]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
2007-06-09 Markus Deuling <deuling@de.ibm.com>
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "exceptions.h"
32 #include "breakpoint.h"
33 #include "gdb_wait.h"
34 #include "gdbcore.h"
35 #include "gdbcmd.h"
36 #include "cli/cli-script.h"
37 #include "target.h"
38 #include "gdbthread.h"
39 #include "annotate.h"
40 #include "symfile.h"
41 #include "top.h"
42 #include <signal.h>
43 #include "inf-loop.h"
44 #include "regcache.h"
45 #include "value.h"
46 #include "observer.h"
47 #include "language.h"
48 #include "solib.h"
49 #include "main.h"
50
51 #include "gdb_assert.h"
52 #include "mi/mi-common.h"
53
54 /* Prototypes for local functions */
55
56 static void signals_info (char *, int);
57
58 static void handle_command (char *, int);
59
60 static void sig_print_info (enum target_signal);
61
62 static void sig_print_header (void);
63
64 static void resume_cleanups (void *);
65
66 static int hook_stop_stub (void *);
67
68 static int restore_selected_frame (void *);
69
70 static void build_infrun (void);
71
72 static int follow_fork (void);
73
74 static void set_schedlock_func (char *args, int from_tty,
75 struct cmd_list_element *c);
76
77 struct execution_control_state;
78
79 static int currently_stepping (struct execution_control_state *ecs);
80
81 static void xdb_handle_command (char *args, int from_tty);
82
83 static int prepare_to_proceed (void);
84
85 void _initialize_infrun (void);
86
87 int inferior_ignoring_startup_exec_events = 0;
88 int inferior_ignoring_leading_exec_events = 0;
89
90 /* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93 int step_stop_if_no_debug = 0;
94 static void
95 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97 {
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99 }
100
101 /* In asynchronous mode, but simulating synchronous execution. */
102
103 int sync_execution = 0;
104
105 /* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
107 running in. */
108
109 static ptid_t previous_inferior_ptid;
110
111 /* This is true for configurations that may follow through execl() and
112 similar functions. At present this is only true for HP-UX native. */
113
114 #ifndef MAY_FOLLOW_EXEC
115 #define MAY_FOLLOW_EXEC (0)
116 #endif
117
118 static int may_follow_exec = MAY_FOLLOW_EXEC;
119
120 static int debug_infrun = 0;
121 static void
122 show_debug_infrun (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c, const char *value)
124 {
125 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
126 }
127
128 /* If the program uses ELF-style shared libraries, then calls to
129 functions in shared libraries go through stubs, which live in a
130 table called the PLT (Procedure Linkage Table). The first time the
131 function is called, the stub sends control to the dynamic linker,
132 which looks up the function's real address, patches the stub so
133 that future calls will go directly to the function, and then passes
134 control to the function.
135
136 If we are stepping at the source level, we don't want to see any of
137 this --- we just want to skip over the stub and the dynamic linker.
138 The simple approach is to single-step until control leaves the
139 dynamic linker.
140
141 However, on some systems (e.g., Red Hat's 5.2 distribution) the
142 dynamic linker calls functions in the shared C library, so you
143 can't tell from the PC alone whether the dynamic linker is still
144 running. In this case, we use a step-resume breakpoint to get us
145 past the dynamic linker, as if we were using "next" to step over a
146 function call.
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
149 linker code or not. Normally, this means we single-step. However,
150 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
151 address where we can place a step-resume breakpoint to get past the
152 linker's symbol resolution function.
153
154 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
155 pretty portable way, by comparing the PC against the address ranges
156 of the dynamic linker's sections.
157
158 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
159 it depends on internal details of the dynamic linker. It's usually
160 not too hard to figure out where to put a breakpoint, but it
161 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
162 sanity checking. If it can't figure things out, returning zero and
163 getting the (possibly confusing) stepping behavior is better than
164 signalling an error, which will obscure the change in the
165 inferior's state. */
166
167 /* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
169 dld itself).
170
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
174
175 #ifndef SOLIB_IN_DYNAMIC_LINKER
176 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
177 #endif
178
179
180 /* Convert the #defines into values. This is temporary until wfi control
181 flow is completely sorted out. */
182
183 #ifndef CANNOT_STEP_HW_WATCHPOINTS
184 #define CANNOT_STEP_HW_WATCHPOINTS 0
185 #else
186 #undef CANNOT_STEP_HW_WATCHPOINTS
187 #define CANNOT_STEP_HW_WATCHPOINTS 1
188 #endif
189
190 /* Tables of how to react to signals; the user sets them. */
191
192 static unsigned char *signal_stop;
193 static unsigned char *signal_print;
194 static unsigned char *signal_program;
195
196 #define SET_SIGS(nsigs,sigs,flags) \
197 do { \
198 int signum = (nsigs); \
199 while (signum-- > 0) \
200 if ((sigs)[signum]) \
201 (flags)[signum] = 1; \
202 } while (0)
203
204 #define UNSET_SIGS(nsigs,sigs,flags) \
205 do { \
206 int signum = (nsigs); \
207 while (signum-- > 0) \
208 if ((sigs)[signum]) \
209 (flags)[signum] = 0; \
210 } while (0)
211
212 /* Value to pass to target_resume() to cause all threads to resume */
213
214 #define RESUME_ALL (pid_to_ptid (-1))
215
216 /* Command list pointer for the "stop" placeholder. */
217
218 static struct cmd_list_element *stop_command;
219
220 /* Nonzero if breakpoints are now inserted in the inferior. */
221
222 static int breakpoints_inserted;
223
224 /* Function inferior was in as of last step command. */
225
226 static struct symbol *step_start_function;
227
228 /* Nonzero if we are expecting a trace trap and should proceed from it. */
229
230 static int trap_expected;
231
232 /* Nonzero if we want to give control to the user when we're notified
233 of shared library events by the dynamic linker. */
234 static int stop_on_solib_events;
235 static void
236 show_stop_on_solib_events (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238 {
239 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
240 value);
241 }
242
243 /* Nonzero means expecting a trace trap
244 and should stop the inferior and return silently when it happens. */
245
246 int stop_after_trap;
247
248 /* Nonzero means expecting a trap and caller will handle it themselves.
249 It is used after attach, due to attaching to a process;
250 when running in the shell before the child program has been exec'd;
251 and when running some kinds of remote stuff (FIXME?). */
252
253 enum stop_kind stop_soon;
254
255 /* Nonzero if proceed is being used for a "finish" command or a similar
256 situation when stop_registers should be saved. */
257
258 int proceed_to_finish;
259
260 /* Save register contents here when about to pop a stack dummy frame,
261 if-and-only-if proceed_to_finish is set.
262 Thus this contains the return value from the called function (assuming
263 values are returned in a register). */
264
265 struct regcache *stop_registers;
266
267 /* Nonzero after stop if current stack frame should be printed. */
268
269 static int stop_print_frame;
270
271 static struct breakpoint *step_resume_breakpoint = NULL;
272
273 /* This is a cached copy of the pid/waitstatus of the last event
274 returned by target_wait()/deprecated_target_wait_hook(). This
275 information is returned by get_last_target_status(). */
276 static ptid_t target_last_wait_ptid;
277 static struct target_waitstatus target_last_waitstatus;
278
279 /* This is used to remember when a fork, vfork or exec event
280 was caught by a catchpoint, and thus the event is to be
281 followed at the next resume of the inferior, and not
282 immediately. */
283 static struct
284 {
285 enum target_waitkind kind;
286 struct
287 {
288 int parent_pid;
289 int child_pid;
290 }
291 fork_event;
292 char *execd_pathname;
293 }
294 pending_follow;
295
296 static const char follow_fork_mode_child[] = "child";
297 static const char follow_fork_mode_parent[] = "parent";
298
299 static const char *follow_fork_mode_kind_names[] = {
300 follow_fork_mode_child,
301 follow_fork_mode_parent,
302 NULL
303 };
304
305 static const char *follow_fork_mode_string = follow_fork_mode_parent;
306 static void
307 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
308 struct cmd_list_element *c, const char *value)
309 {
310 fprintf_filtered (file, _("\
311 Debugger response to a program call of fork or vfork is \"%s\".\n"),
312 value);
313 }
314 \f
315
316 static int
317 follow_fork (void)
318 {
319 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
320
321 return target_follow_fork (follow_child);
322 }
323
324 void
325 follow_inferior_reset_breakpoints (void)
326 {
327 /* Was there a step_resume breakpoint? (There was if the user
328 did a "next" at the fork() call.) If so, explicitly reset its
329 thread number.
330
331 step_resumes are a form of bp that are made to be per-thread.
332 Since we created the step_resume bp when the parent process
333 was being debugged, and now are switching to the child process,
334 from the breakpoint package's viewpoint, that's a switch of
335 "threads". We must update the bp's notion of which thread
336 it is for, or it'll be ignored when it triggers. */
337
338 if (step_resume_breakpoint)
339 breakpoint_re_set_thread (step_resume_breakpoint);
340
341 /* Reinsert all breakpoints in the child. The user may have set
342 breakpoints after catching the fork, in which case those
343 were never set in the child, but only in the parent. This makes
344 sure the inserted breakpoints match the breakpoint list. */
345
346 breakpoint_re_set ();
347 insert_breakpoints ();
348 }
349
350 /* EXECD_PATHNAME is assumed to be non-NULL. */
351
352 static void
353 follow_exec (int pid, char *execd_pathname)
354 {
355 int saved_pid = pid;
356 struct target_ops *tgt;
357
358 if (!may_follow_exec)
359 return;
360
361 /* This is an exec event that we actually wish to pay attention to.
362 Refresh our symbol table to the newly exec'd program, remove any
363 momentary bp's, etc.
364
365 If there are breakpoints, they aren't really inserted now,
366 since the exec() transformed our inferior into a fresh set
367 of instructions.
368
369 We want to preserve symbolic breakpoints on the list, since
370 we have hopes that they can be reset after the new a.out's
371 symbol table is read.
372
373 However, any "raw" breakpoints must be removed from the list
374 (e.g., the solib bp's), since their address is probably invalid
375 now.
376
377 And, we DON'T want to call delete_breakpoints() here, since
378 that may write the bp's "shadow contents" (the instruction
379 value that was overwritten witha TRAP instruction). Since
380 we now have a new a.out, those shadow contents aren't valid. */
381 update_breakpoints_after_exec ();
382
383 /* If there was one, it's gone now. We cannot truly step-to-next
384 statement through an exec(). */
385 step_resume_breakpoint = NULL;
386 step_range_start = 0;
387 step_range_end = 0;
388
389 /* What is this a.out's name? */
390 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
391
392 /* We've followed the inferior through an exec. Therefore, the
393 inferior has essentially been killed & reborn. */
394
395 /* First collect the run target in effect. */
396 tgt = find_run_target ();
397 /* If we can't find one, things are in a very strange state... */
398 if (tgt == NULL)
399 error (_("Could find run target to save before following exec"));
400
401 gdb_flush (gdb_stdout);
402 target_mourn_inferior ();
403 inferior_ptid = pid_to_ptid (saved_pid);
404 /* Because mourn_inferior resets inferior_ptid. */
405 push_target (tgt);
406
407 /* That a.out is now the one to use. */
408 exec_file_attach (execd_pathname, 0);
409
410 /* And also is where symbols can be found. */
411 symbol_file_add_main (execd_pathname, 0);
412
413 /* Reset the shared library package. This ensures that we get
414 a shlib event when the child reaches "_start", at which point
415 the dld will have had a chance to initialize the child. */
416 #if defined(SOLIB_RESTART)
417 SOLIB_RESTART ();
418 #endif
419 #ifdef SOLIB_CREATE_INFERIOR_HOOK
420 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
421 #else
422 solib_create_inferior_hook ();
423 #endif
424
425 /* Reinsert all breakpoints. (Those which were symbolic have
426 been reset to the proper address in the new a.out, thanks
427 to symbol_file_command...) */
428 insert_breakpoints ();
429
430 /* The next resume of this inferior should bring it to the shlib
431 startup breakpoints. (If the user had also set bp's on
432 "main" from the old (parent) process, then they'll auto-
433 matically get reset there in the new process.) */
434 }
435
436 /* Non-zero if we just simulating a single-step. This is needed
437 because we cannot remove the breakpoints in the inferior process
438 until after the `wait' in `wait_for_inferior'. */
439 static int singlestep_breakpoints_inserted_p = 0;
440
441 /* The thread we inserted single-step breakpoints for. */
442 static ptid_t singlestep_ptid;
443
444 /* PC when we started this single-step. */
445 static CORE_ADDR singlestep_pc;
446
447 /* If another thread hit the singlestep breakpoint, we save the original
448 thread here so that we can resume single-stepping it later. */
449 static ptid_t saved_singlestep_ptid;
450 static int stepping_past_singlestep_breakpoint;
451 \f
452
453 /* Things to clean up if we QUIT out of resume (). */
454 static void
455 resume_cleanups (void *ignore)
456 {
457 normal_stop ();
458 }
459
460 static const char schedlock_off[] = "off";
461 static const char schedlock_on[] = "on";
462 static const char schedlock_step[] = "step";
463 static const char *scheduler_enums[] = {
464 schedlock_off,
465 schedlock_on,
466 schedlock_step,
467 NULL
468 };
469 static const char *scheduler_mode = schedlock_off;
470 static void
471 show_scheduler_mode (struct ui_file *file, int from_tty,
472 struct cmd_list_element *c, const char *value)
473 {
474 fprintf_filtered (file, _("\
475 Mode for locking scheduler during execution is \"%s\".\n"),
476 value);
477 }
478
479 static void
480 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
481 {
482 if (!target_can_lock_scheduler)
483 {
484 scheduler_mode = schedlock_off;
485 error (_("Target '%s' cannot support this command."), target_shortname);
486 }
487 }
488
489
490 /* Resume the inferior, but allow a QUIT. This is useful if the user
491 wants to interrupt some lengthy single-stepping operation
492 (for child processes, the SIGINT goes to the inferior, and so
493 we get a SIGINT random_signal, but for remote debugging and perhaps
494 other targets, that's not true).
495
496 STEP nonzero if we should step (zero to continue instead).
497 SIG is the signal to give the inferior (zero for none). */
498 void
499 resume (int step, enum target_signal sig)
500 {
501 int should_resume = 1;
502 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
503 QUIT;
504
505 if (debug_infrun)
506 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
507 step, sig);
508
509 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
510
511
512 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
513 over an instruction that causes a page fault without triggering
514 a hardware watchpoint. The kernel properly notices that it shouldn't
515 stop, because the hardware watchpoint is not triggered, but it forgets
516 the step request and continues the program normally.
517 Work around the problem by removing hardware watchpoints if a step is
518 requested, GDB will check for a hardware watchpoint trigger after the
519 step anyway. */
520 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
521 remove_hw_watchpoints ();
522
523
524 /* Normally, by the time we reach `resume', the breakpoints are either
525 removed or inserted, as appropriate. The exception is if we're sitting
526 at a permanent breakpoint; we need to step over it, but permanent
527 breakpoints can't be removed. So we have to test for it here. */
528 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
529 {
530 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
531 gdbarch_skip_permanent_breakpoint (current_gdbarch, current_regcache);
532 else
533 error (_("\
534 The program is stopped at a permanent breakpoint, but GDB does not know\n\
535 how to step past a permanent breakpoint on this architecture. Try using\n\
536 a command like `return' or `jump' to continue execution."));
537 }
538
539 if (SOFTWARE_SINGLE_STEP_P () && step)
540 {
541 /* Do it the hard way, w/temp breakpoints */
542 if (SOFTWARE_SINGLE_STEP (current_regcache))
543 {
544 /* ...and don't ask hardware to do it. */
545 step = 0;
546 /* and do not pull these breakpoints until after a `wait' in
547 `wait_for_inferior' */
548 singlestep_breakpoints_inserted_p = 1;
549 singlestep_ptid = inferior_ptid;
550 singlestep_pc = read_pc ();
551 }
552 }
553
554 /* If there were any forks/vforks/execs that were caught and are
555 now to be followed, then do so. */
556 switch (pending_follow.kind)
557 {
558 case TARGET_WAITKIND_FORKED:
559 case TARGET_WAITKIND_VFORKED:
560 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
561 if (follow_fork ())
562 should_resume = 0;
563 break;
564
565 case TARGET_WAITKIND_EXECD:
566 /* follow_exec is called as soon as the exec event is seen. */
567 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
568 break;
569
570 default:
571 break;
572 }
573
574 /* Install inferior's terminal modes. */
575 target_terminal_inferior ();
576
577 if (should_resume)
578 {
579 ptid_t resume_ptid;
580
581 resume_ptid = RESUME_ALL; /* Default */
582
583 if ((step || singlestep_breakpoints_inserted_p)
584 && (stepping_past_singlestep_breakpoint
585 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
586 {
587 /* Stepping past a breakpoint without inserting breakpoints.
