]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
* infrun.c (wait_for_inferior): Don't test for SIGEMT
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Start (run) and stop the inferior process, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* Notes on the algorithm used in wait_for_inferior to determine if we
21 just did a subroutine call when stepping. We have the following
22 information at that point:
23
24 Current and previous (just before this step) pc.
25 Current and previous sp.
26 Current and previous start of current function.
27
28 If the starts of the functions don't match, then
29
30 a) We did a subroutine call.
31
32 In this case, the pc will be at the beginning of a function.
33
34 b) We did a subroutine return.
35
36 Otherwise.
37
38 c) We did a longjmp.
39
40 If we did a longjump, we were doing "nexti", since a next would
41 have attempted to skip over the assembly language routine in which
42 the longjmp is coded and would have simply been the equivalent of a
43 continue. I consider this ok behaivior. We'd like one of two
44 things to happen if we are doing a nexti through the longjmp()
45 routine: 1) It behaves as a stepi, or 2) It acts like a continue as
46 above. Given that this is a special case, and that anybody who
47 thinks that the concept of sub calls is meaningful in the context
48 of a longjmp, I'll take either one. Let's see what happens.
49
50 Acts like a subroutine return. I can handle that with no problem
51 at all.
52
53 -->So: If the current and previous beginnings of the current
54 function don't match, *and* the pc is at the start of a function,
55 we've done a subroutine call. If the pc is not at the start of a
56 function, we *didn't* do a subroutine call.
57
58 -->If the beginnings of the current and previous function do match,
59 either:
60
61 a) We just did a recursive call.
62
63 In this case, we would be at the very beginning of a
64 function and 1) it will have a prologue (don't jump to
65 before prologue, or 2) (we assume here that it doesn't have
66 a prologue) there will have been a change in the stack
67 pointer over the last instruction. (Ie. it's got to put
68 the saved pc somewhere. The stack is the usual place. In
69 a recursive call a register is only an option if there's a
70 prologue to do something with it. This is even true on
71 register window machines; the prologue sets up the new
72 window. It might not be true on a register window machine
73 where the call instruction moved the register window
74 itself. Hmmm. One would hope that the stack pointer would
75 also change. If it doesn't, somebody send me a note, and
76 I'll work out a more general theory.
77 bug-gdb@prep.ai.mit.edu). This is true (albeit slipperly
78 so) on all machines I'm aware of:
79
80 m68k: Call changes stack pointer. Regular jumps don't.
81
82 sparc: Recursive calls must have frames and therefor,
83 prologues.
84
85 vax: All calls have frames and hence change the
86 stack pointer.
87
88 b) We did a return from a recursive call. I don't see that we
89 have either the ability or the need to distinguish this
90 from an ordinary jump. The stack frame will be printed
91 when and if the frame pointer changes; if we are in a
92 function without a frame pointer, it's the users own
93 lookout.
94
95 c) We did a jump within a function. We assume that this is
96 true if we didn't do a recursive call.
97
98 d) We are in no-man's land ("I see no symbols here"). We
99 don't worry about this; it will make calls look like simple
100 jumps (and the stack frames will be printed when the frame
101 pointer moves), which is a reasonably non-violent response.
102 */
103
104 #include "defs.h"
105 #include <string.h>
106 #include "symtab.h"
107 #include "frame.h"
108 #include "inferior.h"
109 #include "breakpoint.h"
110 #include "wait.h"
111 #include "gdbcore.h"
112 #include "command.h"
113 #include "terminal.h" /* For #ifdef TIOCGPGRP and new_tty */
114 #include "target.h"
115
116 #include <signal.h>
117
118 /* unistd.h is needed to #define X_OK */
119 #ifdef USG
120 #include <unistd.h>
121 #else
122 #include <sys/file.h>
123 #endif
124
125 #ifdef SET_STACK_LIMIT_HUGE
126 #include <sys/time.h>
127 #include <sys/resource.h>
128
129 extern int original_stack_limit;
130 #endif /* SET_STACK_LIMIT_HUGE */
131
132 /* Prototypes for local functions */
133
134 static void
135 signals_info PARAMS ((char *, int));
136
137 static void
138 handle_command PARAMS ((char *, int));
139
140 static void
141 sig_print_info PARAMS ((int));
142
143 static void
144 sig_print_header PARAMS ((void));
145
146 static void
147 remove_step_breakpoint PARAMS ((void));
148
149 static void
150 insert_step_breakpoint PARAMS ((void));
151
152 static void
153 resume PARAMS ((int, int));
154
155 static void
156 resume_cleanups PARAMS ((int));
157
158 extern char **environ;
159
160 extern struct target_ops child_ops; /* In inftarg.c */
161
162 /* Sigtramp is a routine that the kernel calls (which then calls the
163 signal handler). On most machines it is a library routine that
164 is linked into the executable.
165
166 This macro, given a program counter value and the name of the
167 function in which that PC resides (which can be null if the
168 name is not known), returns nonzero if the PC and name show
169 that we are in sigtramp.
170
171 On most machines just see if the name is sigtramp (and if we have
172 no name, assume we are not in sigtramp). */
173 #if !defined (IN_SIGTRAMP)
174 #define IN_SIGTRAMP(pc, name) \
175 (name && !strcmp ("_sigtramp", name))
176 #endif
177
178 /* GET_LONGJMP_TARGET returns the PC at which longjmp() will resume the
179 program. It needs to examine the jmp_buf argument and extract the PC
180 from it. The return value is non-zero on success, zero otherwise. */
181 #ifndef GET_LONGJMP_TARGET
182 #define GET_LONGJMP_TARGET(PC_ADDR) 0
183 #endif
184
185
186 /* Some machines have trampoline code that sits between function callers
187 and the actual functions themselves. If this machine doesn't have
188 such things, disable their processing. */
189 #ifndef SKIP_TRAMPOLINE_CODE
190 #define SKIP_TRAMPOLINE_CODE(pc) 0
191 #endif
192
193 /* For SVR4 shared libraries, each call goes through a small piece of
194 trampoline code in the ".init" section. IN_SOLIB_TRAMPOLINE evaluates
195 to nonzero if we are current stopped in one of these. */
196 #ifndef IN_SOLIB_TRAMPOLINE
197 #define IN_SOLIB_TRAMPOLINE(pc,name) 0
198 #endif
199
200 /* Notify other parts of gdb that might care that signal handling may
201 have changed for one or more signals. */
202 #ifndef NOTICE_SIGNAL_HANDLING_CHANGE
203 #define NOTICE_SIGNAL_HANDLING_CHANGE /* No actions */
204 #endif
205
206 #ifdef TDESC
207 #include "tdesc.h"
208 int safe_to_init_tdesc_context = 0;
209 extern dc_dcontext_t current_context;
210 #endif
211
212 /* Tables of how to react to signals; the user sets them. */
213
214 static char *signal_stop;
215 static char *signal_print;
216 static char *signal_program;
217
218 /* Nonzero if breakpoints are now inserted in the inferior. */
219 /* Nonstatic for initialization during xxx_create_inferior. FIXME. */
220
221 /*static*/ int breakpoints_inserted;
222
223 /* Function inferior was in as of last step command. */
224
225 static struct symbol *step_start_function;
226
227 /* Nonzero => address for special breakpoint for resuming stepping. */
228
229 static CORE_ADDR step_resume_break_address;
230
231 /* Pointer to orig contents of the byte where the special breakpoint is. */
232
233 static char step_resume_break_shadow[BREAKPOINT_MAX];
234
235 /* Nonzero means the special breakpoint is a duplicate
236 so it has not itself been inserted. */
237
238 static int step_resume_break_duplicate;
239
240 /* Nonzero if we are expecting a trace trap and should proceed from it. */
241
242 static int trap_expected;
243
244 /* Nonzero if the next time we try to continue the inferior, it will
245 step one instruction and generate a spurious trace trap.
246 This is used to compensate for a bug in HP-UX. */
247
248 static int trap_expected_after_continue;
249
250 /* Nonzero means expecting a trace trap
251 and should stop the inferior and return silently when it happens. */
252
253 int stop_after_trap;
254
255 /* Nonzero means expecting a trap and caller will handle it themselves.
