_out_text (uiout, ") exited normally]\n");
6149 }
6150 }
6151
6152 void
6153 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
6154 {
6155 annotate_signal ();
6156
6157 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
6158 {
6159 struct thread_info *t = inferior_thread ();
6160
6161 ui_out_text (uiout, "\n[");
6162 ui_out_field_string (uiout, "thread-name",
6163 target_pid_to_str (t->ptid));
6164 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
6165 ui_out_text (uiout, " stopped");
6166 }
6167 else
6168 {
6169 ui_out_text (uiout, "\nProgram received signal ");
6170 annotate_signal_name ();
6171 if (ui_out_is_mi_like_p (uiout))
6172 ui_out_field_string
6173 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
6174 ui_out_field_string (uiout, "signal-name",
6175 gdb_signal_to_name (siggnal));
6176 annotate_signal_name_end ();
6177 ui_out_text (uiout, ", ");
6178 annotate_signal_string ();
6179 ui_out_field_string (uiout, "signal-meaning",
6180 gdb_signal_to_string (siggnal));
6181 annotate_signal_string_end ();
6182 }
6183 ui_out_text (uiout, ".\n");
6184 }
6185
6186 void
6187 print_no_history_reason (struct ui_out *uiout)
6188 {
6189 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
6190 }
6191
6192 /* Print current location without a level number, if we have changed
6193 functions or hit a breakpoint. Print source line if we have one.
6194 bpstat_print contains the logic deciding in detail what to print,
6195 based on the event(s) that just occurred. */
6196
6197 void
6198 print_stop_event (struct target_waitstatus *ws)
6199 {
6200 int bpstat_ret;
6201 int source_flag;
6202 int do_frame_printing = 1;
6203 struct thread_info *tp = inferior_thread ();
6204
6205 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
6206 switch (bpstat_ret)
6207 {
6208 case PRINT_UNKNOWN:
6209 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
6210 should) carry around the function and does (or should) use
6211 that when doing a frame comparison. */
6212 if (tp->control.stop_step
6213 && frame_id_eq (tp->control.step_frame_id,
6214 get_frame_id (get_current_frame ()))
6215 && step_start_function == find_pc_function (stop_pc))
6216 {
6217 /* Finished step, just print source line. */
6218 source_flag = SRC_LINE;
6219 }
6220 else
6221 {
6222 /* Print location and source line. */
6223 source_flag = SRC_AND_LOC;
6224 }
6225 break;
6226 case PRINT_SRC_AND_LOC:
6227 /* Print location and source line. */
6228 source_flag = SRC_AND_LOC;
6229 break;
6230 case PRINT_SRC_ONLY:
6231 source_flag = SRC_LINE;
6232 break;
6233 case PRINT_NOTHING:
6234 /* Something bogus. */
6235 source_flag = SRC_LINE;
6236 do_frame_printing = 0;
6237 break;
6238 default:
6239 internal_error (__FILE__, __LINE__, _("Unknown value."));
6240 }
6241
6242 /* The behavior of this routine with respect to the source
6243 flag is:
6244 SRC_LINE: Print only source line
6245 LOCATION: Print only location
6246 SRC_AND_LOC: Print location and source line. */
6247 if (do_frame_printing)
6248 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6249
6250 /* Display the auto-display expressions. */
6251 do_displays ();
6252 }
6253
6254 /* Here to return control to GDB when the inferior stops for real.
6255 Print appropriate messages, remove breakpoints, give terminal our modes.
6256
6257 STOP_PRINT_FRAME nonzero means print the executing frame
6258 (pc, function, args, file, line number and line text).
6259 BREAKPOINTS_FAILED nonzero means stop was due to error
6260 attempting to insert breakpoints. */
6261
6262 void
6263 normal_stop (void)
6264 {
6265 struct target_waitstatus last;
6266 ptid_t last_ptid;
6267 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6268
6269 get_last_target_status (&last_ptid, &last);
6270
6271 /* If an exception is thrown from this point on, make sure to
6272 propagate GDB's knowledge of the executing state to the
6273 frontend/user running state. A QUIT is an easy exception to see
6274 here, so do this before any filtered output. */
6275 if (!non_stop)
6276 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
6277 else if (last.kind != TARGET_WAITKIND_SIGNALLED
6278 && last.kind != TARGET_WAITKIND_EXITED
6279 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6280 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
6281
6282 /* As we're presenting a stop, and potentially removing breakpoints,
6283 update the thread list so we can tell whether there are threads
6284 running on the target. With target remote, for example, we can
6285 only learn about new threads when we explicitly update the thread
6286 list. Do this before notifying the interpreters about signal
6287 stops, end of stepping ranges, etc., so that the "new thread"
6288 output is emitted before e.g., "Program received signal FOO",
6289 instead of after. */
6290 update_thread_list ();
6291
6292 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
6293 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
6294
6295 /* As with the notification of thread events, we want to delay
6296 notifying the user that we've switched thread context until
6297 the inferior actually stops.
6298
6299 There's no point in saying anything if the inferior has exited.
6300 Note that SIGNALLED here means "exited with a signal", not
6301 "received a signal".
