]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
PR python/17372 - Python hangs when displaying help()
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2014 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63
64 /* Prototypes for local functions */
65
66 static void signals_info (char *, int);
67
68 static void handle_command (char *, int);
69
70 static void sig_print_info (enum gdb_signal);
71
72 static void sig_print_header (void);
73
74 static void resume_cleanups (void *);
75
76 static int hook_stop_stub (void *);
77
78 static int restore_selected_frame (void *);
79
80 static int follow_fork (void);
81
82 static int follow_fork_inferior (int follow_child, int detach_fork);
83
84 static void follow_inferior_reset_breakpoints (void);
85
86 static void set_schedlock_func (char *args, int from_tty,
87 struct cmd_list_element *c);
88
89 static int currently_stepping (struct thread_info *tp);
90
91 static void xdb_handle_command (char *args, int from_tty);
92
93 void _initialize_infrun (void);
94
95 void nullify_last_target_wait_ptid (void);
96
97 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
98
99 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
100
101 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
102
103 /* When set, stop the 'step' command if we enter a function which has
104 no line number information. The normal behavior is that we step
105 over such function. */
106 int step_stop_if_no_debug = 0;
107 static void
108 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
112 }
113
114 /* In asynchronous mode, but simulating synchronous execution. */
115
116 int sync_execution = 0;
117
118 /* proceed and normal_stop use this to notify the user when the
119 inferior stopped in a different thread than it had been running
120 in. */
121
122 static ptid_t previous_inferior_ptid;
123
124 /* If set (default for legacy reasons), when following a fork, GDB
125 will detach from one of the fork branches, child or parent.
126 Exactly which branch is detached depends on 'set follow-fork-mode'
127 setting. */
128
129 static int detach_fork = 1;
130
131 int debug_displaced = 0;
132 static void
133 show_debug_displaced (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c, const char *value)
135 {
136 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
137 }
138
139 unsigned int debug_infrun = 0;
140 static void
141 show_debug_infrun (struct ui_file *file, int from_tty,
142 struct cmd_list_element *c, const char *value)
143 {
144 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
145 }
146
147
148 /* Support for disabling address space randomization. */
149
150 int disable_randomization = 1;
151
152 static void
153 show_disable_randomization (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 if (target_supports_disable_randomization ())
157 fprintf_filtered (file,
158 _("Disabling randomization of debuggee's "
159 "virtual address space is %s.\n"),
160 value);
161 else
162 fputs_filtered (_("Disabling randomization of debuggee's "
163 "virtual address space is unsupported on\n"
164 "this platform.\n"), file);
165 }
166
167 static void
168 set_disable_randomization (char *args, int from_tty,
169 struct cmd_list_element *c)
170 {
171 if (!target_supports_disable_randomization ())
172 error (_("Disabling randomization of debuggee's "
173 "virtual address space is unsupported on\n"
174 "this platform."));
175 }
176
177 /* User interface for non-stop mode. */
178
179 int non_stop = 0;
180 static int non_stop_1 = 0;
181
182 static void
183 set_non_stop (char *args, int from_tty,
184 struct cmd_list_element *c)
185 {
186 if (target_has_execution)
187 {
188 non_stop_1 = non_stop;
189 error (_("Cannot change this setting while the inferior is running."));
190 }
191
192 non_stop = non_stop_1;
193 }
194
195 static void
196 show_non_stop (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198 {
199 fprintf_filtered (file,
200 _("Controlling the inferior in non-stop mode is %s.\n"),
201 value);
202 }
203
204 /* "Observer mode" is somewhat like a more extreme version of
205 non-stop, in which all GDB operations that might affect the
206 target's execution have been disabled. */
207
208 int observer_mode = 0;
209 static int observer_mode_1 = 0;
210
211 static void
212 set_observer_mode (char *args, int from_tty,
213 struct cmd_list_element *c)
214 {
215 if (target_has_execution)
216 {
217 observer_mode_1 = observer_mode;
218 error (_("Cannot change this setting while the inferior is running."));
219 }
220
221 observer_mode = observer_mode_1;
222
223 may_write_registers = !observer_mode;
224 may_write_memory = !observer_mode;
225 may_insert_breakpoints = !observer_mode;
226 may_insert_tracepoints = !observer_mode;
227 /* We can insert fast tracepoints in or out of observer mode,
228 but enable them if we're going into this mode. */
229 if (observer_mode)
230 may_insert_fast_tracepoints = 1;
231 may_stop = !observer_mode;
232 update_target_permissions ();
233
234 /* Going *into* observer mode we must force non-stop, then
235 going out we leave it that way. */
236 if (observer_mode)
237 {
238 pagination_enabled = 0;
239 non_stop = non_stop_1 = 1;
240 }
241
242 if (from_tty)
243 printf_filtered (_("Observer mode is now %s.\n"),
244 (observer_mode ? "on" : "off"));
245 }
246
247 static void
248 show_observer_mode (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250 {
251 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
252 }
253
254 /* This updates the value of observer mode based on changes in
255 permissions. Note that we are deliberately ignoring the values of
256 may-write-registers and may-write-memory, since the user may have
257 reason to enable these during a session, for instance to turn on a
258 debugging-related global. */
259
260 void
261 update_observer_mode (void)
262 {
263 int newval;
264
265 newval = (!may_insert_breakpoints
266 && !may_insert_tracepoints
267 && may_insert_fast_tracepoints
268 && !may_stop
269 && non_stop);
270
271 /* Let the user know if things change. */
272 if (newval != observer_mode)
273 printf_filtered (_("Observer mode is now %s.\n"),
274 (newval ? "on" : "off"));
275
276 observer_mode = observer_mode_1 = newval;
277 }
278
279 /* Tables of how to react to signals; the user sets them. */
280
281 static unsigned char *signal_stop;
282 static unsigned char *signal_print;
283 static unsigned char *signal_program;
284
285 /* Table of signals that are registered with "catch signal". A
286 non-zero entry indicates that the signal is caught by some "catch
287 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
288 signals. */
289 static unsigned char *signal_catch;
290
291 /* Table of signals that the target may silently handle.
292 This is automatically determined from the flags above,
293 and simply cached here. */
294 static unsigned char *signal_pass;
295
296 #define SET_SIGS(nsigs,sigs,flags) \
297 do { \
298 int signum = (nsigs); \
299 while (signum-- > 0) \
300 if ((sigs)[signum]) \
301 (flags)[signum] = 1; \
302 } while (0)
303
304 #define UNSET_SIGS(nsigs,sigs,flags) \
305 do { \
306 int signum = (nsigs); \
307 while (signum-- > 0) \
308 if ((sigs)[signum]) \
309 (flags)[signum] = 0; \
310 } while (0)
311
312 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
313 this function is to avoid exporting `signal_program'. */
314
315 void
316 update_signals_program_target (void)
317 {
318 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
319 }
320
321 /* Value to pass to target_resume() to cause all threads to resume. */
322
323 #define RESUME_ALL minus_one_ptid
324
325 /* Command list pointer for the "stop" placeholder. */
326
327 static struct cmd_list_element *stop_command;
328
329 /* Function inferior was in as of last step command. */
330
331 static struct symbol *step_start_function;
332
333 /* Nonzero if we want to give control to the user when we're notified
334 of shared library events by the dynamic linker. */
335 int stop_on_solib_events;
336
337 /* Enable or disable optional shared library event breakpoints
338 as appropriate when the above flag is changed. */
339
340 static void
341 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
342 {
343 update_solib_breakpoints ();
344 }
345
346 static void
347 show_stop_on_solib_events (struct ui_file *file, int from_tty,
348 struct cmd_list_element *c, const char *value)
349 {
350 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
351 value);
352 }
353
354 /* Nonzero means expecting a trace trap
355 and should stop the inferior and return silently when it happens. */
356
357 int stop_after_trap;
358
359 /* Save register contents here when executing a "finish" command or are
360 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
361 Thus this contains the return value from the called function (assuming
362 values are returned in a register). */
363
364 struct regcache *stop_registers;
365
366 /* Nonzero after stop if current stack frame should be printed. */
367
368 static int stop_print_frame;
369
370 /* This is a cached copy of the pid/waitstatus of the last event
371 returned by target_wait()/deprecated_target_wait_hook(). This
372 information is returned by get_last_target_status(). */
373 static ptid_t target_last_wait_ptid;
374 static struct target_waitstatus target_last_waitstatus;
375
376 static void context_switch (ptid_t ptid);
377
378 void init_thread_stepping_state (struct thread_info *tss);
379
380 static const char follow_fork_mode_child[] = "child";
381 static const char follow_fork_mode_parent[] = "parent";
382
383 static const char *const follow_fork_mode_kind_names[] = {
384 follow_fork_mode_child,
385 follow_fork_mode_parent,
386 NULL
387 };
388
389 static const char *follow_fork_mode_string = follow_fork_mode_parent;
390 static void
391 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
392 struct cmd_list_element *c, const char *value)
393 {
394 fprintf_filtered (file,
395 _("Debugger response to a program "
396 "call of fork or vfork is \"%s\".\n"),
397 value);
398 }
399 \f
400
401 /* Handle changes to the inferior list based on the type of fork,
402 which process is being followed, and whether the other process
403 should be detached. On entry inferior_ptid must be the ptid of
404 the fork parent. At return inferior_ptid is the ptid of the
405 followed inferior. */
406
407 static int
408 follow_fork_inferior (int follow_child, int detach_fork)
409 {
410 int has_vforked;
411 int parent_pid, child_pid;
412
413 has_vforked = (inferior_thread ()->pending_follow.kind
414 == TARGET_WAITKIND_VFORKED);
415 parent_pid = ptid_get_lwp (inferior_ptid);
416 if (parent_pid == 0)
417 parent_pid = ptid_get_pid (inferior_ptid);
418 child_pid
419 = ptid_get_pid (inferior_thread ()->pending_follow.value.related_pid);
420
421 if (has_vforked
422 && !non_stop /* Non-stop always resumes both branches. */
423 && (!target_is_async_p () || sync_execution)
424 && !(follow_child || detach_fork || sched_multi))
425 {
426 /* The parent stays blocked inside the vfork syscall until the
427 child execs or exits. If we don't let the child run, then
428 the parent stays blocked. If we're telling the parent to run
429 in the foreground, the user will not be able to ctrl-c to get
430 back the terminal, effectively hanging the debug session. */
431 fprintf_filtered (gdb_stderr, _("\
432 Can not resume the parent process over vfork in the foreground while\n\
433 holding the child stopped. Try \"set detach-on-fork\" or \
434 \"set schedule-multiple\".\n"));
435 /* FIXME output string > 80 columns. */
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
444 struct cleanup *old_chain;
445
446 /* Before detaching from the child, remove all breakpoints
447 from it. If we forked, then this has already been taken
448 care of by infrun.c. If we vforked however, any
449 breakpoint inserted in the parent is visible in the
450 child, even those added while stopped in a vfork
451 catchpoint. This will remove the breakpoints from the
452 parent also, but they'll be reinserted below. */
453 if (has_vforked)
454 {
455 /* Keep breakpoints list in sync. */
456 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
457 }
458
459 if (info_verbose || debug_infrun)
460 {
461 target_terminal_ours_for_output ();
462 fprintf_filtered (gdb_stdlog,
463 _("Detaching after %s from "
464 "child process %d.\n"),
465 has_vforked ? "vfork" : "fork",
466 child_pid);
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
472 struct cleanup *old_chain;
473
474 /* Add process to GDB's tables. */
475 child_inf = add_inferior (child_pid);
476
477 parent_inf = current_inferior ();
478 child_inf->attach_flag = parent_inf->attach_flag;
479 copy_terminal_info (child_inf, parent_inf);
480 child_inf->gdbarch = parent_inf->gdbarch;
481 copy_inferior_target_desc_info (child_inf, parent_inf);
482
483 old_chain = save_inferior_ptid ();
484 save_current_program_space ();
485
486 inferior_ptid = ptid_build (child_pid, child_pid, 0);
487 add_thread (inferior_ptid);
488 child_inf->symfile_flags = SYMFILE_NO_READ;
489
490 /* If this is a vfork child, then the address-space is
491 shared with the parent. */
492 if (has_vforked)
493 {
494 child_inf->pspace = parent_inf->pspace;
495 child_inf->aspace = parent_inf->aspace;
496
497 /* The parent will be frozen until the child is done
498 with the shared region. Keep track of the
499 parent. */
500 child_inf->vfork_parent = parent_inf;
501 child_inf->pending_detach = 0;
502 parent_inf->vfork_child = child_inf;
503 parent_inf->pending_detach = 0;
504 }
505 else
506 {
507 child_inf->aspace = new_address_space ();
508 child_inf->pspace = add_program_space (child_inf->aspace);
509 child_inf->removable = 1;
510 set_current_program_space (child_inf->pspace);
511 clone_program_space (child_inf->pspace, parent_inf->pspace);
512
513 /* Let the shared library layer (e.g., solib-svr4) learn
514 about this new process, relocate the cloned exec, pull
515 in shared libraries, and install the solib event
516 breakpoint. If a "cloned-VM" event was propagated
517 better throughout the core, this wouldn't be
518 required. */
519 solib_create_inferior_hook (0);
520 }
521
522 do_cleanups (old_chain);
523 }
524
525 if (has_vforked)
526 {
527 struct inferior *parent_inf;
528
529 parent_inf = current_inferior ();
530
531 /* If we detached from the child, then we have to be careful
532 to not insert breakpoints in the parent until the child
533 is done with the shared memory region. However, if we're
534 staying attached to the child, then we can and should
535 insert breakpoints, so that we can debug it. A
536 subsequent child exec or exit is enough to know when does
537 the child stops using the parent's address space. */
538 parent_inf->waiting_for_vfork_done = detach_fork;
539 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
540 }
541 }
542 else
543 {
544 /* Follow the child. */
545 struct inferior *parent_inf, *child_inf;
546 struct program_space *parent_pspace;
547
548 if (info_verbose || debug_infrun)
549 {
550 target_terminal_ours_for_output ();
551 fprintf_filtered (gdb_stdlog,
552 _("Attaching after process %d "
553 "%s to child process %d.\n"),
554 parent_pid,
555 has_vforked ? "vfork" : "fork",
556 child_pid);
557 }
558
559 /* Add the new inferior first, so that the target_detach below
560 doesn't unpush the target. */
561
562 child_inf = add_inferior (child_pid);
563
564 parent_inf = current_inferior ();
565 child_inf->attach_flag = parent_inf->attach_flag;
566 copy_terminal_info (child_inf, parent_inf);
567 child_inf->gdbarch = parent_inf->gdbarch;
568 copy_inferior_target_desc_info (child_inf, parent_inf);
569
570 parent_pspace = parent_inf->pspace;
571
572 /* If we're vforking, we want to hold on to the parent until the
573 child exits or execs. At child exec or exit time we can
574 remove the old breakpoints from the parent and detach or
575 resume debugging it. Otherwise, detach the parent now; we'll
576 want to reuse it's program/address spaces, but we can't set
577 them to the child before removing breakpoints from the
578 parent, otherwise, the breakpoints module could decide to
579 remove breakpoints from the wrong process (since they'd be
580 assigned to the same address space). */
581
582 if (has_vforked)
583 {
584 gdb_assert (child_inf->vfork_parent == NULL);
585 gdb_assert (parent_inf->vfork_child == NULL);
586 child_inf->vfork_parent = parent_inf;
587 child_inf->pending_detach = 0;
588 parent_inf->vfork_child = child_inf;
589 parent_inf->pending_detach = detach_fork;
590 parent_inf->waiting_for_vfork_done = 0;
591 }
592 else if (detach_fork)
593 {
594 if (info_verbose || debug_infrun)
595 {
596 target_terminal_ours_for_output ();
597 fprintf_filtered (gdb_stdlog,
598 _("Detaching after fork from "
599 "child process %d.\n"),
600 child_pid);
601 }
602
603 target_detach (NULL, 0);
604 }
605
606 /* Note that the detach above makes PARENT_INF dangling. */
607
608 /* Add the child thread to the appropriate lists, and switch to
609 this new thread, before cloning the program space, and
610 informing the solib layer about this new process. */
611
612 inferior_ptid = ptid_build (child_pid, child_pid, 0);
613 add_thread (inferior_ptid);
614
615 /* If this is a vfork child, then the address-space is shared
616 with the parent. If we detached from the parent, then we can
617 reuse the parent's program/address spaces. */
618 if (has_vforked || detach_fork)
619 {
620 child_inf->pspace = parent_pspace;
621 child_inf->aspace = child_inf->pspace->aspace;
622 }
623 else
624 {
625 child_inf->aspace = new_address_space ();
626 child_inf->pspace = add_program_space (child_inf->aspace);
627 child_inf->removable = 1;
628 child_inf->symfile_flags = SYMFILE_NO_READ;
629 set_current_program_space (child_inf->pspace);
630 clone_program_space (child_inf->pspace, parent_pspace);
631
632 /* Let the shared library layer (e.g., solib-svr4) learn
633 about this new process, relocate the cloned exec, pull in
634 shared libraries, and install the solib event breakpoint.
635 If a "cloned-VM" event was propagated better throughout
636 the core, this wouldn't be required. */
637 solib_create_inferior_hook (0);
638 }
639 }
640
641 return target_follow_fork (follow_child, detach_fork);
642 }
643
644 /* Tell the target to follow the fork we're stopped at. Returns true
645 if the inferior should be resumed; false, if the target for some
646 reason decided it's best not to resume. */
647
648 static int
649 follow_fork (void)
650 {
651 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
652 int should_resume = 1;
653 struct thread_info *tp;
654
655 /* Copy user stepping state to the new inferior thread. FIXME: the
656 followed fork child thread should have a copy of most of the
657 parent thread structure's run control related fields, not just these.
658 Initialized to avoid "may be used uninitialized" warnings from gcc. */
659 struct breakpoint *step_resume_breakpoint = NULL;
660 struct breakpoint *exception_resume_breakpoint = NULL;
661 CORE_ADDR step_range_start = 0;
662 CORE_ADDR step_range_end = 0;
663 struct frame_id step_frame_id = { 0 };
664 struct interp *command_interp = NULL;
665
666 if (!non_stop)
667 {
668 ptid_t wait_ptid;
669 struct target_waitstatus wait_status;
670
671 /* Get the last target status returned by target_wait(). */
672 get_last_target_status (&wait_ptid, &wait_status);
673
674 /* If not stopped at a fork event, then there's nothing else to
675 do. */
676 if (wait_status.kind != TARGET_WAITKIND_FORKED
677 && wait_status.kind != TARGET_WAITKIND_VFORKED)
678 return 1;
679
680 /* Check if we switched over from WAIT_PTID, since the event was
681 reported. */
682 if (!ptid_equal (wait_ptid, minus_one_ptid)
683 && !ptid_equal (inferior_ptid, wait_ptid))
684 {
685 /* We did. Switch back to WAIT_PTID thread, to tell the
686 target to follow it (in either direction). We'll
687 afterwards refuse to resume, and inform the user what
688 happened. */
689 switch_to_thread (wait_ptid);
690 should_resume = 0;
691 }
692 }
693
694 tp = inferior_thread ();
695
696 /* If there were any forks/vforks that were caught and are now to be
697 followed, then do so now. */
698 switch (tp->pending_follow.kind)
699 {
700 case TARGET_WAITKIND_FORKED:
701 case TARGET_WAITKIND_VFORKED:
702 {
703 ptid_t parent, child;
704
705 /* If the user did a next/step, etc, over a fork call,
706 preserve the stepping state in the fork child. */
707 if (follow_child && should_resume)
708 {
709 step_resume_breakpoint = clone_momentary_breakpoint
710 (tp->control.step_resume_breakpoint);
711 step_range_start = tp->control.step_range_start;
712 step_range_end = tp->control.step_range_end;
713 step_frame_id = tp->control.step_frame_id;
714 exception_resume_breakpoint
715 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
716 command_interp = tp->control.command_interp;
717
718 /* For now, delete the parent's sr breakpoint, otherwise,
719 parent/child sr breakpoints are considered duplicates,
720 and the child version will not be installed. Remove
721 this when the breakpoints module becomes aware of
722 inferiors and address spaces. */
723 delete_step_resume_breakpoint (tp);
724 tp->control.step_range_start = 0;
725 tp->control.step_range_end = 0;
726 tp->control.step_frame_id = null_frame_id;
727 delete_exception_resume_breakpoint (tp);
728 tp->control.command_interp = NULL;
729 }
730
731 parent = inferior_ptid;
732 child = tp->pending_follow.value.related_pid;
733
734 /* Set up inferior(s) as specified by the caller, and tell the
735 target to do whatever is necessary to follow either parent
736 or child. */
737 if (follow_fork_inferior (follow_child, detach_fork))
738 {
739 /* Target refused to follow, or there's some other reason
740 we shouldn't resume. */
741 should_resume = 0;
742 }
743 else
744 {
745 /* This pending follow fork event is now handled, one way
746 or another. The previous selected thread may be gone
747 from the lists by now, but if it is still around, need
748 to clear the pending follow request. */
749 tp = find_thread_ptid (parent);
750 if (tp)
751 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
752
753 /* This makes sure we don't try to apply the "Switched
754 over from WAIT_PID" logic above. */
755 nullify_last_target_wait_ptid ();
756
757 /* If we followed the child, switch to it... */
758 if (follow_child)
759 {
760 switch_to_thread (child);
761
762 /* ... and preserve the stepping state, in case the
763 user was stepping over the fork call. */
764 if (should_resume)
765 {
766 tp = inferior_thread ();
767 tp->control.step_resume_breakpoint
768 = step_resume_breakpoint;
769 tp->control.step_range_start = step_range_start;
770 tp->control.step_range_end = step_range_end;
771 tp->control.step_frame_id = step_frame_id;
772 tp->control.exception_resume_breakpoint
773 = exception_resume_breakpoint;
774 tp->control.command_interp = command_interp;
775 }
776 else
777 {
778 /* If we get here, it was because we're trying to
779 resume from a fork catchpoint, but, the user
780 has switched threads away from the thread that
781 forked. In that case, the resume command
782 issued is most likely not applicable to the
783 child, so just warn, and refuse to resume. */
784 warning (_("Not resuming: switched threads "
785 "before following fork child.\n"));
786 }
787
788 /* Reset breakpoints in the child as appropriate. */
789 follow_inferior_reset_breakpoints ();
790 }
791 else
792 switch_to_thread (parent);
793 }
794 }
795 break;
796 case TARGET_WAITKIND_SPURIOUS:
797 /* Nothing to follow. */
798 break;
799 default:
800 internal_error (__FILE__, __LINE__,
801 "Unexpected pending_follow.kind %d\n",
802 tp->pending_follow.kind);
803 break;
804 }
805
806 return should_resume;
807 }
808
809 static void
810 follow_inferior_reset_breakpoints (void)
811 {
812 struct thread_info *tp = inferior_thread ();
813
814 /* Was there a step_resume breakpoint? (There was if the user
815 did a "next" at the fork() call.) If so, explicitly reset its
816 thread number. Cloned step_resume breakpoints are disabled on
817 creation, so enable it here now that it is associated with the
818 correct thread.
819
820 step_resumes are a form of bp that are made to be per-thread.
821 Since we created the step_resume bp when the parent process
822 was being debugged, and now are switching to the child process,
823 from the breakpoint package's viewpoint, that's a switch of
824 "threads". We must update the bp's notion of which thread
825 it is for, or it'll be ignored when it triggers. */
826
827 if (tp->control.step_resume_breakpoint)
828 {
829 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
830 tp->control.step_resume_breakpoint->loc->enabled = 1;
831 }
832
833 /* Treat exception_resume breakpoints like step_resume breakpoints. */
834 if (tp->control.exception_resume_breakpoint)
835 {
836 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
837 tp->control.exception_resume_breakpoint->loc->enabled = 1;
838 }
839
840 /* Reinsert all breakpoints in the child. The user may have set
841 breakpoints after catching the fork, in which case those
842 were never set in the child, but only in the parent. This makes
843 sure the inserted breakpoints match the breakpoint list. */
844
845 breakpoint_re_set ();
846 insert_breakpoints ();
847 }
848
849 /* The child has exited or execed: resume threads of the parent the
850 user wanted to be executing. */
851
852 static int
853 proceed_after_vfork_done (struct thread_info *thread,
854 void *arg)
855 {
856 int pid = * (int *) arg;
857
858 if (ptid_get_pid (thread->ptid) == pid
859 && is_running (thread->ptid)
860 && !is_executing (thread->ptid)
861 && !thread->stop_requested
862 && thread->suspend.stop_signal == GDB_SIGNAL_0)
863 {
864 if (debug_infrun)
865 fprintf_unfiltered (gdb_stdlog,
866 "infrun: resuming vfork parent thread %s\n",
867 target_pid_to_str (thread->ptid));
868
869 switch_to_thread (thread->ptid);
870 clear_proceed_status (0);
871 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
872 }
873
874 return 0;
875 }
876
877 /* Called whenever we notice an exec or exit event, to handle
878 detaching or resuming a vfork parent. */
879
880 static void
881 handle_vfork_child_exec_or_exit (int exec)
882 {
883 struct inferior *inf = current_inferior ();
884
885 if (inf->vfork_parent)
886 {
887 int resume_parent = -1;
888
889 /* This exec or exit marks the end of the shared memory region
890 between the parent and the child. If the user wanted to
891 detach from the parent, now is the time. */
892
893 if (inf->vfork_parent->pending_detach)
894 {
895 struct thread_info *tp;
896 struct cleanup *old_chain;
897 struct program_space *pspace;
898 struct address_space *aspace;
899
900 /* follow-fork child, detach-on-fork on. */
901
902 inf->vfork_parent->pending_detach = 0;
903
904 if (!exec)
905 {
906 /* If we're handling a child exit, then inferior_ptid
907 points at the inferior's pid, not to a thread. */
908 old_chain = save_inferior_ptid ();
909 save_current_program_space ();
910 save_current_inferior ();
911 }
912 else
913 old_chain = save_current_space_and_thread ();
914
915 /* We're letting loose of the parent. */
916 tp = any_live_thread_of_process (inf->vfork_parent->pid);
917 switch_to_thread (tp->ptid);
918
919 /* We're about to detach from the parent, which implicitly
920 removes breakpoints from its address space. There's a
921 catch here: we want to reuse the spaces for the child,
922 but, parent/child are still sharing the pspace at this
923 point, although the exec in reality makes the kernel give
924 the child a fresh set of new pages. The problem here is
925 that the breakpoints module being unaware of this, would
926 likely chose the child process to write to the parent
927 address space. Swapping the child temporarily away from
928 the spaces has the desired effect. Yes, this is "sort
929 of" a hack. */
930
931 pspace = inf->pspace;
932 aspace = inf->aspace;
933 inf->aspace = NULL;
934 inf->pspace = NULL;
935
936 if (debug_infrun || info_verbose)
937 {
938 target_terminal_ours_for_output ();
939
940 if (exec)
941 {
942 fprintf_filtered (gdb_stdlog,
943 _("Detaching vfork parent process "
944 "%d after child exec.\n"),
945 inf->vfork_parent->pid);
946 }
947 else
948 {
949 fprintf_filtered (gdb_stdlog,
950 _("Detaching vfork parent process "
951 "%d after child exit.\n"),
952 inf->vfork_parent->pid);
953 }
954 }
955
956 target_detach (NULL, 0);
957
958 /* Put it back. */
959 inf->pspace = pspace;
960 inf->aspace = aspace;
961
962 do_cleanups (old_chain);
963 }
964 else if (exec)
965 {
966 /* We're staying attached to the parent, so, really give the
967 child a new address space. */
968 inf->pspace = add_program_space (maybe_new_address_space ());
969 inf->aspace = inf->pspace->aspace;
970 inf->removable = 1;
971 set_current_program_space (inf->pspace);
972
973 resume_parent = inf->vfork_parent->pid;
974
975 /* Break the bonds. */
976 inf->vfork_parent->vfork_child = NULL;
977 }
978 else
979 {
980 struct cleanup *old_chain;
981 struct program_space *pspace;
982
983 /* If this is a vfork child exiting, then the pspace and
984 aspaces were shared with the parent. Since we're
985 reporting the process exit, we'll be mourning all that is
986 found in the address space, and switching to null_ptid,
987 preparing to start a new inferior. But, since we don't
988 want to clobber the parent's address/program spaces, we
989 go ahead and create a new one for this exiting
990 inferior. */
991
992 /* Switch to null_ptid, so that clone_program_space doesn't want
993 to read the selected frame of a dead process. */
994 old_chain = save_inferior_ptid ();
995 inferior_ptid = null_ptid;
996
997 /* This inferior is dead, so avoid giving the breakpoints
998 module the option to write through to it (cloning a
999 program space resets breakpoints). */
1000 inf->aspace = NULL;
1001 inf->pspace = NULL;
1002 pspace = add_program_space (maybe_new_address_space ());
1003 set_current_program_space (pspace);
1004 inf->removable = 1;
1005 inf->symfile_flags = SYMFILE_NO_READ;
1006 clone_program_space (pspace, inf->vfork_parent->pspace);
1007 inf->pspace = pspace;
1008 inf->aspace = pspace->aspace;
1009
1010 /* Put back inferior_ptid. We'll continue mourning this
1011 inferior. */
1012 do_cleanups (old_chain);
1013
1014 resume_parent = inf->vfork_parent->pid;
1015 /* Break the bonds. */
1016 inf->vfork_parent->vfork_child = NULL;
1017 }
1018
1019 inf->vfork_parent = NULL;
1020
1021 gdb_assert (current_program_space == inf->pspace);
1022
1023 if (non_stop && resume_parent != -1)
1024 {
1025 /* If the user wanted the parent to be running, let it go
1026 free now. */
1027 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1028
1029 if (debug_infrun)
1030 fprintf_unfiltered (gdb_stdlog,
1031 "infrun: resuming vfork parent process %d\n",
1032 resume_parent);
1033
1034 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1035
1036 do_cleanups (old_chain);
1037 }
1038 }
1039 }
1040
1041 /* Enum strings for "set|show follow-exec-mode". */
1042
1043 static const char follow_exec_mode_new[] = "new";
1044 static const char follow_exec_mode_same[] = "same";
1045 static const char *const follow_exec_mode_names[] =
1046 {
1047 follow_exec_mode_new,
1048 follow_exec_mode_same,
1049 NULL,
1050 };
1051
1052 static const char *follow_exec_mode_string = follow_exec_mode_same;
1053 static void
1054 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1055 struct cmd_list_element *c, const char *value)
1056 {
1057 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1058 }
1059
1060 /* EXECD_PATHNAME is assumed to be non-NULL. */
1061
1062 static void
1063 follow_exec (ptid_t pid, char *execd_pathname)
1064 {
1065 struct thread_info *th = inferior_thread ();
1066 struct inferior *inf = current_inferior ();
1067
1068 /* This is an exec event that we actually wish to pay attention to.
1069 Refresh our symbol table to the newly exec'd program, remove any
1070 momentary bp's, etc.
1071
1072 If there are breakpoints, they aren't really inserted now,
1073 since the exec() transformed our inferior into a fresh set
1074 of instructions.
1075
1076 We want to preserve symbolic breakpoints on the list, since
1077 we have hopes that they can be reset after the new a.out's
1078 symbol table is read.
1079
1080 However, any "raw" breakpoints must be removed from the list
1081 (e.g., the solib bp's), since their address is probably invalid
1082 now.
