]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
* Makefile.in (VERSION): Bump to 4.5.6.
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Start (run) and stop the inferior process, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* Notes on the algorithm used in wait_for_inferior to determine if we
21 just did a subroutine call when stepping. We have the following
22 information at that point:
23
24 Current and previous (just before this step) pc.
25 Current and previous sp.
26 Current and previous start of current function.
27
28 If the starts of the functions don't match, then
29
30 a) We did a subroutine call.
31
32 In this case, the pc will be at the beginning of a function.
33
34 b) We did a subroutine return.
35
36 Otherwise.
37
38 c) We did a longjmp.
39
40 If we did a longjump, we were doing "nexti", since a next would
41 have attempted to skip over the assembly language routine in which
42 the longjmp is coded and would have simply been the equivalent of a
43 continue. I consider this ok behaivior. We'd like one of two
44 things to happen if we are doing a nexti through the longjmp()
45 routine: 1) It behaves as a stepi, or 2) It acts like a continue as
46 above. Given that this is a special case, and that anybody who
47 thinks that the concept of sub calls is meaningful in the context
48 of a longjmp, I'll take either one. Let's see what happens.
49
50 Acts like a subroutine return. I can handle that with no problem
51 at all.
52
53 -->So: If the current and previous beginnings of the current
54 function don't match, *and* the pc is at the start of a function,
55 we've done a subroutine call. If the pc is not at the start of a
56 function, we *didn't* do a subroutine call.
57
58 -->If the beginnings of the current and previous function do match,
59 either:
60
61 a) We just did a recursive call.
62
63 In this case, we would be at the very beginning of a
64 function and 1) it will have a prologue (don't jump to
65 before prologue, or 2) (we assume here that it doesn't have
66 a prologue) there will have been a change in the stack
67 pointer over the last instruction. (Ie. it's got to put
68 the saved pc somewhere. The stack is the usual place. In
69 a recursive call a register is only an option if there's a
70 prologue to do something with it. This is even true on
71 register window machines; the prologue sets up the new
72 window. It might not be true on a register window machine
73 where the call instruction moved the register window
74 itself. Hmmm. One would hope that the stack pointer would
75 also change. If it doesn't, somebody send me a note, and
76 I'll work out a more general theory.
77 bug-gdb@prep.ai.mit.edu). This is true (albeit slipperly
78 so) on all machines I'm aware of:
79
80 m68k: Call changes stack pointer. Regular jumps don't.
81
82 sparc: Recursive calls must have frames and therefor,
83 prologues.
84
85 vax: All calls have frames and hence change the
86 stack pointer.
87
88 b) We did a return from a recursive call. I don't see that we
89 have either the ability or the need to distinguish this
90 from an ordinary jump. The stack frame will be printed
91 when and if the frame pointer changes; if we are in a
92 function without a frame pointer, it's the users own
93 lookout.
94
95 c) We did a jump within a function. We assume that this is
96 true if we didn't do a recursive call.
97
98 d) We are in no-man's land ("I see no symbols here"). We
99 don't worry about this; it will make calls look like simple
100 jumps (and the stack frames will be printed when the frame
101 pointer moves), which is a reasonably non-violent response.
102 */
103
104 #include "defs.h"
105 #include <string.h>
106 #include "symtab.h"
107 #include "frame.h"
108 #include "inferior.h"
109 #include "breakpoint.h"
110 #include "wait.h"
111 #include "gdbcore.h"
112 #include "command.h"
113 #include "terminal.h" /* For #ifdef TIOCGPGRP and new_tty */
114 #include "target.h"
115
116 #include <signal.h>
117
118 /* unistd.h is needed to #define X_OK */
119 #ifdef USG
120 #include <unistd.h>
121 #else
122 #include <sys/file.h>
123 #endif
124
125 #ifdef SET_STACK_LIMIT_HUGE
126 #include <sys/time.h>
127 #include <sys/resource.h>
128
129 extern int original_stack_limit;
130 #endif /* SET_STACK_LIMIT_HUGE */
131
132 /* Prototypes for local functions */
133
134 static void
135 signals_info PARAMS ((char *, int));
136
137 static void
138 handle_command PARAMS ((char *, int));
139
140 static void
141 sig_print_info PARAMS ((int));
142
143 static void
144 sig_print_header PARAMS ((void));
145
146 static void
147 remove_step_breakpoint PARAMS ((void));
148
149 static void
150 insert_step_breakpoint PARAMS ((void));
151
152 static void
153 resume PARAMS ((int, int));
154
155 static void
156 resume_cleanups PARAMS ((int));
157
158 extern char **environ;
159
160 extern struct target_ops child_ops; /* In inftarg.c */
161
162 /* Sigtramp is a routine that the kernel calls (which then calls the
163 signal handler). On most machines it is a library routine that
164 is linked into the executable.
165
166 This macro, given a program counter value and the name of the
167 function in which that PC resides (which can be null if the
168 name is not known), returns nonzero if the PC and name show
169 that we are in sigtramp.
170
171 On most machines just see if the name is sigtramp (and if we have
172 no name, assume we are not in sigtramp). */
173 #if !defined (IN_SIGTRAMP)
174 #define IN_SIGTRAMP(pc, name) \
175 (name && !strcmp ("_sigtramp", name))
176 #endif
177
178 /* GET_LONGJMP_TARGET returns the PC at which longjmp() will resume the
179 program. It needs to examine the jmp_buf argument and extract the PC
180 from it. The return value is non-zero on success, zero otherwise. */
181 #ifndef GET_LONGJMP_TARGET
182 #define GET_LONGJMP_TARGET(PC_ADDR) 0
183 #endif
184
185
186 /* Some machines have trampoline code that sits between function callers
187 and the actual functions themselves. If this machine doesn't have
188 such things, disable their processing. */
189 #ifndef SKIP_TRAMPOLINE_CODE
190 #define SKIP_TRAMPOLINE_CODE(pc) 0
191 #endif
192
193 /* For SVR4 shared libraries, each call goes through a small piece of
194 trampoline code in the ".init" section. IN_SOLIB_TRAMPOLINE evaluates
195 to nonzero if we are current stopped in one of these. */
196 #ifndef IN_SOLIB_TRAMPOLINE
197 #define IN_SOLIB_TRAMPOLINE(pc,name) 0
198 #endif
199
200 /* Notify other parts of gdb that might care that signal handling may
201 have changed for one or more signals. */
202 #ifndef NOTICE_SIGNAL_HANDLING_CHANGE
203 #define NOTICE_SIGNAL_HANDLING_CHANGE /* No actions */
204 #endif
205
206 #ifdef TDESC
207 #include "tdesc.h"
208 int safe_to_init_tdesc_context = 0;
209 extern dc_dcontext_t current_context;
210 #endif
211
212 /* Tables of how to react to signals; the user sets them. */
213
214 static char *signal_stop;
215 static char *signal_print;
216 static char *signal_program;
217
218 /* Nonzero if breakpoints are now inserted in the inferior. */
219 /* Nonstatic for initialization during xxx_create_inferior. FIXME. */
220
221 /*static*/ int breakpoints_inserted;
222
223 /* Function inferior was in as of last step command. */
224
225 static struct symbol *step_start_function;
226
227 /* Nonzero => address for special breakpoint for resuming stepping. */
228
229 static CORE_ADDR step_resume_break_address;
230
231 /* Pointer to orig contents of the byte where the special breakpoint is. */
232
233 static char step_resume_break_shadow[BREAKPOINT_MAX];
234
235 /* Nonzero means the special breakpoint is a duplicate
236 so it has not itself been inserted. */
237
238 static int step_resume_break_duplicate;
239
240 /* Nonzero if we are expecting a trace trap and should proceed from it. */
241
242 static int trap_expected;
243
244 /* Nonzero if the next time we try to continue the inferior, it will
245 step one instruction and generate a spurious trace trap.
246 This is used to compensate for a bug in HP-UX. */
247
248 static int trap_expected_after_continue;
249
250 /* Nonzero means expecting a trace trap
251 and should stop the inferior and return silently when it happens. */
252
253 int stop_after_trap;
254
255 /* Nonzero means expecting a trap and caller will handle it themselves.