6302
6303 Also skip saying anything in non-stop mode. In that mode, as we
6304 don't want GDB to switch threads behind the user's back, to avoid
6305 races where the user is typing a command to apply to thread x,
6306 but GDB switches to thread y before the user finishes entering
6307 the command, fetch_inferior_event installs a cleanup to restore
6308 the current thread back to the thread the user had selected right
6309 after this event is handled, so we're not really switching, only
6310 informing of a stop. */
6311 if (!non_stop
6312 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
6313 && target_has_execution
6314 && last.kind != TARGET_WAITKIND_SIGNALLED
6315 && last.kind != TARGET_WAITKIND_EXITED
6316 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6317 {
6318 target_terminal_ours_for_output ();
6319 printf_filtered (_("[Switching to %s]\n"),
6320 target_pid_to_str (inferior_ptid));
6321 annotate_thread_changed ();
6322 previous_inferior_ptid = inferior_ptid;
6323 }
6324
6325 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6326 {
6327 gdb_assert (sync_execution || !target_can_async_p ());
6328
6329 target_terminal_ours_for_output ();
6330 printf_filtered (_("No unwaited-for children left.\n"));
6331 }
6332
6333 /* Note: this depends on the update_thread_list call above. */
6334 if (!breakpoints_should_be_inserted_now () && target_has_execution)
6335 {
6336 if (remove_breakpoints ())
6337 {
6338 target_terminal_ours_for_output ();
6339 printf_filtered (_("Cannot remove breakpoints because "
6340 "program is no longer writable.\nFurther "
6341 "execution is probably impossible.\n"));
6342 }
6343 }
6344
6345 /* If an auto-display called a function and that got a signal,
6346 delete that auto-display to avoid an infinite recursion. */
6347
6348 if (stopped_by_random_signal)
6349 disable_current_display ();
6350
6351 /* Notify observers if we finished a "step"-like command, etc. */
6352 if (target_has_execution
6353 && last.kind != TARGET_WAITKIND_SIGNALLED
6354 && last.kind != TARGET_WAITKIND_EXITED
6355 && inferior_thread ()->control.stop_step)
6356 {
6357 /* But not if in the middle of doing a "step n" operation for
6358 n > 1 */
6359 if (inferior_thread ()->step_multi)
6360 goto done;
6361
6362 observer_notify_end_stepping_range ();
6363 }
6364
6365 target_terminal_ours ();
6366 async_enable_stdin ();
6367
6368 /* Set the current source location. This will also happen if we
6369 display the frame below, but the current SAL will be incorrect
6370 during a user hook-stop function. */
6371 if (has_stack_frames () && !stop_stack_dummy)
6372 set_current_sal_from_frame (get_current_frame ());
6373
6374 /* Let the user/frontend see the threads as stopped, but do nothing
6375 if the thread was running an infcall. We may be e.g., evaluating
6376 a breakpoint condition. In that case, the thread had state
6377 THREAD_RUNNING before the infcall, and shall remain set to
6378 running, all without informing the user/frontend about state
6379 transition changes. If this is actually a call command, then the
6380 thread was originally already stopped, so there's no state to
6381 finish either. */
6382 if (target_has_execution && inferior_thread ()->control.in_infcall)
6383 discard_cleanups (old_chain);
6384 else
6385 do_cleanups (old_chain);
6386
6387 /* Look up the hook_stop and run it (CLI internally handles problem
6388 of stop_command's pre-hook not existing). */
6389 if (stop_command)
6390 catch_errors (hook_stop_stub, stop_command,
6391 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6392
6393 if (!has_stack_frames ())
6394 goto done;
6395
6396 if (last.kind == TARGET_WAITKIND_SIGNALLED
6397 || last.kind == TARGET_WAITKIND_EXITED)
6398 goto done;
6399
6400 /* Select innermost stack frame - i.e., current frame is frame 0,
6401 and current location is based on that.
6402 Don't do this on return from a stack dummy routine,
6403 or if the program has exited. */
6404
6405 if (!stop_stack_dummy)
6406 {
6407 select_frame (get_current_frame ());
6408
6409 /* If --batch-silent is enabled then there's no need to print the current
6410 source location, and to try risks causing an error message about
6411 missing source files. */
6412 if (stop_print_frame && !batch_silent)
6413 print_stop_event (&last);
6414 }
6415
6416 /* Save the function value return registers, if we care.
6417 We might be about to restore their previous contents. */
6418 if (inferior_thread ()->control.proceed_to_finish
6419 && execution_direction != EXEC_REVERSE)
6420 {
6421 /* This should not be necessary. */
6422 if (stop_registers)
6423 regcache_xfree (stop_registers);
6424
6425 /* NB: The copy goes through to the target picking up the value of
6426 all the registers. */
6427 stop_registers = regcache_dup (get_current_regcache ());
6428 }
6429
6430 if (stop_stack_dummy == STOP_STACK_DUMMY)
6431 {
6432 /* Pop the empty frame that contains the stack dummy.
6433 This also restores inferior state prior to the call
6434 (struct infcall_suspend_state). */
6435 struct frame_info *frame = get_current_frame ();
6436
6437 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6438 frame_pop (frame);
6439 /* frame_pop() calls reinit_frame_cache as the last thing it
6440 does which means there's currently no selected frame. We
6441 don't need to re-establish a selected frame if the dummy call
6442 returns normally, that will be done by
6443 restore_infcall_control_state. However, we do have to handle
6444 the case where the dummy call is returning after being
6445 stopped (e.g. the dummy call previously hit a breakpoint).
6446 We can't know which case we have so just always re-establish
6447 a selected frame here. */
6448 select_frame (get_current_frame ());
6449 }
6450
6451 done:
6452 annotate_stopped ();
6453
6454 /* Suppress the stop observer if we're in the middle of:
6455
6456 - a step n (n > 1), as there still more steps to be done.
6457
6458 - a "finish" command, as the observer will be called in
6459 finish_command_continuation, so it can include the inferior
6460 function's return value.
6461
6462 - calling an inferior function, as we pretend we inferior didn't
6463 run at all. The return value of the call is handled by the
6464 expression evaluator, through call_function_by_hand. */
6465
6466 if (!target_has_execution
6467 || last.kind == TARGET_WAITKIND_SIGNALLED
6468 || last.kind == TARGET_WAITKIND_EXITED
6469 || last.kind == TARGET_WAITKIND_NO_RESUMED
6470 || (!(inferior_thread ()->step_multi
6471 && inferior_thread ()->control.stop_step)
6472 && !(inferior_thread ()->control.stop_bpstat
6473 && inferior_thread ()->control.proceed_to_finish)
6474 && !inferior_thread ()->control.in_infcall))
6475 {
6476 if (!ptid_equal (inferior_ptid, null_ptid))
6477 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6478 stop_print_frame);
6479 else
6480 observer_notify_normal_stop (NULL, stop_print_frame);
6481 }
6482
6483 if (target_has_execution)
6484 {
6485 if (last.kind != TARGET_WAITKIND_SIGNALLED
6486 && last.kind != TARGET_WAITKIND_EXITED)
6487 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6488 Delete any breakpoint that is to be deleted at the next stop. */
6489 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6490 }
6491
6492 /* Try to get rid of automatically added inferiors that are no
6493 longer needed. Keeping those around slows down things linearly.