1083
1084 And, we DON'T want to call delete_breakpoints() here, since
1085 that may write the bp's "shadow contents" (the instruction
1086 value that was overwritten witha TRAP instruction). Since
1087 we now have a new a.out, those shadow contents aren't valid. */
1088
1089 mark_breakpoints_out ();
1090
1091 update_breakpoints_after_exec ();
1092
1093 /* If there was one, it's gone now. We cannot truly step-to-next
1094 statement through an exec(). */
1095 th->control.step_resume_breakpoint = NULL;
1096 th->control.exception_resume_breakpoint = NULL;
1097 th->control.single_step_breakpoints = NULL;
1098 th->control.step_range_start = 0;
1099 th->control.step_range_end = 0;
1100
1101 /* The target reports the exec event to the main thread, even if
1102 some other thread does the exec, and even if the main thread was
1103 already stopped --- if debugging in non-stop mode, it's possible
1104 the user had the main thread held stopped in the previous image
1105 --- release it now. This is the same behavior as step-over-exec
1106 with scheduler-locking on in all-stop mode. */
1107 th->stop_requested = 0;
1108
1109 /* What is this a.out's name? */
1110 printf_unfiltered (_("%s is executing new program: %s\n"),
1111 target_pid_to_str (inferior_ptid),
1112 execd_pathname);
1113
1114 /* We've followed the inferior through an exec. Therefore, the
1115 inferior has essentially been killed & reborn. */
1116
1117 gdb_flush (gdb_stdout);
1118
1119 breakpoint_init_inferior (inf_execd);
1120
1121 if (gdb_sysroot && *gdb_sysroot)
1122 {
1123 char *name = alloca (strlen (gdb_sysroot)
1124 + strlen (execd_pathname)
1125 + 1);
1126
1127 strcpy (name, gdb_sysroot);
1128 strcat (name, execd_pathname);
1129 execd_pathname = name;
1130 }
1131
1132 /* Reset the shared library package. This ensures that we get a
1133 shlib event when the child reaches "_start", at which point the
1134 dld will have had a chance to initialize the child. */
1135 /* Also, loading a symbol file below may trigger symbol lookups, and
1136 we don't want those to be satisfied by the libraries of the
1137 previous incarnation of this process. */
1138 no_shared_libraries (NULL, 0);
1139
1140 if (follow_exec_mode_string == follow_exec_mode_new)
1141 {
1142 struct program_space *pspace;
1143
1144 /* The user wants to keep the old inferior and program spaces
1145 around. Create a new fresh one, and switch to it. */
1146
1147 inf = add_inferior (current_inferior ()->pid);
1148 pspace = add_program_space (maybe_new_address_space ());
1149 inf->pspace = pspace;
1150 inf->aspace = pspace->aspace;
1151
1152 exit_inferior_num_silent (current_inferior ()->num);
1153
1154 set_current_inferior (inf);
1155 set_current_program_space (pspace);
1156 }
1157 else
1158 {
1159 /* The old description may no longer be fit for the new image.
1160 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1161 old description; we'll read a new one below. No need to do
1162 this on "follow-exec-mode new", as the old inferior stays
1163 around (its description is later cleared/refetched on
1164 restart). */
1165 target_clear_description ();
1166 }
1167
1168 gdb_assert (current_program_space == inf->pspace);
1169
1170 /* That a.out is now the one to use. */
1171 exec_file_attach (execd_pathname, 0);
1172
1173 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1174 (Position Independent Executable) main symbol file will get applied by
1175 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1176 the breakpoints with the zero displacement. */
1177
1178 symbol_file_add (execd_pathname,
1179 (inf->symfile_flags
1180 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
1181 NULL, 0);
1182
1183 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1184 set_initial_language ();
1185
1186 /* If the target can specify a description, read it. Must do this
1187 after flipping to the new executable (because the target supplied
1188 description must be compatible with the executable's
1189 architecture, and the old executable may e.g., be 32-bit, while
1190 the new one 64-bit), and before anything involving memory or
1191 registers. */
1192 target_find_description ();
1193
1194 solib_create_inferior_hook (0);
1195
1196 jit_inferior_created_hook ();
1197
1198 breakpoint_re_set ();
1199
1200 /* Reinsert all breakpoints. (Those which were symbolic have
1201 been reset to the proper address in the new a.out, thanks
1202 to symbol_file_command...). */
1203 insert_breakpoints ();
1204
1205 /* The next resume of this inferior should bring it to the shlib
1206 startup breakpoints. (If the user had also set bp's on
1207 "main" from the old (parent) process, then they'll auto-
1208 matically get reset there in the new process.). */
1209 }
1210
1211 /* Info about an instruction that is being stepped over. */
1212
1213 struct step_over_info
1214 {
1215 /* If we're stepping past a breakpoint, this is the address space
1216 and address of the instruction the breakpoint is set at. We'll
1217 skip inserting all breakpoints here. Valid iff ASPACE is
1218 non-NULL. */
1219 struct address_space *aspace;
1220 CORE_ADDR address;
1221
1222 /* The instruction being stepped over triggers a nonsteppable
1223 watchpoint. If true, we'll skip inserting watchpoints. */
1224 int nonsteppable_watchpoint_p;
1225 };
1226
1227 /* The step-over info of the location that is being stepped over.
1228
1229 Note that with async/breakpoint always-inserted mode, a user might
1230 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1231 being stepped over. As setting a new breakpoint inserts all
1232 breakpoints, we need to make sure the breakpoint being stepped over
1233 isn't inserted then. We do that by only clearing the step-over
1234 info when the step-over is actually finished (or aborted).
1235
1236 Presently GDB can only step over one breakpoint at any given time.
1237 Given threads that can't run code in the same address space as the
1238 breakpoint's can't really miss the breakpoint, GDB could be taught
1239 to step-over at most one breakpoint per address space (so this info
1240 could move to the address space object if/when GDB is extended).
1241 The set of breakpoints being stepped over will normally be much
1242 smaller than the set of all breakpoints, so a flag in the
1243 breakpoint location structure would be wasteful. A separate list
1244 also saves complexity and run-time, as otherwise we'd have to go
1245 through all breakpoint locations clearing their flag whenever we
1246 start a new sequence. Similar considerations weigh against storing
1247 this info in the thread object. Plus, not all step overs actually
1248 have breakpoint locations -- e.g., stepping past a single-step
1249 breakpoint, or stepping to complete a non-continuable
1250 watchpoint. */
1251 static struct step_over_info step_over_info;
1252
1253 /* Record the address of the breakpoint/instruction we're currently
1254 stepping over. */
1255
1256 static void
1257 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1258 int nonsteppable_watchpoint_p)
1259 {
1260 step_over_info.aspace = aspace;
1261 step_over_info.address = address;
1262 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1263 }
1264
1265 /* Called when we're not longer stepping over a breakpoint / an
1266 instruction, so all breakpoints are free to be (re)inserted. */
1267
1268 static void
1269 clear_step_over_info (void)
1270 {
1271 step_over_info.aspace = NULL;
1272 step_over_info.address = 0;
1273 step_over_info.nonsteppable_watchpoint_p = 0;
1274 }
1275
1276 /* See infrun.h. */
1277
1278 int
1279 stepping_past_instruction_at (struct address_space *aspace,
1280 CORE_ADDR address)
1281 {
1282 return (step_over_info.aspace != NULL
1283 && breakpoint_address_match (aspace, address,
1284 step_over_info.aspace,
1285 step_over_info.address));
1286 }
1287
1288 /* See infrun.h. */
1289
1290 int
1291 stepping_past_nonsteppable_watchpoint (void)
1292 {
1293 return step_over_info.nonsteppable_watchpoint_p;
1294 }
1295
1296 /* Returns true if step-over info is valid. */
1297
1298 static int
1299 step_over_info_valid_p (void)
1300 {
1301 return (step_over_info.aspace != NULL
1302 || stepping_past_nonsteppable_watchpoint ());
1303 }
1304
1305 \f
1306 /* Displaced stepping. */
1307
1308 /* In non-stop debugging mode, we must take special care to manage
1309 breakpoints properly; in particular, the traditional strategy for
1310 stepping a thread past a breakpoint it has hit is unsuitable.
1311 'Displaced stepping' is a tactic for stepping one thread past a
1312 breakpoint it has hit while ensuring that other threads running
1313 concurrently will hit the breakpoint as they should.
1314
1315 The traditional way to step a thread T off a breakpoint in a
1316 multi-threaded program in all-stop mode is as follows:
1317
1318 a0) Initially, all threads are stopped, and breakpoints are not
1319 inserted.
1320 a1) We single-step T, leaving breakpoints uninserted.
1321 a2) We insert breakpoints, and resume all threads.
1322
1323 In non-stop debugging, however, this strategy is unsuitable: we
1324 don't want to have to stop all threads in the system in order to
1325 continue or step T past a breakpoint. Instead, we use displaced
1326 stepping:
1327
1328 n0) Initially, T is stopped, other threads are running, and
1329 breakpoints are inserted.
1330 n1) We copy the instruction "under" the breakpoint to a separate
1331 location, outside the main code stream, making any adjustments
1332 to the instruction, register, and memory state as directed by
1333 T's architecture.
1334 n2) We single-step T over the instruction at its new location.
1335 n3) We adjust the resulting register and memory state as directed
1336 by T's architecture. This includes resetting T's PC to point
1337 back into the main instruction stream.
1338 n4) We resume T.
1339
1340 This approach depends on the following gdbarch methods:
1341
1342 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1343 indicate where to copy the instruction, and how much space must
1344 be reserved there. We use these in step n1.
1345
1346 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1347 address, and makes any necessary adjustments to the instruction,
1348 register contents, and memory. We use this in step n1.
1349
1350 - gdbarch_displaced_step_fixup adjusts registers and memory after
1351 we have successfuly single-stepped the instruction, to yield the
1352 same effect the instruction would have had if we had executed it
1353 at its original address. We use this in step n3.
1354
1355 - gdbarch_displaced_step_free_closure provides cleanup.
1356
1357 The gdbarch_displaced_step_copy_insn and
1358 gdbarch_displaced_step_fixup functions must be written so that
1359 copying an instruction with gdbarch_displaced_step_copy_insn,
1360 single-stepping across the copied instruction, and then applying
1361 gdbarch_displaced_insn_fixup should have the same effects on the
1362 thread's memory and registers as stepping the instruction in place
1363 would have. Exactly which responsibilities fall to the copy and
1364 which fall to the fixup is up to the author of those functions.
1365
1366 See the comments in gdbarch.sh for details.
1367
1368 Note that displaced stepping and software single-step cannot
1369 currently be used in combination, although with some care I think
1370 they could be made to. Software single-step works by placing
1371 breakpoints on all possible subsequent instructions; if the
1372 displaced instruction is a PC-relative jump, those breakpoints
1373 could fall in very strange places --- on pages that aren't
1374 executable, or at addresses that are not proper instruction
1375 boundaries. (We do generally let other threads run while we wait
1376 to hit the software single-step breakpoint, and they might
1377 encounter such a corrupted instruction.) One way to work around
1378 this would be to have gdbarch_displaced_step_copy_insn fully
1379 simulate the effect of PC-relative instructions (and return NULL)
1380 on architectures that use software single-stepping.
1381
1382 In non-stop mode, we can have independent and simultaneous step
1383 requests, so more than one thread may need to simultaneously step
1384 over a breakpoint. The current implementation assumes there is
1385 only one scratch space per process. In this case, we have to
1386 serialize access to the scratch space. If thread A wants to step
1387 over a breakpoint, but we are currently waiting for some other
1388 thread to complete a displaced step, we leave thread A stopped and
1389 place it in the displaced_step_request_queue. Whenever a displaced
1390 step finishes, we pick the next thread in the queue and start a new
1391 displaced step operation on it. See displaced_step_prepare and
1392 displaced_step_fixup for details. */
1393
1394 struct displaced_step_request
1395 {
1396 ptid_t ptid;
1397 struct displaced_step_request *next;
1398 };
1399
1400 /* Per-inferior displaced stepping state. */
1401 struct displaced_step_inferior_state
1402 {
1403 /* Pointer to next in linked list. */
1404 struct displaced_step_inferior_state *next;
1405
1406 /* The process this displaced step state refers to. */
1407 int pid;
1408
1409 /* A queue of pending displaced stepping requests. One entry per
1410 thread that needs to do a displaced step. */
1411 struct displaced_step_request *step_request_queue;
1412
1413 /* If this is not null_ptid, this is the thread carrying out a
1414 displaced single-step in process PID. This thread's state will
1415 require fixing up once it has completed its step. */
1416 ptid_t step_ptid;
1417
1418 /* The architecture the thread had when we stepped it. */
1419 struct gdbarch *step_gdbarch;
1420
1421 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1422 for post-step cleanup. */
1423 struct displaced_step_closure *step_closure;
1424
1425 /* The address of the original instruction, and the copy we
1426 made. */
1427 CORE_ADDR step_original, step_copy;
1428
1429 /* Saved contents of copy area. */
1430 gdb_byte *step_saved_copy;
1431 };
1432
1433 /* The list of states of processes involved in displaced stepping
1434 presently. */
1435 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1436
1437 /* Get the displaced stepping state of process PID. */
1438
1439 static struct displaced_step_inferior_state *
1440 get_displaced_stepping_state (int pid)
1441 {
1442 struct displaced_step_inferior_state *state;
1443
1444 for (state = displaced_step_inferior_states;
1445 state != NULL;
1446 state = state->next)
1447 if (state->pid == pid)
1448 return state;
1449
1450 return NULL;
1451 }
1452
1453 /* Add a new displaced stepping state for process PID to the displaced
1454 stepping state list, or return a pointer to an already existing
1455 entry, if it already exists. Never returns NULL. */
1456
1457 static struct displaced_step_inferior_state *
1458 add_displaced_stepping_state (int pid)
1459 {
1460 struct displaced_step_inferior_state *state;
1461
1462 for (state = displaced_step_inferior_states;
1463 state != NULL;
1464 state = state->next)
1465 if (state->pid == pid)
1466 return state;
1467
1468 state = xcalloc (1, sizeof (*state));
1469 state->pid = pid;
1470 state->next = displaced_step_inferior_states;
1471 displaced_step_inferior_states = state;
1472
1473 return state;
1474 }
1475
1476 /* If inferior is in displaced stepping, and ADDR equals to starting address
1477 of copy area, return corresponding displaced_step_closure. Otherwise,
1478 return NULL. */
1479
1480 struct displaced_step_closure*
1481 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1482 {
1483 struct displaced_step_inferior_state *displaced
1484 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1485
1486 /* If checking the mode of displaced instruction in copy area. */
1487 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1488 && (displaced->step_copy == addr))
1489 return displaced->step_closure;
1490
1491 return NULL;
1492 }
1493
1494 /* Remove the displaced stepping state of process PID. */
1495
1496 static void
1497 remove_displaced_stepping_state (int pid)
1498 {
1499 struct displaced_step_inferior_state *it, **prev_next_p;
1500
1501 gdb_assert (pid != 0);
1502
1503 it = displaced_step_inferior_states;
1504 prev_next_p = &displaced_step_inferior_states;
1505 while (it)
1506 {
1507 if (it->pid == pid)
1508 {
1509 *prev_next_p = it->next;
1510 xfree (it);
1511 return;
1512 }
1513
1514 prev_next_p = &it->next;
1515 it = *prev_next_p;
1516 }
1517 }
1518
1519 static void
1520 infrun_inferior_exit (struct inferior *inf)
1521 {
1522 remove_displaced_stepping_state (inf->pid);
1523 }
1524
1525 /* If ON, and the architecture supports it, GDB will use displaced
1526 stepping to step over breakpoints. If OFF, or if the architecture
1527 doesn't support it, GDB will instead use the traditional
1528 hold-and-step approach. If AUTO (which is the default), GDB will
1529 decide which technique to use to step over breakpoints depending on
1530 which of all-stop or non-stop mode is active --- displaced stepping
1531 in non-stop mode; hold-and-step in all-stop mode. */
1532
1533 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1534
1535 static void
1536 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1537 struct cmd_list_element *c,
1538 const char *value)
1539 {
1540 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1541 fprintf_filtered (file,
1542 _("Debugger's willingness to use displaced stepping "
1543 "to step over breakpoints is %s (currently %s).\n"),
1544 value, non_stop ? "on" : "off");
1545 else
1546 fprintf_filtered (file,
1547 _("Debugger's willingness to use displaced stepping "
1548 "to step over breakpoints is %s.\n"), value);
1549 }
1550
1551 /* Return non-zero if displaced stepping can/should be used to step
1552 over breakpoints. */
1553
1554 static int
1555 use_displaced_stepping (struct gdbarch *gdbarch)
1556 {
1557 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1558 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1559 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1560 && find_record_target () == NULL);
1561 }
1562
1563 /* Clean out any stray displaced stepping state. */
1564 static void
1565 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1566 {
1567 /* Indicate that there is no cleanup pending. */
1568 displaced->step_ptid = null_ptid;
1569
1570 if (displaced->step_closure)
1571 {
1572 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1573 displaced->step_closure);
1574 displaced->step_closure = NULL;
1575 }
1576 }
1577
1578 static void
1579 displaced_step_clear_cleanup (void *arg)
1580 {
1581 struct displaced_step_inferior_state *state = arg;
1582
1583 displaced_step_clear (state);
1584 }
1585
1586 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1587 void
1588 displaced_step_dump_bytes (struct ui_file *file,
1589 const gdb_byte *buf,
1590 size_t len)
1591 {
1592 int i;
1593
1594 for (i = 0; i < len; i++)
1595 fprintf_unfiltered (file, "%02x ", buf[i]);
1596 fputs_unfiltered ("\n", file);
1597 }
1598
1599 /* Prepare to single-step, using displaced stepping.
1600
1601 Note that we cannot use displaced stepping when we have a signal to
1602 deliver. If we have a signal to deliver and an instruction to step
1603 over, then after the step, there will be no indication from the
1604 target whether the thread entered a signal handler or ignored the
1605 signal and stepped over the instruction successfully --- both cases
1606 result in a simple SIGTRAP. In the first case we mustn't do a
1607 fixup, and in the second case we must --- but we can't tell which.
1608 Comments in the code for 'random signals' in handle_inferior_event
1609 explain how we handle this case instead.
1610
1611 Returns 1 if preparing was successful -- this thread is going to be
1612 stepped now; or 0 if displaced stepping this thread got queued. */
1613 static int
1614 displaced_step_prepare (ptid_t ptid)
1615 {
1616 struct cleanup *old_cleanups, *ignore_cleanups;
1617 struct thread_info *tp = find_thread_ptid (ptid);
1618 struct regcache *regcache = get_thread_regcache (ptid);
1619 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1620 CORE_ADDR original, copy;
1621 ULONGEST len;
1622 struct displaced_step_closure *closure;
1623 struct displaced_step_inferior_state *displaced;
1624 int status;
1625
1626 /* We should never reach this function if the architecture does not
1627 support displaced stepping. */
1628 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1629
1630 /* Disable range stepping while executing in the scratch pad. We
1631 want a single-step even if executing the displaced instruction in
1632 the scratch buffer lands within the stepping range (e.g., a
1633 jump/branch). */
1634 tp->control.may_range_step = 0;
1635
1636 /* We have to displaced step one thread at a time, as we only have
1637 access to a single scratch space per inferior. */
1638
1639 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1640
1641 if (!ptid_equal (displaced->step_ptid, null_ptid))
1642 {
1643 /* Already waiting for a displaced step to finish. Defer this
1644 request and place in queue. */
1645 struct displaced_step_request *req, *new_req;
1646
1647 if (debug_displaced)
1648 fprintf_unfiltered (gdb_stdlog,
1649 "displaced: defering step of %s\n",
1650 target_pid_to_str (ptid));
1651
1652 new_req = xmalloc (sizeof (*new_req));
1653 new_req->ptid = ptid;
1654 new_req->next = NULL;
1655
1656 if (displaced->step_request_queue)
1657 {
1658 for (req = displaced->step_request_queue;
1659 req && req->next;
1660 req = req->next)
1661 ;
1662 req->next = new_req;
1663 }
1664 else
1665 displaced->step_request_queue = new_req;
1666
1667 return 0;
1668 }
1669 else
1670 {
1671 if (debug_displaced)
1672 fprintf_unfiltered (gdb_stdlog,
1673 "displaced: stepping %s now\n",
1674 target_pid_to_str (ptid));
1675 }
1676
1677 displaced_step_clear (displaced);
1678
1679 old_cleanups = save_inferior_ptid ();
1680 inferior_ptid = ptid;
1681
1682 original = regcache_read_pc (regcache);
1683
1684 copy = gdbarch_displaced_step_location (gdbarch);
1685 len = gdbarch_max_insn_length (gdbarch);
1686
1687 /* Save the original contents of the copy area. */
1688 displaced->step_saved_copy = xmalloc (len);
1689 ignore_cleanups = make_cleanup (free_current_contents,
1690 &displaced->step_saved_copy);
1691 status = target_read_memory (copy, displaced->step_saved_copy, len);
1692 if (status != 0)
1693 throw_error (MEMORY_ERROR,
1694 _("Error accessing memory address %s (%s) for "
1695 "displaced-stepping scratch space."),
1696 paddress (gdbarch, copy), safe_strerror (status));
1697 if (debug_displaced)
1698 {
1699 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1700 paddress (gdbarch, copy));
1701 displaced_step_dump_bytes (gdb_stdlog,
1702 displaced->step_saved_copy,
1703 len);
1704 };
1705
1706 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1707 original, copy, regcache);
1708
1709 /* We don't support the fully-simulated case at present. */
1710 gdb_assert (closure);
1711
1712 /* Save the information we need to fix things up if the step
1713 succeeds. */
1714 displaced->step_ptid = ptid;
1715 displaced->step_gdbarch = gdbarch;
1716 displaced->step_closure = closure;
1717 displaced->step_original = original;
1718 displaced->step_copy = copy;
1719
1720 make_cleanup (displaced_step_clear_cleanup, displaced);
1721
1722 /* Resume execution at the copy. */
1723 regcache_write_pc (regcache, copy);
1724
1725 discard_cleanups (ignore_cleanups);
1726
1727 do_cleanups (old_cleanups);
1728
1729 if (debug_displaced)
1730 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1731 paddress (gdbarch, copy));
1732
1733 return 1;
1734 }
1735
1736 static void
1737 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1738 const gdb_byte *myaddr, int len)
1739 {
1740 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1741
1742 inferior_ptid = ptid;
1743 write_memory (memaddr, myaddr, len);
1744 do_cleanups (ptid_cleanup);
1745 }
1746
1747 /* Restore the contents of the copy area for thread PTID. */
1748
1749 static void
1750 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1751 ptid_t ptid)
1752 {
1753 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1754
1755 write_memory_ptid (ptid, displaced->step_copy,
1756 displaced->step_saved_copy, len);
1757 if (debug_displaced)
1758 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1759 target_pid_to_str (ptid),
1760 paddress (displaced->step_gdbarch,
1761 displaced->step_copy));
1762 }
1763
1764 static void
1765 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1766 {
1767 struct cleanup *old_cleanups;
1768 struct displaced_step_inferior_state *displaced
1769 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1770
1771 /* Was any thread of this process doing a displaced step? */
1772 if (displaced == NULL)
1773 return;
1774
1775 /* Was this event for the pid we displaced? */
1776 if (ptid_equal (displaced->step_ptid, null_ptid)
1777 || ! ptid_equal (displaced->step_ptid, event_ptid))
1778 return;
1779
1780 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1781
1782 displaced_step_restore (displaced, displaced->step_ptid);
1783
1784 /* Did the instruction complete successfully? */
1785 if (signal == GDB_SIGNAL_TRAP)
1786 {
1787 /* Fix up the resulting state. */
1788 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1789 displaced->step_closure,
1790 displaced->step_original,
1791 displaced->step_copy,
1792 get_thread_regcache (displaced->step_ptid));
1793 }
1794 else
1795 {
1796 /* Since the instruction didn't complete, all we can do is
1797 relocate the PC. */
1798 struct regcache *regcache = get_thread_regcache (event_ptid);
1799 CORE_ADDR pc = regcache_read_pc (regcache);
1800
1801 pc = displaced->step_original + (pc - displaced->step_copy);
1802 regcache_write_pc (regcache, pc);
1803 }
1804
1805 do_cleanups (old_cleanups);
1806
1807 displaced->step_ptid = null_ptid;
1808
1809 /* Are there any pending displaced stepping requests? If so, run
1810 one now. Leave the state object around, since we're likely to
1811 need it again soon. */
1812 while (displaced->step_request_queue)
1813 {
1814 struct displaced_step_request *head;
1815 ptid_t ptid;
1816 struct regcache *regcache;
1817 struct gdbarch *gdbarch;
1818 CORE_ADDR actual_pc;
1819 struct address_space *aspace;
1820
1821 head = displaced->step_request_queue;
1822 ptid = head->ptid;
1823 displaced->step_request_queue = head->next;
1824 xfree (head);
1825
1826 context_switch (ptid);
1827
1828 regcache = get_thread_regcache (ptid);
1829 actual_pc = regcache_read_pc (regcache);
1830 aspace = get_regcache_aspace (regcache);
1831
1832 if (breakpoint_here_p (aspace, actual_pc))
1833 {
1834 if (debug_displaced)
1835 fprintf_unfiltered (gdb_stdlog,
1836 "displaced: stepping queued %s now\n",
1837 target_pid_to_str (ptid));
1838
1839 displaced_step_prepare (ptid);
1840
1841 gdbarch = get_regcache_arch (regcache);
1842
1843 if (debug_displaced)
1844 {
1845 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1846 gdb_byte buf[4];
1847
1848 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1849 paddress (gdbarch, actual_pc));
1850 read_memory (actual_pc, buf, sizeof (buf));
1851 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1852 }
1853
1854 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1855 displaced->step_closure))
1856 target_resume (ptid, 1, GDB_SIGNAL_0);
1857 else
1858 target_resume (ptid, 0, GDB_SIGNAL_0);
1859
1860 /* Done, we're stepping a thread. */
1861 break;
1862 }
1863 else
1864 {
1865 int step;
1866 struct thread_info *tp = inferior_thread ();
1867
1868 /* The breakpoint we were sitting under has since been
1869 removed. */
1870 tp->control.trap_expected = 0;
1871
1872 /* Go back to what we were trying to do. */
1873 step = currently_stepping (tp);
1874
1875 if (debug_displaced)
1876 fprintf_unfiltered (gdb_stdlog,
1877 "displaced: breakpoint is gone: %s, step(%d)\n",
1878 target_pid_to_str (tp->ptid), step);
1879
1880 target_resume (ptid, step, GDB_SIGNAL_0);
1881 tp->suspend.stop_signal = GDB_SIGNAL_0;
1882
1883 /* This request was discarded. See if there's any other
1884 thread waiting for its turn. */
1885 }
1886 }
1887 }
1888
1889 /* Update global variables holding ptids to hold NEW_PTID if they were
1890 holding OLD_PTID. */
1891 static void
1892 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1893 {
1894 struct displaced_step_request *it;
1895 struct displaced_step_inferior_state *displaced;
1896
1897 if (ptid_equal (inferior_ptid, old_ptid))
1898 inferior_ptid = new_ptid;
1899
1900 for (displaced = displaced_step_inferior_states;
1901 displaced;
1902 displaced = displaced->next)
1903 {
1904 if (ptid_equal (displaced->step_ptid, old_ptid))
1905 displaced->step_ptid = new_ptid;
1906
1907 for (it = displaced->step_request_queue; it; it = it->next)
1908 if (ptid_equal (it->ptid, old_ptid))
1909 it->ptid = new_ptid;
1910 }
1911 }
1912
1913 \f
1914 /* Resuming. */
1915
1916 /* Things to clean up if we QUIT out of resume (). */
1917 static void
1918 resume_cleanups (void *ignore)
1919 {
1920 if (!ptid_equal (inferior_ptid, null_ptid))
1921 delete_single_step_breakpoints (inferior_thread ());
1922
1923 normal_stop ();
1924 }
1925
1926 static const char schedlock_off[] = "off";
1927 static const char schedlock_on[] = "on";
1928 static const char schedlock_step[] = "step";
1929 static const char *const scheduler_enums[] = {
1930 schedlock_off,
1931 schedlock_on,
1932 schedlock_step,
1933 NULL
1934 };
1935 static const char *scheduler_mode = schedlock_off;
1936 static void
1937 show_scheduler_mode (struct ui_file *file, int from_tty,
1938 struct cmd_list_element *c, const char *value)
1939 {
1940 fprintf_filtered (file,
1941 _("Mode for locking scheduler "
1942 "during execution is \"%s\".\n"),
1943 value);
1944 }
1945
1946 static void
1947 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1948 {
1949 if (!target_can_lock_scheduler)
1950 {
1951 scheduler_mode = schedlock_off;
1952 error (_("Target '%s' cannot support this command."), target_shortname);
1953 }
1954 }
1955
1956 /* True if execution commands resume all threads of all processes by
1957 default; otherwise, resume only threads of the current inferior
1958 process. */
1959 int sched_multi = 0;
1960
1961 /* Try to setup for software single stepping over the specified location.
1962 Return 1 if target_resume() should use hardware single step.
1963
1964 GDBARCH the current gdbarch.
1965 PC the location to step over. */
1966
1967 static int
1968 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1969 {
1970 int hw_step = 1;
1971
1972 if (execution_direction == EXEC_FORWARD
1973 && gdbarch_software_single_step_p (gdbarch)
1974 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1975 {
1976 hw_step = 0;
1977 }
1978 return hw_step;
1979 }
1980
1981 ptid_t
1982 user_visible_resume_ptid (int step)
1983 {
1984 /* By default, resume all threads of all processes. */
1985 ptid_t resume_ptid = RESUME_ALL;
1986
1987 /* Maybe resume only all threads of the current process. */
1988 if (!sched_multi && target_supports_multi_process ())
1989 {
1990 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1991 }
1992
1993 /* Maybe resume a single thread after all. */
1994 if (non_stop)
1995 {
1996 /* With non-stop mode on, threads are always handled
1997 individually. */
1998 resume_ptid = inferior_ptid;
1999 }
2000 else if ((scheduler_mode == schedlock_on)
2001 || (scheduler_mode == schedlock_step && step))
2002 {
2003 /* User-settable 'scheduler' mode requires solo thread resume. */
2004 resume_ptid = inferior_ptid;
2005 }
2006
2007 /* We may actually resume fewer threads at first, e.g., if a thread
2008 is stopped at a breakpoint that needs stepping-off, but that
2009 should not be visible to the user/frontend, and neither should
2010 the frontend/user be allowed to proceed any of the threads that
2011 happen to be stopped for internal run control handling, if a
2012 previous command wanted them resumed. */
2013 return resume_ptid;
2014 }
2015
2016 /* Resume the inferior, but allow a QUIT. This is useful if the user
2017 wants to interrupt some lengthy single-stepping operation
2018 (for child processes, the SIGINT goes to the inferior, and so
2019 we get a SIGINT random_signal, but for remote debugging and perhaps
2020 other targets, that's not true).
2021
2022 STEP nonzero if we should step (zero to continue instead).
2023 SIG is the signal to give the inferior (zero for none). */
2024 void
2025 resume (int step, enum gdb_signal sig)
2026 {
2027 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2028 struct regcache *regcache = get_current_regcache ();
2029 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2030 struct thread_info *tp = inferior_thread ();
2031 CORE_ADDR pc = regcache_read_pc (regcache);
2032 struct address_space *aspace = get_regcache_aspace (regcache);
2033 ptid_t resume_ptid;
2034 /* From here on, this represents the caller's step vs continue
2035 request, while STEP represents what we'll actually request the
2036 target to do. STEP can decay from a step to a continue, if e.g.,
2037 we need to implement single-stepping with breakpoints (software
2038 single-step). When deciding whether "set scheduler-locking step"
2039 applies, it's the callers intention that counts. */
2040 const int entry_step = step;
2041
2042 QUIT;
2043
2044 if (current_inferior ()->waiting_for_vfork_done)
2045 {
2046 /* Don't try to single-step a vfork parent that is waiting for
2047 the child to get out of the shared memory region (by exec'ing
2048 or exiting). This is particularly important on software
2049 single-step archs, as the child process would trip on the
2050 software single step breakpoint inserted for the parent
2051 process. Since the parent will not actually execute any
2052 instruction until the child is out of the shared region (such
2053 are vfork's semantics), it is safe to simply continue it.