256 It is used after attach, due to attaching to a process;
257 when running in the shell before the child program has been exec'd;
258 and when running some kinds of remote stuff (FIXME?). */
259
260 int stop_soon_quietly;
261
262 /* Nonzero if pc has been changed by the debugger
263 since the inferior stopped. */
264
265 int pc_changed;
266
267 /* Nonzero if proceed is being used for a "finish" command or a similar
268 situation when stop_registers should be saved. */
269
270 int proceed_to_finish;
271
272 /* Save register contents here when about to pop a stack dummy frame,
273 if-and-only-if proceed_to_finish is set.
274 Thus this contains the return value from the called function (assuming
275 values are returned in a register). */
276
277 char stop_registers[REGISTER_BYTES];
278
279 /* Nonzero if program stopped due to error trying to insert breakpoints. */
280
281 static int breakpoints_failed;
282
283 /* Nonzero after stop if current stack frame should be printed. */
284
285 static int stop_print_frame;
286
287 #ifdef NO_SINGLE_STEP
288 extern int one_stepped; /* From machine dependent code */
289 extern void single_step (); /* Same. */
290 #endif /* NO_SINGLE_STEP */
291
292 \f
293 /* Things to clean up if we QUIT out of resume (). */
294 /* ARGSUSED */
295 static void
296 resume_cleanups (arg)
297 int arg;
298 {
299 normal_stop ();
300 }
301
302 /* Resume the inferior, but allow a QUIT. This is useful if the user
303 wants to interrupt some lengthy single-stepping operation
304 (for child processes, the SIGINT goes to the inferior, and so
305 we get a SIGINT random_signal, but for remote debugging and perhaps
306 other targets, that's not true).
307
308 STEP nonzero if we should step (zero to continue instead).
309 SIG is the signal to give the inferior (zero for none). */
310 static void
311 resume (step, sig)
312 int step;
313 int sig;
314 {
315 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
316 QUIT;
317
318 #ifdef NO_SINGLE_STEP
319 if (step) {
320 single_step(sig); /* Do it the hard way, w/temp breakpoints */
321 step = 0; /* ...and don't ask hardware to do it. */
322 }
323 #endif
324
325 /* Handle any optimized stores to the inferior NOW... */
326 #ifdef DO_DEFERRED_STORES
327 DO_DEFERRED_STORES;
328 #endif
329
330 target_resume (step, sig);
331 discard_cleanups (old_cleanups);
332 }
333
334 \f
335 /* Clear out all variables saying what to do when inferior is continued.
336 First do this, then set the ones you want, then call `proceed'. */
337
338 void
339 clear_proceed_status ()
340 {
341 trap_expected = 0;
342 step_range_start = 0;
343 step_range_end = 0;
344 step_frame_address = 0;
345 step_over_calls = -1;
346 step_resume_break_address = 0;
347 stop_after_trap = 0;
348 stop_soon_quietly = 0;
349 proceed_to_finish = 0;
350 breakpoint_proceeded = 1; /* We're about to proceed... */
351
352 /* Discard any remaining commands or status from previous stop. */
353 bpstat_clear (&stop_bpstat);
354 }
355
356 /* Basic routine for continuing the program in various fashions.
357
358 ADDR is the address to resume at, or -1 for resume where stopped.
359 SIGGNAL is the signal to give it, or 0 for none,
360 or -1 for act according to how it stopped.
361 STEP is nonzero if should trap after one instruction.
362 -1 means return after that and print nothing.
363 You should probably set various step_... variables
364 before calling here, if you are stepping.
365
366 You should call clear_proceed_status before calling proceed. */
367
368 void
369 proceed (addr, siggnal, step)
370 CORE_ADDR addr;
371 int siggnal;
372 int step;
373 {
374 int oneproc = 0;
375
376 if (step > 0)
377 step_start_function = find_pc_function (read_pc ());
378 if (step < 0)
379 stop_after_trap = 1;
380
381 if (addr == (CORE_ADDR)-1)
382 {
383 /* If there is a breakpoint at the address we will resume at,
384 step one instruction before inserting breakpoints
385 so that we do not stop right away. */
386
387 if (!pc_changed && breakpoint_here_p (read_pc ()))
388 oneproc = 1;
389 }
390 else
391 {
392 write_register (PC_REGNUM, addr);
393 #ifdef NPC_REGNUM
394 write_register (NPC_REGNUM, addr + 4);
395 #ifdef NNPC_REGNUM
396 write_register (NNPC_REGNUM, addr + 8);
397 #endif
398 #endif
399 }
400
401 if (trap_expected_after_continue)
402 {
403 /* If (step == 0), a trap will be automatically generated after
404 the first instruction is executed. Force step one
405 instruction to clear this condition. This should not occur
406 if step is nonzero, but it is harmless in that case. */
407 oneproc = 1;
408 trap_expected_after_continue = 0;
409 }
410
411 if (oneproc)
412 /* We will get a trace trap after one instruction.
413 Continue it automatically and insert breakpoints then. */
414 trap_expected = 1;
415 else
416 {
417 int temp = insert_breakpoints ();
418 if (temp)
419 {
420 print_sys_errmsg ("ptrace", temp);
421 error ("Cannot insert breakpoints.\n\
422 The same program may be running in another process.");
423 }
424 breakpoints_inserted = 1;
425 }
426
427 /* Install inferior's terminal modes. */
428 target_terminal_inferior ();
429
430 if (siggnal >= 0)
431 stop_signal = siggnal;
432 /* If this signal should not be seen by program,
433 give it zero. Used for debugging signals. */
434 else if (stop_signal < NSIG && !signal_program[stop_signal])
435 stop_signal= 0;
436
437 /* Resume inferior. */
438 resume (oneproc || step || bpstat_should_step (), stop_signal);
439
440 /* Wait for it to stop (if not standalone)
441 and in any case decode why it stopped, and act accordingly. */
442
443 wait_for_inferior ();
444 normal_stop ();
445 }
446
447 /* Record the pc and sp of the program the last time it stopped.
448 These are just used internally by wait_for_inferior, but need
449 to be preserved over calls to it and cleared when the inferior
450 is started. */
451 static CORE_ADDR prev_pc;
452 static CORE_ADDR prev_sp;
453 static CORE_ADDR prev_func_start;
454 static char *prev_func_name;
455
456 \f
457 /* Start an inferior Unix child process and sets inferior_pid to its pid.
458 EXEC_FILE is the file to run.
459 ALLARGS is a string containing the arguments to the program.
460 ENV is the environment vector to pass. Errors reported with error(). */
461
462 #ifndef SHELL_FILE
463 #define SHELL_FILE "/bin/sh"
464 #endif
465
466 void
467 child_create_inferior (exec_file, allargs, env)
468 char *exec_file;
469 char *allargs;
470 char **env;
471 {
472 int pid;
473 char *shell_command;
474 char *shell_file;
475 static char default_shell_file[] = SHELL_FILE;
476 int len;
477 int pending_execs;
478 /* Set debug_fork then attach to the child while it sleeps, to debug. */
479 static int debug_fork = 0;
480 /* This is set to the result of setpgrp, which if vforked, will be visible
481 to you in the parent process. It's only used by humans for debugging. */
482 static int debug_setpgrp = 657473;
483 char **save_our_env;
484
485 /* The user might want tilde-expansion, and in general probably wants
486 the program to behave the same way as if run from
487 his/her favorite shell. So we let the shell run it for us.
488 FIXME, this should probably search the local environment (as
489 modified by the setenv command), not the env gdb inherited. */
490 shell_file = getenv ("SHELL");
491 if (shell_file == NULL)
492 shell_file = default_shell_file;
493
494 len = 5 + strlen (exec_file) + 1 + strlen (allargs) + 1 + /*slop*/ 10;
495 /* If desired, concat something onto the front of ALLARGS.