6494 Note that this never removes the current inferior. */
6495 prune_inferiors ();
6496 }
6497
6498 static int
6499 hook_stop_stub (void *cmd)
6500 {
6501 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6502 return (0);
6503 }
6504 \f
6505 int
6506 signal_stop_state (int signo)
6507 {
6508 return signal_stop[signo];
6509 }
6510
6511 int
6512 signal_print_state (int signo)
6513 {
6514 return signal_print[signo];
6515 }
6516
6517 int
6518 signal_pass_state (int signo)
6519 {
6520 return signal_program[signo];
6521 }
6522
6523 static void
6524 signal_cache_update (int signo)
6525 {
6526 if (signo == -1)
6527 {
6528 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6529 signal_cache_update (signo);
6530
6531 return;
6532 }
6533
6534 signal_pass[signo] = (signal_stop[signo] == 0
6535 && signal_print[signo] == 0
6536 && signal_program[signo] == 1
6537 && signal_catch[signo] == 0);
6538 }
6539
6540 int
6541 signal_stop_update (int signo, int state)
6542 {
6543 int ret = signal_stop[signo];
6544
6545 signal_stop[signo] = state;
6546 signal_cache_update (signo);
6547 return ret;
6548 }
6549
6550 int
6551 signal_print_update (int signo, int state)
6552 {
6553 int ret = signal_print[signo];
6554
6555 signal_print[signo] = state;
6556 signal_cache_update (signo);
6557 return ret;
6558 }
6559
6560 int
6561 signal_pass_update (int signo, int state)
6562 {
6563 int ret = signal_program[signo];
6564
6565 signal_program[signo] = state;
6566 signal_cache_update (signo);
6567 return ret;
6568 }
6569
6570 /* Update the global 'signal_catch' from INFO and notify the
6571 target. */
6572
6573 void
6574 signal_catch_update (const unsigned int *info)
6575 {
6576 int i;
6577
6578 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6579 signal_catch[i] = info[i] > 0;
6580 signal_cache_update (-1);
6581 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6582 }
6583
6584 static void
6585 sig_print_header (void)
6586 {
6587 printf_filtered (_("Signal Stop\tPrint\tPass "
6588 "to program\tDescription\n"));
6589 }
6590
6591 static void
6592 sig_print_info (enum gdb_signal oursig)
6593 {
6594 const char *name = gdb_signal_to_name (oursig);
6595 int name_padding = 13 - strlen (name);
6596
6597 if (name_padding <= 0)
6598 name_padding = 0;
6599
6600 printf_filtered ("%s", name);
6601 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6602 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6603 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6604 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6605 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6606 }
6607
6608 /* Specify how various signals in the inferior should be handled. */
6609
6610 static void
6611 handle_command (char *args, int from_tty)
6612 {
6613 char **argv;
6614 int digits, wordlen;
6615 int sigfirst, signum, siglast;
6616 enum gdb_signal oursig;
6617 int allsigs;
6618 int nsigs;
6619 unsigned char *sigs;
6620 struct cleanup *old_chain;
6621
6622 if (args == NULL)
6623 {
6624 error_no_arg (_("signal to handle"));
6625 }
6626
6627 /* Allocate and zero an array of flags for which signals to handle. */
6628
6629 nsigs = (int) GDB_SIGNAL_LAST;
6630 sigs = (unsigned char *) alloca (nsigs);
6631 memset (sigs, 0, nsigs);
6632
6633 /* Break the command line up into args. */
6634
6635 argv = gdb_buildargv (args);
6636 old_chain = make_cleanup_freeargv (argv);
6637
6638 /* Walk through the args, looking for signal oursigs, signal names, and
6639 actions. Signal numbers and signal names may be interspersed with
6640 actions, with the actions being performed for all signals cumulatively
6641 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6642
6643 while (*argv != NULL)
6644 {
6645 wordlen = strlen (*argv);
6646 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6647 {;
6648 }
6649 allsigs = 0;
6650 sigfirst = siglast = -1;
6651
6652 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6653 {
6654 /* Apply action to all signals except those used by the
6655 debugger. Silently skip those. */
6656 allsigs = 1;
6657 sigfirst = 0;
6658 siglast = nsigs - 1;
6659 }
6660 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6661 {
6662 SET_SIGS (nsigs, sigs, signal_stop);
6663 SET_SIGS (nsigs, sigs, signal_print);
6664 }
6665 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6666 {
6667 UNSET_SIGS (nsigs, sigs, signal_program);
6668 }
6669 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6670 {
6671 SET_SIGS (nsigs, sigs, signal_print);
6672 }
6673 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6674 {
6675 SET_SIGS (nsigs, sigs, signal_program);
6676 }
6677 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6678 {
6679 UNSET_SIGS (nsigs, sigs, signal_stop);
6680 }
6681 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6682 {
6683 SET_SIGS (nsigs, sigs, signal_program);
6684 }
6685 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6686 {
6687 UNSET_SIGS (nsigs, sigs, signal_print);
6688 UNSET_SIGS (nsigs, sigs, signal_stop);
6689 }
6690 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6691 {
6692 UNSET_SIGS (nsigs, sigs, signal_program);
6693 }
6694 else if (digits > 0)
6695 {
6696 /* It is numeric. The numeric signal refers to our own
6697 internal signal numbering from target.h, not to host/target
6698 signal number. This is a feature; users really should be
6699 using symbolic names anyway, and the common ones like
6700 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6701
6702 sigfirst = siglast = (int)
6703 gdb_signal_from_command (atoi (*argv));
6704 if ((*argv)[digits] == '-')
6705 {
6706 siglast = (int)
6707 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6708 }
6709 if (sigfirst > siglast)
6710 {
6711 /* Bet he didn't figure we'd think of this case... */
6712 signum = sigfirst;
6713 sigfirst = siglast;
6714 siglast = signum;
6715 }
6716 }
6717 else
6718 {
6719 oursig = gdb_signal_from_name (*argv);
6720 if (oursig != GDB_SIGNAL_UNKNOWN)
6721 {
6722 sigfirst = siglast = (int) oursig;
6723 }
6724 else
6725 {
6726 /* Not a number and not a recognized flag word => complain. */
6727 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6728 }
6729 }
6730
6731 /* If any signal numbers or symbol names were found, set flags for
6732 which signals to apply actions to. */
6733
6734 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6735 {
6736 switch ((enum gdb_signal) signum)
6737 {
6738 case GDB_SIGNAL_TRAP:
6739 case GDB_SIGNAL_INT:
6740 if (!allsigs && !sigs[signum])
6741 {
6742 if (query (_("%s is used by the debugger.\n\
6743 Are you sure you want to change it? "),
6744 gdb_signal_to_name ((enum gdb_signal) signum)))
6745 {
6746 sigs[signum] = 1;
6747 }
6748 else
6749 {
6750 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6751 gdb_flush (gdb_stdout);
6752 }
6753 }
6754 break;
6755 case GDB_SIGNAL_0:
6756 case GDB_SIGNAL_DEFAULT:
6757 case GDB_SIGNAL_UNKNOWN:
6758 /* Make sure that "all" doesn't print these. */
6759 break;
6760 default:
6761 sigs[signum] = 1;
6762 break;
6763 }
6764 }
6765
6766 argv++;
6767 }
6768
6769 for (signum = 0; signum < nsigs; signum++)
6770 if (sigs[signum])
6771 {
6772 signal_cache_update (-1);
6773 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6774 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6775