588 Make sure only the current thread gets to step, so that
589 other threads don't sneak past breakpoints while they are
590 not inserted. */
591
592 resume_ptid = inferior_ptid;
593 }
594
595 if ((scheduler_mode == schedlock_on)
596 || (scheduler_mode == schedlock_step
597 && (step || singlestep_breakpoints_inserted_p)))
598 {
599 /* User-settable 'scheduler' mode requires solo thread resume. */
600 resume_ptid = inferior_ptid;
601 }
602
603 if (gdbarch_cannot_step_breakpoint (current_gdbarch))
604 {
605 /* Most targets can step a breakpoint instruction, thus
606 executing it normally. But if this one cannot, just
607 continue and we will hit it anyway. */
608 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
609 step = 0;
610 }
611 target_resume (resume_ptid, step, sig);
612 }
613
614 discard_cleanups (old_cleanups);
615 }
616 \f
617
618 /* Clear out all variables saying what to do when inferior is continued.
619 First do this, then set the ones you want, then call `proceed'. */
620
621 void
622 clear_proceed_status (void)
623 {
624 trap_expected = 0;
625 step_range_start = 0;
626 step_range_end = 0;
627 step_frame_id = null_frame_id;
628 step_over_calls = STEP_OVER_UNDEBUGGABLE;
629 stop_after_trap = 0;
630 stop_soon = NO_STOP_QUIETLY;
631 proceed_to_finish = 0;
632 breakpoint_proceeded = 1; /* We're about to proceed... */
633
634 /* Discard any remaining commands or status from previous stop. */
635 bpstat_clear (&stop_bpstat);
636 }
637
638 /* This should be suitable for any targets that support threads. */
639
640 static int
641 prepare_to_proceed (void)
642 {
643 ptid_t wait_ptid;
644 struct target_waitstatus wait_status;
645
646 /* Get the last target status returned by target_wait(). */
647 get_last_target_status (&wait_ptid, &wait_status);
648
649 /* Make sure we were stopped either at a breakpoint, or because
650 of a Ctrl-C. */
651 if (wait_status.kind != TARGET_WAITKIND_STOPPED
652 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
653 && wait_status.value.sig != TARGET_SIGNAL_INT))
654 {
655 return 0;
656 }
657
658 if (!ptid_equal (wait_ptid, minus_one_ptid)
659 && !ptid_equal (inferior_ptid, wait_ptid))
660 {
661 /* Switched over from WAIT_PID. */
662 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
663
664 if (wait_pc != read_pc ())
665 {
666 /* Switch back to WAIT_PID thread. */
667 inferior_ptid = wait_ptid;
668
669 /* FIXME: This stuff came from switch_to_thread() in
670 thread.c (which should probably be a public function). */
671 reinit_frame_cache ();
672 registers_changed ();
673 stop_pc = wait_pc;
674 }
675
676 /* We return 1 to indicate that there is a breakpoint here,
677 so we need to step over it before continuing to avoid
678 hitting it straight away. */
679 if (breakpoint_here_p (wait_pc))
680 return 1;
681 }
682
683 return 0;
684
685 }
686
687 /* Record the pc of the program the last time it stopped. This is
688 just used internally by wait_for_inferior, but need to be preserved
689 over calls to it and cleared when the inferior is started. */
690 static CORE_ADDR prev_pc;
691
692 /* Basic routine for continuing the program in various fashions.
693
694 ADDR is the address to resume at, or -1 for resume where stopped.
695 SIGGNAL is the signal to give it, or 0 for none,
696 or -1 for act according to how it stopped.
697 STEP is nonzero if should trap after one instruction.
698 -1 means return after that and print nothing.
699 You should probably set various step_... variables
700 before calling here, if you are stepping.
701
702 You should call clear_proceed_status before calling proceed. */
703
704 void
705 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
706 {
707 int oneproc = 0;
708
709 if (step > 0)
710 step_start_function = find_pc_function (read_pc ());
711 if (step < 0)
712 stop_after_trap = 1;
713
714 if (addr == (CORE_ADDR) -1)
715 {
716 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
717 /* There is a breakpoint at the address we will resume at,
718 step one instruction before inserting breakpoints so that
719 we do not stop right away (and report a second hit at this
720 breakpoint). */
721 oneproc = 1;
722 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
723 && gdbarch_single_step_through_delay (current_gdbarch,
724 get_current_frame ()))
725 /* We stepped onto an instruction that needs to be stepped
726 again before re-inserting the breakpoint, do so. */
727 oneproc = 1;
728 }
729 else
730 {
731 write_pc (addr);
732 }
733
734 if (debug_infrun)
735 fprintf_unfiltered (gdb_stdlog,
736 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
737 paddr_nz (addr), siggnal, step);
738
739 /* In a multi-threaded task we may select another thread
740 and then continue or step.
741
742 But if the old thread was stopped at a breakpoint, it
743 will immediately cause another breakpoint stop without
744 any execution (i.e. it will report a breakpoint hit
745 incorrectly). So we must step over it first.
746
747 prepare_to_proceed checks the current thread against the thread
748 that reported the most recent event. If a step-over is required
749 it returns TRUE and sets the current thread to the old thread. */
750 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
751 oneproc = 1;
752
753 if (oneproc)
754 /* We will get a trace trap after one instruction.
755 Continue it automatically and insert breakpoints then. */
756 trap_expected = 1;
757 else
758 {
759 insert_breakpoints ();
760 /* If we get here there was no call to error() in
761 insert breakpoints -- so they were inserted. */
762 breakpoints_inserted = 1;
763 }
764
765 if (siggnal != TARGET_SIGNAL_DEFAULT)
766 stop_signal = siggnal;
767 /* If this signal should not be seen by program,
768 give it zero. Used for debugging signals. */
769 else if (!signal_program[stop_signal])
770 stop_signal = TARGET_SIGNAL_0;
771
772 annotate_starting ();
773
774 /* Make sure that output from GDB appears before output from the
775 inferior. */
776 gdb_flush (gdb_stdout);
777
778 /* Refresh prev_pc value just prior to resuming. This used to be
779 done in stop_stepping, however, setting prev_pc there did not handle
780 scenarios such as inferior function calls or returning from
781 a function via the return command. In those cases, the prev_pc
782 value was not set properly for subsequent commands. The prev_pc value
783 is used to initialize the starting line number in the ecs. With an
784 invalid value, the gdb next command ends up stopping at the position
785 represented by the next line table entry past our start position.
786 On platforms that generate one line table entry per line, this
787 is not a problem. However, on the ia64, the compiler generates
788 extraneous line table entries that do not increase the line number.
789 When we issue the gdb next command on the ia64 after an inferior call
790 or a return command, we often end up a few instructions forward, still
791 within the original line we started.
792
793 An attempt was made to have init_execution_control_state () refresh
794 the prev_pc value before calculating the line number. This approach
795 did not work because on platforms that use ptrace, the pc register
796 cannot be read unless the inferior is stopped. At that point, we
797 are not guaranteed the inferior is stopped and so the read_pc ()
798 call can fail. Setting the prev_pc value here ensures the value is
799 updated correctly when the inferior is stopped. */
800 prev_pc = read_pc ();
801
802 /* Resume inferior. */
803 resume (oneproc || step || bpstat_should_step (), stop_signal);
804
805 /* Wait for it to stop (if not standalone)
806 and in any case decode why it stopped, and act accordingly. */
807 /* Do this only if we are not using the event loop, or if the target
808 does not support asynchronous execution. */
809 if (!target_can_async_p ())
810 {
811 wait_for_inferior ();
812 normal_stop ();
813 }
814 }
815 \f
816
817 /* Start remote-debugging of a machine over a serial link. */
818
819 void
820 start_remote (int from_tty)
821 {
822 init_thread_list ();
823 init_wait_for_inferior ();
824 stop_soon = STOP_QUIETLY;
825 trap_expected = 0;
826
827 /* Always go on waiting for the target, regardless of the mode. */
828 /* FIXME: cagney/1999-09-23: At present it isn't possible to
829 indicate to wait_for_inferior that a target should timeout if
830 nothing is returned (instead of just blocking). Because of this,
831 targets expecting an immediate response need to, internally, set
832 things up so that the target_wait() is forced to eventually
833 timeout. */
834 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
835 differentiate to its caller what the state of the target is after
836 the initial open has been performed. Here we're assuming that
837 the target has stopped. It should be possible to eventually have
838 target_open() return to the caller an indication that the target
839 is currently running and GDB state should be set to the same as
840 for an async run. */
841 wait_for_inferior ();
842
843 /* Now that the inferior has stopped, do any bookkeeping like
844 loading shared libraries. We want to do this before normal_stop,
845 so that the displayed frame is up to date. */
846 post_create_inferior (&current_target, from_tty);
847
848 normal_stop ();
849 }
850
851 /* Initialize static vars when a new inferior begins. */
852
853 void
854 init_wait_for_inferior (void)
855 {
856 /* These are meaningless until the first time through wait_for_inferior. */
857 prev_pc = 0;
858
859 breakpoints_inserted = 0;
860 breakpoint_init_inferior (inf_starting);
861
862 /* Don't confuse first call to proceed(). */
863 stop_signal = TARGET_SIGNAL_0;
864
865 /* The first resume is not following a fork/vfork/exec. */
866 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
867
868 clear_proceed_status ();
869
870 stepping_past_singlestep_breakpoint = 0;
871 }
872 \f
873 /* This enum encodes possible reasons for doing a target_wait, so that
874 wfi can call target_wait in one place. (Ultimately the call will be
875 moved out of the infinite loop entirely.) */
876
877 enum infwait_states
878 {
879 infwait_normal_state,
880 infwait_thread_hop_state,
881 infwait_nonstep_watch_state
882 };
883
884 /* Why did the inferior stop? Used to print the appropriate messages
885 to the interface from within handle_inferior_event(). */
886 enum inferior_stop_reason
887 {
888 /* Step, next, nexti, stepi finished. */
889 END_STEPPING_RANGE,
890 /* Inferior terminated by signal. */
891 SIGNAL_EXITED,
892 /* Inferior exited. */
893 EXITED,
894 /* Inferior received signal, and user asked to be notified. */
895 SIGNAL_RECEIVED
896 };
897
898 /* This structure contains what used to be local variables in
899 wait_for_inferior. Probably many of them can return to being
900 locals in handle_inferior_event. */
901
902 struct execution_control_state
903 {
904 struct target_waitstatus ws;
905 struct target_waitstatus *wp;
906 int another_trap;
907 int random_signal;
908 CORE_ADDR stop_func_start;
909 CORE_ADDR stop_func_end;
910 char *stop_func_name;
911 struct symtab_and_line sal;
912 int current_line;
913 struct symtab *current_symtab;
914 int handling_longjmp; /* FIXME */
915 ptid_t ptid;
916 ptid_t saved_inferior_ptid;
917 int step_after_step_resume_breakpoint;
918 int stepping_through_solib_after_catch;
919 bpstat stepping_through_solib_catchpoints;
920 int new_thread_event;
921 struct target_waitstatus tmpstatus;
922 enum infwait_states infwait_state;
923 ptid_t waiton_ptid;
924 int wait_some_more;
925 };
926
927 void init_execution_control_state (struct execution_control_state *ecs);
928
929 void handle_inferior_event (struct execution_control_state *ecs);
930
931 static void step_into_function (struct execution_control_state *ecs);
932 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
933 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
934 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
935 struct frame_id sr_id);
936 static void stop_stepping (struct execution_control_state *ecs);
937 static void prepare_to_wait (struct execution_control_state *ecs);
938 static void keep_going (struct execution_control_state *ecs);
939 static void print_stop_reason (enum inferior_stop_reason stop_reason,
940 int stop_info);
941
942 /* Wait for control to return from inferior to debugger.
943 If inferior gets a signal, we may decide to start it up again
944 instead of returning. That is why there is a loop in this function.
945 When this function actually returns it means the inferior
946 should be left stopped and GDB should read more commands. */
947
948 void
949 wait_for_inferior (void)
950 {
951 struct cleanup *old_cleanups;
952 struct execution_control_state ecss;
953 struct execution_control_state *ecs;
954
955 if (debug_infrun)
956 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
957
958 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
959 &step_resume_breakpoint);
960
961 /* wfi still stays in a loop, so it's OK just to take the address of
962 a local to get the ecs pointer. */
963 ecs = &ecss;
964
965 /* Fill in with reasonable starting values. */
966 init_execution_control_state (ecs);
967
968 /* We'll update this if & when we switch to a new thread. */
969 previous_inferior_ptid = inferior_ptid;
970
971 overlay_cache_invalid = 1;
972
973 /* We have to invalidate the registers BEFORE calling target_wait
974 because they can be loaded from the target while in target_wait.
975 This makes remote debugging a bit more efficient for those
976 targets that provide critical registers as part of their normal
977 status mechanism. */
978
979 registers_changed ();
980
981 while (1)
982 {
983 if (deprecated_target_wait_hook)
984 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
985 else
986 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
987
988 /* Now figure out what to do with the result of the result. */
989 handle_inferior_event (ecs);
990
991 if (!ecs->wait_some_more)
992 break;
993 }
994 do_cleanups (old_cleanups);
995 }
996
997 /* Asynchronous version of wait_for_inferior. It is called by the
998 event loop whenever a change of state is detected on the file
999 descriptor corresponding to the target. It can be called more than
1000 once to complete a single execution command. In such cases we need
1001 to keep the state in a global variable ASYNC_ECSS. If it is the
1002 last time that this function is called for a single execution
1003 command, then report to the user that the inferior has stopped, and
1004 do the necessary cleanups. */
1005
1006 struct execution_control_state async_ecss;
1007 struct execution_control_state *async_ecs;
1008
1009 void
1010 fetch_inferior_event (void *client_data)
1011 {
1012 static struct cleanup *old_cleanups;
1013
1014 async_ecs = &async_ecss;
1015
1016 if (!async_ecs->wait_some_more)
1017 {
1018 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1019 &step_resume_breakpoint);
1020
1021 /* Fill in with reasonable starting values. */
1022 init_execution_control_state (async_ecs);
1023
1024 /* We'll update this if & when we switch to a new thread. */
1025 previous_inferior_ptid = inferior_ptid;
1026
1027 overlay_cache_invalid = 1;
1028
1029 /* We have to invalidate the registers BEFORE calling target_wait
1030 because they can be loaded from the target while in target_wait.
1031 This makes remote debugging a bit more efficient for those
1032 targets that provide critical registers as part of their normal
1033 status mechanism. */
1034
1035 registers_changed ();
1036 }
1037
1038 if (deprecated_target_wait_hook)
1039 async_ecs->ptid =
1040 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1041 else
1042 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1043
1044 /* Now figure out what to do with the result of the result. */
1045 handle_inferior_event (async_ecs);
1046
1047 if (!async_ecs->wait_some_more)
1048 {
1049 /* Do only the cleanups that have been added by this
1050 function. Let the continuations for the commands do the rest,
1051 if there are any. */
1052 do_exec_cleanups (old_cleanups);
1053 normal_stop ();
1054 if (step_multi && stop_step)
1055 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1056 else
1057 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1058 }
1059 }
1060
1061 /* Prepare an execution control state for looping through a
1062 wait_for_inferior-type loop. */
1063
1064 void
1065 init_execution_control_state (struct execution_control_state *ecs)
1066 {
1067 ecs->another_trap = 0;
1068 ecs->random_signal = 0;
1069 ecs->step_after_step_resume_breakpoint = 0;
1070 ecs->handling_longjmp = 0; /* FIXME */
1071 ecs->stepping_through_solib_after_catch = 0;
1072 ecs->stepping_through_solib_catchpoints = NULL;
1073 ecs->sal = find_pc_line (prev_pc, 0);
1074 ecs->current_line = ecs->sal.line;
1075 ecs->current_symtab = ecs->sal.symtab;
1076 ecs->infwait_state = infwait_normal_state;
1077 ecs->waiton_ptid = pid_to_ptid (-1);
1078 ecs->wp = &(ecs->ws);
1079 }
1080
1081 /* Return the cached copy of the last pid/waitstatus returned by
1082 target_wait()/deprecated_target_wait_hook(). The data is actually
1083 cached by handle_inferior_event(), which gets called immediately
1084 after target_wait()/deprecated_target_wait_hook(). */
1085
1086 void
1087 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1088 {
1089 *ptidp = target_last_wait_ptid;
1090 *status = target_last_waitstatus;
1091 }
1092
1093 void
1094 nullify_last_target_wait_ptid (void)
1095 {
1096 target_last_wait_ptid = minus_one_ptid;
1097 }
1098
1099 /* Switch thread contexts, maintaining "infrun state". */
1100
1101 static void
1102 context_switch (struct execution_control_state *ecs)
1103 {
1104 /* Caution: it may happen that the new thread (or the old one!)
