]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
* gdbarch.sh (software_single_step): Remove "insert_breakpoints_p" and
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "exceptions.h"
32 #include "breakpoint.h"
33 #include "gdb_wait.h"
34 #include "gdbcore.h"
35 #include "gdbcmd.h"
36 #include "cli/cli-script.h"
37 #include "target.h"
38 #include "gdbthread.h"
39 #include "annotate.h"
40 #include "symfile.h"
41 #include "top.h"
42 #include <signal.h>
43 #include "inf-loop.h"
44 #include "regcache.h"
45 #include "value.h"
46 #include "observer.h"
47 #include "language.h"
48 #include "solib.h"
49 #include "main.h"
50
51 #include "gdb_assert.h"
52 #include "mi/mi-common.h"
53
54 /* Prototypes for local functions */
55
56 static void signals_info (char *, int);
57
58 static void handle_command (char *, int);
59
60 static void sig_print_info (enum target_signal);
61
62 static void sig_print_header (void);
63
64 static void resume_cleanups (void *);
65
66 static int hook_stop_stub (void *);
67
68 static int restore_selected_frame (void *);
69
70 static void build_infrun (void);
71
72 static int follow_fork (void);
73
74 static void set_schedlock_func (char *args, int from_tty,
75 struct cmd_list_element *c);
76
77 struct execution_control_state;
78
79 static int currently_stepping (struct execution_control_state *ecs);
80
81 static void xdb_handle_command (char *args, int from_tty);
82
83 static int prepare_to_proceed (void);
84
85 void _initialize_infrun (void);
86
87 int inferior_ignoring_startup_exec_events = 0;
88 int inferior_ignoring_leading_exec_events = 0;
89
90 /* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93 int step_stop_if_no_debug = 0;
94 static void
95 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97 {
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99 }
100
101 /* In asynchronous mode, but simulating synchronous execution. */
102
103 int sync_execution = 0;
104
105 /* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
107 running in. */
108
109 static ptid_t previous_inferior_ptid;
110
111 /* This is true for configurations that may follow through execl() and
112 similar functions. At present this is only true for HP-UX native. */
113
114 #ifndef MAY_FOLLOW_EXEC
115 #define MAY_FOLLOW_EXEC (0)
116 #endif
117
118 static int may_follow_exec = MAY_FOLLOW_EXEC;
119
120 static int debug_infrun = 0;
121 static void
122 show_debug_infrun (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c, const char *value)
124 {
125 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
126 }
127
128 /* If the program uses ELF-style shared libraries, then calls to
129 functions in shared libraries go through stubs, which live in a
130 table called the PLT (Procedure Linkage Table). The first time the
131 function is called, the stub sends control to the dynamic linker,
132 which looks up the function's real address, patches the stub so
133 that future calls will go directly to the function, and then passes
134 control to the function.
135
136 If we are stepping at the source level, we don't want to see any of
137 this --- we just want to skip over the stub and the dynamic linker.
138 The simple approach is to single-step until control leaves the
139 dynamic linker.
140
141 However, on some systems (e.g., Red Hat's 5.2 distribution) the
142 dynamic linker calls functions in the shared C library, so you
143 can't tell from the PC alone whether the dynamic linker is still
144 running. In this case, we use a step-resume breakpoint to get us
145 past the dynamic linker, as if we were using "next" to step over a
146 function call.
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
149 linker code or not. Normally, this means we single-step. However,
150 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
151 address where we can place a step-resume breakpoint to get past the
152 linker's symbol resolution function.
153
154 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
155 pretty portable way, by comparing the PC against the address ranges
156 of the dynamic linker's sections.
157
158 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
159 it depends on internal details of the dynamic linker. It's usually
160 not too hard to figure out where to put a breakpoint, but it
161 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
162 sanity checking. If it can't figure things out, returning zero and
163 getting the (possibly confusing) stepping behavior is better than
164 signalling an error, which will obscure the change in the
165 inferior's state. */
166
167 /* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
169 dld itself).
170
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
174
175 #ifndef SOLIB_IN_DYNAMIC_LINKER
176 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
177 #endif
178
179 /* We can't step off a permanent breakpoint in the ordinary way, because we
180 can't remove it. Instead, we have to advance the PC to the next
181 instruction. This macro should expand to a pointer to a function that
182 does that, or zero if we have no such function. If we don't have a
183 definition for it, we have to report an error. */
184 #ifndef SKIP_PERMANENT_BREAKPOINT
185 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
186 static void
187 default_skip_permanent_breakpoint (void)
188 {
189 error (_("\
190 The program is stopped at a permanent breakpoint, but GDB does not know\n\
191 how to step past a permanent breakpoint on this architecture. Try using\n\
192 a command like `return' or `jump' to continue execution."));
193 }
194 #endif
195
196
197 /* Convert the #defines into values. This is temporary until wfi control
198 flow is completely sorted out. */
199
200 #ifndef CANNOT_STEP_HW_WATCHPOINTS
201 #define CANNOT_STEP_HW_WATCHPOINTS 0
202 #else
203 #undef CANNOT_STEP_HW_WATCHPOINTS
204 #define CANNOT_STEP_HW_WATCHPOINTS 1
205 #endif
206
207 /* Tables of how to react to signals; the user sets them. */
208
209 static unsigned char *signal_stop;
210 static unsigned char *signal_print;
211 static unsigned char *signal_program;
212
213 #define SET_SIGS(nsigs,sigs,flags) \
214 do { \
215 int signum = (nsigs); \
216 while (signum-- > 0) \
217 if ((sigs)[signum]) \
218 (flags)[signum] = 1; \
219 } while (0)
220
221 #define UNSET_SIGS(nsigs,sigs,flags) \
222 do { \
223 int signum = (nsigs); \
224 while (signum-- > 0) \
225 if ((sigs)[signum]) \
226 (flags)[signum] = 0; \
227 } while (0)
228
229 /* Value to pass to target_resume() to cause all threads to resume */
230
231 #define RESUME_ALL (pid_to_ptid (-1))
232
233 /* Command list pointer for the "stop" placeholder. */
234
235 static struct cmd_list_element *stop_command;
236
237 /* Nonzero if breakpoints are now inserted in the inferior. */
238
239 static int breakpoints_inserted;
240
241 /* Function inferior was in as of last step command. */
242
243 static struct symbol *step_start_function;
244
245 /* Nonzero if we are expecting a trace trap and should proceed from it. */
246
247 static int trap_expected;
248
249 /* Nonzero if we want to give control to the user when we're notified
250 of shared library events by the dynamic linker. */
251 static int stop_on_solib_events;
252 static void
253 show_stop_on_solib_events (struct ui_file *file, int from_tty,
254 struct cmd_list_element *c, const char *value)
255 {
256 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
257 value);
258 }
259
260 /* Nonzero means expecting a trace trap
261 and should stop the inferior and return silently when it happens. */
262
263 int stop_after_trap;
264
265 /* Nonzero means expecting a trap and caller will handle it themselves.
266 It is used after attach, due to attaching to a process;
267 when running in the shell before the child program has been exec'd;
268 and when running some kinds of remote stuff (FIXME?). */
269
270 enum stop_kind stop_soon;
271
272 /* Nonzero if proceed is being used for a "finish" command or a similar
273 situation when stop_registers should be saved. */
274
275 int proceed_to_finish;
276
277 /* Save register contents here when about to pop a stack dummy frame,
278 if-and-only-if proceed_to_finish is set.
279 Thus this contains the return value from the called function (assuming
280 values are returned in a register). */
281
282 struct regcache *stop_registers;
283
284 /* Nonzero after stop if current stack frame should be printed. */
285
286 static int stop_print_frame;
287
288 static struct breakpoint *step_resume_breakpoint = NULL;
289
290 /* This is a cached copy of the pid/waitstatus of the last event
291 returned by target_wait()/deprecated_target_wait_hook(). This
292 information is returned by get_last_target_status(). */
293 static ptid_t target_last_wait_ptid;
294 static struct target_waitstatus target_last_waitstatus;
295
296 /* This is used to remember when a fork, vfork or exec event
297 was caught by a catchpoint, and thus the event is to be
298 followed at the next resume of the inferior, and not
299 immediately. */
300 static struct
301 {
302 enum target_waitkind kind;
303 struct
304 {
305 int parent_pid;
306 int child_pid;
307 }
308 fork_event;
309 char *execd_pathname;
310 }
311 pending_follow;
312
313 static const char follow_fork_mode_child[] = "child";
314 static const char follow_fork_mode_parent[] = "parent";
315
316 static const char *follow_fork_mode_kind_names[] = {
317 follow_fork_mode_child,
318 follow_fork_mode_parent,
319 NULL
320 };
321
322 static const char *follow_fork_mode_string = follow_fork_mode_parent;
323 static void
324 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
325 struct cmd_list_element *c, const char *value)
326 {
327 fprintf_filtered (file, _("\
328 Debugger response to a program call of fork or vfork is \"%s\".\n"),
329 value);
330 }
331 \f
332
333 static int
334 follow_fork (void)
335 {
336 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
337
338 return target_follow_fork (follow_child);
339 }
340
341 void
342 follow_inferior_reset_breakpoints (void)
343 {
344 /* Was there a step_resume breakpoint? (There was if the user
345 did a "next" at the fork() call.) If so, explicitly reset its
346 thread number.
347
348 step_resumes are a form of bp that are made to be per-thread.
349 Since we created the step_resume bp when the parent process
350 was being debugged, and now are switching to the child process,
351 from the breakpoint package's viewpoint, that's a switch of
352 "threads". We must update the bp's notion of which thread
353 it is for, or it'll be ignored when it triggers. */
354
355 if (step_resume_breakpoint)
356 breakpoint_re_set_thread (step_resume_breakpoint);
357
358 /* Reinsert all breakpoints in the child. The user may have set
359 breakpoints after catching the fork, in which case those
360 were never set in the child, but only in the parent. This makes
361 sure the inserted breakpoints match the breakpoint list. */
362
363 breakpoint_re_set ();
364 insert_breakpoints ();
365 }
366
367 /* EXECD_PATHNAME is assumed to be non-NULL. */
368
369 static void
370 follow_exec (int pid, char *execd_pathname)
371 {
372 int saved_pid = pid;
373 struct target_ops *tgt;
374
375 if (!may_follow_exec)
376 return;
377
378 /* This is an exec event that we actually wish to pay attention to.
379 Refresh our symbol table to the newly exec'd program, remove any
380 momentary bp's, etc.
381
382 If there are breakpoints, they aren't really inserted now,
383 since the exec() transformed our inferior into a fresh set
384 of instructions.
385
386 We want to preserve symbolic breakpoints on the list, since
387 we have hopes that they can be reset after the new a.out's
388 symbol table is read.
389
390 However, any "raw" breakpoints must be removed from the list
391 (e.g., the solib bp's), since their address is probably invalid
392 now.
393
394 And, we DON'T want to call delete_breakpoints() here, since
395 that may write the bp's "shadow contents" (the instruction
396 value that was overwritten witha TRAP instruction). Since
397 we now have a new a.out, those shadow contents aren't valid. */
398 update_breakpoints_after_exec ();
399
400 /* If there was one, it's gone now. We cannot truly step-to-next
401 statement through an exec(). */
402 step_resume_breakpoint = NULL;
403 step_range_start = 0;
404 step_range_end = 0;
405
406 /* What is this a.out's name? */
407 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
408
409 /* We've followed the inferior through an exec. Therefore, the
410 inferior has essentially been killed & reborn. */
411
412 /* First collect the run target in effect. */
413 tgt = find_run_target ();
414 /* If we can't find one, things are in a very strange state... */
415 if (tgt == NULL)
416 error (_("Could find run target to save before following exec"));
417
418 gdb_flush (gdb_stdout);
419 target_mourn_inferior ();
420 inferior_ptid = pid_to_ptid (saved_pid);
421 /* Because mourn_inferior resets inferior_ptid. */
422 push_target (tgt);
423
424 /* That a.out is now the one to use. */
425 exec_file_attach (execd_pathname, 0);
426
427 /* And also is where symbols can be found. */
428 symbol_file_add_main (execd_pathname, 0);
429
430 /* Reset the shared library package. This ensures that we get
431 a shlib event when the child reaches "_start", at which point
432 the dld will have had a chance to initialize the child. */
433 #if defined(SOLIB_RESTART)
434 SOLIB_RESTART ();
435 #endif
436 #ifdef SOLIB_CREATE_INFERIOR_HOOK
437 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
438 #else
439 solib_create_inferior_hook ();
440 #endif
441
442 /* Reinsert all breakpoints. (Those which were symbolic have
443 been reset to the proper address in the new a.out, thanks
444 to symbol_file_command...) */
445 insert_breakpoints ();
446
447 /* The next resume of this inferior should bring it to the shlib
448 startup breakpoints. (If the user had also set bp's on
449 "main" from the old (parent) process, then they'll auto-
450 matically get reset there in the new process.) */
451 }
452
453 /* Non-zero if we just simulating a single-step. This is needed
454 because we cannot remove the breakpoints in the inferior process
455 until after the `wait' in `wait_for_inferior'. */
456 static int singlestep_breakpoints_inserted_p = 0;
457
458 /* The thread we inserted single-step breakpoints for. */
459 static ptid_t singlestep_ptid;
460
461 /* PC when we started this single-step. */
462 static CORE_ADDR singlestep_pc;
463
464 /* If another thread hit the singlestep breakpoint, we save the original
465 thread here so that we can resume single-stepping it later. */
466 static ptid_t saved_singlestep_ptid;
467 static int stepping_past_singlestep_breakpoint;
468 \f
469
470 /* Things to clean up if we QUIT out of resume (). */
471 static void
472 resume_cleanups (void *ignore)
473 {
474 normal_stop ();
475 }
476
477 static const char schedlock_off[] = "off";
478 static const char schedlock_on[] = "on";
479 static const char schedlock_step[] = "step";
480 static const char *scheduler_enums[] = {
481 schedlock_off,
482 schedlock_on,
483 schedlock_step,
484 NULL
485 };
486 static const char *scheduler_mode = schedlock_off;
487 static void
488 show_scheduler_mode (struct ui_file *file, int from_tty,
489 struct cmd_list_element *c, const char *value)
490 {
491 fprintf_filtered (file, _("\
492 Mode for locking scheduler during execution is \"%s\".\n"),
493 value);
494 }
495
496 static void
497 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
498 {
499 if (!target_can_lock_scheduler)
500 {
501 scheduler_mode = schedlock_off;
502 error (_("Target '%s' cannot support this command."), target_shortname);
503 }
504 }
505
506
507 /* Resume the inferior, but allow a QUIT. This is useful if the user
508 wants to interrupt some lengthy single-stepping operation
509 (for child processes, the SIGINT goes to the inferior, and so
510 we get a SIGINT random_signal, but for remote debugging and perhaps
511 other targets, that's not true).
512
513 STEP nonzero if we should step (zero to continue instead).
514 SIG is the signal to give the inferior (zero for none). */
515 void
516 resume (int step, enum target_signal sig)
517 {
518 int should_resume = 1;
519 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
520 QUIT;
521
522 if (debug_infrun)
523 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
524 step, sig);
525
526 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
527
528
529 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
530 over an instruction that causes a page fault without triggering
531 a hardware watchpoint. The kernel properly notices that it shouldn't
532 stop, because the hardware watchpoint is not triggered, but it forgets
533 the step request and continues the program normally.
534 Work around the problem by removing hardware watchpoints if a step is
535 requested, GDB will check for a hardware watchpoint trigger after the
536 step anyway. */
537 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
538 remove_hw_watchpoints ();
539
540
541 /* Normally, by the time we reach `resume', the breakpoints are either
542 removed or inserted, as appropriate. The exception is if we're sitting
543 at a permanent breakpoint; we need to step over it, but permanent
544 breakpoints can't be removed. So we have to test for it here. */
545 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
546 SKIP_PERMANENT_BREAKPOINT ();
547
548 if (SOFTWARE_SINGLE_STEP_P () && step)
549 {
550 /* Do it the hard way, w/temp breakpoints */
551 if (SOFTWARE_SINGLE_STEP (current_regcache))
552 {
553 /* ...and don't ask hardware to do it. */
554 step = 0;
555 /* and do not pull these breakpoints until after a `wait' in
556 `wait_for_inferior' */
557 singlestep_breakpoints_inserted_p = 1;
558 singlestep_ptid = inferior_ptid;
559 singlestep_pc = read_pc ();
560 }
561 }
562
563 /* If there were any forks/vforks/execs that were caught and are
564 now to be followed, then do so. */
565 switch (pending_follow.kind)
566 {
567 case TARGET_WAITKIND_FORKED:
568 case TARGET_WAITKIND_VFORKED:
569 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
570 if (follow_fork ())
571 should_resume = 0;
572 break;
573
574 case TARGET_WAITKIND_EXECD:
575 /* follow_exec is called as soon as the exec event is seen. */
576 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
577 break;
578
579 default:
580 break;
581 }
582
583 /* Install inferior's terminal modes. */
584 target_terminal_inferior ();
585
586 if (should_resume)
587 {
588 ptid_t resume_ptid;
589
590 resume_ptid = RESUME_ALL; /* Default */
591
592 if ((step || singlestep_breakpoints_inserted_p)
593 && (stepping_past_singlestep_breakpoint
594 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
595 {
596 /* Stepping past a breakpoint without inserting breakpoints.