6776 if (from_tty)
6777 {
6778 /* Show the results. */
6779 sig_print_header ();
6780 for (; signum < nsigs; signum++)
6781 if (sigs[signum])
6782 sig_print_info (signum);
6783 }
6784
6785 break;
6786 }
6787
6788 do_cleanups (old_chain);
6789 }
6790
6791 /* Complete the "handle" command. */
6792
6793 static VEC (char_ptr) *
6794 handle_completer (struct cmd_list_element *ignore,
6795 const char *text, const char *word)
6796 {
6797 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6798 static const char * const keywords[] =
6799 {
6800 "all",
6801 "stop",
6802 "ignore",
6803 "print",
6804 "pass",
6805 "nostop",
6806 "noignore",
6807 "noprint",
6808 "nopass",
6809 NULL,
6810 };
6811
6812 vec_signals = signal_completer (ignore, text, word);
6813 vec_keywords = complete_on_enum (keywords, word, word);
6814
6815 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6816 VEC_free (char_ptr, vec_signals);
6817 VEC_free (char_ptr, vec_keywords);
6818 return return_val;
6819 }
6820
6821 static void
6822 xdb_handle_command (char *args, int from_tty)
6823 {
6824 char **argv;
6825 struct cleanup *old_chain;
6826
6827 if (args == NULL)
6828 error_no_arg (_("xdb command"));
6829
6830 /* Break the command line up into args. */
6831
6832 argv = gdb_buildargv (args);
6833 old_chain = make_cleanup_freeargv (argv);
6834 if (argv[1] != (char *) NULL)
6835 {
6836 char *argBuf;
6837 int bufLen;
6838
6839 bufLen = strlen (argv[0]) + 20;
6840 argBuf = (char *) xmalloc (bufLen);
6841 if (argBuf)
6842 {
6843 int validFlag = 1;
6844 enum gdb_signal oursig;
6845
6846 oursig = gdb_signal_from_name (argv[0]);
6847 memset (argBuf, 0, bufLen);
6848 if (strcmp (argv[1], "Q") == 0)
6849 sprintf (argBuf, "%s %s", argv[0], "noprint");
6850 else
6851 {
6852 if (strcmp (argv[1], "s") == 0)
6853 {
6854 if (!signal_stop[oursig])
6855 sprintf (argBuf, "%s %s", argv[0], "stop");
6856 else
6857 sprintf (argBuf, "%s %s", argv[0], "nostop");
6858 }
6859 else if (strcmp (argv[1], "i") == 0)
6860 {
6861 if (!signal_program[oursig])
6862 sprintf (argBuf, "%s %s", argv[0], "pass");
6863 else
6864 sprintf (argBuf, "%s %s", argv[0], "nopass");
6865 }
6866 else if (strcmp (argv[1], "r") == 0)
6867 {
6868 if (!signal_print[oursig])
6869 sprintf (argBuf, "%s %s", argv[0], "print");
6870 else
6871 sprintf (argBuf, "%s %s", argv[0], "noprint");
6872 }
6873 else
6874 validFlag = 0;
6875 }
6876 if (validFlag)
6877 handle_command (argBuf, from_tty);
6878 else
6879 printf_filtered (_("Invalid signal handling flag.\n"));
6880 if (argBuf)
6881 xfree (argBuf);
6882 }
6883 }
6884 do_cleanups (old_chain);
6885 }
6886
6887 enum gdb_signal
6888 gdb_signal_from_command (int num)
6889 {
6890 if (num >= 1 && num <= 15)
6891 return (enum gdb_signal) num;
6892 error (_("Only signals 1-15 are valid as numeric signals.\n\
6893 Use \"info signals\" for a list of symbolic signals."));
6894 }
6895
6896 /* Print current contents of the tables set by the handle command.
6897 It is possible we should just be printing signals actually used
6898 by the current target (but for things to work right when switching
6899 targets, all signals should be in the signal tables). */
6900
6901 static void
6902 signals_info (char *signum_exp, int from_tty)
6903 {
6904 enum gdb_signal oursig;
6905
6906 sig_print_header ();
6907
6908 if (signum_exp)
6909 {
6910 /* First see if this is a symbol name. */
6911 oursig = gdb_signal_from_name (signum_exp);
6912 if (oursig == GDB_SIGNAL_UNKNOWN)
6913 {
6914 /* No, try numeric. */
6915 oursig =
6916 gdb_signal_from_command (parse_and_eval_long (signum_exp));
6917 }
6918 sig_print_info (oursig);
6919 return;
6920 }
6921
6922 printf_filtered ("\n");
6923 /* These ugly casts brought to you by the native VAX compiler. */
6924 for (oursig = GDB_SIGNAL_FIRST;
6925 (int) oursig < (int) GDB_SIGNAL_LAST;
6926 oursig = (enum gdb_signal) ((int) oursig + 1))
6927 {
6928 QUIT;
6929
6930 if (oursig != GDB_SIGNAL_UNKNOWN
6931 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
6932 sig_print_info (oursig);
6933 }
6934
6935 printf_filtered (_("\nUse the \"handle\" command "
6936 "to change these tables.\n"));
6937 }
6938
6939 /* Check if it makes sense to read $_siginfo from the current thread
6940 at this point. If not, throw an error. */
6941
6942 static void
6943 validate_siginfo_access (void)
6944 {
6945 /* No current inferior, no siginfo. */
6946 if (ptid_equal (inferior_ptid, null_ptid))
6947 error (_("No thread selected."));
6948
6949 /* Don't try to read from a dead thread. */
6950 if (is_exited (inferior_ptid))
6951 error (_("The current thread has terminated"));
6952
6953 /* ... or from a spinning thread. */
6954 if (is_running (inferior_ptid))
6955 error (_("Selected thread is running."));
6956 }
6957
6958 /* The $_siginfo convenience variable is a bit special. We don't know
6959 for sure the type of the value until we actually have a chance to
6960 fetch the data. The type can change depending on gdbarch, so it is
6961 also dependent on which thread you have selected.
6962
6963 1. making $_siginfo be an internalvar that creates a new value on
6964 access.
6965
6966 2. making the value of $_siginfo be an lval_computed value. */
6967
6968 /* This function implements the lval_computed support for reading a
6969 $_siginfo value. */
6970
6971 static void
6972 siginfo_value_read (struct value *v)
6973 {
6974 LONGEST transferred;
6975
6976 validate_siginfo_access ();
6977
6978 transferred =
6979 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6980 NULL,
6981 value_contents_all_raw (v),
6982 value_offset (v),
6983 TYPE_LENGTH (value_type (v)));
6984
6985 if (transferred != TYPE_LENGTH (value_type (v)))
6986 error (_("Unable to read siginfo"));
6987 }
6988
6989 /* This function implements the lval_computed support for writing a
6990 $_siginfo value. */
6991
6992 static void
6993 siginfo_value_write (struct value *v, struct value *fromval)
6994 {
6995 LONGEST transferred;
6996
6997 validate_siginfo_access ();
6998
6999 transferred = target_write (&current_target,
7000 TARGET_OBJECT_SIGNAL_INFO,
7001 NULL,
7002 value_contents_all_raw (fromval),
7003 value_offset (v),
7004 TYPE_LENGTH (value_type (fromval)));
7005
7006 if (transferred != TYPE_LENGTH (value_type (fromval)))
7007 error (_("Unable to write siginfo"));
7008 }
7009
7010 static const struct lval_funcs siginfo_value_funcs =
7011 {
7012 siginfo_value_read,
7013 siginfo_value_write
7014 };
7015
7016 /* Return a new value with the correct type for the siginfo object of
7017 the current thread using architecture GDBARCH. Return a void value
7018 if there's no object available. */
7019
7020 static struct value *
7021 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
7022 void *ignore)
7023 {
7024 if (target_has_stack
7025 && !ptid_equal (inferior_ptid, null_ptid)
7026 && gdbarch_get_siginfo_type_p (gdbarch))
7027 {
7028 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7029
7030 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
7031 }
7032
7033 return allocate_value (builtin_type (gdbarch)->builtin_void);
7034 }
7035
7036 \f
7037 /* infcall_suspend_state contains state about the program itself like its
7038 registers and any signal it received when it last stopped.