1105 is not in the thread list. In this case we must not attempt
1106 to "switch context", or we run the risk that our context may
1107 be lost. This may happen as a result of the target module
1108 mishandling thread creation. */
1109
1110 if (debug_infrun)
1111 {
1112 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1113 target_pid_to_str (inferior_ptid));
1114 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1115 target_pid_to_str (ecs->ptid));
1116 }
1117
1118 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1119 { /* Perform infrun state context switch: */
1120 /* Save infrun state for the old thread. */
1121 save_infrun_state (inferior_ptid, prev_pc,
1122 trap_expected, step_resume_breakpoint,
1123 step_range_start,
1124 step_range_end, &step_frame_id,
1125 ecs->handling_longjmp, ecs->another_trap,
1126 ecs->stepping_through_solib_after_catch,
1127 ecs->stepping_through_solib_catchpoints,
1128 ecs->current_line, ecs->current_symtab);
1129
1130 /* Load infrun state for the new thread. */
1131 load_infrun_state (ecs->ptid, &prev_pc,
1132 &trap_expected, &step_resume_breakpoint,
1133 &step_range_start,
1134 &step_range_end, &step_frame_id,
1135 &ecs->handling_longjmp, &ecs->another_trap,
1136 &ecs->stepping_through_solib_after_catch,
1137 &ecs->stepping_through_solib_catchpoints,
1138 &ecs->current_line, &ecs->current_symtab);
1139 }
1140 inferior_ptid = ecs->ptid;
1141 reinit_frame_cache ();
1142 }
1143
1144 static void
1145 adjust_pc_after_break (struct execution_control_state *ecs)
1146 {
1147 CORE_ADDR breakpoint_pc;
1148
1149 /* If this target does not decrement the PC after breakpoints, then
1150 we have nothing to do. */
1151 if (gdbarch_decr_pc_after_break (current_gdbarch) == 0)
1152 return;
1153
1154 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1155 we aren't, just return.
1156
1157 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1158 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1159 implemented by software breakpoints should be handled through the normal
1160 breakpoint layer.
1161
1162 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1163 different signals (SIGILL or SIGEMT for instance), but it is less
1164 clear where the PC is pointing afterwards. It may not match
1165 gdbarch_decr_pc_after_break. I don't know any specific target that
1166 generates these signals at breakpoints (the code has been in GDB since at
1167 least 1992) so I can not guess how to handle them here.
1168
1169 In earlier versions of GDB, a target with
1170 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1171 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1172 target with both of these set in GDB history, and it seems unlikely to be
1173 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1174
1175 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1176 return;
1177
1178 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1179 return;
1180
1181 /* Find the location where (if we've hit a breakpoint) the
1182 breakpoint would be. */
1183 breakpoint_pc = read_pc_pid (ecs->ptid) - gdbarch_decr_pc_after_break
1184 (current_gdbarch);
1185
1186 if (SOFTWARE_SINGLE_STEP_P ())
1187 {
1188 /* When using software single-step, a SIGTRAP can only indicate
1189 an inserted breakpoint. This actually makes things
1190 easier. */
1191 if (singlestep_breakpoints_inserted_p)
1192 /* When software single stepping, the instruction at [prev_pc]
1193 is never a breakpoint, but the instruction following
1194 [prev_pc] (in program execution order) always is. Assume
1195 that following instruction was reached and hence a software
1196 breakpoint was hit. */
1197 write_pc_pid (breakpoint_pc, ecs->ptid);
1198 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1199 /* The inferior was free running (i.e., no single-step
1200 breakpoints inserted) and it hit a software breakpoint. */
1201 write_pc_pid (breakpoint_pc, ecs->ptid);
1202 }
1203 else
1204 {
1205 /* When using hardware single-step, a SIGTRAP is reported for
1206 both a completed single-step and a software breakpoint. Need
1207 to differentiate between the two as the latter needs
1208 adjusting but the former does not.
1209
1210 When the thread to be examined does not match the current thread
1211 context we can't use currently_stepping, so assume no
1212 single-stepping in this case. */
1213 if (ptid_equal (ecs->ptid, inferior_ptid) && currently_stepping (ecs))
1214 {
1215 if (prev_pc == breakpoint_pc
1216 && software_breakpoint_inserted_here_p (breakpoint_pc))
1217 /* Hardware single-stepped a software breakpoint (as
1218 occures when the inferior is resumed with PC pointing
1219 at not-yet-hit software breakpoint). Since the
1220 breakpoint really is executed, the inferior needs to be
1221 backed up to the breakpoint address. */
1222 write_pc_pid (breakpoint_pc, ecs->ptid);
1223 }
1224 else
1225 {
1226 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1227 /* The inferior was free running (i.e., no hardware
1228 single-step and no possibility of a false SIGTRAP) and
1229 hit a software breakpoint. */
1230 write_pc_pid (breakpoint_pc, ecs->ptid);
1231 }
1232 }
1233 }
1234
1235 /* Given an execution control state that has been freshly filled in
1236 by an event from the inferior, figure out what it means and take
1237 appropriate action. */
1238
1239 int stepped_after_stopped_by_watchpoint;
1240
1241 void
1242 handle_inferior_event (struct execution_control_state *ecs)
1243 {
1244 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1245 that the variable stepped_after_stopped_by_watchpoint isn't used,
1246 then you're wrong! See remote.c:remote_stopped_data_address. */
1247
1248 int sw_single_step_trap_p = 0;
1249 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1250
1251 /* Cache the last pid/waitstatus. */
1252 target_last_wait_ptid = ecs->ptid;
1253 target_last_waitstatus = *ecs->wp;
1254
1255 adjust_pc_after_break (ecs);
1256
1257 switch (ecs->infwait_state)
1258 {
1259 case infwait_thread_hop_state:
1260 if (debug_infrun)
1261 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1262 /* Cancel the waiton_ptid. */
1263 ecs->waiton_ptid = pid_to_ptid (-1);
1264 break;
1265
1266 case infwait_normal_state:
1267 if (debug_infrun)
1268 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1269 stepped_after_stopped_by_watchpoint = 0;
1270 break;
1271
1272 case infwait_nonstep_watch_state:
1273 if (debug_infrun)
1274 fprintf_unfiltered (gdb_stdlog,
1275 "infrun: infwait_nonstep_watch_state\n");
1276 insert_breakpoints ();
1277
1278 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1279 handle things like signals arriving and other things happening
1280 in combination correctly? */
1281 stepped_after_stopped_by_watchpoint = 1;
1282 break;
1283
1284 default:
1285 internal_error (__FILE__, __LINE__, _("bad switch"));
1286 }
1287 ecs->infwait_state = infwait_normal_state;
1288
1289 reinit_frame_cache ();
1290
1291 /* If it's a new process, add it to the thread database */
1292
1293 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1294 && !ptid_equal (ecs->ptid, minus_one_ptid)
1295 && !in_thread_list (ecs->ptid));
1296
1297 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1298 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1299 {
1300 add_thread (ecs->ptid);
1301
1302 ui_out_text (uiout, "[New ");
1303 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1304 ui_out_text (uiout, "]\n");
1305 }
1306
1307 switch (ecs->ws.kind)
1308 {
1309 case TARGET_WAITKIND_LOADED:
1310 if (debug_infrun)
1311 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1312 /* Ignore gracefully during startup of the inferior, as it
1313 might be the shell which has just loaded some objects,
1314 otherwise add the symbols for the newly loaded objects. */
1315 #ifdef SOLIB_ADD
1316 if (stop_soon == NO_STOP_QUIETLY)
1317 {
1318 /* Remove breakpoints, SOLIB_ADD might adjust
1319 breakpoint addresses via breakpoint_re_set. */
1320 if (breakpoints_inserted)
1321 remove_breakpoints ();
1322
1323 /* Check for any newly added shared libraries if we're
1324 supposed to be adding them automatically. Switch
1325 terminal for any messages produced by
1326 breakpoint_re_set. */
1327 target_terminal_ours_for_output ();
1328 /* NOTE: cagney/2003-11-25: Make certain that the target
1329 stack's section table is kept up-to-date. Architectures,
1330 (e.g., PPC64), use the section table to perform
1331 operations such as address => section name and hence
1332 require the table to contain all sections (including
1333 those found in shared libraries). */
1334 /* NOTE: cagney/2003-11-25: Pass current_target and not
1335 exec_ops to SOLIB_ADD. This is because current GDB is
1336 only tooled to propagate section_table changes out from
1337 the "current_target" (see target_resize_to_sections), and
1338 not up from the exec stratum. This, of course, isn't
1339 right. "infrun.c" should only interact with the
1340 exec/process stratum, instead relying on the target stack
1341 to propagate relevant changes (stop, section table
1342 changed, ...) up to other layers. */
1343 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1344 target_terminal_inferior ();
1345
1346 /* Reinsert breakpoints and continue. */
1347 if (breakpoints_inserted)
1348 insert_breakpoints ();
1349 }
1350 #endif
1351 resume (0, TARGET_SIGNAL_0);
1352 prepare_to_wait (ecs);
1353 return;
1354
1355 case TARGET_WAITKIND_SPURIOUS:
1356 if (debug_infrun)
1357 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1358 resume (0, TARGET_SIGNAL_0);
1359 prepare_to_wait (ecs);
1360 return;
1361
1362 case TARGET_WAITKIND_EXITED:
1363 if (debug_infrun)
1364 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1365 target_terminal_ours (); /* Must do this before mourn anyway */
1366 print_stop_reason (EXITED, ecs->ws.value.integer);
1367
1368 /* Record the exit code in the convenience variable $_exitcode, so
1369 that the user can inspect this again later. */
1370 set_internalvar (lookup_internalvar ("_exitcode"),
1371 value_from_longest (builtin_type_int,
1372 (LONGEST) ecs->ws.value.integer));
1373 gdb_flush (gdb_stdout);
1374 target_mourn_inferior ();
1375 singlestep_breakpoints_inserted_p = 0; /* SOFTWARE_SINGLE_STEP_P() */
1376 stop_print_frame = 0;
1377 stop_stepping (ecs);
1378 return;
1379
1380 case TARGET_WAITKIND_SIGNALLED:
1381 if (debug_infrun)
1382 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1383 stop_print_frame = 0;
1384 stop_signal = ecs->ws.value.sig;
1385 target_terminal_ours (); /* Must do this before mourn anyway */
1386
1387 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1388 reach here unless the inferior is dead. However, for years
1389 target_kill() was called here, which hints that fatal signals aren't
1390 really fatal on some systems. If that's true, then some changes
1391 may be needed. */
1392 target_mourn_inferior ();
1393
1394 print_stop_reason (SIGNAL_EXITED, stop_signal);
1395 singlestep_breakpoints_inserted_p = 0; /* SOFTWARE_SINGLE_STEP_P() */
1396 stop_stepping (ecs);
1397 return;
1398
1399 /* The following are the only cases in which we keep going;
1400 the above cases end in a continue or goto. */
1401 case TARGET_WAITKIND_FORKED:
1402 case TARGET_WAITKIND_VFORKED:
1403 if (debug_infrun)
1404 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1405 stop_signal = TARGET_SIGNAL_TRAP;
1406 pending_follow.kind = ecs->ws.kind;
1407
1408 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1409 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1410
1411 if (!ptid_equal (ecs->ptid, inferior_ptid))
1412 {
1413 context_switch (ecs);
1414 reinit_frame_cache ();
1415 }
1416
1417 stop_pc = read_pc ();
1418
1419 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1420
1421 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1422
1423 /* If no catchpoint triggered for this, then keep going. */
1424 if (ecs->random_signal)
1425 {
1426 stop_signal = TARGET_SIGNAL_0;
1427 keep_going (ecs);
1428 return;
1429 }
1430 goto process_event_stop_test;
1431
1432 case TARGET_WAITKIND_EXECD:
1433 if (debug_infrun)
1434 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1435 stop_signal = TARGET_SIGNAL_TRAP;
1436
1437 /* NOTE drow/2002-12-05: This code should be pushed down into the
1438 target_wait function. Until then following vfork on HP/UX 10.20
1439 is probably broken by this. Of course, it's broken anyway. */
1440 /* Is this a target which reports multiple exec events per actual
1441 call to exec()? (HP-UX using ptrace does, for example.) If so,
1442 ignore all but the last one. Just resume the exec'r, and wait
1443 for the next exec event. */
1444 if (inferior_ignoring_leading_exec_events)
1445 {
1446 inferior_ignoring_leading_exec_events--;
1447 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1448 prepare_to_wait (ecs);
1449 return;
1450 }
1451 inferior_ignoring_leading_exec_events =
1452 target_reported_exec_events_per_exec_call () - 1;
1453
1454 pending_follow.execd_pathname =
1455 savestring (ecs->ws.value.execd_pathname,
1456 strlen (ecs->ws.value.execd_pathname));
1457
1458 /* This causes the eventpoints and symbol table to be reset. Must
1459 do this now, before trying to determine whether to stop. */
1460 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1461 xfree (pending_follow.execd_pathname);
1462
1463 stop_pc = read_pc_pid (ecs->ptid);
1464 ecs->saved_inferior_ptid = inferior_ptid;
1465 inferior_ptid = ecs->ptid;
1466
1467 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1468
1469 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1470 inferior_ptid = ecs->saved_inferior_ptid;
1471
1472 if (!ptid_equal (ecs->ptid, inferior_ptid))
1473 {
1474 context_switch (ecs);
1475 reinit_frame_cache ();
1476 }
1477
1478 /* If no catchpoint triggered for this, then keep going. */
1479 if (ecs->random_signal)
1480 {
1481 stop_signal = TARGET_SIGNAL_0;
1482 keep_going (ecs);
1483 return;
1484 }
1485 goto process_event_stop_test;
1486
1487 /* Be careful not to try to gather much state about a thread
1488 that's in a syscall. It's frequently a losing proposition. */
1489 case TARGET_WAITKIND_SYSCALL_ENTRY:
1490 if (debug_infrun)
1491 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1492 resume (0, TARGET_SIGNAL_0);
1493 prepare_to_wait (ecs);
1494 return;
1495
1496 /* Before examining the threads further, step this thread to
1497 get it entirely out of the syscall. (We get notice of the
1498 event when the thread is just on the verge of exiting a
1499 syscall. Stepping one instruction seems to get it back
1500 into user code.) */
1501 case TARGET_WAITKIND_SYSCALL_RETURN:
1502 if (debug_infrun)
1503 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1504 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1505 prepare_to_wait (ecs);
1506 return;
1507
1508 case TARGET_WAITKIND_STOPPED:
1509 if (debug_infrun)
1510 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1511 stop_signal = ecs->ws.value.sig;
1512 break;
1513
1514 /* We had an event in the inferior, but we are not interested
1515 in handling it at this level. The lower layers have already
1516 done what needs to be done, if anything.