2054 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2055 the parent, and tell it to `keep_going', which automatically
2056 re-sets it stepping. */
2057 if (debug_infrun)
2058 fprintf_unfiltered (gdb_stdlog,
2059 "infrun: resume : clear step\n");
2060 step = 0;
2061 }
2062
2063 if (debug_infrun)
2064 fprintf_unfiltered (gdb_stdlog,
2065 "infrun: resume (step=%d, signal=%s), "
2066 "trap_expected=%d, current thread [%s] at %s\n",
2067 step, gdb_signal_to_symbol_string (sig),
2068 tp->control.trap_expected,
2069 target_pid_to_str (inferior_ptid),
2070 paddress (gdbarch, pc));
2071
2072 /* Normally, by the time we reach `resume', the breakpoints are either
2073 removed or inserted, as appropriate. The exception is if we're sitting
2074 at a permanent breakpoint; we need to step over it, but permanent
2075 breakpoints can't be removed. So we have to test for it here. */
2076 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2077 {
2078 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
2079 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2080 else
2081 error (_("\
2082 The program is stopped at a permanent breakpoint, but GDB does not know\n\
2083 how to step past a permanent breakpoint on this architecture. Try using\n\
2084 a command like `return' or `jump' to continue execution."));
2085 }
2086
2087 /* If we have a breakpoint to step over, make sure to do a single
2088 step only. Same if we have software watchpoints. */
2089 if (tp->control.trap_expected || bpstat_should_step ())
2090 tp->control.may_range_step = 0;
2091
2092 /* If enabled, step over breakpoints by executing a copy of the
2093 instruction at a different address.
2094
2095 We can't use displaced stepping when we have a signal to deliver;
2096 the comments for displaced_step_prepare explain why. The
2097 comments in the handle_inferior event for dealing with 'random
2098 signals' explain what we do instead.
2099
2100 We can't use displaced stepping when we are waiting for vfork_done
2101 event, displaced stepping breaks the vfork child similarly as single
2102 step software breakpoint. */
2103 if (use_displaced_stepping (gdbarch)
2104 && tp->control.trap_expected
2105 && sig == GDB_SIGNAL_0
2106 && !current_inferior ()->waiting_for_vfork_done)
2107 {
2108 struct displaced_step_inferior_state *displaced;
2109
2110 if (!displaced_step_prepare (inferior_ptid))
2111 {
2112 /* Got placed in displaced stepping queue. Will be resumed
2113 later when all the currently queued displaced stepping
2114 requests finish. The thread is not executing at this
2115 point, and the call to set_executing will be made later.
2116 But we need to call set_running here, since from the
2117 user/frontend's point of view, threads were set running.
2118 Unless we're calling an inferior function, as in that
2119 case we pretend the inferior doesn't run at all. */
2120 if (!tp->control.in_infcall)
2121 set_running (user_visible_resume_ptid (entry_step), 1);
2122 discard_cleanups (old_cleanups);
2123 return;
2124 }
2125
2126 /* Update pc to reflect the new address from which we will execute
2127 instructions due to displaced stepping. */
2128 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2129
2130 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2131 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2132 displaced->step_closure);
2133 }
2134
2135 /* Do we need to do it the hard way, w/temp breakpoints? */
2136 else if (step)
2137 step = maybe_software_singlestep (gdbarch, pc);
2138
2139 /* Currently, our software single-step implementation leads to different
2140 results than hardware single-stepping in one situation: when stepping
2141 into delivering a signal which has an associated signal handler,
2142 hardware single-step will stop at the first instruction of the handler,
2143 while software single-step will simply skip execution of the handler.
2144
2145 For now, this difference in behavior is accepted since there is no
2146 easy way to actually implement single-stepping into a signal handler
2147 without kernel support.
2148
2149 However, there is one scenario where this difference leads to follow-on
2150 problems: if we're stepping off a breakpoint by removing all breakpoints
2151 and then single-stepping. In this case, the software single-step
2152 behavior means that even if there is a *breakpoint* in the signal
2153 handler, GDB still would not stop.
2154
2155 Fortunately, we can at least fix this particular issue. We detect
2156 here the case where we are about to deliver a signal while software
2157 single-stepping with breakpoints removed. In this situation, we
2158 revert the decisions to remove all breakpoints and insert single-
2159 step breakpoints, and instead we install a step-resume breakpoint
2160 at the current address, deliver the signal without stepping, and
2161 once we arrive back at the step-resume breakpoint, actually step
2162 over the breakpoint we originally wanted to step over. */
2163 if (thread_has_single_step_breakpoints_set (tp)
2164 && sig != GDB_SIGNAL_0
2165 && step_over_info_valid_p ())
2166 {
2167 /* If we have nested signals or a pending signal is delivered
2168 immediately after a handler returns, might might already have
2169 a step-resume breakpoint set on the earlier handler. We cannot
2170 set another step-resume breakpoint; just continue on until the
2171 original breakpoint is hit. */
2172 if (tp->control.step_resume_breakpoint == NULL)
2173 {
2174 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2175 tp->step_after_step_resume_breakpoint = 1;
2176 }
2177
2178 delete_single_step_breakpoints (tp);
2179
2180 clear_step_over_info ();
2181 tp->control.trap_expected = 0;
2182
2183 insert_breakpoints ();
2184 }
2185
2186 /* If STEP is set, it's a request to use hardware stepping
2187 facilities. But in that case, we should never
2188 use singlestep breakpoint. */
2189 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2190
2191 /* Decide the set of threads to ask the target to resume. Start
2192 by assuming everything will be resumed, than narrow the set
2193 by applying increasingly restricting conditions. */
2194 resume_ptid = user_visible_resume_ptid (entry_step);
2195
2196 /* Even if RESUME_PTID is a wildcard, and we end up resuming less
2197 (e.g., we might need to step over a breakpoint), from the
2198 user/frontend's point of view, all threads in RESUME_PTID are now
2199 running. Unless we're calling an inferior function, as in that
2200 case pretend we inferior doesn't run at all. */
2201 if (!tp->control.in_infcall)
2202 set_running (resume_ptid, 1);
2203
2204 /* Maybe resume a single thread after all. */
2205 if ((step || thread_has_single_step_breakpoints_set (tp))
2206 && tp->control.trap_expected)
2207 {
2208 /* We're allowing a thread to run past a breakpoint it has
2209 hit, by single-stepping the thread with the breakpoint
2210 removed. In which case, we need to single-step only this
2211 thread, and keep others stopped, as they can miss this
2212 breakpoint if allowed to run. */
2213 resume_ptid = inferior_ptid;
2214 }
2215
2216 if (execution_direction != EXEC_REVERSE
2217 && step && breakpoint_inserted_here_p (aspace, pc))
2218 {
2219 /* The only case we currently need to step a breakpoint
2220 instruction is when we have a signal to deliver. See
2221 handle_signal_stop where we handle random signals that could
2222 take out us out of the stepping range. Normally, in that
2223 case we end up continuing (instead of stepping) over the
2224 signal handler with a breakpoint at PC, but there are cases
2225 where we should _always_ single-step, even if we have a
2226 step-resume breakpoint, like when a software watchpoint is
2227 set. Assuming single-stepping and delivering a signal at the
2228 same time would takes us to the signal handler, then we could
2229 have removed the breakpoint at PC to step over it. However,
2230 some hardware step targets (like e.g., Mac OS) can't step
2231 into signal handlers, and for those, we need to leave the
2232 breakpoint at PC inserted, as otherwise if the handler
2233 recurses and executes PC again, it'll miss the breakpoint.
2234 So we leave the breakpoint inserted anyway, but we need to
2235 record that we tried to step a breakpoint instruction, so
2236 that adjust_pc_after_break doesn't end up confused. */
2237 gdb_assert (sig != GDB_SIGNAL_0);
2238
2239 tp->stepped_breakpoint = 1;
2240
2241 /* Most targets can step a breakpoint instruction, thus
2242 executing it normally. But if this one cannot, just
2243 continue and we will hit it anyway. */
2244 if (gdbarch_cannot_step_breakpoint (gdbarch))
2245 step = 0;
2246 }
2247
2248 if (debug_displaced
2249 && use_displaced_stepping (gdbarch)
2250 && tp->control.trap_expected)
2251 {
2252 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
2253 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2254 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2255 gdb_byte buf[4];
2256
2257 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2258 paddress (resume_gdbarch, actual_pc));
2259 read_memory (actual_pc, buf, sizeof (buf));
2260 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2261 }
2262
2263 if (tp->control.may_range_step)
2264 {
2265 /* If we're resuming a thread with the PC out of the step
2266 range, then we're doing some nested/finer run control
2267 operation, like stepping the thread out of the dynamic
2268 linker or the displaced stepping scratch pad. We
2269 shouldn't have allowed a range step then. */
2270 gdb_assert (pc_in_thread_step_range (pc, tp));
2271 }
2272
2273 /* Install inferior's terminal modes. */
2274 target_terminal_inferior ();
2275
2276 /* Avoid confusing the next resume, if the next stop/resume
2277 happens to apply to another thread. */
2278 tp->suspend.stop_signal = GDB_SIGNAL_0;
2279
2280 /* Advise target which signals may be handled silently. If we have
2281 removed breakpoints because we are stepping over one (in any
2282 thread), we need to receive all signals to avoid accidentally
2283 skipping a breakpoint during execution of a signal handler. */
2284 if (step_over_info_valid_p ())
2285 target_pass_signals (0, NULL);
2286 else
2287 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2288
2289 target_resume (resume_ptid, step, sig);
2290
2291 discard_cleanups (old_cleanups);
2292 }
2293 \f
2294 /* Proceeding. */
2295
2296 /* Clear out all variables saying what to do when inferior is continued.
2297 First do this, then set the ones you want, then call `proceed'. */
2298
2299 static void
2300 clear_proceed_status_thread (struct thread_info *tp)
2301 {
2302 if (debug_infrun)
2303 fprintf_unfiltered (gdb_stdlog,
2304 "infrun: clear_proceed_status_thread (%s)\n",
2305 target_pid_to_str (tp->ptid));
2306
2307 /* If this signal should not be seen by program, give it zero.
2308 Used for debugging signals. */
2309 if (!signal_pass_state (tp->suspend.stop_signal))
2310 tp->suspend.stop_signal = GDB_SIGNAL_0;
2311
2312 tp->control.trap_expected = 0;
2313 tp->control.step_range_start = 0;
2314 tp->control.step_range_end = 0;
2315 tp->control.may_range_step = 0;
2316 tp->control.step_frame_id = null_frame_id;
2317 tp->control.step_stack_frame_id = null_frame_id;
2318 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2319 tp->stop_requested = 0;
2320
2321 tp->control.stop_step = 0;
2322
2323 tp->control.proceed_to_finish = 0;
2324
2325 tp->control.command_interp = NULL;
2326
2327 /* Discard any remaining commands or status from previous stop. */
2328 bpstat_clear (&tp->control.stop_bpstat);
2329 }
2330
2331 void
2332 clear_proceed_status (int step)
2333 {
2334 if (!non_stop)
2335 {
2336 struct thread_info *tp;
2337 ptid_t resume_ptid;
2338
2339 resume_ptid = user_visible_resume_ptid (step);
2340
2341 /* In all-stop mode, delete the per-thread status of all threads
2342 we're about to resume, implicitly and explicitly. */
2343 ALL_NON_EXITED_THREADS (tp)
2344 {
2345 if (!ptid_match (tp->ptid, resume_ptid))
2346 continue;
2347 clear_proceed_status_thread (tp);
2348 }
2349 }
2350
2351 if (!ptid_equal (inferior_ptid, null_ptid))
2352 {
2353 struct inferior *inferior;
2354
2355 if (non_stop)
2356 {
2357 /* If in non-stop mode, only delete the per-thread status of
2358 the current thread. */
2359 clear_proceed_status_thread (inferior_thread ());
2360 }
2361
2362 inferior = current_inferior ();
2363 inferior->control.stop_soon = NO_STOP_QUIETLY;
2364 }
2365
2366 stop_after_trap = 0;
2367
2368 clear_step_over_info ();
2369
2370 observer_notify_about_to_proceed ();
2371
2372 if (stop_registers)
2373 {
2374 regcache_xfree (stop_registers);
2375 stop_registers = NULL;
2376 }
2377 }
2378
2379 /* Returns true if TP is still stopped at a breakpoint that needs
2380 stepping-over in order to make progress. If the breakpoint is gone
2381 meanwhile, we can skip the whole step-over dance. */
2382
2383 static int
2384 thread_still_needs_step_over (struct thread_info *tp)
2385 {
2386 if (tp->stepping_over_breakpoint)
2387 {
2388 struct regcache *regcache = get_thread_regcache (tp->ptid);
2389
2390 if (breakpoint_here_p (get_regcache_aspace (regcache),
2391 regcache_read_pc (regcache)))
2392 return 1;
2393
2394 tp->stepping_over_breakpoint = 0;
2395 }
2396
2397 return 0;
2398 }
2399
2400 /* Returns true if scheduler locking applies. STEP indicates whether
2401 we're about to do a step/next-like command to a thread. */
2402
2403 static int
2404 schedlock_applies (int step)
2405 {
2406 return (scheduler_mode == schedlock_on
2407 || (scheduler_mode == schedlock_step
2408 && step));
2409 }
2410
2411 /* Look a thread other than EXCEPT that has previously reported a
2412 breakpoint event, and thus needs a step-over in order to make
2413 progress. Returns NULL is none is found. STEP indicates whether
2414 we're about to step the current thread, in order to decide whether
2415 "set scheduler-locking step" applies. */
2416
2417 static struct thread_info *
2418 find_thread_needs_step_over (int step, struct thread_info *except)
2419 {
2420 struct thread_info *tp, *current;
2421
2422 /* With non-stop mode on, threads are always handled individually. */
2423 gdb_assert (! non_stop);
2424
2425 current = inferior_thread ();
2426
2427 /* If scheduler locking applies, we can avoid iterating over all
2428 threads. */
2429 if (schedlock_applies (step))
2430 {
2431 if (except != current
2432 && thread_still_needs_step_over (current))
2433 return current;
2434
2435 return NULL;
2436 }
2437
2438 ALL_NON_EXITED_THREADS (tp)
2439 {
2440 /* Ignore the EXCEPT thread. */
2441 if (tp == except)
2442 continue;
2443 /* Ignore threads of processes we're not resuming. */
2444 if (!sched_multi
2445 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
2446 continue;
2447
2448 if (thread_still_needs_step_over (tp))
2449 return tp;
2450 }
2451
2452 return NULL;
2453 }
2454
2455 /* Basic routine for continuing the program in various fashions.
2456
2457 ADDR is the address to resume at, or -1 for resume where stopped.
2458 SIGGNAL is the signal to give it, or 0 for none,
2459 or -1 for act according to how it stopped.
2460 STEP is nonzero if should trap after one instruction.
2461 -1 means return after that and print nothing.
2462 You should probably set various step_... variables
2463 before calling here, if you are stepping.
2464
2465 You should call clear_proceed_status before calling proceed. */
2466
2467 void
2468 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2469 {
2470 struct regcache *regcache;
2471 struct gdbarch *gdbarch;
2472 struct thread_info *tp;
2473 CORE_ADDR pc;
2474 struct address_space *aspace;
2475
2476 /* If we're stopped at a fork/vfork, follow the branch set by the
2477 "set follow-fork-mode" command; otherwise, we'll just proceed
2478 resuming the current thread. */
2479 if (!follow_fork ())
2480 {
2481 /* The target for some reason decided not to resume. */
2482 normal_stop ();
2483 if (target_can_async_p ())
2484 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2485 return;
2486 }
2487
2488 /* We'll update this if & when we switch to a new thread. */
2489 previous_inferior_ptid = inferior_ptid;
2490
2491 regcache = get_current_regcache ();
2492 gdbarch = get_regcache_arch (regcache);
2493 aspace = get_regcache_aspace (regcache);
2494 pc = regcache_read_pc (regcache);
2495 tp = inferior_thread ();
2496
2497 if (step > 0)
2498 step_start_function = find_pc_function (pc);
2499 if (step < 0)
2500 stop_after_trap = 1;
2501
2502 /* Fill in with reasonable starting values. */
2503 init_thread_stepping_state (tp);
2504
2505 if (addr == (CORE_ADDR) -1)
2506 {
2507 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2508 && execution_direction != EXEC_REVERSE)
2509 /* There is a breakpoint at the address we will resume at,
2510 step one instruction before inserting breakpoints so that
2511 we do not stop right away (and report a second hit at this
2512 breakpoint).
2513
2514 Note, we don't do this in reverse, because we won't
2515 actually be executing the breakpoint insn anyway.
2516 We'll be (un-)executing the previous instruction. */
2517 tp->stepping_over_breakpoint = 1;
2518 else if (gdbarch_single_step_through_delay_p (gdbarch)
2519 && gdbarch_single_step_through_delay (gdbarch,
2520 get_current_frame ()))
2521 /* We stepped onto an instruction that needs to be stepped
2522 again before re-inserting the breakpoint, do so. */
2523 tp->stepping_over_breakpoint = 1;
2524 }
2525 else
2526 {
2527 regcache_write_pc (regcache, addr);
2528 }
2529
2530 if (siggnal != GDB_SIGNAL_DEFAULT)
2531 tp->suspend.stop_signal = siggnal;
2532
2533 /* Record the interpreter that issued the execution command that
2534 caused this thread to resume. If the top level interpreter is
2535 MI/async, and the execution command was a CLI command
2536 (next/step/etc.), we'll want to print stop event output to the MI
2537 console channel (the stepped-to line, etc.), as if the user
2538 entered the execution command on a real GDB console. */
2539 inferior_thread ()->control.command_interp = command_interp ();
2540
2541 if (debug_infrun)
2542 fprintf_unfiltered (gdb_stdlog,
2543 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2544 paddress (gdbarch, addr),
2545 gdb_signal_to_symbol_string (siggnal), step);
2546
2547 if (non_stop)
2548 /* In non-stop, each thread is handled individually. The context
2549 must already be set to the right thread here. */
2550 ;
2551 else
2552 {
2553 struct thread_info *step_over;
2554
2555 /* In a multi-threaded task we may select another thread and
2556 then continue or step.
2557
2558 But if the old thread was stopped at a breakpoint, it will
2559 immediately cause another breakpoint stop without any
2560 execution (i.e. it will report a breakpoint hit incorrectly).
2561 So we must step over it first.
2562
2563 Look for a thread other than the current (TP) that reported a
2564 breakpoint hit and hasn't been resumed yet since. */
2565 step_over = find_thread_needs_step_over (step, tp);
2566 if (step_over != NULL)
2567 {
2568 if (debug_infrun)
2569 fprintf_unfiltered (gdb_stdlog,
2570 "infrun: need to step-over [%s] first\n",
2571 target_pid_to_str (step_over->ptid));
2572
2573 /* Store the prev_pc for the stepping thread too, needed by
2574 switch_back_to_stepping thread. */
2575 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2576 switch_to_thread (step_over->ptid);
2577 tp = step_over;
2578 }
2579 }
2580
2581 /* If we need to step over a breakpoint, and we're not using
2582 displaced stepping to do so, insert all breakpoints (watchpoints,
2583 etc.) but the one we're stepping over, step one instruction, and
2584 then re-insert the breakpoint when that step is finished. */
2585 if (tp->stepping_over_breakpoint && !use_displaced_stepping (gdbarch))
2586 {
2587 struct regcache *regcache = get_current_regcache ();
2588
2589 set_step_over_info (get_regcache_aspace (regcache),
2590 regcache_read_pc (regcache), 0);
2591 }
2592 else
2593 clear_step_over_info ();
2594
2595 insert_breakpoints ();
2596
2597 tp->control.trap_expected = tp->stepping_over_breakpoint;
2598
2599 annotate_starting ();
2600
2601 /* Make sure that output from GDB appears before output from the
2602 inferior. */
2603 gdb_flush (gdb_stdout);
2604
2605 /* Refresh prev_pc value just prior to resuming. This used to be
2606 done in stop_waiting, however, setting prev_pc there did not handle
2607 scenarios such as inferior function calls or returning from
2608 a function via the return command. In those cases, the prev_pc
2609 value was not set properly for subsequent commands. The prev_pc value
2610 is used to initialize the starting line number in the ecs. With an
2611 invalid value, the gdb next command ends up stopping at the position
2612 represented by the next line table entry past our start position.
2613 On platforms that generate one line table entry per line, this
2614 is not a problem. However, on the ia64, the compiler generates
2615 extraneous line table entries that do not increase the line number.
2616 When we issue the gdb next command on the ia64 after an inferior call
2617 or a return command, we often end up a few instructions forward, still
2618 within the original line we started.
2619
2620 An attempt was made to refresh the prev_pc at the same time the
2621 execution_control_state is initialized (for instance, just before
2622 waiting for an inferior event). But this approach did not work
2623 because of platforms that use ptrace, where the pc register cannot
2624 be read unless the inferior is stopped. At that point, we are not
2625 guaranteed the inferior is stopped and so the regcache_read_pc() call
2626 can fail. Setting the prev_pc value here ensures the value is updated
2627 correctly when the inferior is stopped. */
2628 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2629
2630 /* Resume inferior. */
2631 resume (tp->control.trap_expected || step || bpstat_should_step (),
2632 tp->suspend.stop_signal);
2633
2634 /* Wait for it to stop (if not standalone)
2635 and in any case decode why it stopped, and act accordingly. */
2636 /* Do this only if we are not using the event loop, or if the target
2637 does not support asynchronous execution. */
2638 if (!target_can_async_p ())
2639 {
2640 wait_for_inferior ();
2641 normal_stop ();
2642 }
2643 }
2644 \f
2645
2646 /* Start remote-debugging of a machine over a serial link. */
2647
2648 void
2649 start_remote (int from_tty)
2650 {
2651 struct inferior *inferior;
2652
2653 inferior = current_inferior ();
2654 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2655
2656 /* Always go on waiting for the target, regardless of the mode. */
2657 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2658 indicate to wait_for_inferior that a target should timeout if
2659 nothing is returned (instead of just blocking). Because of this,
2660 targets expecting an immediate response need to, internally, set
2661 things up so that the target_wait() is forced to eventually
2662 timeout. */
2663 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2664 differentiate to its caller what the state of the target is after
2665 the initial open has been performed. Here we're assuming that
2666 the target has stopped. It should be possible to eventually have
2667 target_open() return to the caller an indication that the target
2668 is currently running and GDB state should be set to the same as
2669 for an async run. */
2670 wait_for_inferior ();
2671
2672 /* Now that the inferior has stopped, do any bookkeeping like
2673 loading shared libraries. We want to do this before normal_stop,
2674 so that the displayed frame is up to date. */
2675 post_create_inferior (&current_target, from_tty);
2676
2677 normal_stop ();
2678 }
2679
2680 /* Initialize static vars when a new inferior begins. */
2681
2682 void
2683 init_wait_for_inferior (void)
2684 {
2685 /* These are meaningless until the first time through wait_for_inferior. */
2686
2687 breakpoint_init_inferior (inf_starting);
2688
2689 clear_proceed_status (0);
2690
2691 target_last_wait_ptid = minus_one_ptid;
2692
2693 previous_inferior_ptid = inferior_ptid;
2694
2695 /* Discard any skipped inlined frames. */
2696 clear_inline_frame_state (minus_one_ptid);
2697 }
2698
2699 \f
2700 /* This enum encodes possible reasons for doing a target_wait, so that
2701 wfi can call target_wait in one place. (Ultimately the call will be
2702 moved out of the infinite loop entirely.) */
2703
2704 enum infwait_states
2705 {
2706 infwait_normal_state,
2707 infwait_step_watch_state,
2708 infwait_nonstep_watch_state
2709 };
2710
2711 /* Current inferior wait state. */
2712 static enum infwait_states infwait_state;
2713
2714 /* Data to be passed around while handling an event. This data is
2715 discarded between events. */
2716 struct execution_control_state
2717 {
2718 ptid_t ptid;
2719 /* The thread that got the event, if this was a thread event; NULL
2720 otherwise. */
2721 struct thread_info *event_thread;
2722
2723 struct target_waitstatus ws;
2724 int stop_func_filled_in;
2725 CORE_ADDR stop_func_start;
2726 CORE_ADDR stop_func_end;
2727 const char *stop_func_name;
2728 int wait_some_more;
2729
2730 /* True if the event thread hit the single-step breakpoint of
2731 another thread. Thus the event doesn't cause a stop, the thread
2732 needs to be single-stepped past the single-step breakpoint before
2733 we can switch back to the original stepping thread. */
2734 int hit_singlestep_breakpoint;
2735 };
2736
2737 static void handle_inferior_event (struct execution_control_state *ecs);
2738
2739 static void handle_step_into_function (struct gdbarch *gdbarch,
2740 struct execution_control_state *ecs);
2741 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2742 struct execution_control_state *ecs);
2743 static void handle_signal_stop (struct execution_control_state *ecs);
2744 static void check_exception_resume (struct execution_control_state *,
2745 struct frame_info *);
2746
2747 static void end_stepping_range (struct execution_control_state *ecs);
2748 static void stop_waiting (struct execution_control_state *ecs);
2749 static void prepare_to_wait (struct execution_control_state *ecs);
2750 static void keep_going (struct execution_control_state *ecs);
2751 static void process_event_stop_test (struct execution_control_state *ecs);
2752 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
2753
2754 /* Callback for iterate over threads. If the thread is stopped, but
2755 the user/frontend doesn't know about that yet, go through
2756 normal_stop, as if the thread had just stopped now. ARG points at
2757 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2758 ptid_is_pid(PTID) is true, applies to all threads of the process
2759 pointed at by PTID. Otherwise, apply only to the thread pointed by
2760 PTID. */
2761
2762 static int
2763 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2764 {
2765 ptid_t ptid = * (ptid_t *) arg;
2766
2767 if ((ptid_equal (info->ptid, ptid)
2768 || ptid_equal (minus_one_ptid, ptid)
2769 || (ptid_is_pid (ptid)
2770 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2771 && is_running (info->ptid)
2772 && !is_executing (info->ptid))
2773 {
2774 struct cleanup *old_chain;
2775 struct execution_control_state ecss;
2776 struct execution_control_state *ecs = &ecss;
2777
2778 memset (ecs, 0, sizeof (*ecs));
2779
2780 old_chain = make_cleanup_restore_current_thread ();
2781
2782 overlay_cache_invalid = 1;
2783 /* Flush target cache before starting to handle each event.
2784 Target was running and cache could be stale. This is just a
2785 heuristic. Running threads may modify target memory, but we
2786 don't get any event. */
2787 target_dcache_invalidate ();
2788
2789 /* Go through handle_inferior_event/normal_stop, so we always
2790 have consistent output as if the stop event had been
2791 reported. */
2792 ecs->ptid = info->ptid;
2793 ecs->event_thread = find_thread_ptid (info->ptid);
2794 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2795 ecs->ws.value.sig = GDB_SIGNAL_0;
2796
2797 handle_inferior_event (ecs);
2798
2799 if (!ecs->wait_some_more)
2800 {
2801 struct thread_info *tp;
2802
2803 normal_stop ();
2804
2805 /* Finish off the continuations. */
2806 tp = inferior_thread ();
2807 do_all_intermediate_continuations_thread (tp, 1);
2808 do_all_continuations_thread (tp, 1);
2809 }
2810
2811 do_cleanups (old_chain);
2812 }
2813
2814 return 0;
2815 }
2816
2817 /* This function is attached as a "thread_stop_requested" observer.
2818 Cleanup local state that assumed the PTID was to be resumed, and
2819 report the stop to the frontend. */
2820
2821 static void
2822 infrun_thread_stop_requested (ptid_t ptid)
2823 {
2824 struct displaced_step_inferior_state *displaced;
2825
2826 /* PTID was requested to stop. Remove it from the displaced
2827 stepping queue, so we don't try to resume it automatically. */
2828
2829 for (displaced = displaced_step_inferior_states;
2830 displaced;
2831 displaced = displaced->next)
2832 {
2833 struct displaced_step_request *it, **prev_next_p;
2834
2835 it = displaced->step_request_queue;
2836 prev_next_p = &displaced->step_request_queue;
2837 while (it)
2838 {
2839 if (ptid_match (it->ptid, ptid))
2840 {
2841 *prev_next_p = it->next;
2842 it->next = NULL;
2843 xfree (it);
2844 }
2845 else
2846 {
2847 prev_next_p = &it->next;
2848 }
2849
2850 it = *prev_next_p;
2851 }
2852 }
2853
2854 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2855 }
2856
2857 static void
2858 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2859 {
2860 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2861 nullify_last_target_wait_ptid ();
2862 }
2863
2864 /* Delete the step resume, single-step and longjmp/exception resume
2865 breakpoints of TP. */
2866
2867 static void
2868 delete_thread_infrun_breakpoints (struct thread_info *tp)
2869 {
2870 delete_step_resume_breakpoint (tp);
2871 delete_exception_resume_breakpoint (tp);
2872 delete_single_step_breakpoints (tp);
2873 }
2874
2875 /* If the target still has execution, call FUNC for each thread that
2876 just stopped. In all-stop, that's all the non-exited threads; in
2877 non-stop, that's the current thread, only. */
2878
2879 typedef void (*for_each_just_stopped_thread_callback_func)
2880 (struct thread_info *tp);
2881
2882 static void
2883 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
2884 {
2885 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
2886 return;
2887
2888 if (non_stop)
2889 {
2890 /* If in non-stop mode, only the current thread stopped. */
2891 func (inferior_thread ());
2892 }
2893 else
2894 {
2895 struct thread_info *tp;
2896
2897 /* In all-stop mode, all threads have stopped. */
2898 ALL_NON_EXITED_THREADS (tp)
2899 {
2900 func (tp);
2901 }
2902 }
2903 }
2904
2905 /* Delete the step resume and longjmp/exception resume breakpoints of
2906 the threads that just stopped. */
2907
2908 static void
2909 delete_just_stopped_threads_infrun_breakpoints (void)
2910 {
2911 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
2912 }
2913
2914 /* Delete the single-step breakpoints of the threads that just
2915 stopped. */
2916
2917 static void
2918 delete_just_stopped_threads_single_step_breakpoints (void)
2919 {
2920 for_each_just_stopped_thread (delete_single_step_breakpoints);
2921 }
2922
2923 /* A cleanup wrapper. */
2924
2925 static void
2926 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
2927 {
2928 delete_just_stopped_threads_infrun_breakpoints ();
2929 }
2930
2931 /* Pretty print the results of target_wait, for debugging purposes. */
2932
2933 static void
2934 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2935 const struct target_waitstatus *ws)
2936 {
2937 char *status_string = target_waitstatus_to_string (ws);
2938 struct ui_file *tmp_stream = mem_fileopen ();
2939 char *text;
2940
2941 /* The text is split over several lines because it was getting too long.