597 Make sure only the current thread gets to step, so that
598 other threads don't sneak past breakpoints while they are
599 not inserted. */
600
601 resume_ptid = inferior_ptid;
602 }
603
604 if ((scheduler_mode == schedlock_on)
605 || (scheduler_mode == schedlock_step
606 && (step || singlestep_breakpoints_inserted_p)))
607 {
608 /* User-settable 'scheduler' mode requires solo thread resume. */
609 resume_ptid = inferior_ptid;
610 }
611
612 if (CANNOT_STEP_BREAKPOINT)
613 {
614 /* Most targets can step a breakpoint instruction, thus
615 executing it normally. But if this one cannot, just
616 continue and we will hit it anyway. */
617 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
618 step = 0;
619 }
620 target_resume (resume_ptid, step, sig);
621 }
622
623 discard_cleanups (old_cleanups);
624 }
625 \f
626
627 /* Clear out all variables saying what to do when inferior is continued.
628 First do this, then set the ones you want, then call `proceed'. */
629
630 void
631 clear_proceed_status (void)
632 {
633 trap_expected = 0;
634 step_range_start = 0;
635 step_range_end = 0;
636 step_frame_id = null_frame_id;
637 step_over_calls = STEP_OVER_UNDEBUGGABLE;
638 stop_after_trap = 0;
639 stop_soon = NO_STOP_QUIETLY;
640 proceed_to_finish = 0;
641 breakpoint_proceeded = 1; /* We're about to proceed... */
642
643 /* Discard any remaining commands or status from previous stop. */
644 bpstat_clear (&stop_bpstat);
645 }
646
647 /* This should be suitable for any targets that support threads. */
648
649 static int
650 prepare_to_proceed (void)
651 {
652 ptid_t wait_ptid;
653 struct target_waitstatus wait_status;
654
655 /* Get the last target status returned by target_wait(). */
656 get_last_target_status (&wait_ptid, &wait_status);
657
658 /* Make sure we were stopped either at a breakpoint, or because
659 of a Ctrl-C. */
660 if (wait_status.kind != TARGET_WAITKIND_STOPPED
661 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
662 && wait_status.value.sig != TARGET_SIGNAL_INT))
663 {
664 return 0;
665 }
666
667 if (!ptid_equal (wait_ptid, minus_one_ptid)
668 && !ptid_equal (inferior_ptid, wait_ptid))
669 {
670 /* Switched over from WAIT_PID. */
671 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
672
673 if (wait_pc != read_pc ())
674 {
675 /* Switch back to WAIT_PID thread. */
676 inferior_ptid = wait_ptid;
677
678 /* FIXME: This stuff came from switch_to_thread() in
679 thread.c (which should probably be a public function). */
680 reinit_frame_cache ();
681 registers_changed ();
682 stop_pc = wait_pc;
683 }
684
685 /* We return 1 to indicate that there is a breakpoint here,
686 so we need to step over it before continuing to avoid
687 hitting it straight away. */
688 if (breakpoint_here_p (wait_pc))
689 return 1;
690 }
691
692 return 0;
693
694 }
695
696 /* Record the pc of the program the last time it stopped. This is
697 just used internally by wait_for_inferior, but need to be preserved
698 over calls to it and cleared when the inferior is started. */
699 static CORE_ADDR prev_pc;
700
701 /* Basic routine for continuing the program in various fashions.
702
703 ADDR is the address to resume at, or -1 for resume where stopped.
704 SIGGNAL is the signal to give it, or 0 for none,
705 or -1 for act according to how it stopped.
706 STEP is nonzero if should trap after one instruction.
707 -1 means return after that and print nothing.
708 You should probably set various step_... variables
709 before calling here, if you are stepping.
710
711 You should call clear_proceed_status before calling proceed. */
712
713 void
714 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
715 {
716 int oneproc = 0;
717
718 if (step > 0)
719 step_start_function = find_pc_function (read_pc ());
720 if (step < 0)
721 stop_after_trap = 1;
722
723 if (addr == (CORE_ADDR) -1)
724 {
725 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
726 /* There is a breakpoint at the address we will resume at,
727 step one instruction before inserting breakpoints so that
728 we do not stop right away (and report a second hit at this
729 breakpoint). */
730 oneproc = 1;
731 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
732 && gdbarch_single_step_through_delay (current_gdbarch,
733 get_current_frame ()))
734 /* We stepped onto an instruction that needs to be stepped
735 again before re-inserting the breakpoint, do so. */
736 oneproc = 1;
737 }
738 else
739 {
740 write_pc (addr);
741 }
742
743 if (debug_infrun)
744 fprintf_unfiltered (gdb_stdlog,
745 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
746 paddr_nz (addr), siggnal, step);
747
748 /* In a multi-threaded task we may select another thread
749 and then continue or step.
750
751 But if the old thread was stopped at a breakpoint, it
752 will immediately cause another breakpoint stop without
753 any execution (i.e. it will report a breakpoint hit
754 incorrectly). So we must step over it first.
755
756 prepare_to_proceed checks the current thread against the thread
757 that reported the most recent event. If a step-over is required
758 it returns TRUE and sets the current thread to the old thread. */
759 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
760 oneproc = 1;
761
762 if (oneproc)
763 /* We will get a trace trap after one instruction.
764 Continue it automatically and insert breakpoints then. */
765 trap_expected = 1;
766 else
767 {
768 insert_breakpoints ();
769 /* If we get here there was no call to error() in
770 insert breakpoints -- so they were inserted. */
771 breakpoints_inserted = 1;
772 }
773
774 if (siggnal != TARGET_SIGNAL_DEFAULT)
775 stop_signal = siggnal;
776 /* If this signal should not be seen by program,
777 give it zero. Used for debugging signals. */
778 else if (!signal_program[stop_signal])
779 stop_signal = TARGET_SIGNAL_0;
780
781 annotate_starting ();
782
783 /* Make sure that output from GDB appears before output from the
784 inferior. */
785 gdb_flush (gdb_stdout);
786
787 /* Refresh prev_pc value just prior to resuming. This used to be
788 done in stop_stepping, however, setting prev_pc there did not handle
789 scenarios such as inferior function calls or returning from
790 a function via the return command. In those cases, the prev_pc
791 value was not set properly for subsequent commands. The prev_pc value
792 is used to initialize the starting line number in the ecs. With an
793 invalid value, the gdb next command ends up stopping at the position
794 represented by the next line table entry past our start position.
795 On platforms that generate one line table entry per line, this
796 is not a problem. However, on the ia64, the compiler generates
797 extraneous line table entries that do not increase the line number.
798 When we issue the gdb next command on the ia64 after an inferior call
799 or a return command, we often end up a few instructions forward, still
800 within the original line we started.
801
802 An attempt was made to have init_execution_control_state () refresh
803 the prev_pc value before calculating the line number. This approach
804 did not work because on platforms that use ptrace, the pc register
805 cannot be read unless the inferior is stopped. At that point, we
806 are not guaranteed the inferior is stopped and so the read_pc ()
807 call can fail. Setting the prev_pc value here ensures the value is
808 updated correctly when the inferior is stopped. */
809 prev_pc = read_pc ();
810
811 /* Resume inferior. */
812 resume (oneproc || step || bpstat_should_step (), stop_signal);
813
814 /* Wait for it to stop (if not standalone)
815 and in any case decode why it stopped, and act accordingly. */
816 /* Do this only if we are not using the event loop, or if the target
817 does not support asynchronous execution. */
818 if (!target_can_async_p ())
819 {
820 wait_for_inferior ();
821 normal_stop ();
822 }
823 }
824 \f
825
826 /* Start remote-debugging of a machine over a serial link. */
827
828 void
829 start_remote (int from_tty)
830 {
831 init_thread_list ();
832 init_wait_for_inferior ();
833 stop_soon = STOP_QUIETLY;
834 trap_expected = 0;
835
836 /* Always go on waiting for the target, regardless of the mode. */
837 /* FIXME: cagney/1999-09-23: At present it isn't possible to
838 indicate to wait_for_inferior that a target should timeout if
839 nothing is returned (instead of just blocking). Because of this,
840 targets expecting an immediate response need to, internally, set
841 things up so that the target_wait() is forced to eventually
842 timeout. */
843 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
844 differentiate to its caller what the state of the target is after
845 the initial open has been performed. Here we're assuming that
846 the target has stopped. It should be possible to eventually have
847 target_open() return to the caller an indication that the target
848 is currently running and GDB state should be set to the same as
849 for an async run. */
850 wait_for_inferior ();
851
852 /* Now that the inferior has stopped, do any bookkeeping like
853 loading shared libraries. We want to do this before normal_stop,
854 so that the displayed frame is up to date. */
855 post_create_inferior (&current_target, from_tty);
856
857 normal_stop ();
858 }
859
860 /* Initialize static vars when a new inferior begins. */
861
862 void
863 init_wait_for_inferior (void)
864 {
865 /* These are meaningless until the first time through wait_for_inferior. */
866 prev_pc = 0;
867
868 breakpoints_inserted = 0;
869 breakpoint_init_inferior (inf_starting);
870
871 /* Don't confuse first call to proceed(). */
872 stop_signal = TARGET_SIGNAL_0;
873
874 /* The first resume is not following a fork/vfork/exec. */
875 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
876
877 clear_proceed_status ();
878
879 stepping_past_singlestep_breakpoint = 0;
880 }
881 \f
882 /* This enum encodes possible reasons for doing a target_wait, so that
883 wfi can call target_wait in one place. (Ultimately the call will be
884 moved out of the infinite loop entirely.) */
885
886 enum infwait_states
887 {
888 infwait_normal_state,
889 infwait_thread_hop_state,
890 infwait_nonstep_watch_state
891 };
892
893 /* Why did the inferior stop? Used to print the appropriate messages
894 to the interface from within handle_inferior_event(). */
895 enum inferior_stop_reason
896 {
897 /* Step, next, nexti, stepi finished. */
898 END_STEPPING_RANGE,
899 /* Inferior terminated by signal. */
900 SIGNAL_EXITED,
901 /* Inferior exited. */
902 EXITED,
903 /* Inferior received signal, and user asked to be notified. */
904 SIGNAL_RECEIVED
905 };
906
907 /* This structure contains what used to be local variables in
908 wait_for_inferior. Probably many of them can return to being
909 locals in handle_inferior_event. */
910
911 struct execution_control_state
912 {
913 struct target_waitstatus ws;
914 struct target_waitstatus *wp;
915 int another_trap;
916 int random_signal;
917 CORE_ADDR stop_func_start;
918 CORE_ADDR stop_func_end;
919 char *stop_func_name;
920 struct symtab_and_line sal;
921 int current_line;
922 struct symtab *current_symtab;
923 int handling_longjmp; /* FIXME */
924 ptid_t ptid;
925 ptid_t saved_inferior_ptid;
926 int step_after_step_resume_breakpoint;
927 int stepping_through_solib_after_catch;
928 bpstat stepping_through_solib_catchpoints;
929 int new_thread_event;
930 struct target_waitstatus tmpstatus;
931 enum infwait_states infwait_state;
932 ptid_t waiton_ptid;
933 int wait_some_more;
934 };
935
936 void init_execution_control_state (struct execution_control_state *ecs);
937
938 void handle_inferior_event (struct execution_control_state *ecs);
939
940 static void step_into_function (struct execution_control_state *ecs);
941 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
942 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
943 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
944 struct frame_id sr_id);
945 static void stop_stepping (struct execution_control_state *ecs);
946 static void prepare_to_wait (struct execution_control_state *ecs);
947 static void keep_going (struct execution_control_state *ecs);
948 static void print_stop_reason (enum inferior_stop_reason stop_reason,
949 int stop_info);
950
951 /* Wait for control to return from inferior to debugger.
952 If inferior gets a signal, we may decide to start it up again
953 instead of returning. That is why there is a loop in this function.
954 When this function actually returns it means the inferior
955 should be left stopped and GDB should read more commands. */
956
957 void
958 wait_for_inferior (void)
959 {
960 struct cleanup *old_cleanups;
961 struct execution_control_state ecss;
962 struct execution_control_state *ecs;
963
964 if (debug_infrun)
965 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
966
967 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
968 &step_resume_breakpoint);
969
970 /* wfi still stays in a loop, so it's OK just to take the address of
971 a local to get the ecs pointer. */
972 ecs = &ecss;
973
974 /* Fill in with reasonable starting values. */
975 init_execution_control_state (ecs);
976
977 /* We'll update this if & when we switch to a new thread. */
978 previous_inferior_ptid = inferior_ptid;
979
980 overlay_cache_invalid = 1;
981
982 /* We have to invalidate the registers BEFORE calling target_wait
983 because they can be loaded from the target while in target_wait.
984 This makes remote debugging a bit more efficient for those
985 targets that provide critical registers as part of their normal
986 status mechanism. */
987
988 registers_changed ();
989
990 while (1)
991 {
992 if (deprecated_target_wait_hook)
993 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
994 else
995 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
996
997 /* Now figure out what to do with the result of the result. */
998 handle_inferior_event (ecs);
999
1000 if (!ecs->wait_some_more)
1001 break;
1002 }
1003 do_cleanups (old_cleanups);
1004 }
1005
1006 /* Asynchronous version of wait_for_inferior. It is called by the
1007 event loop whenever a change of state is detected on the file
1008 descriptor corresponding to the target. It can be called more than
1009 once to complete a single execution command. In such cases we need
1010 to keep the state in a global variable ASYNC_ECSS. If it is the
1011 last time that this function is called for a single execution
1012 command, then report to the user that the inferior has stopped, and
1013 do the necessary cleanups. */
1014
1015 struct execution_control_state async_ecss;
1016 struct execution_control_state *async_ecs;
1017
1018 void
1019 fetch_inferior_event (void *client_data)
1020 {
1021 static struct cleanup *old_cleanups;
1022
1023 async_ecs = &async_ecss;
1024
1025 if (!async_ecs->wait_some_more)
1026 {
1027 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1028 &step_resume_breakpoint);
1029
1030 /* Fill in with reasonable starting values. */
1031 init_execution_control_state (async_ecs);
1032
1033 /* We'll update this if & when we switch to a new thread. */
1034 previous_inferior_ptid = inferior_ptid;
1035
1036 overlay_cache_invalid = 1;
1037
1038 /* We have to invalidate the registers BEFORE calling target_wait
1039 because they can be loaded from the target while in target_wait.
1040 This makes remote debugging a bit more efficient for those
1041 targets that provide critical registers as part of their normal
1042 status mechanism. */
1043
1044 registers_changed ();
1045 }
1046
1047 if (deprecated_target_wait_hook)
1048 async_ecs->ptid =
1049 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1050 else
1051 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1052
1053 /* Now figure out what to do with the result of the result. */
1054 handle_inferior_event (async_ecs);
1055
1056 if (!async_ecs->wait_some_more)
1057 {
1058 /* Do only the cleanups that have been added by this
1059 function. Let the continuations for the commands do the rest,
1060 if there are any. */
1061 do_exec_cleanups (old_cleanups);
1062 normal_stop ();
1063 if (step_multi && stop_step)
1064 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1065 else
1066 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1067 }
1068 }
1069
1070 /* Prepare an execution control state for looping through a
1071 wait_for_inferior-type loop. */
1072
1073 void
1074 init_execution_control_state (struct execution_control_state *ecs)
1075 {
1076 ecs->another_trap = 0;
1077 ecs->random_signal = 0;
1078 ecs->step_after_step_resume_breakpoint = 0;
1079 ecs->handling_longjmp = 0; /* FIXME */
1080 ecs->stepping_through_solib_after_catch = 0;
1081 ecs->stepping_through_solib_catchpoints = NULL;
1082 ecs->sal = find_pc_line (prev_pc, 0);
1083 ecs->current_line = ecs->sal.line;
1084 ecs->current_symtab = ecs->sal.symtab;
1085 ecs->infwait_state = infwait_normal_state;
1086 ecs->waiton_ptid = pid_to_ptid (-1);
1087 ecs->wp = &(ecs->ws);
1088 }
1089
1090 /* Return the cached copy of the last pid/waitstatus returned by
1091 target_wait()/deprecated_target_wait_hook(). The data is actually
1092 cached by handle_inferior_event(), which gets called immediately
1093 after target_wait()/deprecated_target_wait_hook(). */
1094
1095 void
1096 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1097 {
1098 *ptidp = target_last_wait_ptid;
1099 *status = target_last_waitstatus;
1100 }
1101
1102 void
1103 nullify_last_target_wait_ptid (void)
1104 {
1105 target_last_wait_ptid = minus_one_ptid;
1106 }
1107
1108 /* Switch thread contexts, maintaining "infrun state". */
1109
1110 static void
1111 context_switch (struct execution_control_state *ecs)
1112 {
1113 /* Caution: it may happen that the new thread (or the old one!)
