]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
* breakpoint.h (enum bptype): New type bp_through_sigtramp.
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior process.
2 Copyright 1986, 1987, 1988, 1989, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "defs.h"
22 #include <string.h>
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "thread.h"
33
34 #include <signal.h>
35
36 /* unistd.h is needed to #define X_OK */
37 #ifdef USG
38 #include <unistd.h>
39 #else
40 #include <sys/file.h>
41 #endif
42
43 /* Prototypes for local functions */
44
45 static void
46 signals_info PARAMS ((char *, int));
47
48 static void
49 handle_command PARAMS ((char *, int));
50
51 static void sig_print_info PARAMS ((enum target_signal));
52
53 static void
54 sig_print_header PARAMS ((void));
55
56 static void
57 resume_cleanups PARAMS ((int));
58
59 static int
60 hook_stop_stub PARAMS ((char *));
61
62 /* GET_LONGJMP_TARGET returns the PC at which longjmp() will resume the
63 program. It needs to examine the jmp_buf argument and extract the PC
64 from it. The return value is non-zero on success, zero otherwise. */
65 #ifndef GET_LONGJMP_TARGET
66 #define GET_LONGJMP_TARGET(PC_ADDR) 0
67 #endif
68
69
70 /* Some machines have trampoline code that sits between function callers
71 and the actual functions themselves. If this machine doesn't have
72 such things, disable their processing. */
73 #ifndef SKIP_TRAMPOLINE_CODE
74 #define SKIP_TRAMPOLINE_CODE(pc) 0
75 #endif
76
77 /* For SVR4 shared libraries, each call goes through a small piece of
78 trampoline code in the ".init" section. IN_SOLIB_TRAMPOLINE evaluates
79 to nonzero if we are current stopped in one of these. */
80 #ifndef IN_SOLIB_TRAMPOLINE
81 #define IN_SOLIB_TRAMPOLINE(pc,name) 0
82 #endif
83
84 /* On some systems, the PC may be left pointing at an instruction that won't
85 actually be executed. This is usually indicated by a bit in the PSW. If
86 we find ourselves in such a state, then we step the target beyond the
87 nullified instruction before returning control to the user so as to avoid
88 confusion. */
89
90 #ifndef INSTRUCTION_NULLIFIED
91 #define INSTRUCTION_NULLIFIED 0
92 #endif
93
94 /* Tables of how to react to signals; the user sets them. */
95
96 static unsigned char *signal_stop;
97 static unsigned char *signal_print;
98 static unsigned char *signal_program;
99
100 #define SET_SIGS(nsigs,sigs,flags) \
101 do { \
102 int signum = (nsigs); \
103 while (signum-- > 0) \
104 if ((sigs)[signum]) \
105 (flags)[signum] = 1; \
106 } while (0)
107
108 #define UNSET_SIGS(nsigs,sigs,flags) \
109 do { \
110 int signum = (nsigs); \
111 while (signum-- > 0) \
112 if ((sigs)[signum]) \
113 (flags)[signum] = 0; \
114 } while (0)
115
116
117 /* Command list pointer for the "stop" placeholder. */
118
119 static struct cmd_list_element *stop_command;
120
121 /* Nonzero if breakpoints are now inserted in the inferior. */
122
123 static int breakpoints_inserted;
124
125 /* Function inferior was in as of last step command. */
126
127 static struct symbol *step_start_function;
128
129 /* Nonzero if we are expecting a trace trap and should proceed from it. */
130
131 static int trap_expected;
132
133 /* Nonzero if the next time we try to continue the inferior, it will
134 step one instruction and generate a spurious trace trap.
135 This is used to compensate for a bug in HP-UX. */
136
137 static int trap_expected_after_continue;
138
139 /* Nonzero means expecting a trace trap
140 and should stop the inferior and return silently when it happens. */
141
142 int stop_after_trap;
143
144 /* Nonzero means expecting a trap and caller will handle it themselves.
145 It is used after attach, due to attaching to a process;
146 when running in the shell before the child program has been exec'd;
147 and when running some kinds of remote stuff (FIXME?). */
148
149 int stop_soon_quietly;
150
151 /* Nonzero if proceed is being used for a "finish" command or a similar
152 situation when stop_registers should be saved. */
153
154 int proceed_to_finish;
155
156 /* Save register contents here when about to pop a stack dummy frame,
157 if-and-only-if proceed_to_finish is set.
158 Thus this contains the return value from the called function (assuming
159 values are returned in a register). */
160
161 char stop_registers[REGISTER_BYTES];
162
163 /* Nonzero if program stopped due to error trying to insert breakpoints. */
164
165 static int breakpoints_failed;
166
167 /* Nonzero after stop if current stack frame should be printed. */
168
169 static int stop_print_frame;
170
171 #ifdef NO_SINGLE_STEP
172 extern int one_stepped; /* From machine dependent code */
173 extern void single_step (); /* Same. */
174 #endif /* NO_SINGLE_STEP */
175
176 \f
177 /* Things to clean up if we QUIT out of resume (). */
178 /* ARGSUSED */
179 static void
180 resume_cleanups (arg)
181 int arg;
182 {
183 normal_stop ();
184 }
185
186 /* Resume the inferior, but allow a QUIT. This is useful if the user
187 wants to interrupt some lengthy single-stepping operation
188 (for child processes, the SIGINT goes to the inferior, and so
189 we get a SIGINT random_signal, but for remote debugging and perhaps
190 other targets, that's not true).
191
192 STEP nonzero if we should step (zero to continue instead).
193 SIG is the signal to give the inferior (zero for none). */
194 void
195 resume (step, sig)
196 int step;
197 enum target_signal sig;
198 {
199 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
200 QUIT;
201
202 #ifdef CANNOT_STEP_BREAKPOINT
203 /* Most targets can step a breakpoint instruction, thus executing it
204 normally. But if this one cannot, just continue and we will hit
205 it anyway. */
206 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
207 step = 0;
208 #endif
209
210 #ifdef NO_SINGLE_STEP
211 if (step) {
212 single_step(sig); /* Do it the hard way, w/temp breakpoints */
213 step = 0; /* ...and don't ask hardware to do it. */
214 }
215 #endif
216
217 /* Handle any optimized stores to the inferior NOW... */
218 #ifdef DO_DEFERRED_STORES
219 DO_DEFERRED_STORES;
220 #endif
221
222 /* Install inferior's terminal modes. */
223 target_terminal_inferior ();
224
225 target_resume (-1, step, sig);
226 discard_cleanups (old_cleanups);
227 }
228
229 \f
230 /* Clear out all variables saying what to do when inferior is continued.
231 First do this, then set the ones you want, then call `proceed'. */
232
233 void
234 clear_proceed_status ()
235 {
236 trap_expected = 0;
237 step_range_start = 0;
238 step_range_end = 0;
239 step_frame_address = 0;
240 step_over_calls = -1;
241 stop_after_trap = 0;
242 stop_soon_quietly = 0;
243 proceed_to_finish = 0;
244 breakpoint_proceeded = 1; /* We're about to proceed... */
245
246 /* Discard any remaining commands or status from previous stop. */
247 bpstat_clear (&stop_bpstat);
248 }
249
250 /* Basic routine for continuing the program in various fashions.
251
252 ADDR is the address to resume at, or -1 for resume where stopped.
253 SIGGNAL is the signal to give it, or 0 for none,
254 or -1 for act according to how it stopped.
255 STEP is nonzero if should trap after one instruction.
256 -1 means return after that and print nothing.
257 You should probably set various step_... variables
258 before calling here, if you are stepping.
259
260 You should call clear_proceed_status before calling proceed. */
261
262 void
263 proceed (addr, siggnal, step)
264 CORE_ADDR addr;
265 enum target_signal siggnal;
266 int step;
267 {
268 int oneproc = 0;
269
270 if (step > 0)
271 step_start_function = find_pc_function (read_pc ());
272 if (step < 0)
273 stop_after_trap = 1;
274
275 if (addr == (CORE_ADDR)-1)
276 {
277 /* If there is a breakpoint at the address we will resume at,
278 step one instruction before inserting breakpoints
279 so that we do not stop right away. */
280
281 if (breakpoint_here_p (read_pc ()))
282 oneproc = 1;
283 }
284 else
285 write_pc (addr);
286
287 if (trap_expected_after_continue)
288 {
289 /* If (step == 0), a trap will be automatically generated after
290 the first instruction is executed. Force step one
291 instruction to clear this condition. This should not occur
292 if step is nonzero, but it is harmless in that case. */
293 oneproc = 1;
294 trap_expected_after_continue = 0;
295 }
296
297 if (oneproc)
298 /* We will get a trace trap after one instruction.