2942 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2943 output as a unit; we want only one timestamp printed if debug_timestamp
2944 is set. */
2945
2946 fprintf_unfiltered (tmp_stream,
2947 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
2948 if (ptid_get_pid (waiton_ptid) != -1)
2949 fprintf_unfiltered (tmp_stream,
2950 " [%s]", target_pid_to_str (waiton_ptid));
2951 fprintf_unfiltered (tmp_stream, ", status) =\n");
2952 fprintf_unfiltered (tmp_stream,
2953 "infrun: %d [%s],\n",
2954 ptid_get_pid (result_ptid),
2955 target_pid_to_str (result_ptid));
2956 fprintf_unfiltered (tmp_stream,
2957 "infrun: %s\n",
2958 status_string);
2959
2960 text = ui_file_xstrdup (tmp_stream, NULL);
2961
2962 /* This uses %s in part to handle %'s in the text, but also to avoid
2963 a gcc error: the format attribute requires a string literal. */
2964 fprintf_unfiltered (gdb_stdlog, "%s", text);
2965
2966 xfree (status_string);
2967 xfree (text);
2968 ui_file_delete (tmp_stream);
2969 }
2970
2971 /* Prepare and stabilize the inferior for detaching it. E.g.,
2972 detaching while a thread is displaced stepping is a recipe for
2973 crashing it, as nothing would readjust the PC out of the scratch
2974 pad. */
2975
2976 void
2977 prepare_for_detach (void)
2978 {
2979 struct inferior *inf = current_inferior ();
2980 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2981 struct cleanup *old_chain_1;
2982 struct displaced_step_inferior_state *displaced;
2983
2984 displaced = get_displaced_stepping_state (inf->pid);
2985
2986 /* Is any thread of this process displaced stepping? If not,
2987 there's nothing else to do. */
2988 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2989 return;
2990
2991 if (debug_infrun)
2992 fprintf_unfiltered (gdb_stdlog,
2993 "displaced-stepping in-process while detaching");
2994
2995 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2996 inf->detaching = 1;
2997
2998 while (!ptid_equal (displaced->step_ptid, null_ptid))
2999 {
3000 struct cleanup *old_chain_2;
3001 struct execution_control_state ecss;
3002 struct execution_control_state *ecs;
3003
3004 ecs = &ecss;
3005 memset (ecs, 0, sizeof (*ecs));
3006
3007 overlay_cache_invalid = 1;
3008 /* Flush target cache before starting to handle each event.
3009 Target was running and cache could be stale. This is just a
3010 heuristic. Running threads may modify target memory, but we
3011 don't get any event. */
3012 target_dcache_invalidate ();
3013
3014 if (deprecated_target_wait_hook)
3015 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
3016 else
3017 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
3018
3019 if (debug_infrun)
3020 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3021
3022 /* If an error happens while handling the event, propagate GDB's
3023 knowledge of the executing state to the frontend/user running
3024 state. */
3025 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3026 &minus_one_ptid);
3027
3028 /* Now figure out what to do with the result of the result. */
3029 handle_inferior_event (ecs);
3030
3031 /* No error, don't finish the state yet. */
3032 discard_cleanups (old_chain_2);
3033
3034 /* Breakpoints and watchpoints are not installed on the target
3035 at this point, and signals are passed directly to the
3036 inferior, so this must mean the process is gone. */
3037 if (!ecs->wait_some_more)
3038 {
3039 discard_cleanups (old_chain_1);
3040 error (_("Program exited while detaching"));
3041 }
3042 }
3043
3044 discard_cleanups (old_chain_1);
3045 }
3046
3047 /* Wait for control to return from inferior to debugger.
3048
3049 If inferior gets a signal, we may decide to start it up again
3050 instead of returning. That is why there is a loop in this function.
3051 When this function actually returns it means the inferior
3052 should be left stopped and GDB should read more commands. */
3053
3054 void
3055 wait_for_inferior (void)
3056 {
3057 struct cleanup *old_cleanups;
3058
3059 if (debug_infrun)
3060 fprintf_unfiltered
3061 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3062
3063 old_cleanups
3064 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3065 NULL);
3066
3067 while (1)
3068 {
3069 struct execution_control_state ecss;
3070 struct execution_control_state *ecs = &ecss;
3071 struct cleanup *old_chain;
3072 ptid_t waiton_ptid = minus_one_ptid;
3073
3074 memset (ecs, 0, sizeof (*ecs));
3075
3076 overlay_cache_invalid = 1;
3077
3078 /* Flush target cache before starting to handle each event.
3079 Target was running and cache could be stale. This is just a
3080 heuristic. Running threads may modify target memory, but we
3081 don't get any event. */
3082 target_dcache_invalidate ();
3083
3084 if (deprecated_target_wait_hook)
3085 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
3086 else
3087 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
3088
3089 if (debug_infrun)
3090 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3091
3092 /* If an error happens while handling the event, propagate GDB's
3093 knowledge of the executing state to the frontend/user running
3094 state. */
3095 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3096
3097 /* Now figure out what to do with the result of the result. */
3098 handle_inferior_event (ecs);
3099
3100 /* No error, don't finish the state yet. */
3101 discard_cleanups (old_chain);
3102
3103 if (!ecs->wait_some_more)
3104 break;
3105 }
3106
3107 do_cleanups (old_cleanups);
3108 }
3109
3110 /* Cleanup that reinstalls the readline callback handler, if the
3111 target is running in the background. If while handling the target
3112 event something triggered a secondary prompt, like e.g., a
3113 pagination prompt, we'll have removed the callback handler (see
3114 gdb_readline_wrapper_line). Need to do this as we go back to the
3115 event loop, ready to process further input. Note this has no
3116 effect if the handler hasn't actually been removed, because calling
3117 rl_callback_handler_install resets the line buffer, thus losing
3118 input. */
3119
3120 static void
3121 reinstall_readline_callback_handler_cleanup (void *arg)
3122 {
3123 if (async_command_editing_p && !sync_execution)
3124 gdb_rl_callback_handler_reinstall ();
3125 }
3126
3127 /* Asynchronous version of wait_for_inferior. It is called by the
3128 event loop whenever a change of state is detected on the file
3129 descriptor corresponding to the target. It can be called more than
3130 once to complete a single execution command. In such cases we need
3131 to keep the state in a global variable ECSS. If it is the last time
3132 that this function is called for a single execution command, then
3133 report to the user that the inferior has stopped, and do the
3134 necessary cleanups. */
3135
3136 void
3137 fetch_inferior_event (void *client_data)
3138 {
3139 struct execution_control_state ecss;
3140 struct execution_control_state *ecs = &ecss;
3141 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3142 struct cleanup *ts_old_chain;
3143 int was_sync = sync_execution;
3144 int cmd_done = 0;
3145 ptid_t waiton_ptid = minus_one_ptid;
3146
3147 memset (ecs, 0, sizeof (*ecs));
3148
3149 /* End up with readline processing input, if necessary. */
3150 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3151
3152 /* We're handling a live event, so make sure we're doing live
3153 debugging. If we're looking at traceframes while the target is
3154 running, we're going to need to get back to that mode after
3155 handling the event. */
3156 if (non_stop)
3157 {
3158 make_cleanup_restore_current_traceframe ();
3159 set_current_traceframe (-1);
3160 }
3161
3162 if (non_stop)
3163 /* In non-stop mode, the user/frontend should not notice a thread
3164 switch due to internal events. Make sure we reverse to the
3165 user selected thread and frame after handling the event and
3166 running any breakpoint commands. */
3167 make_cleanup_restore_current_thread ();
3168
3169 overlay_cache_invalid = 1;
3170 /* Flush target cache before starting to handle each event. Target
3171 was running and cache could be stale. This is just a heuristic.
3172 Running threads may modify target memory, but we don't get any
3173 event. */
3174 target_dcache_invalidate ();
3175
3176 make_cleanup_restore_integer (&execution_direction);
3177 execution_direction = target_execution_direction ();
3178
3179 if (deprecated_target_wait_hook)
3180 ecs->ptid =
3181 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
3182 else
3183 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
3184
3185 if (debug_infrun)
3186 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3187
3188 /* If an error happens while handling the event, propagate GDB's
3189 knowledge of the executing state to the frontend/user running
3190 state. */
3191 if (!non_stop)
3192 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3193 else
3194 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3195
3196 /* Get executed before make_cleanup_restore_current_thread above to apply
3197 still for the thread which has thrown the exception. */
3198 make_bpstat_clear_actions_cleanup ();
3199
3200 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3201
3202 /* Now figure out what to do with the result of the result. */
3203 handle_inferior_event (ecs);
3204
3205 if (!ecs->wait_some_more)
3206 {
3207 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3208
3209 delete_just_stopped_threads_infrun_breakpoints ();
3210
3211 /* We may not find an inferior if this was a process exit. */
3212 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3213 normal_stop ();
3214
3215 if (target_has_execution
3216 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
3217 && ecs->ws.kind != TARGET_WAITKIND_EXITED
3218 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3219 && ecs->event_thread->step_multi
3220 && ecs->event_thread->control.stop_step)
3221 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
3222 else
3223 {
3224 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3225 cmd_done = 1;
3226 }
3227 }
3228
3229 /* No error, don't finish the thread states yet. */
3230 discard_cleanups (ts_old_chain);
3231
3232 /* Revert thread and frame. */
3233 do_cleanups (old_chain);
3234
3235 /* If the inferior was in sync execution mode, and now isn't,
3236 restore the prompt (a synchronous execution command has finished,
3237 and we're ready for input). */
3238 if (interpreter_async && was_sync && !sync_execution)
3239 observer_notify_sync_execution_done ();
3240
3241 if (cmd_done
3242 && !was_sync
3243 && exec_done_display_p
3244 && (ptid_equal (inferior_ptid, null_ptid)
3245 || !is_running (inferior_ptid)))
3246 printf_unfiltered (_("completed.\n"));
3247 }
3248
3249 /* Record the frame and location we're currently stepping through. */
3250 void
3251 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3252 {
3253 struct thread_info *tp = inferior_thread ();
3254
3255 tp->control.step_frame_id = get_frame_id (frame);
3256 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3257
3258 tp->current_symtab = sal.symtab;
3259 tp->current_line = sal.line;
3260 }
3261
3262 /* Clear context switchable stepping state. */
3263
3264 void
3265 init_thread_stepping_state (struct thread_info *tss)
3266 {
3267 tss->stepped_breakpoint = 0;
3268 tss->stepping_over_breakpoint = 0;
3269 tss->stepping_over_watchpoint = 0;
3270 tss->step_after_step_resume_breakpoint = 0;
3271 }
3272
3273 /* Set the cached copy of the last ptid/waitstatus. */
3274
3275 static void
3276 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3277 {
3278 target_last_wait_ptid = ptid;
3279 target_last_waitstatus = status;
3280 }
3281
3282 /* Return the cached copy of the last pid/waitstatus returned by
3283 target_wait()/deprecated_target_wait_hook(). The data is actually
3284 cached by handle_inferior_event(), which gets called immediately
3285 after target_wait()/deprecated_target_wait_hook(). */
3286
3287 void
3288 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
3289 {
3290 *ptidp = target_last_wait_ptid;
3291 *status = target_last_waitstatus;
3292 }
3293
3294 void
3295 nullify_last_target_wait_ptid (void)
3296 {
3297 target_last_wait_ptid = minus_one_ptid;
3298 }
3299
3300 /* Switch thread contexts. */
3301
3302 static void
3303 context_switch (ptid_t ptid)
3304 {
3305 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
3306 {
3307 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3308 target_pid_to_str (inferior_ptid));
3309 fprintf_unfiltered (gdb_stdlog, "to %s\n",
3310 target_pid_to_str (ptid));
3311 }
3312
3313 switch_to_thread (ptid);
3314 }
3315
3316 static void
3317 adjust_pc_after_break (struct execution_control_state *ecs)
3318 {
3319 struct regcache *regcache;
3320 struct gdbarch *gdbarch;
3321 struct address_space *aspace;
3322 CORE_ADDR breakpoint_pc, decr_pc;
3323
3324 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3325 we aren't, just return.
3326
3327 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
3328 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3329 implemented by software breakpoints should be handled through the normal
3330 breakpoint layer.
3331
3332 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3333 different signals (SIGILL or SIGEMT for instance), but it is less
3334 clear where the PC is pointing afterwards. It may not match
3335 gdbarch_decr_pc_after_break. I don't know any specific target that
3336 generates these signals at breakpoints (the code has been in GDB since at
3337 least 1992) so I can not guess how to handle them here.
3338
3339 In earlier versions of GDB, a target with
3340 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
3341 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3342 target with both of these set in GDB history, and it seems unlikely to be
3343 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
3344
3345 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
3346 return;
3347
3348 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
3349 return;
3350
3351 /* In reverse execution, when a breakpoint is hit, the instruction
3352 under it has already been de-executed. The reported PC always
3353 points at the breakpoint address, so adjusting it further would
3354 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3355 architecture:
3356
3357 B1 0x08000000 : INSN1
3358 B2 0x08000001 : INSN2
3359 0x08000002 : INSN3
3360 PC -> 0x08000003 : INSN4
3361
3362 Say you're stopped at 0x08000003 as above. Reverse continuing
3363 from that point should hit B2 as below. Reading the PC when the
3364 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3365 been de-executed already.
3366
3367 B1 0x08000000 : INSN1
3368 B2 PC -> 0x08000001 : INSN2
3369 0x08000002 : INSN3
3370 0x08000003 : INSN4
3371
3372 We can't apply the same logic as for forward execution, because
3373 we would wrongly adjust the PC to 0x08000000, since there's a
3374 breakpoint at PC - 1. We'd then report a hit on B1, although
3375 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3376 behaviour. */
3377 if (execution_direction == EXEC_REVERSE)
3378 return;
3379
3380 /* If this target does not decrement the PC after breakpoints, then
3381 we have nothing to do. */
3382 regcache = get_thread_regcache (ecs->ptid);
3383 gdbarch = get_regcache_arch (regcache);
3384
3385 decr_pc = target_decr_pc_after_break (gdbarch);
3386 if (decr_pc == 0)
3387 return;
3388
3389 aspace = get_regcache_aspace (regcache);
3390
3391 /* Find the location where (if we've hit a breakpoint) the
3392 breakpoint would be. */
3393 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
3394
3395 /* Check whether there actually is a software breakpoint inserted at
3396 that location.
3397
3398 If in non-stop mode, a race condition is possible where we've
3399 removed a breakpoint, but stop events for that breakpoint were
3400 already queued and arrive later. To suppress those spurious
3401 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3402 and retire them after a number of stop events are reported. */
3403 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3404 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3405 {
3406 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
3407
3408 if (record_full_is_used ())
3409 record_full_gdb_operation_disable_set ();
3410
3411 /* When using hardware single-step, a SIGTRAP is reported for both
3412 a completed single-step and a software breakpoint. Need to
3413 differentiate between the two, as the latter needs adjusting
3414 but the former does not.
3415
3416 The SIGTRAP can be due to a completed hardware single-step only if
3417 - we didn't insert software single-step breakpoints
3418 - the thread to be examined is still the current thread
3419 - this thread is currently being stepped
3420
3421 If any of these events did not occur, we must have stopped due
3422 to hitting a software breakpoint, and have to back up to the
3423 breakpoint address.
3424
3425 As a special case, we could have hardware single-stepped a
3426 software breakpoint. In this case (prev_pc == breakpoint_pc),
3427 we also need to back up to the breakpoint address. */
3428
3429 if (thread_has_single_step_breakpoints_set (ecs->event_thread)
3430 || !ptid_equal (ecs->ptid, inferior_ptid)
3431 || !currently_stepping (ecs->event_thread)
3432 || (ecs->event_thread->stepped_breakpoint
3433 && ecs->event_thread->prev_pc == breakpoint_pc))
3434 regcache_write_pc (regcache, breakpoint_pc);
3435
3436 do_cleanups (old_cleanups);
3437 }
3438 }
3439
3440 static int
3441 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3442 {
3443 for (frame = get_prev_frame (frame);
3444 frame != NULL;
3445 frame = get_prev_frame (frame))
3446 {
3447 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3448 return 1;
3449 if (get_frame_type (frame) != INLINE_FRAME)
3450 break;
3451 }
3452
3453 return 0;
3454 }
3455
3456 /* Auxiliary function that handles syscall entry/return events.
3457 It returns 1 if the inferior should keep going (and GDB
3458 should ignore the event), or 0 if the event deserves to be
3459 processed. */
3460
3461 static int
3462 handle_syscall_event (struct execution_control_state *ecs)
3463 {
3464 struct regcache *regcache;
3465 int syscall_number;
3466
3467 if (!ptid_equal (ecs->ptid, inferior_ptid))
3468 context_switch (ecs->ptid);
3469
3470 regcache = get_thread_regcache (ecs->ptid);
3471 syscall_number = ecs->ws.value.syscall_number;
3472 stop_pc = regcache_read_pc (regcache);
3473
3474 if (catch_syscall_enabled () > 0
3475 && catching_syscall_number (syscall_number) > 0)
3476 {
3477 if (debug_infrun)
3478 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3479 syscall_number);
3480
3481 ecs->event_thread->control.stop_bpstat
3482 = bpstat_stop_status (get_regcache_aspace (regcache),
3483 stop_pc, ecs->ptid, &ecs->ws);
3484
3485 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3486 {
3487 /* Catchpoint hit. */
3488 return 0;
3489 }
3490 }
3491
3492 /* If no catchpoint triggered for this, then keep going. */
3493 keep_going (ecs);
3494 return 1;
3495 }
3496
3497 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3498
3499 static void
3500 fill_in_stop_func (struct gdbarch *gdbarch,
3501 struct execution_control_state *ecs)
3502 {
3503 if (!ecs->stop_func_filled_in)
3504 {
3505 /* Don't care about return value; stop_func_start and stop_func_name
3506 will both be 0 if it doesn't work. */
3507 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3508 &ecs->stop_func_start, &ecs->stop_func_end);
3509 ecs->stop_func_start
3510 += gdbarch_deprecated_function_start_offset (gdbarch);
3511
3512 if (gdbarch_skip_entrypoint_p (gdbarch))
3513 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
3514 ecs->stop_func_start);
3515
3516 ecs->stop_func_filled_in = 1;
3517 }
3518 }
3519
3520
3521 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
3522
3523 static enum stop_kind
3524 get_inferior_stop_soon (ptid_t ptid)
3525 {
3526 struct inferior *inf = find_inferior_pid (ptid_get_pid (ptid));
3527
3528 gdb_assert (inf != NULL);
3529 return inf->control.stop_soon;
3530 }
3531
3532 /* Given an execution control state that has been freshly filled in by
3533 an event from the inferior, figure out what it means and take
3534 appropriate action.
3535
3536 The alternatives are:
3537
3538 1) stop_waiting and return; to really stop and return to the
3539 debugger.
3540
3541 2) keep_going and return; to wait for the next event (set
3542 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3543 once). */
3544
3545 static void
3546 handle_inferior_event (struct execution_control_state *ecs)
3547 {
3548 enum stop_kind stop_soon;
3549
3550 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3551 {
3552 /* We had an event in the inferior, but we are not interested in
3553 handling it at this level. The lower layers have already
3554 done what needs to be done, if anything.
3555
3556 One of the possible circumstances for this is when the
3557 inferior produces output for the console. The inferior has
3558 not stopped, and we are ignoring the event. Another possible
3559 circumstance is any event which the lower level knows will be
3560 reported multiple times without an intervening resume. */
3561 if (debug_infrun)
3562 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3563 prepare_to_wait (ecs);
3564 return;
3565 }
3566
3567 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3568 && target_can_async_p () && !sync_execution)
3569 {
3570 /* There were no unwaited-for children left in the target, but,
3571 we're not synchronously waiting for events either. Just
3572 ignore. Otherwise, if we were running a synchronous
3573 execution command, we need to cancel it and give the user
3574 back the terminal. */
3575 if (debug_infrun)
3576 fprintf_unfiltered (gdb_stdlog,
3577 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3578 prepare_to_wait (ecs);
3579 return;
3580 }
3581
3582 /* Cache the last pid/waitstatus. */
3583 set_last_target_status (ecs->ptid, ecs->ws);
3584
3585 /* Always clear state belonging to the previous time we stopped. */
3586 stop_stack_dummy = STOP_NONE;
3587
3588 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3589 {
3590 /* No unwaited-for children left. IOW, all resumed children
3591 have exited. */
3592 if (debug_infrun)
3593 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3594
3595 stop_print_frame = 0;
3596 stop_waiting (ecs);
3597 return;
3598 }
3599
3600 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3601 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3602 {
3603 ecs->event_thread = find_thread_ptid (ecs->ptid);
3604 /* If it's a new thread, add it to the thread database. */
3605 if (ecs->event_thread == NULL)
3606 ecs->event_thread = add_thread (ecs->ptid);
3607
3608 /* Disable range stepping. If the next step request could use a
3609 range, this will be end up re-enabled then. */
3610 ecs->event_thread->control.may_range_step = 0;
3611 }
3612
3613 /* Dependent on valid ECS->EVENT_THREAD. */
3614 adjust_pc_after_break (ecs);
3615
3616 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3617 reinit_frame_cache ();
3618
3619 breakpoint_retire_moribund ();
3620
3621 /* First, distinguish signals caused by the debugger from signals
3622 that have to do with the program's own actions. Note that
3623 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3624 on the operating system version. Here we detect when a SIGILL or
3625 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3626 something similar for SIGSEGV, since a SIGSEGV will be generated
3627 when we're trying to execute a breakpoint instruction on a
3628 non-executable stack. This happens for call dummy breakpoints
3629 for architectures like SPARC that place call dummies on the
3630 stack. */
3631 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3632 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3633 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3634 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3635 {
3636 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3637
3638 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3639 regcache_read_pc (regcache)))
3640 {
3641 if (debug_infrun)
3642 fprintf_unfiltered (gdb_stdlog,
3643 "infrun: Treating signal as SIGTRAP\n");
3644 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3645 }
3646 }
3647
3648 /* Mark the non-executing threads accordingly. In all-stop, all
3649 threads of all processes are stopped when we get any event
3650 reported. In non-stop mode, only the event thread stops. If
3651 we're handling a process exit in non-stop mode, there's nothing
3652 to do, as threads of the dead process are gone, and threads of
3653 any other process were left running. */
3654 if (!non_stop)
3655 set_executing (minus_one_ptid, 0);
3656 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3657 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3658 set_executing (ecs->ptid, 0);
3659
3660 switch (ecs->ws.kind)
3661 {
3662 case TARGET_WAITKIND_LOADED:
3663 if (debug_infrun)
3664 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3665 if (!ptid_equal (ecs->ptid, inferior_ptid))
3666 context_switch (ecs->ptid);
3667 /* Ignore gracefully during startup of the inferior, as it might
3668 be the shell which has just loaded some objects, otherwise
3669 add the symbols for the newly loaded objects. Also ignore at
3670 the beginning of an attach or remote session; we will query
3671 the full list of libraries once the connection is
3672 established. */
3673
3674 stop_soon = get_inferior_stop_soon (ecs->ptid);
3675 if (stop_soon == NO_STOP_QUIETLY)
3676 {
3677 struct regcache *regcache;
3678
3679 regcache = get_thread_regcache (ecs->ptid);
3680
3681 handle_solib_event ();
3682
3683 ecs->event_thread->control.stop_bpstat
3684 = bpstat_stop_status (get_regcache_aspace (regcache),
3685 stop_pc, ecs->ptid, &ecs->ws);
3686
3687 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3688 {
3689 /* A catchpoint triggered. */
3690 process_event_stop_test (ecs);
3691 return;
3692 }
3693
3694 /* If requested, stop when the dynamic linker notifies
3695 gdb of events. This allows the user to get control
3696 and place breakpoints in initializer routines for
3697 dynamically loaded objects (among other things). */
3698 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3699 if (stop_on_solib_events)
3700 {
3701 /* Make sure we print "Stopped due to solib-event" in
3702 normal_stop. */
3703 stop_print_frame = 1;
3704
3705 stop_waiting (ecs);
3706 return;
3707 }
3708 }
3709
3710 /* If we are skipping through a shell, or through shared library
3711 loading that we aren't interested in, resume the program. If
3712 we're running the program normally, also resume. */
3713 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3714 {
3715 /* Loading of shared libraries might have changed breakpoint
3716 addresses. Make sure new breakpoints are inserted. */
3717 if (stop_soon == NO_STOP_QUIETLY)
3718 insert_breakpoints ();
3719 resume (0, GDB_SIGNAL_0);
3720 prepare_to_wait (ecs);
3721 return;
3722 }
3723
3724 /* But stop if we're attaching or setting up a remote
3725 connection. */
3726 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3727 || stop_soon == STOP_QUIETLY_REMOTE)
3728 {
3729 if (debug_infrun)
3730 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3731 stop_waiting (ecs);
3732 return;
3733 }
3734
3735 internal_error (__FILE__, __LINE__,
3736 _("unhandled stop_soon: %d"), (int) stop_soon);
3737
3738 case TARGET_WAITKIND_SPURIOUS:
3739 if (debug_infrun)
3740 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3741 if (!ptid_equal (ecs->ptid, inferior_ptid))
3742 context_switch (ecs->ptid);
3743 resume (0, GDB_SIGNAL_0);
3744 prepare_to_wait (ecs);
3745 return;
3746
3747 case TARGET_WAITKIND_EXITED:
3748 case TARGET_WAITKIND_SIGNALLED:
3749 if (debug_infrun)
3750 {
3751 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3752 fprintf_unfiltered (gdb_stdlog,
3753 "infrun: TARGET_WAITKIND_EXITED\n");
3754 else
3755 fprintf_unfiltered (gdb_stdlog,
3756 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3757 }
3758
3759 inferior_ptid = ecs->ptid;
3760 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3761 set_current_program_space (current_inferior ()->pspace);
3762 handle_vfork_child_exec_or_exit (0);
3763 target_terminal_ours (); /* Must do this before mourn anyway. */
3764
3765 /* Clearing any previous state of convenience variables. */
3766 clear_exit_convenience_vars ();
3767
3768 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3769 {
3770 /* Record the exit code in the convenience variable $_exitcode, so
3771 that the user can inspect this again later. */
3772 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3773 (LONGEST) ecs->ws.value.integer);
3774
3775 /* Also record this in the inferior itself. */
3776 current_inferior ()->has_exit_code = 1;
3777 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3778
3779 /* Support the --return-child-result option. */
3780 return_child_result_value = ecs->ws.value.integer;
3781
3782 observer_notify_exited (ecs->ws.value.integer);
3783 }
3784 else
3785 {
3786 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3787 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3788
3789 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3790 {
3791 /* Set the value of the internal variable $_exitsignal,
3792 which holds the signal uncaught by the inferior. */
3793 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3794 gdbarch_gdb_signal_to_target (gdbarch,
3795 ecs->ws.value.sig));
3796 }
3797 else
3798 {
3799 /* We don't have access to the target's method used for
3800 converting between signal numbers (GDB's internal
3801 representation <-> target's representation).
3802 Therefore, we cannot do a good job at displaying this
3803 information to the user. It's better to just warn
3804 her about it (if infrun debugging is enabled), and
3805 give up. */
3806 if (debug_infrun)
3807 fprintf_filtered (gdb_stdlog, _("\
3808 Cannot fill $_exitsignal with the correct signal number.\n"));
3809 }
3810
3811 observer_notify_signal_exited (ecs->ws.value.sig);
3812 }
3813
3814 gdb_flush (gdb_stdout);
3815 target_mourn_inferior ();
3816 stop_print_frame = 0;
3817 stop_waiting (ecs);
3818 return;
3819
3820 /* The following are the only cases in which we keep going;
3821 the above cases end in a continue or goto. */
3822 case TARGET_WAITKIND_FORKED:
3823 case TARGET_WAITKIND_VFORKED:
3824 if (debug_infrun)
3825 {
3826 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3827 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3828 else
3829 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3830 }
3831
3832 /* Check whether the inferior is displaced stepping. */
3833 {
3834 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3835 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3836 struct displaced_step_inferior_state *displaced
3837 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3838
3839 /* If checking displaced stepping is supported, and thread
3840 ecs->ptid is displaced stepping. */
3841 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3842 {
3843 struct inferior *parent_inf
3844 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3845 struct regcache *child_regcache;
3846 CORE_ADDR parent_pc;
3847
3848 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3849 indicating that the displaced stepping of syscall instruction
3850 has been done. Perform cleanup for parent process here. Note
3851 that this operation also cleans up the child process for vfork,
3852 because their pages are shared. */
3853 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3854
3855 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3856 {
3857 /* Restore scratch pad for child process. */
3858 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3859 }
3860
3861 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3862 the child's PC is also within the scratchpad. Set the child's PC
3863 to the parent's PC value, which has already been fixed up.
3864 FIXME: we use the parent's aspace here, although we're touching
3865 the child, because the child hasn't been added to the inferior
3866 list yet at this point. */
3867
3868 child_regcache
3869 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3870 gdbarch,
3871 parent_inf->aspace);
3872 /* Read PC value of parent process. */
3873 parent_pc = regcache_read_pc (regcache);
3874
3875 if (debug_displaced)
3876 fprintf_unfiltered (gdb_stdlog,
3877 "displaced: write child pc from %s to %s\n",
3878 paddress (gdbarch,
3879 regcache_read_pc (child_regcache)),
3880 paddress (gdbarch, parent_pc));
3881
3882 regcache_write_pc (child_regcache, parent_pc);
3883 }
3884 }
3885
3886 if (!ptid_equal (ecs->ptid, inferior_ptid))
3887 context_switch (ecs->ptid);
3888
3889 /* Immediately detach breakpoints from the child before there's
3890 any chance of letting the user delete breakpoints from the
3891 breakpoint lists. If we don't do this early, it's easy to
3892 leave left over traps in the child, vis: "break foo; catch
3893 fork; c; <fork>; del; c; <child calls foo>". We only follow
3894 the fork on the last `continue', and by that time the
3895 breakpoint at "foo" is long gone from the breakpoint table.
3896 If we vforked, then we don't need to unpatch here, since both
3897 parent and child are sharing the same memory pages; we'll
3898 need to unpatch at follow/detach time instead to be certain
3899 that new breakpoints added between catchpoint hit time and
3900 vfork follow are detached. */
3901 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3902 {
3903 /* This won't actually modify the breakpoint list, but will
3904 physically remove the breakpoints from the child. */
3905 detach_breakpoints (ecs->ws.value.related_pid);
3906 }
3907
3908 delete_just_stopped_threads_single_step_breakpoints ();
3909
3910 /* In case the event is caught by a catchpoint, remember that
3911 the event is to be followed at the next resume of the thread,
3912 and not immediately. */
3913 ecs->event_thread->pending_follow = ecs->ws;
3914
3915 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3916
3917 ecs->event_thread->control.stop_bpstat
3918 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3919 stop_pc, ecs->ptid, &ecs->ws);
3920
3921 /* If no catchpoint triggered for this, then keep going. Note
3922 that we're interested in knowing the bpstat actually causes a
3923 stop, not just if it may explain the signal. Software
3924 watchpoints, for example, always appear in the bpstat. */
3925 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3926 {
3927 ptid_t parent;
3928 ptid_t child;
3929 int should_resume;
3930 int follow_child
3931 = (follow_fork_mode_string == follow_fork_mode_child);
3932
3933 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3934
3935 should_resume = follow_fork ();
3936
3937 parent = ecs->ptid;
3938 child = ecs->ws.value.related_pid;
3939
3940 /* In non-stop mode, also resume the other branch. */
3941 if (non_stop && !detach_fork)
3942 {
3943 if (follow_child)
3944 switch_to_thread (parent);
3945 else
3946 switch_to_thread (child);
3947
3948 ecs->event_thread = inferior_thread ();
3949 ecs->ptid = inferior_ptid;
3950 keep_going (ecs);
3951 }
3952
3953 if (follow_child)
3954 switch_to_thread (child);
3955 else
3956 switch_to_thread (parent);
3957
3958 ecs->event_thread = inferior_thread ();
3959 ecs->ptid = inferior_ptid;
3960
3961 if (should_resume)
3962 keep_going (ecs);
3963 else
3964 stop_waiting (ecs);
3965 return;
3966 }
3967 process_event_stop_test (ecs);
3968 return;
3969
3970 case TARGET_WAITKIND_VFORK_DONE:
3971 /* Done with the shared memory region. Re-insert breakpoints in
3972 the parent, and keep going. */
3973
3974 if (debug_infrun)
3975 fprintf_unfiltered (gdb_stdlog,
3976 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3977
3978 if (!ptid_equal (ecs->ptid, inferior_ptid))
3979 context_switch (ecs->ptid);
3980
3981 current_inferior ()->waiting_for_vfork_done = 0;
3982 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3983 /* This also takes care of reinserting breakpoints in the
3984 previously locked inferior. */
3985 keep_going (ecs);
3986 return;
3987
3988 case TARGET_WAITKIND_EXECD:
3989 if (debug_infrun)
3990 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3991
3992 if (!ptid_equal (ecs->ptid, inferior_ptid))
3993 context_switch (ecs->ptid);
3994
3995 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3996
3997 /* Do whatever is necessary to the parent branch of the vfork. */
3998 handle_vfork_child_exec_or_exit (1);
3999
4000 /* This causes the eventpoints and symbol table to be reset.