1114 is not in the thread list. In this case we must not attempt
1115 to "switch context", or we run the risk that our context may
1116 be lost. This may happen as a result of the target module
1117 mishandling thread creation. */
1118
1119 if (debug_infrun)
1120 {
1121 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1122 target_pid_to_str (inferior_ptid));
1123 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1124 target_pid_to_str (ecs->ptid));
1125 }
1126
1127 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1128 { /* Perform infrun state context switch: */
1129 /* Save infrun state for the old thread. */
1130 save_infrun_state (inferior_ptid, prev_pc,
1131 trap_expected, step_resume_breakpoint,
1132 step_range_start,
1133 step_range_end, &step_frame_id,
1134 ecs->handling_longjmp, ecs->another_trap,
1135 ecs->stepping_through_solib_after_catch,
1136 ecs->stepping_through_solib_catchpoints,
1137 ecs->current_line, ecs->current_symtab);
1138
1139 /* Load infrun state for the new thread. */
1140 load_infrun_state (ecs->ptid, &prev_pc,
1141 &trap_expected, &step_resume_breakpoint,
1142 &step_range_start,
1143 &step_range_end, &step_frame_id,
1144 &ecs->handling_longjmp, &ecs->another_trap,
1145 &ecs->stepping_through_solib_after_catch,
1146 &ecs->stepping_through_solib_catchpoints,
1147 &ecs->current_line, &ecs->current_symtab);
1148 }
1149 inferior_ptid = ecs->ptid;
1150 reinit_frame_cache ();
1151 }
1152
1153 static void
1154 adjust_pc_after_break (struct execution_control_state *ecs)
1155 {
1156 CORE_ADDR breakpoint_pc;
1157
1158 /* If this target does not decrement the PC after breakpoints, then
1159 we have nothing to do. */
1160 if (DECR_PC_AFTER_BREAK == 0)
1161 return;
1162
1163 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1164 we aren't, just return.
1165
1166 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1167 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1168 by software breakpoints should be handled through the normal breakpoint
1169 layer.
1170
1171 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1172 different signals (SIGILL or SIGEMT for instance), but it is less
1173 clear where the PC is pointing afterwards. It may not match
1174 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1175 these signals at breakpoints (the code has been in GDB since at least
1176 1992) so I can not guess how to handle them here.
1177
1178 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1179 would have the PC after hitting a watchpoint affected by
1180 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1181 in GDB history, and it seems unlikely to be correct, so
1182 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1183
1184 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1185 return;
1186
1187 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1188 return;
1189
1190 /* Find the location where (if we've hit a breakpoint) the
1191 breakpoint would be. */
1192 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1193
1194 if (SOFTWARE_SINGLE_STEP_P ())
1195 {
1196 /* When using software single-step, a SIGTRAP can only indicate
1197 an inserted breakpoint. This actually makes things
1198 easier. */
1199 if (singlestep_breakpoints_inserted_p)
1200 /* When software single stepping, the instruction at [prev_pc]
1201 is never a breakpoint, but the instruction following
1202 [prev_pc] (in program execution order) always is. Assume
1203 that following instruction was reached and hence a software
1204 breakpoint was hit. */
1205 write_pc_pid (breakpoint_pc, ecs->ptid);
1206 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1207 /* The inferior was free running (i.e., no single-step
1208 breakpoints inserted) and it hit a software breakpoint. */
1209 write_pc_pid (breakpoint_pc, ecs->ptid);
1210 }
1211 else
1212 {
1213 /* When using hardware single-step, a SIGTRAP is reported for
1214 both a completed single-step and a software breakpoint. Need
1215 to differentiate between the two as the latter needs
1216 adjusting but the former does not.
1217
1218 When the thread to be examined does not match the current thread
1219 context we can't use currently_stepping, so assume no
1220 single-stepping in this case. */
1221 if (ptid_equal (ecs->ptid, inferior_ptid) && currently_stepping (ecs))
1222 {
1223 if (prev_pc == breakpoint_pc
1224 && software_breakpoint_inserted_here_p (breakpoint_pc))
1225 /* Hardware single-stepped a software breakpoint (as
1226 occures when the inferior is resumed with PC pointing
1227 at not-yet-hit software breakpoint). Since the
1228 breakpoint really is executed, the inferior needs to be
1229 backed up to the breakpoint address. */
1230 write_pc_pid (breakpoint_pc, ecs->ptid);
1231 }
1232 else
1233 {
1234 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1235 /* The inferior was free running (i.e., no hardware
1236 single-step and no possibility of a false SIGTRAP) and
1237 hit a software breakpoint. */
1238 write_pc_pid (breakpoint_pc, ecs->ptid);
1239 }
1240 }
1241 }
1242
1243 /* Given an execution control state that has been freshly filled in
1244 by an event from the inferior, figure out what it means and take
1245 appropriate action. */
1246
1247 int stepped_after_stopped_by_watchpoint;
1248
1249 void
1250 handle_inferior_event (struct execution_control_state *ecs)
1251 {
1252 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1253 that the variable stepped_after_stopped_by_watchpoint isn't used,
1254 then you're wrong! See remote.c:remote_stopped_data_address. */
1255
1256 int sw_single_step_trap_p = 0;
1257 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1258
1259 /* Cache the last pid/waitstatus. */
1260 target_last_wait_ptid = ecs->ptid;
1261 target_last_waitstatus = *ecs->wp;
1262
1263 adjust_pc_after_break (ecs);
1264
1265 switch (ecs->infwait_state)
1266 {
1267 case infwait_thread_hop_state:
1268 if (debug_infrun)
1269 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1270 /* Cancel the waiton_ptid. */
1271 ecs->waiton_ptid = pid_to_ptid (-1);
1272 break;
1273
1274 case infwait_normal_state:
1275 if (debug_infrun)
1276 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1277 stepped_after_stopped_by_watchpoint = 0;
1278 break;
1279
1280 case infwait_nonstep_watch_state:
1281 if (debug_infrun)
1282 fprintf_unfiltered (gdb_stdlog,
1283 "infrun: infwait_nonstep_watch_state\n");
1284 insert_breakpoints ();
1285
1286 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1287 handle things like signals arriving and other things happening
1288 in combination correctly? */
1289 stepped_after_stopped_by_watchpoint = 1;
1290 break;
1291
1292 default:
1293 internal_error (__FILE__, __LINE__, _("bad switch"));
1294 }
1295 ecs->infwait_state = infwait_normal_state;
1296
1297 reinit_frame_cache ();
1298
1299 /* If it's a new process, add it to the thread database */
1300
1301 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1302 && !ptid_equal (ecs->ptid, minus_one_ptid)
1303 && !in_thread_list (ecs->ptid));
1304
1305 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1306 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1307 {
1308 add_thread (ecs->ptid);
1309
1310 ui_out_text (uiout, "[New ");
1311 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1312 ui_out_text (uiout, "]\n");
1313 }
1314
1315 switch (ecs->ws.kind)
1316 {
1317 case TARGET_WAITKIND_LOADED:
1318 if (debug_infrun)
1319 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1320 /* Ignore gracefully during startup of the inferior, as it
1321 might be the shell which has just loaded some objects,
1322 otherwise add the symbols for the newly loaded objects. */
1323 #ifdef SOLIB_ADD
1324 if (stop_soon == NO_STOP_QUIETLY)
1325 {
1326 /* Remove breakpoints, SOLIB_ADD might adjust
1327 breakpoint addresses via breakpoint_re_set. */
1328 if (breakpoints_inserted)
1329 remove_breakpoints ();
1330
1331 /* Check for any newly added shared libraries if we're
1332 supposed to be adding them automatically. Switch
1333 terminal for any messages produced by
1334 breakpoint_re_set. */
1335 target_terminal_ours_for_output ();
1336 /* NOTE: cagney/2003-11-25: Make certain that the target
1337 stack's section table is kept up-to-date. Architectures,
1338 (e.g., PPC64), use the section table to perform
1339 operations such as address => section name and hence
1340 require the table to contain all sections (including
1341 those found in shared libraries). */
1342 /* NOTE: cagney/2003-11-25: Pass current_target and not
1343 exec_ops to SOLIB_ADD. This is because current GDB is
1344 only tooled to propagate section_table changes out from
1345 the "current_target" (see target_resize_to_sections), and
1346 not up from the exec stratum. This, of course, isn't
1347 right. "infrun.c" should only interact with the
1348 exec/process stratum, instead relying on the target stack
1349 to propagate relevant changes (stop, section table
1350 changed, ...) up to other layers. */
1351 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1352 target_terminal_inferior ();
1353
1354 /* Reinsert breakpoints and continue. */
1355 if (breakpoints_inserted)
1356 insert_breakpoints ();
1357 }
1358 #endif
1359 resume (0, TARGET_SIGNAL_0);
1360 prepare_to_wait (ecs);
1361 return;
1362
1363 case TARGET_WAITKIND_SPURIOUS:
1364 if (debug_infrun)
1365 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1366 resume (0, TARGET_SIGNAL_0);
1367 prepare_to_wait (ecs);
1368 return;
1369
1370 case TARGET_WAITKIND_EXITED:
1371 if (debug_infrun)
1372 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1373 target_terminal_ours (); /* Must do this before mourn anyway */
1374 print_stop_reason (EXITED, ecs->ws.value.integer);
1375
1376 /* Record the exit code in the convenience variable $_exitcode, so
1377 that the user can inspect this again later. */
1378 set_internalvar (lookup_internalvar ("_exitcode"),
1379 value_from_longest (builtin_type_int,
1380 (LONGEST) ecs->ws.value.integer));
1381 gdb_flush (gdb_stdout);
1382 target_mourn_inferior ();
1383 singlestep_breakpoints_inserted_p = 0; /* SOFTWARE_SINGLE_STEP_P() */
1384 stop_print_frame = 0;
1385 stop_stepping (ecs);
1386 return;
1387
1388 case TARGET_WAITKIND_SIGNALLED:
1389 if (debug_infrun)
1390 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1391 stop_print_frame = 0;
1392 stop_signal = ecs->ws.value.sig;
1393 target_terminal_ours (); /* Must do this before mourn anyway */
1394
1395 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1396 reach here unless the inferior is dead. However, for years
1397 target_kill() was called here, which hints that fatal signals aren't
1398 really fatal on some systems. If that's true, then some changes
1399 may be needed. */
1400 target_mourn_inferior ();
1401
1402 print_stop_reason (SIGNAL_EXITED, stop_signal);
1403 singlestep_breakpoints_inserted_p = 0; /* SOFTWARE_SINGLE_STEP_P() */
1404 stop_stepping (ecs);
1405 return;
1406
1407 /* The following are the only cases in which we keep going;
1408 the above cases end in a continue or goto. */
1409 case TARGET_WAITKIND_FORKED:
1410 case TARGET_WAITKIND_VFORKED:
1411 if (debug_infrun)
1412 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1413 stop_signal = TARGET_SIGNAL_TRAP;
1414 pending_follow.kind = ecs->ws.kind;
1415
1416 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1417 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1418
1419 if (!ptid_equal (ecs->ptid, inferior_ptid))
1420 {
1421 context_switch (ecs);
1422 reinit_frame_cache ();
1423 }
1424
1425 stop_pc = read_pc ();
1426
1427 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1428
1429 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1430
1431 /* If no catchpoint triggered for this, then keep going. */
1432 if (ecs->random_signal)
1433 {
1434 stop_signal = TARGET_SIGNAL_0;
1435 keep_going (ecs);
1436 return;
1437 }
1438 goto process_event_stop_test;
1439
1440 case TARGET_WAITKIND_EXECD:
1441 if (debug_infrun)
1442 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1443 stop_signal = TARGET_SIGNAL_TRAP;
1444
1445 /* NOTE drow/2002-12-05: This code should be pushed down into the
1446 target_wait function. Until then following vfork on HP/UX 10.20
1447 is probably broken by this. Of course, it's broken anyway. */
1448 /* Is this a target which reports multiple exec events per actual
1449 call to exec()? (HP-UX using ptrace does, for example.) If so,
1450 ignore all but the last one. Just resume the exec'r, and wait
1451 for the next exec event. */
1452 if (inferior_ignoring_leading_exec_events)
1453 {
1454 inferior_ignoring_leading_exec_events--;
1455 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1456 prepare_to_wait (ecs);
1457 return;
1458 }
1459 inferior_ignoring_leading_exec_events =
1460 target_reported_exec_events_per_exec_call () - 1;
1461
1462 pending_follow.execd_pathname =
1463 savestring (ecs->ws.value.execd_pathname,
1464 strlen (ecs->ws.value.execd_pathname));
1465
1466 /* This causes the eventpoints and symbol table to be reset. Must
1467 do this now, before trying to determine whether to stop. */
1468 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1469 xfree (pending_follow.execd_pathname);
1470
1471 stop_pc = read_pc_pid (ecs->ptid);
1472 ecs->saved_inferior_ptid = inferior_ptid;
1473 inferior_ptid = ecs->ptid;
1474
1475 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1476
1477 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1478 inferior_ptid = ecs->saved_inferior_ptid;
1479
1480 if (!ptid_equal (ecs->ptid, inferior_ptid))
1481 {
1482 context_switch (ecs);
1483 reinit_frame_cache ();
1484 }
1485
1486 /* If no catchpoint triggered for this, then keep going. */
1487 if (ecs->random_signal)
1488 {
1489 stop_signal = TARGET_SIGNAL_0;
1490 keep_going (ecs);
1491 return;
1492 }
1493 goto process_event_stop_test;
1494
1495 /* Be careful not to try to gather much state about a thread
1496 that's in a syscall. It's frequently a losing proposition. */
1497 case TARGET_WAITKIND_SYSCALL_ENTRY:
1498 if (debug_infrun)
1499 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1500 resume (0, TARGET_SIGNAL_0);
1501 prepare_to_wait (ecs);
1502 return;
1503
1504 /* Before examining the threads further, step this thread to
1505 get it entirely out of the syscall. (We get notice of the
1506 event when the thread is just on the verge of exiting a
1507 syscall. Stepping one instruction seems to get it back
1508 into user code.) */
1509 case TARGET_WAITKIND_SYSCALL_RETURN:
1510 if (debug_infrun)
1511 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1512 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1513 prepare_to_wait (ecs);
1514 return;
1515
1516 case TARGET_WAITKIND_STOPPED:
1517 if (debug_infrun)
1518 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1519 stop_signal = ecs->ws.value.sig;
1520 break;
1521
1522 /* We had an event in the inferior, but we are not interested
1523 in handling it at this level. The lower layers have already
1524 done what needs to be done, if anything.