496 SHELL_COMMAND is the result. */
497 #ifdef SHELL_COMMAND_CONCAT
498 shell_command = (char *) alloca (strlen (SHELL_COMMAND_CONCAT) + len);
499 strcpy (shell_command, SHELL_COMMAND_CONCAT);
500 #else
501 shell_command = (char *) alloca (len);
502 shell_command[0] = '\0';
503 #endif
504 strcat (shell_command, "exec ");
505 strcat (shell_command, exec_file);
506 strcat (shell_command, " ");
507 strcat (shell_command, allargs);
508
509 /* exec is said to fail if the executable is open. */
510 close_exec_file ();
511
512 /* Retain a copy of our environment variables, since the child will
513 replace the value of environ and if we're vforked, we have to
514 restore it. */
515 save_our_env = environ;
516
517 /* Tell the terminal handling subsystem what tty we plan to run on;
518 it will just record the information for later. */
519
520 new_tty_prefork (inferior_io_terminal);
521
522 /* It is generally good practice to flush any possible pending stdio
523 output prior to doing a fork, to avoid the possibility of both the
524 parent and child flushing the same data after the fork. */
525
526 fflush (stdout);
527 fflush (stderr);
528
529 #if defined(USG) && !defined(HAVE_VFORK)
530 pid = fork ();
531 #else
532 if (debug_fork)
533 pid = fork ();
534 else
535 pid = vfork ();
536 #endif
537
538 if (pid < 0)
539 perror_with_name ("vfork");
540
541 if (pid == 0)
542 {
543 if (debug_fork)
544 sleep (debug_fork);
545
546 #ifdef TIOCGPGRP
547 /* Run inferior in a separate process group. */
548 #ifdef NEED_POSIX_SETPGID
549 debug_setpgrp = setpgid (0, 0);
550 #else
551 #if defined(USG) && !defined(SETPGRP_ARGS)
552 debug_setpgrp = setpgrp ();
553 #else
554 debug_setpgrp = setpgrp (getpid (), getpid ());
555 #endif /* USG */
556 #endif /* NEED_POSIX_SETPGID */
557 if (debug_setpgrp == -1)
558 perror("setpgrp failed in child");
559 #endif /* TIOCGPGRP */
560
561 #ifdef SET_STACK_LIMIT_HUGE
562 /* Reset the stack limit back to what it was. */
563 {
564 struct rlimit rlim;
565
566 getrlimit (RLIMIT_STACK, &rlim);
567 rlim.rlim_cur = original_stack_limit;
568 setrlimit (RLIMIT_STACK, &rlim);
569 }
570 #endif /* SET_STACK_LIMIT_HUGE */
571
572 /* Ask the tty subsystem to switch to the one we specified earlier
573 (or to share the current terminal, if none was specified). */
574
575 new_tty ();
576
577 /* Changing the signal handlers for the inferior after
578 a vfork can also change them for the superior, so we don't mess
579 with signals here. See comments in
580 initialize_signals for how we get the right signal handlers
581 for the inferior. */
582
583 #ifdef USE_PROC_FS
584 /* Use SVR4 /proc interface */
585 proc_set_exec_trap ();
586 #else
587 /* "Trace me, Dr. Memory!" */
588 call_ptrace (0, 0, (PTRACE_ARG3_TYPE) 0, 0);
589 #endif
590
591 /* There is no execlpe call, so we have to set the environment
592 for our child in the global variable. If we've vforked, this
593 clobbers the parent, but environ is restored a few lines down
594 in the parent. By the way, yes we do need to look down the
595 path to find $SHELL. Rich Pixley says so, and I agree. */
596 environ = env;
597 execlp (shell_file, shell_file, "-c", shell_command, (char *)0);
598
599 fprintf (stderr, "Cannot exec %s: %s.\n", shell_file,
600 safe_strerror (errno));
601 fflush (stderr);
602 _exit (0177);
603 }
604
605 /* Restore our environment in case a vforked child clob'd it. */
606 environ = save_our_env;
607
608 /* Now that we have a child process, make it our target. */
609 push_target (&child_ops);
610
611 #ifdef CREATE_INFERIOR_HOOK
612 CREATE_INFERIOR_HOOK (pid);
613 #endif
614
615 /* The process was started by the fork that created it,
616 but it will have stopped one instruction after execing the shell.
617 Here we must get it up to actual execution of the real program. */
618
619 inferior_pid = pid; /* Needed for wait_for_inferior stuff below */
620
621 clear_proceed_status ();
622
623 /* We will get a trace trap after one instruction.
624 Continue it automatically. Eventually (after shell does an exec)
625 it will get another trace trap. Then insert breakpoints and continue. */
626
627 #ifdef START_INFERIOR_TRAPS_EXPECTED
628 pending_execs = START_INFERIOR_TRAPS_EXPECTED;
629 #else
630 pending_execs = 2;
631 #endif
632
633 init_wait_for_inferior ();
634
635 /* Set up the "saved terminal modes" of the inferior
636 based on what modes we are starting it with. */
637 target_terminal_init ();
638
639 /* Install inferior's terminal modes. */
640 target_terminal_inferior ();
641
642 while (1)
643 {
644 stop_soon_quietly = 1; /* Make wait_for_inferior be quiet */
645 wait_for_inferior ();
646 if (stop_signal != SIGTRAP)
647 {
648 /* Let shell child handle its own signals in its own way */
649 /* FIXME, what if child has exit()ed? Must exit loop somehow */
650 resume (0, stop_signal);
651 }
652 else
653 {
654 /* We handle SIGTRAP, however; it means child did an exec. */
655 if (0 == --pending_execs)
656 break;
657 resume (0, 0); /* Just make it go on */
658 }
659 }
660 stop_soon_quietly = 0;
661
662 /* We are now in the child process of interest, having exec'd the
663 correct program, and are poised at the first instruction of the
664 new program. */
665 #ifdef SOLIB_CREATE_INFERIOR_HOOK
666 SOLIB_CREATE_INFERIOR_HOOK (pid);
667 #endif
668
669 /* Should this perhaps just be a "proceed" call? FIXME */
670 insert_step_breakpoint ();
671 breakpoints_failed = insert_breakpoints ();
672 if (!breakpoints_failed)
673 {
674 breakpoints_inserted = 1;
675 target_terminal_inferior();
676 /* Start the child program going on its first instruction, single-
677 stepping if we need to. */
678 resume (bpstat_should_step (), 0);
679 wait_for_inferior ();
680 normal_stop ();
681 }
682 }
683
684 /* Start remote-debugging of a machine over a serial link. */
685
686 void
687 start_remote ()
688 {
689 init_wait_for_inferior ();
690 clear_proceed_status ();
691 stop_soon_quietly = 1;
692 trap_expected = 0;
693 wait_for_inferior ();
694 normal_stop ();
695 }
696
697 /* Initialize static vars when a new inferior begins. */
698
699 void
700 init_wait_for_inferior ()
701 {
702 /* These are meaningless until the first time through wait_for_inferior. */
703 prev_pc = 0;
704 prev_sp = 0;
705 prev_func_start = 0;
706 prev_func_name = NULL;
707
708 trap_expected_after_continue = 0;
709 breakpoints_inserted = 0;
710 mark_breakpoints_out ();
711 stop_signal = 0; /* Don't confuse first call to proceed(). */
712 }
713
714
715 /* Attach to process PID, then initialize for debugging it
716 and wait for the trace-trap that results from attaching. */
717
718 void
719 child_attach (args, from_tty)
720 char *args;
721 int from_tty;
722 {
723 char *exec_file;
724 int pid;
725
726 dont_repeat();
727
728 if (!args)
729 error_no_arg ("process-id to attach");
730
731 #ifndef ATTACH_DETACH
732 error ("Can't attach to a process on this machine.");
733 #else
734 pid = atoi (args);
735
736 if (pid == getpid()) /* Trying to masturbate? */
737 error ("I refuse to debug myself!");
738
739 if (target_has_execution)
740 {
741 if (query ("A program is being debugged already. Kill it? "))
742 target_kill ();
743 else
744 error ("Inferior not killed.");
745 }
746
747 exec_file = (char *) get_exec_file (1);
748
749 if (from_tty)
750 {
751 printf ("Attaching program: %s pid %d\n",
752 exec_file, pid);
753 fflush (stdout);
754 }
755
756 attach (pid);
757 inferior_pid = pid;
758 push_target (&child_ops);
759
760 mark_breakpoints_out ();
761 target_terminal_init ();
762 clear_proceed_status ();
763 stop_soon_quietly = 1;
764 /*proceed (-1, 0, -2);*/
765 target_terminal_inferior ();
766 wait_for_inferior ();
767 #ifdef SOLIB_ADD
768 SOLIB_ADD ((char *)0, from_tty, (struct target_ops *)0);
769 #endif
770 normal_stop ();
771 #endif /* ATTACH_DETACH */
772 }
773 \f
774 /* Wait for control to return from inferior to debugger.
775 If inferior gets a signal, we may decide to start it up again
776 instead of returning. That is why there is a loop in this function.