256 It is used after attach, due to attaching to a process;
257 when running in the shell before the child program has been exec'd;
258 and when running some kinds of remote stuff (FIXME?). */
259
260 int stop_soon_quietly;
261
262 /* Nonzero if pc has been changed by the debugger
263 since the inferior stopped. */
264
265 int pc_changed;
266
267 /* Nonzero if proceed is being used for a "finish" command or a similar
268 situation when stop_registers should be saved. */
269
270 int proceed_to_finish;
271
272 /* Save register contents here when about to pop a stack dummy frame,
273 if-and-only-if proceed_to_finish is set.
274 Thus this contains the return value from the called function (assuming
275 values are returned in a register). */
276
277 char stop_registers[REGISTER_BYTES];
278
279 /* Nonzero if program stopped due to error trying to insert breakpoints. */
280
281 static int breakpoints_failed;
282
283 /* Nonzero after stop if current stack frame should be printed. */
284
285 static int stop_print_frame;
286
287 #ifdef NO_SINGLE_STEP
288 extern int one_stepped; /* From machine dependent code */
289 extern void single_step (); /* Same. */
290 #endif /* NO_SINGLE_STEP */
291
292 \f
293 /* Things to clean up if we QUIT out of resume (). */
294 /* ARGSUSED */
295 static void
296 resume_cleanups (arg)
297 int arg;
298 {
299 normal_stop ();
300 }
301
302 /* Resume the inferior, but allow a QUIT. This is useful if the user
303 wants to interrupt some lengthy single-stepping operation
304 (for child processes, the SIGINT goes to the inferior, and so
305 we get a SIGINT random_signal, but for remote debugging and perhaps
306 other targets, that's not true).
307
308 STEP nonzero if we should step (zero to continue instead).
309 SIG is the signal to give the inferior (zero for none). */
310 static void
311 resume (step, sig)
312 int step;
313 int sig;
314 {
315 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
316 QUIT;
317
318 #ifdef NO_SINGLE_STEP
319 if (step) {
320 single_step(sig); /* Do it the hard way, w/temp breakpoints */
321 step = 0; /* ...and don't ask hardware to do it. */
322 }
323 #endif
324
325 /* Handle any optimized stores to the inferior NOW... */
326 #ifdef DO_DEFERRED_STORES
327 DO_DEFERRED_STORES;
328 #endif
329
330 target_resume (step, sig);
331 discard_cleanups (old_cleanups);
332 }
333
334 \f
335 /* Clear out all variables saying what to do when inferior is continued.
336 First do this, then set the ones you want, then call `proceed'. */
337
338 void
339 clear_proceed_status ()
340 {
341 trap_expected = 0;
342 step_range_start = 0;
343 step_range_end = 0;
344 step_frame_address = 0;
345 step_over_calls = -1;
346 step_resume_break_address = 0;
347 stop_after_trap = 0;
348 stop_soon_quietly = 0;
349 proceed_to_finish = 0;
350 breakpoint_proceeded = 1; /* We're about to proceed... */
351
352 /* Discard any remaining commands or status from previous stop. */
353 bpstat_clear (&stop_bpstat);
354 }
355
356 /* Basic routine for continuing the program in various fashions.
357
358 ADDR is the address to resume at, or -1 for resume where stopped.
359 SIGGNAL is the signal to give it, or 0 for none,
360 or -1 for act according to how it stopped.
361 STEP is nonzero if should trap after one instruction.
362 -1 means return after that and print nothing.
363 You should probably set various step_... variables
364 before calling here, if you are stepping.
365
366 You should call clear_proceed_status before calling proceed. */
367
368 void
369 proceed (addr, siggnal, step)
370 CORE_ADDR addr;
371 int siggnal;
372 int step;
373 {
374 int oneproc = 0;
375
376 if (step > 0)
377 step_start_function = find_pc_function (read_pc ());
378 if (step < 0)
379 stop_after_trap = 1;
380
381 if (addr == (CORE_ADDR)-1)
382 {
383 /* If there is a breakpoint at the address we will resume at,
384 step one instruction before inserting breakpoints
385 so that we do not stop right away. */
386
387 if (!pc_changed && breakpoint_here_p (read_pc ()))
388 oneproc = 1;
389 }
390 else
391 {
392 write_register (PC_REGNUM, addr);
393 #ifdef NPC_REGNUM
394 write_register (NPC_REGNUM, addr + 4);
395 #ifdef NNPC_REGNUM
396 write_register (NNPC_REGNUM, addr + 8);
397 #endif
398 #endif
399 }
400
401 if (trap_expected_after_continue)
402 {
403 /* If (step == 0), a trap will be automatically generated after
404 the first instruction is executed. Force step one
405 instruction to clear this condition. This should not occur
406 if step is nonzero, but it is harmless in that case. */
407 oneproc = 1;
408 trap_expected_after_continue = 0;
409 }
410
411 if (oneproc)
412 /* We will get a trace trap after one instruction.
413 Continue it automatically and insert breakpoints then. */
414 trap_expected = 1;
415 else
416 {
417 int temp = insert_breakpoints ();
418 if (temp)
419 {
420 print_sys_errmsg ("ptrace", temp);
421 error ("Cannot insert breakpoints.\n\
422 The same program may be running in another process.");
423 }
424 breakpoints_inserted = 1;
425 }
426
427 /* Install inferior's terminal modes. */
428 target_terminal_inferior ();
429
430 if (siggnal >= 0)
431 stop_signal = siggnal;
432 /* If this signal should not be seen by program,
433 give it zero. Used for debugging signals. */
434 else if (stop_signal < NSIG && !signal_program[stop_signal])
435 stop_signal= 0;
436
437 /* Resume inferior. */
438 resume (oneproc || step || bpstat_should_step (), stop_signal);
439
440 /* Wait for it to stop (if not standalone)
441 and in any case decode why it stopped, and act accordingly. */
442
443 wait_for_inferior ();
444 normal_stop ();
445 }
446
447 /* Record the pc and sp of the program the last time it stopped.
448 These are just used internally by wait_for_inferior, but need
449 to be preserved over calls to it and cleared when the inferior
450 is started. */
451 static CORE_ADDR prev_pc;
452 static CORE_ADDR prev_sp;
453 static CORE_ADDR prev_func_start;
454 static char *prev_func_name;
455
456 \f
457 /* Start an inferior Unix child process and sets inferior_pid to its pid.
458 EXEC_FILE is the file to run.
459 ALLARGS is a string containing the arguments to the program.
460 ENV is the environment vector to pass. Errors reported with error(). */
461
462 #ifndef SHELL_FILE
463 #define SHELL_FILE "/bin/sh"
464 #endif
465
466 void
467 child_create_inferior (exec_file, allargs, env)
468 char *exec_file;
469 char *allargs;
470 char **env;
471 {
472 int pid;
473 char *shell_command;
474 char *shell_file;
475 static char default_shell_file[] = SHELL_FILE;
476 int len;
477 int pending_execs;
478 /* Set debug_fork then attach to the child while it sleeps, to debug. */
479 static int debug_fork = 0;
480 /* This is set to the result of setpgrp, which if vforked, will be visible
481 to you in the parent process. It's only used by humans for debugging. */
482 static int debug_setpgrp = 657473;
483 char **save_our_env;
484
485 /* The user might want tilde-expansion, and in general probably wants
486 the program to behave the same way as if run from
487 his/her favorite shell. So we let the shell run it for us.
488 FIXME, this should probably search the local environment (as
489 modified by the setenv command), not the env gdb inherited. */
490 shell_file = getenv ("SHELL");
491 if (shell_file == NULL)
492 shell_file = default_shell_file;
493
494 len = 5 + strlen (exec_file) + 1 + strlen (allargs) + 1 + /*slop*/ 10;
495 /* If desired, concat something onto the front of ALLARGS.