1525
1526 One of the possible circumstances for this is when the
1527 inferior produces output for the console. The inferior has
1528 not stopped, and we are ignoring the event. Another possible
1529 circumstance is any event which the lower level knows will be
1530 reported multiple times without an intervening resume. */
1531 case TARGET_WAITKIND_IGNORE:
1532 if (debug_infrun)
1533 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1534 prepare_to_wait (ecs);
1535 return;
1536 }
1537
1538 /* We may want to consider not doing a resume here in order to give
1539 the user a chance to play with the new thread. It might be good
1540 to make that a user-settable option. */
1541
1542 /* At this point, all threads are stopped (happens automatically in
1543 either the OS or the native code). Therefore we need to continue
1544 all threads in order to make progress. */
1545 if (ecs->new_thread_event)
1546 {
1547 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1548 prepare_to_wait (ecs);
1549 return;
1550 }
1551
1552 stop_pc = read_pc_pid (ecs->ptid);
1553
1554 if (debug_infrun)
1555 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1556
1557 if (stepping_past_singlestep_breakpoint)
1558 {
1559 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1560 && singlestep_breakpoints_inserted_p);
1561 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1562 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1563
1564 stepping_past_singlestep_breakpoint = 0;
1565
1566 /* We've either finished single-stepping past the single-step
1567 breakpoint, or stopped for some other reason. It would be nice if
1568 we could tell, but we can't reliably. */
1569 if (stop_signal == TARGET_SIGNAL_TRAP)
1570 {
1571 if (debug_infrun)
1572 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1573 /* Pull the single step breakpoints out of the target. */
1574 remove_single_step_breakpoints ();
1575 singlestep_breakpoints_inserted_p = 0;
1576
1577 ecs->random_signal = 0;
1578
1579 ecs->ptid = saved_singlestep_ptid;
1580 context_switch (ecs);
1581 if (deprecated_context_hook)
1582 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1583
1584 resume (1, TARGET_SIGNAL_0);
1585 prepare_to_wait (ecs);
1586 return;
1587 }
1588 }
1589
1590 stepping_past_singlestep_breakpoint = 0;
1591
1592 /* See if a thread hit a thread-specific breakpoint that was meant for
1593 another thread. If so, then step that thread past the breakpoint,
1594 and continue it. */
1595
1596 if (stop_signal == TARGET_SIGNAL_TRAP)
1597 {
1598 int thread_hop_needed = 0;
1599
1600 /* Check if a regular breakpoint has been hit before checking
1601 for a potential single step breakpoint. Otherwise, GDB will
1602 not see this breakpoint hit when stepping onto breakpoints. */
1603 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1604 {
1605 ecs->random_signal = 0;
1606 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1607 thread_hop_needed = 1;
1608 }
1609 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1610 {
1611 /* We have not context switched yet, so this should be true
1612 no matter which thread hit the singlestep breakpoint. */
1613 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1614 if (debug_infrun)
1615 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1616 "trap for %s\n",
1617 target_pid_to_str (ecs->ptid));
1618
1619 ecs->random_signal = 0;
1620 /* The call to in_thread_list is necessary because PTIDs sometimes
1621 change when we go from single-threaded to multi-threaded. If
1622 the singlestep_ptid is still in the list, assume that it is
1623 really different from ecs->ptid. */
1624 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1625 && in_thread_list (singlestep_ptid))
1626 {
1627 /* If the PC of the thread we were trying to single-step
1628 has changed, discard this event (which we were going
1629 to ignore anyway), and pretend we saw that thread
1630 trap. This prevents us continuously moving the
1631 single-step breakpoint forward, one instruction at a
1632 time. If the PC has changed, then the thread we were
1633 trying to single-step has trapped or been signalled,
1634 but the event has not been reported to GDB yet.
1635
1636 There might be some cases where this loses signal
1637 information, if a signal has arrived at exactly the
1638 same time that the PC changed, but this is the best
1639 we can do with the information available. Perhaps we
1640 should arrange to report all events for all threads
1641 when they stop, or to re-poll the remote looking for
1642 this particular thread (i.e. temporarily enable
1643 schedlock). */
1644 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1645 {
1646 if (debug_infrun)
1647 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1648 " but expected thread advanced also\n");
1649
1650 /* The current context still belongs to
1651 singlestep_ptid. Don't swap here, since that's
1652 the context we want to use. Just fudge our
1653 state and continue. */
1654 ecs->ptid = singlestep_ptid;
1655 stop_pc = read_pc_pid (ecs->ptid);
1656 }
1657 else
1658 {
1659 if (debug_infrun)
1660 fprintf_unfiltered (gdb_stdlog,
1661 "infrun: unexpected thread\n");
1662
1663 thread_hop_needed = 1;
1664 stepping_past_singlestep_breakpoint = 1;
1665 saved_singlestep_ptid = singlestep_ptid;
1666 }
1667 }
1668 }
1669
1670 if (thread_hop_needed)
1671 {
1672 int remove_status;
1673
1674 if (debug_infrun)
1675 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1676
1677 /* Saw a breakpoint, but it was hit by the wrong thread.
1678 Just continue. */
1679
1680 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1681 {
1682 /* Pull the single step breakpoints out of the target. */
1683 remove_single_step_breakpoints ();
1684 singlestep_breakpoints_inserted_p = 0;
1685 }
1686
1687 remove_status = remove_breakpoints ();
1688 /* Did we fail to remove breakpoints? If so, try
1689 to set the PC past the bp. (There's at least
1690 one situation in which we can fail to remove
1691 the bp's: On HP-UX's that use ttrace, we can't
1692 change the address space of a vforking child
1693 process until the child exits (well, okay, not
1694 then either :-) or execs. */
1695 if (remove_status != 0)
1696 {
1697 /* FIXME! This is obviously non-portable! */
1698 write_pc_pid (stop_pc + 4, ecs->ptid);
1699 /* We need to restart all the threads now,
1700 * unles we're running in scheduler-locked mode.
1701 * Use currently_stepping to determine whether to
1702 * step or continue.
1703 */
1704 /* FIXME MVS: is there any reason not to call resume()? */
1705 if (scheduler_mode == schedlock_on)
1706 target_resume (ecs->ptid,
1707 currently_stepping (ecs), TARGET_SIGNAL_0);
1708 else
1709 target_resume (RESUME_ALL,
1710 currently_stepping (ecs), TARGET_SIGNAL_0);
1711 prepare_to_wait (ecs);
1712 return;
1713 }
1714 else
1715 { /* Single step */
1716 breakpoints_inserted = 0;
1717 if (!ptid_equal (inferior_ptid, ecs->ptid))
1718 context_switch (ecs);
1719 ecs->waiton_ptid = ecs->ptid;
1720 ecs->wp = &(ecs->ws);
1721 ecs->another_trap = 1;
1722
1723 ecs->infwait_state = infwait_thread_hop_state;
1724 keep_going (ecs);
1725 registers_changed ();
1726 return;
1727 }
1728 }
1729 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1730 {
1731 sw_single_step_trap_p = 1;
1732 ecs->random_signal = 0;
1733 }
1734 }
1735 else
1736 ecs->random_signal = 1;
1737
1738 /* See if something interesting happened to the non-current thread. If
1739 so, then switch to that thread. */
1740 if (!ptid_equal (ecs->ptid, inferior_ptid))
1741 {
1742 if (debug_infrun)
1743 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1744
1745 context_switch (ecs);
1746
1747 if (deprecated_context_hook)
1748 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1749 }
1750
1751 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1752 {
1753 /* Pull the single step breakpoints out of the target. */
1754 remove_single_step_breakpoints ();
1755 singlestep_breakpoints_inserted_p = 0;
1756 }
1757
1758 /* It may not be necessary to disable the watchpoint to stop over
1759 it. For example, the PA can (with some kernel cooperation)
1760 single step over a watchpoint without disabling the watchpoint. */
1761 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1762 {
1763 if (debug_infrun)
1764 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1765 resume (1, 0);
1766 prepare_to_wait (ecs);
1767 return;
1768 }
1769
1770 /* It is far more common to need to disable a watchpoint to step
1771 the inferior over it. FIXME. What else might a debug
1772 register or page protection watchpoint scheme need here? */
1773 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1774 {
1775 /* At this point, we are stopped at an instruction which has
1776 attempted to write to a piece of memory under control of
1777 a watchpoint. The instruction hasn't actually executed
1778 yet. If we were to evaluate the watchpoint expression
1779 now, we would get the old value, and therefore no change
1780 would seem to have occurred.
1781
1782 In order to make watchpoints work `right', we really need
1783 to complete the memory write, and then evaluate the
1784 watchpoint expression. The following code does that by
1785 removing the watchpoint (actually, all watchpoints and
1786 breakpoints), single-stepping the target, re-inserting
1787 watchpoints, and then falling through to let normal
1788 single-step processing handle proceed. Since this
1789 includes evaluating watchpoints, things will come to a
1790 stop in the correct manner. */
1791
1792 if (debug_infrun)
1793 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1794 remove_breakpoints ();
1795 registers_changed ();
1796 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1797
1798 ecs->waiton_ptid = ecs->ptid;
1799 ecs->wp = &(ecs->ws);
1800 ecs->infwait_state = infwait_nonstep_watch_state;
1801 prepare_to_wait (ecs);
1802 return;
1803 }
1804
1805 /* It may be possible to simply continue after a watchpoint. */
1806 if (HAVE_CONTINUABLE_WATCHPOINT)
1807 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1808
1809 ecs->stop_func_start = 0;
1810 ecs->stop_func_end = 0;
1811 ecs->stop_func_name = 0;
1812 /* Don't care about return value; stop_func_start and stop_func_name
1813 will both be 0 if it doesn't work. */
1814 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1815 &ecs->stop_func_start, &ecs->stop_func_end);
1816 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1817 ecs->another_trap = 0;
1818 bpstat_clear (&stop_bpstat);
1819 stop_step = 0;
1820 stop_stack_dummy = 0;
1821 stop_print_frame = 1;
1822 ecs->random_signal = 0;
1823 stopped_by_random_signal = 0;
1824
1825 if (stop_signal == TARGET_SIGNAL_TRAP
1826 && trap_expected
1827 && gdbarch_single_step_through_delay_p (current_gdbarch)
1828 && currently_stepping (ecs))
1829 {
1830 /* We're trying to step of a breakpoint. Turns out that we're
1831 also on an instruction that needs to be stepped multiple
1832 times before it's been fully executing. E.g., architectures
1833 with a delay slot. It needs to be stepped twice, once for
1834 the instruction and once for the delay slot. */
1835 int step_through_delay
1836 = gdbarch_single_step_through_delay (current_gdbarch,
1837 get_current_frame ());
1838 if (debug_infrun && step_through_delay)
1839 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1840 if (step_range_end == 0 && step_through_delay)
1841 {
1842 /* The user issued a continue when stopped at a breakpoint.
1843 Set up for another trap and get out of here. */
1844 ecs->another_trap = 1;
1845 keep_going (ecs);
1846 return;
1847 }
1848 else if (step_through_delay)
1849 {
1850 /* The user issued a step when stopped at a breakpoint.
1851 Maybe we should stop, maybe we should not - the delay
1852 slot *might* correspond to a line of source. In any
1853 case, don't decide that here, just set ecs->another_trap,
1854 making sure we single-step again before breakpoints are
1855 re-inserted. */
1856 ecs->another_trap = 1;
1857 }
1858 }
1859
1860 /* Look at the cause of the stop, and decide what to do.
1861 The alternatives are:
1862 1) break; to really stop and return to the debugger,
1863 2) drop through to start up again
1864 (set ecs->another_trap to 1 to single step once)
1865 3) set ecs->random_signal to 1, and the decision between 1 and 2
1866 will be made according to the signal handling tables. */
1867
1868 /* First, distinguish signals caused by the debugger from signals
1869 that have to do with the program's own actions. Note that
1870 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1871 on the operating system version. Here we detect when a SIGILL or
1872 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1873 something similar for SIGSEGV, since a SIGSEGV will be generated
1874 when we're trying to execute a breakpoint instruction on a
1875 non-executable stack. This happens for call dummy breakpoints
1876 for architectures like SPARC that place call dummies on the
1877 stack. */
1878
1879 if (stop_signal == TARGET_SIGNAL_TRAP
1880 || (breakpoints_inserted
1881 && (stop_signal == TARGET_SIGNAL_ILL
1882 || stop_signal == TARGET_SIGNAL_SEGV
1883 || stop_signal == TARGET_SIGNAL_EMT))
1884 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1885 {
1886 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1887 {
1888 if (debug_infrun)
1889 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1890 stop_print_frame = 0;
1891 stop_stepping (ecs);
1892 return;
1893 }
1894
1895 /* This is originated from start_remote(), start_inferior() and
1896 shared libraries hook functions. */
1897 if (stop_soon == STOP_QUIETLY)
1898 {
1899 if (debug_infrun)
1900 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1901 stop_stepping (ecs);
1902 return;
1903 }
1904
1905 /* This originates from attach_command(). We need to overwrite
1906 the stop_signal here, because some kernels don't ignore a
1907 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1908 See more comments in inferior.h. */
1909 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1910 {
1911 stop_stepping (ecs);
1912 if (stop_signal == TARGET_SIGNAL_STOP)
1913 stop_signal = TARGET_SIGNAL_0;
1914 return;
1915 }
1916
1917 /* Don't even think about breakpoints if just proceeded over a
1918 breakpoint. */
1919 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1920 {
1921 if (debug_infrun)
1922 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1923 bpstat_clear (&stop_bpstat);
1924 }
1925 else
1926 {
1927 /* See if there is a breakpoint at the current PC. */
1928 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1929 stopped_by_watchpoint);
1930
1931 /* Following in case break condition called a
1932 function. */
1933 stop_print_frame = 1;
1934 }
1935
1936 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1937 at one stage in the past included checks for an inferior
1938 function call's call dummy's return breakpoint. The original
1939 comment, that went with the test, read:
1940
1941 ``End of a stack dummy. Some systems (e.g. Sony news) give
1942 another signal besides SIGTRAP, so check here as well as
1943 above.''
1944
1945 If someone ever tries to get get call dummys on a
1946 non-executable stack to work (where the target would stop
1947 with something like a SIGSEGV), then those tests might need
1948 to be re-instated. Given, however, that the tests were only
1949 enabled when momentary breakpoints were not being used, I
1950 suspect that it won't be the case.
1951
1952 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1953 be necessary for call dummies on a non-executable stack on
1954 SPARC. */
1955
1956 if (stop_signal == TARGET_SIGNAL_TRAP)
1957 ecs->random_signal
1958 = !(bpstat_explains_signal (stop_bpstat)
1959 || trap_expected
1960 || (step_range_end && step_resume_breakpoint == NULL));
1961 else
1962 {
1963 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1964 if (!ecs->random_signal)
1965 stop_signal = TARGET_SIGNAL_TRAP;
1966 }
1967 }
1968
1969 /* When we reach this point, we've pretty much decided
1970 that the reason for stopping must've been a random
1971 (unexpected) signal. */
1972
1973 else
1974 ecs->random_signal = 1;
1975
1976 process_event_stop_test:
1977 /* For the program's own signals, act according to
1978 the signal handling tables. */
1979
1980 if (ecs->random_signal)
1981 {
1982 /* Signal not for debugging purposes. */
1983 int printed = 0;
1984
1985 if (debug_infrun)
1986 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
1987
1988 stopped_by_random_signal = 1;
1989
1990 if (signal_print[stop_signal])
1991 {
1992 printed = 1;
1993 target_terminal_ours_for_output ();
1994 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1995 }
1996 if (signal_stop[stop_signal])
1997 {
1998 stop_stepping (ecs);
1999 return;
2000 }
2001 /* If not going to stop, give terminal back
2002 if we took it away. */
2003 else if (printed)
2004 target_terminal_inferior ();
2005
2006 /* Clear the signal if it should not be passed. */
2007 if (signal_program[stop_signal] == 0)
2008 stop_signal = TARGET_SIGNAL_0;
2009
2010 if (prev_pc == read_pc ()
2011 && !breakpoints_inserted
2012 && breakpoint_here_p (read_pc ())
2013 && step_resume_breakpoint == NULL)
2014 {
2015 /* We were just starting a new sequence, attempting to
2016 single-step off of a breakpoint and expecting a SIGTRAP.
2017 Intead this signal arrives. This signal will take us out
2018 of the stepping range so GDB needs to remember to, when
2019 the signal handler returns, resume stepping off that
2020 breakpoint. */
2021 /* To simplify things, "continue" is forced to use the same
2022 code paths as single-step - set a breakpoint at the
2023 signal return address and then, once hit, step off that
2024 breakpoint. */
2025
2026 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2027 ecs->step_after_step_resume_breakpoint = 1;
2028 keep_going (ecs);
2029 return;
2030 }
2031
2032 if (step_range_end != 0
2033 && stop_signal != TARGET_SIGNAL_0
2034 && stop_pc >= step_range_start && stop_pc < step_range_end
2035 && frame_id_eq (get_frame_id (get_current_frame ()),
2036 step_frame_id)
2037 && step_resume_breakpoint == NULL)
2038 {
2039 /* The inferior is about to take a signal that will take it
2040 out of the single step range. Set a breakpoint at the
2041 current PC (which is presumably where the signal handler
2042 will eventually return) and then allow the inferior to
2043 run free.