4001 Must do this now, before trying to determine whether to
4002 stop. */
4003 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
4004
4005 ecs->event_thread->control.stop_bpstat
4006 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4007 stop_pc, ecs->ptid, &ecs->ws);
4008
4009 /* Note that this may be referenced from inside
4010 bpstat_stop_status above, through inferior_has_execd. */
4011 xfree (ecs->ws.value.execd_pathname);
4012 ecs->ws.value.execd_pathname = NULL;
4013
4014 /* If no catchpoint triggered for this, then keep going. */
4015 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4016 {
4017 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4018 keep_going (ecs);
4019 return;
4020 }
4021 process_event_stop_test (ecs);
4022 return;
4023
4024 /* Be careful not to try to gather much state about a thread
4025 that's in a syscall. It's frequently a losing proposition. */
4026 case TARGET_WAITKIND_SYSCALL_ENTRY:
4027 if (debug_infrun)
4028 fprintf_unfiltered (gdb_stdlog,
4029 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
4030 /* Getting the current syscall number. */
4031 if (handle_syscall_event (ecs) == 0)
4032 process_event_stop_test (ecs);
4033 return;
4034
4035 /* Before examining the threads further, step this thread to
4036 get it entirely out of the syscall. (We get notice of the
4037 event when the thread is just on the verge of exiting a
4038 syscall. Stepping one instruction seems to get it back
4039 into user code.) */
4040 case TARGET_WAITKIND_SYSCALL_RETURN:
4041 if (debug_infrun)
4042 fprintf_unfiltered (gdb_stdlog,
4043 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
4044 if (handle_syscall_event (ecs) == 0)
4045 process_event_stop_test (ecs);
4046 return;
4047
4048 case TARGET_WAITKIND_STOPPED:
4049 if (debug_infrun)
4050 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4051 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4052 handle_signal_stop (ecs);
4053 return;
4054
4055 case TARGET_WAITKIND_NO_HISTORY:
4056 if (debug_infrun)
4057 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
4058 /* Reverse execution: target ran out of history info. */
4059
4060 delete_just_stopped_threads_single_step_breakpoints ();
4061 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4062 observer_notify_no_history ();
4063 stop_waiting (ecs);
4064 return;
4065 }
4066 }
4067
4068 /* Come here when the program has stopped with a signal. */
4069
4070 static void
4071 handle_signal_stop (struct execution_control_state *ecs)
4072 {
4073 struct frame_info *frame;
4074 struct gdbarch *gdbarch;
4075 int stopped_by_watchpoint;
4076 enum stop_kind stop_soon;
4077 int random_signal;
4078
4079 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
4080
4081 /* Do we need to clean up the state of a thread that has
4082 completed a displaced single-step? (Doing so usually affects
4083 the PC, so do it here, before we set stop_pc.) */
4084 displaced_step_fixup (ecs->ptid,
4085 ecs->event_thread->suspend.stop_signal);
4086
4087 /* If we either finished a single-step or hit a breakpoint, but
4088 the user wanted this thread to be stopped, pretend we got a
4089 SIG0 (generic unsignaled stop). */
4090 if (ecs->event_thread->stop_requested
4091 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4092 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4093
4094 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4095
4096 if (debug_infrun)
4097 {
4098 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4099 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4100 struct cleanup *old_chain = save_inferior_ptid ();
4101
4102 inferior_ptid = ecs->ptid;
4103
4104 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
4105 paddress (gdbarch, stop_pc));
4106 if (target_stopped_by_watchpoint ())
4107 {
4108 CORE_ADDR addr;
4109
4110 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
4111
4112 if (target_stopped_data_address (&current_target, &addr))
4113 fprintf_unfiltered (gdb_stdlog,
4114 "infrun: stopped data address = %s\n",
4115 paddress (gdbarch, addr));
4116 else
4117 fprintf_unfiltered (gdb_stdlog,
4118 "infrun: (no data address available)\n");
4119 }
4120
4121 do_cleanups (old_chain);
4122 }
4123
4124 /* This is originated from start_remote(), start_inferior() and
4125 shared libraries hook functions. */
4126 stop_soon = get_inferior_stop_soon (ecs->ptid);
4127 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4128 {
4129 if (!ptid_equal (ecs->ptid, inferior_ptid))
4130 context_switch (ecs->ptid);
4131 if (debug_infrun)
4132 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4133 stop_print_frame = 1;
4134 stop_waiting (ecs);
4135 return;
4136 }
4137
4138 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4139 && stop_after_trap)
4140 {
4141 if (!ptid_equal (ecs->ptid, inferior_ptid))
4142 context_switch (ecs->ptid);
4143 if (debug_infrun)
4144 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4145 stop_print_frame = 0;
4146 stop_waiting (ecs);
4147 return;
4148 }
4149
4150 /* This originates from attach_command(). We need to overwrite
4151 the stop_signal here, because some kernels don't ignore a
4152 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4153 See more comments in inferior.h. On the other hand, if we
4154 get a non-SIGSTOP, report it to the user - assume the backend
4155 will handle the SIGSTOP if it should show up later.
4156
4157 Also consider that the attach is complete when we see a
4158 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4159 target extended-remote report it instead of a SIGSTOP
4160 (e.g. gdbserver). We already rely on SIGTRAP being our
4161 signal, so this is no exception.
4162
4163 Also consider that the attach is complete when we see a
4164 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4165 the target to stop all threads of the inferior, in case the
4166 low level attach operation doesn't stop them implicitly. If
4167 they weren't stopped implicitly, then the stub will report a
4168 GDB_SIGNAL_0, meaning: stopped for no particular reason
4169 other than GDB's request. */
4170 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4171 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4172 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4173 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4174 {
4175 stop_print_frame = 1;
4176 stop_waiting (ecs);
4177 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4178 return;
4179 }
4180
4181 /* See if something interesting happened to the non-current thread. If
4182 so, then switch to that thread. */
4183 if (!ptid_equal (ecs->ptid, inferior_ptid))
4184 {
4185 if (debug_infrun)
4186 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
4187
4188 context_switch (ecs->ptid);
4189
4190 if (deprecated_context_hook)
4191 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
4192 }
4193
4194 /* At this point, get hold of the now-current thread's frame. */
4195 frame = get_current_frame ();
4196 gdbarch = get_frame_arch (frame);
4197
4198 /* Pull the single step breakpoints out of the target. */
4199 if (gdbarch_software_single_step_p (gdbarch))
4200 {
4201 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4202 {
4203 struct regcache *regcache;
4204 struct address_space *aspace;
4205 CORE_ADDR pc;
4206
4207 regcache = get_thread_regcache (ecs->ptid);
4208 aspace = get_regcache_aspace (regcache);
4209 pc = regcache_read_pc (regcache);
4210
4211 /* However, before doing so, if this single-step breakpoint was
4212 actually for another thread, set this thread up for moving
4213 past it. */
4214 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
4215 aspace, pc))
4216 {
4217 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4218 {
4219 if (debug_infrun)
4220 {
4221 fprintf_unfiltered (gdb_stdlog,
4222 "infrun: [%s] hit another thread's "
4223 "single-step breakpoint\n",
4224 target_pid_to_str (ecs->ptid));
4225 }
4226 ecs->hit_singlestep_breakpoint = 1;
4227 }
4228 }
4229 else
4230 {
4231 if (debug_infrun)
4232 {
4233 fprintf_unfiltered (gdb_stdlog,
4234 "infrun: [%s] hit its "
4235 "single-step breakpoint\n",
4236 target_pid_to_str (ecs->ptid));
4237 }
4238 }
4239 }
4240
4241 delete_just_stopped_threads_single_step_breakpoints ();
4242 }
4243
4244 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4245 && ecs->event_thread->control.trap_expected
4246 && ecs->event_thread->stepping_over_watchpoint)
4247 stopped_by_watchpoint = 0;
4248 else
4249 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4250
4251 /* If necessary, step over this watchpoint. We'll be back to display
4252 it in a moment. */
4253 if (stopped_by_watchpoint
4254 && (target_have_steppable_watchpoint
4255 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4256 {
4257 /* At this point, we are stopped at an instruction which has
4258 attempted to write to a piece of memory under control of
4259 a watchpoint. The instruction hasn't actually executed
4260 yet. If we were to evaluate the watchpoint expression
4261 now, we would get the old value, and therefore no change
4262 would seem to have occurred.
4263
4264 In order to make watchpoints work `right', we really need
4265 to complete the memory write, and then evaluate the
4266 watchpoint expression. We do this by single-stepping the
4267 target.
4268
4269 It may not be necessary to disable the watchpoint to step over
4270 it. For example, the PA can (with some kernel cooperation)
4271 single step over a watchpoint without disabling the watchpoint.
4272
4273 It is far more common to need to disable a watchpoint to step
4274 the inferior over it. If we have non-steppable watchpoints,
4275 we must disable the current watchpoint; it's simplest to
4276 disable all watchpoints.
4277
4278 Any breakpoint at PC must also be stepped over -- if there's
4279 one, it will have already triggered before the watchpoint
4280 triggered, and we either already reported it to the user, or
4281 it didn't cause a stop and we called keep_going. In either
4282 case, if there was a breakpoint at PC, we must be trying to
4283 step past it. */
4284 ecs->event_thread->stepping_over_watchpoint = 1;
4285 keep_going (ecs);
4286 return;
4287 }
4288
4289 ecs->event_thread->stepped_breakpoint = 0;
4290 ecs->event_thread->stepping_over_breakpoint = 0;
4291 ecs->event_thread->stepping_over_watchpoint = 0;
4292 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4293 ecs->event_thread->control.stop_step = 0;
4294 stop_print_frame = 1;
4295 stopped_by_random_signal = 0;
4296
4297 /* Hide inlined functions starting here, unless we just performed stepi or
4298 nexti. After stepi and nexti, always show the innermost frame (not any
4299 inline function call sites). */
4300 if (ecs->event_thread->control.step_range_end != 1)
4301 {
4302 struct address_space *aspace =
4303 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4304
4305 /* skip_inline_frames is expensive, so we avoid it if we can
4306 determine that the address is one where functions cannot have
4307 been inlined. This improves performance with inferiors that
4308 load a lot of shared libraries, because the solib event
4309 breakpoint is defined as the address of a function (i.e. not
4310 inline). Note that we have to check the previous PC as well
4311 as the current one to catch cases when we have just
4312 single-stepped off a breakpoint prior to reinstating it.
4313 Note that we're assuming that the code we single-step to is
4314 not inline, but that's not definitive: there's nothing
4315 preventing the event breakpoint function from containing
4316 inlined code, and the single-step ending up there. If the
4317 user had set a breakpoint on that inlined code, the missing
4318 skip_inline_frames call would break things. Fortunately
4319 that's an extremely unlikely scenario. */
4320 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4321 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4322 && ecs->event_thread->control.trap_expected
4323 && pc_at_non_inline_function (aspace,
4324 ecs->event_thread->prev_pc,
4325 &ecs->ws)))
4326 {
4327 skip_inline_frames (ecs->ptid);
4328
4329 /* Re-fetch current thread's frame in case that invalidated
4330 the frame cache. */
4331 frame = get_current_frame ();
4332 gdbarch = get_frame_arch (frame);
4333 }
4334 }
4335
4336 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4337 && ecs->event_thread->control.trap_expected
4338 && gdbarch_single_step_through_delay_p (gdbarch)
4339 && currently_stepping (ecs->event_thread))
4340 {
4341 /* We're trying to step off a breakpoint. Turns out that we're
4342 also on an instruction that needs to be stepped multiple
4343 times before it's been fully executing. E.g., architectures
4344 with a delay slot. It needs to be stepped twice, once for
4345 the instruction and once for the delay slot. */
4346 int step_through_delay
4347 = gdbarch_single_step_through_delay (gdbarch, frame);
4348
4349 if (debug_infrun && step_through_delay)
4350 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4351 if (ecs->event_thread->control.step_range_end == 0
4352 && step_through_delay)
4353 {
4354 /* The user issued a continue when stopped at a breakpoint.
4355 Set up for another trap and get out of here. */
4356 ecs->event_thread->stepping_over_breakpoint = 1;
4357 keep_going (ecs);
4358 return;
4359 }
4360 else if (step_through_delay)
4361 {
4362 /* The user issued a step when stopped at a breakpoint.
4363 Maybe we should stop, maybe we should not - the delay
4364 slot *might* correspond to a line of source. In any
4365 case, don't decide that here, just set
4366 ecs->stepping_over_breakpoint, making sure we
4367 single-step again before breakpoints are re-inserted. */
4368 ecs->event_thread->stepping_over_breakpoint = 1;
4369 }
4370 }
4371
4372 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4373 handles this event. */
4374 ecs->event_thread->control.stop_bpstat
4375 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4376 stop_pc, ecs->ptid, &ecs->ws);
4377
4378 /* Following in case break condition called a
4379 function. */
4380 stop_print_frame = 1;
4381
4382 /* This is where we handle "moribund" watchpoints. Unlike
4383 software breakpoints traps, hardware watchpoint traps are
4384 always distinguishable from random traps. If no high-level
4385 watchpoint is associated with the reported stop data address
4386 anymore, then the bpstat does not explain the signal ---
4387 simply make sure to ignore it if `stopped_by_watchpoint' is
4388 set. */
4389
4390 if (debug_infrun
4391 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4392 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4393 GDB_SIGNAL_TRAP)
4394 && stopped_by_watchpoint)
4395 fprintf_unfiltered (gdb_stdlog,
4396 "infrun: no user watchpoint explains "
4397 "watchpoint SIGTRAP, ignoring\n");
4398
4399 /* NOTE: cagney/2003-03-29: These checks for a random signal
4400 at one stage in the past included checks for an inferior
4401 function call's call dummy's return breakpoint. The original
4402 comment, that went with the test, read:
4403
4404 ``End of a stack dummy. Some systems (e.g. Sony news) give
4405 another signal besides SIGTRAP, so check here as well as
4406 above.''
4407
4408 If someone ever tries to get call dummys on a
4409 non-executable stack to work (where the target would stop
4410 with something like a SIGSEGV), then those tests might need
4411 to be re-instated. Given, however, that the tests were only
4412 enabled when momentary breakpoints were not being used, I
4413 suspect that it won't be the case.
4414
4415 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4416 be necessary for call dummies on a non-executable stack on
4417 SPARC. */
4418
4419 /* See if the breakpoints module can explain the signal. */
4420 random_signal
4421 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4422 ecs->event_thread->suspend.stop_signal);
4423
4424 /* If not, perhaps stepping/nexting can. */
4425 if (random_signal)
4426 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4427 && currently_stepping (ecs->event_thread));
4428
4429 /* Perhaps the thread hit a single-step breakpoint of _another_
4430 thread. Single-step breakpoints are transparent to the
4431 breakpoints module. */
4432 if (random_signal)
4433 random_signal = !ecs->hit_singlestep_breakpoint;
4434
4435 /* No? Perhaps we got a moribund watchpoint. */
4436 if (random_signal)
4437 random_signal = !stopped_by_watchpoint;
4438
4439 /* For the program's own signals, act according to
4440 the signal handling tables. */
4441
4442 if (random_signal)
4443 {
4444 /* Signal not for debugging purposes. */
4445 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4446 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
4447
4448 if (debug_infrun)
4449 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4450 gdb_signal_to_symbol_string (stop_signal));
4451
4452 stopped_by_random_signal = 1;
4453
4454 /* Always stop on signals if we're either just gaining control
4455 of the program, or the user explicitly requested this thread
4456 to remain stopped. */
4457 if (stop_soon != NO_STOP_QUIETLY
4458 || ecs->event_thread->stop_requested
4459 || (!inf->detaching
4460 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4461 {
4462 stop_waiting (ecs);
4463 return;
4464 }
4465
4466 /* Notify observers the signal has "handle print" set. Note we
4467 returned early above if stopping; normal_stop handles the
4468 printing in that case. */
4469 if (signal_print[ecs->event_thread->suspend.stop_signal])
4470 {
4471 /* The signal table tells us to print about this signal. */
4472 target_terminal_ours_for_output ();
4473 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
4474 target_terminal_inferior ();
4475 }
4476
4477 /* Clear the signal if it should not be passed. */
4478 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4479 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4480
4481 if (ecs->event_thread->prev_pc == stop_pc
4482 && ecs->event_thread->control.trap_expected
4483 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4484 {
4485 /* We were just starting a new sequence, attempting to
4486 single-step off of a breakpoint and expecting a SIGTRAP.
4487 Instead this signal arrives. This signal will take us out
4488 of the stepping range so GDB needs to remember to, when
4489 the signal handler returns, resume stepping off that
4490 breakpoint. */
4491 /* To simplify things, "continue" is forced to use the same
4492 code paths as single-step - set a breakpoint at the
4493 signal return address and then, once hit, step off that
4494 breakpoint. */
4495 if (debug_infrun)
4496 fprintf_unfiltered (gdb_stdlog,
4497 "infrun: signal arrived while stepping over "
4498 "breakpoint\n");
4499
4500 insert_hp_step_resume_breakpoint_at_frame (frame);
4501 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4502 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4503 ecs->event_thread->control.trap_expected = 0;
4504
4505 /* If we were nexting/stepping some other thread, switch to
4506 it, so that we don't continue it, losing control. */
4507 if (!switch_back_to_stepped_thread (ecs))
4508 keep_going (ecs);
4509 return;
4510 }
4511
4512 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4513 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4514 || ecs->event_thread->control.step_range_end == 1)
4515 && frame_id_eq (get_stack_frame_id (frame),
4516 ecs->event_thread->control.step_stack_frame_id)
4517 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4518 {
4519 /* The inferior is about to take a signal that will take it
4520 out of the single step range. Set a breakpoint at the
4521 current PC (which is presumably where the signal handler
4522 will eventually return) and then allow the inferior to
4523 run free.
4524
4525 Note that this is only needed for a signal delivered
4526 while in the single-step range. Nested signals aren't a
4527 problem as they eventually all return. */
4528 if (debug_infrun)
4529 fprintf_unfiltered (gdb_stdlog,
4530 "infrun: signal may take us out of "
4531 "single-step range\n");
4532
4533 insert_hp_step_resume_breakpoint_at_frame (frame);
4534 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4535 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4536 ecs->event_thread->control.trap_expected = 0;
4537 keep_going (ecs);
4538 return;
4539 }
4540
4541 /* Note: step_resume_breakpoint may be non-NULL. This occures
4542 when either there's a nested signal, or when there's a
4543 pending signal enabled just as the signal handler returns
4544 (leaving the inferior at the step-resume-breakpoint without
4545 actually executing it). Either way continue until the
4546 breakpoint is really hit. */
4547
4548 if (!switch_back_to_stepped_thread (ecs))
4549 {
4550 if (debug_infrun)
4551 fprintf_unfiltered (gdb_stdlog,
4552 "infrun: random signal, keep going\n");
4553
4554 keep_going (ecs);
4555 }
4556 return;
4557 }
4558
4559 process_event_stop_test (ecs);
4560 }
4561
4562 /* Come here when we've got some debug event / signal we can explain
4563 (IOW, not a random signal), and test whether it should cause a
4564 stop, or whether we should resume the inferior (transparently).
4565 E.g., could be a breakpoint whose condition evaluates false; we
4566 could be still stepping within the line; etc. */
4567
4568 static void
4569 process_event_stop_test (struct execution_control_state *ecs)
4570 {
4571 struct symtab_and_line stop_pc_sal;
4572 struct frame_info *frame;
4573 struct gdbarch *gdbarch;
4574 CORE_ADDR jmp_buf_pc;
4575 struct bpstat_what what;
4576
4577 /* Handle cases caused by hitting a breakpoint. */
4578
4579 frame = get_current_frame ();
4580 gdbarch = get_frame_arch (frame);
4581
4582 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4583
4584 if (what.call_dummy)
4585 {
4586 stop_stack_dummy = what.call_dummy;
4587 }
4588
4589 /* If we hit an internal event that triggers symbol changes, the
4590 current frame will be invalidated within bpstat_what (e.g., if we
4591 hit an internal solib event). Re-fetch it. */
4592 frame = get_current_frame ();
4593 gdbarch = get_frame_arch (frame);
4594
4595 switch (what.main_action)
4596 {
4597 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4598 /* If we hit the breakpoint at longjmp while stepping, we
4599 install a momentary breakpoint at the target of the
4600 jmp_buf. */
4601
4602 if (debug_infrun)
4603 fprintf_unfiltered (gdb_stdlog,
4604 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4605
4606 ecs->event_thread->stepping_over_breakpoint = 1;
4607
4608 if (what.is_longjmp)
4609 {
4610 struct value *arg_value;
4611
4612 /* If we set the longjmp breakpoint via a SystemTap probe,
4613 then use it to extract the arguments. The destination PC
4614 is the third argument to the probe. */
4615 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4616 if (arg_value)
4617 {
4618 jmp_buf_pc = value_as_address (arg_value);
4619 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
4620 }
4621 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4622 || !gdbarch_get_longjmp_target (gdbarch,
4623 frame, &jmp_buf_pc))
4624 {
4625 if (debug_infrun)
4626 fprintf_unfiltered (gdb_stdlog,
4627 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4628 "(!gdbarch_get_longjmp_target)\n");
4629 keep_going (ecs);
4630 return;
4631 }
4632
4633 /* Insert a breakpoint at resume address. */
4634 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4635 }
4636 else
4637 check_exception_resume (ecs, frame);
4638 keep_going (ecs);
4639 return;
4640
4641 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4642 {
4643 struct frame_info *init_frame;
4644
4645 /* There are several cases to consider.
4646
4647 1. The initiating frame no longer exists. In this case we
4648 must stop, because the exception or longjmp has gone too
4649 far.
4650
4651 2. The initiating frame exists, and is the same as the
4652 current frame. We stop, because the exception or longjmp
4653 has been caught.
4654
4655 3. The initiating frame exists and is different from the
4656 current frame. This means the exception or longjmp has
4657 been caught beneath the initiating frame, so keep going.
4658
4659 4. longjmp breakpoint has been placed just to protect
4660 against stale dummy frames and user is not interested in
4661 stopping around longjmps. */
4662
4663 if (debug_infrun)
4664 fprintf_unfiltered (gdb_stdlog,
4665 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4666
4667 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4668 != NULL);
4669 delete_exception_resume_breakpoint (ecs->event_thread);
4670
4671 if (what.is_longjmp)
4672 {
4673 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
4674
4675 if (!frame_id_p (ecs->event_thread->initiating_frame))
4676 {
4677 /* Case 4. */
4678 keep_going (ecs);
4679 return;
4680 }
4681 }
4682
4683 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4684
4685 if (init_frame)
4686 {
4687 struct frame_id current_id
4688 = get_frame_id (get_current_frame ());
4689 if (frame_id_eq (current_id,
4690 ecs->event_thread->initiating_frame))
4691 {
4692 /* Case 2. Fall through. */
4693 }
4694 else
4695 {
4696 /* Case 3. */
4697 keep_going (ecs);
4698 return;
4699 }
4700 }
4701
4702 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4703 exists. */
4704 delete_step_resume_breakpoint (ecs->event_thread);
4705
4706 end_stepping_range (ecs);
4707 }
4708 return;
4709
4710 case BPSTAT_WHAT_SINGLE:
4711 if (debug_infrun)
4712 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4713 ecs->event_thread->stepping_over_breakpoint = 1;
4714 /* Still need to check other stuff, at least the case where we
4715 are stepping and step out of the right range. */
4716 break;
4717
4718 case BPSTAT_WHAT_STEP_RESUME:
4719 if (debug_infrun)
4720 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4721
4722 delete_step_resume_breakpoint (ecs->event_thread);
4723 if (ecs->event_thread->control.proceed_to_finish
4724 && execution_direction == EXEC_REVERSE)
4725 {
4726 struct thread_info *tp = ecs->event_thread;
4727
4728 /* We are finishing a function in reverse, and just hit the
4729 step-resume breakpoint at the start address of the
4730 function, and we're almost there -- just need to back up
4731 by one more single-step, which should take us back to the
4732 function call. */
4733 tp->control.step_range_start = tp->control.step_range_end = 1;
4734 keep_going (ecs);
4735 return;
4736 }
4737 fill_in_stop_func (gdbarch, ecs);
4738 if (stop_pc == ecs->stop_func_start
4739 && execution_direction == EXEC_REVERSE)
4740 {
4741 /* We are stepping over a function call in reverse, and just
4742 hit the step-resume breakpoint at the start address of
4743 the function. Go back to single-stepping, which should
4744 take us back to the function call. */
4745 ecs->event_thread->stepping_over_breakpoint = 1;
4746 keep_going (ecs);
4747 return;
4748 }
4749 break;
4750
4751 case BPSTAT_WHAT_STOP_NOISY:
4752 if (debug_infrun)
4753 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4754 stop_print_frame = 1;
4755
4756 /* Assume the thread stopped for a breapoint. We'll still check
4757 whether a/the breakpoint is there when the thread is next
4758 resumed. */
4759 ecs->event_thread->stepping_over_breakpoint = 1;
4760
4761 stop_waiting (ecs);
4762 return;
4763
4764 case BPSTAT_WHAT_STOP_SILENT:
4765 if (debug_infrun)
4766 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4767 stop_print_frame = 0;
4768
4769 /* Assume the thread stopped for a breapoint. We'll still check
4770 whether a/the breakpoint is there when the thread is next
4771 resumed. */
4772 ecs->event_thread->stepping_over_breakpoint = 1;
4773 stop_waiting (ecs);
4774 return;
4775
4776 case BPSTAT_WHAT_HP_STEP_RESUME:
4777 if (debug_infrun)
4778 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4779
4780 delete_step_resume_breakpoint (ecs->event_thread);
4781 if (ecs->event_thread->step_after_step_resume_breakpoint)
4782 {
4783 /* Back when the step-resume breakpoint was inserted, we
4784 were trying to single-step off a breakpoint. Go back to
4785 doing that. */
4786 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4787 ecs->event_thread->stepping_over_breakpoint = 1;
4788 keep_going (ecs);
4789 return;
4790 }
4791 break;
4792
4793 case BPSTAT_WHAT_KEEP_CHECKING:
4794 break;
4795 }
4796
4797 /* We come here if we hit a breakpoint but should not stop for it.
4798 Possibly we also were stepping and should stop for that. So fall
4799 through and test for stepping. But, if not stepping, do not
4800 stop. */
4801
4802 /* In all-stop mode, if we're currently stepping but have stopped in
4803 some other thread, we need to switch back to the stepped thread. */
4804 if (switch_back_to_stepped_thread (ecs))
4805 return;
4806
4807 if (ecs->event_thread->control.step_resume_breakpoint)
4808 {
4809 if (debug_infrun)
4810 fprintf_unfiltered (gdb_stdlog,
4811 "infrun: step-resume breakpoint is inserted\n");
4812
4813 /* Having a step-resume breakpoint overrides anything
4814 else having to do with stepping commands until
4815 that breakpoint is reached. */
4816 keep_going (ecs);
4817 return;
4818 }
4819
4820 if (ecs->event_thread->control.step_range_end == 0)
4821 {
4822 if (debug_infrun)
4823 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4824 /* Likewise if we aren't even stepping. */
4825 keep_going (ecs);
4826 return;
4827 }
4828
4829 /* Re-fetch current thread's frame in case the code above caused
4830 the frame cache to be re-initialized, making our FRAME variable
4831 a dangling pointer. */
4832 frame = get_current_frame ();
4833 gdbarch = get_frame_arch (frame);
4834 fill_in_stop_func (gdbarch, ecs);
4835
4836 /* If stepping through a line, keep going if still within it.
4837
4838 Note that step_range_end is the address of the first instruction
4839 beyond the step range, and NOT the address of the last instruction
4840 within it!
4841
4842 Note also that during reverse execution, we may be stepping
4843 through a function epilogue and therefore must detect when
4844 the current-frame changes in the middle of a line. */
4845
4846 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4847 && (execution_direction != EXEC_REVERSE
4848 || frame_id_eq (get_frame_id (frame),
4849 ecs->event_thread->control.step_frame_id)))
4850 {
4851 if (debug_infrun)
4852 fprintf_unfiltered
4853 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4854 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4855 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4856
4857 /* Tentatively re-enable range stepping; `resume' disables it if
4858 necessary (e.g., if we're stepping over a breakpoint or we
4859 have software watchpoints). */
4860 ecs->event_thread->control.may_range_step = 1;
4861
4862 /* When stepping backward, stop at beginning of line range
4863 (unless it's the function entry point, in which case
4864 keep going back to the call point). */
4865 if (stop_pc == ecs->event_thread->control.step_range_start
4866 && stop_pc != ecs->stop_func_start
4867 && execution_direction == EXEC_REVERSE)
4868 end_stepping_range (ecs);
4869 else
4870 keep_going (ecs);
4871
4872 return;
4873 }
4874
4875 /* We stepped out of the stepping range. */
4876
4877 /* If we are stepping at the source level and entered the runtime
4878 loader dynamic symbol resolution code...
4879
4880 EXEC_FORWARD: we keep on single stepping until we exit the run
4881 time loader code and reach the callee's address.
4882
4883 EXEC_REVERSE: we've already executed the callee (backward), and
4884 the runtime loader code is handled just like any other
4885 undebuggable function call. Now we need only keep stepping
4886 backward through the trampoline code, and that's handled further
4887 down, so there is nothing for us to do here. */
4888
4889 if (execution_direction != EXEC_REVERSE
4890 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4891 && in_solib_dynsym_resolve_code (stop_pc))
4892 {
4893 CORE_ADDR pc_after_resolver =
4894 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4895
4896 if (debug_infrun)
4897 fprintf_unfiltered (gdb_stdlog,
4898 "infrun: stepped into dynsym resolve code\n");
4899
4900 if (pc_after_resolver)
4901 {
4902 /* Set up a step-resume breakpoint at the address
4903 indicated by SKIP_SOLIB_RESOLVER. */
4904 struct symtab_and_line sr_sal;
4905
4906 init_sal (&sr_sal);
4907 sr_sal.pc = pc_after_resolver;
4908 sr_sal.pspace = get_frame_program_space (frame);
4909
4910 insert_step_resume_breakpoint_at_sal (gdbarch,
4911 sr_sal, null_frame_id);
4912 }
4913
4914 keep_going (ecs);
4915 return;
4916 }
4917
4918 if (ecs->event_thread->control.step_range_end != 1
4919 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4920 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4921 && get_frame_type (frame) == SIGTRAMP_FRAME)
4922 {
4923 if (debug_infrun)
4924 fprintf_unfiltered (gdb_stdlog,
4925 "infrun: stepped into signal trampoline\n");
4926 /* The inferior, while doing a "step" or "next", has ended up in
4927 a signal trampoline (either by a signal being delivered or by
4928 the signal handler returning). Just single-step until the
4929 inferior leaves the trampoline (either by calling the handler
4930 or returning). */
4931 keep_going (ecs);
4932 return;
4933 }
4934
4935 /* If we're in the return path from a shared library trampoline,
4936 we want to proceed through the trampoline when stepping. */
4937 /* macro/2012-04-25: This needs to come before the subroutine
4938 call check below as on some targets return trampolines look
4939 like subroutine calls (MIPS16 return thunks). */
4940 if (gdbarch_in_solib_return_trampoline (gdbarch,
4941 stop_pc, ecs->stop_func_name)
4942 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4943 {
4944 /* Determine where this trampoline returns. */
4945 CORE_ADDR real_stop_pc;
4946
4947 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4948
4949 if (debug_infrun)
4950 fprintf_unfiltered (gdb_stdlog,
4951 "infrun: stepped into solib return tramp\n");
4952
4953 /* Only proceed through if we know where it's going. */
4954 if (real_stop_pc)
4955 {
4956 /* And put the step-breakpoint there and go until there. */
4957 struct symtab_and_line sr_sal;
4958
4959 init_sal (&sr_sal); /* initialize to zeroes */
4960 sr_sal.pc = real_stop_pc;
4961 sr_sal.section = find_pc_overlay (sr_sal.pc);
4962 sr_sal.pspace = get_frame_program_space (frame);
4963
4964 /* Do not specify what the fp should be when we stop since
4965 on some machines the prologue is where the new fp value
4966 is established. */
4967 insert_step_resume_breakpoint_at_sal (gdbarch,
4968 sr_sal, null_frame_id);
4969
4970 /* Restart without fiddling with the step ranges or
4971 other state. */
4972 keep_going (ecs);
4973 return;
4974 }
4975 }
4976
4977 /* Check for subroutine calls. The check for the current frame
4978 equalling the step ID is not necessary - the check of the
4979 previous frame's ID is sufficient - but it is a common case and
4980 cheaper than checking the previous frame's ID.