7039 This state must be restored regardless of how the inferior function call
7040 ends (either successfully, or after it hits a breakpoint or signal)
7041 if the program is to properly continue where it left off. */
7042
7043 struct infcall_suspend_state
7044 {
7045 struct thread_suspend_state thread_suspend;
7046 #if 0 /* Currently unused and empty structures are not valid C. */
7047 struct inferior_suspend_state inferior_suspend;
7048 #endif
7049
7050 /* Other fields: */
7051 CORE_ADDR stop_pc;
7052 struct regcache *registers;
7053
7054 /* Format of SIGINFO_DATA or NULL if it is not present. */
7055 struct gdbarch *siginfo_gdbarch;
7056
7057 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
7058 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
7059 content would be invalid. */
7060 gdb_byte *siginfo_data;
7061 };
7062
7063 struct infcall_suspend_state *
7064 save_infcall_suspend_state (void)
7065 {
7066 struct infcall_suspend_state *inf_state;
7067 struct thread_info *tp = inferior_thread ();
7068 #if 0
7069 struct inferior *inf = current_inferior ();
7070 #endif
7071 struct regcache *regcache = get_current_regcache ();
7072 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7073 gdb_byte *siginfo_data = NULL;
7074
7075 if (gdbarch_get_siginfo_type_p (gdbarch))
7076 {
7077 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7078 size_t len = TYPE_LENGTH (type);
7079 struct cleanup *back_to;
7080
7081 siginfo_data = xmalloc (len);
7082 back_to = make_cleanup (xfree, siginfo_data);
7083
7084 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7085 siginfo_data, 0, len) == len)
7086 discard_cleanups (back_to);
7087 else
7088 {
7089 /* Errors ignored. */
7090 do_cleanups (back_to);
7091 siginfo_data = NULL;
7092 }
7093 }
7094
7095 inf_state = XCNEW (struct infcall_suspend_state);
7096
7097 if (siginfo_data)
7098 {
7099 inf_state->siginfo_gdbarch = gdbarch;
7100 inf_state->siginfo_data = siginfo_data;
7101 }
7102
7103 inf_state->thread_suspend = tp->suspend;
7104 #if 0 /* Currently unused and empty structures are not valid C. */
7105 inf_state->inferior_suspend = inf->suspend;
7106 #endif
7107
7108 /* run_inferior_call will not use the signal due to its `proceed' call with
7109 GDB_SIGNAL_0 anyway. */
7110 tp->suspend.stop_signal = GDB_SIGNAL_0;
7111
7112 inf_state->stop_pc = stop_pc;
7113
7114 inf_state->registers = regcache_dup (regcache);
7115
7116 return inf_state;
7117 }
7118
7119 /* Restore inferior session state to INF_STATE. */
7120
7121 void
7122 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
7123 {
7124 struct thread_info *tp = inferior_thread ();
7125 #if 0
7126 struct inferior *inf = current_inferior ();
7127 #endif
7128 struct regcache *regcache = get_current_regcache ();
7129 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7130
7131 tp->suspend = inf_state->thread_suspend;
7132 #if 0 /* Currently unused and empty structures are not valid C. */
7133 inf->suspend = inf_state->inferior_suspend;
7134 #endif
7135
7136 stop_pc = inf_state->stop_pc;
7137
7138 if (inf_state->siginfo_gdbarch == gdbarch)
7139 {
7140 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7141
7142 /* Errors ignored. */
7143 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7144 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
7145 }
7146
7147 /* The inferior can be gone if the user types "print exit(0)"
7148 (and perhaps other times). */
7149 if (target_has_execution)
7150 /* NB: The register write goes through to the target. */
7151 regcache_cpy (regcache, inf_state->registers);
7152
7153 discard_infcall_suspend_state (inf_state);
7154 }
7155
7156 static void
7157 do_restore_infcall_suspend_state_cleanup (void *state)
7158 {
7159 restore_infcall_suspend_state (state);
7160 }
7161
7162 struct cleanup *
7163 make_cleanup_restore_infcall_suspend_state
7164 (struct infcall_suspend_state *inf_state)
7165 {
7166 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
7167 }
7168
7169 void
7170 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
7171 {
7172 regcache_xfree (inf_state->registers);
7173 xfree (inf_state->siginfo_data);
7174 xfree (inf_state);
7175 }
7176
7177 struct regcache *
7178 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
7179 {
7180 return inf_state->registers;
7181 }
7182
7183 /* infcall_control_state contains state regarding gdb's control of the
7184 inferior itself like stepping control. It also contains session state like
7185 the user's currently selected frame. */
7186
7187 struct infcall_control_state
7188 {
7189 struct thread_control_state thread_control;
7190 struct inferior_control_state inferior_control;
7191
7192 /* Other fields: */
7193 enum stop_stack_kind stop_stack_dummy;
7194 int stopped_by_random_signal;
7195 int stop_after_trap;
7196
7197 /* ID if the selected frame when the inferior function call was made. */
7198 struct frame_id selected_frame_id;
7199 };
7200
7201 /* Save all of the information associated with the inferior<==>gdb
7202 connection. */
7203
7204 struct infcall_control_state *
7205 save_infcall_control_state (void)
7206 {
7207 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
7208 struct thread_info *tp = inferior_thread ();
7209 struct inferior *inf = current_inferior ();
7210
7211 inf_status->thread_control = tp->control;
7212 inf_status->inferior_control = inf->control;
7213
7214 tp->control.step_resume_breakpoint = NULL;
7215 tp->control.exception_resume_breakpoint = NULL;
7216
7217 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
7218 chain. If caller's caller is walking the chain, they'll be happier if we
7219 hand them back the original chain when restore_infcall_control_state is
7220 called. */
7221 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
7222
7223 /* Other fields: */
7224 inf_status->stop_stack_dummy = stop_stack_dummy;
7225 inf_status->stopped_by_random_signal = stopped_by_random_signal;
7226 inf_status->stop_after_trap = stop_after_trap;
7227
7228 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
7229
7230 return inf_status;
7231 }
7232
7233 static int
7234 restore_selected_frame (void *args)
7235 {
7236 struct frame_id *fid = (struct frame_id *) args;
7237 struct frame_info *frame;
7238
7239 frame = frame_find_by_id (*fid);
7240
7241 /* If inf_status->selected_frame_id is NULL, there was no previously
7242 selected frame. */
7243 if (frame == NULL)
7244 {
7245 warning (_("Unable to restore previously selected frame."));
7246 return 0;
7247 }
7248
7249 select_frame (frame);
7250
7251 return (1);