2044
2045 Note that this is only needed for a signal delivered
2046 while in the single-step range. Nested signals aren't a
2047 problem as they eventually all return. */
2048 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2049 keep_going (ecs);
2050 return;
2051 }
2052
2053 /* Note: step_resume_breakpoint may be non-NULL. This occures
2054 when either there's a nested signal, or when there's a
2055 pending signal enabled just as the signal handler returns
2056 (leaving the inferior at the step-resume-breakpoint without
2057 actually executing it). Either way continue until the
2058 breakpoint is really hit. */
2059 keep_going (ecs);
2060 return;
2061 }
2062
2063 /* Handle cases caused by hitting a breakpoint. */
2064 {
2065 CORE_ADDR jmp_buf_pc;
2066 struct bpstat_what what;
2067
2068 what = bpstat_what (stop_bpstat);
2069
2070 if (what.call_dummy)
2071 {
2072 stop_stack_dummy = 1;
2073 }
2074
2075 switch (what.main_action)
2076 {
2077 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2078 /* If we hit the breakpoint at longjmp, disable it for the
2079 duration of this command. Then, install a temporary
2080 breakpoint at the target of the jmp_buf. */
2081 if (debug_infrun)
2082 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2083 disable_longjmp_breakpoint ();
2084 remove_breakpoints ();
2085 breakpoints_inserted = 0;
2086 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
2087 {
2088 keep_going (ecs);
2089 return;
2090 }
2091
2092 /* Need to blow away step-resume breakpoint, as it
2093 interferes with us */
2094 if (step_resume_breakpoint != NULL)
2095 {
2096 delete_step_resume_breakpoint (&step_resume_breakpoint);
2097 }
2098
2099 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2100 ecs->handling_longjmp = 1; /* FIXME */
2101 keep_going (ecs);
2102 return;
2103
2104 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2105 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2106 if (debug_infrun)
2107 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2108 remove_breakpoints ();
2109 breakpoints_inserted = 0;
2110 disable_longjmp_breakpoint ();
2111 ecs->handling_longjmp = 0; /* FIXME */
2112 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2113 break;
2114 /* else fallthrough */
2115
2116 case BPSTAT_WHAT_SINGLE:
2117 if (debug_infrun)
2118 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2119 if (breakpoints_inserted)
2120 remove_breakpoints ();
2121 breakpoints_inserted = 0;
2122 ecs->another_trap = 1;
2123 /* Still need to check other stuff, at least the case
2124 where we are stepping and step out of the right range. */
2125 break;
2126
2127 case BPSTAT_WHAT_STOP_NOISY:
2128 if (debug_infrun)
2129 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2130 stop_print_frame = 1;
2131
2132 /* We are about to nuke the step_resume_breakpointt via the
2133 cleanup chain, so no need to worry about it here. */
2134
2135 stop_stepping (ecs);
2136 return;
2137
2138 case BPSTAT_WHAT_STOP_SILENT:
2139 if (debug_infrun)
2140 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2141 stop_print_frame = 0;
2142
2143 /* We are about to nuke the step_resume_breakpoin via the
2144 cleanup chain, so no need to worry about it here. */
2145
2146 stop_stepping (ecs);
2147 return;
2148
2149 case BPSTAT_WHAT_STEP_RESUME:
2150 /* This proably demands a more elegant solution, but, yeah
2151 right...
2152
2153 This function's use of the simple variable
2154 step_resume_breakpoint doesn't seem to accomodate
2155 simultaneously active step-resume bp's, although the
2156 breakpoint list certainly can.
2157
2158 If we reach here and step_resume_breakpoint is already
2159 NULL, then apparently we have multiple active
2160 step-resume bp's. We'll just delete the breakpoint we
2161 stopped at, and carry on.
2162
2163 Correction: what the code currently does is delete a
2164 step-resume bp, but it makes no effort to ensure that
2165 the one deleted is the one currently stopped at. MVS */
2166
2167 if (debug_infrun)
2168 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2169
2170 if (step_resume_breakpoint == NULL)
2171 {
2172 step_resume_breakpoint =
2173 bpstat_find_step_resume_breakpoint (stop_bpstat);
2174 }
2175 delete_step_resume_breakpoint (&step_resume_breakpoint);
2176 if (ecs->step_after_step_resume_breakpoint)
2177 {
2178 /* Back when the step-resume breakpoint was inserted, we
2179 were trying to single-step off a breakpoint. Go back
2180 to doing that. */
2181 ecs->step_after_step_resume_breakpoint = 0;
2182 remove_breakpoints ();
2183 breakpoints_inserted = 0;
2184 ecs->another_trap = 1;
2185 keep_going (ecs);
2186 return;
2187 }
2188 break;
2189
2190 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2191 if (debug_infrun)
2192 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_THROUGH_SIGTRAMP\n");
2193 /* If were waiting for a trap, hitting the step_resume_break
2194 doesn't count as getting it. */
2195 if (trap_expected)
2196 ecs->another_trap = 1;
2197 break;
2198
2199 case BPSTAT_WHAT_CHECK_SHLIBS:
2200 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2201 {
2202 if (debug_infrun)
2203 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2204 /* Remove breakpoints, we eventually want to step over the
2205 shlib event breakpoint, and SOLIB_ADD might adjust
2206 breakpoint addresses via breakpoint_re_set. */
2207 if (breakpoints_inserted)
2208 remove_breakpoints ();
2209 breakpoints_inserted = 0;
2210
2211 /* Check for any newly added shared libraries if we're
2212 supposed to be adding them automatically. Switch
2213 terminal for any messages produced by
2214 breakpoint_re_set. */
2215 target_terminal_ours_for_output ();
2216 /* NOTE: cagney/2003-11-25: Make certain that the target
2217 stack's section table is kept up-to-date. Architectures,
2218 (e.g., PPC64), use the section table to perform
2219 operations such as address => section name and hence
2220 require the table to contain all sections (including
2221 those found in shared libraries). */
2222 /* NOTE: cagney/2003-11-25: Pass current_target and not
2223 exec_ops to SOLIB_ADD. This is because current GDB is
2224 only tooled to propagate section_table changes out from
2225 the "current_target" (see target_resize_to_sections), and
2226 not up from the exec stratum. This, of course, isn't
2227 right. "infrun.c" should only interact with the
2228 exec/process stratum, instead relying on the target stack
2229 to propagate relevant changes (stop, section table
2230 changed, ...) up to other layers. */
2231 #ifdef SOLIB_ADD
2232 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2233 #else
2234 solib_add (NULL, 0, &current_target, auto_solib_add);
2235 #endif
2236 target_terminal_inferior ();
2237
2238 /* Try to reenable shared library breakpoints, additional
2239 code segments in shared libraries might be mapped in now. */
2240 re_enable_breakpoints_in_shlibs ();
2241
2242 /* If requested, stop when the dynamic linker notifies
2243 gdb of events. This allows the user to get control
2244 and place breakpoints in initializer routines for
2245 dynamically loaded objects (among other things). */
2246 if (stop_on_solib_events || stop_stack_dummy)
2247 {
2248 stop_stepping (ecs);
2249 return;
2250 }
2251
2252 /* If we stopped due to an explicit catchpoint, then the
2253 (see above) call to SOLIB_ADD pulled in any symbols
2254 from a newly-loaded library, if appropriate.
2255
2256 We do want the inferior to stop, but not where it is
2257 now, which is in the dynamic linker callback. Rather,
2258 we would like it stop in the user's program, just after
2259 the call that caused this catchpoint to trigger. That
2260 gives the user a more useful vantage from which to
2261 examine their program's state. */
2262 else if (what.main_action
2263 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2264 {
2265 /* ??rehrauer: If I could figure out how to get the
2266 right return PC from here, we could just set a temp
2267 breakpoint and resume. I'm not sure we can without
2268 cracking open the dld's shared libraries and sniffing
2269 their unwind tables and text/data ranges, and that's
2270 not a terribly portable notion.
2271
2272 Until that time, we must step the inferior out of the
2273 dld callback, and also out of the dld itself (and any
2274 code or stubs in libdld.sl, such as "shl_load" and
2275 friends) until we reach non-dld code. At that point,
2276 we can stop stepping. */
2277 bpstat_get_triggered_catchpoints (stop_bpstat,
2278 &ecs->
2279 stepping_through_solib_catchpoints);
2280 ecs->stepping_through_solib_after_catch = 1;
2281
2282 /* Be sure to lift all breakpoints, so the inferior does
2283 actually step past this point... */
2284 ecs->another_trap = 1;
2285 break;
2286 }
2287 else
2288 {
2289 /* We want to step over this breakpoint, then keep going. */
2290 ecs->another_trap = 1;
2291 break;
2292 }
2293 }
2294 break;
2295
2296 case BPSTAT_WHAT_LAST:
2297 /* Not a real code, but listed here to shut up gcc -Wall. */
2298
2299 case BPSTAT_WHAT_KEEP_CHECKING:
2300 break;
2301 }
2302 }
2303
2304 /* We come here if we hit a breakpoint but should not
2305 stop for it. Possibly we also were stepping
2306 and should stop for that. So fall through and
2307 test for stepping. But, if not stepping,
2308 do not stop. */
2309
2310 /* Are we stepping to get the inferior out of the dynamic linker's
2311 hook (and possibly the dld itself) after catching a shlib
2312 event? */
2313 if (ecs->stepping_through_solib_after_catch)
2314 {
2315 #if defined(SOLIB_ADD)
2316 /* Have we reached our destination? If not, keep going. */
2317 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2318 {
2319 if (debug_infrun)
2320 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2321 ecs->another_trap = 1;
2322 keep_going (ecs);
2323 return;
2324 }
2325 #endif
2326 if (debug_infrun)
2327 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2328 /* Else, stop and report the catchpoint(s) whose triggering
2329 caused us to begin stepping. */
2330 ecs->stepping_through_solib_after_catch = 0;
2331 bpstat_clear (&stop_bpstat);
2332 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2333 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2334 stop_print_frame = 1;
2335 stop_stepping (ecs);
2336 return;
2337 }
2338
2339 if (step_resume_breakpoint)
2340 {
2341 if (debug_infrun)
2342 fprintf_unfiltered (gdb_stdlog,
2343 "infrun: step-resume breakpoint is inserted\n");
2344
2345 /* Having a step-resume breakpoint overrides anything
2346 else having to do with stepping commands until
2347 that breakpoint is reached. */
2348 keep_going (ecs);
2349 return;
2350 }
2351
2352 if (step_range_end == 0)
2353 {
2354 if (debug_infrun)
2355 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2356 /* Likewise if we aren't even stepping. */
2357 keep_going (ecs);
2358 return;
2359 }
2360
2361 /* If stepping through a line, keep going if still within it.
2362
2363 Note that step_range_end is the address of the first instruction
2364 beyond the step range, and NOT the address of the last instruction
2365 within it! */
2366 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2367 {
2368 if (debug_infrun)
2369 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2370 paddr_nz (step_range_start),
2371 paddr_nz (step_range_end));
2372 keep_going (ecs);
2373 return;
2374 }
2375
2376 /* We stepped out of the stepping range. */
2377
2378 /* If we are stepping at the source level and entered the runtime
2379 loader dynamic symbol resolution code, we keep on single stepping
2380 until we exit the run time loader code and reach the callee's
2381 address. */
2382 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2383 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2384 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2385 #else
2386 && in_solib_dynsym_resolve_code (stop_pc)
2387 #endif
2388 )
2389 {
2390 CORE_ADDR pc_after_resolver =
2391 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2392
2393 if (debug_infrun)
2394 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2395
2396 if (pc_after_resolver)
2397 {
2398 /* Set up a step-resume breakpoint at the address
2399 indicated by SKIP_SOLIB_RESOLVER. */
2400 struct symtab_and_line sr_sal;
2401 init_sal (&sr_sal);
2402 sr_sal.pc = pc_after_resolver;
2403
2404 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2405 }
2406
2407 keep_going (ecs);
2408 return;
2409 }
2410
2411 if (step_range_end != 1
2412 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2413 || step_over_calls == STEP_OVER_ALL)
2414 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2415 {
2416 if (debug_infrun)
2417 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2418 /* The inferior, while doing a "step" or "next", has ended up in
2419 a signal trampoline (either by a signal being delivered or by
2420 the signal handler returning). Just single-step until the
2421 inferior leaves the trampoline (either by calling the handler
2422 or returning). */
2423 keep_going (ecs);
2424 return;
2425 }
2426
2427 /* Check for subroutine calls. The check for the current frame
2428 equalling the step ID is not necessary - the check of the
2429 previous frame's ID is sufficient - but it is a common case and
2430 cheaper than checking the previous frame's ID.
2431
2432 NOTE: frame_id_eq will never report two invalid frame IDs as
2433 being equal, so to get into this block, both the current and
2434 previous frame must have valid frame IDs. */
2435 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2436 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2437 {
2438 CORE_ADDR real_stop_pc;
2439
2440 if (debug_infrun)
2441 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2442
2443 if ((step_over_calls == STEP_OVER_NONE)
2444 || ((step_range_end == 1)
2445 && in_prologue (prev_pc, ecs->stop_func_start)))
2446 {
2447 /* I presume that step_over_calls is only 0 when we're
2448 supposed to be stepping at the assembly language level
2449 ("stepi"). Just stop. */
2450 /* Also, maybe we just did a "nexti" inside a prolog, so we
2451 thought it was a subroutine call but it was not. Stop as
2452 well. FENN */
2453 stop_step = 1;
2454 print_stop_reason (END_STEPPING_RANGE, 0);
2455 stop_stepping (ecs);
2456 return;
2457 }
2458
2459 if (step_over_calls == STEP_OVER_ALL)
2460 {
2461 /* We're doing a "next", set a breakpoint at callee's return
2462 address (the address at which the caller will
2463 resume). */
2464 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2465 keep_going (ecs);
2466 return;
2467 }
2468
2469 /* If we are in a function call trampoline (a stub between the
2470 calling routine and the real function), locate the real
2471 function. That's what tells us (a) whether we want to step
2472 into it at all, and (b) what prologue we want to run to the
2473 end of, if we do step into it. */
2474 real_stop_pc = skip_language_trampoline (stop_pc);
2475 if (real_stop_pc == 0)
2476 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2477 if (real_stop_pc != 0)
2478 ecs->stop_func_start = real_stop_pc;
2479
2480 if (
2481 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2482 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2483 #else
2484 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2485 #endif
2486 )
2487 {
2488 struct symtab_and_line sr_sal;
2489 init_sal (&sr_sal);
2490 sr_sal.pc = ecs->stop_func_start;
2491
2492 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2493 keep_going (ecs);
2494 return;
2495 }
2496
2497 /* If we have line number information for the function we are
2498 thinking of stepping into, step into it.
2499
2500 If there are several symtabs at that PC (e.g. with include
2501 files), just want to know whether *any* of them have line
2502 numbers. find_pc_line handles this. */
2503 {
2504 struct symtab_and_line tmp_sal;
2505
2506 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2507 if (tmp_sal.line != 0)
2508 {
2509 step_into_function (ecs);
2510 return;
2511 }
2512 }
2513
2514 /* If we have no line number and the step-stop-if-no-debug is
2515 set, we stop the step so that the user has a chance to switch
2516 in assembly mode. */
2517 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2518 {
2519 stop_step = 1;
2520 print_stop_reason (END_STEPPING_RANGE, 0);
2521 stop_stepping (ecs);
2522 return;
2523 }
2524
2525 /* Set a breakpoint at callee's return address (the address at
2526 which the caller will resume). */
2527 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2528 keep_going (ecs);
2529 return;
2530 }
2531
2532 /* If we're in the return path from a shared library trampoline,
2533 we want to proceed through the trampoline when stepping. */
2534 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2535 {
2536 /* Determine where this trampoline returns. */
2537 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2538
2539 if (debug_infrun)
2540 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2541
2542 /* Only proceed through if we know where it's going. */
2543 if (real_stop_pc)
2544 {
2545 /* And put the step-breakpoint there and go until there. */
2546 struct symtab_and_line sr_sal;
2547
2548 init_sal (&sr_sal); /* initialize to zeroes */
2549 sr_sal.pc = real_stop_pc;
2550 sr_sal.section = find_pc_overlay (sr_sal.pc);
2551
2552 /* Do not specify what the fp should be when we stop since
2553 on some machines the prologue is where the new fp value
2554 is established. */
2555 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2556
2557 /* Restart without fiddling with the step ranges or
2558 other state. */
2559 keep_going (ecs);
2560 return;
2561 }
2562 }
2563
2564 ecs->sal = find_pc_line (stop_pc, 0);
2565
2566 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2567 the trampoline processing logic, however, there are some trampolines
2568 that have no names, so we should do trampoline handling first. */
2569 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2570 && ecs->stop_func_name == NULL
2571 && ecs->sal.line == 0)
2572 {
2573 if (debug_infrun)
2574 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2575
2576 /* The inferior just stepped into, or returned to, an
2577 undebuggable function (where there is no debugging information
2578 and no line number corresponding to the address where the
2579 inferior stopped). Since we want to skip this kind of code,
2580 we keep going until the inferior returns from this
2581 function - unless the user has asked us not to (via
2582 set step-mode) or we no longer know how to get back
2583 to the call site. */
2584 if (step_stop_if_no_debug
2585 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2586 {
2587 /* If we have no line number and the step-stop-if-no-debug
2588 is set, we stop the step so that the user has a chance to
2589 switch in assembly mode. */
2590 stop_step = 1;
2591 print_stop_reason (END_STEPPING_RANGE, 0);
2592 stop_stepping (ecs);
2593 return;
2594 }
2595 else
2596 {
2597 /* Set a breakpoint at callee's return address (the address
2598 at which the caller will resume). */
2599 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2600 keep_going (ecs);
2601 return;
2602 }
2603 }
2604
2605 if (step_range_end == 1)
2606 {
2607 /* It is stepi or nexti. We always want to stop stepping after
2608 one instruction. */
2609 if (debug_infrun)
2610 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2611 stop_step = 1;
2612 print_stop_reason (END_STEPPING_RANGE, 0);
2613 stop_stepping (ecs);
2614 return;
2615 }
2616
2617 if (ecs->sal.line == 0)
2618 {
2619 /* We have no line number information. That means to stop
2620 stepping (does this always happen right after one instruction,
2621 when we do "s" in a function with no line numbers,
2622 or can this happen as a result of a return or longjmp?). */
2623 if (debug_infrun)
2624 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2625 stop_step = 1;
2626 print_stop_reason (END_STEPPING_RANGE, 0);
2627 stop_stepping (ecs);
2628 return;
2629 }
2630
2631 if ((stop_pc == ecs->sal.pc)
2632 && (ecs->current_line != ecs->sal.line
2633 || ecs->current_symtab != ecs->sal.symtab))
2634 {
2635 /* We are at the start of a different line. So stop. Note that
2636 we don't stop if we step into the middle of a different line.
