]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
* infrun.c (singlestep_pc): New variable.
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "exceptions.h"
32 #include "breakpoint.h"
33 #include "gdb_wait.h"
34 #include "gdbcore.h"
35 #include "gdbcmd.h"
36 #include "cli/cli-script.h"
37 #include "target.h"
38 #include "gdbthread.h"
39 #include "annotate.h"
40 #include "symfile.h"
41 #include "top.h"
42 #include <signal.h>
43 #include "inf-loop.h"
44 #include "regcache.h"
45 #include "value.h"
46 #include "observer.h"
47 #include "language.h"
48 #include "solib.h"
49 #include "main.h"
50
51 #include "gdb_assert.h"
52 #include "mi/mi-common.h"
53
54 /* Prototypes for local functions */
55
56 static void signals_info (char *, int);
57
58 static void handle_command (char *, int);
59
60 static void sig_print_info (enum target_signal);
61
62 static void sig_print_header (void);
63
64 static void resume_cleanups (void *);
65
66 static int hook_stop_stub (void *);
67
68 static int restore_selected_frame (void *);
69
70 static void build_infrun (void);
71
72 static int follow_fork (void);
73
74 static void set_schedlock_func (char *args, int from_tty,
75 struct cmd_list_element *c);
76
77 struct execution_control_state;
78
79 static int currently_stepping (struct execution_control_state *ecs);
80
81 static void xdb_handle_command (char *args, int from_tty);
82
83 static int prepare_to_proceed (void);
84
85 void _initialize_infrun (void);
86
87 int inferior_ignoring_startup_exec_events = 0;
88 int inferior_ignoring_leading_exec_events = 0;
89
90 /* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93 int step_stop_if_no_debug = 0;
94 static void
95 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97 {
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99 }
100
101 /* In asynchronous mode, but simulating synchronous execution. */
102
103 int sync_execution = 0;
104
105 /* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
107 running in. */
108
109 static ptid_t previous_inferior_ptid;
110
111 /* This is true for configurations that may follow through execl() and
112 similar functions. At present this is only true for HP-UX native. */
113
114 #ifndef MAY_FOLLOW_EXEC
115 #define MAY_FOLLOW_EXEC (0)
116 #endif
117
118 static int may_follow_exec = MAY_FOLLOW_EXEC;
119
120 static int debug_infrun = 0;
121 static void
122 show_debug_infrun (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c, const char *value)
124 {
125 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
126 }
127
128 /* If the program uses ELF-style shared libraries, then calls to
129 functions in shared libraries go through stubs, which live in a
130 table called the PLT (Procedure Linkage Table). The first time the
131 function is called, the stub sends control to the dynamic linker,
132 which looks up the function's real address, patches the stub so
133 that future calls will go directly to the function, and then passes
134 control to the function.
135
136 If we are stepping at the source level, we don't want to see any of
137 this --- we just want to skip over the stub and the dynamic linker.
138 The simple approach is to single-step until control leaves the
139 dynamic linker.
140
141 However, on some systems (e.g., Red Hat's 5.2 distribution) the
142 dynamic linker calls functions in the shared C library, so you
143 can't tell from the PC alone whether the dynamic linker is still
144 running. In this case, we use a step-resume breakpoint to get us
145 past the dynamic linker, as if we were using "next" to step over a
146 function call.
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
149 linker code or not. Normally, this means we single-step. However,
150 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
151 address where we can place a step-resume breakpoint to get past the
152 linker's symbol resolution function.
153
154 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
155 pretty portable way, by comparing the PC against the address ranges
156 of the dynamic linker's sections.
157
158 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
159 it depends on internal details of the dynamic linker. It's usually
160 not too hard to figure out where to put a breakpoint, but it
161 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
162 sanity checking. If it can't figure things out, returning zero and
163 getting the (possibly confusing) stepping behavior is better than
164 signalling an error, which will obscure the change in the
165 inferior's state. */
166
167 /* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
169 dld itself).