7252 }
7253
7254 /* Restore inferior session state to INF_STATUS. */
7255
7256 void
7257 restore_infcall_control_state (struct infcall_control_state *inf_status)
7258 {
7259 struct thread_info *tp = inferior_thread ();
7260 struct inferior *inf = current_inferior ();
7261
7262 if (tp->control.step_resume_breakpoint)
7263 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7264
7265 if (tp->control.exception_resume_breakpoint)
7266 tp->control.exception_resume_breakpoint->disposition
7267 = disp_del_at_next_stop;
7268
7269 /* Handle the bpstat_copy of the chain. */
7270 bpstat_clear (&tp->control.stop_bpstat);
7271
7272 tp->control = inf_status->thread_control;
7273 inf->control = inf_status->inferior_control;
7274
7275 /* Other fields: */
7276 stop_stack_dummy = inf_status->stop_stack_dummy;
7277 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7278 stop_after_trap = inf_status->stop_after_trap;
7279
7280 if (target_has_stack)
7281 {
7282 /* The point of catch_errors is that if the stack is clobbered,
7283 walking the stack might encounter a garbage pointer and
7284 error() trying to dereference it. */
7285 if (catch_errors
7286 (restore_selected_frame, &inf_status->selected_frame_id,
7287 "Unable to restore previously selected frame:\n",
7288 RETURN_MASK_ERROR) == 0)
7289 /* Error in restoring the selected frame. Select the innermost
7290 frame. */
7291 select_frame (get_current_frame ());
7292 }
7293
7294 xfree (inf_status);
7295 }
7296
7297 static void
7298 do_restore_infcall_control_state_cleanup (void *sts)
7299 {
7300 restore_infcall_control_state (sts);
7301 }
7302
7303 struct cleanup *
7304 make_cleanup_restore_infcall_control_state
7305 (struct infcall_control_state *inf_status)
7306 {
7307 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
7308 }
7309
7310 void
7311 discard_infcall_control_state (struct infcall_control_state *inf_status)
7312 {
7313 if (inf_status->thread_control.step_resume_breakpoint)
7314 inf_status->thread_control.step_resume_breakpoint->disposition
7315 = disp_del_at_next_stop;
7316
7317 if (inf_status->thread_control.exception_resume_breakpoint)
7318 inf_status->thread_control.exception_resume_breakpoint->disposition
7319 = disp_del_at_next_stop;
7320
7321 /* See save_infcall_control_state for info on stop_bpstat. */
7322 bpstat_clear (&inf_status->thread_control.stop_bpstat);
7323
7324 xfree (inf_status);
7325 }
7326 \f
7327 /* restore_inferior_ptid() will be used by the cleanup machinery
7328 to restore the inferior_ptid value saved in a call to
7329 save_inferior_ptid(). */
7330
7331 static void
7332 restore_inferior_ptid (void *arg)
7333 {
7334 ptid_t *saved_ptid_ptr = arg;
7335
7336 inferior_ptid = *saved_ptid_ptr;
7337 xfree (arg);
7338 }
7339
7340 /* Save the value of inferior_ptid so that it may be restored by a
7341 later call to do_cleanups(). Returns the struct cleanup pointer
7342 needed for later doing the cleanup. */
7343
7344 struct cleanup *
7345 save_inferior_ptid (void)
7346 {
7347 ptid_t *saved_ptid_ptr;
7348
7349 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7350 *saved_ptid_ptr = inferior_ptid;
7351 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7352 }
7353
7354 /* See infrun.h. */
7355
7356 void
7357 clear_exit_convenience_vars (void)
7358 {
7359 clear_internalvar (lookup_internalvar ("_exitsignal"));
7360 clear_internalvar (lookup_internalvar ("_exitcode"));
7361 }
7362 \f
7363
7364 /* User interface for reverse debugging:
7365 Set exec-direction / show exec-direction commands
7366 (returns error unless target implements to_set_exec_direction method). */
7367
7368 int execution_direction = EXEC_FORWARD;
7369 static const char exec_forward[] = "forward";
7370 static const char exec_reverse[] = "reverse";
7371 static const char *exec_direction = exec_forward;
7372 static const char *const exec_direction_names[] = {
7373 exec_forward,
7374 exec_reverse,
7375 NULL
7376 };
7377
7378 static void
7379 set_exec_direction_func (char *args, int from_tty,
7380 struct cmd_list_element *cmd)
7381 {
7382 if (target_can_execute_reverse)
7383 {
7384 if (!strcmp (exec_direction, exec_forward))
7385 execution_direction = EXEC_FORWARD;
7386 else if (!strcmp (exec_direction, exec_reverse))
7387 execution_direction = EXEC_REVERSE;
7388 }
7389 else
7390 {
7391 exec_direction = exec_forward;
7392 error (_("Target does not support this operation."));
7393 }
7394 }
7395
7396 static void
7397 show_exec_direction_func (struct ui_file *out, int from_tty,
7398 struct cmd_list_element *cmd, const char *value)
7399 {
7400 switch (execution_direction) {
7401 case EXEC_FORWARD:
7402 fprintf_filtered (out, _("Forward.\n"));
7403 break;
7404 case EXEC_REVERSE:
7405 fprintf_filtered (out, _("Reverse.\n"));
7406 break;
7407 default:
7408 internal_error (__FILE__, __LINE__,
7409 _("bogus execution_direction value: %d"),
7410 (int) execution_direction);
7411 }
7412 }
7413
7414 static void
7415 show_schedule_multiple (struct ui_file *file, int from_tty,
7416 struct cmd_list_element *c, const char *value)
7417 {
7418 fprintf_filtered (file, _("Resuming the execution of threads "
7419 "of all processes is %s.\n"), value);
7420 }
7421
7422 /* Implementation of `siginfo' variable. */
7423
7424 static const struct internalvar_funcs siginfo_funcs =
7425 {
7426 siginfo_make_value,
7427 NULL,
7428 NULL
7429 };
7430
7431 void
7432 _initialize_infrun (void)
7433 {
7434 int i;
7435 int numsigs;
7436 struct cmd_list_element *c;
7437
7438 add_info ("signals", signals_info, _("\
7439 What debugger does when program gets various signals.\n\
7440 Specify a signal as argument to print info on that signal only."));
7441 add_info_alias ("handle", "signals", 0);
7442
7443 c = add_com ("handle", class_run, handle_command, _("\
7444 Specify how to handle signals.\n\
7445 Usage: handle SIGNAL [ACTIONS]\n\
7446 Args are signals and actions to apply to those signals.\n\
7447 If no actions are specified, the current settings for the specified signals\n\
7448 will be displayed instead.\n\
7449 \n\
7450 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7451 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7452 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7453 The special arg \"all\" is recognized to mean all signals except those\n\
7454 used by the debugger, typically SIGTRAP and SIGINT.\n\
7455 \n\
7456 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7457 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7458 Stop means reenter debugger if this signal happens (implies print).\n\