2637 That is said to make things like for (;;) statements work
2638 better. */
2639 if (debug_infrun)
2640 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2641 stop_step = 1;
2642 print_stop_reason (END_STEPPING_RANGE, 0);
2643 stop_stepping (ecs);
2644 return;
2645 }
2646
2647 /* We aren't done stepping.
2648
2649 Optimize by setting the stepping range to the line.
2650 (We might not be in the original line, but if we entered a
2651 new line in mid-statement, we continue stepping. This makes
2652 things like for(;;) statements work better.) */
2653
2654 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2655 {
2656 /* If this is the last line of the function, don't keep stepping
2657 (it would probably step us out of the function).
2658 This is particularly necessary for a one-line function,
2659 in which after skipping the prologue we better stop even though
2660 we will be in mid-line. */
2661 if (debug_infrun)
2662 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2663 stop_step = 1;
2664 print_stop_reason (END_STEPPING_RANGE, 0);
2665 stop_stepping (ecs);
2666 return;
2667 }
2668 step_range_start = ecs->sal.pc;
2669 step_range_end = ecs->sal.end;
2670 step_frame_id = get_frame_id (get_current_frame ());
2671 ecs->current_line = ecs->sal.line;
2672 ecs->current_symtab = ecs->sal.symtab;
2673
2674 /* In the case where we just stepped out of a function into the
2675 middle of a line of the caller, continue stepping, but
2676 step_frame_id must be modified to current frame */
2677 #if 0
2678 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2679 generous. It will trigger on things like a step into a frameless
2680 stackless leaf function. I think the logic should instead look
2681 at the unwound frame ID has that should give a more robust
2682 indication of what happened. */
2683 if (step - ID == current - ID)
2684 still stepping in same function;
2685 else if (step - ID == unwind (current - ID))
2686 stepped into a function;
2687 else
2688 stepped out of a function;
2689 /* Of course this assumes that the frame ID unwind code is robust
2690 and we're willing to introduce frame unwind logic into this
2691 function. Fortunately, those days are nearly upon us. */
2692 #endif
2693 {
2694 struct frame_id current_frame = get_frame_id (get_current_frame ());
2695 if (!(frame_id_inner (current_frame, step_frame_id)))
2696 step_frame_id = current_frame;
2697 }
2698
2699 if (debug_infrun)
2700 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2701 keep_going (ecs);
2702 }
2703
2704 /* Are we in the middle of stepping? */
2705
2706 static int
2707 currently_stepping (struct execution_control_state *ecs)
2708 {
2709 return ((!ecs->handling_longjmp
2710 && ((step_range_end && step_resume_breakpoint == NULL)
2711 || trap_expected))
2712 || ecs->stepping_through_solib_after_catch
2713 || bpstat_should_step ());
2714 }
2715
2716 /* Subroutine call with source code we should not step over. Do step
2717 to the first line of code in it. */
2718
2719 static void
2720 step_into_function (struct execution_control_state *ecs)
2721 {
2722 struct symtab *s;
2723 struct symtab_and_line sr_sal;
2724
2725 s = find_pc_symtab (stop_pc);
2726 if (s && s->language != language_asm)
2727 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2728
2729 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2730 /* Use the step_resume_break to step until the end of the prologue,
2731 even if that involves jumps (as it seems to on the vax under
2732 4.2). */
2733 /* If the prologue ends in the middle of a source line, continue to
2734 the end of that source line (if it is still within the function).
2735 Otherwise, just go to end of prologue. */
2736 if (ecs->sal.end
2737 && ecs->sal.pc != ecs->stop_func_start
2738 && ecs->sal.end < ecs->stop_func_end)
2739 ecs->stop_func_start = ecs->sal.end;
2740
2741 /* Architectures which require breakpoint adjustment might not be able
2742 to place a breakpoint at the computed address. If so, the test
2743 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2744 ecs->stop_func_start to an address at which a breakpoint may be
2745 legitimately placed.
2746
2747 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2748 made, GDB will enter an infinite loop when stepping through
2749 optimized code consisting of VLIW instructions which contain
2750 subinstructions corresponding to different source lines. On
2751 FR-V, it's not permitted to place a breakpoint on any but the
2752 first subinstruction of a VLIW instruction. When a breakpoint is
2753 set, GDB will adjust the breakpoint address to the beginning of
2754 the VLIW instruction. Thus, we need to make the corresponding
2755 adjustment here when computing the stop address. */
2756
2757 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2758 {
2759 ecs->stop_func_start
2760 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2761 ecs->stop_func_start);
2762 }
2763
2764 if (ecs->stop_func_start == stop_pc)
2765 {
2766 /* We are already there: stop now. */
2767 stop_step = 1;
2768 print_stop_reason (END_STEPPING_RANGE, 0);
2769 stop_stepping (ecs);
2770 return;
2771 }
2772 else
2773 {
2774 /* Put the step-breakpoint there and go until there. */
2775 init_sal (&sr_sal); /* initialize to zeroes */
2776 sr_sal.pc = ecs->stop_func_start;
2777 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2778
2779 /* Do not specify what the fp should be when we stop since on
2780 some machines the prologue is where the new fp value is
2781 established. */
2782 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2783
2784 /* And make sure stepping stops right away then. */
2785 step_range_end = step_range_start;
2786 }
2787 keep_going (ecs);
2788 }
2789
2790 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
2791 This is used to both functions and to skip over code. */
2792
2793 static void
2794 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2795 struct frame_id sr_id)
2796 {
2797 /* There should never be more than one step-resume breakpoint per
2798 thread, so we should never be setting a new
2799 step_resume_breakpoint when one is already active. */
2800 gdb_assert (step_resume_breakpoint == NULL);
2801
2802 if (debug_infrun)
2803 fprintf_unfiltered (gdb_stdlog,
2804 "infrun: inserting step-resume breakpoint at 0x%s\n",
2805 paddr_nz (sr_sal.pc));
2806
2807 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2808 bp_step_resume);
2809 if (breakpoints_inserted)
2810 insert_breakpoints ();
2811 }
2812
2813 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
2814 to skip a potential signal handler.
2815
2816 This is called with the interrupted function's frame. The signal
2817 handler, when it returns, will resume the interrupted function at
2818 RETURN_FRAME.pc. */
2819
2820 static void
2821 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2822 {
2823 struct symtab_and_line sr_sal;
2824
2825 init_sal (&sr_sal); /* initialize to zeros */
2826
2827 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
2828 sr_sal.section = find_pc_overlay (sr_sal.pc);
2829
2830 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2831 }
2832
2833 /* Similar to insert_step_resume_breakpoint_at_frame, except
2834 but a breakpoint at the previous frame's PC. This is used to
2835 skip a function after stepping into it (for "next" or if the called
2836 function has no debugging information).
2837
2838 The current function has almost always been reached by single
2839 stepping a call or return instruction. NEXT_FRAME belongs to the
2840 current function, and the breakpoint will be set at the caller's
2841 resume address.
2842
2843 This is a separate function rather than reusing
2844 insert_step_resume_breakpoint_at_frame in order to avoid
2845 get_prev_frame, which may stop prematurely (see the implementation
2846 of frame_unwind_id for an example). */
2847
2848 static void
2849 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2850 {
2851 struct symtab_and_line sr_sal;
2852
2853 /* We shouldn't have gotten here if we don't know where the call site
2854 is. */
2855 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2856
2857 init_sal (&sr_sal); /* initialize to zeros */
2858
2859 sr_sal.pc = ADDR_BITS_REMOVE (frame_pc_unwind (next_frame));
2860 sr_sal.section = find_pc_overlay (sr_sal.pc);
2861
2862 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2863 }
2864
2865 static void
2866 stop_stepping (struct execution_control_state *ecs)
2867 {
2868 if (debug_infrun)
2869 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2870
2871 /* Let callers know we don't want to wait for the inferior anymore. */
2872 ecs->wait_some_more = 0;
2873 }
2874
2875 /* This function handles various cases where we need to continue
2876 waiting for the inferior. */
2877 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2878
2879 static void
2880 keep_going (struct execution_control_state *ecs)
2881 {
2882 /* Save the pc before execution, to compare with pc after stop. */
2883 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2884
2885 /* If we did not do break;, it means we should keep running the
2886 inferior and not return to debugger. */
2887
2888 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2889 {
2890 /* We took a signal (which we are supposed to pass through to
2891 the inferior, else we'd have done a break above) and we
2892 haven't yet gotten our trap. Simply continue. */
2893 resume (currently_stepping (ecs), stop_signal);
2894 }
2895 else
2896 {
2897 /* Either the trap was not expected, but we are continuing
2898 anyway (the user asked that this signal be passed to the
2899 child)
2900 -- or --
2901 The signal was SIGTRAP, e.g. it was our signal, but we
2902 decided we should resume from it.
2903
2904 We're going to run this baby now! */
2905
2906 if (!breakpoints_inserted && !ecs->another_trap)
2907 {
2908 /* Stop stepping when inserting breakpoints
2909 has failed. */
2910 if (insert_breakpoints () != 0)
2911 {
2912 stop_stepping (ecs);
2913 return;
2914 }
2915 breakpoints_inserted = 1;
2916 }
2917
2918 trap_expected = ecs->another_trap;
2919
2920 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2921 specifies that such a signal should be delivered to the
2922 target program).
2923
2924 Typically, this would occure when a user is debugging a
2925 target monitor on a simulator: the target monitor sets a
2926 breakpoint; the simulator encounters this break-point and
2927 halts the simulation handing control to GDB; GDB, noteing
2928 that the break-point isn't valid, returns control back to the
2929 simulator; the simulator then delivers the hardware
2930 equivalent of a SIGNAL_TRAP to the program being debugged. */
2931
2932 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2933 stop_signal = TARGET_SIGNAL_0;
2934
2935
2936 resume (currently_stepping (ecs), stop_signal);
2937 }
2938
2939 prepare_to_wait (ecs);
2940 }
2941
2942 /* This function normally comes after a resume, before
2943 handle_inferior_event exits. It takes care of any last bits of
2944 housekeeping, and sets the all-important wait_some_more flag. */
2945
2946 static void
2947 prepare_to_wait (struct execution_control_state *ecs)
2948 {
2949 if (debug_infrun)
2950 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2951 if (ecs->infwait_state == infwait_normal_state)
2952 {
2953 overlay_cache_invalid = 1;
2954
2955 /* We have to invalidate the registers BEFORE calling
2956 target_wait because they can be loaded from the target while
2957 in target_wait. This makes remote debugging a bit more
2958 efficient for those targets that provide critical registers
2959 as part of their normal status mechanism. */
2960
2961 registers_changed ();
2962 ecs->waiton_ptid = pid_to_ptid (-1);
2963 ecs->wp = &(ecs->ws);
2964 }
2965 /* This is the old end of the while loop. Let everybody know we
2966 want to wait for the inferior some more and get called again
2967 soon. */
2968 ecs->wait_some_more = 1;
2969 }
2970
2971 /* Print why the inferior has stopped. We always print something when
2972 the inferior exits, or receives a signal. The rest of the cases are
2973 dealt with later on in normal_stop() and print_it_typical(). Ideally
2974 there should be a call to this function from handle_inferior_event()
2975 each time stop_stepping() is called.*/
2976 static void
2977 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2978 {
2979 switch (stop_reason)
2980 {
2981 case END_STEPPING_RANGE:
2982 /* We are done with a step/next/si/ni command. */
2983 /* For now print nothing. */
2984 /* Print a message only if not in the middle of doing a "step n"
2985 operation for n > 1 */
2986 if (!step_multi || !stop_step)
2987 if (ui_out_is_mi_like_p (uiout))
2988 ui_out_field_string
2989 (uiout, "reason",
2990 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
2991 break;
2992 case SIGNAL_EXITED:
2993 /* The inferior was terminated by a signal. */
2994 annotate_signalled ();
2995 if (ui_out_is_mi_like_p (uiout))
2996 ui_out_field_string
2997 (uiout, "reason",
2998 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
2999 ui_out_text (uiout, "\nProgram terminated with signal ");
3000 annotate_signal_name ();
3001 ui_out_field_string (uiout, "signal-name",
3002 target_signal_to_name (stop_info));
3003 annotate_signal_name_end ();
3004 ui_out_text (uiout, ", ");
3005 annotate_signal_string ();
3006 ui_out_field_string (uiout, "signal-meaning",
3007 target_signal_to_string (stop_info));
3008 annotate_signal_string_end ();
3009 ui_out_text (uiout, ".\n");
3010 ui_out_text (uiout, "The program no longer exists.\n");
3011 break;
3012 case EXITED:
3013 /* The inferior program is finished. */
3014 annotate_exited (stop_info);
3015 if (stop_info)
3016 {
3017 if (ui_out_is_mi_like_p (uiout))
3018 ui_out_field_string (uiout, "reason",
3019 async_reason_lookup (EXEC_ASYNC_EXITED));
3020 ui_out_text (uiout, "\nProgram exited with code ");
3021 ui_out_field_fmt (uiout, "exit-code", "0%o",
3022 (unsigned int) stop_info);
3023 ui_out_text (uiout, ".\n");
3024 }
3025 else
3026 {
3027 if (ui_out_is_mi_like_p (uiout))
3028 ui_out_field_string
3029 (uiout, "reason",
3030 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3031 ui_out_text (uiout, "\nProgram exited normally.\n");
3032 }
3033 /* Support the --return-child-result option. */
3034 return_child_result_value = stop_info;
3035 break;
3036 case SIGNAL_RECEIVED:
3037 /* Signal received. The signal table tells us to print about
3038 it. */
3039 annotate_signal ();
3040 ui_out_text (uiout, "\nProgram received signal ");
3041 annotate_signal_name ();
3042 if (ui_out_is_mi_like_p (uiout))
3043 ui_out_field_string
3044 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3045 ui_out_field_string (uiout, "signal-name",
3046 target_signal_to_name (stop_info));
3047 annotate_signal_name_end ();
3048 ui_out_text (uiout, ", ");
3049 annotate_signal_string ();
3050 ui_out_field_string (uiout, "signal-meaning",
3051 target_signal_to_string (stop_info));
3052 annotate_signal_string_end ();
3053 ui_out_text (uiout, ".\n");
3054 break;
3055 default:
3056 internal_error (__FILE__, __LINE__,
3057 _("print_stop_reason: unrecognized enum value"));
3058 break;
3059 }
3060 }
3061 \f
3062
3063 /* Here to return control to GDB when the inferior stops for real.
3064 Print appropriate messages, remove breakpoints, give terminal our modes.
3065
3066 STOP_PRINT_FRAME nonzero means print the executing frame
3067 (pc, function, args, file, line number and line text).