1517
1518 One of the possible circumstances for this is when the
1519 inferior produces output for the console. The inferior has
1520 not stopped, and we are ignoring the event. Another possible
1521 circumstance is any event which the lower level knows will be
1522 reported multiple times without an intervening resume. */
1523 case TARGET_WAITKIND_IGNORE:
1524 if (debug_infrun)
1525 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1526 prepare_to_wait (ecs);
1527 return;
1528 }
1529
1530 /* We may want to consider not doing a resume here in order to give
1531 the user a chance to play with the new thread. It might be good
1532 to make that a user-settable option. */
1533
1534 /* At this point, all threads are stopped (happens automatically in
1535 either the OS or the native code). Therefore we need to continue
1536 all threads in order to make progress. */
1537 if (ecs->new_thread_event)
1538 {
1539 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1540 prepare_to_wait (ecs);
1541 return;
1542 }
1543
1544 stop_pc = read_pc_pid (ecs->ptid);
1545
1546 if (debug_infrun)
1547 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1548
1549 if (stepping_past_singlestep_breakpoint)
1550 {
1551 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1552 && singlestep_breakpoints_inserted_p);
1553 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1554 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1555
1556 stepping_past_singlestep_breakpoint = 0;
1557
1558 /* We've either finished single-stepping past the single-step
1559 breakpoint, or stopped for some other reason. It would be nice if
1560 we could tell, but we can't reliably. */
1561 if (stop_signal == TARGET_SIGNAL_TRAP)
1562 {
1563 if (debug_infrun)
1564 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1565 /* Pull the single step breakpoints out of the target. */
1566 remove_single_step_breakpoints ();
1567 singlestep_breakpoints_inserted_p = 0;
1568
1569 ecs->random_signal = 0;
1570
1571 ecs->ptid = saved_singlestep_ptid;
1572 context_switch (ecs);
1573 if (deprecated_context_hook)
1574 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1575
1576 resume (1, TARGET_SIGNAL_0);
1577 prepare_to_wait (ecs);
1578 return;
1579 }
1580 }
1581
1582 stepping_past_singlestep_breakpoint = 0;
1583
1584 /* See if a thread hit a thread-specific breakpoint that was meant for
1585 another thread. If so, then step that thread past the breakpoint,
1586 and continue it. */
1587
1588 if (stop_signal == TARGET_SIGNAL_TRAP)
1589 {
1590 int thread_hop_needed = 0;
1591
1592 /* Check if a regular breakpoint has been hit before checking
1593 for a potential single step breakpoint. Otherwise, GDB will
1594 not see this breakpoint hit when stepping onto breakpoints. */
1595 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1596 {
1597 ecs->random_signal = 0;
1598 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1599 thread_hop_needed = 1;
1600 }
1601 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1602 {
1603 /* We have not context switched yet, so this should be true
1604 no matter which thread hit the singlestep breakpoint. */
1605 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1606 if (debug_infrun)
1607 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1608 "trap for %s\n",
1609 target_pid_to_str (ecs->ptid));
1610
1611 ecs->random_signal = 0;
1612 /* The call to in_thread_list is necessary because PTIDs sometimes
1613 change when we go from single-threaded to multi-threaded. If
1614 the singlestep_ptid is still in the list, assume that it is
1615 really different from ecs->ptid. */
1616 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1617 && in_thread_list (singlestep_ptid))
1618 {
1619 /* If the PC of the thread we were trying to single-step
1620 has changed, discard this event (which we were going
1621 to ignore anyway), and pretend we saw that thread
1622 trap. This prevents us continuously moving the
1623 single-step breakpoint forward, one instruction at a
1624 time. If the PC has changed, then the thread we were
1625 trying to single-step has trapped or been signalled,
1626 but the event has not been reported to GDB yet.
1627
1628 There might be some cases where this loses signal
1629 information, if a signal has arrived at exactly the
1630 same time that the PC changed, but this is the best
1631 we can do with the information available. Perhaps we
1632 should arrange to report all events for all threads
1633 when they stop, or to re-poll the remote looking for
1634 this particular thread (i.e. temporarily enable
1635 schedlock). */
1636 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1637 {
1638 if (debug_infrun)
1639 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1640 " but expected thread advanced also\n");
1641
1642 /* The current context still belongs to
1643 singlestep_ptid. Don't swap here, since that's
1644 the context we want to use. Just fudge our
1645 state and continue. */
1646 ecs->ptid = singlestep_ptid;
1647 stop_pc = read_pc_pid (ecs->ptid);
1648 }
1649 else
1650 {
1651 if (debug_infrun)
1652 fprintf_unfiltered (gdb_stdlog,
1653 "infrun: unexpected thread\n");
1654
1655 thread_hop_needed = 1;
1656 stepping_past_singlestep_breakpoint = 1;
1657 saved_singlestep_ptid = singlestep_ptid;
1658 }
1659 }
1660 }
1661
1662 if (thread_hop_needed)
1663 {
1664 int remove_status;
1665
1666 if (debug_infrun)
1667 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1668
1669 /* Saw a breakpoint, but it was hit by the wrong thread.
1670 Just continue. */
1671
1672 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1673 {
1674 /* Pull the single step breakpoints out of the target. */
1675 remove_single_step_breakpoints ();
1676 singlestep_breakpoints_inserted_p = 0;
1677 }
1678
1679 remove_status = remove_breakpoints ();
1680 /* Did we fail to remove breakpoints? If so, try
1681 to set the PC past the bp. (There's at least
1682 one situation in which we can fail to remove
1683 the bp's: On HP-UX's that use ttrace, we can't
1684 change the address space of a vforking child
1685 process until the child exits (well, okay, not
1686 then either :-) or execs. */
1687 if (remove_status != 0)
1688 {
1689 /* FIXME! This is obviously non-portable! */
1690 write_pc_pid (stop_pc + 4, ecs->ptid);
1691 /* We need to restart all the threads now,
1692 * unles we're running in scheduler-locked mode.
1693 * Use currently_stepping to determine whether to
1694 * step or continue.
1695 */
1696 /* FIXME MVS: is there any reason not to call resume()? */
1697 if (scheduler_mode == schedlock_on)
1698 target_resume (ecs->ptid,
1699 currently_stepping (ecs), TARGET_SIGNAL_0);
1700 else
1701 target_resume (RESUME_ALL,
1702 currently_stepping (ecs), TARGET_SIGNAL_0);
1703 prepare_to_wait (ecs);
1704 return;
1705 }
1706 else
1707 { /* Single step */
1708 breakpoints_inserted = 0;
1709 if (!ptid_equal (inferior_ptid, ecs->ptid))
1710 context_switch (ecs);
1711 ecs->waiton_ptid = ecs->ptid;
1712 ecs->wp = &(ecs->ws);
1713 ecs->another_trap = 1;
1714
1715 ecs->infwait_state = infwait_thread_hop_state;
1716 keep_going (ecs);
1717 registers_changed ();
1718 return;
1719 }
1720 }
1721 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1722 {
1723 sw_single_step_trap_p = 1;
1724 ecs->random_signal = 0;
1725 }
1726 }
1727 else
1728 ecs->random_signal = 1;
1729
1730 /* See if something interesting happened to the non-current thread. If
1731 so, then switch to that thread. */
1732 if (!ptid_equal (ecs->ptid, inferior_ptid))
1733 {
1734 if (debug_infrun)
1735 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1736
1737 context_switch (ecs);
1738
1739 if (deprecated_context_hook)
1740 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1741 }
1742
1743 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1744 {
1745 /* Pull the single step breakpoints out of the target. */
1746 remove_single_step_breakpoints ();
1747 singlestep_breakpoints_inserted_p = 0;
1748 }
1749
1750 /* It may not be necessary to disable the watchpoint to stop over
1751 it. For example, the PA can (with some kernel cooperation)
1752 single step over a watchpoint without disabling the watchpoint. */
1753 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1754 {
1755 if (debug_infrun)
1756 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1757 resume (1, 0);
1758 prepare_to_wait (ecs);
1759 return;
1760 }
1761
1762 /* It is far more common to need to disable a watchpoint to step
1763 the inferior over it. FIXME. What else might a debug
1764 register or page protection watchpoint scheme need here? */
1765 if (gdbarch_have_nonsteppable_watchpoint (current_gdbarch)
1766 && STOPPED_BY_WATCHPOINT (ecs->ws))
1767 {
1768 /* At this point, we are stopped at an instruction which has
1769 attempted to write to a piece of memory under control of
1770 a watchpoint. The instruction hasn't actually executed
1771 yet. If we were to evaluate the watchpoint expression
1772 now, we would get the old value, and therefore no change
1773 would seem to have occurred.
1774
1775 In order to make watchpoints work `right', we really need
1776 to complete the memory write, and then evaluate the
1777 watchpoint expression. The following code does that by
1778 removing the watchpoint (actually, all watchpoints and
1779 breakpoints), single-stepping the target, re-inserting
1780 watchpoints, and then falling through to let normal
1781 single-step processing handle proceed. Since this
1782 includes evaluating watchpoints, things will come to a
1783 stop in the correct manner. */
1784
1785 if (debug_infrun)
1786 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1787 remove_breakpoints ();
1788 registers_changed ();
1789 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1790
1791 ecs->waiton_ptid = ecs->ptid;
1792 ecs->wp = &(ecs->ws);
1793 ecs->infwait_state = infwait_nonstep_watch_state;
1794 prepare_to_wait (ecs);
1795 return;
1796 }
1797
1798 /* It may be possible to simply continue after a watchpoint. */
1799 if (HAVE_CONTINUABLE_WATCHPOINT)
1800 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1801
1802 ecs->stop_func_start = 0;
1803 ecs->stop_func_end = 0;
1804 ecs->stop_func_name = 0;
1805 /* Don't care about return value; stop_func_start and stop_func_name
1806 will both be 0 if it doesn't work. */
1807 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1808 &ecs->stop_func_start, &ecs->stop_func_end);
1809 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1810 ecs->another_trap = 0;
1811 bpstat_clear (&stop_bpstat);
1812 stop_step = 0;
1813 stop_stack_dummy = 0;
1814 stop_print_frame = 1;
1815 ecs->random_signal = 0;
1816 stopped_by_random_signal = 0;
1817
1818 if (stop_signal == TARGET_SIGNAL_TRAP
1819 && trap_expected
1820 && gdbarch_single_step_through_delay_p (current_gdbarch)
1821 && currently_stepping (ecs))
1822 {
1823 /* We're trying to step of a breakpoint. Turns out that we're
1824 also on an instruction that needs to be stepped multiple
1825 times before it's been fully executing. E.g., architectures
1826 with a delay slot. It needs to be stepped twice, once for
1827 the instruction and once for the delay slot. */
1828 int step_through_delay
1829 = gdbarch_single_step_through_delay (current_gdbarch,
1830 get_current_frame ());
1831 if (debug_infrun && step_through_delay)
1832 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1833 if (step_range_end == 0 && step_through_delay)
1834 {
1835 /* The user issued a continue when stopped at a breakpoint.
1836 Set up for another trap and get out of here. */
1837 ecs->another_trap = 1;
1838 keep_going (ecs);
1839 return;
1840 }
1841 else if (step_through_delay)
1842 {
1843 /* The user issued a step when stopped at a breakpoint.
1844 Maybe we should stop, maybe we should not - the delay
1845 slot *might* correspond to a line of source. In any
1846 case, don't decide that here, just set ecs->another_trap,
1847 making sure we single-step again before breakpoints are
1848 re-inserted. */
1849 ecs->another_trap = 1;
1850 }
1851 }
1852
1853 /* Look at the cause of the stop, and decide what to do.
1854 The alternatives are:
1855 1) break; to really stop and return to the debugger,
1856 2) drop through to start up again
1857 (set ecs->another_trap to 1 to single step once)
1858 3) set ecs->random_signal to 1, and the decision between 1 and 2
1859 will be made according to the signal handling tables. */
1860
1861 /* First, distinguish signals caused by the debugger from signals
1862 that have to do with the program's own actions. Note that
1863 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1864 on the operating system version. Here we detect when a SIGILL or
1865 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1866 something similar for SIGSEGV, since a SIGSEGV will be generated
1867 when we're trying to execute a breakpoint instruction on a
1868 non-executable stack. This happens for call dummy breakpoints
1869 for architectures like SPARC that place call dummies on the
1870 stack. */
1871
1872 if (stop_signal == TARGET_SIGNAL_TRAP
1873 || (breakpoints_inserted
1874 && (stop_signal == TARGET_SIGNAL_ILL
1875 || stop_signal == TARGET_SIGNAL_SEGV
1876 || stop_signal == TARGET_SIGNAL_EMT))
1877 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1878 {
1879 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1880 {
1881 if (debug_infrun)
1882 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1883 stop_print_frame = 0;
1884 stop_stepping (ecs);
1885 return;
1886 }
1887
1888 /* This is originated from start_remote(), start_inferior() and
1889 shared libraries hook functions. */
1890 if (stop_soon == STOP_QUIETLY)
1891 {
1892 if (debug_infrun)
1893 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1894 stop_stepping (ecs);
1895 return;
1896 }
1897
1898 /* This originates from attach_command(). We need to overwrite
1899 the stop_signal here, because some kernels don't ignore a
1900 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1901 See more comments in inferior.h. */
1902 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1903 {
1904 stop_stepping (ecs);
1905 if (stop_signal == TARGET_SIGNAL_STOP)
1906 stop_signal = TARGET_SIGNAL_0;
1907 return;
1908 }
1909
1910 /* Don't even think about breakpoints if just proceeded over a
1911 breakpoint. */
1912 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1913 {
1914 if (debug_infrun)
1915 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1916 bpstat_clear (&stop_bpstat);
1917 }
1918 else
1919 {
1920 /* See if there is a breakpoint at the current PC. */
1921 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1922 stopped_by_watchpoint);
1923
1924 /* Following in case break condition called a
1925 function. */
1926 stop_print_frame = 1;
1927 }
1928
1929 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1930 at one stage in the past included checks for an inferior
1931 function call's call dummy's return breakpoint. The original
1932 comment, that went with the test, read:
1933
1934 ``End of a stack dummy. Some systems (e.g. Sony news) give
1935 another signal besides SIGTRAP, so check here as well as
1936 above.''
1937
1938 If someone ever tries to get get call dummys on a
1939 non-executable stack to work (where the target would stop
1940 with something like a SIGSEGV), then those tests might need
1941 to be re-instated. Given, however, that the tests were only
1942 enabled when momentary breakpoints were not being used, I
1943 suspect that it won't be the case.
1944
1945 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1946 be necessary for call dummies on a non-executable stack on
1947 SPARC. */
1948
1949 if (stop_signal == TARGET_SIGNAL_TRAP)
1950 ecs->random_signal
1951 = !(bpstat_explains_signal (stop_bpstat)
1952 || trap_expected
1953 || (step_range_end && step_resume_breakpoint == NULL));
1954 else
1955 {
1956 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1957 if (!ecs->random_signal)
1958 stop_signal = TARGET_SIGNAL_TRAP;
1959 }
1960 }
1961
1962 /* When we reach this point, we've pretty much decided
1963 that the reason for stopping must've been a random
1964 (unexpected) signal. */
1965
1966 else
1967 ecs->random_signal = 1;
1968
1969 process_event_stop_test:
1970 /* For the program's own signals, act according to
1971 the signal handling tables. */
1972
1973 if (ecs->random_signal)
1974 {
1975 /* Signal not for debugging purposes. */
1976 int printed = 0;
1977
1978 if (debug_infrun)
1979 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
1980
1981 stopped_by_random_signal = 1;
1982
1983 if (signal_print[stop_signal])
1984 {
1985 printed = 1;
1986 target_terminal_ours_for_output ();
1987 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1988 }
1989 if (signal_stop[stop_signal])
1990 {
1991 stop_stepping (ecs);
1992 return;
1993 }
1994 /* If not going to stop, give terminal back
1995 if we took it away. */
1996 else if (printed)
1997 target_terminal_inferior ();
1998
1999 /* Clear the signal if it should not be passed. */
2000 if (signal_program[stop_signal] == 0)
2001 stop_signal = TARGET_SIGNAL_0;
2002
2003 if (prev_pc == read_pc ()
2004 && !breakpoints_inserted
2005 && breakpoint_here_p (read_pc ())
2006 && step_resume_breakpoint == NULL)
2007 {
2008 /* We were just starting a new sequence, attempting to
2009 single-step off of a breakpoint and expecting a SIGTRAP.
2010 Intead this signal arrives. This signal will take us out
2011 of the stepping range so GDB needs to remember to, when
2012 the signal handler returns, resume stepping off that
2013 breakpoint. */
2014 /* To simplify things, "continue" is forced to use the same
2015 code paths as single-step - set a breakpoint at the
2016 signal return address and then, once hit, step off that
2017 breakpoint. */
2018
2019 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2020 ecs->step_after_step_resume_breakpoint = 1;
2021 keep_going (ecs);
2022 return;
2023 }
2024
2025 if (step_range_end != 0
2026 && stop_signal != TARGET_SIGNAL_0
2027 && stop_pc >= step_range_start && stop_pc < step_range_end
2028 && frame_id_eq (get_frame_id (get_current_frame ()),
2029 step_frame_id)
2030 && step_resume_breakpoint == NULL)
2031 {
2032 /* The inferior is about to take a signal that will take it
2033 out of the single step range. Set a breakpoint at the
2034 current PC (which is presumably where the signal handler
2035 will eventually return) and then allow the inferior to
2036 run free.