7459 Print means print a message if this signal happens.\n\
7460 Pass means let program see this signal; otherwise program doesn't know.\n\
7461 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7462 Pass and Stop may be combined.\n\
7463 \n\
7464 Multiple signals may be specified. Signal numbers and signal names\n\
7465 may be interspersed with actions, with the actions being performed for\n\
7466 all signals cumulatively specified."));
7467 set_cmd_completer (c, handle_completer);
7468
7469 if (xdb_commands)
7470 {
7471 add_com ("lz", class_info, signals_info, _("\
7472 What debugger does when program gets various signals.\n\
7473 Specify a signal as argument to print info on that signal only."));
7474 add_com ("z", class_run, xdb_handle_command, _("\
7475 Specify how to handle a signal.\n\
7476 Args are signals and actions to apply to those signals.\n\
7477 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7478 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7479 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7480 The special arg \"all\" is recognized to mean all signals except those\n\
7481 used by the debugger, typically SIGTRAP and SIGINT.\n\
7482 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7483 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7484 nopass), \"Q\" (noprint)\n\
7485 Stop means reenter debugger if this signal happens (implies print).\n\
7486 Print means print a message if this signal happens.\n\
7487 Pass means let program see this signal; otherwise program doesn't know.\n\
7488 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7489 Pass and Stop may be combined."));
7490 }
7491
7492 if (!dbx_commands)
7493 stop_command = add_cmd ("stop", class_obscure,
7494 not_just_help_class_command, _("\
7495 There is no `stop' command, but you can set a hook on `stop'.\n\
7496 This allows you to set a list of commands to be run each time execution\n\
7497 of the program stops."), &cmdlist);
7498
7499 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7500 Set inferior debugging."), _("\
7501 Show inferior debugging."), _("\
7502 When non-zero, inferior specific debugging is enabled."),
7503 NULL,
7504 show_debug_infrun,
7505 &setdebuglist, &showdebuglist);
7506
7507 add_setshow_boolean_cmd ("displaced", class_maintenance,
7508 &debug_displaced, _("\
7509 Set displaced stepping debugging."), _("\
7510 Show displaced stepping debugging."), _("\
7511 When non-zero, displaced stepping specific debugging is enabled."),
7512 NULL,
7513 show_debug_displaced,
7514 &setdebuglist, &showdebuglist);
7515
7516 add_setshow_boolean_cmd ("non-stop", no_class,
7517 &non_stop_1, _("\
7518 Set whether gdb controls the inferior in non-stop mode."), _("\
7519 Show whether gdb controls the inferior in non-stop mode."), _("\
7520 When debugging a multi-threaded program and this setting is\n\
7521 off (the default, also called all-stop mode), when one thread stops\n\
7522 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7523 all other threads in the program while you interact with the thread of\n\
7524 interest. When you continue or step a thread, you can allow the other\n\
7525 threads to run, or have them remain stopped, but while you inspect any\n\
7526 thread's state, all threads stop.\n\
7527 \n\
7528 In non-stop mode, when one thread stops, other threads can continue\n\
7529 to run freely. You'll be able to step each thread independently,\n\
7530 leave it stopped or free to run as needed."),
7531 set_non_stop,
7532 show_non_stop,
7533 &setlist,
7534 &showlist);
7535
7536 numsigs = (int) GDB_SIGNAL_LAST;
7537 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7538 signal_print = (unsigned char *)
7539 xmalloc (sizeof (signal_print[0]) * numsigs);
7540 signal_program = (unsigned char *)
7541 xmalloc (sizeof (signal_program[0]) * numsigs);
7542 signal_catch = (unsigned char *)
7543 xmalloc (sizeof (signal_catch[0]) * numsigs);
7544 signal_pass = (unsigned char *)
7545 xmalloc (sizeof (signal_pass[0]) * numsigs);
7546 for (i = 0; i < numsigs; i++)
7547 {
7548 signal_stop[i] = 1;
7549 signal_print[i] = 1;
7550 signal_program[i] = 1;
7551 signal_catch[i] = 0;
7552 }
7553
7554 /* Signals caused by debugger's own actions
7555 should not be given to the program afterwards. */
7556 signal_program[GDB_SIGNAL_TRAP] = 0;
7557 signal_program[GDB_SIGNAL_INT] = 0;
7558
7559 /* Signals that are not errors should not normally enter the debugger. */
7560 signal_stop[GDB_SIGNAL_ALRM] = 0;
7561 signal_print[GDB_SIGNAL_ALRM] = 0;
7562 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7563 signal_print[GDB_SIGNAL_VTALRM] = 0;
7564 signal_stop[GDB_SIGNAL_PROF] = 0;
7565 signal_print[GDB_SIGNAL_PROF] = 0;
7566 signal_stop[GDB_SIGNAL_CHLD] = 0;
7567 signal_print[GDB_SIGNAL_CHLD] = 0;
7568 signal_stop[GDB_SIGNAL_IO] = 0;
7569 signal_print[GDB_SIGNAL_IO] = 0;
7570 signal_stop[GDB_SIGNAL_POLL] = 0;
7571 signal_print[GDB_SIGNAL_POLL] = 0;
7572 signal_stop[GDB_SIGNAL_URG] = 0;
7573 signal_print[GDB_SIGNAL_URG] = 0;
7574 signal_stop[GDB_SIGNAL_WINCH] = 0;
7575 signal_print[GDB_SIGNAL_WINCH] = 0;
7576 signal_stop[GDB_SIGNAL_PRIO] = 0;
7577 signal_print[GDB_SIGNAL_PRIO] = 0;
7578
7579 /* These signals are used internally by user-level thread
7580 implementations. (See signal(5) on Solaris.) Like the above
7581 signals, a healthy program receives and handles them as part of
7582 its normal operation. */
7583 signal_stop[GDB_SIGNAL_LWP] = 0;
7584 signal_print[GDB_SIGNAL_LWP] = 0;
7585 signal_stop[GDB_SIGNAL_WAITING] = 0;
7586 signal_print[GDB_SIGNAL_WAITING] = 0;
7587 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7588 signal_print[GDB_SIGNAL_CANCEL] = 0;
7589
7590 /* Update cached state. */
7591 signal_cache_update (-1);
7592
7593 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7594 &stop_on_solib_events, _("\
7595 Set stopping for shared library events."), _("\
7596 Show stopping for shared library events."), _("\
7597 If nonzero, gdb will give control to the user when the dynamic linker\n\
7598 notifies gdb of shared library events. The most common event of interest\n\
7599 to the user would be loading/unloading of a new library."),
7600 set_stop_on_solib_events,
7601 show_stop_on_solib_events,
7602 &setlist, &showlist);
7603
7604 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7605 follow_fork_mode_kind_names,
7606 &follow_fork_mode_string, _("\
7607 Set debugger response to a program call of fork or vfork."), _("\
7608 Show debugger response to a program call of fork or vfork."), _("\