299 Continue it automatically and insert breakpoints then. */
300 trap_expected = 1;
301 else
302 {
303 int temp = insert_breakpoints ();
304 if (temp)
305 {
306 print_sys_errmsg ("ptrace", temp);
307 error ("Cannot insert breakpoints.\n\
308 The same program may be running in another process.");
309 }
310 breakpoints_inserted = 1;
311 }
312
313 if (siggnal != TARGET_SIGNAL_DEFAULT)
314 stop_signal = siggnal;
315 /* If this signal should not be seen by program,
316 give it zero. Used for debugging signals. */
317 else if (!signal_program[stop_signal])
318 stop_signal = TARGET_SIGNAL_0;
319
320 /* Resume inferior. */
321 resume (oneproc || step || bpstat_should_step (), stop_signal);
322
323 /* Wait for it to stop (if not standalone)
324 and in any case decode why it stopped, and act accordingly. */
325
326 wait_for_inferior ();
327 normal_stop ();
328 }
329
330 /* Record the pc and sp of the program the last time it stopped.
331 These are just used internally by wait_for_inferior, but need
332 to be preserved over calls to it and cleared when the inferior
333 is started. */
334 static CORE_ADDR prev_pc;
335 static CORE_ADDR prev_sp;
336 static CORE_ADDR prev_func_start;
337 static char *prev_func_name;
338 static CORE_ADDR prev_frame_address;
339
340 \f
341 /* Start remote-debugging of a machine over a serial link. */
342
343 void
344 start_remote ()
345 {
346 init_wait_for_inferior ();
347 clear_proceed_status ();
348 stop_soon_quietly = 1;
349 trap_expected = 0;
350 wait_for_inferior ();
351 normal_stop ();
352 }
353
354 /* Initialize static vars when a new inferior begins. */
355
356 void
357 init_wait_for_inferior ()
358 {
359 /* These are meaningless until the first time through wait_for_inferior. */
360 prev_pc = 0;
361 prev_sp = 0;
362 prev_func_start = 0;
363 prev_func_name = NULL;
364 prev_frame_address = 0;
365
366 trap_expected_after_continue = 0;
367 breakpoints_inserted = 0;
368 breakpoint_init_inferior ();
369
370 /* Don't confuse first call to proceed(). */
371 stop_signal = TARGET_SIGNAL_0;
372 }
373
374 static void
375 delete_breakpoint_current_contents (arg)
376 PTR arg;
377 {
378 struct breakpoint **breakpointp = (struct breakpoint **)arg;
379 if (*breakpointp != NULL)
380 delete_breakpoint (*breakpointp);
381 }
382 \f
383 /* Wait for control to return from inferior to debugger.
384 If inferior gets a signal, we may decide to start it up again
385 instead of returning. That is why there is a loop in this function.
386 When this function actually returns it means the inferior
387 should be left stopped and GDB should read more commands. */
388
389 void
390 wait_for_inferior ()
391 {
392 struct cleanup *old_cleanups;
393 struct target_waitstatus w;
394 int another_trap;
395 int random_signal;
396 CORE_ADDR stop_sp = 0;
397 CORE_ADDR stop_func_start;
398 CORE_ADDR stop_func_end;
399 char *stop_func_name;
400 CORE_ADDR prologue_pc = 0, tmp;
401 struct symtab_and_line sal;
402 int remove_breakpoints_on_following_step = 0;
403 int current_line;
404 struct symtab *current_symtab;
405 int handling_longjmp = 0; /* FIXME */
406 struct breakpoint *step_resume_breakpoint = NULL;
407 struct breakpoint *through_sigtramp_breakpoint = NULL;
408 int pid;
409
410 old_cleanups = make_cleanup (delete_breakpoint_current_contents,
411 &step_resume_breakpoint);
412 make_cleanup (delete_breakpoint_current_contents,
413 &through_sigtramp_breakpoint);
414 sal = find_pc_line(prev_pc, 0);
415 current_line = sal.line;
416 current_symtab = sal.symtab;
417
418 /* Are we stepping? */
419 #define CURRENTLY_STEPPING() \
420 ((through_sigtramp_breakpoint == NULL \
421 && !handling_longjmp \
422 && ((step_range_end && step_resume_breakpoint == NULL) \
423 || trap_expected)) \
424 || bpstat_should_step ())
425
426 while (1)
427 {
428 /* Clean up saved state that will become invalid. */
429 flush_cached_frames ();
430 registers_changed ();
431
432 pid = target_wait (-1, &w);
433
434 switch (w.kind)
435 {
436 case TARGET_WAITKIND_LOADED:
437 /* Ignore it gracefully. */
438 if (breakpoints_inserted)
439 {
440 mark_breakpoints_out ();
441 insert_breakpoints ();
442 }
443 resume (0, TARGET_SIGNAL_0);
444 continue;
445
446 case TARGET_WAITKIND_SPURIOUS:
447 resume (0, TARGET_SIGNAL_0);
448 continue;
449
450 case TARGET_WAITKIND_EXITED:
451 target_terminal_ours (); /* Must do this before mourn anyway */
452 if (w.value.integer)
453 printf_filtered ("\nProgram exited with code 0%o.\n",
454 (unsigned int)w.value.integer);
455 else
456 if (!batch_mode())
457 printf_filtered ("\nProgram exited normally.\n");
458 gdb_flush (gdb_stdout);
459 target_mourn_inferior ();
460 #ifdef NO_SINGLE_STEP
461 one_stepped = 0;
462 #endif
463 stop_print_frame = 0;
464 goto stop_stepping;
465
466 case TARGET_WAITKIND_SIGNALLED:
467 stop_print_frame = 0;
468 stop_signal = w.value.sig;
469 target_terminal_ours (); /* Must do this before mourn anyway */
470 target_kill (); /* kill mourns as well */
471 printf_filtered ("\nProgram terminated with signal %s, %s.\n",
472 target_signal_to_name (stop_signal),
473 target_signal_to_string (stop_signal));
474
475 printf_filtered ("The program no longer exists.\n");
476 gdb_flush (gdb_stdout);
477 #ifdef NO_SINGLE_STEP
478 one_stepped = 0;
479 #endif
480 goto stop_stepping;
481
482 case TARGET_WAITKIND_STOPPED:
483 /* This is the only case in which we keep going; the above cases
484 end in a continue or goto. */
485 break;
486 }
487
488 stop_signal = w.value.sig;
489
490 if (pid != inferior_pid)
491 {
492 int save_pid = inferior_pid;
493
494 inferior_pid = pid; /* Setup for target memory/regs */
495 registers_changed ();
496 stop_pc = read_pc ();
497 inferior_pid = save_pid;
498 registers_changed ();
499 }
500 else
501 stop_pc = read_pc ();
502
503 if (stop_signal == TARGET_SIGNAL_TRAP
504 && breakpoint_here_p (stop_pc - DECR_PC_AFTER_BREAK))
505 {
506 if (!breakpoint_thread_match (stop_pc - DECR_PC_AFTER_BREAK, pid))
507 {
508 /* Saw a breakpoint, but it was hit by the wrong thread. Just continue. */
509 if (breakpoints_inserted)
510 {
511 if (pid != inferior_pid)
512 {
513 int save_pid = inferior_pid;
514
515 inferior_pid = pid;
516 registers_changed ();
517 write_pc (stop_pc - DECR_PC_AFTER_BREAK);
518 inferior_pid = save_pid;
519 registers_changed ();
520 }
521 else
522 write_pc (stop_pc - DECR_PC_AFTER_BREAK);
523
524 remove_breakpoints ();
525 target_resume (pid, 1, TARGET_SIGNAL_0); /* Single step */
526 /* FIXME: What if a signal arrives instead of the single-step
527 happening? */
528 target_wait (pid, &w);
529 insert_breakpoints ();
530 }
531 target_resume (-1, 0, TARGET_SIGNAL_0);
532 continue;
533 }
534 else
535 if (pid != inferior_pid)
536 goto switch_thread;
537 }
538
539 if (pid != inferior_pid)
540 {
541 int printed = 0;
542
543 if (!in_thread_list (pid))
544 {
545 fprintf_unfiltered (gdb_stderr, "[New %s]\n", target_pid_to_str (pid));
546 add_thread (pid);
547
548 target_resume (-1, 0, TARGET_SIGNAL_0);
549 continue;
550 }
551 else
552 {
553 if (signal_print[stop_signal])
554 {
555 char *signame;
556
557 printed = 1;
558 target_terminal_ours_for_output ();
559 printf_filtered ("\nProgram received signal %s, %s.\n",
560 target_signal_to_name (stop_signal),
561 target_signal_to_string (stop_signal));
562 gdb_flush (gdb_stdout);
563 }
564
565 if (stop_signal == TARGET_SIGNAL_TRAP
566 || signal_stop[stop_signal])
567 {
568 switch_thread:
569 inferior_pid = pid;
570 printf_filtered ("[Switching to %s]\n", target_pid_to_str (pid));
571
572 flush_cached_frames ();
573 registers_changed ();
574 trap_expected = 0;
575 if (step_resume_breakpoint)
576 {
577 delete_breakpoint (step_resume_breakpoint);
578 step_resume_breakpoint = NULL;
579 }
580
581 /* Not sure whether we need to blow this away too,
582 but probably it is like the step-resume
583 breakpoint. */