2037
2038 Note that this is only needed for a signal delivered
2039 while in the single-step range. Nested signals aren't a
2040 problem as they eventually all return. */
2041 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2042 keep_going (ecs);
2043 return;
2044 }
2045
2046 /* Note: step_resume_breakpoint may be non-NULL. This occures
2047 when either there's a nested signal, or when there's a
2048 pending signal enabled just as the signal handler returns
2049 (leaving the inferior at the step-resume-breakpoint without
2050 actually executing it). Either way continue until the
2051 breakpoint is really hit. */
2052 keep_going (ecs);
2053 return;
2054 }
2055
2056 /* Handle cases caused by hitting a breakpoint. */
2057 {
2058 CORE_ADDR jmp_buf_pc;
2059 struct bpstat_what what;
2060
2061 what = bpstat_what (stop_bpstat);
2062
2063 if (what.call_dummy)
2064 {
2065 stop_stack_dummy = 1;
2066 }
2067
2068 switch (what.main_action)
2069 {
2070 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2071 /* If we hit the breakpoint at longjmp, disable it for the
2072 duration of this command. Then, install a temporary
2073 breakpoint at the target of the jmp_buf. */
2074 if (debug_infrun)
2075 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2076 disable_longjmp_breakpoint ();
2077 remove_breakpoints ();
2078 breakpoints_inserted = 0;
2079 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2080 || !gdbarch_get_longjmp_target (current_gdbarch, &jmp_buf_pc))
2081 {
2082 keep_going (ecs);
2083 return;
2084 }
2085
2086 /* Need to blow away step-resume breakpoint, as it
2087 interferes with us */
2088 if (step_resume_breakpoint != NULL)
2089 {
2090 delete_step_resume_breakpoint (&step_resume_breakpoint);
2091 }
2092
2093 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2094 ecs->handling_longjmp = 1; /* FIXME */
2095 keep_going (ecs);
2096 return;
2097
2098 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2099 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2100 if (debug_infrun)
2101 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2102 remove_breakpoints ();
2103 breakpoints_inserted = 0;
2104 disable_longjmp_breakpoint ();
2105 ecs->handling_longjmp = 0; /* FIXME */
2106 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2107 break;
2108 /* else fallthrough */
2109
2110 case BPSTAT_WHAT_SINGLE:
2111 if (debug_infrun)
2112 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2113 if (breakpoints_inserted)
2114 remove_breakpoints ();
2115 breakpoints_inserted = 0;
2116 ecs->another_trap = 1;
2117 /* Still need to check other stuff, at least the case
2118 where we are stepping and step out of the right range. */
2119 break;
2120
2121 case BPSTAT_WHAT_STOP_NOISY:
2122 if (debug_infrun)
2123 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2124 stop_print_frame = 1;
2125
2126 /* We are about to nuke the step_resume_breakpointt via the
2127 cleanup chain, so no need to worry about it here. */
2128
2129 stop_stepping (ecs);
2130 return;
2131
2132 case BPSTAT_WHAT_STOP_SILENT:
2133 if (debug_infrun)
2134 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2135 stop_print_frame = 0;
2136
2137 /* We are about to nuke the step_resume_breakpoin via the
2138 cleanup chain, so no need to worry about it here. */
2139
2140 stop_stepping (ecs);
2141 return;
2142
2143 case BPSTAT_WHAT_STEP_RESUME:
2144 /* This proably demands a more elegant solution, but, yeah
2145 right...
2146
2147 This function's use of the simple variable
2148 step_resume_breakpoint doesn't seem to accomodate
2149 simultaneously active step-resume bp's, although the
2150 breakpoint list certainly can.
2151
2152 If we reach here and step_resume_breakpoint is already
2153 NULL, then apparently we have multiple active
2154 step-resume bp's. We'll just delete the breakpoint we
2155 stopped at, and carry on.
2156
2157 Correction: what the code currently does is delete a
2158 step-resume bp, but it makes no effort to ensure that
2159 the one deleted is the one currently stopped at. MVS */
2160
2161 if (debug_infrun)
2162 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2163
2164 if (step_resume_breakpoint == NULL)
2165 {
2166 step_resume_breakpoint =
2167 bpstat_find_step_resume_breakpoint (stop_bpstat);
2168 }
2169 delete_step_resume_breakpoint (&step_resume_breakpoint);
2170 if (ecs->step_after_step_resume_breakpoint)
2171 {
2172 /* Back when the step-resume breakpoint was inserted, we
2173 were trying to single-step off a breakpoint. Go back
2174 to doing that. */
2175 ecs->step_after_step_resume_breakpoint = 0;
2176 remove_breakpoints ();
2177 breakpoints_inserted = 0;
2178 ecs->another_trap = 1;
2179 keep_going (ecs);
2180 return;
2181 }
2182 break;
2183
2184 case BPSTAT_WHAT_CHECK_SHLIBS:
2185 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2186 {
2187 if (debug_infrun)
2188 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2189 /* Remove breakpoints, we eventually want to step over the
2190 shlib event breakpoint, and SOLIB_ADD might adjust
2191 breakpoint addresses via breakpoint_re_set. */
2192 if (breakpoints_inserted)
2193 remove_breakpoints ();
2194 breakpoints_inserted = 0;
2195
2196 /* Check for any newly added shared libraries if we're
2197 supposed to be adding them automatically. Switch
2198 terminal for any messages produced by
2199 breakpoint_re_set. */
2200 target_terminal_ours_for_output ();
2201 /* NOTE: cagney/2003-11-25: Make certain that the target
2202 stack's section table is kept up-to-date. Architectures,
2203 (e.g., PPC64), use the section table to perform
2204 operations such as address => section name and hence
2205 require the table to contain all sections (including
2206 those found in shared libraries). */
2207 /* NOTE: cagney/2003-11-25: Pass current_target and not
2208 exec_ops to SOLIB_ADD. This is because current GDB is
2209 only tooled to propagate section_table changes out from
2210 the "current_target" (see target_resize_to_sections), and
2211 not up from the exec stratum. This, of course, isn't
2212 right. "infrun.c" should only interact with the
2213 exec/process stratum, instead relying on the target stack
2214 to propagate relevant changes (stop, section table
2215 changed, ...) up to other layers. */
2216 #ifdef SOLIB_ADD
2217 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2218 #else
2219 solib_add (NULL, 0, &current_target, auto_solib_add);
2220 #endif
2221 target_terminal_inferior ();
2222
2223 /* Try to reenable shared library breakpoints, additional
2224 code segments in shared libraries might be mapped in now. */
2225 re_enable_breakpoints_in_shlibs ();
2226
2227 /* If requested, stop when the dynamic linker notifies
2228 gdb of events. This allows the user to get control
2229 and place breakpoints in initializer routines for
2230 dynamically loaded objects (among other things). */
2231 if (stop_on_solib_events || stop_stack_dummy)
2232 {
2233 stop_stepping (ecs);
2234 return;
2235 }
2236
2237 /* If we stopped due to an explicit catchpoint, then the
2238 (see above) call to SOLIB_ADD pulled in any symbols
2239 from a newly-loaded library, if appropriate.
2240
2241 We do want the inferior to stop, but not where it is
2242 now, which is in the dynamic linker callback. Rather,
2243 we would like it stop in the user's program, just after
2244 the call that caused this catchpoint to trigger. That
2245 gives the user a more useful vantage from which to
2246 examine their program's state. */
2247 else if (what.main_action
2248 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2249 {
2250 /* ??rehrauer: If I could figure out how to get the
2251 right return PC from here, we could just set a temp
2252 breakpoint and resume. I'm not sure we can without
2253 cracking open the dld's shared libraries and sniffing
2254 their unwind tables and text/data ranges, and that's
2255 not a terribly portable notion.
2256
2257 Until that time, we must step the inferior out of the
2258 dld callback, and also out of the dld itself (and any
2259 code or stubs in libdld.sl, such as "shl_load" and
2260 friends) until we reach non-dld code. At that point,
2261 we can stop stepping. */
2262 bpstat_get_triggered_catchpoints (stop_bpstat,
2263 &ecs->
2264 stepping_through_solib_catchpoints);
2265 ecs->stepping_through_solib_after_catch = 1;
2266
2267 /* Be sure to lift all breakpoints, so the inferior does
2268 actually step past this point... */
2269 ecs->another_trap = 1;
2270 break;
2271 }
2272 else
2273 {
2274 /* We want to step over this breakpoint, then keep going. */
2275 ecs->another_trap = 1;
2276 break;
2277 }
2278 }
2279 break;
2280
2281 case BPSTAT_WHAT_LAST:
2282 /* Not a real code, but listed here to shut up gcc -Wall. */
2283
2284 case BPSTAT_WHAT_KEEP_CHECKING:
2285 break;
2286 }
2287 }
2288
2289 /* We come here if we hit a breakpoint but should not
2290 stop for it. Possibly we also were stepping
2291 and should stop for that. So fall through and
2292 test for stepping. But, if not stepping,
2293 do not stop. */
2294
2295 /* Are we stepping to get the inferior out of the dynamic linker's
2296 hook (and possibly the dld itself) after catching a shlib
2297 event? */
2298 if (ecs->stepping_through_solib_after_catch)
2299 {
2300 #if defined(SOLIB_ADD)
2301 /* Have we reached our destination? If not, keep going. */
2302 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2303 {
2304 if (debug_infrun)
2305 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2306 ecs->another_trap = 1;
2307 keep_going (ecs);
2308 return;
2309 }
2310 #endif
2311 if (debug_infrun)
2312 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2313 /* Else, stop and report the catchpoint(s) whose triggering
2314 caused us to begin stepping. */
2315 ecs->stepping_through_solib_after_catch = 0;
2316 bpstat_clear (&stop_bpstat);
2317 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2318 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2319 stop_print_frame = 1;
2320 stop_stepping (ecs);
2321 return;
2322 }
2323
2324 if (step_resume_breakpoint)
2325 {
2326 if (debug_infrun)
2327 fprintf_unfiltered (gdb_stdlog,
2328 "infrun: step-resume breakpoint is inserted\n");
2329
2330 /* Having a step-resume breakpoint overrides anything
2331 else having to do with stepping commands until
2332 that breakpoint is reached. */
2333 keep_going (ecs);
2334 return;
2335 }
2336
2337 if (step_range_end == 0)
2338 {
2339 if (debug_infrun)
2340 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2341 /* Likewise if we aren't even stepping. */
2342 keep_going (ecs);
2343 return;
2344 }
2345
2346 /* If stepping through a line, keep going if still within it.
2347
2348 Note that step_range_end is the address of the first instruction
2349 beyond the step range, and NOT the address of the last instruction
2350 within it! */
2351 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2352 {
2353 if (debug_infrun)
2354 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2355 paddr_nz (step_range_start),
2356 paddr_nz (step_range_end));
2357 keep_going (ecs);
2358 return;
2359 }
2360
2361 /* We stepped out of the stepping range. */
2362
2363 /* If we are stepping at the source level and entered the runtime
2364 loader dynamic symbol resolution code, we keep on single stepping
2365 until we exit the run time loader code and reach the callee's
2366 address. */
2367 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2368 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2369 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2370 #else
2371 && in_solib_dynsym_resolve_code (stop_pc)
2372 #endif
2373 )
2374 {
2375 CORE_ADDR pc_after_resolver =
2376 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2377
2378 if (debug_infrun)
2379 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2380
2381 if (pc_after_resolver)
2382 {
2383 /* Set up a step-resume breakpoint at the address
2384 indicated by SKIP_SOLIB_RESOLVER. */
2385 struct symtab_and_line sr_sal;
2386 init_sal (&sr_sal);
2387 sr_sal.pc = pc_after_resolver;
2388
2389 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2390 }
2391
2392 keep_going (ecs);
2393 return;
2394 }
2395
2396 if (step_range_end != 1
2397 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2398 || step_over_calls == STEP_OVER_ALL)
2399 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2400 {
2401 if (debug_infrun)
2402 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2403 /* The inferior, while doing a "step" or "next", has ended up in
2404 a signal trampoline (either by a signal being delivered or by
2405 the signal handler returning). Just single-step until the
2406 inferior leaves the trampoline (either by calling the handler
2407 or returning). */
2408 keep_going (ecs);
2409 return;
2410 }
2411
2412 /* Check for subroutine calls. The check for the current frame
2413 equalling the step ID is not necessary - the check of the
2414 previous frame's ID is sufficient - but it is a common case and
2415 cheaper than checking the previous frame's ID.
2416
2417 NOTE: frame_id_eq will never report two invalid frame IDs as
2418 being equal, so to get into this block, both the current and
2419 previous frame must have valid frame IDs. */
2420 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2421 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2422 {
2423 CORE_ADDR real_stop_pc;
2424
2425 if (debug_infrun)
2426 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2427
2428 if ((step_over_calls == STEP_OVER_NONE)
2429 || ((step_range_end == 1)
2430 && in_prologue (prev_pc, ecs->stop_func_start)))
2431 {
2432 /* I presume that step_over_calls is only 0 when we're
2433 supposed to be stepping at the assembly language level
2434 ("stepi"). Just stop. */
2435 /* Also, maybe we just did a "nexti" inside a prolog, so we
2436 thought it was a subroutine call but it was not. Stop as
2437 well. FENN */
2438 stop_step = 1;
2439 print_stop_reason (END_STEPPING_RANGE, 0);
2440 stop_stepping (ecs);
2441 return;
2442 }
2443
2444 if (step_over_calls == STEP_OVER_ALL)
2445 {
2446 /* We're doing a "next", set a breakpoint at callee's return
2447 address (the address at which the caller will
2448 resume). */
2449 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2450 keep_going (ecs);
2451 return;
2452 }
2453
2454 /* If we are in a function call trampoline (a stub between the
2455 calling routine and the real function), locate the real
2456 function. That's what tells us (a) whether we want to step
2457 into it at all, and (b) what prologue we want to run to the
2458 end of, if we do step into it. */
2459 real_stop_pc = skip_language_trampoline (stop_pc);
2460 if (real_stop_pc == 0)
2461 real_stop_pc = gdbarch_skip_trampoline_code (current_gdbarch, stop_pc);
2462 if (real_stop_pc != 0)
2463 ecs->stop_func_start = real_stop_pc;
2464
2465 if (
2466 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2467 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2468 #else
2469 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2470 #endif
2471 )
2472 {
2473 struct symtab_and_line sr_sal;
2474 init_sal (&sr_sal);
2475 sr_sal.pc = ecs->stop_func_start;
2476
2477 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2478 keep_going (ecs);
2479 return;
2480 }
2481
2482 /* If we have line number information for the function we are
2483 thinking of stepping into, step into it.
2484
2485 If there are several symtabs at that PC (e.g. with include
2486 files), just want to know whether *any* of them have line
2487 numbers. find_pc_line handles this. */
2488 {
2489 struct symtab_and_line tmp_sal;
2490
2491 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2492 if (tmp_sal.line != 0)
2493 {
2494 step_into_function (ecs);
2495 return;
2496 }
2497 }
2498
2499 /* If we have no line number and the step-stop-if-no-debug is
2500 set, we stop the step so that the user has a chance to switch
2501 in assembly mode. */
2502 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2503 {
2504 stop_step = 1;
2505 print_stop_reason (END_STEPPING_RANGE, 0);
2506 stop_stepping (ecs);
2507 return;
2508 }
2509
2510 /* Set a breakpoint at callee's return address (the address at
2511 which the caller will resume). */
2512 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2513 keep_going (ecs);
2514 return;
2515 }
2516
2517 /* If we're in the return path from a shared library trampoline,
2518 we want to proceed through the trampoline when stepping. */
2519 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
2520 stop_pc, ecs->stop_func_name))
2521 {
2522 /* Determine where this trampoline returns. */
2523 CORE_ADDR real_stop_pc = gdbarch_skip_trampoline_code
2524 (current_gdbarch, stop_pc);
2525
2526 if (debug_infrun)
2527 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2528
2529 /* Only proceed through if we know where it's going. */
2530 if (real_stop_pc)
2531 {
2532 /* And put the step-breakpoint there and go until there. */
2533 struct symtab_and_line sr_sal;
2534
2535 init_sal (&sr_sal); /* initialize to zeroes */
2536 sr_sal.pc = real_stop_pc;
2537 sr_sal.section = find_pc_overlay (sr_sal.pc);
2538
2539 /* Do not specify what the fp should be when we stop since
2540 on some machines the prologue is where the new fp value
2541 is established. */
2542 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2543
2544 /* Restart without fiddling with the step ranges or
2545 other state. */
2546 keep_going (ecs);
2547 return;
2548 }
2549 }
2550
2551 ecs->sal = find_pc_line (stop_pc, 0);
2552
2553 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2554 the trampoline processing logic, however, there are some trampolines
2555 that have no names, so we should do trampoline handling first. */
2556 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2557 && ecs->stop_func_name == NULL
2558 && ecs->sal.line == 0)
2559 {
2560 if (debug_infrun)
2561 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2562
2563 /* The inferior just stepped into, or returned to, an
2564 undebuggable function (where there is no debugging information
2565 and no line number corresponding to the address where the
2566 inferior stopped). Since we want to skip this kind of code,
2567 we keep going until the inferior returns from this
2568 function - unless the user has asked us not to (via
2569 set step-mode) or we no longer know how to get back
2570 to the call site. */
2571 if (step_stop_if_no_debug
2572 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2573 {
2574 /* If we have no line number and the step-stop-if-no-debug
2575 is set, we stop the step so that the user has a chance to
2576 switch in assembly mode. */
2577 stop_step = 1;
2578 print_stop_reason (END_STEPPING_RANGE, 0);
2579 stop_stepping (ecs);
2580 return;
2581 }
2582 else
2583 {
2584 /* Set a breakpoint at callee's return address (the address
2585 at which the caller will resume). */
2586 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2587 keep_going (ecs);
2588 return;
2589 }
2590 }
2591
2592 if (step_range_end == 1)
2593 {
2594 /* It is stepi or nexti. We always want to stop stepping after
2595 one instruction. */
2596 if (debug_infrun)
2597 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2598 stop_step = 1;
2599 print_stop_reason (END_STEPPING_RANGE, 0);
2600 stop_stepping (ecs);
2601 return;
2602 }
2603
2604 if (ecs->sal.line == 0)
2605 {
2606 /* We have no line number information. That means to stop
2607 stepping (does this always happen right after one instruction,
2608 when we do "s" in a function with no line numbers,
2609 or can this happen as a result of a return or longjmp?). */
2610 if (debug_infrun)
2611 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2612 stop_step = 1;
2613 print_stop_reason (END_STEPPING_RANGE, 0);
2614 stop_stepping (ecs);
2615 return;
2616 }
2617
2618 if ((stop_pc == ecs->sal.pc)
2619 && (ecs->current_line != ecs->sal.line
2620 || ecs->current_symtab != ecs->sal.symtab))
2621 {
2622 /* We are at the start of a different line. So stop. Note that
2623 we don't stop if we step into the middle of a different line.