7609 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7610 parent - the original process is debugged after a fork\n\
7611 child - the new process is debugged after a fork\n\
7612 The unfollowed process will continue to run.\n\
7613 By default, the debugger will follow the parent process."),
7614 NULL,
7615 show_follow_fork_mode_string,
7616 &setlist, &showlist);
7617
7618 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7619 follow_exec_mode_names,
7620 &follow_exec_mode_string, _("\
7621 Set debugger response to a program call of exec."), _("\
7622 Show debugger response to a program call of exec."), _("\
7623 An exec call replaces the program image of a process.\n\
7624 \n\
7625 follow-exec-mode can be:\n\
7626 \n\
7627 new - the debugger creates a new inferior and rebinds the process\n\
7628 to this new inferior. The program the process was running before\n\
7629 the exec call can be restarted afterwards by restarting the original\n\
7630 inferior.\n\
7631 \n\
7632 same - the debugger keeps the process bound to the same inferior.\n\
7633 The new executable image replaces the previous executable loaded in\n\
7634 the inferior. Restarting the inferior after the exec call restarts\n\
7635 the executable the process was running after the exec call.\n\
7636 \n\
7637 By default, the debugger will use the same inferior."),
7638 NULL,
7639 show_follow_exec_mode_string,
7640 &setlist, &showlist);
7641
7642 add_setshow_enum_cmd ("scheduler-locking", class_run,
7643 scheduler_enums, &scheduler_mode, _("\
7644 Set mode for locking scheduler during execution."), _("\
7645 Show mode for locking scheduler during execution."), _("\
7646 off == no locking (threads may preempt at any time)\n\
7647 on == full locking (no thread except the current thread may run)\n\
7648 step == scheduler locked during every single-step operation.\n\
7649 In this mode, no other thread may run during a step command.\n\
7650 Other threads may run while stepping over a function call ('next')."),
7651 set_schedlock_func, /* traps on target vector */
7652 show_scheduler_mode,
7653 &setlist, &showlist);
7654
7655 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7656 Set mode for resuming threads of all processes."), _("\
7657 Show mode for resuming threads of all processes."), _("\
7658 When on, execution commands (such as 'continue' or 'next') resume all\n\
7659 threads of all processes. When off (which is the default), execution\n\
7660 commands only resume the threads of the current process. The set of\n\
7661 threads that are resumed is further refined by the scheduler-locking\n\
7662 mode (see help set scheduler-locking)."),
7663 NULL,
7664 show_schedule_multiple,
7665 &setlist, &showlist);
7666
7667 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7668 Set mode of the step operation."), _("\
7669 Show mode of the step operation."), _("\
7670 When set, doing a step over a function without debug line information\n\
7671 will stop at the first instruction of that function. Otherwise, the\n\
7672 function is skipped and the step command stops at a different source line."),
7673 NULL,
7674 show_step_stop_if_no_debug,
7675 &setlist, &showlist);
7676
7677 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7678 &can_use_displaced_stepping, _("\
7679 Set debugger's willingness to use displaced stepping."), _("\
7680 Show debugger's willingness to use displaced stepping."), _("\
7681 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7682 supported by the target architecture. If off, gdb will not use displaced\n\
7683 stepping to step over breakpoints, even if such is supported by the target\n\
7684 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7685 if the target architecture supports it and non-stop mode is active, but will not\n\
7686 use it in all-stop mode (see help set non-stop)."),
7687 NULL,
7688 show_can_use_displaced_stepping,
7689 &setlist, &showlist);
7690
7691 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7692 &exec_direction, _("Set direction of execution.\n\
7693 Options are 'forward' or 'reverse'."),
7694 _("Show direction of execution (forward/reverse)."),
7695 _("Tells gdb whether to execute forward or backward."),
7696 set_exec_direction_func, show_exec_direction_func,
7697 &setlist, &showlist);
7698
7699 /* Set/show detach-on-fork: user-settable mode. */
7700
7701 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7702 Set whether gdb will detach the child of a fork."), _("\
7703 Show whether gdb will detach the child of a fork."), _("\
7704 Tells gdb whether to detach the child of a fork."),
7705 NULL, NULL, &setlist, &showlist);
7706
7707 /* Set/show disable address space randomization mode. */
7708
7709 add_setshow_boolean_cmd ("disable-randomization", class_support,
7710 &disable_randomization, _("\
7711 Set disabling of debuggee's virtual address space randomization."), _("\
7712 Show disabling of debuggee's virtual address space randomization."), _("\
7713 When this mode is on (which is the default), randomization of the virtual\n\
7714 address space is disabled. Standalone programs run with the randomization\n\
7715 enabled by default on some platforms."),
7716 &set_disable_randomization,
7717 &show_disable_randomization,
7718 &setlist, &showlist);
7719
7720 /* ptid initializations */
7721 inferior_ptid = null_ptid;
7722 target_last_wait_ptid = minus_one_ptid;
7723
7724 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7725 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7726 observer_attach_thread_exit (infrun_thread_thread_exit);
7727 observer_attach_inferior_exit (infrun_inferior_exit);
7728
7729 /* Explicitly create without lookup, since that tries to create a
7730 value with a void typed value, and when we get here, gdbarch
7731 isn't initialized yet. At this point, we're quite sure there
7732 isn't another convenience variable of the same name. */
7733 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7734
7735 add_setshow_boolean_cmd ("observer", no_class,
7736 &observer_mode_1, _("\
7737 Set whether gdb controls the inferior in observer mode."), _("\
7738 Show whether gdb controls the inferior in observer mode."), _("\
7739 In observer mode, GDB can get data from the inferior, but not\n\
7740 affect its execution. Registers and memory may not be changed,\n\
7741 breakpoints may not be set, and the program cannot be interrupted\n\
7742 or signalled."),
7743 set_observer_mode,
7744 show_observer_mode,
7745 &setlist,
7746 &showlist);
7747 }