584 if (through_sigtramp_breakpoint)
585 {
586 delete_breakpoint (through_sigtramp_breakpoint);
587 through_sigtramp_breakpoint = NULL;
588 }
589 prev_pc = 0;
590 prev_sp = 0;
591 prev_func_name = NULL;
592 step_range_start = 0;
593 step_range_end = 0;
594 step_frame_address = 0;
595 handling_longjmp = 0;
596 another_trap = 0;
597 }
598 else
599 {
600 if (printed)
601 target_terminal_inferior ();
602
603 /* Clear the signal if it should not be passed. */
604 if (signal_program[stop_signal] == 0)
605 stop_signal = TARGET_SIGNAL_0;
606
607 target_resume (pid, 0, stop_signal);
608 continue;
609 }
610 }
611 }
612
613 #ifdef NO_SINGLE_STEP
614 if (one_stepped)
615 single_step (0); /* This actually cleans up the ss */
616 #endif /* NO_SINGLE_STEP */
617
618 /* If PC is pointing at a nullified instruction, then step beyond it so that
619 the user won't be confused when GDB appears to be ready to execute it. */
620
621 if (INSTRUCTION_NULLIFIED)
622 {
623 resume (1, 0);
624 continue;
625 }
626
627 set_current_frame ( create_new_frame (read_fp (), stop_pc));
628
629 stop_frame_address = FRAME_FP (get_current_frame ());
630 stop_sp = read_sp ();
631 stop_func_start = 0;
632 stop_func_name = 0;
633 /* Don't care about return value; stop_func_start and stop_func_name
634 will both be 0 if it doesn't work. */
635 find_pc_partial_function (stop_pc, &stop_func_name, &stop_func_start,
636 &stop_func_end);
637 stop_func_start += FUNCTION_START_OFFSET;
638 another_trap = 0;
639 bpstat_clear (&stop_bpstat);
640 stop_step = 0;
641 stop_stack_dummy = 0;
642 stop_print_frame = 1;
643 random_signal = 0;
644 stopped_by_random_signal = 0;
645 breakpoints_failed = 0;
646
647 /* Look at the cause of the stop, and decide what to do.
648 The alternatives are:
649 1) break; to really stop and return to the debugger,
650 2) drop through to start up again
651 (set another_trap to 1 to single step once)
652 3) set random_signal to 1, and the decision between 1 and 2
653 will be made according to the signal handling tables. */
654
655 /* First, distinguish signals caused by the debugger from signals
656 that have to do with the program's own actions.
657 Note that breakpoint insns may cause SIGTRAP or SIGILL
658 or SIGEMT, depending on the operating system version.
659 Here we detect when a SIGILL or SIGEMT is really a breakpoint
660 and change it to SIGTRAP. */
661
662 if (stop_signal == TARGET_SIGNAL_TRAP
663 || (breakpoints_inserted &&
664 (stop_signal == TARGET_SIGNAL_ILL
665 || stop_signal == TARGET_SIGNAL_EMT
666 ))
667 || stop_soon_quietly)
668 {
669 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
670 {
671 stop_print_frame = 0;
672 break;
673 }
674 if (stop_soon_quietly)
675 break;
676
677 /* Don't even think about breakpoints
678 if just proceeded over a breakpoint.
679
680 However, if we are trying to proceed over a breakpoint
681 and end up in sigtramp, then through_sigtramp_breakpoint
682 will be set and we should check whether we've hit the
683 step breakpoint. */
684 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected
685 && through_sigtramp_breakpoint == NULL)
686 bpstat_clear (&stop_bpstat);
687 else
688 {
689 /* See if there is a breakpoint at the current PC. */
690 stop_bpstat = bpstat_stop_status
691 (&stop_pc, stop_frame_address,
692 #if DECR_PC_AFTER_BREAK
693 /* Notice the case of stepping through a jump
694 that lands just after a breakpoint.
695 Don't confuse that with hitting the breakpoint.
696 What we check for is that 1) stepping is going on
697 and 2) the pc before the last insn does not match
698 the address of the breakpoint before the current pc. */
699 (prev_pc != stop_pc - DECR_PC_AFTER_BREAK
700 && CURRENTLY_STEPPING ())
701 #else /* DECR_PC_AFTER_BREAK zero */
702 0
703 #endif /* DECR_PC_AFTER_BREAK zero */
704 );
705 /* Following in case break condition called a
706 function. */
707 stop_print_frame = 1;
708 }
709
710 if (stop_signal == TARGET_SIGNAL_TRAP)
711 random_signal
712 = !(bpstat_explains_signal (stop_bpstat)
713 || trap_expected
714 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
715 || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
716 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
717 || (step_range_end && step_resume_breakpoint == NULL));
718 else
719 {
720 random_signal
721 = !(bpstat_explains_signal (stop_bpstat)
722 /* End of a stack dummy. Some systems (e.g. Sony
723 news) give another signal besides SIGTRAP,
724 so check here as well as above. */
725 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
726 || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
727 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
728 );
729 if (!random_signal)
730 stop_signal = TARGET_SIGNAL_TRAP;
731 }
732 }
733 else
734 random_signal = 1;
735
736 /* For the program's own signals, act according to
737 the signal handling tables. */
738
739 if (random_signal)
740 {
741 /* Signal not for debugging purposes. */
742 int printed = 0;
743
744 stopped_by_random_signal = 1;
745
746 if (signal_print[stop_signal])
747 {
748 char *signame;
749 printed = 1;
750 target_terminal_ours_for_output ();
751 printf_filtered ("\nProgram received signal %s, %s.\n",
752 target_signal_to_name (stop_signal),
753 target_signal_to_string (stop_signal));
754 gdb_flush (gdb_stdout);
755 }
756 if (signal_stop[stop_signal])
757 break;
758 /* If not going to stop, give terminal back
759 if we took it away. */
760 else if (printed)
761 target_terminal_inferior ();
762
763 /* Clear the signal if it should not be passed. */
764 if (signal_program[stop_signal] == 0)
765 stop_signal = TARGET_SIGNAL_0;
766
767 /* I'm not sure whether this needs to be check_sigtramp2 or
768 whether it could/should be keep_going. */
769 goto check_sigtramp2;
770 }
771
772 /* Handle cases caused by hitting a breakpoint. */
773 {
774 CORE_ADDR jmp_buf_pc;
775 struct bpstat_what what;
776
777 what = bpstat_what (stop_bpstat);
778
779 if (what.call_dummy)
780 {
781 stop_stack_dummy = 1;
782 #ifdef HP_OS_BUG
783 trap_expected_after_continue = 1;
784 #endif
785 }
786
787 switch (what.main_action)
788 {
789 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
790 /* If we hit the breakpoint at longjmp, disable it for the
791 duration of this command. Then, install a temporary
792 breakpoint at the target of the jmp_buf. */
793 disable_longjmp_breakpoint();
794 remove_breakpoints ();
795 breakpoints_inserted = 0;
796 if (!GET_LONGJMP_TARGET(&jmp_buf_pc)) goto keep_going;
797
798 /* Need to blow away step-resume breakpoint, as it
799 interferes with us */
800 if (step_resume_breakpoint != NULL)
801 {
802 delete_breakpoint (step_resume_breakpoint);
803 step_resume_breakpoint = NULL;
804 }
805 /* Not sure whether we need to blow this away too, but probably
806 it is like the step-resume breakpoint. */
807 if (through_sigtramp_breakpoint != NULL)
808 {
809 delete_breakpoint (through_sigtramp_breakpoint);
810 through_sigtramp_breakpoint = NULL;
811 }
812
813 #if 0
814 /* FIXME - Need to implement nested temporary breakpoints */
815 if (step_over_calls > 0)
816 set_longjmp_resume_breakpoint(jmp_buf_pc,
817 get_current_frame());
818 else
819 #endif /* 0 */
820 set_longjmp_resume_breakpoint(jmp_buf_pc, NULL);
821 handling_longjmp = 1; /* FIXME */
822 goto keep_going;
823
824 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
825 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
826 remove_breakpoints ();
827 breakpoints_inserted = 0;
828 #if 0
829 /* FIXME - Need to implement nested temporary breakpoints */
830 if (step_over_calls
831 && (stop_frame_address
832 INNER_THAN step_frame_address))
833 {
834 another_trap = 1;
835 goto keep_going;
836 }
837 #endif /* 0 */
838 disable_longjmp_breakpoint();
839 handling_longjmp = 0; /* FIXME */
840 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
841 break;