3068 BREAKPOINTS_FAILED nonzero means stop was due to error
3069 attempting to insert breakpoints. */
3070
3071 void
3072 normal_stop (void)
3073 {
3074 struct target_waitstatus last;
3075 ptid_t last_ptid;
3076
3077 get_last_target_status (&last_ptid, &last);
3078
3079 /* As with the notification of thread events, we want to delay
3080 notifying the user that we've switched thread context until
3081 the inferior actually stops.
3082
3083 There's no point in saying anything if the inferior has exited.
3084 Note that SIGNALLED here means "exited with a signal", not
3085 "received a signal". */
3086 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3087 && target_has_execution
3088 && last.kind != TARGET_WAITKIND_SIGNALLED
3089 && last.kind != TARGET_WAITKIND_EXITED)
3090 {
3091 target_terminal_ours_for_output ();
3092 printf_filtered (_("[Switching to %s]\n"),
3093 target_pid_or_tid_to_str (inferior_ptid));
3094 previous_inferior_ptid = inferior_ptid;
3095 }
3096
3097 /* NOTE drow/2004-01-17: Is this still necessary? */
3098 /* Make sure that the current_frame's pc is correct. This
3099 is a correction for setting up the frame info before doing
3100 DECR_PC_AFTER_BREAK */
3101 if (target_has_execution)
3102 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3103 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3104 frame code to check for this and sort out any resultant mess.
3105 DECR_PC_AFTER_BREAK needs to just go away. */
3106 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3107
3108 if (target_has_execution && breakpoints_inserted)
3109 {
3110 if (remove_breakpoints ())
3111 {
3112 target_terminal_ours_for_output ();
3113 printf_filtered (_("\
3114 Cannot remove breakpoints because program is no longer writable.\n\
3115 It might be running in another process.\n\
3116 Further execution is probably impossible.\n"));
3117 }
3118 }
3119 breakpoints_inserted = 0;
3120
3121 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3122 Delete any breakpoint that is to be deleted at the next stop. */
3123
3124 breakpoint_auto_delete (stop_bpstat);
3125
3126 /* If an auto-display called a function and that got a signal,
3127 delete that auto-display to avoid an infinite recursion. */
3128
3129 if (stopped_by_random_signal)
3130 disable_current_display ();
3131
3132 /* Don't print a message if in the middle of doing a "step n"
3133 operation for n > 1 */
3134 if (step_multi && stop_step)
3135 goto done;
3136
3137 target_terminal_ours ();
3138
3139 /* Set the current source location. This will also happen if we
3140 display the frame below, but the current SAL will be incorrect
3141 during a user hook-stop function. */
3142 if (target_has_stack && !stop_stack_dummy)
3143 set_current_sal_from_frame (get_current_frame (), 1);
3144
3145 /* Look up the hook_stop and run it (CLI internally handles problem
3146 of stop_command's pre-hook not existing). */
3147 if (stop_command)
3148 catch_errors (hook_stop_stub, stop_command,
3149 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3150
3151 if (!target_has_stack)
3152 {
3153
3154 goto done;
3155 }
3156
3157 /* Select innermost stack frame - i.e., current frame is frame 0,
3158 and current location is based on that.
3159 Don't do this on return from a stack dummy routine,
3160 or if the program has exited. */
3161
3162 if (!stop_stack_dummy)
3163 {
3164 select_frame (get_current_frame ());
3165
3166 /* Print current location without a level number, if
3167 we have changed functions or hit a breakpoint.
3168 Print source line if we have one.
3169 bpstat_print() contains the logic deciding in detail
3170 what to print, based on the event(s) that just occurred. */
3171
3172 if (stop_print_frame)
3173 {
3174 int bpstat_ret;
3175 int source_flag;
3176 int do_frame_printing = 1;
3177
3178 bpstat_ret = bpstat_print (stop_bpstat);
3179 switch (bpstat_ret)
3180 {
3181 case PRINT_UNKNOWN:
3182 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3183 (or should) carry around the function and does (or
3184 should) use that when doing a frame comparison. */
3185 if (stop_step
3186 && frame_id_eq (step_frame_id,
3187 get_frame_id (get_current_frame ()))
3188 && step_start_function == find_pc_function (stop_pc))
3189 source_flag = SRC_LINE; /* finished step, just print source line */
3190 else
3191 source_flag = SRC_AND_LOC; /* print location and source line */
3192 break;
3193 case PRINT_SRC_AND_LOC:
3194 source_flag = SRC_AND_LOC; /* print location and source line */
3195 break;
3196 case PRINT_SRC_ONLY:
3197 source_flag = SRC_LINE;
3198 break;
3199 case PRINT_NOTHING:
3200 source_flag = SRC_LINE; /* something bogus */
3201 do_frame_printing = 0;
3202 break;
3203 default:
3204 internal_error (__FILE__, __LINE__, _("Unknown value."));
3205 }
3206
3207 if (ui_out_is_mi_like_p (uiout))
3208 ui_out_field_int (uiout, "thread-id",
3209 pid_to_thread_id (inferior_ptid));
3210 /* The behavior of this routine with respect to the source
3211 flag is:
3212 SRC_LINE: Print only source line
3213 LOCATION: Print only location
3214 SRC_AND_LOC: Print location and source line */
3215 if (do_frame_printing)
3216 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3217
3218 /* Display the auto-display expressions. */
3219 do_displays ();
3220 }
3221 }
3222
3223 /* Save the function value return registers, if we care.
3224 We might be about to restore their previous contents. */
3225 if (proceed_to_finish)
3226 /* NB: The copy goes through to the target picking up the value of
3227 all the registers. */
3228 regcache_cpy (stop_registers, current_regcache);
3229
3230 if (stop_stack_dummy)
3231 {
3232 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3233 ends with a setting of the current frame, so we can use that
3234 next. */
3235 frame_pop (get_current_frame ());
3236 /* Set stop_pc to what it was before we called the function.
3237 Can't rely on restore_inferior_status because that only gets
3238 called if we don't stop in the called function. */
3239 stop_pc = read_pc ();
3240 select_frame (get_current_frame ());
3241 }
3242
3243 done:
3244 annotate_stopped ();
3245 observer_notify_normal_stop (stop_bpstat);
3246 }
3247
3248 static int
3249 hook_stop_stub (void *cmd)
3250 {
3251 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3252 return (0);
3253 }
3254 \f
3255 int
3256 signal_stop_state (int signo)
3257 {
3258 return signal_stop[signo];
3259 }
3260
3261 int
3262 signal_print_state (int signo)
3263 {
3264 return signal_print[signo];
3265 }
3266
3267 int
3268 signal_pass_state (int signo)
3269 {
3270 return signal_program[signo];
3271 }
3272
3273 int
3274 signal_stop_update (int signo, int state)
3275 {
3276 int ret = signal_stop[signo];
3277 signal_stop[signo] = state;
3278 return ret;
3279 }
3280
3281 int
3282 signal_print_update (int signo, int state)
3283 {
3284 int ret = signal_print[signo];
3285 signal_print[signo] = state;
3286 return ret;
3287 }
3288
3289 int
3290 signal_pass_update (int signo, int state)
3291 {
3292 int ret = signal_program[signo];
3293 signal_program[signo] = state;
3294 return ret;
3295 }
3296
3297 static void
3298 sig_print_header (void)
3299 {
3300 printf_filtered (_("\
3301 Signal Stop\tPrint\tPass to program\tDescription\n"));
3302 }
3303
3304 static void
3305 sig_print_info (enum target_signal oursig)
3306 {
3307 char *name = target_signal_to_name (oursig);
3308 int name_padding = 13 - strlen (name);
3309
3310 if (name_padding <= 0)
3311 name_padding = 0;
3312
3313 printf_filtered ("%s", name);
3314 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3315 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3316 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3317 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3318 printf_filtered ("%s\n", target_signal_to_string (oursig));
3319 }
3320
3321 /* Specify how various signals in the inferior should be handled. */
3322
3323 static void
3324 handle_command (char *args, int from_tty)
3325 {
3326 char **argv;
3327 int digits, wordlen;
3328 int sigfirst, signum, siglast;
3329 enum target_signal oursig;
3330 int allsigs;
3331 int nsigs;
3332 unsigned char *sigs;
3333 struct cleanup *old_chain;
3334
3335 if (args == NULL)
3336 {
3337 error_no_arg (_("signal to handle"));
3338 }
3339
3340 /* Allocate and zero an array of flags for which signals to handle. */
3341
3342 nsigs = (int) TARGET_SIGNAL_LAST;
3343 sigs = (unsigned char *) alloca (nsigs);
3344 memset (sigs, 0, nsigs);
3345
3346 /* Break the command line up into args. */
3347
3348 argv = buildargv (args);
3349 if (argv == NULL)
3350 {
3351 nomem (0);
3352 }
3353 old_chain = make_cleanup_freeargv (argv);
3354
3355 /* Walk through the args, looking for signal oursigs, signal names, and
3356 actions. Signal numbers and signal names may be interspersed with
3357 actions, with the actions being performed for all signals cumulatively
3358 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3359
3360 while (*argv != NULL)
3361 {
3362 wordlen = strlen (*argv);
3363 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3364 {;
3365 }
3366 allsigs = 0;
3367 sigfirst = siglast = -1;
3368
3369 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3370 {
3371 /* Apply action to all signals except those used by the
3372 debugger. Silently skip those. */
3373 allsigs = 1;
3374 sigfirst = 0;
3375 siglast = nsigs - 1;
3376 }
3377 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3378 {
3379 SET_SIGS (nsigs, sigs, signal_stop);
3380 SET_SIGS (nsigs, sigs, signal_print);
3381 }
3382 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3383 {
3384 UNSET_SIGS (nsigs, sigs, signal_program);
3385 }
3386 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3387 {
3388 SET_SIGS (nsigs, sigs, signal_print);
3389 }
3390 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3391 {
3392 SET_SIGS (nsigs, sigs, signal_program);
3393 }
3394 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3395 {
3396 UNSET_SIGS (nsigs, sigs, signal_stop);
3397 }
3398 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3399 {
3400 SET_SIGS (nsigs, sigs, signal_program);
3401 }
3402 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3403 {
3404 UNSET_SIGS (nsigs, sigs, signal_print);
3405 UNSET_SIGS (nsigs, sigs, signal_stop);
3406 }
3407 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3408 {
3409 UNSET_SIGS (nsigs, sigs, signal_program);
3410 }
3411 else if (digits > 0)
3412 {
3413 /* It is numeric. The numeric signal refers to our own
3414 internal signal numbering from target.h, not to host/target
3415 signal number. This is a feature; users really should be
3416 using symbolic names anyway, and the common ones like
3417 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3418
3419 sigfirst = siglast = (int)
3420 target_signal_from_command (atoi (*argv));
3421 if ((*argv)[digits] == '-')
3422 {
3423 siglast = (int)
3424 target_signal_from_command (atoi ((*argv) + digits + 1));
3425 }
3426 if (sigfirst > siglast)
3427 {
3428 /* Bet he didn't figure we'd think of this case... */
3429 signum = sigfirst;
3430 sigfirst = siglast;
3431 siglast = signum;
3432 }
3433 }
3434 else
3435 {
3436 oursig = target_signal_from_name (*argv);
3437 if (oursig != TARGET_SIGNAL_UNKNOWN)
3438 {
3439 sigfirst = siglast = (int) oursig;
3440 }
3441 else
3442 {
3443 /* Not a number and not a recognized flag word => complain. */
3444 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3445 }
3446 }
3447
3448 /* If any signal numbers or symbol names were found, set flags for
3449 which signals to apply actions to. */
3450
3451 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3452 {
3453 switch ((enum target_signal) signum)
3454 {
3455 case TARGET_SIGNAL_TRAP:
3456 case TARGET_SIGNAL_INT:
3457 if (!allsigs && !sigs[signum])
3458 {
3459 if (query ("%s is used by the debugger.\n\
3460 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3461 {
3462 sigs[signum] = 1;
3463 }
3464 else
3465 {
3466 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3467 gdb_flush (gdb_stdout);
3468 }
3469 }
3470 break;
3471 case TARGET_SIGNAL_0:
3472 case TARGET_SIGNAL_DEFAULT:
3473 case TARGET_SIGNAL_UNKNOWN:
3474 /* Make sure that "all" doesn't print these. */
3475 break;
3476 default:
3477 sigs[signum] = 1;
3478 break;
3479 }
3480 }
3481
3482 argv++;
3483 }
3484
3485 target_notice_signals (inferior_ptid);
3486
3487 if (from_tty)
3488 {
3489 /* Show the results. */
3490 sig_print_header ();
3491 for (signum = 0; signum < nsigs; signum++)
3492 {
3493 if (sigs[signum])
3494 {
3495 sig_print_info (signum);
3496 }
3497 }
3498 }
3499
3500 do_cleanups (old_chain);
3501 }
3502
3503 static void
3504 xdb_handle_command (char *args, int from_tty)
3505 {
3506 char **argv;
3507 struct cleanup *old_chain;
3508
3509 /* Break the command line up into args. */
3510
3511 argv = buildargv (args);
3512 if (argv == NULL)
3513 {
3514 nomem (0);
3515 }
3516 old_chain = make_cleanup_freeargv (argv);
3517 if (argv[1] != (char *) NULL)
3518 {
3519 char *argBuf;
3520 int bufLen;
3521
3522 bufLen = strlen (argv[0]) + 20;
3523 argBuf = (char *) xmalloc (bufLen);
3524 if (argBuf)
3525 {
3526 int validFlag = 1;
3527 enum target_signal oursig;
3528
3529 oursig = target_signal_from_name (argv[0]);
3530 memset (argBuf, 0, bufLen);
3531 if (strcmp (argv[1], "Q") == 0)
3532 sprintf (argBuf, "%s %s", argv[0], "noprint");
3533 else
3534 {
3535 if (strcmp (argv[1], "s") == 0)
3536 {
3537 if (!signal_stop[oursig])
3538 sprintf (argBuf, "%s %s", argv[0], "stop");
3539 else
3540 sprintf (argBuf, "%s %s", argv[0], "nostop");
3541 }
3542 else if (strcmp (argv[1], "i") == 0)
3543 {
3544 if (!signal_program[oursig])
3545 sprintf (argBuf, "%s %s", argv[0], "pass");
3546 else
3547 sprintf (argBuf, "%s %s", argv[0], "nopass");
3548 }
3549 else if (strcmp (argv[1], "r") == 0)
3550 {
3551 if (!signal_print[oursig])
3552 sprintf (argBuf, "%s %s", argv[0], "print");
3553 else
3554 sprintf (argBuf, "%s %s", argv[0], "noprint");
3555 }
3556 else
3557 validFlag = 0;
3558 }
3559 if (validFlag)
3560 handle_command (argBuf, from_tty);
3561 else
3562 printf_filtered (_("Invalid signal handling flag.\n"));
3563 if (argBuf)
3564 xfree (argBuf);
3565 }
3566 }
3567 do_cleanups (old_chain);
3568 }
3569
3570 /* Print current contents of the tables set by the handle command.