496 SHELL_COMMAND is the result. */
497 #ifdef SHELL_COMMAND_CONCAT
498 shell_command = (char *) alloca (strlen (SHELL_COMMAND_CONCAT) + len);
499 strcpy (shell_command, SHELL_COMMAND_CONCAT);
500 #else
501 shell_command = (char *) alloca (len);
502 shell_command[0] = '\0';
503 #endif
504 strcat (shell_command, "exec ");
505 strcat (shell_command, exec_file);
506 strcat (shell_command, " ");
507 strcat (shell_command, allargs);
508
509 /* exec is said to fail if the executable is open. */
510 close_exec_file ();
511
512 /* Retain a copy of our environment variables, since the child will
513 replace the value of environ and if we're vforked, we have to
514 restore it. */
515 save_our_env = environ;
516
517 /* Tell the terminal handling subsystem what tty we plan to run on;
518 it will just record the information for later. */
519
520 new_tty_prefork (inferior_io_terminal);
521
522 /* It is generally good practice to flush any possible pending stdio
523 output prior to doing a fork, to avoid the possibility of both the
524 parent and child flushing the same data after the fork. */
525
526 fflush (stdout);
527 fflush (stderr);
528
529 #if defined(USG) && !defined(HAVE_VFORK)
530 pid = fork ();
531 #else
532 if (debug_fork)
533 pid = fork ();
534 else
535 pid = vfork ();
536 #endif
537
538 if (pid < 0)
539 perror_with_name ("vfork");
540
541 if (pid == 0)
542 {
543 if (debug_fork)
544 sleep (debug_fork);
545
546 #ifdef TIOCGPGRP
547 /* Run inferior in a separate process group. */
548 #ifdef NEED_POSIX_SETPGID
549 debug_setpgrp = setpgid (0, 0);
550 #else
551 #if defined(USG) && !defined(SETPGRP_ARGS)
552 debug_setpgrp = setpgrp ();
553 #else
554 debug_setpgrp = setpgrp (getpid (), getpid ());
555 #endif /* USG */
556 #endif /* NEED_POSIX_SETPGID */
557 if (debug_setpgrp == -1)
558 perror("setpgrp failed in child");
559 #endif /* TIOCGPGRP */
560
561 #ifdef SET_STACK_LIMIT_HUGE
562 /* Reset the stack limit back to what it was. */
563 {
564 struct rlimit rlim;
565
566 getrlimit (RLIMIT_STACK, &rlim);
567 rlim.rlim_cur = original_stack_limit;
568 setrlimit (RLIMIT_STACK, &rlim);
569 }
570 #endif /* SET_STACK_LIMIT_HUGE */
571
572 /* Ask the tty subsystem to switch to the one we specified earlier
573 (or to share the current terminal, if none was specified). */
574
575 new_tty ();
576
577 /* Changing the signal handlers for the inferior after
578 a vfork can also change them for the superior, so we don't mess
579 with signals here. See comments in
580 initialize_signals for how we get the right signal handlers
581 for the inferior. */
582
583 #ifdef USE_PROC_FS
584 proc_set_exec_trap (); /* Use SVR4 /proc interface */
585 #else
586 call_ptrace (0, 0, 0, 0); /* "Trace me, Dr. Memory!" */
587 #endif
588
589 /* There is no execlpe call, so we have to set the environment
590 for our child in the global variable. If we've vforked, this
591 clobbers the parent, but environ is restored a few lines down
592 in the parent. By the way, yes we do need to look down the
593 path to find $SHELL. Rich Pixley says so, and I agree. */
594 environ = env;
595 execlp (shell_file, shell_file, "-c", shell_command, (char *)0);
596
597 fprintf (stderr, "Cannot exec %s: %s.\n", shell_file,
598 safe_strerror (errno));
599 fflush (stderr);
600 _exit (0177);
601 }
602
603 /* Restore our environment in case a vforked child clob'd it. */
604 environ = save_our_env;
605
606 /* Now that we have a child process, make it our target. */
607 push_target (&child_ops);
608
609 #ifdef CREATE_INFERIOR_HOOK
610 CREATE_INFERIOR_HOOK (pid);
611 #endif
612
613 /* The process was started by the fork that created it,
614 but it will have stopped one instruction after execing the shell.
615 Here we must get it up to actual execution of the real program. */
616
617 inferior_pid = pid; /* Needed for wait_for_inferior stuff below */
618
619 clear_proceed_status ();
620
621 /* We will get a trace trap after one instruction.
622 Continue it automatically. Eventually (after shell does an exec)
623 it will get another trace trap. Then insert breakpoints and continue. */
624
625 #ifdef START_INFERIOR_TRAPS_EXPECTED
626 pending_execs = START_INFERIOR_TRAPS_EXPECTED;
627 #else
628 pending_execs = 2;
629 #endif
630
631 init_wait_for_inferior ();
632
633 /* Set up the "saved terminal modes" of the inferior
634 based on what modes we are starting it with. */
635 target_terminal_init ();
636
637 /* Install inferior's terminal modes. */
638 target_terminal_inferior ();
639
640 while (1)
641 {
642 stop_soon_quietly = 1; /* Make wait_for_inferior be quiet */
643 wait_for_inferior ();
644 if (stop_signal != SIGTRAP)
645 {
646 /* Let shell child handle its own signals in its own way */
647 /* FIXME, what if child has exit()ed? Must exit loop somehow */
648 resume (0, stop_signal);
649 }
650 else
651 {
652 /* We handle SIGTRAP, however; it means child did an exec. */
653 if (0 == --pending_execs)
654 break;
655 resume (0, 0); /* Just make it go on */
656 }
657 }
658 stop_soon_quietly = 0;
659
660 /* We are now in the child process of interest, having exec'd the
661 correct program, and are poised at the first instruction of the
662 new program. */
663 #ifdef SOLIB_CREATE_INFERIOR_HOOK
664 SOLIB_CREATE_INFERIOR_HOOK (pid);
665 #endif
666
667 /* Should this perhaps just be a "proceed" call? FIXME */
668 insert_step_breakpoint ();
669 breakpoints_failed = insert_breakpoints ();
670 if (!breakpoints_failed)
671 {
672 breakpoints_inserted = 1;
673 target_terminal_inferior();
674 /* Start the child program going on its first instruction, single-
675 stepping if we need to. */
676 resume (bpstat_should_step (), 0);
677 wait_for_inferior ();
678 normal_stop ();
679 }
680 }
681
682 /* Start remote-debugging of a machine over a serial link. */
683
684 void
685 start_remote ()
686 {
687 init_wait_for_inferior ();
688 clear_proceed_status ();
689 stop_soon_quietly = 1;
690 trap_expected = 0;
691 wait_for_inferior ();
692 normal_stop ();
693 }
694
695 /* Initialize static vars when a new inferior begins. */
696
697 void
698 init_wait_for_inferior ()
699 {
700 /* These are meaningless until the first time through wait_for_inferior. */
701 prev_pc = 0;
702 prev_sp = 0;
703 prev_func_start = 0;
704 prev_func_name = NULL;
705
706 trap_expected_after_continue = 0;
707 breakpoints_inserted = 0;
708 mark_breakpoints_out ();
709 stop_signal = 0; /* Don't confuse first call to proceed(). */
710 }
711
712
713 /* Attach to process PID, then initialize for debugging it
714 and wait for the trace-trap that results from attaching. */
715
716 void
717 child_attach (args, from_tty)
718 char *args;
719 int from_tty;
720 {
721 char *exec_file;
722 int pid;
723
724 dont_repeat();
725
726 if (!args)
727 error_no_arg ("process-id to attach");
728
729 #ifndef ATTACH_DETACH
730 error ("Can't attach to a process on this machine.");
731 #else
732 pid = atoi (args);
733
734 if (pid == getpid()) /* Trying to masturbate? */
735 error ("I refuse to debug myself!");
736
737 if (target_has_execution)
738 {
739 if (query ("A program is being debugged already. Kill it? "))
740 target_kill ();
741 else
742 error ("Inferior not killed.");
743 }
744
745 exec_file = (char *) get_exec_file (1);
746
747 if (from_tty)
748 {
749 printf ("Attaching program: %s pid %d\n",
750 exec_file, pid);
751 fflush (stdout);
752 }
753
754 attach (pid);
755 inferior_pid = pid;
756 push_target (&child_ops);
757
758 mark_breakpoints_out ();
759 target_terminal_init ();
760 clear_proceed_status ();
761 stop_soon_quietly = 1;
762 /*proceed (-1, 0, -2);*/
763 target_terminal_inferior ();
764 wait_for_inferior ();
765 #ifdef SOLIB_ADD
766 SOLIB_ADD ((char *)0, from_tty, (struct target_ops *)0);
767 #endif
768 normal_stop ();
769 #endif /* ATTACH_DETACH */
770 }
771 \f
772 /* Wait for control to return from inferior to debugger.
773 If inferior gets a signal, we may decide to start it up again
774 instead of returning. That is why there is a loop in this function.