842 /* else fallthrough */
843
844 case BPSTAT_WHAT_SINGLE:
845 if (breakpoints_inserted)
846 remove_breakpoints ();
847 breakpoints_inserted = 0;
848 another_trap = 1;
849 /* Still need to check other stuff, at least the case
850 where we are stepping and step out of the right range. */
851 break;
852
853 case BPSTAT_WHAT_STOP_NOISY:
854 stop_print_frame = 1;
855
856 /* We are about to nuke the step_resume_breakpoint and
857 through_sigtramp_breakpoint via the cleanup chain, so
858 no need to worry about it here. */
859
860 goto stop_stepping;
861
862 case BPSTAT_WHAT_STOP_SILENT:
863 stop_print_frame = 0;
864
865 /* We are about to nuke the step_resume_breakpoint and
866 through_sigtramp_breakpoint via the cleanup chain, so
867 no need to worry about it here. */
868
869 goto stop_stepping;
870
871 case BPSTAT_WHAT_STEP_RESUME:
872 delete_breakpoint (step_resume_breakpoint);
873 step_resume_breakpoint = NULL;
874 break;
875
876 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
877 delete_breakpoint (through_sigtramp_breakpoint);
878 through_sigtramp_breakpoint = NULL;
879
880 /* If were waiting for a trap, hitting the step_resume_break
881 doesn't count as getting it. */
882 if (trap_expected)
883 another_trap = 1;
884 break;
885
886 case BPSTAT_WHAT_LAST:
887 /* Not a real code, but listed here to shut up gcc -Wall. */
888
889 case BPSTAT_WHAT_KEEP_CHECKING:
890 break;
891 }
892 }
893
894 /* We come here if we hit a breakpoint but should not
895 stop for it. Possibly we also were stepping
896 and should stop for that. So fall through and
897 test for stepping. But, if not stepping,
898 do not stop. */
899
900 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
901 /* This is the old way of detecting the end of the stack dummy.
902 An architecture which defines CALL_DUMMY_BREAKPOINT_OFFSET gets
903 handled above. As soon as we can test it on all of them, all
904 architectures should define it. */
905
906 /* If this is the breakpoint at the end of a stack dummy,
907 just stop silently, unless the user was doing an si/ni, in which
908 case she'd better know what she's doing. */
909
910 if (PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
911 && !step_range_end)
912 {
913 stop_print_frame = 0;
914 stop_stack_dummy = 1;
915 #ifdef HP_OS_BUG
916 trap_expected_after_continue = 1;
917 #endif
918 break;
919 }
920 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
921
922 if (step_resume_breakpoint)
923 /* Having a step-resume breakpoint overrides anything
924 else having to do with stepping commands until
925 that breakpoint is reached. */
926 /* I'm not sure whether this needs to be check_sigtramp2 or
927 whether it could/should be keep_going. */
928 goto check_sigtramp2;
929
930 if (step_range_end == 0)
931 /* Likewise if we aren't even stepping. */
932 /* I'm not sure whether this needs to be check_sigtramp2 or
933 whether it could/should be keep_going. */
934 goto check_sigtramp2;
935
936 /* If stepping through a line, keep going if still within it. */
937 if (stop_pc >= step_range_start
938 && stop_pc < step_range_end
939 /* The step range might include the start of the
940 function, so if we are at the start of the
941 step range and either the stack or frame pointers
942 just changed, we've stepped outside */
943 && !(stop_pc == step_range_start
944 && stop_frame_address
945 && (stop_sp INNER_THAN prev_sp
946 || stop_frame_address != step_frame_address)))
947 {
948 /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
949 So definately need to check for sigtramp here. */
950 goto check_sigtramp2;
951 }
952
953 /* We stepped out of the stepping range. See if that was due
954 to a subroutine call that we should proceed to the end of. */
955
956 /* Did we just take a signal? */
957 if (IN_SIGTRAMP (stop_pc, stop_func_name)
958 && !IN_SIGTRAMP (prev_pc, prev_func_name))
959 {
960 /* We've just taken a signal; go until we are back to
961 the point where we took it and one more. */
962
963 /* This code is needed at least in the following case:
964 The user types "next" and then a signal arrives (before
965 the "next" is done). */
966
967 /* Note that if we are stopped at a breakpoint, then we need
968 the step_resume breakpoint to override any breakpoints at
969 the same location, so that we will still step over the
970 breakpoint even though the signal happened. */
971
972 {
973 struct symtab_and_line sr_sal;
974
975 sr_sal.pc = prev_pc;
976 sr_sal.symtab = NULL;
977 sr_sal.line = 0;
978 /* We perhaps could set the frame if we kept track of what
979 the frame corresponding to prev_pc was. But we don't,
980 so don't. */
981 step_resume_breakpoint =
982 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
983 if (breakpoints_inserted)
984 insert_breakpoints ();
985 }
986
987 /* If this is stepi or nexti, make sure that the stepping range
988 gets us past that instruction. */
989 if (step_range_end == 1)
990 /* FIXME: Does this run afoul of the code below which, if
991 we step into the middle of a line, resets the stepping
992 range? */
993 step_range_end = (step_range_start = prev_pc) + 1;
994
995 remove_breakpoints_on_following_step = 1;
996 goto keep_going;
997 }
998
999 if (stop_func_start)
1000 {
1001 /* Do this after the IN_SIGTRAMP check; it might give
1002 an error. */
1003 prologue_pc = stop_func_start;
1004 SKIP_PROLOGUE (prologue_pc);
1005 }
1006
1007 if ((/* Might be a non-recursive call. If the symbols are missing
1008 enough that stop_func_start == prev_func_start even though
1009 they are really two functions, we will treat some calls as
1010 jumps. */
1011 stop_func_start != prev_func_start
1012
1013 /* Might be a recursive call if either we have a prologue
1014 or the call instruction itself saves the PC on the stack. */
1015 || prologue_pc != stop_func_start
1016 || stop_sp != prev_sp)
1017 && (/* PC is completely out of bounds of any known objfiles. Treat
1018 like a subroutine call. */
1019 ! stop_func_start
1020
1021 /* If we do a call, we will be at the start of a function... */
1022 || stop_pc == stop_func_start
1023
1024 /* ...except on the Alpha with -O (and also Irix 5 and
1025 perhaps others), in which we might call the address
1026 after the load of gp. Since prologues don't contain
1027 calls, we can't return to within one, and we don't
1028 jump back into them, so this check is OK. */
1029
1030 || stop_pc < prologue_pc
1031
1032 /* If we end up in certain places, it means we did a subroutine
1033 call. I'm not completely sure this is necessary now that we
1034 have the above checks with stop_func_start (and now that
1035 find_pc_partial_function is pickier). */
1036 || IN_SOLIB_TRAMPOLINE (stop_pc, stop_func_name)
1037
1038 /* If none of the above apply, it is a jump within a function,
1039 or a return from a subroutine. The other case is longjmp,
1040 which can no longer happen here as long as the
1041 handling_longjmp stuff is working. */
1042 ))
1043 {
1044 /* It's a subroutine call. */
1045
1046 if (step_over_calls == 0)
1047 {
1048 /* I presume that step_over_calls is only 0 when we're
1049 supposed to be stepping at the assembly language level
1050 ("stepi"). Just stop. */
1051 stop_step = 1;
1052 break;
1053 }
1054
1055 if (step_over_calls > 0)
1056 /* We're doing a "next". */
1057 goto step_over_function;
1058
1059 /* If we are in a function call trampoline (a stub between
1060 the calling routine and the real function), locate the real
1061 function. That's what tells us (a) whether we want to step
1062 into it at all, and (b) what prologue we want to run to
1063 the end of, if we do step into it. */
1064 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
1065 if (tmp != 0)
1066 stop_func_start = tmp;
1067
1068 /* If we have line number information for the function we
1069 are thinking of stepping into, step into it.