777 When this function actually returns it means the inferior
778 should be left stopped and GDB should read more commands. */
779
780 void
781 wait_for_inferior ()
782 {
783 WAITTYPE w;
784 int another_trap;
785 int random_signal;
786 CORE_ADDR stop_sp;
787 CORE_ADDR stop_func_start;
788 char *stop_func_name;
789 CORE_ADDR prologue_pc, tmp;
790 int stop_step_resume_break;
791 struct symtab_and_line sal;
792 int remove_breakpoints_on_following_step = 0;
793 int current_line;
794 int handling_longjmp = 0; /* FIXME */
795
796 sal = find_pc_line(prev_pc, 0);
797 current_line = sal.line;
798
799 while (1)
800 {
801 /* Clean up saved state that will become invalid. */
802 pc_changed = 0;
803 flush_cached_frames ();
804 registers_changed ();
805
806 target_wait (&w);
807
808 #ifdef SIGTRAP_STOP_AFTER_LOAD
809
810 /* Somebody called load(2), and it gave us a "trap signal after load".
811 Ignore it gracefully. */
812
813 SIGTRAP_STOP_AFTER_LOAD (w);
814 #endif
815
816 /* See if the process still exists; clean up if it doesn't. */
817 if (WIFEXITED (w))
818 {
819 target_terminal_ours (); /* Must do this before mourn anyway */
820 if (WEXITSTATUS (w))
821 printf_filtered ("\nProgram exited with code 0%o.\n",
822 (unsigned int)WEXITSTATUS (w));
823 else
824 if (!batch_mode())
825 printf_filtered ("\nProgram exited normally.\n");
826 fflush (stdout);
827 target_mourn_inferior ();
828 #ifdef NO_SINGLE_STEP
829 one_stepped = 0;
830 #endif
831 stop_print_frame = 0;
832 break;
833 }
834 else if (!WIFSTOPPED (w))
835 {
836 stop_print_frame = 0;
837 stop_signal = WTERMSIG (w);
838 target_terminal_ours (); /* Must do this before mourn anyway */
839 target_kill (); /* kill mourns as well */
840 #ifdef PRINT_RANDOM_SIGNAL
841 printf_filtered ("\nProgram terminated: ");
842 PRINT_RANDOM_SIGNAL (stop_signal);
843 #else
844 printf_filtered ("\nProgram terminated with signal %d, %s\n",
845 stop_signal, safe_strsignal (stop_signal));
846 #endif
847 printf_filtered ("The inferior process no longer exists.\n");
848 fflush (stdout);
849 #ifdef NO_SINGLE_STEP
850 one_stepped = 0;
851 #endif
852 break;
853 }
854
855 #ifdef NO_SINGLE_STEP
856 if (one_stepped)
857 single_step (0); /* This actually cleans up the ss */
858 #endif /* NO_SINGLE_STEP */
859
860 stop_pc = read_pc ();
861 set_current_frame ( create_new_frame (read_register (FP_REGNUM),
862 read_pc ()));
863
864 stop_frame_address = FRAME_FP (get_current_frame ());
865 stop_sp = read_register (SP_REGNUM);
866 stop_func_start = 0;
867 stop_func_name = 0;
868 /* Don't care about return value; stop_func_start and stop_func_name
869 will both be 0 if it doesn't work. */
870 (void) find_pc_partial_function (stop_pc, &stop_func_name,
871 &stop_func_start);
872 stop_func_start += FUNCTION_START_OFFSET;
873 another_trap = 0;
874 bpstat_clear (&stop_bpstat);
875 stop_step = 0;
876 stop_stack_dummy = 0;
877 stop_print_frame = 1;
878 stop_step_resume_break = 0;
879 random_signal = 0;
880 stopped_by_random_signal = 0;
881 breakpoints_failed = 0;
882
883 /* Look at the cause of the stop, and decide what to do.
884 The alternatives are:
885 1) break; to really stop and return to the debugger,
886 2) drop through to start up again
887 (set another_trap to 1 to single step once)
888 3) set random_signal to 1, and the decision between 1 and 2
889 will be made according to the signal handling tables. */
890
891 stop_signal = WSTOPSIG (w);
892
893 /* First, distinguish signals caused by the debugger from signals
894 that have to do with the program's own actions.
895 Note that breakpoint insns may cause SIGTRAP or SIGILL
896 or SIGEMT, depending on the operating system version.
897 Here we detect when a SIGILL or SIGEMT is really a breakpoint
898 and change it to SIGTRAP. */
899
900 if (stop_signal == SIGTRAP
901 || (breakpoints_inserted &&
902 (stop_signal == SIGILL
903 #ifdef SIGEMT
904 || stop_signal == SIGEMT
905 #endif
906 ))
907 || stop_soon_quietly)
908 {
909 if (stop_signal == SIGTRAP && stop_after_trap)
910 {
911 stop_print_frame = 0;
912 break;
913 }
914 if (stop_soon_quietly)
915 break;
916
917 /* Don't even think about breakpoints
918 if just proceeded over a breakpoint.
919
920 However, if we are trying to proceed over a breakpoint
921 and end up in sigtramp, then step_resume_break_address
922 will be set and we should check whether we've hit the
923 step breakpoint. */
924 if (stop_signal == SIGTRAP && trap_expected
925 && step_resume_break_address == 0)
926 bpstat_clear (&stop_bpstat);
927 else
928 {
929 /* See if there is a breakpoint at the current PC. */
930 #if DECR_PC_AFTER_BREAK
931 /* Notice the case of stepping through a jump
932 that lands just after a breakpoint.
933 Don't confuse that with hitting the breakpoint.
934 What we check for is that 1) stepping is going on
935 and 2) the pc before the last insn does not match
936 the address of the breakpoint before the current pc. */
937 if (prev_pc == stop_pc - DECR_PC_AFTER_BREAK
938 || !step_range_end
939 || step_resume_break_address
940 || handling_longjmp /* FIXME */)
941 #endif /* DECR_PC_AFTER_BREAK not zero */
942 {
943 /* See if we stopped at the special breakpoint for
944 stepping over a subroutine call. If both are zero,
945 this wasn't the reason for the stop. */
946 if (step_resume_break_address
947 && stop_pc - DECR_PC_AFTER_BREAK
948 == step_resume_break_address)
949 {
950 stop_step_resume_break = 1;
951 if (DECR_PC_AFTER_BREAK)
952 {
953 stop_pc -= DECR_PC_AFTER_BREAK;
954 write_register (PC_REGNUM, stop_pc);
955 pc_changed = 0;
956 }
957 }
958 else
959 {
960 stop_bpstat =
961 bpstat_stop_status (&stop_pc, stop_frame_address);
962 /* Following in case break condition called a
963 function. */
964 stop_print_frame = 1;
965 }
966 }
967 }
968
969 if (stop_signal == SIGTRAP)
970 random_signal
971 = !(bpstat_explains_signal (stop_bpstat)
972 || trap_expected
973 || stop_step_resume_break
974 || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
975 || (step_range_end && !step_resume_break_address));
976 else
977 {
978 random_signal
979 = !(bpstat_explains_signal (stop_bpstat)
980 || stop_step_resume_break
981 /* End of a stack dummy. Some systems (e.g. Sony
982 news) give another signal besides SIGTRAP,
983 so check here as well as above. */
984 || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
985 );
986 if (!random_signal)
987 stop_signal = SIGTRAP;
988 }
989 }
990 else
991 random_signal = 1;
992
993 /* For the program's own signals, act according to
994 the signal handling tables. */
995
996 if (random_signal)
997 {
998 /* Signal not for debugging purposes. */
999 int printed = 0;
1000
1001 stopped_by_random_signal = 1;
1002
1003 if (stop_signal >= NSIG
1004 || signal_print[stop_signal])
1005 {
1006 printed = 1;
1007 target_terminal_ours_for_output ();
1008 #ifdef PRINT_RANDOM_SIGNAL
1009 PRINT_RANDOM_SIGNAL (stop_signal);
1010 #else
1011 printf_filtered ("\nProgram received signal %d, %s\n",
1012 stop_signal, safe_strsignal (stop_signal));
1013 #endif /* PRINT_RANDOM_SIGNAL */
1014 fflush (stdout);
1015 }
1016 if (stop_signal >= NSIG
1017 || signal_stop[stop_signal])
1018 break;
1019 /* If not going to stop, give terminal back
1020 if we took it away. */
1021 else if (printed)
1022 target_terminal_inferior ();
1023
1024 /* Note that virtually all the code below does `if !random_signal'.