775 When this function actually returns it means the inferior
776 should be left stopped and GDB should read more commands. */
777
778 void
779 wait_for_inferior ()
780 {
781 WAITTYPE w;
782 int another_trap;
783 int random_signal;
784 CORE_ADDR stop_sp;
785 CORE_ADDR stop_func_start;
786 char *stop_func_name;
787 CORE_ADDR prologue_pc, tmp;
788 int stop_step_resume_break;
789 struct symtab_and_line sal;
790 int remove_breakpoints_on_following_step = 0;
791 int current_line;
792 int handling_longjmp = 0; /* FIXME */
793
794 sal = find_pc_line(prev_pc, 0);
795 current_line = sal.line;
796
797 while (1)
798 {
799 /* Clean up saved state that will become invalid. */
800 pc_changed = 0;
801 flush_cached_frames ();
802 registers_changed ();
803
804 target_wait (&w);
805
806 #ifdef SIGTRAP_STOP_AFTER_LOAD
807
808 /* Somebody called load(2), and it gave us a "trap signal after load".
809 Ignore it gracefully. */
810
811 SIGTRAP_STOP_AFTER_LOAD (w);
812 #endif
813
814 /* See if the process still exists; clean up if it doesn't. */
815 if (WIFEXITED (w))
816 {
817 target_terminal_ours (); /* Must do this before mourn anyway */
818 if (WEXITSTATUS (w))
819 printf_filtered ("\nProgram exited with code 0%o.\n",
820 (unsigned int)WEXITSTATUS (w));
821 else
822 if (!batch_mode())
823 printf_filtered ("\nProgram exited normally.\n");
824 fflush (stdout);
825 target_mourn_inferior ();
826 #ifdef NO_SINGLE_STEP
827 one_stepped = 0;
828 #endif
829 stop_print_frame = 0;
830 break;
831 }
832 else if (!WIFSTOPPED (w))
833 {
834 stop_print_frame = 0;
835 stop_signal = WTERMSIG (w);
836 target_terminal_ours (); /* Must do this before mourn anyway */
837 target_kill (); /* kill mourns as well */
838 #ifdef PRINT_RANDOM_SIGNAL
839 printf_filtered ("\nProgram terminated: ");
840 PRINT_RANDOM_SIGNAL (stop_signal);
841 #else
842 printf_filtered ("\nProgram terminated with signal %d, %s\n",
843 stop_signal, safe_strsignal (stop_signal));
844 #endif
845 printf_filtered ("The inferior process no longer exists.\n");
846 fflush (stdout);
847 #ifdef NO_SINGLE_STEP
848 one_stepped = 0;
849 #endif
850 break;
851 }
852
853 #ifdef NO_SINGLE_STEP
854 if (one_stepped)
855 single_step (0); /* This actually cleans up the ss */
856 #endif /* NO_SINGLE_STEP */
857
858 stop_pc = read_pc ();
859 set_current_frame ( create_new_frame (read_register (FP_REGNUM),
860 read_pc ()));
861
862 stop_frame_address = FRAME_FP (get_current_frame ());
863 stop_sp = read_register (SP_REGNUM);
864 stop_func_start = 0;
865 stop_func_name = 0;
866 /* Don't care about return value; stop_func_start and stop_func_name
867 will both be 0 if it doesn't work. */
868 (void) find_pc_partial_function (stop_pc, &stop_func_name,
869 &stop_func_start);
870 stop_func_start += FUNCTION_START_OFFSET;
871 another_trap = 0;
872 bpstat_clear (&stop_bpstat);
873 stop_step = 0;
874 stop_stack_dummy = 0;
875 stop_print_frame = 1;
876 stop_step_resume_break = 0;
877 random_signal = 0;
878 stopped_by_random_signal = 0;
879 breakpoints_failed = 0;
880
881 /* Look at the cause of the stop, and decide what to do.
882 The alternatives are:
883 1) break; to really stop and return to the debugger,
884 2) drop through to start up again
885 (set another_trap to 1 to single step once)
886 3) set random_signal to 1, and the decision between 1 and 2
887 will be made according to the signal handling tables. */
888
889 stop_signal = WSTOPSIG (w);
890
891 /* First, distinguish signals caused by the debugger from signals
892 that have to do with the program's own actions.
893 Note that breakpoint insns may cause SIGTRAP or SIGILL
894 or SIGEMT, depending on the operating system version.
895 Here we detect when a SIGILL or SIGEMT is really a breakpoint
896 and change it to SIGTRAP. */
897
898 if (stop_signal == SIGTRAP
899 || (breakpoints_inserted &&
900 (stop_signal == SIGILL
901 #ifdef SIGEMT
902 || stop_signal == SIGEMT
903 #endif
904 ))
905 || stop_soon_quietly)
906 {
907 if (stop_signal == SIGTRAP && stop_after_trap)
908 {
909 stop_print_frame = 0;
910 break;
911 }
912 if (stop_soon_quietly)
913 break;
914
915 /* Don't even think about breakpoints
916 if just proceeded over a breakpoint.
917
918 However, if we are trying to proceed over a breakpoint
919 and end up in sigtramp, then step_resume_break_address
920 will be set and we should check whether we've hit the
921 step breakpoint. */
922 if (stop_signal == SIGTRAP && trap_expected
923 && step_resume_break_address == 0)
924 bpstat_clear (&stop_bpstat);
925 else
926 {
927 /* See if there is a breakpoint at the current PC. */
928 #if DECR_PC_AFTER_BREAK
929 /* Notice the case of stepping through a jump
930 that lands just after a breakpoint.
931 Don't confuse that with hitting the breakpoint.
932 What we check for is that 1) stepping is going on
933 and 2) the pc before the last insn does not match
934 the address of the breakpoint before the current pc. */
935 if (prev_pc == stop_pc - DECR_PC_AFTER_BREAK
936 || !step_range_end
937 || step_resume_break_address
938 || handling_longjmp /* FIXME */)
939 #endif /* DECR_PC_AFTER_BREAK not zero */
940 {
941 /* See if we stopped at the special breakpoint for
942 stepping over a subroutine call. If both are zero,
943 this wasn't the reason for the stop. */
944 if (step_resume_break_address
945 && stop_pc - DECR_PC_AFTER_BREAK
946 == step_resume_break_address)
947 {
948 stop_step_resume_break = 1;
949 if (DECR_PC_AFTER_BREAK)
950 {
951 stop_pc -= DECR_PC_AFTER_BREAK;
952 write_register (PC_REGNUM, stop_pc);
953 pc_changed = 0;
954 }
955 }
956 else
957 {
958 stop_bpstat =
959 bpstat_stop_status (&stop_pc, stop_frame_address);
960 /* Following in case break condition called a
961 function. */
962 stop_print_frame = 1;
963 }
964 }
965 }
966
967 if (stop_signal == SIGTRAP)
968 random_signal
969 = !(bpstat_explains_signal (stop_bpstat)
970 || trap_expected
971 || stop_step_resume_break
972 || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
973 || (step_range_end && !step_resume_break_address));
974 else
975 {
976 random_signal
977 = !(bpstat_explains_signal (stop_bpstat)
978 || stop_step_resume_break
979 /* End of a stack dummy. Some systems (e.g. Sony
980 news) give another signal besides SIGTRAP,
981 so check here as well as above. */
982 || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
983 );
984 if (!random_signal)
985 stop_signal = SIGTRAP;
986 }
987 }
988 else
989 random_signal = 1;
990
991 /* For the program's own signals, act according to
992 the signal handling tables. */
993
994 if (random_signal)
995 {
996 /* Signal not for debugging purposes. */
997 int printed = 0;
998
999 stopped_by_random_signal = 1;
1000
1001 if (stop_signal >= NSIG
1002 || signal_print[stop_signal])
1003 {
1004 printed = 1;
1005 target_terminal_ours_for_output ();
1006 #ifdef PRINT_RANDOM_SIGNAL
1007 PRINT_RANDOM_SIGNAL (stop_signal);
1008 #else
1009 printf_filtered ("\nProgram received signal %d, %s\n",
1010 stop_signal, safe_strsignal (stop_signal));
1011 #endif /* PRINT_RANDOM_SIGNAL */
1012 fflush (stdout);
1013 }
1014 if (stop_signal >= NSIG
1015 || signal_stop[stop_signal])
1016 break;
1017 /* If not going to stop, give terminal back
1018 if we took it away. */
1019 else if (printed)
1020 target_terminal_inferior ();
1021
1022 /* Note that virtually all the code below does `if !random_signal'.