4981
4982 NOTE: frame_id_eq will never report two invalid frame IDs as
4983 being equal, so to get into this block, both the current and
4984 previous frame must have valid frame IDs. */
4985 /* The outer_frame_id check is a heuristic to detect stepping
4986 through startup code. If we step over an instruction which
4987 sets the stack pointer from an invalid value to a valid value,
4988 we may detect that as a subroutine call from the mythical
4989 "outermost" function. This could be fixed by marking
4990 outermost frames as !stack_p,code_p,special_p. Then the
4991 initial outermost frame, before sp was valid, would
4992 have code_addr == &_start. See the comment in frame_id_eq
4993 for more. */
4994 if (!frame_id_eq (get_stack_frame_id (frame),
4995 ecs->event_thread->control.step_stack_frame_id)
4996 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4997 ecs->event_thread->control.step_stack_frame_id)
4998 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4999 outer_frame_id)
5000 || step_start_function != find_pc_function (stop_pc))))
5001 {
5002 CORE_ADDR real_stop_pc;
5003
5004 if (debug_infrun)
5005 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
5006
5007 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
5008 || ((ecs->event_thread->control.step_range_end == 1)
5009 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
5010 ecs->stop_func_start)))
5011 {
5012 /* I presume that step_over_calls is only 0 when we're
5013 supposed to be stepping at the assembly language level
5014 ("stepi"). Just stop. */
5015 /* Also, maybe we just did a "nexti" inside a prolog, so we
5016 thought it was a subroutine call but it was not. Stop as
5017 well. FENN */
5018 /* And this works the same backward as frontward. MVS */
5019 end_stepping_range (ecs);
5020 return;
5021 }
5022
5023 /* Reverse stepping through solib trampolines. */
5024
5025 if (execution_direction == EXEC_REVERSE
5026 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
5027 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5028 || (ecs->stop_func_start == 0
5029 && in_solib_dynsym_resolve_code (stop_pc))))
5030 {
5031 /* Any solib trampoline code can be handled in reverse
5032 by simply continuing to single-step. We have already
5033 executed the solib function (backwards), and a few
5034 steps will take us back through the trampoline to the
5035 caller. */
5036 keep_going (ecs);
5037 return;
5038 }
5039
5040 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5041 {
5042 /* We're doing a "next".
5043
5044 Normal (forward) execution: set a breakpoint at the
5045 callee's return address (the address at which the caller
5046 will resume).
5047
5048 Reverse (backward) execution. set the step-resume
5049 breakpoint at the start of the function that we just
5050 stepped into (backwards), and continue to there. When we
5051 get there, we'll need to single-step back to the caller. */
5052
5053 if (execution_direction == EXEC_REVERSE)
5054 {
5055 /* If we're already at the start of the function, we've either
5056 just stepped backward into a single instruction function,
5057 or stepped back out of a signal handler to the first instruction
5058 of the function. Just keep going, which will single-step back
5059 to the caller. */
5060 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
5061 {
5062 struct symtab_and_line sr_sal;
5063
5064 /* Normal function call return (static or dynamic). */
5065 init_sal (&sr_sal);
5066 sr_sal.pc = ecs->stop_func_start;
5067 sr_sal.pspace = get_frame_program_space (frame);
5068 insert_step_resume_breakpoint_at_sal (gdbarch,
5069 sr_sal, null_frame_id);
5070 }
5071 }
5072 else
5073 insert_step_resume_breakpoint_at_caller (frame);
5074
5075 keep_going (ecs);
5076 return;
5077 }
5078
5079 /* If we are in a function call trampoline (a stub between the
5080 calling routine and the real function), locate the real
5081 function. That's what tells us (a) whether we want to step
5082 into it at all, and (b) what prologue we want to run to the
5083 end of, if we do step into it. */
5084 real_stop_pc = skip_language_trampoline (frame, stop_pc);
5085 if (real_stop_pc == 0)
5086 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5087 if (real_stop_pc != 0)
5088 ecs->stop_func_start = real_stop_pc;
5089
5090 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
5091 {
5092 struct symtab_and_line sr_sal;
5093
5094 init_sal (&sr_sal);
5095 sr_sal.pc = ecs->stop_func_start;
5096 sr_sal.pspace = get_frame_program_space (frame);
5097
5098 insert_step_resume_breakpoint_at_sal (gdbarch,
5099 sr_sal, null_frame_id);
5100 keep_going (ecs);
5101 return;
5102 }
5103
5104 /* If we have line number information for the function we are
5105 thinking of stepping into and the function isn't on the skip
5106 list, step into it.
5107
5108 If there are several symtabs at that PC (e.g. with include
5109 files), just want to know whether *any* of them have line
5110 numbers. find_pc_line handles this. */
5111 {
5112 struct symtab_and_line tmp_sal;
5113
5114 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
5115 if (tmp_sal.line != 0
5116 && !function_name_is_marked_for_skip (ecs->stop_func_name,
5117 &tmp_sal))
5118 {
5119 if (execution_direction == EXEC_REVERSE)
5120 handle_step_into_function_backward (gdbarch, ecs);
5121 else
5122 handle_step_into_function (gdbarch, ecs);
5123 return;
5124 }
5125 }
5126
5127 /* If we have no line number and the step-stop-if-no-debug is
5128 set, we stop the step so that the user has a chance to switch
5129 in assembly mode. */
5130 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5131 && step_stop_if_no_debug)
5132 {
5133 end_stepping_range (ecs);
5134 return;
5135 }
5136
5137 if (execution_direction == EXEC_REVERSE)
5138 {
5139 /* If we're already at the start of the function, we've either just
5140 stepped backward into a single instruction function without line
5141 number info, or stepped back out of a signal handler to the first
5142 instruction of the function without line number info. Just keep
5143 going, which will single-step back to the caller. */
5144 if (ecs->stop_func_start != stop_pc)
5145 {
5146 /* Set a breakpoint at callee's start address.
5147 From there we can step once and be back in the caller. */
5148 struct symtab_and_line sr_sal;
5149
5150 init_sal (&sr_sal);
5151 sr_sal.pc = ecs->stop_func_start;
5152 sr_sal.pspace = get_frame_program_space (frame);
5153 insert_step_resume_breakpoint_at_sal (gdbarch,
5154 sr_sal, null_frame_id);
5155 }
5156 }
5157 else
5158 /* Set a breakpoint at callee's return address (the address
5159 at which the caller will resume). */
5160 insert_step_resume_breakpoint_at_caller (frame);
5161
5162 keep_going (ecs);
5163 return;
5164 }
5165
5166 /* Reverse stepping through solib trampolines. */
5167
5168 if (execution_direction == EXEC_REVERSE
5169 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5170 {
5171 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5172 || (ecs->stop_func_start == 0
5173 && in_solib_dynsym_resolve_code (stop_pc)))
5174 {
5175 /* Any solib trampoline code can be handled in reverse
5176 by simply continuing to single-step. We have already
5177 executed the solib function (backwards), and a few
5178 steps will take us back through the trampoline to the
5179 caller. */
5180 keep_going (ecs);
5181 return;
5182 }
5183 else if (in_solib_dynsym_resolve_code (stop_pc))
5184 {
5185 /* Stepped backward into the solib dynsym resolver.
5186 Set a breakpoint at its start and continue, then
5187 one more step will take us out. */
5188 struct symtab_and_line sr_sal;
5189
5190 init_sal (&sr_sal);
5191 sr_sal.pc = ecs->stop_func_start;
5192 sr_sal.pspace = get_frame_program_space (frame);
5193 insert_step_resume_breakpoint_at_sal (gdbarch,
5194 sr_sal, null_frame_id);
5195 keep_going (ecs);
5196 return;
5197 }
5198 }
5199
5200 stop_pc_sal = find_pc_line (stop_pc, 0);
5201
5202 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5203 the trampoline processing logic, however, there are some trampolines
5204 that have no names, so we should do trampoline handling first. */
5205 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5206 && ecs->stop_func_name == NULL
5207 && stop_pc_sal.line == 0)
5208 {
5209 if (debug_infrun)
5210 fprintf_unfiltered (gdb_stdlog,
5211 "infrun: stepped into undebuggable function\n");
5212
5213 /* The inferior just stepped into, or returned to, an
5214 undebuggable function (where there is no debugging information
5215 and no line number corresponding to the address where the
5216 inferior stopped). Since we want to skip this kind of code,
5217 we keep going until the inferior returns from this
5218 function - unless the user has asked us not to (via
5219 set step-mode) or we no longer know how to get back
5220 to the call site. */
5221 if (step_stop_if_no_debug
5222 || !frame_id_p (frame_unwind_caller_id (frame)))
5223 {
5224 /* If we have no line number and the step-stop-if-no-debug
5225 is set, we stop the step so that the user has a chance to
5226 switch in assembly mode. */
5227 end_stepping_range (ecs);
5228 return;
5229 }
5230 else
5231 {
5232 /* Set a breakpoint at callee's return address (the address
5233 at which the caller will resume). */
5234 insert_step_resume_breakpoint_at_caller (frame);
5235 keep_going (ecs);
5236 return;
5237 }
5238 }
5239
5240 if (ecs->event_thread->control.step_range_end == 1)
5241 {
5242 /* It is stepi or nexti. We always want to stop stepping after
5243 one instruction. */
5244 if (debug_infrun)
5245 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5246 end_stepping_range (ecs);
5247 return;
5248 }
5249
5250 if (stop_pc_sal.line == 0)
5251 {
5252 /* We have no line number information. That means to stop
5253 stepping (does this always happen right after one instruction,
5254 when we do "s" in a function with no line numbers,
5255 or can this happen as a result of a return or longjmp?). */
5256 if (debug_infrun)
5257 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5258 end_stepping_range (ecs);
5259 return;
5260 }
5261
5262 /* Look for "calls" to inlined functions, part one. If the inline
5263 frame machinery detected some skipped call sites, we have entered
5264 a new inline function. */
5265
5266 if (frame_id_eq (get_frame_id (get_current_frame ()),
5267 ecs->event_thread->control.step_frame_id)
5268 && inline_skipped_frames (ecs->ptid))
5269 {
5270 struct symtab_and_line call_sal;
5271
5272 if (debug_infrun)
5273 fprintf_unfiltered (gdb_stdlog,
5274 "infrun: stepped into inlined function\n");
5275
5276 find_frame_sal (get_current_frame (), &call_sal);
5277
5278 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5279 {
5280 /* For "step", we're going to stop. But if the call site
5281 for this inlined function is on the same source line as
5282 we were previously stepping, go down into the function
5283 first. Otherwise stop at the call site. */
5284
5285 if (call_sal.line == ecs->event_thread->current_line
5286 && call_sal.symtab == ecs->event_thread->current_symtab)
5287 step_into_inline_frame (ecs->ptid);
5288
5289 end_stepping_range (ecs);
5290 return;
5291 }
5292 else
5293 {
5294 /* For "next", we should stop at the call site if it is on a
5295 different source line. Otherwise continue through the
5296 inlined function. */
5297 if (call_sal.line == ecs->event_thread->current_line
5298 && call_sal.symtab == ecs->event_thread->current_symtab)
5299 keep_going (ecs);
5300 else
5301 end_stepping_range (ecs);
5302 return;
5303 }
5304 }
5305
5306 /* Look for "calls" to inlined functions, part two. If we are still
5307 in the same real function we were stepping through, but we have
5308 to go further up to find the exact frame ID, we are stepping
5309 through a more inlined call beyond its call site. */
5310
5311 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5312 && !frame_id_eq (get_frame_id (get_current_frame ()),
5313 ecs->event_thread->control.step_frame_id)
5314 && stepped_in_from (get_current_frame (),
5315 ecs->event_thread->control.step_frame_id))
5316 {
5317 if (debug_infrun)
5318 fprintf_unfiltered (gdb_stdlog,
5319 "infrun: stepping through inlined function\n");
5320
5321 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5322 keep_going (ecs);
5323 else
5324 end_stepping_range (ecs);
5325 return;
5326 }
5327
5328 if ((stop_pc == stop_pc_sal.pc)
5329 && (ecs->event_thread->current_line != stop_pc_sal.line
5330 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5331 {
5332 /* We are at the start of a different line. So stop. Note that
5333 we don't stop if we step into the middle of a different line.
5334 That is said to make things like for (;;) statements work
5335 better. */
5336 if (debug_infrun)
5337 fprintf_unfiltered (gdb_stdlog,
5338 "infrun: stepped to a different line\n");
5339 end_stepping_range (ecs);
5340 return;
5341 }
5342
5343 /* We aren't done stepping.
5344
5345 Optimize by setting the stepping range to the line.
5346 (We might not be in the original line, but if we entered a
5347 new line in mid-statement, we continue stepping. This makes
5348 things like for(;;) statements work better.) */
5349
5350 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5351 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5352 ecs->event_thread->control.may_range_step = 1;
5353 set_step_info (frame, stop_pc_sal);
5354
5355 if (debug_infrun)
5356 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5357 keep_going (ecs);
5358 }
5359
5360 /* In all-stop mode, if we're currently stepping but have stopped in
5361 some other thread, we may need to switch back to the stepped
5362 thread. Returns true we set the inferior running, false if we left
5363 it stopped (and the event needs further processing). */
5364
5365 static int
5366 switch_back_to_stepped_thread (struct execution_control_state *ecs)
5367 {
5368 if (!non_stop)
5369 {
5370 struct thread_info *tp;
5371 struct thread_info *stepping_thread;
5372 struct thread_info *step_over;
5373
5374 /* If any thread is blocked on some internal breakpoint, and we
5375 simply need to step over that breakpoint to get it going
5376 again, do that first. */
5377
5378 /* However, if we see an event for the stepping thread, then we
5379 know all other threads have been moved past their breakpoints
5380 already. Let the caller check whether the step is finished,
5381 etc., before deciding to move it past a breakpoint. */
5382 if (ecs->event_thread->control.step_range_end != 0)
5383 return 0;
5384
5385 /* Check if the current thread is blocked on an incomplete
5386 step-over, interrupted by a random signal. */
5387 if (ecs->event_thread->control.trap_expected
5388 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5389 {
5390 if (debug_infrun)
5391 {
5392 fprintf_unfiltered (gdb_stdlog,
5393 "infrun: need to finish step-over of [%s]\n",
5394 target_pid_to_str (ecs->event_thread->ptid));
5395 }
5396 keep_going (ecs);
5397 return 1;
5398 }
5399
5400 /* Check if the current thread is blocked by a single-step
5401 breakpoint of another thread. */
5402 if (ecs->hit_singlestep_breakpoint)
5403 {
5404 if (debug_infrun)
5405 {
5406 fprintf_unfiltered (gdb_stdlog,
5407 "infrun: need to step [%s] over single-step "
5408 "breakpoint\n",
5409 target_pid_to_str (ecs->ptid));
5410 }
5411 keep_going (ecs);
5412 return 1;
5413 }
5414
5415 /* Otherwise, we no longer expect a trap in the current thread.
5416 Clear the trap_expected flag before switching back -- this is
5417 what keep_going does as well, if we call it. */
5418 ecs->event_thread->control.trap_expected = 0;
5419
5420 /* Likewise, clear the signal if it should not be passed. */
5421 if (!signal_program[ecs->event_thread->suspend.stop_signal])
5422 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5423
5424 /* If scheduler locking applies even if not stepping, there's no
5425 need to walk over threads. Above we've checked whether the
5426 current thread is stepping. If some other thread not the
5427 event thread is stepping, then it must be that scheduler
5428 locking is not in effect. */
5429 if (schedlock_applies (0))
5430 return 0;
5431
5432 /* Look for the stepping/nexting thread, and check if any other
5433 thread other than the stepping thread needs to start a
5434 step-over. Do all step-overs before actually proceeding with
5435 step/next/etc. */
5436 stepping_thread = NULL;
5437 step_over = NULL;
5438 ALL_NON_EXITED_THREADS (tp)
5439 {
5440 /* Ignore threads of processes we're not resuming. */
5441 if (!sched_multi
5442 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
5443 continue;
5444
5445 /* When stepping over a breakpoint, we lock all threads
5446 except the one that needs to move past the breakpoint.
5447 If a non-event thread has this set, the "incomplete
5448 step-over" check above should have caught it earlier. */
5449 gdb_assert (!tp->control.trap_expected);
5450
5451 /* Did we find the stepping thread? */
5452 if (tp->control.step_range_end)
5453 {
5454 /* Yep. There should only one though. */
5455 gdb_assert (stepping_thread == NULL);
5456
5457 /* The event thread is handled at the top, before we
5458 enter this loop. */
5459 gdb_assert (tp != ecs->event_thread);
5460
5461 /* If some thread other than the event thread is
5462 stepping, then scheduler locking can't be in effect,
5463 otherwise we wouldn't have resumed the current event
5464 thread in the first place. */
5465 gdb_assert (!schedlock_applies (1));
5466
5467 stepping_thread = tp;
5468 }
5469 else if (thread_still_needs_step_over (tp))
5470 {
5471 step_over = tp;
5472
5473 /* At the top we've returned early if the event thread
5474 is stepping. If some other thread not the event
5475 thread is stepping, then scheduler locking can't be
5476 in effect, and we can resume this thread. No need to
5477 keep looking for the stepping thread then. */
5478 break;
5479 }
5480 }
5481
5482 if (step_over != NULL)
5483 {
5484 tp = step_over;
5485 if (debug_infrun)
5486 {
5487 fprintf_unfiltered (gdb_stdlog,
5488 "infrun: need to step-over [%s]\n",
5489 target_pid_to_str (tp->ptid));
5490 }
5491
5492 /* Only the stepping thread should have this set. */
5493 gdb_assert (tp->control.step_range_end == 0);
5494
5495 ecs->ptid = tp->ptid;
5496 ecs->event_thread = tp;
5497 switch_to_thread (ecs->ptid);
5498 keep_going (ecs);
5499 return 1;
5500 }
5501
5502 if (stepping_thread != NULL)
5503 {
5504 struct frame_info *frame;
5505 struct gdbarch *gdbarch;
5506
5507 tp = stepping_thread;
5508
5509 /* If the stepping thread exited, then don't try to switch
5510 back and resume it, which could fail in several different
5511 ways depending on the target. Instead, just keep going.
5512
5513 We can find a stepping dead thread in the thread list in
5514 two cases:
5515
5516 - The target supports thread exit events, and when the
5517 target tries to delete the thread from the thread list,
5518 inferior_ptid pointed at the exiting thread. In such
5519 case, calling delete_thread does not really remove the
5520 thread from the list; instead, the thread is left listed,
5521 with 'exited' state.
5522
5523 - The target's debug interface does not support thread
5524 exit events, and so we have no idea whatsoever if the
5525 previously stepping thread is still alive. For that
5526 reason, we need to synchronously query the target
5527 now. */
5528 if (is_exited (tp->ptid)
5529 || !target_thread_alive (tp->ptid))
5530 {
5531 if (debug_infrun)
5532 fprintf_unfiltered (gdb_stdlog,
5533 "infrun: not switching back to "
5534 "stepped thread, it has vanished\n");
5535
5536 delete_thread (tp->ptid);
5537 keep_going (ecs);
5538 return 1;
5539 }
5540
5541 if (debug_infrun)
5542 fprintf_unfiltered (gdb_stdlog,
5543 "infrun: switching back to stepped thread\n");
5544
5545 ecs->event_thread = tp;
5546 ecs->ptid = tp->ptid;
5547 context_switch (ecs->ptid);
5548
5549 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5550 frame = get_current_frame ();
5551 gdbarch = get_frame_arch (frame);
5552
5553 /* If the PC of the thread we were trying to single-step has
5554 changed, then that thread has trapped or been signaled,
5555 but the event has not been reported to GDB yet. Re-poll
5556 the target looking for this particular thread's event
5557 (i.e. temporarily enable schedlock) by:
5558
5559 - setting a break at the current PC
5560 - resuming that particular thread, only (by setting
5561 trap expected)
5562
5563 This prevents us continuously moving the single-step
5564 breakpoint forward, one instruction at a time,
5565 overstepping. */
5566
5567 if (gdbarch_software_single_step_p (gdbarch)
5568 && stop_pc != tp->prev_pc)
5569 {
5570 if (debug_infrun)
5571 fprintf_unfiltered (gdb_stdlog,
5572 "infrun: expected thread advanced also\n");
5573
5574 /* Clear the info of the previous step-over, as it's no
5575 longer valid. It's what keep_going would do too, if
5576 we called it. Must do this before trying to insert
5577 the sss breakpoint, otherwise if we were previously
5578 trying to step over this exact address in another
5579 thread, the breakpoint ends up not installed. */
5580 clear_step_over_info ();
5581
5582 insert_single_step_breakpoint (get_frame_arch (frame),
5583 get_frame_address_space (frame),
5584 stop_pc);
5585 ecs->event_thread->control.trap_expected = 1;
5586
5587 resume (0, GDB_SIGNAL_0);
5588 prepare_to_wait (ecs);
5589 }
5590 else
5591 {
5592 if (debug_infrun)
5593 fprintf_unfiltered (gdb_stdlog,
5594 "infrun: expected thread still "
5595 "hasn't advanced\n");
5596 keep_going (ecs);
5597 }
5598
5599 return 1;
5600 }
5601 }
5602 return 0;
5603 }
5604
5605 /* Is thread TP in the middle of single-stepping? */
5606
5607 static int
5608 currently_stepping (struct thread_info *tp)
5609 {
5610 return ((tp->control.step_range_end
5611 && tp->control.step_resume_breakpoint == NULL)
5612 || tp->control.trap_expected
5613 || bpstat_should_step ());
5614 }
5615
5616 /* Inferior has stepped into a subroutine call with source code that
5617 we should not step over. Do step to the first line of code in
5618 it. */
5619
5620 static void
5621 handle_step_into_function (struct gdbarch *gdbarch,
5622 struct execution_control_state *ecs)
5623 {
5624 struct symtab *s;
5625 struct symtab_and_line stop_func_sal, sr_sal;
5626
5627 fill_in_stop_func (gdbarch, ecs);
5628
5629 s = find_pc_symtab (stop_pc);
5630 if (s && s->language != language_asm)
5631 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5632 ecs->stop_func_start);
5633
5634 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5635 /* Use the step_resume_break to step until the end of the prologue,
5636 even if that involves jumps (as it seems to on the vax under
5637 4.2). */
5638 /* If the prologue ends in the middle of a source line, continue to
5639 the end of that source line (if it is still within the function).
5640 Otherwise, just go to end of prologue. */
5641 if (stop_func_sal.end
5642 && stop_func_sal.pc != ecs->stop_func_start
5643 && stop_func_sal.end < ecs->stop_func_end)
5644 ecs->stop_func_start = stop_func_sal.end;
5645
5646 /* Architectures which require breakpoint adjustment might not be able
5647 to place a breakpoint at the computed address. If so, the test
5648 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5649 ecs->stop_func_start to an address at which a breakpoint may be
5650 legitimately placed.
5651
5652 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5653 made, GDB will enter an infinite loop when stepping through
5654 optimized code consisting of VLIW instructions which contain
5655 subinstructions corresponding to different source lines. On
5656 FR-V, it's not permitted to place a breakpoint on any but the
5657 first subinstruction of a VLIW instruction. When a breakpoint is
5658 set, GDB will adjust the breakpoint address to the beginning of
5659 the VLIW instruction. Thus, we need to make the corresponding
5660 adjustment here when computing the stop address. */
5661
5662 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5663 {
5664 ecs->stop_func_start
5665 = gdbarch_adjust_breakpoint_address (gdbarch,
5666 ecs->stop_func_start);
5667 }
5668
5669 if (ecs->stop_func_start == stop_pc)
5670 {
5671 /* We are already there: stop now. */
5672 end_stepping_range (ecs);
5673 return;
5674 }
5675 else
5676 {
5677 /* Put the step-breakpoint there and go until there. */
5678 init_sal (&sr_sal); /* initialize to zeroes */
5679 sr_sal.pc = ecs->stop_func_start;
5680 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5681 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5682
5683 /* Do not specify what the fp should be when we stop since on
5684 some machines the prologue is where the new fp value is
5685 established. */
5686 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5687
5688 /* And make sure stepping stops right away then. */
5689 ecs->event_thread->control.step_range_end
5690 = ecs->event_thread->control.step_range_start;
5691 }
5692 keep_going (ecs);
5693 }
5694
5695 /* Inferior has stepped backward into a subroutine call with source
5696 code that we should not step over. Do step to the beginning of the
5697 last line of code in it. */
5698
5699 static void
5700 handle_step_into_function_backward (struct gdbarch *gdbarch,
5701 struct execution_control_state *ecs)
5702 {
5703 struct symtab *s;
5704 struct symtab_and_line stop_func_sal;
5705
5706 fill_in_stop_func (gdbarch, ecs);
5707
5708 s = find_pc_symtab (stop_pc);
5709 if (s && s->language != language_asm)
5710 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5711 ecs->stop_func_start);
5712
5713 stop_func_sal = find_pc_line (stop_pc, 0);
5714
5715 /* OK, we're just going to keep stepping here. */
5716 if (stop_func_sal.pc == stop_pc)
5717 {
5718 /* We're there already. Just stop stepping now. */
5719 end_stepping_range (ecs);
5720 }
5721 else
5722 {
5723 /* Else just reset the step range and keep going.
5724 No step-resume breakpoint, they don't work for
5725 epilogues, which can have multiple entry paths. */
5726 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5727 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5728 keep_going (ecs);
5729 }
5730 return;
5731 }
5732
5733 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5734 This is used to both functions and to skip over code. */
5735
5736 static void
5737 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5738 struct symtab_and_line sr_sal,
5739 struct frame_id sr_id,
5740 enum bptype sr_type)
5741 {
5742 /* There should never be more than one step-resume or longjmp-resume
5743 breakpoint per thread, so we should never be setting a new
5744 step_resume_breakpoint when one is already active. */
5745 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5746 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5747
5748 if (debug_infrun)
5749 fprintf_unfiltered (gdb_stdlog,
5750 "infrun: inserting step-resume breakpoint at %s\n",
5751 paddress (gdbarch, sr_sal.pc));
5752
5753 inferior_thread ()->control.step_resume_breakpoint
5754 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5755 }
5756
5757 void
5758 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5759 struct symtab_and_line sr_sal,
5760 struct frame_id sr_id)
5761 {
5762 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5763 sr_sal, sr_id,
5764 bp_step_resume);
5765 }
5766
5767 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5768 This is used to skip a potential signal handler.
5769
5770 This is called with the interrupted function's frame. The signal
5771 handler, when it returns, will resume the interrupted function at
5772 RETURN_FRAME.pc. */
5773
5774 static void
5775 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5776 {
5777 struct symtab_and_line sr_sal;
5778 struct gdbarch *gdbarch;
5779
5780 gdb_assert (return_frame != NULL);
5781 init_sal (&sr_sal); /* initialize to zeros */
5782
5783 gdbarch = get_frame_arch (return_frame);
5784 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5785 sr_sal.section = find_pc_overlay (sr_sal.pc);
5786 sr_sal.pspace = get_frame_program_space (return_frame);
5787
5788 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5789 get_stack_frame_id (return_frame),
5790 bp_hp_step_resume);
5791 }
5792
5793 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5794 is used to skip a function after stepping into it (for "next" or if
5795 the called function has no debugging information).
5796
5797 The current function has almost always been reached by single
5798 stepping a call or return instruction. NEXT_FRAME belongs to the
5799 current function, and the breakpoint will be set at the caller's
5800 resume address.
5801
5802 This is a separate function rather than reusing
5803 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5804 get_prev_frame, which may stop prematurely (see the implementation
5805 of frame_unwind_caller_id for an example). */
5806
5807 static void
5808 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5809 {
5810 struct symtab_and_line sr_sal;
5811 struct gdbarch *gdbarch;
5812
5813 /* We shouldn't have gotten here if we don't know where the call site
5814 is. */
5815 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5816
5817 init_sal (&sr_sal); /* initialize to zeros */
5818
5819 gdbarch = frame_unwind_caller_arch (next_frame);
5820 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5821 frame_unwind_caller_pc (next_frame));
5822 sr_sal.section = find_pc_overlay (sr_sal.pc);
5823 sr_sal.pspace = frame_unwind_program_space (next_frame);
5824
5825 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5826 frame_unwind_caller_id (next_frame));
5827 }
5828
5829 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5830 new breakpoint at the target of a jmp_buf. The handling of
5831 longjmp-resume uses the same mechanisms used for handling
5832 "step-resume" breakpoints. */
5833
5834 static void
5835 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5836 {
5837 /* There should never be more than one longjmp-resume breakpoint per
5838 thread, so we should never be setting a new
5839 longjmp_resume_breakpoint when one is already active. */
5840 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5841
5842 if (debug_infrun)
5843 fprintf_unfiltered (gdb_stdlog,
5844 "infrun: inserting longjmp-resume breakpoint at %s\n",
5845 paddress (gdbarch, pc));
5846
5847 inferior_thread ()->control.exception_resume_breakpoint =
5848 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5849 }
5850
5851 /* Insert an exception resume breakpoint. TP is the thread throwing
5852 the exception. The block B is the block of the unwinder debug hook
5853 function. FRAME is the frame corresponding to the call to this
5854 function. SYM is the symbol of the function argument holding the
5855 target PC of the exception. */
5856
5857 static void
5858 insert_exception_resume_breakpoint (struct thread_info *tp,
5859 const struct block *b,
5860 struct frame_info *frame,
5861 struct symbol *sym)
5862 {
5863 volatile struct gdb_exception e;
5864
5865 /* We want to ignore errors here. */
5866 TRY_CATCH (e, RETURN_MASK_ERROR)
5867 {
5868 struct symbol *vsym;
5869 struct value *value;
5870 CORE_ADDR handler;
5871 struct breakpoint *bp;
5872
5873 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5874 value = read_var_value (vsym, frame);
5875 /* If the value was optimized out, revert to the old behavior. */
5876 if (! value_optimized_out (value))
5877 {
5878 handler = value_as_address (value);
5879
5880 if (debug_infrun)
5881 fprintf_unfiltered (gdb_stdlog,
5882 "infrun: exception resume at %lx\n",
5883 (unsigned long) handler);
5884
5885 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5886 handler, bp_exception_resume);
5887
5888 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5889 frame = NULL;
5890
5891 bp->thread = tp->num;
5892 inferior_thread ()->control.exception_resume_breakpoint = bp;
5893 }
5894 }
5895 }
5896
5897 /* A helper for check_exception_resume that sets an
5898 exception-breakpoint based on a SystemTap probe. */
5899
5900 static void
5901 insert_exception_resume_from_probe (struct thread_info *tp,
5902 const struct bound_probe *probe,
5903 struct frame_info *frame)
5904 {
5905 struct value *arg_value;
5906 CORE_ADDR handler;
5907 struct breakpoint *bp;
5908
5909 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5910 if (!arg_value)
5911 return;
5912
5913 handler = value_as_address (arg_value);
5914
5915 if (debug_infrun)
5916 fprintf_unfiltered (gdb_stdlog,
5917 "infrun: exception resume at %s\n",
5918 paddress (get_objfile_arch (probe->objfile),
5919 handler));
5920
5921 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5922 handler, bp_exception_resume);
5923 bp->thread = tp->num;
5924 inferior_thread ()->control.exception_resume_breakpoint = bp;
5925 }
5926
5927 /* This is called when an exception has been intercepted. Check to
5928 see whether the exception's destination is of interest, and if so,
5929 set an exception resume breakpoint there. */
5930
5931 static void
5932 check_exception_resume (struct execution_control_state *ecs,
5933 struct frame_info *frame)
5934 {
5935 volatile struct gdb_exception e;
5936 struct bound_probe probe;
5937 struct symbol *func;
5938
5939 /* First see if this exception unwinding breakpoint was set via a
5940 SystemTap probe point. If so, the probe has two arguments: the
5941 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5942 set a breakpoint there. */
5943 probe = find_probe_by_pc (get_frame_pc (frame));
5944 if (probe.probe)
5945 {
5946 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
5947 return;
5948 }
5949
5950 func = get_frame_function (frame);
5951 if (!func)
5952 return;
5953
5954 TRY_CATCH (e, RETURN_MASK_ERROR)
5955 {
5956 const struct block *b;
5957 struct block_iterator iter;
5958 struct symbol *sym;
5959 int argno = 0;
5960
5961 /* The exception breakpoint is a thread-specific breakpoint on
5962 the unwinder's debug hook, declared as:
5963
5964 void _Unwind_DebugHook (void *cfa, void *handler);
5965
5966 The CFA argument indicates the frame to which control is
5967 about to be transferred. HANDLER is the destination PC.