1070
1071 If there are several symtabs at that PC (e.g. with include
1072 files), just want to know whether *any* of them have line
1073 numbers. find_pc_line handles this. */
1074 {
1075 struct symtab_and_line tmp_sal;
1076
1077 tmp_sal = find_pc_line (stop_func_start, 0);
1078 if (tmp_sal.line != 0)
1079 goto step_into_function;
1080 }
1081
1082 step_over_function:
1083 /* A subroutine call has happened. */
1084 {
1085 /* Set a special breakpoint after the return */
1086 struct symtab_and_line sr_sal;
1087 sr_sal.pc =
1088 ADDR_BITS_REMOVE
1089 (SAVED_PC_AFTER_CALL (get_current_frame ()));
1090 sr_sal.symtab = NULL;
1091 sr_sal.line = 0;
1092 step_resume_breakpoint =
1093 set_momentary_breakpoint (sr_sal, get_current_frame (),
1094 bp_step_resume);
1095 step_resume_breakpoint->frame = prev_frame_address;
1096 if (breakpoints_inserted)
1097 insert_breakpoints ();
1098 }
1099 goto keep_going;
1100
1101 step_into_function:
1102 /* Subroutine call with source code we should not step over.
1103 Do step to the first line of code in it. */
1104 SKIP_PROLOGUE (stop_func_start);
1105 sal = find_pc_line (stop_func_start, 0);
1106 /* Use the step_resume_break to step until
1107 the end of the prologue, even if that involves jumps
1108 (as it seems to on the vax under 4.2). */
1109 /* If the prologue ends in the middle of a source line,
1110 continue to the end of that source line (if it is still
1111 within the function). Otherwise, just go to end of prologue. */
1112 #ifdef PROLOGUE_FIRSTLINE_OVERLAP
1113 /* no, don't either. It skips any code that's
1114 legitimately on the first line. */
1115 #else
1116 if (sal.end && sal.pc != stop_func_start && sal.end < stop_func_end)
1117 stop_func_start = sal.end;
1118 #endif
1119
1120 if (stop_func_start == stop_pc)
1121 {
1122 /* We are already there: stop now. */
1123 stop_step = 1;
1124 break;
1125 }
1126 else
1127 /* Put the step-breakpoint there and go until there. */
1128 {
1129 struct symtab_and_line sr_sal;
1130
1131 sr_sal.pc = stop_func_start;
1132 sr_sal.symtab = NULL;
1133 sr_sal.line = 0;
1134 /* Do not specify what the fp should be when we stop
1135 since on some machines the prologue
1136 is where the new fp value is established. */
1137 step_resume_breakpoint =
1138 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
1139 if (breakpoints_inserted)
1140 insert_breakpoints ();
1141
1142 /* And make sure stepping stops right away then. */
1143 step_range_end = step_range_start;
1144 }
1145 goto keep_going;
1146 }
1147
1148 /* We've wandered out of the step range. */
1149
1150 sal = find_pc_line(stop_pc, 0);
1151
1152 if (step_range_end == 1)
1153 {
1154 /* It is stepi or nexti. We always want to stop stepping after
1155 one instruction. */
1156 stop_step = 1;
1157 break;
1158 }
1159
1160 if (sal.line == 0)
1161 {
1162 /* We have no line number information. That means to stop
1163 stepping (does this always happen right after one instruction,
1164 when we do "s" in a function with no line numbers,
1165 or can this happen as a result of a return or longjmp?). */
1166 stop_step = 1;
1167 break;
1168 }
1169
1170 if (stop_pc == sal.pc
1171 && (current_line != sal.line || current_symtab != sal.symtab))
1172 {
1173 /* We are at the start of a different line. So stop. Note that
1174 we don't stop if we step into the middle of a different line.
1175 That is said to make things like for (;;) statements work
1176 better. */
1177 stop_step = 1;
1178 break;
1179 }
1180
1181 /* We aren't done stepping.
1182
1183 Optimize by setting the stepping range to the line.
1184 (We might not be in the original line, but if we entered a
1185 new line in mid-statement, we continue stepping. This makes
1186 things like for(;;) statements work better.) */
1187
1188 if (stop_func_end && sal.end >= stop_func_end)
1189 {
1190 /* If this is the last line of the function, don't keep stepping
1191 (it would probably step us out of the function).
1192 This is particularly necessary for a one-line function,
1193 in which after skipping the prologue we better stop even though
1194 we will be in mid-line. */
1195 stop_step = 1;
1196 break;
1197 }
1198 step_range_start = sal.pc;
1199 step_range_end = sal.end;
1200 goto keep_going;
1201
1202 check_sigtramp2:
1203 if (trap_expected
1204 && IN_SIGTRAMP (stop_pc, stop_func_name)
1205 && !IN_SIGTRAMP (prev_pc, prev_func_name))
1206 {
1207 /* What has happened here is that we have just stepped the inferior
1208 with a signal (because it is a signal which shouldn't make
1209 us stop), thus stepping into sigtramp.
1210
1211 So we need to set a step_resume_break_address breakpoint
1212 and continue until we hit it, and then step. FIXME: This should
1213 be more enduring than a step_resume breakpoint; we should know
1214 that we will later need to keep going rather than re-hitting
1215 the breakpoint here (see testsuite/gdb.t06/signals.exp where
1216 it says "exceedingly difficult"). */
1217 struct symtab_and_line sr_sal;
1218
1219 sr_sal.pc = prev_pc;
1220 sr_sal.symtab = NULL;
1221 sr_sal.line = 0;
1222 /* We perhaps could set the frame if we kept track of what
1223 the frame corresponding to prev_pc was. But we don't,
1224 so don't. */
1225 through_sigtramp_breakpoint =
1226 set_momentary_breakpoint (sr_sal, NULL, bp_through_sigtramp);
1227 if (breakpoints_inserted)
1228 insert_breakpoints ();
1229
1230 remove_breakpoints_on_following_step = 1;
1231 another_trap = 1;
1232 }
1233
1234 keep_going:
1235 /* Come to this label when you need to resume the inferior.