1025 Perhaps this code should end with a goto or continue. At least
1026 one (now fixed) bug was caused by this -- a !random_signal was
1027 missing in one of the tests below. */
1028 }
1029
1030 /* Handle cases caused by hitting a breakpoint. */
1031
1032 if (!random_signal)
1033 if (bpstat_explains_signal (stop_bpstat))
1034 {
1035 CORE_ADDR jmp_buf_pc;
1036
1037 switch (stop_bpstat->breakpoint_at->type) /* FIXME */
1038 {
1039 /* If we hit the breakpoint at longjmp, disable it for the
1040 duration of this command. Then, install a temporary
1041 breakpoint at the target of the jmp_buf. */
1042 case bp_longjmp:
1043 disable_longjmp_breakpoint();
1044 remove_breakpoints ();
1045 breakpoints_inserted = 0;
1046 if (!GET_LONGJMP_TARGET(&jmp_buf_pc)) goto keep_going;
1047
1048 /* Need to blow away step-resume breakpoint, as it
1049 interferes with us */
1050 remove_step_breakpoint ();
1051 step_resume_break_address = 0;
1052 stop_step_resume_break = 0;
1053
1054 #if 0 /* FIXME - Need to implement nested temporary breakpoints */
1055 if (step_over_calls > 0)
1056 set_longjmp_resume_breakpoint(jmp_buf_pc,
1057 get_current_frame());
1058 else
1059 #endif /* 0 */
1060 set_longjmp_resume_breakpoint(jmp_buf_pc, NULL);
1061 handling_longjmp = 1; /* FIXME */
1062 goto keep_going;
1063
1064 case bp_longjmp_resume:
1065 remove_breakpoints ();
1066 breakpoints_inserted = 0;
1067 #if 0 /* FIXME - Need to implement nested temporary breakpoints */
1068 if (step_over_calls
1069 && (stop_frame_address
1070 INNER_THAN step_frame_address))
1071 {
1072 another_trap = 1;
1073 goto keep_going;
1074 }
1075 #endif /* 0 */
1076 disable_longjmp_breakpoint();
1077 handling_longjmp = 0; /* FIXME */
1078 break;
1079
1080 default:
1081 fprintf(stderr, "Unknown breakpoint type %d\n",
1082 stop_bpstat->breakpoint_at->type);
1083 case bp_watchpoint:
1084 case bp_breakpoint:
1085 case bp_until:
1086 case bp_finish:
1087 /* Does a breakpoint want us to stop? */
1088 if (bpstat_stop (stop_bpstat))
1089 {
1090 stop_print_frame = bpstat_should_print (stop_bpstat);
1091 goto stop_stepping;
1092 }
1093 /* Otherwise, must remove breakpoints and single-step
1094 to get us past the one we hit. */
1095 else
1096 {
1097 remove_breakpoints ();
1098 remove_step_breakpoint ();
1099 breakpoints_inserted = 0;
1100 another_trap = 1;
1101 }
1102 break;
1103 }
1104 }
1105 else if (stop_step_resume_break)
1106 {
1107 /* But if we have hit the step-resumption breakpoint,
1108 remove it. It has done its job getting us here.
1109 The sp test is to make sure that we don't get hung
1110 up in recursive calls in functions without frame
1111 pointers. If the stack pointer isn't outside of
1112 where the breakpoint was set (within a routine to be
1113 stepped over), we're in the middle of a recursive
1114 call. Not true for reg window machines (sparc)
1115 because the must change frames to call things and
1116 the stack pointer doesn't have to change if it
1117 the bp was set in a routine without a frame (pc can
1118 be stored in some other window).
1119
1120 The removal of the sp test is to allow calls to
1121 alloca. Nasty things were happening. Oh, well,
1122 gdb can only handle one level deep of lack of
1123 frame pointer. */
1124
1125 /*
1126 Disable test for step_frame_address match so that we always stop even if the
1127 frames don't match. Reason: if we hit the step_resume_breakpoint, there is
1128 no way to temporarily disable it so that we can step past it. If we leave
1129 the breakpoint in, then we loop forever repeatedly hitting, but never
1130 getting past the breakpoint. This change keeps nexting over recursive
1131 function calls from hanging gdb.
1132 */
1133 #if 0
1134 if (* step_frame_address == 0
1135 || (step_frame_address == stop_frame_address))
1136 #endif
1137 {
1138 remove_step_breakpoint ();
1139 step_resume_break_address = 0;
1140
1141 /* If were waiting for a trap, hitting the step_resume_break
1142 doesn't count as getting it. */
1143 if (trap_expected)
1144 another_trap = 1;
1145 }
1146 }
1147
1148 /* We come here if we hit a breakpoint but should not
1149 stop for it. Possibly we also were stepping
1150 and should stop for that. So fall through and
1151 test for stepping. But, if not stepping,
1152 do not stop. */
1153
1154 /* If this is the breakpoint at the end of a stack dummy,
1155 just stop silently. */
1156 if (!random_signal
1157 && PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address))
1158 {
1159 stop_print_frame = 0;
1160 stop_stack_dummy = 1;
1161 #ifdef HP_OS_BUG
1162 trap_expected_after_continue = 1;
1163 #endif
1164 break;
1165 }
1166
1167 if (step_resume_break_address)
1168 /* Having a step-resume breakpoint overrides anything
1169 else having to do with stepping commands until
1170 that breakpoint is reached. */
1171 ;
1172 /* If stepping through a line, keep going if still within it. */
1173 else if (!random_signal
1174 && step_range_end
1175 && stop_pc >= step_range_start
1176 && stop_pc < step_range_end
1177 /* The step range might include the start of the
1178 function, so if we are at the start of the
1179 step range and either the stack or frame pointers
1180 just changed, we've stepped outside */
1181 && !(stop_pc == step_range_start
1182 && stop_frame_address
1183 && (stop_sp INNER_THAN prev_sp
1184 || stop_frame_address != step_frame_address)))
1185 {
1186 ;
1187 }
1188
1189 /* We stepped out of the stepping range. See if that was due
1190 to a subroutine call that we should proceed to the end of. */
1191 else if (!random_signal && step_range_end)
1192 {
1193 if (stop_func_start)
1194 {
1195 prologue_pc = stop_func_start;
1196 SKIP_PROLOGUE (prologue_pc);
1197 }
1198
1199 /* Did we just take a signal? */
1200 if (IN_SIGTRAMP (stop_pc, stop_func_name)
1201 && !IN_SIGTRAMP (prev_pc, prev_func_name))
1202 {
1203 /* This code is needed at least in the following case:
1204 The user types "next" and then a signal arrives (before
1205 the "next" is done). */
1206 /* We've just taken a signal; go until we are back to
1207 the point where we took it and one more. */
1208 step_resume_break_address = prev_pc;
1209 step_resume_break_duplicate =
1210 breakpoint_here_p (step_resume_break_address);
1211 if (breakpoints_inserted)
1212 insert_step_breakpoint ();
1213 /* Make sure that the stepping range gets us past
1214 that instruction. */
1215 if (step_range_end == 1)
1216 step_range_end = (step_range_start = prev_pc) + 1;
1217 remove_breakpoints_on_following_step = 1;
1218 goto save_pc;
1219 }
1220
1221 /* ==> See comments at top of file on this algorithm. <==*/
1222
1223 if ((stop_pc == stop_func_start
1224 || IN_SOLIB_TRAMPOLINE (stop_pc, stop_func_name))
1225 && (stop_func_start != prev_func_start
1226 || prologue_pc != stop_func_start
1227 || stop_sp != prev_sp))
1228 {
1229 /* It's a subroutine call.
1230 (0) If we are not stepping over any calls ("stepi"), we
1231 just stop.
1232 (1) If we're doing a "next", we want to continue through
1233 the call ("step over the call").
1234 (2) If we are in a function-call trampoline (a stub between
1235 the calling routine and the real function), locate
1236 the real function and change stop_func_start.
1237 (3) If we're doing a "step", and there are no debug symbols
1238 at the target of the call, we want to continue through
1239 it ("step over the call").