5968
5969 We ignore the CFA and set a temporary breakpoint at HANDLER.
5970 This is not extremely efficient but it avoids issues in gdb
5971 with computing the DWARF CFA, and it also works even in weird
5972 cases such as throwing an exception from inside a signal
5973 handler. */
5974
5975 b = SYMBOL_BLOCK_VALUE (func);
5976 ALL_BLOCK_SYMBOLS (b, iter, sym)
5977 {
5978 if (!SYMBOL_IS_ARGUMENT (sym))
5979 continue;
5980
5981 if (argno == 0)
5982 ++argno;
5983 else
5984 {
5985 insert_exception_resume_breakpoint (ecs->event_thread,
5986 b, frame, sym);
5987 break;
5988 }
5989 }
5990 }
5991 }
5992
5993 static void
5994 stop_waiting (struct execution_control_state *ecs)
5995 {
5996 if (debug_infrun)
5997 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
5998
5999 clear_step_over_info ();
6000
6001 /* Let callers know we don't want to wait for the inferior anymore. */
6002 ecs->wait_some_more = 0;
6003 }
6004
6005 /* Called when we should continue running the inferior, because the
6006 current event doesn't cause a user visible stop. This does the
6007 resuming part; waiting for the next event is done elsewhere. */
6008
6009 static void
6010 keep_going (struct execution_control_state *ecs)
6011 {
6012 /* Make sure normal_stop is called if we get a QUIT handled before
6013 reaching resume. */
6014 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
6015
6016 /* Save the pc before execution, to compare with pc after stop. */
6017 ecs->event_thread->prev_pc
6018 = regcache_read_pc (get_thread_regcache (ecs->ptid));
6019
6020 if (ecs->event_thread->control.trap_expected
6021 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
6022 {
6023 /* We haven't yet gotten our trap, and either: intercepted a
6024 non-signal event (e.g., a fork); or took a signal which we
6025 are supposed to pass through to the inferior. Simply
6026 continue. */
6027 discard_cleanups (old_cleanups);
6028 resume (currently_stepping (ecs->event_thread),
6029 ecs->event_thread->suspend.stop_signal);
6030 }
6031 else
6032 {
6033 volatile struct gdb_exception e;
6034 struct regcache *regcache = get_current_regcache ();
6035 int remove_bp;
6036 int remove_wps;
6037
6038 /* Either the trap was not expected, but we are continuing
6039 anyway (if we got a signal, the user asked it be passed to
6040 the child)
6041 -- or --
6042 We got our expected trap, but decided we should resume from
6043 it.
6044
6045 We're going to run this baby now!
6046
6047 Note that insert_breakpoints won't try to re-insert
6048 already inserted breakpoints. Therefore, we don't
6049 care if breakpoints were already inserted, or not. */
6050
6051 /* If we need to step over a breakpoint, and we're not using
6052 displaced stepping to do so, insert all breakpoints
6053 (watchpoints, etc.) but the one we're stepping over, step one
6054 instruction, and then re-insert the breakpoint when that step
6055 is finished. */
6056
6057 remove_bp = (ecs->hit_singlestep_breakpoint
6058 || thread_still_needs_step_over (ecs->event_thread));
6059 remove_wps = (ecs->event_thread->stepping_over_watchpoint
6060 && !target_have_steppable_watchpoint);
6061
6062 if (remove_bp && !use_displaced_stepping (get_regcache_arch (regcache)))
6063 {
6064 set_step_over_info (get_regcache_aspace (regcache),
6065 regcache_read_pc (regcache), remove_wps);
6066 }
6067 else if (remove_wps)
6068 set_step_over_info (NULL, 0, remove_wps);
6069 else
6070 clear_step_over_info ();
6071
6072 /* Stop stepping if inserting breakpoints fails. */
6073 TRY_CATCH (e, RETURN_MASK_ERROR)
6074 {
6075 insert_breakpoints ();
6076 }
6077 if (e.reason < 0)
6078 {
6079 exception_print (gdb_stderr, e);
6080 stop_waiting (ecs);
6081 return;
6082 }
6083
6084 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
6085
6086 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
6087 explicitly specifies that such a signal should be delivered
6088 to the target program). Typically, that would occur when a
6089 user is debugging a target monitor on a simulator: the target
6090 monitor sets a breakpoint; the simulator encounters this
6091 breakpoint and halts the simulation handing control to GDB;
6092 GDB, noting that the stop address doesn't map to any known
6093 breakpoint, returns control back to the simulator; the
6094 simulator then delivers the hardware equivalent of a
6095 GDB_SIGNAL_TRAP to the program being debugged. */
6096 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6097 && !signal_program[ecs->event_thread->suspend.stop_signal])
6098 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6099
6100 discard_cleanups (old_cleanups);
6101 resume (currently_stepping (ecs->event_thread),
6102 ecs->event_thread->suspend.stop_signal);
6103 }
6104
6105 prepare_to_wait (ecs);
6106 }
6107
6108 /* This function normally comes after a resume, before
6109 handle_inferior_event exits. It takes care of any last bits of
6110 housekeeping, and sets the all-important wait_some_more flag. */
6111
6112 static void
6113 prepare_to_wait (struct execution_control_state *ecs)
6114 {
6115 if (debug_infrun)
6116 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
6117
6118 /* This is the old end of the while loop. Let everybody know we
6119 want to wait for the inferior some more and get called again
6120 soon. */
6121 ecs->wait_some_more = 1;
6122 }
6123
6124 /* We are done with the step range of a step/next/si/ni command.
6125 Called once for each n of a "step n" operation. */
6126
6127 static void
6128 end_stepping_range (struct execution_control_state *ecs)
6129 {
6130 ecs->event_thread->control.stop_step = 1;
6131 stop_waiting (ecs);
6132 }
6133
6134 /* Several print_*_reason functions to print why the inferior has stopped.
6135 We always print something when the inferior exits, or receives a signal.
6136 The rest of the cases are dealt with later on in normal_stop and
6137 print_it_typical. Ideally there should be a call to one of these
6138 print_*_reason functions functions from handle_inferior_event each time
6139 stop_waiting is called.
6140
6141 Note that we don't call these directly, instead we delegate that to
6142 the interpreters, through observers. Interpreters then call these
6143 with whatever uiout is right. */
6144
6145 void
6146 print_end_stepping_range_reason (struct ui_out *uiout)
6147 {
6148 /* For CLI-like interpreters, print nothing. */
6149
6150 if (ui_out_is_mi_like_p (uiout))
6151 {
6152 ui_out_field_string (uiout, "reason",
6153 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
6154 }
6155 }
6156
6157 void
6158 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
6159 {
6160 annotate_signalled ();
6161 if (ui_out_is_mi_like_p (uiout))
6162 ui_out_field_string
6163 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
6164 ui_out_text (uiout, "\nProgram terminated with signal ");
6165 annotate_signal_name ();
6166 ui_out_field_string (uiout, "signal-name",
6167 gdb_signal_to_name (siggnal));
6168 annotate_signal_name_end ();
6169 ui_out_text (uiout, ", ");
6170 annotate_signal_string ();
6171 ui_out_field_string (uiout, "signal-meaning",
6172 gdb_signal_to_string (siggnal));
6173 annotate_signal_string_end ();
6174 ui_out_text (uiout, ".\n");
6175 ui_out_text (uiout, "The program no longer exists.\n");
6176 }
6177
6178 void
6179 print_exited_reason (struct ui_out *uiout, int exitstatus)
6180 {
6181 struct inferior *inf = current_inferior ();
6182 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
6183
6184 annotate_exited (exitstatus);
6185 if (exitstatus)
6186 {
6187 if (ui_out_is_mi_like_p (uiout))
6188 ui_out_field_string (uiout, "reason",
6189 async_reason_lookup (EXEC_ASYNC_EXITED));
6190 ui_out_text (uiout, "[Inferior ");
6191 ui_out_text (uiout, plongest (inf->num));
6192 ui_out_text (uiout, " (");
6193 ui_out_text (uiout, pidstr);
6194 ui_out_text (uiout, ") exited with code ");
6195 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
6196 ui_out_text (uiout, "]\n");
6197 }
6198 else
6199 {
6200 if (ui_out_is_mi_like_p (uiout))
6201 ui_out_field_string
6202 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6203 ui_out_text (uiout, "[Inferior ");
6204 ui_out_text (uiout, plongest (inf->num));
6205 ui_out_text (uiout, " (");
6206 ui_out_text (uiout, pidstr);
6207 ui_out_text (uiout, ") exited normally]\n");
6208 }
6209 }
6210
6211 void
6212 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
6213 {
6214 annotate_signal ();
6215
6216 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
6217 {
6218 struct thread_info *t = inferior_thread ();
6219
6220 ui_out_text (uiout, "\n[");
6221 ui_out_field_string (uiout, "thread-name",
6222 target_pid_to_str (t->ptid));
6223 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
6224 ui_out_text (uiout, " stopped");
6225 }
6226 else
6227 {
6228 ui_out_text (uiout, "\nProgram received signal ");
6229 annotate_signal_name ();
6230 if (ui_out_is_mi_like_p (uiout))
6231 ui_out_field_string
6232 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
6233 ui_out_field_string (uiout, "signal-name",
6234 gdb_signal_to_name (siggnal));
6235 annotate_signal_name_end ();
6236 ui_out_text (uiout, ", ");
6237 annotate_signal_string ();
6238 ui_out_field_string (uiout, "signal-meaning",
6239 gdb_signal_to_string (siggnal));
6240 annotate_signal_string_end ();
6241 }
6242 ui_out_text (uiout, ".\n");
6243 }
6244
6245 void
6246 print_no_history_reason (struct ui_out *uiout)
6247 {
6248 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
6249 }
6250
6251 /* Print current location without a level number, if we have changed
6252 functions or hit a breakpoint. Print source line if we have one.
6253 bpstat_print contains the logic deciding in detail what to print,
6254 based on the event(s) that just occurred. */
6255
6256 void
6257 print_stop_event (struct target_waitstatus *ws)
6258 {
6259 int bpstat_ret;
6260 int source_flag;
6261 int do_frame_printing = 1;
6262 struct thread_info *tp = inferior_thread ();
6263
6264 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
6265 switch (bpstat_ret)
6266 {
6267 case PRINT_UNKNOWN:
6268 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
6269 should) carry around the function and does (or should) use
6270 that when doing a frame comparison. */
6271 if (tp->control.stop_step
6272 && frame_id_eq (tp->control.step_frame_id,
6273 get_frame_id (get_current_frame ()))
6274 && step_start_function == find_pc_function (stop_pc))
6275 {
6276 /* Finished step, just print source line. */
6277 source_flag = SRC_LINE;
6278 }
6279 else
6280 {
6281 /* Print location and source line. */
6282 source_flag = SRC_AND_LOC;
6283 }
6284 break;
6285 case PRINT_SRC_AND_LOC:
6286 /* Print location and source line. */
6287 source_flag = SRC_AND_LOC;
6288 break;
6289 case PRINT_SRC_ONLY:
6290 source_flag = SRC_LINE;
6291 break;
6292 case PRINT_NOTHING:
6293 /* Something bogus. */
6294 source_flag = SRC_LINE;
6295 do_frame_printing = 0;
6296 break;
6297 default:
6298 internal_error (__FILE__, __LINE__, _("Unknown value."));
6299 }
6300
6301 /* The behavior of this routine with respect to the source
6302 flag is:
6303 SRC_LINE: Print only source line
6304 LOCATION: Print only location
6305 SRC_AND_LOC: Print location and source line. */
6306 if (do_frame_printing)
6307 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6308
6309 /* Display the auto-display expressions. */
6310 do_displays ();
6311 }
6312
6313 /* Here to return control to GDB when the inferior stops for real.
6314 Print appropriate messages, remove breakpoints, give terminal our modes.
6315
6316 STOP_PRINT_FRAME nonzero means print the executing frame
6317 (pc, function, args, file, line number and line text).
6318 BREAKPOINTS_FAILED nonzero means stop was due to error
6319 attempting to insert breakpoints. */
6320
6321 void
6322 normal_stop (void)
6323 {
6324 struct target_waitstatus last;
6325 ptid_t last_ptid;
6326 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6327
6328 get_last_target_status (&last_ptid, &last);
6329
6330 /* If an exception is thrown from this point on, make sure to
6331 propagate GDB's knowledge of the executing state to the
6332 frontend/user running state. A QUIT is an easy exception to see
6333 here, so do this before any filtered output. */
6334 if (!non_stop)
6335 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
6336 else if (last.kind != TARGET_WAITKIND_SIGNALLED
6337 && last.kind != TARGET_WAITKIND_EXITED
6338 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6339 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
6340
6341 /* As we're presenting a stop, and potentially removing breakpoints,
6342 update the thread list so we can tell whether there are threads
6343 running on the target. With target remote, for example, we can
6344 only learn about new threads when we explicitly update the thread
6345 list. Do this before notifying the interpreters about signal
6346 stops, end of stepping ranges, etc., so that the "new thread"
6347 output is emitted before e.g., "Program received signal FOO",
6348 instead of after. */
6349 update_thread_list ();
6350
6351 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
6352 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
6353
6354 /* As with the notification of thread events, we want to delay
6355 notifying the user that we've switched thread context until
6356 the inferior actually stops.
6357
6358 There's no point in saying anything if the inferior has exited.
6359 Note that SIGNALLED here means "exited with a signal", not
6360 "received a signal".
6361
6362 Also skip saying anything in non-stop mode. In that mode, as we
6363 don't want GDB to switch threads behind the user's back, to avoid
6364 races where the user is typing a command to apply to thread x,
6365 but GDB switches to thread y before the user finishes entering
6366 the command, fetch_inferior_event installs a cleanup to restore
6367 the current thread back to the thread the user had selected right
6368 after this event is handled, so we're not really switching, only
6369 informing of a stop. */
6370 if (!non_stop
6371 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
6372 && target_has_execution
6373 && last.kind != TARGET_WAITKIND_SIGNALLED
6374 && last.kind != TARGET_WAITKIND_EXITED
6375 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6376 {
6377 target_terminal_ours_for_output ();
6378 printf_filtered (_("[Switching to %s]\n"),
6379 target_pid_to_str (inferior_ptid));
6380 annotate_thread_changed ();
6381 previous_inferior_ptid = inferior_ptid;
6382 }
6383
6384 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6385 {
6386 gdb_assert (sync_execution || !target_can_async_p ());
6387
6388 target_terminal_ours_for_output ();
6389 printf_filtered (_("No unwaited-for children left.\n"));
6390 }
6391
6392 /* Note: this depends on the update_thread_list call above. */
6393 if (!breakpoints_should_be_inserted_now () && target_has_execution)
6394 {
6395 if (remove_breakpoints ())
6396 {
6397 target_terminal_ours_for_output ();
6398 printf_filtered (_("Cannot remove breakpoints because "
6399 "program is no longer writable.\nFurther "
6400 "execution is probably impossible.\n"));
6401 }
6402 }
6403
6404 /* If an auto-display called a function and that got a signal,
6405 delete that auto-display to avoid an infinite recursion. */
6406
6407 if (stopped_by_random_signal)
6408 disable_current_display ();
6409
6410 /* Notify observers if we finished a "step"-like command, etc. */
6411 if (target_has_execution
6412 && last.kind != TARGET_WAITKIND_SIGNALLED
6413 && last.kind != TARGET_WAITKIND_EXITED
6414 && inferior_thread ()->control.stop_step)
6415 {
6416 /* But not if in the middle of doing a "step n" operation for
6417 n > 1 */
6418 if (inferior_thread ()->step_multi)
6419 goto done;
6420
6421 observer_notify_end_stepping_range ();
6422 }
6423
6424 target_terminal_ours ();
6425 async_enable_stdin ();
6426
6427 /* Set the current source location. This will also happen if we
6428 display the frame below, but the current SAL will be incorrect
6429 during a user hook-stop function. */
6430 if (has_stack_frames () && !stop_stack_dummy)
6431 set_current_sal_from_frame (get_current_frame ());
6432
6433 /* Let the user/frontend see the threads as stopped, but do nothing
6434 if the thread was running an infcall. We may be e.g., evaluating
6435 a breakpoint condition. In that case, the thread had state
6436 THREAD_RUNNING before the infcall, and shall remain set to
6437 running, all without informing the user/frontend about state
6438 transition changes. If this is actually a call command, then the
6439 thread was originally already stopped, so there's no state to
6440 finish either. */
6441 if (target_has_execution && inferior_thread ()->control.in_infcall)
6442 discard_cleanups (old_chain);
6443 else
6444 do_cleanups (old_chain);
6445
6446 /* Look up the hook_stop and run it (CLI internally handles problem
6447 of stop_command's pre-hook not existing). */
6448 if (stop_command)
6449 catch_errors (hook_stop_stub, stop_command,
6450 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6451
6452 if (!has_stack_frames ())
6453 goto done;
6454
6455 if (last.kind == TARGET_WAITKIND_SIGNALLED
6456 || last.kind == TARGET_WAITKIND_EXITED)
6457 goto done;
6458
6459 /* Select innermost stack frame - i.e., current frame is frame 0,
6460 and current location is based on that.
6461 Don't do this on return from a stack dummy routine,
6462 or if the program has exited. */
6463
6464 if (!stop_stack_dummy)
6465 {
6466 select_frame (get_current_frame ());
6467
6468 /* If --batch-silent is enabled then there's no need to print the current
6469 source location, and to try risks causing an error message about
6470 missing source files. */
6471 if (stop_print_frame && !batch_silent)
6472 print_stop_event (&last);
6473 }
6474
6475 /* Save the function value return registers, if we care.
6476 We might be about to restore their previous contents. */
6477 if (inferior_thread ()->control.proceed_to_finish
6478 && execution_direction != EXEC_REVERSE)
6479 {
6480 /* This should not be necessary. */
6481 if (stop_registers)
6482 regcache_xfree (stop_registers);
6483
6484 /* NB: The copy goes through to the target picking up the value of
6485 all the registers. */
6486 stop_registers = regcache_dup (get_current_regcache ());
6487 }
6488
6489 if (stop_stack_dummy == STOP_STACK_DUMMY)
6490 {
6491 /* Pop the empty frame that contains the stack dummy.
6492 This also restores inferior state prior to the call
6493 (struct infcall_suspend_state). */
6494 struct frame_info *frame = get_current_frame ();
6495
6496 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6497 frame_pop (frame);
6498 /* frame_pop() calls reinit_frame_cache as the last thing it
6499 does which means there's currently no selected frame. We
6500 don't need to re-establish a selected frame if the dummy call
6501 returns normally, that will be done by
6502 restore_infcall_control_state. However, we do have to handle
6503 the case where the dummy call is returning after being
6504 stopped (e.g. the dummy call previously hit a breakpoint).
6505 We can't know which case we have so just always re-establish
6506 a selected frame here. */
6507 select_frame (get_current_frame ());
6508 }
6509
6510 done:
6511 annotate_stopped ();
6512
6513 /* Suppress the stop observer if we're in the middle of:
6514
6515 - a step n (n > 1), as there still more steps to be done.
6516
6517 - a "finish" command, as the observer will be called in
6518 finish_command_continuation, so it can include the inferior
6519 function's return value.
6520
6521 - calling an inferior function, as we pretend we inferior didn't
6522 run at all. The return value of the call is handled by the
6523 expression evaluator, through call_function_by_hand. */
6524
6525 if (!target_has_execution
6526 || last.kind == TARGET_WAITKIND_SIGNALLED
6527 || last.kind == TARGET_WAITKIND_EXITED
6528 || last.kind == TARGET_WAITKIND_NO_RESUMED
6529 || (!(inferior_thread ()->step_multi
6530 && inferior_thread ()->control.stop_step)
6531 && !(inferior_thread ()->control.stop_bpstat
6532 && inferior_thread ()->control.proceed_to_finish)
6533 && !inferior_thread ()->control.in_infcall))
6534 {
6535 if (!ptid_equal (inferior_ptid, null_ptid))
6536 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6537 stop_print_frame);
6538 else
6539 observer_notify_normal_stop (NULL, stop_print_frame);
6540 }
6541
6542 if (target_has_execution)
6543 {
6544 if (last.kind != TARGET_WAITKIND_SIGNALLED
6545 && last.kind != TARGET_WAITKIND_EXITED)
6546 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6547 Delete any breakpoint that is to be deleted at the next stop. */
6548 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6549 }
6550
6551 /* Try to get rid of automatically added inferiors that are no
6552 longer needed. Keeping those around slows down things linearly.
6553 Note that this never removes the current inferior. */
6554 prune_inferiors ();
6555 }
6556
6557 static int
6558 hook_stop_stub (void *cmd)
6559 {
6560 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6561 return (0);
6562 }
6563 \f
6564 int
6565 signal_stop_state (int signo)
6566 {
6567 return signal_stop[signo];
6568 }
6569
6570 int
6571 signal_print_state (int signo)
6572 {
6573 return signal_print[signo];
6574 }
6575
6576 int
6577 signal_pass_state (int signo)
6578 {
6579 return signal_program[signo];
6580 }
6581
6582 static void
6583 signal_cache_update (int signo)
6584 {
6585 if (signo == -1)
6586 {
6587 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6588 signal_cache_update (signo);
6589
6590 return;
6591 }
6592
6593 signal_pass[signo] = (signal_stop[signo] == 0
6594 && signal_print[signo] == 0
6595 && signal_program[signo] == 1
6596 && signal_catch[signo] == 0);
6597 }
6598
6599 int
6600 signal_stop_update (int signo, int state)
6601 {
6602 int ret = signal_stop[signo];
6603
6604 signal_stop[signo] = state;
6605 signal_cache_update (signo);
6606 return ret;
6607 }
6608
6609 int
6610 signal_print_update (int signo, int state)
6611 {
6612 int ret = signal_print[signo];
6613
6614 signal_print[signo] = state;
6615 signal_cache_update (signo);
6616 return ret;
6617 }
6618
6619 int
6620 signal_pass_update (int signo, int state)
6621 {
6622 int ret = signal_program[signo];
6623
6624 signal_program[signo] = state;
6625 signal_cache_update (signo);
6626 return ret;
6627 }
6628
6629 /* Update the global 'signal_catch' from INFO and notify the
6630 target. */
6631
6632 void
6633 signal_catch_update (const unsigned int *info)
6634 {
6635 int i;
6636
6637 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6638 signal_catch[i] = info[i] > 0;
6639 signal_cache_update (-1);
6640 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6641 }
6642
6643 static void
6644 sig_print_header (void)
6645 {
6646 printf_filtered (_("Signal Stop\tPrint\tPass "
6647 "to program\tDescription\n"));
6648 }
6649
6650 static void
6651 sig_print_info (enum gdb_signal oursig)
6652 {
6653 const char *name = gdb_signal_to_name (oursig);
6654 int name_padding = 13 - strlen (name);
6655
6656 if (name_padding <= 0)
6657 name_padding = 0;
6658
6659 printf_filtered ("%s", name);
6660 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6661 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6662 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6663 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6664 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6665 }
6666
6667 /* Specify how various signals in the inferior should be handled. */
6668
6669 static void
6670 handle_command (char *args, int from_tty)
6671 {
6672 char **argv;
6673 int digits, wordlen;
6674 int sigfirst, signum, siglast;
6675 enum gdb_signal oursig;
6676 int allsigs;
6677 int nsigs;
6678 unsigned char *sigs;
6679 struct cleanup *old_chain;
6680
6681 if (args == NULL)
6682 {
6683 error_no_arg (_("signal to handle"));
6684 }
6685
6686 /* Allocate and zero an array of flags for which signals to handle. */
6687
6688 nsigs = (int) GDB_SIGNAL_LAST;
6689 sigs = (unsigned char *) alloca (nsigs);
6690 memset (sigs, 0, nsigs);
6691
6692 /* Break the command line up into args. */
6693
6694 argv = gdb_buildargv (args);
6695 old_chain = make_cleanup_freeargv (argv);
6696
6697 /* Walk through the args, looking for signal oursigs, signal names, and
6698 actions. Signal numbers and signal names may be interspersed with
6699 actions, with the actions being performed for all signals cumulatively
6700 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6701
6702 while (*argv != NULL)
6703 {
6704 wordlen = strlen (*argv);
6705 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6706 {;
6707 }
6708 allsigs = 0;
6709 sigfirst = siglast = -1;
6710
6711 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6712 {
6713 /* Apply action to all signals except those used by the
6714 debugger. Silently skip those. */
6715 allsigs = 1;
6716 sigfirst = 0;
6717 siglast = nsigs - 1;
6718 }
6719 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6720 {
6721 SET_SIGS (nsigs, sigs, signal_stop);
6722 SET_SIGS (nsigs, sigs, signal_print);
6723 }
6724 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6725 {
6726 UNSET_SIGS (nsigs, sigs, signal_program);
6727 }
6728 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6729 {
6730 SET_SIGS (nsigs, sigs, signal_print);
6731 }
6732 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6733 {
6734 SET_SIGS (nsigs, sigs, signal_program);
6735 }
6736 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6737 {
6738 UNSET_SIGS (nsigs, sigs, signal_stop);
6739 }
6740 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6741 {
6742 SET_SIGS (nsigs, sigs, signal_program);
6743 }
6744 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6745 {
6746 UNSET_SIGS (nsigs, sigs, signal_print);
6747 UNSET_SIGS (nsigs, sigs, signal_stop);
6748 }
6749 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6750 {
6751 UNSET_SIGS (nsigs, sigs, signal_program);
6752 }
6753 else if (digits > 0)
6754 {
6755 /* It is numeric. The numeric signal refers to our own
6756 internal signal numbering from target.h, not to host/target
6757 signal number. This is a feature; users really should be
6758 using symbolic names anyway, and the common ones like
6759 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6760
6761 sigfirst = siglast = (int)
6762 gdb_signal_from_command (atoi (*argv));
6763 if ((*argv)[digits] == '-')
6764 {
6765 siglast = (int)
6766 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6767 }
6768 if (sigfirst > siglast)
6769 {
6770 /* Bet he didn't figure we'd think of this case... */
6771 signum = sigfirst;
6772 sigfirst = siglast;
6773 siglast = signum;
6774 }
6775 }
6776 else
6777 {
6778 oursig = gdb_signal_from_name (*argv);
6779 if (oursig != GDB_SIGNAL_UNKNOWN)
6780 {
6781 sigfirst = siglast = (int) oursig;
6782 }
6783 else
6784 {
6785 /* Not a number and not a recognized flag word => complain. */
6786 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6787 }
6788 }
6789
6790 /* If any signal numbers or symbol names were found, set flags for
6791 which signals to apply actions to. */
6792
6793 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6794 {
6795 switch ((enum gdb_signal) signum)
6796 {
6797 case GDB_SIGNAL_TRAP:
6798 case GDB_SIGNAL_INT:
6799 if (!allsigs && !sigs[signum])
6800 {
6801 if (query (_("%s is used by the debugger.\n\
6802 Are you sure you want to change it? "),
6803 gdb_signal_to_name ((enum gdb_signal) signum)))
6804 {
6805 sigs[signum] = 1;
6806 }
6807 else
6808 {
6809 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6810 gdb_flush (gdb_stdout);
6811 }
6812 }
6813 break;
6814 case GDB_SIGNAL_0:
6815 case GDB_SIGNAL_DEFAULT:
6816 case GDB_SIGNAL_UNKNOWN:
6817 /* Make sure that "all" doesn't print these. */
6818 break;
6819 default:
6820 sigs[signum] = 1;
6821 break;
6822 }
6823 }
6824
6825 argv++;
6826 }
6827
6828 for (signum = 0; signum < nsigs; signum++)
6829 if (sigs[signum])
6830 {
6831 signal_cache_update (-1);
6832 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6833 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6834
6835 if (from_tty)
6836 {
6837 /* Show the results. */
6838 sig_print_header ();
6839 for (; signum < nsigs; signum++)
6840 if (sigs[signum])
6841 sig_print_info (signum);
6842 }
6843
6844 break;
6845 }
6846
6847 do_cleanups (old_chain);
6848 }
6849
6850 /* Complete the "handle" command. */
6851
6852 static VEC (char_ptr) *
6853 handle_completer (struct cmd_list_element *ignore,
6854 const char *text, const char *word)
6855 {
6856 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6857 static const char * const keywords[] =
6858 {
6859 "all",
6860 "stop",
6861 "ignore",
6862 "print",
6863 "pass",
6864 "nostop",
6865 "noignore",
6866 "noprint",
6867 "nopass",
6868 NULL,
6869 };
6870
6871 vec_signals = signal_completer (ignore, text, word);
6872 vec_keywords = complete_on_enum (keywords, word, word);
6873
6874 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6875 VEC_free (char_ptr, vec_signals);
6876 VEC_free (char_ptr, vec_keywords);
6877 return return_val;
6878 }
6879
6880 static void
6881 xdb_handle_command (char *args, int from_tty)
6882 {
6883 char **argv;
6884 struct cleanup *old_chain;
6885
6886 if (args == NULL)
6887 error_no_arg (_("xdb command"));
6888
6889 /* Break the command line up into args. */
6890
6891 argv = gdb_buildargv (args);
6892 old_chain = make_cleanup_freeargv (argv);
6893 if (argv[1] != (char *) NULL)
6894 {
6895 char *argBuf;
6896 int bufLen;
6897
6898 bufLen = strlen (argv[0]) + 20;
6899 argBuf = (char *) xmalloc (bufLen);
6900 if (argBuf)
6901 {
6902 int validFlag = 1;
6903 enum gdb_signal oursig;
6904
6905 oursig = gdb_signal_from_name (argv[0]);
6906 memset (argBuf, 0, bufLen);
6907 if (strcmp (argv[1], "Q") == 0)
6908 sprintf (argBuf, "%s %s", argv[0], "noprint");
6909 else
6910 {
6911 if (strcmp (argv[1], "s") == 0)
6912 {
6913 if (!signal_stop[oursig])
6914 sprintf (argBuf, "%s %s", argv[0], "stop");
6915 else
6916 sprintf (argBuf, "%s %s", argv[0], "nostop");
6917 }
6918 else if (strcmp (argv[1], "i") == 0)
6919 {
6920 if (!signal_program[oursig])
6921 sprintf (argBuf, "%s %s", argv[0], "pass");
6922 else
6923 sprintf (argBuf, "%s %s", argv[0], "nopass");
6924 }
6925 else if (strcmp (argv[1], "r") == 0)
6926 {
6927 if (!signal_print[oursig])
6928 sprintf (argBuf, "%s %s", argv[0], "print");
6929 else
6930 sprintf (argBuf, "%s %s", argv[0], "noprint");
6931 }
6932 else
6933 validFlag = 0;
6934 }
6935 if (validFlag)
6936 handle_command (argBuf, from_tty);
6937 else
6938 printf_filtered (_("Invalid signal handling flag.\n"));
6939 if (argBuf)
6940 xfree (argBuf);
6941 }
6942 }
6943 do_cleanups (old_chain);
6944 }
6945
6946 enum gdb_signal
6947 gdb_signal_from_command (int num)
6948 {
6949 if (num >= 1 && num <= 15)
6950 return (enum gdb_signal) num;
6951 error (_("Only signals 1-15 are valid as numeric signals.\n\
6952 Use \"info signals\" for a list of symbolic signals."));
6953 }
6954
6955 /* Print current contents of the tables set by the handle command.