3571 It is possible we should just be printing signals actually used
3572 by the current target (but for things to work right when switching
3573 targets, all signals should be in the signal tables). */
3574
3575 static void
3576 signals_info (char *signum_exp, int from_tty)
3577 {
3578 enum target_signal oursig;
3579 sig_print_header ();
3580
3581 if (signum_exp)
3582 {
3583 /* First see if this is a symbol name. */
3584 oursig = target_signal_from_name (signum_exp);
3585 if (oursig == TARGET_SIGNAL_UNKNOWN)
3586 {
3587 /* No, try numeric. */
3588 oursig =
3589 target_signal_from_command (parse_and_eval_long (signum_exp));
3590 }
3591 sig_print_info (oursig);
3592 return;
3593 }
3594
3595 printf_filtered ("\n");
3596 /* These ugly casts brought to you by the native VAX compiler. */
3597 for (oursig = TARGET_SIGNAL_FIRST;
3598 (int) oursig < (int) TARGET_SIGNAL_LAST;
3599 oursig = (enum target_signal) ((int) oursig + 1))
3600 {
3601 QUIT;
3602
3603 if (oursig != TARGET_SIGNAL_UNKNOWN
3604 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3605 sig_print_info (oursig);
3606 }
3607
3608 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3609 }
3610 \f
3611 struct inferior_status
3612 {
3613 enum target_signal stop_signal;
3614 CORE_ADDR stop_pc;
3615 bpstat stop_bpstat;
3616 int stop_step;
3617 int stop_stack_dummy;
3618 int stopped_by_random_signal;
3619 int trap_expected;
3620 CORE_ADDR step_range_start;
3621 CORE_ADDR step_range_end;
3622 struct frame_id step_frame_id;
3623 enum step_over_calls_kind step_over_calls;
3624 CORE_ADDR step_resume_break_address;
3625 int stop_after_trap;
3626 int stop_soon;
3627 struct regcache *stop_registers;
3628
3629 /* These are here because if call_function_by_hand has written some
3630 registers and then decides to call error(), we better not have changed
3631 any registers. */
3632 struct regcache *registers;
3633
3634 /* A frame unique identifier. */
3635 struct frame_id selected_frame_id;
3636
3637 int breakpoint_proceeded;
3638 int restore_stack_info;
3639 int proceed_to_finish;
3640 };
3641
3642 void
3643 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3644 LONGEST val)
3645 {
3646 int size = register_size (current_gdbarch, regno);
3647 void *buf = alloca (size);
3648 store_signed_integer (buf, size, val);
3649 regcache_raw_write (inf_status->registers, regno, buf);
3650 }
3651
3652 /* Save all of the information associated with the inferior<==>gdb
3653 connection. INF_STATUS is a pointer to a "struct inferior_status"
3654 (defined in inferior.h). */
3655
3656 struct inferior_status *
3657 save_inferior_status (int restore_stack_info)
3658 {
3659 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3660
3661 inf_status->stop_signal = stop_signal;
3662 inf_status->stop_pc = stop_pc;
3663 inf_status->stop_step = stop_step;
3664 inf_status->stop_stack_dummy = stop_stack_dummy;
3665 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3666 inf_status->trap_expected = trap_expected;
3667 inf_status->step_range_start = step_range_start;
3668 inf_status->step_range_end = step_range_end;
3669 inf_status->step_frame_id = step_frame_id;
3670 inf_status->step_over_calls = step_over_calls;
3671 inf_status->stop_after_trap = stop_after_trap;
3672 inf_status->stop_soon = stop_soon;
3673 /* Save original bpstat chain here; replace it with copy of chain.
3674 If caller's caller is walking the chain, they'll be happier if we
3675 hand them back the original chain when restore_inferior_status is
3676 called. */
3677 inf_status->stop_bpstat = stop_bpstat;
3678 stop_bpstat = bpstat_copy (stop_bpstat);
3679 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3680 inf_status->restore_stack_info = restore_stack_info;
3681 inf_status->proceed_to_finish = proceed_to_finish;
3682
3683 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3684
3685 inf_status->registers = regcache_dup (current_regcache);
3686
3687 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
3688 return inf_status;
3689 }
3690
3691 static int
3692 restore_selected_frame (void *args)
3693 {
3694 struct frame_id *fid = (struct frame_id *) args;
3695 struct frame_info *frame;
3696
3697 frame = frame_find_by_id (*fid);
3698
3699 /* If inf_status->selected_frame_id is NULL, there was no previously
3700 selected frame. */
3701 if (frame == NULL)
3702 {
3703 warning (_("Unable to restore previously selected frame."));
3704 return 0;
3705 }
3706
3707 select_frame (frame);
3708
3709 return (1);
3710 }
3711
3712 void
3713 restore_inferior_status (struct inferior_status *inf_status)
3714 {
3715 stop_signal = inf_status->stop_signal;
3716 stop_pc = inf_status->stop_pc;
3717 stop_step = inf_status->stop_step;
3718 stop_stack_dummy = inf_status->stop_stack_dummy;
3719 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3720 trap_expected = inf_status->trap_expected;
3721 step_range_start = inf_status->step_range_start;
3722 step_range_end = inf_status->step_range_end;
3723 step_frame_id = inf_status->step_frame_id;
3724 step_over_calls = inf_status->step_over_calls;
3725 stop_after_trap = inf_status->stop_after_trap;
3726 stop_soon = inf_status->stop_soon;
3727 bpstat_clear (&stop_bpstat);
3728 stop_bpstat = inf_status->stop_bpstat;
3729 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3730 proceed_to_finish = inf_status->proceed_to_finish;
3731
3732 /* FIXME: Is the restore of stop_registers always needed. */
3733 regcache_xfree (stop_registers);
3734 stop_registers = inf_status->stop_registers;
3735
3736 /* The inferior can be gone if the user types "print exit(0)"
3737 (and perhaps other times). */
3738 if (target_has_execution)
3739 /* NB: The register write goes through to the target. */
3740 regcache_cpy (current_regcache, inf_status->registers);
3741 regcache_xfree (inf_status->registers);
3742
3743 /* FIXME: If we are being called after stopping in a function which
3744 is called from gdb, we should not be trying to restore the
3745 selected frame; it just prints a spurious error message (The
3746 message is useful, however, in detecting bugs in gdb (like if gdb
3747 clobbers the stack)). In fact, should we be restoring the
3748 inferior status at all in that case? . */
3749
3750 if (target_has_stack && inf_status->restore_stack_info)
3751 {
3752 /* The point of catch_errors is that if the stack is clobbered,
3753 walking the stack might encounter a garbage pointer and
3754 error() trying to dereference it. */
3755 if (catch_errors
3756 (restore_selected_frame, &inf_status->selected_frame_id,
3757 "Unable to restore previously selected frame:\n",
3758 RETURN_MASK_ERROR) == 0)
3759 /* Error in restoring the selected frame. Select the innermost
3760 frame. */
3761 select_frame (get_current_frame ());
3762
3763 }
3764
3765 xfree (inf_status);
3766 }
3767
3768 static void
3769 do_restore_inferior_status_cleanup (void *sts)
3770 {
3771 restore_inferior_status (sts);
3772 }
3773
3774 struct cleanup *
3775 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3776 {
3777 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3778 }
3779
3780 void
3781 discard_inferior_status (struct inferior_status *inf_status)
3782 {
3783 /* See save_inferior_status for info on stop_bpstat. */
3784 bpstat_clear (&inf_status->stop_bpstat);
3785 regcache_xfree (inf_status->registers);
3786 regcache_xfree (inf_status->stop_registers);
3787 xfree (inf_status);
3788 }
3789
3790 int
3791 inferior_has_forked (int pid, int *child_pid)
3792 {
3793 struct target_waitstatus last;
3794 ptid_t last_ptid;
3795
3796 get_last_target_status (&last_ptid, &last);
3797
3798 if (last.kind != TARGET_WAITKIND_FORKED)
3799 return 0;
3800
3801 if (ptid_get_pid (last_ptid) != pid)
3802 return 0;
3803
3804 *child_pid = last.value.related_pid;
3805 return 1;
3806 }
3807
3808 int
3809 inferior_has_vforked (int pid, int *child_pid)
3810 {
3811 struct target_waitstatus last;
3812 ptid_t last_ptid;
3813
3814 get_last_target_status (&last_ptid, &last);
3815
3816 if (last.kind != TARGET_WAITKIND_VFORKED)
3817 return 0;
3818
3819 if (ptid_get_pid (last_ptid) != pid)
3820 return 0;
3821
3822 *child_pid = last.value.related_pid;
3823 return 1;
3824 }
3825
3826 int
3827 inferior_has_execd (int pid, char **execd_pathname)
3828 {
3829 struct target_waitstatus last;
3830 ptid_t last_ptid;
3831
3832 get_last_target_status (&last_ptid, &last);
3833
3834 if (last.kind != TARGET_WAITKIND_EXECD)
3835 return 0;
3836
3837 if (ptid_get_pid (last_ptid) != pid)
3838 return 0;
3839
3840 *execd_pathname = xstrdup (last.value.execd_pathname);
3841 return 1;
3842 }
3843
3844 /* Oft used ptids */
3845 ptid_t null_ptid;
3846 ptid_t minus_one_ptid;
3847
3848 /* Create a ptid given the necessary PID, LWP, and TID components. */
3849
3850 ptid_t
3851 ptid_build (int pid, long lwp, long tid)
3852 {
3853 ptid_t ptid;
3854
3855 ptid.pid = pid;
3856 ptid.lwp = lwp;
3857 ptid.tid = tid;
3858 return ptid;
3859 }
3860
3861 /* Create a ptid from just a pid. */
3862
3863 ptid_t
3864 pid_to_ptid (int pid)
3865 {
3866 return ptid_build (pid, 0, 0);
3867 }
3868
3869 /* Fetch the pid (process id) component from a ptid. */
3870
3871 int
3872 ptid_get_pid (ptid_t ptid)
3873 {
3874 return ptid.pid;
3875 }
3876
3877 /* Fetch the lwp (lightweight process) component from a ptid. */
3878
3879 long
3880 ptid_get_lwp (ptid_t ptid)
3881 {
3882 return ptid.lwp;
3883 }
3884
3885 /* Fetch the tid (thread id) component from a ptid. */
3886
3887 long
3888 ptid_get_tid (ptid_t ptid)
3889 {
3890 return ptid.tid;
3891 }
3892
3893 /* ptid_equal() is used to test equality of two ptids. */
3894
3895 int
3896 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3897 {
3898 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3899 && ptid1.tid == ptid2.tid);
3900 }
3901
3902 /* restore_inferior_ptid() will be used by the cleanup machinery
3903 to restore the inferior_ptid value saved in a call to
3904 save_inferior_ptid(). */
3905
3906 static void
3907 restore_inferior_ptid (void *arg)
3908 {
3909 ptid_t *saved_ptid_ptr = arg;
3910 inferior_ptid = *saved_ptid_ptr;
3911 xfree (arg);
3912 }
3913
3914 /* Save the value of inferior_ptid so that it may be restored by a
3915 later call to do_cleanups(). Returns the struct cleanup pointer
3916 needed for later doing the cleanup. */
3917
3918 struct cleanup *
3919 save_inferior_ptid (void)
3920 {
3921 ptid_t *saved_ptid_ptr;
3922
3923 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3924 *saved_ptid_ptr = inferior_ptid;
3925 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3926 }
3927 \f
3928
3929 static void
3930 build_infrun (void)
3931 {
3932 stop_registers = regcache_xmalloc (current_gdbarch);
3933 }
3934
3935 void
3936 _initialize_infrun (void)
3937 {
3938 int i;
3939 int numsigs;
3940 struct cmd_list_element *c;
3941
3942 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3943 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3944
3945 add_info ("signals", signals_info, _("\
3946 What debugger does when program gets various signals.\n\
3947 Specify a signal as argument to print info on that signal only."));
3948 add_info_alias ("handle", "signals", 0);
3949
3950 add_com ("handle", class_run, handle_command, _("\
3951 Specify how to handle a signal.\n\
3952 Args are signals and actions to apply to those signals.\n\
3953 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3954 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3955 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3956 The special arg \"all\" is recognized to mean all signals except those\n\
3957 used by the debugger, typically SIGTRAP and SIGINT.\n\
3958 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3959 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3960 Stop means reenter debugger if this signal happens (implies print).\n\
3961 Print means print a message if this signal happens.\n\
3962 Pass means let program see this signal; otherwise program doesn't know.\n\
3963 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3964 Pass and Stop may be combined."));
3965 if (xdb_commands)
3966 {
3967 add_com ("lz", class_info, signals_info, _("\
3968 What debugger does when program gets various signals.\n\
3969 Specify a signal as argument to print info on that signal only."));
3970 add_com ("z", class_run, xdb_handle_command, _("\
3971 Specify how to handle a signal.\n\
3972 Args are signals and actions to apply to those signals.\n\
3973 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3974 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3975 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3976 The special arg \"all\" is recognized to mean all signals except those\n\
3977 used by the debugger, typically SIGTRAP and SIGINT.\n\
3978 Recognized actions include \"s\" (toggles between stop and nostop), \n\
3979 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3980 nopass), \"Q\" (noprint)\n\
3981 Stop means reenter debugger if this signal happens (implies print).\n\
3982 Print means print a message if this signal happens.\n\
3983 Pass means let program see this signal; otherwise program doesn't know.\n\
3984 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3985 Pass and Stop may be combined."));
3986 }
3987
3988 if (!dbx_commands)
3989 stop_command = add_cmd ("stop", class_obscure,
3990 not_just_help_class_command, _("\
3991 There is no `stop' command, but you can set a hook on `stop'.\n\
3992 This allows you to set a list of commands to be run each time execution\n\
3993 of the program stops."), &cmdlist);
3994
3995 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
3996 Set inferior debugging."), _("\
3997 Show inferior debugging."), _("\
3998 When non-zero, inferior specific debugging is enabled."),
3999 NULL,
4000 show_debug_infrun,
4001 &setdebuglist, &showdebuglist);
4002
4003 numsigs = (int) TARGET_SIGNAL_LAST;
4004 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4005 signal_print = (unsigned char *)
4006 xmalloc (sizeof (signal_print[0]) * numsigs);
4007 signal_program = (unsigned char *)
4008 xmalloc (sizeof (signal_program[0]) * numsigs);
4009 for (i = 0; i < numsigs; i++)
4010 {
4011 signal_stop[i] = 1;
4012 signal_print[i] = 1;
4013 signal_program[i] = 1;
4014 }
4015
4016 /* Signals caused by debugger's own actions
4017 should not be given to the program afterwards. */
4018 signal_program[TARGET_SIGNAL_TRAP] = 0;
4019 signal_program[TARGET_SIGNAL_INT] = 0;
4020
4021 /* Signals that are not errors should not normally enter the debugger. */
4022 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4023 signal_print[TARGET_SIGNAL_ALRM] = 0;
4024 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4025 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4026 signal_stop[TARGET_SIGNAL_PROF] = 0;
4027 signal_print[TARGET_SIGNAL_PROF] = 0;
4028 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4029 signal_print[TARGET_SIGNAL_CHLD] = 0;
4030 signal_stop[TARGET_SIGNAL_IO] = 0;
4031 signal_print[TARGET_SIGNAL_IO] = 0;
4032 signal_stop[TARGET_SIGNAL_POLL] = 0;
4033 signal_print[TARGET_SIGNAL_POLL] = 0;
4034 signal_stop[TARGET_SIGNAL_URG] = 0;
4035 signal_print[TARGET_SIGNAL_URG] = 0;
4036 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4037 signal_print[TARGET_SIGNAL_WINCH] = 0;
4038
4039 /* These signals are used internally by user-level thread
4040 implementations. (See signal(5) on Solaris.) Like the above
4041 signals, a healthy program receives and handles them as part of
4042 its normal operation. */
4043 signal_stop[TARGET_SIGNAL_LWP] = 0;
4044 signal_print[TARGET_SIGNAL_LWP] = 0;
4045 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4046 signal_print[TARGET_SIGNAL_WAITING] = 0;
4047 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4048 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4049
4050 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4051 &stop_on_solib_events, _("\
4052 Set stopping for shared library events."), _("\
4053 Show stopping for shared library events."), _("\
4054 If nonzero, gdb will give control to the user when the dynamic linker\n\
4055 notifies gdb of shared library events. The most common event of interest\n\
4056 to the user would be loading/unloading of a new library."),
4057 NULL,
4058 show_stop_on_solib_events,
4059 &setlist, &showlist);
4060
4061 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4062 follow_fork_mode_kind_names,
4063 &follow_fork_mode_string, _("\
4064 Set debugger response to a program call of fork or vfork."), _("\
4065 Show debugger response to a program call of fork or vfork."), _("\
4066 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4067 parent - the original process is debugged after a fork\n\
4068 child - the new process is debugged after a fork\n\
4069 The unfollowed process will continue to run.\n\
4070 By default, the debugger will follow the parent process."),
4071 NULL,
4072 show_follow_fork_mode_string,
4073 &setlist, &showlist);
4074
4075 add_setshow_enum_cmd ("scheduler-locking", class_run,
4076 scheduler_enums, &scheduler_mode, _("\
4077 Set mode for locking scheduler during execution."), _("\
4078 Show mode for locking scheduler during execution."), _("\
4079 off == no locking (threads may preempt at any time)\n\
4080 on == full locking (no thread except the current thread may run)\n\
4081 step == scheduler locked during every single-step operation.\n\
4082 In this mode, no other thread may run during a step command.\n\
4083 Other threads may run while stepping over a function call ('next')."),
4084 set_schedlock_func, /* traps on target vector */
4085 show_scheduler_mode,
4086 &setlist, &showlist);
4087
4088 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4089 Set mode of the step operation."), _("\
4090 Show mode of the step operation."), _("\
4091 When set, doing a step over a function without debug line information\n\
4092 will stop at the first instruction of that function. Otherwise, the\n\
4093 function is skipped and the step command stops at a different source line."),
4094 NULL,
4095 show_step_stop_if_no_debug,
4096 &setlist, &showlist);
4097
4098 /* ptid initializations */
4099 null_ptid = ptid_build (0, 0, 0);
4100 minus_one_ptid = ptid_build (-1, 0, 0);
4101 inferior_ptid = null_ptid;
4102 target_last_wait_ptid = minus_one_ptid;
4103 }