1023 Perhaps this code should end with a goto or continue. At least
1024 one (now fixed) bug was caused by this -- a !random_signal was
1025 missing in one of the tests below. */
1026 }
1027
1028 /* Handle cases caused by hitting a breakpoint. */
1029
1030 if (!random_signal)
1031 if (bpstat_explains_signal (stop_bpstat))
1032 {
1033 CORE_ADDR jmp_buf_pc;
1034
1035 switch (stop_bpstat->breakpoint_at->type) /* FIXME */
1036 {
1037 /* If we hit the breakpoint at longjmp, disable it for the
1038 duration of this command. Then, install a temporary
1039 breakpoint at the target of the jmp_buf. */
1040 case bp_longjmp:
1041 disable_longjmp_breakpoint();
1042 remove_breakpoints ();
1043 breakpoints_inserted = 0;
1044 if (!GET_LONGJMP_TARGET(&jmp_buf_pc)) goto keep_going;
1045
1046 /* Need to blow away step-resume breakpoint, as it
1047 interferes with us */
1048 remove_step_breakpoint ();
1049 step_resume_break_address = 0;
1050 stop_step_resume_break = 0;
1051
1052 #if 0 /* FIXME - Need to implement nested temporary breakpoints */
1053 if (step_over_calls > 0)
1054 set_longjmp_resume_breakpoint(jmp_buf_pc,
1055 get_current_frame());
1056 else
1057 #endif /* 0 */
1058 set_longjmp_resume_breakpoint(jmp_buf_pc, NULL);
1059 handling_longjmp = 1; /* FIXME */
1060 goto keep_going;
1061
1062 case bp_longjmp_resume:
1063 remove_breakpoints ();
1064 breakpoints_inserted = 0;
1065 #if 0 /* FIXME - Need to implement nested temporary breakpoints */
1066 if (step_over_calls
1067 && (stop_frame_address
1068 INNER_THAN step_frame_address))
1069 {
1070 another_trap = 1;
1071 goto keep_going;
1072 }
1073 #endif /* 0 */
1074 disable_longjmp_breakpoint();
1075 handling_longjmp = 0; /* FIXME */
1076 break;
1077
1078 default:
1079 fprintf(stderr, "Unknown breakpoint type %d\n",
1080 stop_bpstat->breakpoint_at->type);
1081 case bp_watchpoint:
1082 case bp_breakpoint:
1083 case bp_until:
1084 case bp_finish:
1085 /* Does a breakpoint want us to stop? */
1086 if (bpstat_stop (stop_bpstat))
1087 {
1088 stop_print_frame = bpstat_should_print (stop_bpstat);
1089 goto stop_stepping;
1090 }
1091 /* Otherwise, must remove breakpoints and single-step
1092 to get us past the one we hit. */
1093 else
1094 {
1095 remove_breakpoints ();
1096 remove_step_breakpoint ();
1097 breakpoints_inserted = 0;
1098 another_trap = 1;
1099 }
1100 break;
1101 }
1102 }
1103 else if (stop_step_resume_break)
1104 {
1105 /* But if we have hit the step-resumption breakpoint,
1106 remove it. It has done its job getting us here.
1107 The sp test is to make sure that we don't get hung
1108 up in recursive calls in functions without frame
1109 pointers. If the stack pointer isn't outside of
1110 where the breakpoint was set (within a routine to be
1111 stepped over), we're in the middle of a recursive
1112 call. Not true for reg window machines (sparc)
1113 because the must change frames to call things and
1114 the stack pointer doesn't have to change if it
1115 the bp was set in a routine without a frame (pc can
1116 be stored in some other window).
1117
1118 The removal of the sp test is to allow calls to
1119 alloca. Nasty things were happening. Oh, well,
1120 gdb can only handle one level deep of lack of
1121 frame pointer. */
1122
1123 /*
1124 Disable test for step_frame_address match so that we always stop even if the
1125 frames don't match. Reason: if we hit the step_resume_breakpoint, there is
1126 no way to temporarily disable it so that we can step past it. If we leave
1127 the breakpoint in, then we loop forever repeatedly hitting, but never
1128 getting past the breakpoint. This change keeps nexting over recursive
1129 function calls from hanging gdb.
1130 */
1131 #if 0
1132 if (* step_frame_address == 0
1133 || (step_frame_address == stop_frame_address))
1134 #endif
1135 {
1136 remove_step_breakpoint ();
1137 step_resume_break_address = 0;
1138
1139 /* If were waiting for a trap, hitting the step_resume_break
1140 doesn't count as getting it. */
1141 if (trap_expected)
1142 another_trap = 1;
1143 }
1144 }
1145
1146 /* We come here if we hit a breakpoint but should not
1147 stop for it. Possibly we also were stepping
1148 and should stop for that. So fall through and
1149 test for stepping. But, if not stepping,
1150 do not stop. */
1151
1152 /* If this is the breakpoint at the end of a stack dummy,
1153 just stop silently. */
1154 if (!random_signal
1155 && PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address))
1156 {
1157 stop_print_frame = 0;
1158 stop_stack_dummy = 1;
1159 #ifdef HP_OS_BUG
1160 trap_expected_after_continue = 1;
1161 #endif
1162 break;
1163 }
1164
1165 if (step_resume_break_address)
1166 /* Having a step-resume breakpoint overrides anything
1167 else having to do with stepping commands until
1168 that breakpoint is reached. */
1169 ;
1170 /* If stepping through a line, keep going if still within it. */
1171 else if (!random_signal
1172 && step_range_end
1173 && stop_pc >= step_range_start
1174 && stop_pc < step_range_end
1175 /* The step range might include the start of the
1176 function, so if we are at the start of the
1177 step range and either the stack or frame pointers
1178 just changed, we've stepped outside */
1179 && !(stop_pc == step_range_start
1180 && stop_frame_address
1181 && (stop_sp INNER_THAN prev_sp
1182 || stop_frame_address != step_frame_address)))
1183 {
1184 ;
1185 }
1186
1187 /* We stepped out of the stepping range. See if that was due
1188 to a subroutine call that we should proceed to the end of. */
1189 else if (!random_signal && step_range_end)
1190 {
1191 if (stop_func_start)
1192 {
1193 prologue_pc = stop_func_start;
1194 SKIP_PROLOGUE (prologue_pc);
1195 }
1196
1197 /* Did we just take a signal? */
1198 if (IN_SIGTRAMP (stop_pc, stop_func_name)
1199 && !IN_SIGTRAMP (prev_pc, prev_func_name))
1200 {
1201 /* This code is needed at least in the following case:
1202 The user types "next" and then a signal arrives (before
1203 the "next" is done). */
1204 /* We've just taken a signal; go until we are back to
1205 the point where we took it and one more. */
1206 step_resume_break_address = prev_pc;
1207 step_resume_break_duplicate =
1208 breakpoint_here_p (step_resume_break_address);
1209 if (breakpoints_inserted)
1210 insert_step_breakpoint ();
1211 /* Make sure that the stepping range gets us past
1212 that instruction. */
1213 if (step_range_end == 1)
1214 step_range_end = (step_range_start = prev_pc) + 1;
1215 remove_breakpoints_on_following_step = 1;
1216 goto save_pc;
1217 }
1218
1219 /* ==> See comments at top of file on this algorithm. <==*/
1220
1221 if ((stop_pc == stop_func_start
1222 || IN_SOLIB_TRAMPOLINE (stop_pc, stop_func_name))
1223 && (stop_func_start != prev_func_start
1224 || prologue_pc != stop_func_start
1225 || stop_sp != prev_sp))
1226 {
1227 /* It's a subroutine call.
1228 (0) If we are not stepping over any calls ("stepi"), we
1229 just stop.
1230 (1) If we're doing a "next", we want to continue through
1231 the call ("step over the call").
1232 (2) If we are in a function-call trampoline (a stub between
1233 the calling routine and the real function), locate
1234 the real function and change stop_func_start.
1235 (3) If we're doing a "step", and there are no debug symbols
1236 at the target of the call, we want to continue through
1237 it ("step over the call").