1240 (4) Otherwise, we want to stop soon, after the function
1241 prologue ("step into the call"). */
1242
1243 if (step_over_calls == 0)
1244 {
1245 /* I presume that step_over_calls is only 0 when we're
1246 supposed to be stepping at the assembly language level. */
1247 stop_step = 1;
1248 break;
1249 }
1250
1251 if (step_over_calls > 0)
1252 goto step_over_function;
1253
1254 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
1255 if (tmp != 0)
1256 stop_func_start = tmp;
1257
1258 if (find_pc_function (stop_func_start) != 0)
1259 goto step_into_function;
1260
1261 step_over_function:
1262 /* A subroutine call has happened. */
1263 /* Set a special breakpoint after the return */
1264 step_resume_break_address =
1265 ADDR_BITS_REMOVE
1266 (SAVED_PC_AFTER_CALL (get_current_frame ()));
1267 step_resume_break_duplicate
1268 = breakpoint_here_p (step_resume_break_address);
1269 if (breakpoints_inserted)
1270 insert_step_breakpoint ();
1271 goto save_pc;
1272
1273 step_into_function:
1274 /* Subroutine call with source code we should not step over.
1275 Do step to the first line of code in it. */
1276 SKIP_PROLOGUE (stop_func_start);
1277 sal = find_pc_line (stop_func_start, 0);
1278 /* Use the step_resume_break to step until
1279 the end of the prologue, even if that involves jumps
1280 (as it seems to on the vax under 4.2). */
1281 /* If the prologue ends in the middle of a source line,
1282 continue to the end of that source line.
1283 Otherwise, just go to end of prologue. */
1284 #ifdef PROLOGUE_FIRSTLINE_OVERLAP
1285 /* no, don't either. It skips any code that's
1286 legitimately on the first line. */
1287 #else
1288 if (sal.end && sal.pc != stop_func_start)
1289 stop_func_start = sal.end;
1290 #endif
1291
1292 if (stop_func_start == stop_pc)
1293 {
1294 /* We are already there: stop now. */
1295 stop_step = 1;
1296 break;
1297 }
1298 else
1299 /* Put the step-breakpoint there and go until there. */
1300 {
1301 step_resume_break_address = stop_func_start;
1302
1303 step_resume_break_duplicate
1304 = breakpoint_here_p (step_resume_break_address);
1305 if (breakpoints_inserted)
1306 insert_step_breakpoint ();
1307 /* Do not specify what the fp should be when we stop
1308 since on some machines the prologue
1309 is where the new fp value is established. */
1310 step_frame_address = 0;
1311 /* And make sure stepping stops right away then. */
1312 step_range_end = step_range_start;
1313 }
1314 goto save_pc;
1315 }
1316
1317 /* We've wandered out of the step range (but haven't done a
1318 subroutine call or return). */
1319
1320 sal = find_pc_line(stop_pc, 0);
1321
1322 if (step_range_end == 1 || /* stepi or nexti */
1323 sal.line == 0 || /* ...or no line # info */
1324 (stop_pc == sal.pc /* ...or we're at the start */
1325 && current_line != sal.line)) { /* of a different line */
1326 /* Stop because we're done stepping. */
1327 stop_step = 1;
1328 break;
1329 } else {
1330 /* We aren't done stepping, and we have line number info for $pc.
1331 Optimize by setting the step_range for the line.
1332 (We might not be in the original line, but if we entered a
1333 new line in mid-statement, we continue stepping. This makes
1334 things like for(;;) statements work better.) */
1335 step_range_start = sal.pc;
1336 step_range_end = sal.end;
1337 goto save_pc;
1338 }
1339 /* We never fall through here */
1340 }
1341
1342 if (trap_expected
1343 && IN_SIGTRAMP (stop_pc, stop_func_name)
1344 && !IN_SIGTRAMP (prev_pc, prev_func_name))
1345 {
1346 /* What has happened here is that we have just stepped the inferior
1347 with a signal (because it is a signal which shouldn't make
1348 us stop), thus stepping into sigtramp.
1349
1350 So we need to set a step_resume_break_address breakpoint
1351 and continue until we hit it, and then step. */
1352 step_resume_break_address = prev_pc;
1353 /* Always 1, I think, but it's probably easier to have
1354 the step_resume_break as usual rather than trying to
1355 re-use the breakpoint which is already there. */
1356 step_resume_break_duplicate =
1357 breakpoint_here_p (step_resume_break_address);
1358 if (breakpoints_inserted)
1359 insert_step_breakpoint ();
1360 remove_breakpoints_on_following_step = 1;
1361 another_trap = 1;
1362 }
1363
1364 /* My apologies to the gods of structured programming. */
1365 /* Come to this label when you need to resume the inferior. It's really much
1366 cleaner at this time to do a goto than to try and figure out what the
1367 if-else chain ought to look like!! */
1368
1369 keep_going:
1370
1371 save_pc:
1372 /* Save the pc before execution, to compare with pc after stop. */
1373 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
1374 prev_func_start = stop_func_start; /* Ok, since if DECR_PC_AFTER
1375 BREAK is defined, the
1376 original pc would not have
1377 been at the start of a
1378 function. */
1379 prev_func_name = stop_func_name;
1380 prev_sp = stop_sp;
1381
1382 /* If we did not do break;, it means we should keep
1383 running the inferior and not return to debugger. */
1384
1385 if (trap_expected && stop_signal != SIGTRAP)
1386 {
1387 /* We took a signal (which we are supposed to pass through to
1388 the inferior, else we'd have done a break above) and we
1389 haven't yet gotten our trap. Simply continue. */
1390 resume ((step_range_end && !step_resume_break_address)
1391 || (trap_expected && !step_resume_break_address)
1392 || bpstat_should_step (),
1393 stop_signal);
1394 }
1395 else
1396 {
1397 /* Either the trap was not expected, but we are continuing
1398 anyway (the user asked that this signal be passed to the
1399 child)
1400 -- or --
1401 The signal was SIGTRAP, e.g. it was our signal, but we
1402 decided we should resume from it.
1403
1404 We're going to run this baby now!
1405
1406 Insert breakpoints now, unless we are trying
1407 to one-proceed past a breakpoint. */
1408 /* If we've just finished a special step resume and we don't
1409 want to hit a breakpoint, pull em out. */
1410 if (!step_resume_break_address &&
1411 remove_breakpoints_on_following_step)
1412 {
1413 remove_breakpoints_on_following_step = 0;
1414 remove_breakpoints ();
1415 breakpoints_inserted = 0;
1416 }
1417 else if (!breakpoints_inserted &&
1418 (step_resume_break_address != 0 || !another_trap))
1419 {
1420 insert_step_breakpoint ();
1421 breakpoints_failed = insert_breakpoints ();
1422 if (breakpoints_failed)
1423 break;
1424 breakpoints_inserted = 1;
1425 }
1426
1427 trap_expected = another_trap;
1428
1429 if (stop_signal == SIGTRAP)
1430 stop_signal = 0;
1431
1432 #ifdef SHIFT_INST_REGS
1433 /* I'm not sure when this following segment applies. I do know, now,
1434 that we shouldn't rewrite the regs when we were stopped by a
1435 random signal from the inferior process. */
1436
1437 if (!bpstat_explains_signal (stop_bpstat)
1438 && (stop_signal != SIGCLD)
1439 && !stopped_by_random_signal)
1440 {
1441 CORE_ADDR pc_contents = read_register (PC_REGNUM);
1442 CORE_ADDR npc_contents = read_register (NPC_REGNUM);
1443 if (pc_contents != npc_contents)
1444 {
1445 write_register (NNPC_REGNUM, npc_contents);
1446 write_register (NPC_REGNUM, pc_contents);
1447 }
1448 }
1449 #endif /* SHIFT_INST_REGS */
1450
1451 resume ((!step_resume_break_address
1452 && !handling_longjmp
1453 && (step_range_end
1454 || trap_expected))
1455 || bpstat_should_step (),
1456 stop_signal);
1457 }
1458 }
1459
1460 stop_stepping:
1461 if (target_has_execution)
1462 {
1463 /* Assuming the inferior still exists, set these up for next
1464 time, just like we did above if we didn't break out of the
1465 loop. */
1466 prev_pc = read_pc ();
1467 prev_func_start = stop_func_start;
1468 prev_func_name = stop_func_name;
1469 prev_sp = stop_sp;
1470 }
1471 }
1472 \f
1473 /* Here to return control to GDB when the inferior stops for real.
1474 Print appropriate messages, remove breakpoints, give terminal our modes.
1475
1476 STOP_PRINT_FRAME nonzero means print the executing frame
1477 (pc, function, args, file, line number and line text).