6956 It is possible we should just be printing signals actually used
6957 by the current target (but for things to work right when switching
6958 targets, all signals should be in the signal tables). */
6959
6960 static void
6961 signals_info (char *signum_exp, int from_tty)
6962 {
6963 enum gdb_signal oursig;
6964
6965 sig_print_header ();
6966
6967 if (signum_exp)
6968 {
6969 /* First see if this is a symbol name. */
6970 oursig = gdb_signal_from_name (signum_exp);
6971 if (oursig == GDB_SIGNAL_UNKNOWN)
6972 {
6973 /* No, try numeric. */
6974 oursig =
6975 gdb_signal_from_command (parse_and_eval_long (signum_exp));
6976 }
6977 sig_print_info (oursig);
6978 return;
6979 }
6980
6981 printf_filtered ("\n");
6982 /* These ugly casts brought to you by the native VAX compiler. */
6983 for (oursig = GDB_SIGNAL_FIRST;
6984 (int) oursig < (int) GDB_SIGNAL_LAST;
6985 oursig = (enum gdb_signal) ((int) oursig + 1))
6986 {
6987 QUIT;
6988
6989 if (oursig != GDB_SIGNAL_UNKNOWN
6990 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
6991 sig_print_info (oursig);
6992 }
6993
6994 printf_filtered (_("\nUse the \"handle\" command "
6995 "to change these tables.\n"));
6996 }
6997
6998 /* Check if it makes sense to read $_siginfo from the current thread
6999 at this point. If not, throw an error. */
7000
7001 static void
7002 validate_siginfo_access (void)
7003 {
7004 /* No current inferior, no siginfo. */
7005 if (ptid_equal (inferior_ptid, null_ptid))
7006 error (_("No thread selected."));
7007
7008 /* Don't try to read from a dead thread. */
7009 if (is_exited (inferior_ptid))
7010 error (_("The current thread has terminated"));
7011
7012 /* ... or from a spinning thread. */
7013 if (is_running (inferior_ptid))
7014 error (_("Selected thread is running."));
7015 }
7016
7017 /* The $_siginfo convenience variable is a bit special. We don't know
7018 for sure the type of the value until we actually have a chance to
7019 fetch the data. The type can change depending on gdbarch, so it is
7020 also dependent on which thread you have selected.
7021
7022 1. making $_siginfo be an internalvar that creates a new value on
7023 access.
7024
7025 2. making the value of $_siginfo be an lval_computed value. */
7026
7027 /* This function implements the lval_computed support for reading a
7028 $_siginfo value. */
7029
7030 static void
7031 siginfo_value_read (struct value *v)
7032 {
7033 LONGEST transferred;
7034
7035 validate_siginfo_access ();
7036
7037 transferred =
7038 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
7039 NULL,
7040 value_contents_all_raw (v),
7041 value_offset (v),
7042 TYPE_LENGTH (value_type (v)));
7043
7044 if (transferred != TYPE_LENGTH (value_type (v)))
7045 error (_("Unable to read siginfo"));
7046 }
7047
7048 /* This function implements the lval_computed support for writing a
7049 $_siginfo value. */
7050
7051 static void
7052 siginfo_value_write (struct value *v, struct value *fromval)
7053 {
7054 LONGEST transferred;
7055
7056 validate_siginfo_access ();
7057
7058 transferred = target_write (&current_target,
7059 TARGET_OBJECT_SIGNAL_INFO,
7060 NULL,
7061 value_contents_all_raw (fromval),
7062 value_offset (v),
7063 TYPE_LENGTH (value_type (fromval)));
7064
7065 if (transferred != TYPE_LENGTH (value_type (fromval)))
7066 error (_("Unable to write siginfo"));
7067 }
7068
7069 static const struct lval_funcs siginfo_value_funcs =
7070 {
7071 siginfo_value_read,
7072 siginfo_value_write
7073 };
7074
7075 /* Return a new value with the correct type for the siginfo object of
7076 the current thread using architecture GDBARCH. Return a void value
7077 if there's no object available. */
7078
7079 static struct value *
7080 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
7081 void *ignore)
7082 {
7083 if (target_has_stack
7084 && !ptid_equal (inferior_ptid, null_ptid)
7085 && gdbarch_get_siginfo_type_p (gdbarch))
7086 {
7087 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7088
7089 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
7090 }
7091
7092 return allocate_value (builtin_type (gdbarch)->builtin_void);
7093 }
7094
7095 \f
7096 /* infcall_suspend_state contains state about the program itself like its
7097 registers and any signal it received when it last stopped.
7098 This state must be restored regardless of how the inferior function call
7099 ends (either successfully, or after it hits a breakpoint or signal)
7100 if the program is to properly continue where it left off. */
7101
7102 struct infcall_suspend_state
7103 {
7104 struct thread_suspend_state thread_suspend;
7105 #if 0 /* Currently unused and empty structures are not valid C. */
7106 struct inferior_suspend_state inferior_suspend;
7107 #endif
7108
7109 /* Other fields: */
7110 CORE_ADDR stop_pc;
7111 struct regcache *registers;
7112
7113 /* Format of SIGINFO_DATA or NULL if it is not present. */
7114 struct gdbarch *siginfo_gdbarch;
7115
7116 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
7117 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
7118 content would be invalid. */
7119 gdb_byte *siginfo_data;
7120 };
7121
7122 struct infcall_suspend_state *
7123 save_infcall_suspend_state (void)
7124 {
7125 struct infcall_suspend_state *inf_state;
7126 struct thread_info *tp = inferior_thread ();
7127 #if 0
7128 struct inferior *inf = current_inferior ();
7129 #endif
7130 struct regcache *regcache = get_current_regcache ();
7131 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7132 gdb_byte *siginfo_data = NULL;
7133
7134 if (gdbarch_get_siginfo_type_p (gdbarch))
7135 {
7136 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7137 size_t len = TYPE_LENGTH (type);
7138 struct cleanup *back_to;
7139
7140 siginfo_data = xmalloc (len);
7141 back_to = make_cleanup (xfree, siginfo_data);
7142
7143 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7144 siginfo_data, 0, len) == len)
7145 discard_cleanups (back_to);
7146 else
7147 {
7148 /* Errors ignored. */
7149 do_cleanups (back_to);
7150 siginfo_data = NULL;
7151 }
7152 }
7153
7154 inf_state = XCNEW (struct infcall_suspend_state);
7155
7156 if (siginfo_data)
7157 {
7158 inf_state->siginfo_gdbarch = gdbarch;
7159 inf_state->siginfo_data = siginfo_data;
7160 }
7161
7162 inf_state->thread_suspend = tp->suspend;
7163 #if 0 /* Currently unused and empty structures are not valid C. */
7164 inf_state->inferior_suspend = inf->suspend;
7165 #endif
7166
7167 /* run_inferior_call will not use the signal due to its `proceed' call with
7168 GDB_SIGNAL_0 anyway. */
7169 tp->suspend.stop_signal = GDB_SIGNAL_0;
7170
7171 inf_state->stop_pc = stop_pc;
7172
7173 inf_state->registers = regcache_dup (regcache);
7174
7175 return inf_state;
7176 }
7177
7178 /* Restore inferior session state to INF_STATE. */
7179
7180 void
7181 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
7182 {
7183 struct thread_info *tp = inferior_thread ();
7184 #if 0
7185 struct inferior *inf = current_inferior ();
7186 #endif
7187 struct regcache *regcache = get_current_regcache ();
7188 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7189
7190 tp->suspend = inf_state->thread_suspend;
7191 #if 0 /* Currently unused and empty structures are not valid C. */
7192 inf->suspend = inf_state->inferior_suspend;
7193 #endif
7194
7195 stop_pc = inf_state->stop_pc;
7196
7197 if (inf_state->siginfo_gdbarch == gdbarch)
7198 {
7199 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7200
7201 /* Errors ignored. */
7202 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7203 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
7204 }
7205
7206 /* The inferior can be gone if the user types "print exit(0)"
7207 (and perhaps other times). */
7208 if (target_has_execution)
7209 /* NB: The register write goes through to the target. */
7210 regcache_cpy (regcache, inf_state->registers);
7211
7212 discard_infcall_suspend_state (inf_state);
7213 }
7214
7215 static void
7216 do_restore_infcall_suspend_state_cleanup (void *state)
7217 {
7218 restore_infcall_suspend_state (state);
7219 }
7220
7221 struct cleanup *
7222 make_cleanup_restore_infcall_suspend_state
7223 (struct infcall_suspend_state *inf_state)
7224 {
7225 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
7226 }
7227
7228 void
7229 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
7230 {
7231 regcache_xfree (inf_state->registers);
7232 xfree (inf_state->siginfo_data);
7233 xfree (inf_state);
7234 }
7235
7236 struct regcache *
7237 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
7238 {
7239 return inf_state->registers;
7240 }
7241
7242 /* infcall_control_state contains state regarding gdb's control of the
7243 inferior itself like stepping control. It also contains session state like
7244 the user's currently selected frame. */
7245
7246 struct infcall_control_state
7247 {
7248 struct thread_control_state thread_control;
7249 struct inferior_control_state inferior_control;
7250
7251 /* Other fields: */
7252 enum stop_stack_kind stop_stack_dummy;
7253 int stopped_by_random_signal;
7254 int stop_after_trap;
7255
7256 /* ID if the selected frame when the inferior function call was made. */
7257 struct frame_id selected_frame_id;
7258 };
7259
7260 /* Save all of the information associated with the inferior<==>gdb
7261 connection. */
7262
7263 struct infcall_control_state *
7264 save_infcall_control_state (void)
7265 {
7266 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
7267 struct thread_info *tp = inferior_thread ();
7268 struct inferior *inf = current_inferior ();
7269
7270 inf_status->thread_control = tp->control;
7271 inf_status->inferior_control = inf->control;
7272
7273 tp->control.step_resume_breakpoint = NULL;
7274 tp->control.exception_resume_breakpoint = NULL;
7275
7276 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
7277 chain. If caller's caller is walking the chain, they'll be happier if we
7278 hand them back the original chain when restore_infcall_control_state is
7279 called. */
7280 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
7281
7282 /* Other fields: */
7283 inf_status->stop_stack_dummy = stop_stack_dummy;
7284 inf_status->stopped_by_random_signal = stopped_by_random_signal;
7285 inf_status->stop_after_trap = stop_after_trap;
7286
7287 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
7288
7289 return inf_status;
7290 }
7291
7292 static int
7293 restore_selected_frame (void *args)
7294 {
7295 struct frame_id *fid = (struct frame_id *) args;
7296 struct frame_info *frame;
7297
7298 frame = frame_find_by_id (*fid);
7299
7300 /* If inf_status->selected_frame_id is NULL, there was no previously
7301 selected frame. */
7302 if (frame == NULL)
7303 {
7304 warning (_("Unable to restore previously selected frame."));
7305 return 0;
7306 }
7307
7308 select_frame (frame);
7309
7310 return (1);
7311 }
7312
7313 /* Restore inferior session state to INF_STATUS. */
7314
7315 void
7316 restore_infcall_control_state (struct infcall_control_state *inf_status)
7317 {
7318 struct thread_info *tp = inferior_thread ();
7319 struct inferior *inf = current_inferior ();
7320
7321 if (tp->control.step_resume_breakpoint)
7322 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7323
7324 if (tp->control.exception_resume_breakpoint)
7325 tp->control.exception_resume_breakpoint->disposition
7326 = disp_del_at_next_stop;
7327
7328 /* Handle the bpstat_copy of the chain. */
7329 bpstat_clear (&tp->control.stop_bpstat);
7330
7331 tp->control = inf_status->thread_control;
7332 inf->control = inf_status->inferior_control;
7333
7334 /* Other fields: */
7335 stop_stack_dummy = inf_status->stop_stack_dummy;
7336 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7337 stop_after_trap = inf_status->stop_after_trap;
7338
7339 if (target_has_stack)
7340 {
7341 /* The point of catch_errors is that if the stack is clobbered,
7342 walking the stack might encounter a garbage pointer and
7343 error() trying to dereference it. */
7344 if (catch_errors
7345 (restore_selected_frame, &inf_status->selected_frame_id,
7346 "Unable to restore previously selected frame:\n",
7347 RETURN_MASK_ERROR) == 0)
7348 /* Error in restoring the selected frame. Select the innermost
7349 frame. */
7350 select_frame (get_current_frame ());
7351 }
7352
7353 xfree (inf_status);
7354 }
7355
7356 static void
7357 do_restore_infcall_control_state_cleanup (void *sts)
7358 {
7359 restore_infcall_control_state (sts);
7360 }
7361
7362 struct cleanup *
7363 make_cleanup_restore_infcall_control_state
7364 (struct infcall_control_state *inf_status)
7365 {
7366 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
7367 }
7368
7369 void
7370 discard_infcall_control_state (struct infcall_control_state *inf_status)
7371 {
7372 if (inf_status->thread_control.step_resume_breakpoint)
7373 inf_status->thread_control.step_resume_breakpoint->disposition
7374 = disp_del_at_next_stop;
7375
7376 if (inf_status->thread_control.exception_resume_breakpoint)
7377 inf_status->thread_control.exception_resume_breakpoint->disposition
7378 = disp_del_at_next_stop;
7379
7380 /* See save_infcall_control_state for info on stop_bpstat. */
7381 bpstat_clear (&inf_status->thread_control.stop_bpstat);
7382
7383 xfree (inf_status);
7384 }
7385 \f
7386 /* restore_inferior_ptid() will be used by the cleanup machinery
7387 to restore the inferior_ptid value saved in a call to
7388 save_inferior_ptid(). */
7389
7390 static void
7391 restore_inferior_ptid (void *arg)
7392 {
7393 ptid_t *saved_ptid_ptr = arg;
7394
7395 inferior_ptid = *saved_ptid_ptr;
7396 xfree (arg);
7397 }
7398
7399 /* Save the value of inferior_ptid so that it may be restored by a
7400 later call to do_cleanups(). Returns the struct cleanup pointer
7401 needed for later doing the cleanup. */
7402
7403 struct cleanup *
7404 save_inferior_ptid (void)
7405 {
7406 ptid_t *saved_ptid_ptr;
7407
7408 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7409 *saved_ptid_ptr = inferior_ptid;
7410 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7411 }
7412
7413 /* See infrun.h. */
7414
7415 void
7416 clear_exit_convenience_vars (void)
7417 {
7418 clear_internalvar (lookup_internalvar ("_exitsignal"));
7419 clear_internalvar (lookup_internalvar ("_exitcode"));
7420 }
7421 \f
7422
7423 /* User interface for reverse debugging:
7424 Set exec-direction / show exec-direction commands
7425 (returns error unless target implements to_set_exec_direction method). */
7426
7427 int execution_direction = EXEC_FORWARD;
7428 static const char exec_forward[] = "forward";
7429 static const char exec_reverse[] = "reverse";
7430 static const char *exec_direction = exec_forward;
7431 static const char *const exec_direction_names[] = {
7432 exec_forward,
7433 exec_reverse,
7434 NULL
7435 };
7436
7437 static void
7438 set_exec_direction_func (char *args, int from_tty,
7439 struct cmd_list_element *cmd)
7440 {
7441 if (target_can_execute_reverse)
7442 {
7443 if (!strcmp (exec_direction, exec_forward))
7444 execution_direction = EXEC_FORWARD;
7445 else if (!strcmp (exec_direction, exec_reverse))
7446 execution_direction = EXEC_REVERSE;
7447 }
7448 else
7449 {
7450 exec_direction = exec_forward;
7451 error (_("Target does not support this operation."));
7452 }
7453 }
7454
7455 static void
7456 show_exec_direction_func (struct ui_file *out, int from_tty,
7457 struct cmd_list_element *cmd, const char *value)
7458 {
7459 switch (execution_direction) {
7460 case EXEC_FORWARD:
7461 fprintf_filtered (out, _("Forward.\n"));
7462 break;
7463 case EXEC_REVERSE:
7464 fprintf_filtered (out, _("Reverse.\n"));
7465 break;
7466 default:
7467 internal_error (__FILE__, __LINE__,
7468 _("bogus execution_direction value: %d"),
7469 (int) execution_direction);
7470 }
7471 }
7472
7473 static void
7474 show_schedule_multiple (struct ui_file *file, int from_tty,
7475 struct cmd_list_element *c, const char *value)
7476 {
7477 fprintf_filtered (file, _("Resuming the execution of threads "
7478 "of all processes is %s.\n"), value);
7479 }
7480
7481 /* Implementation of `siginfo' variable. */
7482
7483 static const struct internalvar_funcs siginfo_funcs =
7484 {
7485 siginfo_make_value,
7486 NULL,
7487 NULL
7488 };
7489
7490 void
7491 _initialize_infrun (void)
7492 {
7493 int i;
7494 int numsigs;
7495 struct cmd_list_element *c;
7496
7497 add_info ("signals", signals_info, _("\
7498 What debugger does when program gets various signals.\n\
7499 Specify a signal as argument to print info on that signal only."));
7500 add_info_alias ("handle", "signals", 0);
7501
7502 c = add_com ("handle", class_run, handle_command, _("\
7503 Specify how to handle signals.\n\
7504 Usage: handle SIGNAL [ACTIONS]\n\
7505 Args are signals and actions to apply to those signals.\n\
7506 If no actions are specified, the current settings for the specified signals\n\
7507 will be displayed instead.\n\
7508 \n\
7509 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7510 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7511 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7512 The special arg \"all\" is recognized to mean all signals except those\n\
7513 used by the debugger, typically SIGTRAP and SIGINT.\n\
7514 \n\
7515 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7516 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7517 Stop means reenter debugger if this signal happens (implies print).\n\
7518 Print means print a message if this signal happens.\n\
7519 Pass means let program see this signal; otherwise program doesn't know.\n\
7520 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7521 Pass and Stop may be combined.\n\
7522 \n\
7523 Multiple signals may be specified. Signal numbers and signal names\n\
7524 may be interspersed with actions, with the actions being performed for\n\
7525 all signals cumulatively specified."));
7526 set_cmd_completer (c, handle_completer);
7527
7528 if (xdb_commands)
7529 {
7530 add_com ("lz", class_info, signals_info, _("\
7531 What debugger does when program gets various signals.\n\
7532 Specify a signal as argument to print info on that signal only."));
7533 add_com ("z", class_run, xdb_handle_command, _("\
7534 Specify how to handle a signal.\n\
7535 Args are signals and actions to apply to those signals.\n\
7536 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7537 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7538 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7539 The special arg \"all\" is recognized to mean all signals except those\n\
7540 used by the debugger, typically SIGTRAP and SIGINT.\n\
7541 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7542 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7543 nopass), \"Q\" (noprint)\n\
7544 Stop means reenter debugger if this signal happens (implies print).\n\
7545 Print means print a message if this signal happens.\n\
7546 Pass means let program see this signal; otherwise program doesn't know.\n\
7547 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7548 Pass and Stop may be combined."));
7549 }
7550
7551 if (!dbx_commands)
7552 stop_command = add_cmd ("stop", class_obscure,
7553 not_just_help_class_command, _("\
7554 There is no `stop' command, but you can set a hook on `stop'.\n\
7555 This allows you to set a list of commands to be run each time execution\n\
7556 of the program stops."), &cmdlist);
7557
7558 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7559 Set inferior debugging."), _("\
7560 Show inferior debugging."), _("\
7561 When non-zero, inferior specific debugging is enabled."),
7562 NULL,
7563 show_debug_infrun,
7564 &setdebuglist, &showdebuglist);
7565
7566 add_setshow_boolean_cmd ("displaced", class_maintenance,
7567 &debug_displaced, _("\
7568 Set displaced stepping debugging."), _("\
7569 Show displaced stepping debugging."), _("\
7570 When non-zero, displaced stepping specific debugging is enabled."),
7571 NULL,
7572 show_debug_displaced,
7573 &setdebuglist, &showdebuglist);
7574
7575 add_setshow_boolean_cmd ("non-stop", no_class,
7576 &non_stop_1, _("\
7577 Set whether gdb controls the inferior in non-stop mode."), _("\
7578 Show whether gdb controls the inferior in non-stop mode."), _("\
7579 When debugging a multi-threaded program and this setting is\n\
7580 off (the default, also called all-stop mode), when one thread stops\n\
7581 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7582 all other threads in the program while you interact with the thread of\n\
7583 interest. When you continue or step a thread, you can allow the other\n\
7584 threads to run, or have them remain stopped, but while you inspect any\n\
7585 thread's state, all threads stop.\n\
7586 \n\
7587 In non-stop mode, when one thread stops, other threads can continue\n\
7588 to run freely. You'll be able to step each thread independently,\n\
7589 leave it stopped or free to run as needed."),
7590 set_non_stop,
7591 show_non_stop,
7592 &setlist,
7593 &showlist);
7594
7595 numsigs = (int) GDB_SIGNAL_LAST;
7596 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7597 signal_print = (unsigned char *)
7598 xmalloc (sizeof (signal_print[0]) * numsigs);
7599 signal_program = (unsigned char *)
7600 xmalloc (sizeof (signal_program[0]) * numsigs);
7601 signal_catch = (unsigned char *)
7602 xmalloc (sizeof (signal_catch[0]) * numsigs);
7603 signal_pass = (unsigned char *)
7604 xmalloc (sizeof (signal_pass[0]) * numsigs);
7605 for (i = 0; i < numsigs; i++)
7606 {
7607 signal_stop[i] = 1;
7608 signal_print[i] = 1;
7609 signal_program[i] = 1;
7610 signal_catch[i] = 0;
7611 }
7612
7613 /* Signals caused by debugger's own actions
7614 should not be given to the program afterwards. */
7615 signal_program[GDB_SIGNAL_TRAP] = 0;
7616 signal_program[GDB_SIGNAL_INT] = 0;
7617
7618 /* Signals that are not errors should not normally enter the debugger. */
7619 signal_stop[GDB_SIGNAL_ALRM] = 0;
7620 signal_print[GDB_SIGNAL_ALRM] = 0;
7621 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7622 signal_print[GDB_SIGNAL_VTALRM] = 0;
7623 signal_stop[GDB_SIGNAL_PROF] = 0;
7624 signal_print[GDB_SIGNAL_PROF] = 0;
7625 signal_stop[GDB_SIGNAL_CHLD] = 0;
7626 signal_print[GDB_SIGNAL_CHLD] = 0;
7627 signal_stop[GDB_SIGNAL_IO] = 0;
7628 signal_print[GDB_SIGNAL_IO] = 0;
7629 signal_stop[GDB_SIGNAL_POLL] = 0;
7630 signal_print[GDB_SIGNAL_POLL] = 0;
7631 signal_stop[GDB_SIGNAL_URG] = 0;
7632 signal_print[GDB_SIGNAL_URG] = 0;
7633 signal_stop[GDB_SIGNAL_WINCH] = 0;
7634 signal_print[GDB_SIGNAL_WINCH] = 0;
7635 signal_stop[GDB_SIGNAL_PRIO] = 0;
7636 signal_print[GDB_SIGNAL_PRIO] = 0;
7637
7638 /* These signals are used internally by user-level thread
7639 implementations. (See signal(5) on Solaris.) Like the above
7640 signals, a healthy program receives and handles them as part of
7641 its normal operation. */
7642 signal_stop[GDB_SIGNAL_LWP] = 0;
7643 signal_print[GDB_SIGNAL_LWP] = 0;
7644 signal_stop[GDB_SIGNAL_WAITING] = 0;
7645 signal_print[GDB_SIGNAL_WAITING] = 0;
7646 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7647 signal_print[GDB_SIGNAL_CANCEL] = 0;
7648
7649 /* Update cached state. */
7650 signal_cache_update (-1);
7651
7652 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7653 &stop_on_solib_events, _("\
7654 Set stopping for shared library events."), _("\
7655 Show stopping for shared library events."), _("\
7656 If nonzero, gdb will give control to the user when the dynamic linker\n\
7657 notifies gdb of shared library events. The most common event of interest\n\
7658 to the user would be loading/unloading of a new library."),
7659 set_stop_on_solib_events,
7660 show_stop_on_solib_events,
7661 &setlist, &showlist);
7662
7663 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7664 follow_fork_mode_kind_names,
7665 &follow_fork_mode_string, _("\
7666 Set debugger response to a program call of fork or vfork."), _("\
7667 Show debugger response to a program call of fork or vfork."), _("\
7668 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7669 parent - the original process is debugged after a fork\n\
7670 child - the new process is debugged after a fork\n\
7671 The unfollowed process will continue to run.\n\
7672 By default, the debugger will follow the parent process."),
7673 NULL,
7674 show_follow_fork_mode_string,
7675 &setlist, &showlist);
7676
7677 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7678 follow_exec_mode_names,
7679 &follow_exec_mode_string, _("\
7680 Set debugger response to a program call of exec."), _("\
7681 Show debugger response to a program call of exec."), _("\
7682 An exec call replaces the program image of a process.\n\
7683 \n\
7684 follow-exec-mode can be:\n\
7685 \n\
7686 new - the debugger creates a new inferior and rebinds the process\n\
7687 to this new inferior. The program the process was running before\n\
7688 the exec call can be restarted afterwards by restarting the original\n\
7689 inferior.\n\
7690 \n\
7691 same - the debugger keeps the process bound to the same inferior.\n\
7692 The new executable image replaces the previous executable loaded in\n\
7693 the inferior. Restarting the inferior after the exec call restarts\n\
7694 the executable the process was running after the exec call.\n\
7695 \n\
7696 By default, the debugger will use the same inferior."),
7697 NULL,
7698 show_follow_exec_mode_string,
7699 &setlist, &showlist);
7700
7701 add_setshow_enum_cmd ("scheduler-locking", class_run,
7702 scheduler_enums, &scheduler_mode, _("\
7703 Set mode for locking scheduler during execution."), _("\
7704 Show mode for locking scheduler during execution."), _("\
7705 off == no locking (threads may preempt at any time)\n\
7706 on == full locking (no thread except the current thread may run)\n\
7707 step == scheduler locked during every single-step operation.\n\
7708 In this mode, no other thread may run during a step command.\n\
7709 Other threads may run while stepping over a function call ('next')."),
7710 set_schedlock_func, /* traps on target vector */
7711 show_scheduler_mode,
7712 &setlist, &showlist);
7713
7714 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7715 Set mode for resuming threads of all processes."), _("\
7716 Show mode for resuming threads of all processes."), _("\
7717 When on, execution commands (such as 'continue' or 'next') resume all\n\
7718 threads of all processes. When off (which is the default), execution\n\
7719 commands only resume the threads of the current process. The set of\n\
7720 threads that are resumed is further refined by the scheduler-locking\n\
7721 mode (see help set scheduler-locking)."),
7722 NULL,
7723 show_schedule_multiple,
7724 &setlist, &showlist);
7725
7726 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7727 Set mode of the step operation."), _("\
7728 Show mode of the step operation."), _("\
7729 When set, doing a step over a function without debug line information\n\
7730 will stop at the first instruction of that function. Otherwise, the\n\
7731 function is skipped and the step command stops at a different source line."),
7732 NULL,
7733 show_step_stop_if_no_debug,
7734 &setlist, &showlist);
7735
7736 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7737 &can_use_displaced_stepping, _("\
7738 Set debugger's willingness to use displaced stepping."), _("\
7739 Show debugger's willingness to use displaced stepping."), _("\
7740 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7741 supported by the target architecture. If off, gdb will not use displaced\n\
7742 stepping to step over breakpoints, even if such is supported by the target\n\
7743 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7744 if the target architecture supports it and non-stop mode is active, but will not\n\
7745 use it in all-stop mode (see help set non-stop)."),
7746 NULL,
7747 show_can_use_displaced_stepping,
7748 &setlist, &showlist);
7749
7750 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7751 &exec_direction, _("Set direction of execution.\n\
7752 Options are 'forward' or 'reverse'."),
7753 _("Show direction of execution (forward/reverse)."),
7754 _("Tells gdb whether to execute forward or backward."),
7755 set_exec_direction_func, show_exec_direction_func,
7756 &setlist, &showlist);
7757
7758 /* Set/show detach-on-fork: user-settable mode. */
7759
7760 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7761 Set whether gdb will detach the child of a fork."), _("\
7762 Show whether gdb will detach the child of a fork."), _("\
7763 Tells gdb whether to detach the child of a fork."),
7764 NULL, NULL, &setlist, &showlist);
7765
7766 /* Set/show disable address space randomization mode. */
7767
7768 add_setshow_boolean_cmd ("disable-randomization", class_support,
7769 &disable_randomization, _("\
7770 Set disabling of debuggee's virtual address space randomization."), _("\
7771 Show disabling of debuggee's virtual address space randomization."), _("\
7772 When this mode is on (which is the default), randomization of the virtual\n\
7773 address space is disabled. Standalone programs run with the randomization\n\
7774 enabled by default on some platforms."),
7775 &set_disable_randomization,
7776 &show_disable_randomization,
7777 &setlist, &showlist);
7778
7779 /* ptid initializations */
7780 inferior_ptid = null_ptid;
7781 target_last_wait_ptid = minus_one_ptid;
7782
7783 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7784 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7785 observer_attach_thread_exit (infrun_thread_thread_exit);
7786 observer_attach_inferior_exit (infrun_inferior_exit);
7787
7788 /* Explicitly create without lookup, since that tries to create a
7789 value with a void typed value, and when we get here, gdbarch
7790 isn't initialized yet. At this point, we're quite sure there
7791 isn't another convenience variable of the same name. */
7792 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7793
7794 add_setshow_boolean_cmd ("observer", no_class,
7795 &observer_mode_1, _("\
7796 Set whether gdb controls the inferior in observer mode."), _("\
7797 Show whether gdb controls the inferior in observer mode."), _("\
7798 In observer mode, GDB can get data from the inferior, but not\n\
7799 affect its execution. Registers and memory may not be changed,\n\
7800 breakpoints may not be set, and the program cannot be interrupted\n\
7801 or signalled."),
7802 set_observer_mode,
7803 show_observer_mode,
7804 &setlist,
7805 &showlist);
7806 }