1238 (4) Otherwise, we want to stop soon, after the function
1239 prologue ("step into the call"). */
1240
1241 if (step_over_calls == 0)
1242 {
1243 /* I presume that step_over_calls is only 0 when we're
1244 supposed to be stepping at the assembly language level. */
1245 stop_step = 1;
1246 break;
1247 }
1248
1249 if (step_over_calls > 0)
1250 goto step_over_function;
1251
1252 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
1253 if (tmp != 0)
1254 stop_func_start = tmp;
1255
1256 if (find_pc_function (stop_func_start) != 0)
1257 goto step_into_function;
1258
1259 step_over_function:
1260 /* A subroutine call has happened. */
1261 /* Set a special breakpoint after the return */
1262 step_resume_break_address =
1263 ADDR_BITS_REMOVE
1264 (SAVED_PC_AFTER_CALL (get_current_frame ()));
1265 step_resume_break_duplicate
1266 = breakpoint_here_p (step_resume_break_address);
1267 if (breakpoints_inserted)
1268 insert_step_breakpoint ();
1269 goto save_pc;
1270
1271 step_into_function:
1272 /* Subroutine call with source code we should not step over.
1273 Do step to the first line of code in it. */
1274 SKIP_PROLOGUE (stop_func_start);
1275 sal = find_pc_line (stop_func_start, 0);
1276 /* Use the step_resume_break to step until
1277 the end of the prologue, even if that involves jumps
1278 (as it seems to on the vax under 4.2). */
1279 /* If the prologue ends in the middle of a source line,
1280 continue to the end of that source line.
1281 Otherwise, just go to end of prologue. */
1282 #ifdef PROLOGUE_FIRSTLINE_OVERLAP
1283 /* no, don't either. It skips any code that's
1284 legitimately on the first line. */
1285 #else
1286 if (sal.end && sal.pc != stop_func_start)
1287 stop_func_start = sal.end;
1288 #endif
1289
1290 if (stop_func_start == stop_pc)
1291 {
1292 /* We are already there: stop now. */
1293 stop_step = 1;
1294 break;
1295 }
1296 else
1297 /* Put the step-breakpoint there and go until there. */
1298 {
1299 step_resume_break_address = stop_func_start;
1300
1301 step_resume_break_duplicate
1302 = breakpoint_here_p (step_resume_break_address);
1303 if (breakpoints_inserted)
1304 insert_step_breakpoint ();
1305 /* Do not specify what the fp should be when we stop
1306 since on some machines the prologue
1307 is where the new fp value is established. */
1308 step_frame_address = 0;
1309 /* And make sure stepping stops right away then. */
1310 step_range_end = step_range_start;
1311 }
1312 goto save_pc;
1313 }
1314
1315 /* We've wandered out of the step range (but haven't done a
1316 subroutine call or return). */
1317
1318 sal = find_pc_line(stop_pc, 0);
1319
1320 if (step_range_end == 1 || /* stepi or nexti */
1321 sal.line == 0 || /* ...or no line # info */
1322 (stop_pc == sal.pc /* ...or we're at the start */
1323 && current_line != sal.line)) { /* of a different line */
1324 /* Stop because we're done stepping. */
1325 stop_step = 1;
1326 break;
1327 } else {
1328 /* We aren't done stepping, and we have line number info for $pc.
1329 Optimize by setting the step_range for the line.
1330 (We might not be in the original line, but if we entered a
1331 new line in mid-statement, we continue stepping. This makes
1332 things like for(;;) statements work better.) */
1333 step_range_start = sal.pc;
1334 step_range_end = sal.end;
1335 goto save_pc;
1336 }
1337 /* We never fall through here */
1338 }
1339
1340 if (trap_expected
1341 && IN_SIGTRAMP (stop_pc, stop_func_name)
1342 && !IN_SIGTRAMP (prev_pc, prev_func_name))
1343 {
1344 /* What has happened here is that we have just stepped the inferior
1345 with a signal (because it is a signal which shouldn't make
1346 us stop), thus stepping into sigtramp.
1347
1348 So we need to set a step_resume_break_address breakpoint
1349 and continue until we hit it, and then step. */
1350 step_resume_break_address = prev_pc;
1351 /* Always 1, I think, but it's probably easier to have
1352 the step_resume_break as usual rather than trying to
1353 re-use the breakpoint which is already there. */
1354 step_resume_break_duplicate =
1355 breakpoint_here_p (step_resume_break_address);
1356 if (breakpoints_inserted)
1357 insert_step_breakpoint ();
1358 remove_breakpoints_on_following_step = 1;
1359 another_trap = 1;
1360 }
1361
1362 /* My apologies to the gods of structured programming. */
1363 /* Come to this label when you need to resume the inferior. It's really much
1364 cleaner at this time to do a goto than to try and figure out what the
1365 if-else chain ought to look like!! */
1366
1367 keep_going:
1368
1369 save_pc:
1370 /* Save the pc before execution, to compare with pc after stop. */
1371 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
1372 prev_func_start = stop_func_start; /* Ok, since if DECR_PC_AFTER
1373 BREAK is defined, the
1374 original pc would not have
1375 been at the start of a
1376 function. */
1377 prev_func_name = stop_func_name;
1378 prev_sp = stop_sp;
1379
1380 /* If we did not do break;, it means we should keep
1381 running the inferior and not return to debugger. */
1382
1383 if (trap_expected && stop_signal != SIGTRAP)
1384 {
1385 /* We took a signal (which we are supposed to pass through to
1386 the inferior, else we'd have done a break above) and we
1387 haven't yet gotten our trap. Simply continue. */
1388 resume ((step_range_end && !step_resume_break_address)
1389 || (trap_expected && !step_resume_break_address)
1390 || bpstat_should_step (),
1391 stop_signal);
1392 }
1393 else
1394 {
1395 /* Either the trap was not expected, but we are continuing
1396 anyway (the user asked that this signal be passed to the
1397 child)
1398 -- or --
1399 The signal was SIGTRAP, e.g. it was our signal, but we
1400 decided we should resume from it.
1401
1402 We're going to run this baby now!
1403
1404 Insert breakpoints now, unless we are trying
1405 to one-proceed past a breakpoint. */
1406 /* If we've just finished a special step resume and we don't
1407 want to hit a breakpoint, pull em out. */
1408 if (!step_resume_break_address &&
1409 remove_breakpoints_on_following_step)
1410 {
1411 remove_breakpoints_on_following_step = 0;
1412 remove_breakpoints ();
1413 breakpoints_inserted = 0;
1414 }
1415 else if (!breakpoints_inserted &&
1416 (step_resume_break_address != 0 || !another_trap))
1417 {
1418 insert_step_breakpoint ();
1419 breakpoints_failed = insert_breakpoints ();
1420 if (breakpoints_failed)
1421 break;
1422 breakpoints_inserted = 1;
1423 }
1424
1425 trap_expected = another_trap;
1426
1427 if (stop_signal == SIGTRAP)
1428 stop_signal = 0;
1429
1430 #ifdef SHIFT_INST_REGS
1431 /* I'm not sure when this following segment applies. I do know, now,
1432 that we shouldn't rewrite the regs when we were stopped by a
1433 random signal from the inferior process. */
1434
1435 if (!bpstat_explains_signal (stop_bpstat)
1436 && (stop_signal != SIGCLD)
1437 && !stopped_by_random_signal)
1438 {
1439 CORE_ADDR pc_contents = read_register (PC_REGNUM);
1440 CORE_ADDR npc_contents = read_register (NPC_REGNUM);
1441 if (pc_contents != npc_contents)
1442 {
1443 write_register (NNPC_REGNUM, npc_contents);
1444 write_register (NPC_REGNUM, pc_contents);
1445 }
1446 }
1447 #endif /* SHIFT_INST_REGS */
1448
1449 resume ((!step_resume_break_address
1450 && !handling_longjmp
1451 && (step_range_end
1452 || trap_expected))
1453 || bpstat_should_step (),
1454 stop_signal);
1455 }
1456 }
1457
1458 stop_stepping:
1459 if (target_has_execution)
1460 {
1461 /* Assuming the inferior still exists, set these up for next
1462 time, just like we did above if we didn't break out of the
1463 loop. */
1464 prev_pc = read_pc ();
1465 prev_func_start = stop_func_start;
1466 prev_func_name = stop_func_name;
1467 prev_sp = stop_sp;
1468 }
1469 }
1470 \f
1471 /* Here to return control to GDB when the inferior stops for real.
1472 Print appropriate messages, remove breakpoints, give terminal our modes.
1473
1474 STOP_PRINT_FRAME nonzero means print the executing frame
1475 (pc, function, args, file, line number and line text).