1236 It's really much cleaner to do a goto than a maze of if-else
1237 conditions. */
1238
1239 /* Save the pc before execution, to compare with pc after stop. */
1240 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
1241 prev_func_start = stop_func_start; /* Ok, since if DECR_PC_AFTER
1242 BREAK is defined, the
1243 original pc would not have
1244 been at the start of a
1245 function. */
1246 prev_func_name = stop_func_name;
1247 prev_sp = stop_sp;
1248 prev_frame_address = stop_frame_address;
1249
1250 /* If we did not do break;, it means we should keep
1251 running the inferior and not return to debugger. */
1252
1253 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
1254 {
1255 /* We took a signal (which we are supposed to pass through to
1256 the inferior, else we'd have done a break above) and we
1257 haven't yet gotten our trap. Simply continue. */
1258 resume (CURRENTLY_STEPPING (), stop_signal);
1259 }
1260 else
1261 {
1262 /* Either the trap was not expected, but we are continuing
1263 anyway (the user asked that this signal be passed to the
1264 child)
1265 -- or --
1266 The signal was SIGTRAP, e.g. it was our signal, but we
1267 decided we should resume from it.
1268
1269 We're going to run this baby now!
1270
1271 Insert breakpoints now, unless we are trying
1272 to one-proceed past a breakpoint. */
1273 /* If we've just finished a special step resume and we don't
1274 want to hit a breakpoint, pull em out. */
1275 if (step_resume_breakpoint == NULL &&
1276 remove_breakpoints_on_following_step)
1277 {
1278 remove_breakpoints_on_following_step = 0;
1279 remove_breakpoints ();
1280 breakpoints_inserted = 0;
1281 }
1282 else if (!breakpoints_inserted &&
1283 (through_sigtramp_breakpoint != NULL || !another_trap))
1284 {
1285 breakpoints_failed = insert_breakpoints ();
1286 if (breakpoints_failed)
1287 break;
1288 breakpoints_inserted = 1;
1289 }
1290
1291 trap_expected = another_trap;
1292
1293 if (stop_signal == TARGET_SIGNAL_TRAP)
1294 stop_signal = TARGET_SIGNAL_0;
1295
1296 #ifdef SHIFT_INST_REGS
1297 /* I'm not sure when this following segment applies. I do know, now,
1298 that we shouldn't rewrite the regs when we were stopped by a
1299 random signal from the inferior process. */
1300 /* FIXME: Shouldn't this be based on the valid bit of the SXIP?
1301 (this is only used on the 88k). */
1302
1303 if (!bpstat_explains_signal (stop_bpstat)
1304 && (stop_signal != TARGET_SIGNAL_CHLD)
1305 && !stopped_by_random_signal)
1306 SHIFT_INST_REGS();
1307 #endif /* SHIFT_INST_REGS */
1308
1309 resume (CURRENTLY_STEPPING (), stop_signal);
1310 }
1311 }
1312
1313 stop_stepping:
1314 if (target_has_execution)
1315 {
1316 /* Assuming the inferior still exists, set these up for next
1317 time, just like we did above if we didn't break out of the
1318 loop. */
1319 prev_pc = read_pc ();
1320 prev_func_start = stop_func_start;
1321 prev_func_name = stop_func_name;
1322 prev_sp = stop_sp;
1323 prev_frame_address = stop_frame_address;
1324 }
1325 do_cleanups (old_cleanups);
1326 }
1327 \f
1328 /* Here to return control to GDB when the inferior stops for real.
1329 Print appropriate messages, remove breakpoints, give terminal our modes.
1330
1331 STOP_PRINT_FRAME nonzero means print the executing frame
1332 (pc, function, args, file, line number and line text).
1333 BREAKPOINTS_FAILED nonzero means stop was due to error
1334 attempting to insert breakpoints. */
1335
1336 void
1337 normal_stop ()
1338 {
1339 /* Make sure that the current_frame's pc is correct. This
1340 is a correction for setting up the frame info before doing
1341 DECR_PC_AFTER_BREAK */
1342 if (target_has_execution && get_current_frame())
1343 (get_current_frame ())->pc = read_pc ();
1344
1345 if (breakpoints_failed)
1346 {
1347 target_terminal_ours_for_output ();
1348 print_sys_errmsg ("ptrace", breakpoints_failed);
1349 printf_filtered ("Stopped; cannot insert breakpoints.\n\
1350 The same program may be running in another process.\n");
1351 }
1352
1353 if (target_has_execution && breakpoints_inserted)
1354 if (remove_breakpoints ())
1355 {
1356 target_terminal_ours_for_output ();
1357 printf_filtered ("Cannot remove breakpoints because program is no longer writable.\n\
1358 It might be running in another process.\n\
1359 Further execution is probably impossible.\n");
1360 }
1361
1362 breakpoints_inserted = 0;
1363
1364 /* Delete the breakpoint we stopped at, if it wants to be deleted.
1365 Delete any breakpoint that is to be deleted at the next stop. */
1366
1367 breakpoint_auto_delete (stop_bpstat);
1368
1369 /* If an auto-display called a function and that got a signal,
1370 delete that auto-display to avoid an infinite recursion. */
1371
1372 if (stopped_by_random_signal)
1373 disable_current_display ();
1374
1375 if (step_multi && stop_step)
1376 return;
1377
1378 target_terminal_ours ();
1379
1380 /* Look up the hook_stop and run it if it exists. */
1381
1382 if (stop_command->hook)
1383 {
1384 catch_errors (hook_stop_stub, (char *)stop_command->hook,
1385 "Error while running hook_stop:\n", RETURN_MASK_ALL);
1386 }
1387
1388 if (!target_has_stack)
1389 return;
1390
1391 /* Select innermost stack frame except on return from a stack dummy routine,
1392 or if the program has exited. Print it without a level number if
1393 we have changed functions or hit a breakpoint. Print source line
1394 if we have one. */
1395 if (!stop_stack_dummy)
1396 {
1397 select_frame (get_current_frame (), 0);
1398
1399 if (stop_print_frame)
1400 {
1401 int source_only;
1402
1403 source_only = bpstat_print (stop_bpstat);
1404 source_only = source_only ||
1405 ( stop_step
1406 && step_frame_address == stop_frame_address
1407 && step_start_function == find_pc_function (stop_pc));
1408
1409 print_stack_frame (selected_frame, -1, source_only? -1: 1);
1410
1411 /* Display the auto-display expressions. */
1412 do_displays ();
1413 }
1414 }
1415
1416 /* Save the function value return registers, if we care.
1417 We might be about to restore their previous contents. */
1418 if (proceed_to_finish)
1419 read_register_bytes (0, stop_registers, REGISTER_BYTES);
1420
1421 if (stop_stack_dummy)
1422 {
1423 /* Pop the empty frame that contains the stack dummy.