2624 That is said to make things like for (;;) statements work
2625 better. */
2626 if (debug_infrun)
2627 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2628 stop_step = 1;
2629 print_stop_reason (END_STEPPING_RANGE, 0);
2630 stop_stepping (ecs);
2631 return;
2632 }
2633
2634 /* We aren't done stepping.
2635
2636 Optimize by setting the stepping range to the line.
2637 (We might not be in the original line, but if we entered a
2638 new line in mid-statement, we continue stepping. This makes
2639 things like for(;;) statements work better.) */
2640
2641 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2642 {
2643 /* If this is the last line of the function, don't keep stepping
2644 (it would probably step us out of the function).
2645 This is particularly necessary for a one-line function,
2646 in which after skipping the prologue we better stop even though
2647 we will be in mid-line. */
2648 if (debug_infrun)
2649 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2650 stop_step = 1;
2651 print_stop_reason (END_STEPPING_RANGE, 0);
2652 stop_stepping (ecs);
2653 return;
2654 }
2655 step_range_start = ecs->sal.pc;
2656 step_range_end = ecs->sal.end;
2657 step_frame_id = get_frame_id (get_current_frame ());
2658 ecs->current_line = ecs->sal.line;
2659 ecs->current_symtab = ecs->sal.symtab;
2660
2661 /* In the case where we just stepped out of a function into the
2662 middle of a line of the caller, continue stepping, but
2663 step_frame_id must be modified to current frame */
2664 #if 0
2665 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2666 generous. It will trigger on things like a step into a frameless
2667 stackless leaf function. I think the logic should instead look
2668 at the unwound frame ID has that should give a more robust
2669 indication of what happened. */
2670 if (step - ID == current - ID)
2671 still stepping in same function;
2672 else if (step - ID == unwind (current - ID))
2673 stepped into a function;
2674 else
2675 stepped out of a function;
2676 /* Of course this assumes that the frame ID unwind code is robust
2677 and we're willing to introduce frame unwind logic into this
2678 function. Fortunately, those days are nearly upon us. */
2679 #endif
2680 {
2681 struct frame_id current_frame = get_frame_id (get_current_frame ());
2682 if (!(frame_id_inner (current_frame, step_frame_id)))
2683 step_frame_id = current_frame;
2684 }
2685
2686 if (debug_infrun)
2687 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2688 keep_going (ecs);
2689 }
2690
2691 /* Are we in the middle of stepping? */
2692
2693 static int
2694 currently_stepping (struct execution_control_state *ecs)
2695 {
2696 return ((!ecs->handling_longjmp
2697 && ((step_range_end && step_resume_breakpoint == NULL)
2698 || trap_expected))
2699 || ecs->stepping_through_solib_after_catch
2700 || bpstat_should_step ());
2701 }
2702
2703 /* Subroutine call with source code we should not step over. Do step
2704 to the first line of code in it. */
2705
2706 static void
2707 step_into_function (struct execution_control_state *ecs)
2708 {
2709 struct symtab *s;
2710 struct symtab_and_line sr_sal;
2711
2712 s = find_pc_symtab (stop_pc);
2713 if (s && s->language != language_asm)
2714 ecs->stop_func_start = gdbarch_skip_prologue
2715 (current_gdbarch, ecs->stop_func_start);
2716
2717 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2718 /* Use the step_resume_break to step until the end of the prologue,
2719 even if that involves jumps (as it seems to on the vax under
2720 4.2). */
2721 /* If the prologue ends in the middle of a source line, continue to
2722 the end of that source line (if it is still within the function).
2723 Otherwise, just go to end of prologue. */
2724 if (ecs->sal.end
2725 && ecs->sal.pc != ecs->stop_func_start
2726 && ecs->sal.end < ecs->stop_func_end)
2727 ecs->stop_func_start = ecs->sal.end;
2728
2729 /* Architectures which require breakpoint adjustment might not be able
2730 to place a breakpoint at the computed address. If so, the test
2731 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2732 ecs->stop_func_start to an address at which a breakpoint may be
2733 legitimately placed.
2734
2735 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2736 made, GDB will enter an infinite loop when stepping through
2737 optimized code consisting of VLIW instructions which contain
2738 subinstructions corresponding to different source lines. On
2739 FR-V, it's not permitted to place a breakpoint on any but the
2740 first subinstruction of a VLIW instruction. When a breakpoint is
2741 set, GDB will adjust the breakpoint address to the beginning of
2742 the VLIW instruction. Thus, we need to make the corresponding
2743 adjustment here when computing the stop address. */
2744
2745 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2746 {
2747 ecs->stop_func_start
2748 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2749 ecs->stop_func_start);
2750 }
2751
2752 if (ecs->stop_func_start == stop_pc)
2753 {
2754 /* We are already there: stop now. */
2755 stop_step = 1;
2756 print_stop_reason (END_STEPPING_RANGE, 0);
2757 stop_stepping (ecs);
2758 return;
2759 }
2760 else
2761 {
2762 /* Put the step-breakpoint there and go until there. */
2763 init_sal (&sr_sal); /* initialize to zeroes */
2764 sr_sal.pc = ecs->stop_func_start;
2765 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2766
2767 /* Do not specify what the fp should be when we stop since on
2768 some machines the prologue is where the new fp value is
2769 established. */
2770 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2771
2772 /* And make sure stepping stops right away then. */
2773 step_range_end = step_range_start;
2774 }
2775 keep_going (ecs);
2776 }
2777
2778 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
2779 This is used to both functions and to skip over code. */
2780
2781 static void
2782 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2783 struct frame_id sr_id)
2784 {
2785 /* There should never be more than one step-resume breakpoint per
2786 thread, so we should never be setting a new
2787 step_resume_breakpoint when one is already active. */
2788 gdb_assert (step_resume_breakpoint == NULL);
2789
2790 if (debug_infrun)
2791 fprintf_unfiltered (gdb_stdlog,
2792 "infrun: inserting step-resume breakpoint at 0x%s\n",
2793 paddr_nz (sr_sal.pc));
2794
2795 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2796 bp_step_resume);
2797 if (breakpoints_inserted)
2798 insert_breakpoints ();
2799 }
2800
2801 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
2802 to skip a potential signal handler.
2803
2804 This is called with the interrupted function's frame. The signal
2805 handler, when it returns, will resume the interrupted function at
2806 RETURN_FRAME.pc. */
2807
2808 static void
2809 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2810 {
2811 struct symtab_and_line sr_sal;
2812
2813 init_sal (&sr_sal); /* initialize to zeros */
2814
2815 sr_sal.pc = gdbarch_addr_bits_remove
2816 (current_gdbarch, get_frame_pc (return_frame));
2817 sr_sal.section = find_pc_overlay (sr_sal.pc);
2818
2819 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2820 }
2821
2822 /* Similar to insert_step_resume_breakpoint_at_frame, except
2823 but a breakpoint at the previous frame's PC. This is used to
2824 skip a function after stepping into it (for "next" or if the called
2825 function has no debugging information).
2826
2827 The current function has almost always been reached by single
2828 stepping a call or return instruction. NEXT_FRAME belongs to the
2829 current function, and the breakpoint will be set at the caller's
2830 resume address.
2831
2832 This is a separate function rather than reusing
2833 insert_step_resume_breakpoint_at_frame in order to avoid
2834 get_prev_frame, which may stop prematurely (see the implementation
2835 of frame_unwind_id for an example). */
2836
2837 static void
2838 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2839 {
2840 struct symtab_and_line sr_sal;
2841
2842 /* We shouldn't have gotten here if we don't know where the call site
2843 is. */
2844 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2845
2846 init_sal (&sr_sal); /* initialize to zeros */
2847
2848 sr_sal.pc = gdbarch_addr_bits_remove
2849 (current_gdbarch, frame_pc_unwind (next_frame));
2850 sr_sal.section = find_pc_overlay (sr_sal.pc);
2851
2852 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2853 }
2854
2855 static void
2856 stop_stepping (struct execution_control_state *ecs)
2857 {
2858 if (debug_infrun)
2859 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2860
2861 /* Let callers know we don't want to wait for the inferior anymore. */
2862 ecs->wait_some_more = 0;
2863 }
2864
2865 /* This function handles various cases where we need to continue
2866 waiting for the inferior. */
2867 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2868
2869 static void
2870 keep_going (struct execution_control_state *ecs)
2871 {
2872 /* Save the pc before execution, to compare with pc after stop. */
2873 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2874
2875 /* If we did not do break;, it means we should keep running the
2876 inferior and not return to debugger. */
2877
2878 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2879 {
2880 /* We took a signal (which we are supposed to pass through to
2881 the inferior, else we'd have done a break above) and we
2882 haven't yet gotten our trap. Simply continue. */
2883 resume (currently_stepping (ecs), stop_signal);
2884 }
2885 else
2886 {
2887 /* Either the trap was not expected, but we are continuing
2888 anyway (the user asked that this signal be passed to the
2889 child)
2890 -- or --
2891 The signal was SIGTRAP, e.g. it was our signal, but we
2892 decided we should resume from it.
2893
2894 We're going to run this baby now! */
2895
2896 if (!breakpoints_inserted && !ecs->another_trap)
2897 {
2898 /* Stop stepping when inserting breakpoints
2899 has failed. */
2900 if (insert_breakpoints () != 0)
2901 {
2902 stop_stepping (ecs);
2903 return;
2904 }
2905 breakpoints_inserted = 1;
2906 }
2907
2908 trap_expected = ecs->another_trap;
2909
2910 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2911 specifies that such a signal should be delivered to the
2912 target program).
2913
2914 Typically, this would occure when a user is debugging a
2915 target monitor on a simulator: the target monitor sets a
2916 breakpoint; the simulator encounters this break-point and
2917 halts the simulation handing control to GDB; GDB, noteing
2918 that the break-point isn't valid, returns control back to the
2919 simulator; the simulator then delivers the hardware
2920 equivalent of a SIGNAL_TRAP to the program being debugged. */
2921
2922 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2923 stop_signal = TARGET_SIGNAL_0;
2924
2925
2926 resume (currently_stepping (ecs), stop_signal);
2927 }
2928
2929 prepare_to_wait (ecs);
2930 }
2931
2932 /* This function normally comes after a resume, before
2933 handle_inferior_event exits. It takes care of any last bits of
2934 housekeeping, and sets the all-important wait_some_more flag. */
2935
2936 static void
2937 prepare_to_wait (struct execution_control_state *ecs)
2938 {
2939 if (debug_infrun)
2940 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2941 if (ecs->infwait_state == infwait_normal_state)
2942 {
2943 overlay_cache_invalid = 1;
2944
2945 /* We have to invalidate the registers BEFORE calling
2946 target_wait because they can be loaded from the target while
2947 in target_wait. This makes remote debugging a bit more
2948 efficient for those targets that provide critical registers
2949 as part of their normal status mechanism. */
2950
2951 registers_changed ();
2952 ecs->waiton_ptid = pid_to_ptid (-1);
2953 ecs->wp = &(ecs->ws);
2954 }
2955 /* This is the old end of the while loop. Let everybody know we
2956 want to wait for the inferior some more and get called again
2957 soon. */
2958 ecs->wait_some_more = 1;
2959 }
2960
2961 /* Print why the inferior has stopped. We always print something when
2962 the inferior exits, or receives a signal. The rest of the cases are
2963 dealt with later on in normal_stop() and print_it_typical(). Ideally
2964 there should be a call to this function from handle_inferior_event()
2965 each time stop_stepping() is called.*/
2966 static void
2967 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2968 {
2969 switch (stop_reason)
2970 {
2971 case END_STEPPING_RANGE:
2972 /* We are done with a step/next/si/ni command. */
2973 /* For now print nothing. */
2974 /* Print a message only if not in the middle of doing a "step n"
2975 operation for n > 1 */
2976 if (!step_multi || !stop_step)
2977 if (ui_out_is_mi_like_p (uiout))
2978 ui_out_field_string
2979 (uiout, "reason",
2980 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
2981 break;
2982 case SIGNAL_EXITED:
2983 /* The inferior was terminated by a signal. */
2984 annotate_signalled ();
2985 if (ui_out_is_mi_like_p (uiout))
2986 ui_out_field_string
2987 (uiout, "reason",
2988 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
2989 ui_out_text (uiout, "\nProgram terminated with signal ");
2990 annotate_signal_name ();
2991 ui_out_field_string (uiout, "signal-name",
2992 target_signal_to_name (stop_info));
2993 annotate_signal_name_end ();
2994 ui_out_text (uiout, ", ");
2995 annotate_signal_string ();
2996 ui_out_field_string (uiout, "signal-meaning",
2997 target_signal_to_string (stop_info));
2998 annotate_signal_string_end ();
2999 ui_out_text (uiout, ".\n");
3000 ui_out_text (uiout, "The program no longer exists.\n");
3001 break;
3002 case EXITED:
3003 /* The inferior program is finished. */
3004 annotate_exited (stop_info);
3005 if (stop_info)
3006 {
3007 if (ui_out_is_mi_like_p (uiout))
3008 ui_out_field_string (uiout, "reason",
3009 async_reason_lookup (EXEC_ASYNC_EXITED));
3010 ui_out_text (uiout, "\nProgram exited with code ");
3011 ui_out_field_fmt (uiout, "exit-code", "0%o",
3012 (unsigned int) stop_info);
3013 ui_out_text (uiout, ".\n");
3014 }
3015 else
3016 {
3017 if (ui_out_is_mi_like_p (uiout))
3018 ui_out_field_string
3019 (uiout, "reason",
3020 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3021 ui_out_text (uiout, "\nProgram exited normally.\n");
3022 }
3023 /* Support the --return-child-result option. */
3024 return_child_result_value = stop_info;
3025 break;
3026 case SIGNAL_RECEIVED:
3027 /* Signal received. The signal table tells us to print about
3028 it. */
3029 annotate_signal ();
3030 ui_out_text (uiout, "\nProgram received signal ");
3031 annotate_signal_name ();
3032 if (ui_out_is_mi_like_p (uiout))
3033 ui_out_field_string
3034 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3035 ui_out_field_string (uiout, "signal-name",
3036 target_signal_to_name (stop_info));
3037 annotate_signal_name_end ();
3038 ui_out_text (uiout, ", ");
3039 annotate_signal_string ();
3040 ui_out_field_string (uiout, "signal-meaning",
3041 target_signal_to_string (stop_info));
3042 annotate_signal_string_end ();
3043 ui_out_text (uiout, ".\n");
3044 break;
3045 default:
3046 internal_error (__FILE__, __LINE__,
3047 _("print_stop_reason: unrecognized enum value"));
3048 break;
3049 }
3050 }
3051 \f
3052
3053 /* Here to return control to GDB when the inferior stops for real.
3054 Print appropriate messages, remove breakpoints, give terminal our modes.
3055
3056 STOP_PRINT_FRAME nonzero means print the executing frame
3057 (pc, function, args, file, line number and line text).