1476 BREAKPOINTS_FAILED nonzero means stop was due to error
1477 attempting to insert breakpoints. */
1478
1479 void
1480 normal_stop ()
1481 {
1482 /* Make sure that the current_frame's pc is correct. This
1483 is a correction for setting up the frame info before doing
1484 DECR_PC_AFTER_BREAK */
1485 if (target_has_execution)
1486 (get_current_frame ())->pc = read_pc ();
1487
1488 if (breakpoints_failed)
1489 {
1490 target_terminal_ours_for_output ();
1491 print_sys_errmsg ("ptrace", breakpoints_failed);
1492 printf_filtered ("Stopped; cannot insert breakpoints.\n\
1493 The same program may be running in another process.\n");
1494 }
1495
1496 if (target_has_execution)
1497 remove_step_breakpoint ();
1498
1499 if (target_has_execution && breakpoints_inserted)
1500 if (remove_breakpoints ())
1501 {
1502 target_terminal_ours_for_output ();
1503 printf_filtered ("Cannot remove breakpoints because program is no longer writable.\n\
1504 It might be running in another process.\n\
1505 Further execution is probably impossible.\n");
1506 }
1507
1508 breakpoints_inserted = 0;
1509
1510 /* Delete the breakpoint we stopped at, if it wants to be deleted.
1511 Delete any breakpoint that is to be deleted at the next stop. */
1512
1513 breakpoint_auto_delete (stop_bpstat);
1514
1515 /* If an auto-display called a function and that got a signal,
1516 delete that auto-display to avoid an infinite recursion. */
1517
1518 if (stopped_by_random_signal)
1519 disable_current_display ();
1520
1521 if (step_multi && stop_step)
1522 return;
1523
1524 target_terminal_ours ();
1525
1526 if (!target_has_stack)
1527 return;
1528
1529 /* Select innermost stack frame except on return from a stack dummy routine,
1530 or if the program has exited. Print it without a level number if
1531 we have changed functions or hit a breakpoint. Print source line
1532 if we have one. */
1533 if (!stop_stack_dummy)
1534 {
1535 select_frame (get_current_frame (), 0);
1536
1537 if (stop_print_frame)
1538 {
1539 int source_only;
1540
1541 source_only = bpstat_print (stop_bpstat);
1542 source_only = source_only ||
1543 ( stop_step
1544 && step_frame_address == stop_frame_address
1545 && step_start_function == find_pc_function (stop_pc));
1546
1547 print_stack_frame (selected_frame, -1, source_only? -1: 1);
1548
1549 /* Display the auto-display expressions. */
1550 do_displays ();
1551 }
1552 }
1553
1554 /* Save the function value return registers, if we care.
1555 We might be about to restore their previous contents. */
1556 if (proceed_to_finish)
1557 read_register_bytes (0, stop_registers, REGISTER_BYTES);
1558
1559 if (stop_stack_dummy)
1560 {
1561 /* Pop the empty frame that contains the stack dummy.
1562 POP_FRAME ends with a setting of the current frame, so we
1563 can use that next. */
1564 POP_FRAME;
1565 select_frame (get_current_frame (), 0);
1566 }
1567 }
1568 \f
1569 static void
1570 insert_step_breakpoint ()
1571 {
1572 if (step_resume_break_address && !step_resume_break_duplicate)
1573 target_insert_breakpoint (step_resume_break_address,
1574 step_resume_break_shadow);
1575 }
1576
1577 static void
1578 remove_step_breakpoint ()
1579 {
1580 if (step_resume_break_address && !step_resume_break_duplicate)
1581 target_remove_breakpoint (step_resume_break_address,
1582 step_resume_break_shadow);
1583 }
1584 \f
1585 int signal_stop_state (signo)
1586 int signo;
1587 {
1588 return ((signo >= 0 && signo < NSIG) ? signal_stop[signo] : 0);
1589 }
1590
1591 int signal_print_state (signo)
1592 int signo;
1593 {
1594 return ((signo >= 0 && signo < NSIG) ? signal_print[signo] : 0);
1595 }
1596
1597 int signal_pass_state (signo)
1598 int signo;
1599 {
1600 return ((signo >= 0 && signo < NSIG) ? signal_program[signo] : 0);
1601 }
1602
1603 static void
1604 sig_print_header ()
1605 {
1606 printf_filtered ("Signal\t\tStop\tPrint\tPass to program\tDescription\n");
1607 }
1608
1609 static void
1610 sig_print_info (number)
1611 int number;
1612 {
1613 char *name;
1614
1615 if ((name = strsigno (number)) == NULL)
1616 printf_filtered ("%d\t\t", number);
1617 else
1618 printf_filtered ("%s (%d)\t", name, number);
1619 printf_filtered ("%s\t", signal_stop[number] ? "Yes" : "No");
1620 printf_filtered ("%s\t", signal_print[number] ? "Yes" : "No");
1621 printf_filtered ("%s\t\t", signal_program[number] ? "Yes" : "No");
1622 printf_filtered ("%s\n", safe_strsignal (number));
1623 }
1624
1625 /* Specify how various signals in the inferior should be handled. */
1626
1627 static void
1628 handle_command (args, from_tty)
1629 char *args;
1630 int from_tty;
1631 {
1632 register char *p = args;
1633 int signum = 0;
1634 register int digits, wordlen;
1635 char *nextarg;
1636
1637 if (!args)
1638 error_no_arg ("signal to handle");
1639
1640 while (*p)
1641 {
1642 /* Find the end of the next word in the args. */
1643 for (wordlen = 0;
1644 p[wordlen] && p[wordlen] != ' ' && p[wordlen] != '\t';
1645 wordlen++);
1646 /* Set nextarg to the start of the word after the one we just
1647 found, and null-terminate this one. */
1648 if (p[wordlen] == '\0')
1649 nextarg = p + wordlen;
1650 else
1651 {
1652 p[wordlen] = '\0';
1653 nextarg = p + wordlen + 1;
1654 }
1655
1656
1657 for (digits = 0; p[digits] >= '0' && p[digits] <= '9'; digits++);
1658
1659 if (signum == 0)
1660 {
1661 /* It is the first argument--must be the signal to operate on. */
1662 if (digits == wordlen)
1663 {
1664 /* Numeric. */
1665 signum = atoi (p);
1666 if (signum <= 0 || signum > signo_max ())
1667 {
1668 p[wordlen] = '\0';
1669 error ("Invalid signal %s given as argument to \"handle\".", p);
1670 }
1671 }
1672 else
1673 {
1674 /* Symbolic. */
1675 signum = strtosigno (p);
1676 if (signum == 0)
1677 error ("No such signal \"%s\"", p);
1678 }
1679
1680 if (signum == SIGTRAP || signum == SIGINT)
1681 {
1682 if (!query ("%s is used by the debugger.\nAre you sure you want to change it? ", strsigno (signum)))
1683 error ("Not confirmed.");
1684 }
1685 }
1686 /* Else, if already got a signal number, look for flag words
1687 saying what to do for it. */
1688 else if (!strncmp (p, "stop", wordlen))
1689 {
1690 signal_stop[signum] = 1;
1691 signal_print[signum] = 1;
1692 }
1693 else if (wordlen >= 2 && !strncmp (p, "print", wordlen))
1694 signal_print[signum] = 1;
1695 else if (wordlen >= 2 && !strncmp (p, "pass", wordlen))
1696 signal_program[signum] = 1;
1697 else if (!strncmp (p, "ignore", wordlen))
1698 signal_program[signum] = 0;
1699 else if (wordlen >= 3 && !strncmp (p, "nostop", wordlen))
1700 signal_stop[signum] = 0;
1701 else if (wordlen >= 4 && !strncmp (p, "noprint", wordlen))
1702 {
1703 signal_print[signum] = 0;
1704 signal_stop[signum] = 0;
1705 }
1706 else if (wordlen >= 4 && !strncmp (p, "nopass", wordlen))
1707 signal_program[signum] = 0;
1708 else if (wordlen >= 3 && !strncmp (p, "noignore", wordlen))
1709 signal_program[signum] = 1;
1710 /* Not a number and not a recognized flag word => complain. */
1711 else
1712 {
1713 error ("Unrecognized or ambiguous flag word: \"%s\".", p);
1714 }
1715
1716 /* Find start of next word. */
1717 p = nextarg;
1718 while (*p == ' ' || *p == '\t') p++;
1719 }
1720
1721 NOTICE_SIGNAL_HANDLING_CHANGE;
1722
1723 if (from_tty)
1724 {
1725 /* Show the results. */
1726 sig_print_header ();
1727 sig_print_info (signum);
1728 }
1729 }
1730
1731 /* Print current contents of the tables set by the handle command. */
1732
1733 static void
1734 signals_info (signum_exp, from_tty)
1735 char *signum_exp;
1736 int from_tty;
1737 {
1738 register int i;
1739 sig_print_header ();
1740
1741 if (signum_exp)
1742 {
1743 /* First see if this is a symbol name. */
1744 i = strtosigno (signum_exp);
1745 if (i == 0)
1746 {
1747 /* Nope, maybe it's an address which evaluates to a signal
1748 number. */
1749 i = parse_and_eval_address (signum_exp);
1750 if (i >= NSIG || i < 0)
1751 error ("Signal number out of bounds.");
1752 }
1753 sig_print_info (i);
1754 return;
1755 }
1756
1757 printf_filtered ("\n");
1758 for (i = 0; i < NSIG; i++)
1759 {
1760 QUIT;
1761
1762 sig_print_info (i);
1763 }
1764
1765 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
1766 }
1767 \f
1768 /* Save all of the information associated with the inferior<==>gdb
1769 connection. INF_STATUS is a pointer to a "struct inferior_status"
1770 (defined in inferior.h). */
1771
1772 void
1773 save_inferior_status (inf_status, restore_stack_info)
1774 struct inferior_status *inf_status;
1775 int restore_stack_info;
1776 {
1777 inf_status->pc_changed = pc_changed;
1778 inf_status->stop_signal = stop_signal;
1779 inf_status->stop_pc = stop_pc;
1780 inf_status->stop_frame_address = stop_frame_address;
1781 inf_status->stop_step = stop_step;
1782 inf_status->stop_stack_dummy = stop_stack_dummy;
1783 inf_status->stopped_by_random_signal = stopped_by_random_signal;
1784 inf_status->trap_expected = trap_expected;
1785 inf_status->step_range_start = step_range_start;
1786 inf_status->step_range_end = step_range_end;
1787 inf_status->step_frame_address = step_frame_address;
1788 inf_status->step_over_calls = step_over_calls;
1789 inf_status->step_resume_break_address = step_resume_break_address;
1790 inf_status->stop_after_trap = stop_after_trap;
1791 inf_status->stop_soon_quietly = stop_soon_quietly;
1792 /* Save original bpstat chain here; replace it with copy of chain.