1478 BREAKPOINTS_FAILED nonzero means stop was due to error
1479 attempting to insert breakpoints. */
1480
1481 void
1482 normal_stop ()
1483 {
1484 /* Make sure that the current_frame's pc is correct. This
1485 is a correction for setting up the frame info before doing
1486 DECR_PC_AFTER_BREAK */
1487 if (target_has_execution)
1488 (get_current_frame ())->pc = read_pc ();
1489
1490 if (breakpoints_failed)
1491 {
1492 target_terminal_ours_for_output ();
1493 print_sys_errmsg ("ptrace", breakpoints_failed);
1494 printf_filtered ("Stopped; cannot insert breakpoints.\n\
1495 The same program may be running in another process.\n");
1496 }
1497
1498 if (target_has_execution)
1499 remove_step_breakpoint ();
1500
1501 if (target_has_execution && breakpoints_inserted)
1502 if (remove_breakpoints ())
1503 {
1504 target_terminal_ours_for_output ();
1505 printf_filtered ("Cannot remove breakpoints because program is no longer writable.\n\
1506 It might be running in another process.\n\
1507 Further execution is probably impossible.\n");
1508 }
1509
1510 breakpoints_inserted = 0;
1511
1512 /* Delete the breakpoint we stopped at, if it wants to be deleted.
1513 Delete any breakpoint that is to be deleted at the next stop. */
1514
1515 breakpoint_auto_delete (stop_bpstat);
1516
1517 /* If an auto-display called a function and that got a signal,
1518 delete that auto-display to avoid an infinite recursion. */
1519
1520 if (stopped_by_random_signal)
1521 disable_current_display ();
1522
1523 if (step_multi && stop_step)
1524 return;
1525
1526 target_terminal_ours ();
1527
1528 if (!target_has_stack)
1529 return;
1530
1531 /* Select innermost stack frame except on return from a stack dummy routine,
1532 or if the program has exited. Print it without a level number if
1533 we have changed functions or hit a breakpoint. Print source line
1534 if we have one. */
1535 if (!stop_stack_dummy)
1536 {
1537 select_frame (get_current_frame (), 0);
1538
1539 if (stop_print_frame)
1540 {
1541 int source_only;
1542
1543 source_only = bpstat_print (stop_bpstat);
1544 source_only = source_only ||
1545 ( stop_step
1546 && step_frame_address == stop_frame_address
1547 && step_start_function == find_pc_function (stop_pc));
1548
1549 print_stack_frame (selected_frame, -1, source_only? -1: 1);
1550
1551 /* Display the auto-display expressions. */
1552 do_displays ();
1553 }
1554 }
1555
1556 /* Save the function value return registers, if we care.
1557 We might be about to restore their previous contents. */
1558 if (proceed_to_finish)
1559 read_register_bytes (0, stop_registers, REGISTER_BYTES);
1560
1561 if (stop_stack_dummy)
1562 {
1563 /* Pop the empty frame that contains the stack dummy.
1564 POP_FRAME ends with a setting of the current frame, so we
1565 can use that next. */
1566 POP_FRAME;
1567 select_frame (get_current_frame (), 0);
1568 }
1569 }
1570 \f
1571 static void
1572 insert_step_breakpoint ()
1573 {
1574 if (step_resume_break_address && !step_resume_break_duplicate)
1575 target_insert_breakpoint (step_resume_break_address,
1576 step_resume_break_shadow);
1577 }
1578
1579 static void
1580 remove_step_breakpoint ()
1581 {
1582 if (step_resume_break_address && !step_resume_break_duplicate)
1583 target_remove_breakpoint (step_resume_break_address,
1584 step_resume_break_shadow);
1585 }
1586 \f
1587 int signal_stop_state (signo)
1588 int signo;
1589 {
1590 return ((signo >= 0 && signo < NSIG) ? signal_stop[signo] : 0);
1591 }
1592
1593 int signal_print_state (signo)
1594 int signo;
1595 {
1596 return ((signo >= 0 && signo < NSIG) ? signal_print[signo] : 0);
1597 }
1598
1599 int signal_pass_state (signo)
1600 int signo;
1601 {
1602 return ((signo >= 0 && signo < NSIG) ? signal_program[signo] : 0);
1603 }
1604
1605 static void
1606 sig_print_header ()
1607 {
1608 printf_filtered ("Signal\t\tStop\tPrint\tPass to program\tDescription\n");
1609 }
1610
1611 static void
1612 sig_print_info (number)
1613 int number;
1614 {
1615 char *name;
1616
1617 if ((name = strsigno (number)) == NULL)
1618 printf_filtered ("%d\t\t", number);
1619 else
1620 printf_filtered ("%s (%d)\t", name, number);
1621 printf_filtered ("%s\t", signal_stop[number] ? "Yes" : "No");
1622 printf_filtered ("%s\t", signal_print[number] ? "Yes" : "No");
1623 printf_filtered ("%s\t\t", signal_program[number] ? "Yes" : "No");
1624 printf_filtered ("%s\n", safe_strsignal (number));
1625 }
1626
1627 /* Specify how various signals in the inferior should be handled. */
1628
1629 static void
1630 handle_command (args, from_tty)
1631 char *args;
1632 int from_tty;
1633 {
1634 register char *p = args;
1635 int signum = 0;
1636 register int digits, wordlen;
1637 char *nextarg;
1638
1639 if (!args)
1640 error_no_arg ("signal to handle");
1641
1642 while (*p)
1643 {
1644 /* Find the end of the next word in the args. */
1645 for (wordlen = 0;
1646 p[wordlen] && p[wordlen] != ' ' && p[wordlen] != '\t';
1647 wordlen++);
1648 /* Set nextarg to the start of the word after the one we just
1649 found, and null-terminate this one. */
1650 if (p[wordlen] == '\0')
1651 nextarg = p + wordlen;
1652 else
1653 {
1654 p[wordlen] = '\0';
1655 nextarg = p + wordlen + 1;
1656 }
1657
1658
1659 for (digits = 0; p[digits] >= '0' && p[digits] <= '9'; digits++);
1660
1661 if (signum == 0)
1662 {
1663 /* It is the first argument--must be the signal to operate on. */
1664 if (digits == wordlen)
1665 {
1666 /* Numeric. */
1667 signum = atoi (p);
1668 if (signum <= 0 || signum > signo_max ())
1669 {
1670 p[wordlen] = '\0';
1671 error ("Invalid signal %s given as argument to \"handle\".", p);
1672 }
1673 }
1674 else
1675 {
1676 /* Symbolic. */
1677 signum = strtosigno (p);
1678 if (signum == 0)
1679 error ("No such signal \"%s\"", p);
1680 }
1681
1682 if (signum == SIGTRAP || signum == SIGINT)
1683 {
1684 if (!query ("%s is used by the debugger.\nAre you sure you want to change it? ", strsigno (signum)))
1685 error ("Not confirmed.");
1686 }
1687 }
1688 /* Else, if already got a signal number, look for flag words
1689 saying what to do for it. */
1690 else if (!strncmp (p, "stop", wordlen))
1691 {
1692 signal_stop[signum] = 1;
1693 signal_print[signum] = 1;
1694 }
1695 else if (wordlen >= 2 && !strncmp (p, "print", wordlen))
1696 signal_print[signum] = 1;
1697 else if (wordlen >= 2 && !strncmp (p, "pass", wordlen))
1698 signal_program[signum] = 1;
1699 else if (!strncmp (p, "ignore", wordlen))
1700 signal_program[signum] = 0;
1701 else if (wordlen >= 3 && !strncmp (p, "nostop", wordlen))
1702 signal_stop[signum] = 0;
1703 else if (wordlen >= 4 && !strncmp (p, "noprint", wordlen))
1704 {
1705 signal_print[signum] = 0;
1706 signal_stop[signum] = 0;
1707 }
1708 else if (wordlen >= 4 && !strncmp (p, "nopass", wordlen))
1709 signal_program[signum] = 0;
1710 else if (wordlen >= 3 && !strncmp (p, "noignore", wordlen))
1711 signal_program[signum] = 1;
1712 /* Not a number and not a recognized flag word => complain. */
1713 else
1714 {
1715 error ("Unrecognized or ambiguous flag word: \"%s\".", p);
1716 }
1717
1718 /* Find start of next word. */
1719 p = nextarg;
1720 while (*p == ' ' || *p == '\t') p++;
1721 }
1722
1723 NOTICE_SIGNAL_HANDLING_CHANGE;
1724
1725 if (from_tty)
1726 {
1727 /* Show the results. */
1728 sig_print_header ();
1729 sig_print_info (signum);
1730 }
1731 }
1732
1733 /* Print current contents of the tables set by the handle command. */
1734
1735 static void
1736 signals_info (signum_exp, from_tty)
1737 char *signum_exp;
1738 int from_tty;
1739 {
1740 register int i;
1741 sig_print_header ();
1742
1743 if (signum_exp)
1744 {
1745 /* First see if this is a symbol name. */
1746 i = strtosigno (signum_exp);
1747 if (i == 0)
1748 {
1749 /* Nope, maybe it's an address which evaluates to a signal
1750 number. */
1751 i = parse_and_eval_address (signum_exp);
1752 if (i >= NSIG || i < 0)
1753 error ("Signal number out of bounds.");
1754 }
1755 sig_print_info (i);
1756 return;
1757 }
1758
1759 printf_filtered ("\n");
1760 for (i = 0; i < NSIG; i++)
1761 {
1762 QUIT;
1763
1764 sig_print_info (i);
1765 }
1766
1767 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
1768 }
1769 \f
1770 /* Save all of the information associated with the inferior<==>gdb
1771 connection. INF_STATUS is a pointer to a "struct inferior_status"
1772 (defined in inferior.h). */
1773
1774 void
1775 save_inferior_status (inf_status, restore_stack_info)
1776 struct inferior_status *inf_status;
1777 int restore_stack_info;
1778 {
1779 inf_status->pc_changed = pc_changed;
1780 inf_status->stop_signal = stop_signal;
1781 inf_status->stop_pc = stop_pc;
1782 inf_status->stop_frame_address = stop_frame_address;
1783 inf_status->stop_step = stop_step;
1784 inf_status->stop_stack_dummy = stop_stack_dummy;
1785 inf_status->stopped_by_random_signal = stopped_by_random_signal;
1786 inf_status->trap_expected = trap_expected;
1787 inf_status->step_range_start = step_range_start;
1788 inf_status->step_range_end = step_range_end;
1789 inf_status->step_frame_address = step_frame_address;
1790 inf_status->step_over_calls = step_over_calls;
1791 inf_status->step_resume_break_address = step_resume_break_address;
1792 inf_status->stop_after_trap = stop_after_trap;
1793 inf_status->stop_soon_quietly = stop_soon_quietly;
1794 /* Save original bpstat chain here; replace it with copy of chain.