3058 BREAKPOINTS_FAILED nonzero means stop was due to error
3059 attempting to insert breakpoints. */
3060
3061 void
3062 normal_stop (void)
3063 {
3064 struct target_waitstatus last;
3065 ptid_t last_ptid;
3066
3067 get_last_target_status (&last_ptid, &last);
3068
3069 /* As with the notification of thread events, we want to delay
3070 notifying the user that we've switched thread context until
3071 the inferior actually stops.
3072
3073 There's no point in saying anything if the inferior has exited.
3074 Note that SIGNALLED here means "exited with a signal", not
3075 "received a signal". */
3076 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3077 && target_has_execution
3078 && last.kind != TARGET_WAITKIND_SIGNALLED
3079 && last.kind != TARGET_WAITKIND_EXITED)
3080 {
3081 target_terminal_ours_for_output ();
3082 printf_filtered (_("[Switching to %s]\n"),
3083 target_pid_or_tid_to_str (inferior_ptid));
3084 previous_inferior_ptid = inferior_ptid;
3085 }
3086
3087 /* NOTE drow/2004-01-17: Is this still necessary? */
3088 /* Make sure that the current_frame's pc is correct. This
3089 is a correction for setting up the frame info before doing
3090 gdbarch_decr_pc_after_break */
3091 if (target_has_execution)
3092 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3093 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3094 frame code to check for this and sort out any resultant mess.
3095 gdbarch_decr_pc_after_break needs to just go away. */
3096 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3097
3098 if (target_has_execution && breakpoints_inserted)
3099 {
3100 if (remove_breakpoints ())
3101 {
3102 target_terminal_ours_for_output ();
3103 printf_filtered (_("\
3104 Cannot remove breakpoints because program is no longer writable.\n\
3105 It might be running in another process.\n\
3106 Further execution is probably impossible.\n"));
3107 }
3108 }
3109 breakpoints_inserted = 0;
3110
3111 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3112 Delete any breakpoint that is to be deleted at the next stop. */
3113
3114 breakpoint_auto_delete (stop_bpstat);
3115
3116 /* If an auto-display called a function and that got a signal,
3117 delete that auto-display to avoid an infinite recursion. */
3118
3119 if (stopped_by_random_signal)
3120 disable_current_display ();
3121
3122 /* Don't print a message if in the middle of doing a "step n"
3123 operation for n > 1 */
3124 if (step_multi && stop_step)
3125 goto done;
3126
3127 target_terminal_ours ();
3128
3129 /* Set the current source location. This will also happen if we
3130 display the frame below, but the current SAL will be incorrect
3131 during a user hook-stop function. */
3132 if (target_has_stack && !stop_stack_dummy)
3133 set_current_sal_from_frame (get_current_frame (), 1);
3134
3135 /* Look up the hook_stop and run it (CLI internally handles problem
3136 of stop_command's pre-hook not existing). */
3137 if (stop_command)
3138 catch_errors (hook_stop_stub, stop_command,
3139 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3140
3141 if (!target_has_stack)
3142 {
3143
3144 goto done;
3145 }
3146
3147 /* Select innermost stack frame - i.e., current frame is frame 0,
3148 and current location is based on that.
3149 Don't do this on return from a stack dummy routine,
3150 or if the program has exited. */
3151
3152 if (!stop_stack_dummy)
3153 {
3154 select_frame (get_current_frame ());
3155
3156 /* Print current location without a level number, if
3157 we have changed functions or hit a breakpoint.
3158 Print source line if we have one.
3159 bpstat_print() contains the logic deciding in detail
3160 what to print, based on the event(s) that just occurred. */
3161
3162 if (stop_print_frame)
3163 {
3164 int bpstat_ret;
3165 int source_flag;
3166 int do_frame_printing = 1;
3167
3168 bpstat_ret = bpstat_print (stop_bpstat);
3169 switch (bpstat_ret)
3170 {
3171 case PRINT_UNKNOWN:
3172 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3173 (or should) carry around the function and does (or
3174 should) use that when doing a frame comparison. */
3175 if (stop_step
3176 && frame_id_eq (step_frame_id,
3177 get_frame_id (get_current_frame ()))
3178 && step_start_function == find_pc_function (stop_pc))
3179 source_flag = SRC_LINE; /* finished step, just print source line */
3180 else
3181 source_flag = SRC_AND_LOC; /* print location and source line */
3182 break;
3183 case PRINT_SRC_AND_LOC:
3184 source_flag = SRC_AND_LOC; /* print location and source line */
3185 break;
3186 case PRINT_SRC_ONLY:
3187 source_flag = SRC_LINE;
3188 break;
3189 case PRINT_NOTHING:
3190 source_flag = SRC_LINE; /* something bogus */
3191 do_frame_printing = 0;
3192 break;
3193 default:
3194 internal_error (__FILE__, __LINE__, _("Unknown value."));
3195 }
3196
3197 if (ui_out_is_mi_like_p (uiout))
3198 ui_out_field_int (uiout, "thread-id",
3199 pid_to_thread_id (inferior_ptid));
3200 /* The behavior of this routine with respect to the source
3201 flag is:
3202 SRC_LINE: Print only source line
3203 LOCATION: Print only location
3204 SRC_AND_LOC: Print location and source line */
3205 if (do_frame_printing)
3206 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3207
3208 /* Display the auto-display expressions. */
3209 do_displays ();
3210 }
3211 }
3212
3213 /* Save the function value return registers, if we care.
3214 We might be about to restore their previous contents. */
3215 if (proceed_to_finish)
3216 /* NB: The copy goes through to the target picking up the value of
3217 all the registers. */
3218 regcache_cpy (stop_registers, current_regcache);
3219
3220 if (stop_stack_dummy)
3221 {
3222 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3223 ends with a setting of the current frame, so we can use that
3224 next. */
3225 frame_pop (get_current_frame ());
3226 /* Set stop_pc to what it was before we called the function.
3227 Can't rely on restore_inferior_status because that only gets
3228 called if we don't stop in the called function. */
3229 stop_pc = read_pc ();
3230 select_frame (get_current_frame ());
3231 }
3232
3233 done:
3234 annotate_stopped ();
3235 observer_notify_normal_stop (stop_bpstat);
3236 }
3237
3238 static int
3239 hook_stop_stub (void *cmd)
3240 {
3241 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3242 return (0);
3243 }
3244 \f
3245 int
3246 signal_stop_state (int signo)
3247 {
3248 return signal_stop[signo];
3249 }
3250
3251 int
3252 signal_print_state (int signo)
3253 {
3254 return signal_print[signo];
3255 }
3256
3257 int
3258 signal_pass_state (int signo)
3259 {
3260 return signal_program[signo];
3261 }
3262
3263 int
3264 signal_stop_update (int signo, int state)
3265 {
3266 int ret = signal_stop[signo];
3267 signal_stop[signo] = state;
3268 return ret;
3269 }
3270
3271 int
3272 signal_print_update (int signo, int state)
3273 {
3274 int ret = signal_print[signo];
3275 signal_print[signo] = state;
3276 return ret;
3277 }
3278
3279 int
3280 signal_pass_update (int signo, int state)
3281 {
3282 int ret = signal_program[signo];
3283 signal_program[signo] = state;
3284 return ret;
3285 }
3286
3287 static void
3288 sig_print_header (void)
3289 {
3290 printf_filtered (_("\
3291 Signal Stop\tPrint\tPass to program\tDescription\n"));
3292 }
3293
3294 static void
3295 sig_print_info (enum target_signal oursig)
3296 {
3297 char *name = target_signal_to_name (oursig);
3298 int name_padding = 13 - strlen (name);
3299
3300 if (name_padding <= 0)
3301 name_padding = 0;
3302
3303 printf_filtered ("%s", name);
3304 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3305 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3306 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3307 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3308 printf_filtered ("%s\n", target_signal_to_string (oursig));
3309 }
3310
3311 /* Specify how various signals in the inferior should be handled. */
3312
3313 static void
3314 handle_command (char *args, int from_tty)
3315 {
3316 char **argv;
3317 int digits, wordlen;
3318 int sigfirst, signum, siglast;
3319 enum target_signal oursig;
3320 int allsigs;
3321 int nsigs;
3322 unsigned char *sigs;
3323 struct cleanup *old_chain;
3324
3325 if (args == NULL)
3326 {
3327 error_no_arg (_("signal to handle"));
3328 }
3329
3330 /* Allocate and zero an array of flags for which signals to handle. */
3331
3332 nsigs = (int) TARGET_SIGNAL_LAST;
3333 sigs = (unsigned char *) alloca (nsigs);
3334 memset (sigs, 0, nsigs);
3335
3336 /* Break the command line up into args. */
3337
3338 argv = buildargv (args);
3339 if (argv == NULL)
3340 {
3341 nomem (0);
3342 }
3343 old_chain = make_cleanup_freeargv (argv);
3344
3345 /* Walk through the args, looking for signal oursigs, signal names, and
3346 actions. Signal numbers and signal names may be interspersed with
3347 actions, with the actions being performed for all signals cumulatively
3348 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3349
3350 while (*argv != NULL)
3351 {
3352 wordlen = strlen (*argv);
3353 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3354 {;
3355 }
3356 allsigs = 0;
3357 sigfirst = siglast = -1;
3358
3359 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3360 {
3361 /* Apply action to all signals except those used by the
3362 debugger. Silently skip those. */
3363 allsigs = 1;
3364 sigfirst = 0;
3365 siglast = nsigs - 1;
3366 }
3367 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3368 {
3369 SET_SIGS (nsigs, sigs, signal_stop);
3370 SET_SIGS (nsigs, sigs, signal_print);
3371 }
3372 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3373 {
3374 UNSET_SIGS (nsigs, sigs, signal_program);
3375 }
3376 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3377 {
3378 SET_SIGS (nsigs, sigs, signal_print);
3379 }
3380 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3381 {
3382 SET_SIGS (nsigs, sigs, signal_program);
3383 }
3384 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3385 {
3386 UNSET_SIGS (nsigs, sigs, signal_stop);
3387 }
3388 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3389 {
3390 SET_SIGS (nsigs, sigs, signal_program);
3391 }
3392 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3393 {
3394 UNSET_SIGS (nsigs, sigs, signal_print);
3395 UNSET_SIGS (nsigs, sigs, signal_stop);
3396 }
3397 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3398 {
3399 UNSET_SIGS (nsigs, sigs, signal_program);
3400 }
3401 else if (digits > 0)
3402 {
3403 /* It is numeric. The numeric signal refers to our own
3404 internal signal numbering from target.h, not to host/target
3405 signal number. This is a feature; users really should be
3406 using symbolic names anyway, and the common ones like
3407 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3408
3409 sigfirst = siglast = (int)
3410 target_signal_from_command (atoi (*argv));
3411 if ((*argv)[digits] == '-')
3412 {
3413 siglast = (int)
3414 target_signal_from_command (atoi ((*argv) + digits + 1));
3415 }
3416 if (sigfirst > siglast)
3417 {
3418 /* Bet he didn't figure we'd think of this case... */
3419 signum = sigfirst;
3420 sigfirst = siglast;
3421 siglast = signum;
3422 }
3423 }
3424 else
3425 {
3426 oursig = target_signal_from_name (*argv);
3427 if (oursig != TARGET_SIGNAL_UNKNOWN)
3428 {
3429 sigfirst = siglast = (int) oursig;
3430 }
3431 else
3432 {
3433 /* Not a number and not a recognized flag word => complain. */
3434 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3435 }
3436 }
3437
3438 /* If any signal numbers or symbol names were found, set flags for
3439 which signals to apply actions to. */
3440
3441 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3442 {
3443 switch ((enum target_signal) signum)
3444 {
3445 case TARGET_SIGNAL_TRAP:
3446 case TARGET_SIGNAL_INT:
3447 if (!allsigs && !sigs[signum])
3448 {
3449 if (query ("%s is used by the debugger.\n\
3450 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3451 {
3452 sigs[signum] = 1;
3453 }
3454 else
3455 {
3456 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3457 gdb_flush (gdb_stdout);
3458 }
3459 }
3460 break;
3461 case TARGET_SIGNAL_0:
3462 case TARGET_SIGNAL_DEFAULT:
3463 case TARGET_SIGNAL_UNKNOWN:
3464 /* Make sure that "all" doesn't print these. */
3465 break;
3466 default:
3467 sigs[signum] = 1;
3468 break;
3469 }
3470 }
3471
3472 argv++;
3473 }
3474
3475 target_notice_signals (inferior_ptid);
3476
3477 if (from_tty)
3478 {
3479 /* Show the results. */
3480 sig_print_header ();
3481 for (signum = 0; signum < nsigs; signum++)
3482 {
3483 if (sigs[signum])
3484 {
3485 sig_print_info (signum);
3486 }
3487 }
3488 }
3489
3490 do_cleanups (old_chain);
3491 }
3492
3493 static void
3494 xdb_handle_command (char *args, int from_tty)
3495 {
3496 char **argv;
3497 struct cleanup *old_chain;
3498
3499 /* Break the command line up into args. */
3500
3501 argv = buildargv (args);
3502 if (argv == NULL)
3503 {
3504 nomem (0);
3505 }
3506 old_chain = make_cleanup_freeargv (argv);
3507 if (argv[1] != (char *) NULL)
3508 {
3509 char *argBuf;
3510 int bufLen;
3511
3512 bufLen = strlen (argv[0]) + 20;
3513 argBuf = (char *) xmalloc (bufLen);
3514 if (argBuf)
3515 {
3516 int validFlag = 1;
3517 enum target_signal oursig;
3518
3519 oursig = target_signal_from_name (argv[0]);
3520 memset (argBuf, 0, bufLen);
3521 if (strcmp (argv[1], "Q") == 0)
3522 sprintf (argBuf, "%s %s", argv[0], "noprint");
3523 else
3524 {
3525 if (strcmp (argv[1], "s") == 0)
3526 {
3527 if (!signal_stop[oursig])
3528 sprintf (argBuf, "%s %s", argv[0], "stop");
3529 else
3530 sprintf (argBuf, "%s %s", argv[0], "nostop");
3531 }
3532 else if (strcmp (argv[1], "i") == 0)
3533 {
3534 if (!signal_program[oursig])
3535 sprintf (argBuf, "%s %s", argv[0], "pass");
3536 else
3537 sprintf (argBuf, "%s %s", argv[0], "nopass");
3538 }
3539 else if (strcmp (argv[1], "r") == 0)
3540 {
3541 if (!signal_print[oursig])
3542 sprintf (argBuf, "%s %s", argv[0], "print");
3543 else
3544 sprintf (argBuf, "%s %s", argv[0], "noprint");
3545 }
3546 else
3547 validFlag = 0;
3548 }
3549 if (validFlag)
3550 handle_command (argBuf, from_tty);
3551 else
3552 printf_filtered (_("Invalid signal handling flag.\n"));
3553 if (argBuf)
3554 xfree (argBuf);
3555 }
3556 }
3557 do_cleanups (old_chain);
3558 }
3559
3560 /* Print current contents of the tables set by the handle command.