1793 If caller's caller is walking the chain, they'll be happier if we
1794 hand them back the original chain when restore_i_s is called. */
1795 inf_status->stop_bpstat = stop_bpstat;
1796 stop_bpstat = bpstat_copy (stop_bpstat);
1797 inf_status->breakpoint_proceeded = breakpoint_proceeded;
1798 inf_status->restore_stack_info = restore_stack_info;
1799 inf_status->proceed_to_finish = proceed_to_finish;
1800
1801 bcopy (stop_registers, inf_status->stop_registers, REGISTER_BYTES);
1802
1803 record_selected_frame (&(inf_status->selected_frame_address),
1804 &(inf_status->selected_level));
1805 return;
1806 }
1807
1808 void
1809 restore_inferior_status (inf_status)
1810 struct inferior_status *inf_status;
1811 {
1812 FRAME fid;
1813 int level = inf_status->selected_level;
1814
1815 pc_changed = inf_status->pc_changed;
1816 stop_signal = inf_status->stop_signal;
1817 stop_pc = inf_status->stop_pc;
1818 stop_frame_address = inf_status->stop_frame_address;
1819 stop_step = inf_status->stop_step;
1820 stop_stack_dummy = inf_status->stop_stack_dummy;
1821 stopped_by_random_signal = inf_status->stopped_by_random_signal;
1822 trap_expected = inf_status->trap_expected;
1823 step_range_start = inf_status->step_range_start;
1824 step_range_end = inf_status->step_range_end;
1825 step_frame_address = inf_status->step_frame_address;
1826 step_over_calls = inf_status->step_over_calls;
1827 step_resume_break_address = inf_status->step_resume_break_address;
1828 stop_after_trap = inf_status->stop_after_trap;
1829 stop_soon_quietly = inf_status->stop_soon_quietly;
1830 bpstat_clear (&stop_bpstat);
1831 stop_bpstat = inf_status->stop_bpstat;
1832 breakpoint_proceeded = inf_status->breakpoint_proceeded;
1833 proceed_to_finish = inf_status->proceed_to_finish;
1834
1835 bcopy (inf_status->stop_registers, stop_registers, REGISTER_BYTES);
1836
1837 /* The inferior can be gone if the user types "print exit(0)"
1838 (and perhaps other times). */
1839 if (target_has_stack && inf_status->restore_stack_info)
1840 {
1841 fid = find_relative_frame (get_current_frame (),
1842 &level);
1843
1844 /* If inf_status->selected_frame_address is NULL, there was no
1845 previously selected frame. */
1846 if (fid == 0 ||
1847 FRAME_FP (fid) != inf_status->selected_frame_address ||
1848 level != 0)
1849 {
1850 #if 1
1851 /* I'm not sure this error message is a good idea. I have
1852 only seen it occur after "Can't continue previously
1853 requested operation" (we get called from do_cleanups), in
1854 which case it just adds insult to injury (one confusing
1855 error message after another. Besides which, does the
1856 user really care if we can't restore the previously
1857 selected frame? */
1858 fprintf (stderr, "Unable to restore previously selected frame.\n");
1859 #endif
1860 select_frame (get_current_frame (), 0);
1861 return;
1862 }
1863
1864 select_frame (fid, inf_status->selected_level);
1865 }
1866 }
1867
1868 \f
1869 void
1870 _initialize_infrun ()
1871 {
1872 register int i;
1873 register int numsigs;
1874
1875 add_info ("signals", signals_info,
1876 "What debugger does when program gets various signals.\n\
1877 Specify a signal number as argument to print info on that signal only.");
1878
1879 add_com ("handle", class_run, handle_command,
1880 "Specify how to handle a signal.\n\
1881 Args are signal number followed by flags.\n\
1882 Flags allowed are \"stop\", \"print\", \"pass\",\n\
1883 \"nostop\", \"noprint\" or \"nopass\".\n\
1884 Print means print a message if this signal happens.\n\
1885 Stop means reenter debugger if this signal happens (implies print).\n\
1886 Pass means let program see this signal; otherwise program doesn't know.\n\
1887 Pass and Stop may be combined.");
1888
1889 numsigs = signo_max () + 1;
1890 signal_stop = xmalloc (sizeof (signal_stop[0]) * numsigs);
1891 signal_print = xmalloc (sizeof (signal_print[0]) * numsigs);
1892 signal_program = xmalloc (sizeof (signal_program[0]) * numsigs);
1893 for (i = 0; i < numsigs; i++)
1894 {
1895 signal_stop[i] = 1;
1896 signal_print[i] = 1;
1897 signal_program[i] = 1;
1898 }
1899
1900 /* Signals caused by debugger's own actions
1901 should not be given to the program afterwards. */
1902 signal_program[SIGTRAP] = 0;
1903 signal_program[SIGINT] = 0;
1904
1905 /* Signals that are not errors should not normally enter the debugger. */
1906 #ifdef SIGALRM
1907 signal_stop[SIGALRM] = 0;
1908 signal_print[SIGALRM] = 0;
1909 #endif /* SIGALRM */
1910 #ifdef SIGVTALRM
1911 signal_stop[SIGVTALRM] = 0;
1912 signal_print[SIGVTALRM] = 0;
1913 #endif /* SIGVTALRM */
1914 #ifdef SIGPROF
1915 signal_stop[SIGPROF] = 0;
1916 signal_print[SIGPROF] = 0;
1917 #endif /* SIGPROF */
1918 #ifdef SIGCHLD
1919 signal_stop[SIGCHLD] = 0;
1920 signal_print[SIGCHLD] = 0;
1921 #endif /* SIGCHLD */
1922 #ifdef SIGCLD
1923 signal_stop[SIGCLD] = 0;
1924 signal_print[SIGCLD] = 0;
1925 #endif /* SIGCLD */
1926 #ifdef SIGIO
1927 signal_stop[SIGIO] = 0;
1928 signal_print[SIGIO] = 0;
1929 #endif /* SIGIO */
1930 #ifdef SIGURG
1931 signal_stop[SIGURG] = 0;
1932 signal_print[SIGURG] = 0;
1933 #endif /* SIGURG */
1934 }