1424 POP_FRAME ends with a setting of the current frame, so we
1425 can use that next. */
1426 POP_FRAME;
1427 /* Set stop_pc to what it was before we called the function. Can't rely
1428 on restore_inferior_status because that only gets called if we don't
1429 stop in the called function. */
1430 stop_pc = read_pc();
1431 select_frame (get_current_frame (), 0);
1432 }
1433 }
1434
1435 static int
1436 hook_stop_stub (cmd)
1437 char *cmd;
1438 {
1439 execute_user_command ((struct cmd_list_element *)cmd, 0);
1440 return (0);
1441 }
1442 \f
1443 int signal_stop_state (signo)
1444 int signo;
1445 {
1446 return signal_stop[signo];
1447 }
1448
1449 int signal_print_state (signo)
1450 int signo;
1451 {
1452 return signal_print[signo];
1453 }
1454
1455 int signal_pass_state (signo)
1456 int signo;
1457 {
1458 return signal_program[signo];
1459 }
1460
1461 static void
1462 sig_print_header ()
1463 {
1464 printf_filtered ("\
1465 Signal Stop\tPrint\tPass to program\tDescription\n");
1466 }
1467
1468 static void
1469 sig_print_info (oursig)
1470 enum target_signal oursig;
1471 {
1472 char *name = target_signal_to_name (oursig);
1473 printf_filtered ("%s", name);
1474 printf_filtered ("%*.*s ", 13 - strlen (name), 13 - strlen (name),
1475 " ");
1476 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
1477 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
1478 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
1479 printf_filtered ("%s\n", target_signal_to_string (oursig));
1480 }
1481
1482 /* Specify how various signals in the inferior should be handled. */
1483
1484 static void
1485 handle_command (args, from_tty)
1486 char *args;
1487 int from_tty;
1488 {
1489 char **argv;
1490 int digits, wordlen;
1491 int sigfirst, signum, siglast;
1492 enum target_signal oursig;
1493 int allsigs;
1494 int nsigs;
1495 unsigned char *sigs;
1496 struct cleanup *old_chain;
1497
1498 if (args == NULL)
1499 {
1500 error_no_arg ("signal to handle");
1501 }
1502
1503 /* Allocate and zero an array of flags for which signals to handle. */
1504
1505 nsigs = (int)TARGET_SIGNAL_LAST;
1506 sigs = (unsigned char *) alloca (nsigs);
1507 memset (sigs, 0, nsigs);
1508
1509 /* Break the command line up into args. */
1510
1511 argv = buildargv (args);
1512 if (argv == NULL)
1513 {
1514 nomem (0);
1515 }
1516 old_chain = make_cleanup (freeargv, (char *) argv);
1517
1518 /* Walk through the args, looking for signal oursigs, signal names, and
1519 actions. Signal numbers and signal names may be interspersed with
1520 actions, with the actions being performed for all signals cumulatively
1521 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
1522
1523 while (*argv != NULL)
1524 {
1525 wordlen = strlen (*argv);
1526 for (digits = 0; isdigit ((*argv)[digits]); digits++) {;}
1527 allsigs = 0;
1528 sigfirst = siglast = -1;
1529
1530 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
1531 {
1532 /* Apply action to all signals except those used by the
1533 debugger. Silently skip those. */
1534 allsigs = 1;
1535 sigfirst = 0;
1536 siglast = nsigs - 1;
1537 }
1538 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
1539 {
1540 SET_SIGS (nsigs, sigs, signal_stop);
1541 SET_SIGS (nsigs, sigs, signal_print);
1542 }
1543 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
1544 {
1545 UNSET_SIGS (nsigs, sigs, signal_program);
1546 }
1547 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
1548 {
1549 SET_SIGS (nsigs, sigs, signal_print);
1550 }
1551 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
1552 {
1553 SET_SIGS (nsigs, sigs, signal_program);
1554 }
1555 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
1556 {
1557 UNSET_SIGS (nsigs, sigs, signal_stop);
1558 }
1559 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
1560 {
1561 SET_SIGS (nsigs, sigs, signal_program);
1562 }
1563 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
1564 {
1565 UNSET_SIGS (nsigs, sigs, signal_print);
1566 UNSET_SIGS (nsigs, sigs, signal_stop);
1567 }
1568 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
1569 {
1570 UNSET_SIGS (nsigs, sigs, signal_program);
1571 }
1572 else if (digits > 0)
1573 {
1574 /* It is numeric. The numeric signal refers to our own internal
1575 signal numbering from target.h, not to host/target signal number.
1576 This is a feature; users really should be using symbolic names
1577 anyway, and the common ones like SIGHUP, SIGINT, SIGALRM, etc.
1578 will work right anyway. */
1579
1580 sigfirst = siglast = atoi (*argv);
1581 if ((*argv)[digits] == '-')
1582 {
1583 siglast = atoi ((*argv) + digits + 1);
1584 }
1585 if (sigfirst > siglast)
1586 {
1587 /* Bet he didn't figure we'd think of this case... */
1588 signum = sigfirst;
1589 sigfirst = siglast;
1590 siglast = signum;
1591 }
1592 if (sigfirst < 0 || sigfirst >= nsigs)
1593 {
1594 error ("Signal %d not in range 0-%d", sigfirst, nsigs - 1);
1595 }
1596 if (siglast < 0 || siglast >= nsigs)
1597 {
1598 error ("Signal %d not in range 0-%d", siglast, nsigs - 1);
1599 }
1600 }
1601 else
1602 {
1603 oursig = target_signal_from_name (*argv);
1604 if (oursig != TARGET_SIGNAL_UNKNOWN)
1605 {
1606 sigfirst = siglast = (int)oursig;
1607 }
1608 else
1609 {
1610 /* Not a number and not a recognized flag word => complain. */
1611 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
1612 }
1613 }
1614
1615 /* If any signal numbers or symbol names were found, set flags for
1616 which signals to apply actions to. */
1617
1618 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
1619 {
1620 switch ((enum target_signal)signum)
1621 {
1622 case TARGET_SIGNAL_TRAP:
1623 case TARGET_SIGNAL_INT:
1624 if (!allsigs && !sigs[signum])
1625 {
1626 if (query ("%s is used by the debugger.\n\
1627 Are you sure you want to change it? ",
1628 target_signal_to_name
1629 ((enum target_signal)signum)))
1630 {
1631 sigs[signum] = 1;
1632 }
1633 else
1634 {
1635 printf_unfiltered ("Not confirmed, unchanged.\n");
1636 gdb_flush (gdb_stdout);
1637 }
1638 }
1639 break;
1640 default:
1641 sigs[signum] = 1;
1642 break;
1643 }
1644 }
1645
1646 argv++;
1647 }
1648
1649 target_notice_signals(inferior_pid);
1650
1651 if (from_tty)
1652 {
1653 /* Show the results. */
1654 sig_print_header ();
1655 for (signum = 0; signum < nsigs; signum++)
1656 {
1657 if (sigs[signum])
1658 {
1659 sig_print_info (signum);
1660 }
1661 }
1662 }
1663
1664 do_cleanups (old_chain);
1665 }
1666
1667 /* Print current contents of the tables set by the handle command.
1668 It is possible we should just be printing signals actually used
1669 by the current target (but for things to work right when switching
1670 targets, all signals should be in the signal tables). */
1671
1672 static void
1673 signals_info (signum_exp, from_tty)
1674 char *signum_exp;
1675 int from_tty;
1676 {
1677 enum target_signal oursig;
1678 sig_print_header ();
1679
1680 if (signum_exp)
1681 {
1682 /* First see if this is a symbol name. */
1683 oursig = target_signal_from_name (signum_exp);
1684 if (oursig == TARGET_SIGNAL_UNKNOWN)
1685 {
1686 /* Nope, maybe it's an address which evaluates to a signal
1687 number. */
1688 /* The numeric signal refers to our own internal
1689 signal numbering from target.h, not to host/target signal number.
1690 This is a feature; users really should be using symbolic names
1691 anyway, and the common ones like SIGHUP, SIGINT, SIGALRM, etc.
1692 will work right anyway. */
1693 int i = parse_and_eval_address (signum_exp);
1694 if (i >= (int)TARGET_SIGNAL_LAST
1695 || i < 0
1696 || i == (int)TARGET_SIGNAL_UNKNOWN
1697 || i == (int)TARGET_SIGNAL_DEFAULT)
1698 error ("Signal number out of bounds.");
1699 oursig = (enum target_signal)i;
1700 }
1701 sig_print_info (oursig);
1702 return;
1703 }
1704
1705 printf_filtered ("\n");
1706 /* These ugly casts brought to you by the native VAX compiler. */
1707 for (oursig = 0;
1708 (int)oursig < (int)TARGET_SIGNAL_LAST;
1709 oursig = (enum target_signal)((int)oursig + 1))
1710 {
1711 QUIT;
1712
1713 if (oursig != TARGET_SIGNAL_UNKNOWN
1714 && oursig != TARGET_SIGNAL_DEFAULT
1715 && oursig != TARGET_SIGNAL_0)
1716 sig_print_info (oursig);
1717 }
1718
1719 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
1720 }
1721 \f
1722 /* Save all of the information associated with the inferior<==>gdb
1723 connection. INF_STATUS is a pointer to a "struct inferior_status"
1724 (defined in inferior.h). */
1725
1726 void
1727 save_inferior_status (inf_status, restore_stack_info)
1728 struct inferior_status *inf_status;
1729 int restore_stack_info;
1730 {
1731 inf_status->stop_signal = stop_signal;
1732 inf_status->stop_pc = stop_pc;
1733 inf_status->stop_frame_address = stop_frame_address;
1734 inf_status->stop_step = stop_step;
1735 inf_status->stop_stack_dummy = stop_stack_dummy;
1736 inf_status->stopped_by_random_signal = stopped_by_random_signal;
1737 inf_status->trap_expected = trap_expected;
1738 inf_status->step_range_start = step_range_start;
1739 inf_status->step_range_end = step_range_end;
1740 inf_status->step_frame_address = step_frame_address;
1741 inf_status->step_over_calls = step_over_calls;
1742 inf_status->stop_after_trap = stop_after_trap;
1743 inf_status->stop_soon_quietly = stop_soon_quietly;
1744 /* Save original bpstat chain here; replace it with copy of chain.