3561 It is possible we should just be printing signals actually used
3562 by the current target (but for things to work right when switching
3563 targets, all signals should be in the signal tables). */
3564
3565 static void
3566 signals_info (char *signum_exp, int from_tty)
3567 {
3568 enum target_signal oursig;
3569 sig_print_header ();
3570
3571 if (signum_exp)
3572 {
3573 /* First see if this is a symbol name. */
3574 oursig = target_signal_from_name (signum_exp);
3575 if (oursig == TARGET_SIGNAL_UNKNOWN)
3576 {
3577 /* No, try numeric. */
3578 oursig =
3579 target_signal_from_command (parse_and_eval_long (signum_exp));
3580 }
3581 sig_print_info (oursig);
3582 return;
3583 }
3584
3585 printf_filtered ("\n");
3586 /* These ugly casts brought to you by the native VAX compiler. */
3587 for (oursig = TARGET_SIGNAL_FIRST;
3588 (int) oursig < (int) TARGET_SIGNAL_LAST;
3589 oursig = (enum target_signal) ((int) oursig + 1))
3590 {
3591 QUIT;
3592
3593 if (oursig != TARGET_SIGNAL_UNKNOWN
3594 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3595 sig_print_info (oursig);
3596 }
3597
3598 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3599 }
3600 \f
3601 struct inferior_status
3602 {
3603 enum target_signal stop_signal;
3604 CORE_ADDR stop_pc;
3605 bpstat stop_bpstat;
3606 int stop_step;
3607 int stop_stack_dummy;
3608 int stopped_by_random_signal;
3609 int trap_expected;
3610 CORE_ADDR step_range_start;
3611 CORE_ADDR step_range_end;
3612 struct frame_id step_frame_id;
3613 enum step_over_calls_kind step_over_calls;
3614 CORE_ADDR step_resume_break_address;
3615 int stop_after_trap;
3616 int stop_soon;
3617 struct regcache *stop_registers;
3618
3619 /* These are here because if call_function_by_hand has written some
3620 registers and then decides to call error(), we better not have changed
3621 any registers. */
3622 struct regcache *registers;
3623
3624 /* A frame unique identifier. */
3625 struct frame_id selected_frame_id;
3626
3627 int breakpoint_proceeded;
3628 int restore_stack_info;
3629 int proceed_to_finish;
3630 };
3631
3632 void
3633 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3634 LONGEST val)
3635 {
3636 int size = register_size (current_gdbarch, regno);
3637 void *buf = alloca (size);
3638 store_signed_integer (buf, size, val);
3639 regcache_raw_write (inf_status->registers, regno, buf);
3640 }
3641
3642 /* Save all of the information associated with the inferior<==>gdb
3643 connection. INF_STATUS is a pointer to a "struct inferior_status"
3644 (defined in inferior.h). */
3645
3646 struct inferior_status *
3647 save_inferior_status (int restore_stack_info)
3648 {
3649 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3650
3651 inf_status->stop_signal = stop_signal;
3652 inf_status->stop_pc = stop_pc;
3653 inf_status->stop_step = stop_step;
3654 inf_status->stop_stack_dummy = stop_stack_dummy;
3655 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3656 inf_status->trap_expected = trap_expected;
3657 inf_status->step_range_start = step_range_start;
3658 inf_status->step_range_end = step_range_end;
3659 inf_status->step_frame_id = step_frame_id;
3660 inf_status->step_over_calls = step_over_calls;
3661 inf_status->stop_after_trap = stop_after_trap;
3662 inf_status->stop_soon = stop_soon;
3663 /* Save original bpstat chain here; replace it with copy of chain.
3664 If caller's caller is walking the chain, they'll be happier if we
3665 hand them back the original chain when restore_inferior_status is
3666 called. */
3667 inf_status->stop_bpstat = stop_bpstat;
3668 stop_bpstat = bpstat_copy (stop_bpstat);
3669 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3670 inf_status->restore_stack_info = restore_stack_info;
3671 inf_status->proceed_to_finish = proceed_to_finish;
3672
3673 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3674
3675 inf_status->registers = regcache_dup (current_regcache);
3676
3677 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
3678 return inf_status;
3679 }
3680
3681 static int
3682 restore_selected_frame (void *args)
3683 {
3684 struct frame_id *fid = (struct frame_id *) args;
3685 struct frame_info *frame;
3686
3687 frame = frame_find_by_id (*fid);
3688
3689 /* If inf_status->selected_frame_id is NULL, there was no previously
3690 selected frame. */
3691 if (frame == NULL)
3692 {
3693 warning (_("Unable to restore previously selected frame."));
3694 return 0;
3695 }
3696
3697 select_frame (frame);
3698
3699 return (1);
3700 }
3701
3702 void
3703 restore_inferior_status (struct inferior_status *inf_status)
3704 {
3705 stop_signal = inf_status->stop_signal;
3706 stop_pc = inf_status->stop_pc;
3707 stop_step = inf_status->stop_step;
3708 stop_stack_dummy = inf_status->stop_stack_dummy;
3709 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3710 trap_expected = inf_status->trap_expected;
3711 step_range_start = inf_status->step_range_start;
3712 step_range_end = inf_status->step_range_end;
3713 step_frame_id = inf_status->step_frame_id;
3714 step_over_calls = inf_status->step_over_calls;
3715 stop_after_trap = inf_status->stop_after_trap;
3716 stop_soon = inf_status->stop_soon;
3717 bpstat_clear (&stop_bpstat);
3718 stop_bpstat = inf_status->stop_bpstat;
3719 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3720 proceed_to_finish = inf_status->proceed_to_finish;
3721
3722 /* FIXME: Is the restore of stop_registers always needed. */
3723 regcache_xfree (stop_registers);
3724 stop_registers = inf_status->stop_registers;
3725
3726 /* The inferior can be gone if the user types "print exit(0)"
3727 (and perhaps other times). */
3728 if (target_has_execution)
3729 /* NB: The register write goes through to the target. */
3730 regcache_cpy (current_regcache, inf_status->registers);
3731 regcache_xfree (inf_status->registers);
3732
3733 /* FIXME: If we are being called after stopping in a function which
3734 is called from gdb, we should not be trying to restore the
3735 selected frame; it just prints a spurious error message (The
3736 message is useful, however, in detecting bugs in gdb (like if gdb
3737 clobbers the stack)). In fact, should we be restoring the
3738 inferior status at all in that case? . */
3739
3740 if (target_has_stack && inf_status->restore_stack_info)
3741 {
3742 /* The point of catch_errors is that if the stack is clobbered,
3743 walking the stack might encounter a garbage pointer and
3744 error() trying to dereference it. */
3745 if (catch_errors
3746 (restore_selected_frame, &inf_status->selected_frame_id,
3747 "Unable to restore previously selected frame:\n",
3748 RETURN_MASK_ERROR) == 0)
3749 /* Error in restoring the selected frame. Select the innermost
3750 frame. */
3751 select_frame (get_current_frame ());
3752
3753 }
3754
3755 xfree (inf_status);
3756 }
3757
3758 static void
3759 do_restore_inferior_status_cleanup (void *sts)
3760 {
3761 restore_inferior_status (sts);
3762 }
3763
3764 struct cleanup *
3765 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3766 {
3767 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3768 }
3769
3770 void
3771 discard_inferior_status (struct inferior_status *inf_status)
3772 {
3773 /* See save_inferior_status for info on stop_bpstat. */
3774 bpstat_clear (&inf_status->stop_bpstat);
3775 regcache_xfree (inf_status->registers);
3776 regcache_xfree (inf_status->stop_registers);
3777 xfree (inf_status);
3778 }
3779
3780 int
3781 inferior_has_forked (int pid, int *child_pid)
3782 {
3783 struct target_waitstatus last;
3784 ptid_t last_ptid;
3785
3786 get_last_target_status (&last_ptid, &last);
3787
3788 if (last.kind != TARGET_WAITKIND_FORKED)
3789 return 0;
3790
3791 if (ptid_get_pid (last_ptid) != pid)
3792 return 0;
3793
3794 *child_pid = last.value.related_pid;
3795 return 1;
3796 }
3797
3798 int
3799 inferior_has_vforked (int pid, int *child_pid)
3800 {
3801 struct target_waitstatus last;
3802 ptid_t last_ptid;
3803
3804 get_last_target_status (&last_ptid, &last);
3805
3806 if (last.kind != TARGET_WAITKIND_VFORKED)
3807 return 0;
3808
3809 if (ptid_get_pid (last_ptid) != pid)
3810 return 0;
3811
3812 *child_pid = last.value.related_pid;
3813 return 1;
3814 }
3815
3816 int
3817 inferior_has_execd (int pid, char **execd_pathname)
3818 {
3819 struct target_waitstatus last;
3820 ptid_t last_ptid;
3821
3822 get_last_target_status (&last_ptid, &last);
3823
3824 if (last.kind != TARGET_WAITKIND_EXECD)
3825 return 0;
3826
3827 if (ptid_get_pid (last_ptid) != pid)
3828 return 0;
3829
3830 *execd_pathname = xstrdup (last.value.execd_pathname);
3831 return 1;
3832 }
3833
3834 /* Oft used ptids */
3835 ptid_t null_ptid;
3836 ptid_t minus_one_ptid;
3837
3838 /* Create a ptid given the necessary PID, LWP, and TID components. */
3839
3840 ptid_t
3841 ptid_build (int pid, long lwp, long tid)
3842 {
3843 ptid_t ptid;
3844
3845 ptid.pid = pid;
3846 ptid.lwp = lwp;
3847 ptid.tid = tid;
3848 return ptid;
3849 }
3850
3851 /* Create a ptid from just a pid. */
3852
3853 ptid_t
3854 pid_to_ptid (int pid)
3855 {
3856 return ptid_build (pid, 0, 0);
3857 }
3858
3859 /* Fetch the pid (process id) component from a ptid. */
3860
3861 int
3862 ptid_get_pid (ptid_t ptid)
3863 {
3864 return ptid.pid;
3865 }
3866
3867 /* Fetch the lwp (lightweight process) component from a ptid. */
3868
3869 long
3870 ptid_get_lwp (ptid_t ptid)
3871 {
3872 return ptid.lwp;
3873 }
3874
3875 /* Fetch the tid (thread id) component from a ptid. */
3876
3877 long
3878 ptid_get_tid (ptid_t ptid)
3879 {
3880 return ptid.tid;
3881 }
3882
3883 /* ptid_equal() is used to test equality of two ptids. */
3884
3885 int
3886 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3887 {
3888 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3889 && ptid1.tid == ptid2.tid);
3890 }
3891
3892 /* restore_inferior_ptid() will be used by the cleanup machinery
3893 to restore the inferior_ptid value saved in a call to
3894 save_inferior_ptid(). */
3895
3896 static void
3897 restore_inferior_ptid (void *arg)
3898 {
3899 ptid_t *saved_ptid_ptr = arg;
3900 inferior_ptid = *saved_ptid_ptr;
3901 xfree (arg);
3902 }
3903
3904 /* Save the value of inferior_ptid so that it may be restored by a
3905 later call to do_cleanups(). Returns the struct cleanup pointer
3906 needed for later doing the cleanup. */
3907
3908 struct cleanup *
3909 save_inferior_ptid (void)
3910 {
3911 ptid_t *saved_ptid_ptr;
3912
3913 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3914 *saved_ptid_ptr = inferior_ptid;
3915 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3916 }
3917 \f
3918
3919 static void
3920 build_infrun (void)
3921 {
3922 stop_registers = regcache_xmalloc (current_gdbarch);
3923 }
3924
3925 void
3926 _initialize_infrun (void)
3927 {
3928 int i;
3929 int numsigs;
3930 struct cmd_list_element *c;
3931
3932 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3933 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3934
3935 add_info ("signals", signals_info, _("\
3936 What debugger does when program gets various signals.\n\
3937 Specify a signal as argument to print info on that signal only."));
3938 add_info_alias ("handle", "signals", 0);
3939
3940 add_com ("handle", class_run, handle_command, _("\
3941 Specify how to handle a signal.\n\
3942 Args are signals and actions to apply to those signals.\n\
3943 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3944 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3945 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3946 The special arg \"all\" is recognized to mean all signals except those\n\
3947 used by the debugger, typically SIGTRAP and SIGINT.\n\
3948 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3949 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3950 Stop means reenter debugger if this signal happens (implies print).\n\
3951 Print means print a message if this signal happens.\n\
3952 Pass means let program see this signal; otherwise program doesn't know.\n\
3953 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3954 Pass and Stop may be combined."));
3955 if (xdb_commands)
3956 {
3957 add_com ("lz", class_info, signals_info, _("\
3958 What debugger does when program gets various signals.\n\
3959 Specify a signal as argument to print info on that signal only."));
3960 add_com ("z", class_run, xdb_handle_command, _("\
3961 Specify how to handle a signal.\n\
3962 Args are signals and actions to apply to those signals.\n\
3963 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3964 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3965 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3966 The special arg \"all\" is recognized to mean all signals except those\n\
3967 used by the debugger, typically SIGTRAP and SIGINT.\n\
3968 Recognized actions include \"s\" (toggles between stop and nostop), \n\
3969 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3970 nopass), \"Q\" (noprint)\n\
3971 Stop means reenter debugger if this signal happens (implies print).\n\
3972 Print means print a message if this signal happens.\n\
3973 Pass means let program see this signal; otherwise program doesn't know.\n\
3974 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3975 Pass and Stop may be combined."));
3976 }
3977
3978 if (!dbx_commands)
3979 stop_command = add_cmd ("stop", class_obscure,
3980 not_just_help_class_command, _("\
3981 There is no `stop' command, but you can set a hook on `stop'.\n\
3982 This allows you to set a list of commands to be run each time execution\n\
3983 of the program stops."), &cmdlist);
3984
3985 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
3986 Set inferior debugging."), _("\
3987 Show inferior debugging."), _("\
3988 When non-zero, inferior specific debugging is enabled."),
3989 NULL,
3990 show_debug_infrun,
3991 &setdebuglist, &showdebuglist);
3992
3993 numsigs = (int) TARGET_SIGNAL_LAST;
3994 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3995 signal_print = (unsigned char *)
3996 xmalloc (sizeof (signal_print[0]) * numsigs);
3997 signal_program = (unsigned char *)
3998 xmalloc (sizeof (signal_program[0]) * numsigs);
3999 for (i = 0; i < numsigs; i++)
4000 {
4001 signal_stop[i] = 1;
4002 signal_print[i] = 1;
4003 signal_program[i] = 1;
4004 }
4005
4006 /* Signals caused by debugger's own actions
4007 should not be given to the program afterwards. */
4008 signal_program[TARGET_SIGNAL_TRAP] = 0;
4009 signal_program[TARGET_SIGNAL_INT] = 0;
4010
4011 /* Signals that are not errors should not normally enter the debugger. */
4012 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4013 signal_print[TARGET_SIGNAL_ALRM] = 0;
4014 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4015 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4016 signal_stop[TARGET_SIGNAL_PROF] = 0;
4017 signal_print[TARGET_SIGNAL_PROF] = 0;
4018 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4019 signal_print[TARGET_SIGNAL_CHLD] = 0;
4020 signal_stop[TARGET_SIGNAL_IO] = 0;
4021 signal_print[TARGET_SIGNAL_IO] = 0;
4022 signal_stop[TARGET_SIGNAL_POLL] = 0;
4023 signal_print[TARGET_SIGNAL_POLL] = 0;
4024 signal_stop[TARGET_SIGNAL_URG] = 0;
4025 signal_print[TARGET_SIGNAL_URG] = 0;
4026 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4027 signal_print[TARGET_SIGNAL_WINCH] = 0;
4028
4029 /* These signals are used internally by user-level thread
4030 implementations. (See signal(5) on Solaris.) Like the above
4031 signals, a healthy program receives and handles them as part of
4032 its normal operation. */
4033 signal_stop[TARGET_SIGNAL_LWP] = 0;
4034 signal_print[TARGET_SIGNAL_LWP] = 0;
4035 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4036 signal_print[TARGET_SIGNAL_WAITING] = 0;
4037 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4038 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4039
4040 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4041 &stop_on_solib_events, _("\
4042 Set stopping for shared library events."), _("\
4043 Show stopping for shared library events."), _("\
4044 If nonzero, gdb will give control to the user when the dynamic linker\n\
4045 notifies gdb of shared library events. The most common event of interest\n\
4046 to the user would be loading/unloading of a new library."),
4047 NULL,
4048 show_stop_on_solib_events,
4049 &setlist, &showlist);
4050
4051 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4052 follow_fork_mode_kind_names,
4053 &follow_fork_mode_string, _("\
4054 Set debugger response to a program call of fork or vfork."), _("\
4055 Show debugger response to a program call of fork or vfork."), _("\
4056 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4057 parent - the original process is debugged after a fork\n\
4058 child - the new process is debugged after a fork\n\
4059 The unfollowed process will continue to run.\n\
4060 By default, the debugger will follow the parent process."),
4061 NULL,
4062 show_follow_fork_mode_string,
4063 &setlist, &showlist);
4064
4065 add_setshow_enum_cmd ("scheduler-locking", class_run,
4066 scheduler_enums, &scheduler_mode, _("\
4067 Set mode for locking scheduler during execution."), _("\
4068 Show mode for locking scheduler during execution."), _("\
4069 off == no locking (threads may preempt at any time)\n\
4070 on == full locking (no thread except the current thread may run)\n\
4071 step == scheduler locked during every single-step operation.\n\
4072 In this mode, no other thread may run during a step command.\n\
4073 Other threads may run while stepping over a function call ('next')."),
4074 set_schedlock_func, /* traps on target vector */
4075 show_scheduler_mode,
4076 &setlist, &showlist);
4077
4078 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4079 Set mode of the step operation."), _("\
4080 Show mode of the step operation."), _("\
4081 When set, doing a step over a function without debug line information\n\
4082 will stop at the first instruction of that function. Otherwise, the\n\
4083 function is skipped and the step command stops at a different source line."),
4084 NULL,
4085 show_step_stop_if_no_debug,
4086 &setlist, &showlist);
4087
4088 /* ptid initializations */
4089 null_ptid = ptid_build (0, 0, 0);
4090 minus_one_ptid = ptid_build (-1, 0, 0);
4091 inferior_ptid = null_ptid;
4092 target_last_wait_ptid = minus_one_ptid;
4093 }