1795 If caller's caller is walking the chain, they'll be happier if we
1796 hand them back the original chain when restore_i_s is called. */
1797 inf_status->stop_bpstat = stop_bpstat;
1798 stop_bpstat = bpstat_copy (stop_bpstat);
1799 inf_status->breakpoint_proceeded = breakpoint_proceeded;
1800 inf_status->restore_stack_info = restore_stack_info;
1801 inf_status->proceed_to_finish = proceed_to_finish;
1802
1803 bcopy (stop_registers, inf_status->stop_registers, REGISTER_BYTES);
1804
1805 record_selected_frame (&(inf_status->selected_frame_address),
1806 &(inf_status->selected_level));
1807 return;
1808 }
1809
1810 void
1811 restore_inferior_status (inf_status)
1812 struct inferior_status *inf_status;
1813 {
1814 FRAME fid;
1815 int level = inf_status->selected_level;
1816
1817 pc_changed = inf_status->pc_changed;
1818 stop_signal = inf_status->stop_signal;
1819 stop_pc = inf_status->stop_pc;
1820 stop_frame_address = inf_status->stop_frame_address;
1821 stop_step = inf_status->stop_step;
1822 stop_stack_dummy = inf_status->stop_stack_dummy;
1823 stopped_by_random_signal = inf_status->stopped_by_random_signal;
1824 trap_expected = inf_status->trap_expected;
1825 step_range_start = inf_status->step_range_start;
1826 step_range_end = inf_status->step_range_end;
1827 step_frame_address = inf_status->step_frame_address;
1828 step_over_calls = inf_status->step_over_calls;
1829 step_resume_break_address = inf_status->step_resume_break_address;
1830 stop_after_trap = inf_status->stop_after_trap;
1831 stop_soon_quietly = inf_status->stop_soon_quietly;
1832 bpstat_clear (&stop_bpstat);
1833 stop_bpstat = inf_status->stop_bpstat;
1834 breakpoint_proceeded = inf_status->breakpoint_proceeded;
1835 proceed_to_finish = inf_status->proceed_to_finish;
1836
1837 bcopy (inf_status->stop_registers, stop_registers, REGISTER_BYTES);
1838
1839 /* The inferior can be gone if the user types "print exit(0)"
1840 (and perhaps other times). */
1841 if (target_has_stack && inf_status->restore_stack_info)
1842 {
1843 fid = find_relative_frame (get_current_frame (),
1844 &level);
1845
1846 /* If inf_status->selected_frame_address is NULL, there was no
1847 previously selected frame. */
1848 if (fid == 0 ||
1849 FRAME_FP (fid) != inf_status->selected_frame_address ||
1850 level != 0)
1851 {
1852 #if 1
1853 /* I'm not sure this error message is a good idea. I have
1854 only seen it occur after "Can't continue previously
1855 requested operation" (we get called from do_cleanups), in
1856 which case it just adds insult to injury (one confusing
1857 error message after another. Besides which, does the
1858 user really care if we can't restore the previously
1859 selected frame? */
1860 fprintf (stderr, "Unable to restore previously selected frame.\n");
1861 #endif
1862 select_frame (get_current_frame (), 0);
1863 return;
1864 }
1865
1866 select_frame (fid, inf_status->selected_level);
1867 }
1868 }
1869
1870 \f
1871 void
1872 _initialize_infrun ()
1873 {
1874 register int i;
1875 register int numsigs;
1876
1877 add_info ("signals", signals_info,
1878 "What debugger does when program gets various signals.\n\
1879 Specify a signal number as argument to print info on that signal only.");
1880
1881 add_com ("handle", class_run, handle_command,
1882 "Specify how to handle a signal.\n\
1883 Args are signal number followed by flags.\n\
1884 Flags allowed are \"stop\", \"print\", \"pass\",\n\
1885 \"nostop\", \"noprint\" or \"nopass\".\n\
1886 Print means print a message if this signal happens.\n\
1887 Stop means reenter debugger if this signal happens (implies print).\n\
1888 Pass means let program see this signal; otherwise program doesn't know.\n\
1889 Pass and Stop may be combined.");
1890
1891 numsigs = signo_max () + 1;
1892 signal_stop = xmalloc (sizeof (signal_stop[0]) * numsigs);
1893 signal_print = xmalloc (sizeof (signal_print[0]) * numsigs);
1894 signal_program = xmalloc (sizeof (signal_program[0]) * numsigs);
1895 for (i = 0; i < numsigs; i++)
1896 {
1897 signal_stop[i] = 1;
1898 signal_print[i] = 1;
1899 signal_program[i] = 1;
1900 }
1901
1902 /* Signals caused by debugger's own actions
1903 should not be given to the program afterwards. */
1904 signal_program[SIGTRAP] = 0;
1905 signal_program[SIGINT] = 0;
1906
1907 /* Signals that are not errors should not normally enter the debugger. */
1908 #ifdef SIGALRM
1909 signal_stop[SIGALRM] = 0;
1910 signal_print[SIGALRM] = 0;
1911 #endif /* SIGALRM */
1912 #ifdef SIGVTALRM
1913 signal_stop[SIGVTALRM] = 0;
1914 signal_print[SIGVTALRM] = 0;
1915 #endif /* SIGVTALRM */
1916 #ifdef SIGPROF
1917 signal_stop[SIGPROF] = 0;
1918 signal_print[SIGPROF] = 0;
1919 #endif /* SIGPROF */
1920 #ifdef SIGCHLD
1921 signal_stop[SIGCHLD] = 0;
1922 signal_print[SIGCHLD] = 0;
1923 #endif /* SIGCHLD */
1924 #ifdef SIGCLD
1925 signal_stop[SIGCLD] = 0;
1926 signal_print[SIGCLD] = 0;
1927 #endif /* SIGCLD */
1928 #ifdef SIGIO
1929 signal_stop[SIGIO] = 0;
1930 signal_print[SIGIO] = 0;
1931 #endif /* SIGIO */
1932 #ifdef SIGURG
1933 signal_stop[SIGURG] = 0;
1934 signal_print[SIGURG] = 0;
1935 #endif /* SIGURG */
1936 }