1745 If caller's caller is walking the chain, they'll be happier if we
1746 hand them back the original chain when restore_i_s is called. */
1747 inf_status->stop_bpstat = stop_bpstat;
1748 stop_bpstat = bpstat_copy (stop_bpstat);
1749 inf_status->breakpoint_proceeded = breakpoint_proceeded;
1750 inf_status->restore_stack_info = restore_stack_info;
1751 inf_status->proceed_to_finish = proceed_to_finish;
1752
1753 memcpy (inf_status->stop_registers, stop_registers, REGISTER_BYTES);
1754
1755 read_register_bytes (0, inf_status->registers, REGISTER_BYTES);
1756
1757 record_selected_frame (&(inf_status->selected_frame_address),
1758 &(inf_status->selected_level));
1759 return;
1760 }
1761
1762 struct restore_selected_frame_args {
1763 FRAME_ADDR frame_address;
1764 int level;
1765 };
1766
1767 static int restore_selected_frame PARAMS ((char *));
1768
1769 /* Restore the selected frame. args is really a struct
1770 restore_selected_frame_args * (declared as char * for catch_errors)
1771 telling us what frame to restore. Returns 1 for success, or 0 for
1772 failure. An error message will have been printed on error. */
1773 static int
1774 restore_selected_frame (args)
1775 char *args;
1776 {
1777 struct restore_selected_frame_args *fr =
1778 (struct restore_selected_frame_args *) args;
1779 FRAME fid;
1780 int level = fr->level;
1781
1782 fid = find_relative_frame (get_current_frame (), &level);
1783
1784 /* If inf_status->selected_frame_address is NULL, there was no
1785 previously selected frame. */
1786 if (fid == 0 ||
1787 FRAME_FP (fid) != fr->frame_address ||
1788 level != 0)
1789 {
1790 warning ("Unable to restore previously selected frame.\n");
1791 return 0;
1792 }
1793 select_frame (fid, fr->level);
1794 return(1);
1795 }
1796
1797 void
1798 restore_inferior_status (inf_status)
1799 struct inferior_status *inf_status;
1800 {
1801 stop_signal = inf_status->stop_signal;
1802 stop_pc = inf_status->stop_pc;
1803 stop_frame_address = inf_status->stop_frame_address;
1804 stop_step = inf_status->stop_step;
1805 stop_stack_dummy = inf_status->stop_stack_dummy;
1806 stopped_by_random_signal = inf_status->stopped_by_random_signal;
1807 trap_expected = inf_status->trap_expected;
1808 step_range_start = inf_status->step_range_start;
1809 step_range_end = inf_status->step_range_end;
1810 step_frame_address = inf_status->step_frame_address;
1811 step_over_calls = inf_status->step_over_calls;
1812 stop_after_trap = inf_status->stop_after_trap;
1813 stop_soon_quietly = inf_status->stop_soon_quietly;
1814 bpstat_clear (&stop_bpstat);
1815 stop_bpstat = inf_status->stop_bpstat;
1816 breakpoint_proceeded = inf_status->breakpoint_proceeded;
1817 proceed_to_finish = inf_status->proceed_to_finish;
1818
1819 memcpy (stop_registers, inf_status->stop_registers, REGISTER_BYTES);
1820
1821 /* The inferior can be gone if the user types "print exit(0)"
1822 (and perhaps other times). */
1823 if (target_has_execution)
1824 write_register_bytes (0, inf_status->registers, REGISTER_BYTES);
1825
1826 /* The inferior can be gone if the user types "print exit(0)"
1827 (and perhaps other times). */
1828
1829 /* FIXME: If we are being called after stopping in a function which
1830 is called from gdb, we should not be trying to restore the
1831 selected frame; it just prints a spurious error message (The
1832 message is useful, however, in detecting bugs in gdb (like if gdb
1833 clobbers the stack)). In fact, should we be restoring the
1834 inferior status at all in that case? . */
1835
1836 if (target_has_stack && inf_status->restore_stack_info)
1837 {
1838 struct restore_selected_frame_args fr;
1839 fr.level = inf_status->selected_level;
1840 fr.frame_address = inf_status->selected_frame_address;
1841 /* The point of catch_errors is that if the stack is clobbered,
1842 walking the stack might encounter a garbage pointer and error()
1843 trying to dereference it. */
1844 if (catch_errors (restore_selected_frame, &fr,
1845 "Unable to restore previously selected frame:\n",
1846 RETURN_MASK_ERROR) == 0)
1847 /* Error in restoring the selected frame. Select the innermost
1848 frame. */
1849 select_frame (get_current_frame (), 0);
1850 }
1851 }
1852
1853 \f
1854 void
1855 _initialize_infrun ()
1856 {
1857 register int i;
1858 register int numsigs;
1859
1860 add_info ("signals", signals_info,
1861 "What debugger does when program gets various signals.\n\
1862 Specify a signal number as argument to print info on that signal only.");
1863 add_info_alias ("handle", "signals", 0);
1864
1865 add_com ("handle", class_run, handle_command,
1866 "Specify how to handle a signal.\n\
1867 Args are signal numbers and actions to apply to those signals.\n\
1868 Signal numbers may be numeric (ex. 11) or symbolic (ex. SIGSEGV).\n\
1869 Numeric ranges may be specified with the form LOW-HIGH (ex. 14-21).\n\
1870 The special arg \"all\" is recognized to mean all signals except those\n\
1871 used by the debugger, typically SIGTRAP and SIGINT.\n\
1872 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
1873 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
1874 Stop means reenter debugger if this signal happens (implies print).\n\
1875 Print means print a message if this signal happens.\n\
1876 Pass means let program see this signal; otherwise program doesn't know.\n\
1877 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1878 Pass and Stop may be combined.");
1879
1880 stop_command = add_cmd ("stop", class_obscure, not_just_help_class_command,
1881 "There is no `stop' command, but you can set a hook on `stop'.\n\
1882 This allows you to set a list of commands to be run each time execution\n\
1883 of the program stops.", &cmdlist);
1884
1885 numsigs = (int)TARGET_SIGNAL_LAST;
1886 signal_stop = (unsigned char *)
1887 xmalloc (sizeof (signal_stop[0]) * numsigs);
1888 signal_print = (unsigned char *)
1889 xmalloc (sizeof (signal_print[0]) * numsigs);
1890 signal_program = (unsigned char *)
1891 xmalloc (sizeof (signal_program[0]) * numsigs);
1892 for (i = 0; i < numsigs; i++)
1893 {
1894 signal_stop[i] = 1;
1895 signal_print[i] = 1;
1896 signal_program[i] = 1;
1897 }
1898
1899 /* Signals caused by debugger's own actions
1900 should not be given to the program afterwards. */
1901 signal_program[TARGET_SIGNAL_TRAP] = 0;
1902 signal_program[TARGET_SIGNAL_INT] = 0;
1903
1904 /* Signals that are not errors should not normally enter the debugger. */
1905 signal_stop[TARGET_SIGNAL_ALRM] = 0;
1906 signal_print[TARGET_SIGNAL_ALRM] = 0;
1907 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
1908 signal_print[TARGET_SIGNAL_VTALRM] = 0;
1909 signal_stop[TARGET_SIGNAL_PROF] = 0;
1910 signal_print[TARGET_SIGNAL_PROF] = 0;
1911 signal_stop[TARGET_SIGNAL_CHLD] = 0;
1912 signal_print[TARGET_SIGNAL_CHLD] = 0;
1913 signal_stop[TARGET_SIGNAL_IO] = 0;
1914 signal_print[TARGET_SIGNAL_IO] = 0;
1915 signal_stop[TARGET_SIGNAL_POLL] = 0;
1916 signal_print[TARGET_SIGNAL_POLL] = 0;
1917 signal_stop[TARGET_SIGNAL_URG] = 0;
1918 signal_print[TARGET_SIGNAL_URG] = 0;
1919 }