170
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
174
175 #ifndef SOLIB_IN_DYNAMIC_LINKER
176 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
177 #endif
178
179 /* We can't step off a permanent breakpoint in the ordinary way, because we
180 can't remove it. Instead, we have to advance the PC to the next
181 instruction. This macro should expand to a pointer to a function that
182 does that, or zero if we have no such function. If we don't have a
183 definition for it, we have to report an error. */
184 #ifndef SKIP_PERMANENT_BREAKPOINT
185 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
186 static void
187 default_skip_permanent_breakpoint (void)
188 {
189 error (_("\
190 The program is stopped at a permanent breakpoint, but GDB does not know\n\
191 how to step past a permanent breakpoint on this architecture. Try using\n\
192 a command like `return' or `jump' to continue execution."));
193 }
194 #endif
195
196
197 /* Convert the #defines into values. This is temporary until wfi control
198 flow is completely sorted out. */
199
200 #ifndef HAVE_STEPPABLE_WATCHPOINT
201 #define HAVE_STEPPABLE_WATCHPOINT 0
202 #else
203 #undef HAVE_STEPPABLE_WATCHPOINT
204 #define HAVE_STEPPABLE_WATCHPOINT 1
205 #endif
206
207 #ifndef CANNOT_STEP_HW_WATCHPOINTS
208 #define CANNOT_STEP_HW_WATCHPOINTS 0
209 #else
210 #undef CANNOT_STEP_HW_WATCHPOINTS
211 #define CANNOT_STEP_HW_WATCHPOINTS 1
212 #endif
213
214 /* Tables of how to react to signals; the user sets them. */
215
216 static unsigned char *signal_stop;
217 static unsigned char *signal_print;
218 static unsigned char *signal_program;
219
220 #define SET_SIGS(nsigs,sigs,flags) \
221 do { \
222 int signum = (nsigs); \
223 while (signum-- > 0) \
224 if ((sigs)[signum]) \
225 (flags)[signum] = 1; \
226 } while (0)
227
228 #define UNSET_SIGS(nsigs,sigs,flags) \
229 do { \
230 int signum = (nsigs); \
231 while (signum-- > 0) \
232 if ((sigs)[signum]) \
233 (flags)[signum] = 0; \
234 } while (0)
235
236 /* Value to pass to target_resume() to cause all threads to resume */
237
238 #define RESUME_ALL (pid_to_ptid (-1))
239
240 /* Command list pointer for the "stop" placeholder. */
241
242 static struct cmd_list_element *stop_command;
243
244 /* Nonzero if breakpoints are now inserted in the inferior. */
245
246 static int breakpoints_inserted;
247
248 /* Function inferior was in as of last step command. */
249
250 static struct symbol *step_start_function;
251
252 /* Nonzero if we are expecting a trace trap and should proceed from it. */
253
254 static int trap_expected;
255
256 /* Nonzero if we want to give control to the user when we're notified
257 of shared library events by the dynamic linker. */
258 static int stop_on_solib_events;
259 static void
260 show_stop_on_solib_events (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
264 value);
265 }
266
267 /* Nonzero means expecting a trace trap
268 and should stop the inferior and return silently when it happens. */
269
270 int stop_after_trap;
271
272 /* Nonzero means expecting a trap and caller will handle it themselves.
273 It is used after attach, due to attaching to a process;
274 when running in the shell before the child program has been exec'd;
275 and when running some kinds of remote stuff (FIXME?). */
276
277 enum stop_kind stop_soon;
278
279 /* Nonzero if proceed is being used for a "finish" command or a similar
280 situation when stop_registers should be saved. */
281
282 int proceed_to_finish;
283
284 /* Save register contents here when about to pop a stack dummy frame,
285 if-and-only-if proceed_to_finish is set.
286 Thus this contains the return value from the called function (assuming
287 values are returned in a register). */
288
289 struct regcache *stop_registers;
290
291 /* Nonzero if program stopped due to error trying to insert breakpoints. */
292
293 static int breakpoints_failed;
294
295 /* Nonzero after stop if current stack frame should be printed. */
296
297 static int stop_print_frame;
298
299 static struct breakpoint *step_resume_breakpoint = NULL;
300
301 /* This is a cached copy of the pid/waitstatus of the last event
302 returned by target_wait()/deprecated_target_wait_hook(). This
303 information is returned by get_last_target_status(). */
304 static ptid_t target_last_wait_ptid;
305 static struct target_waitstatus target_last_waitstatus;
306
307 /* This is used to remember when a fork, vfork or exec event
308 was caught by a catchpoint, and thus the event is to be
309 followed at the next resume of the inferior, and not
310 immediately. */
311 static struct
312 {
313 enum target_waitkind kind;
314 struct
315 {
316 int parent_pid;
317 int child_pid;
318 }
319 fork_event;
320 char *execd_pathname;
321 }
322 pending_follow;
323
324 static const char follow_fork_mode_child[] = "child";
325 static const char follow_fork_mode_parent[] = "parent";
326
327 static const char *follow_fork_mode_kind_names[] = {
328 follow_fork_mode_child,
329 follow_fork_mode_parent,
330 NULL
331 };
332
333 static const char *follow_fork_mode_string = follow_fork_mode_parent;
334 static void
335 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
336 struct cmd_list_element *c, const char *value)
337 {
338 fprintf_filtered (file, _("\
339 Debugger response to a program call of fork or vfork is \"%s\".\n"),
340 value);
341 }
342 \f
343
344 static int
345 follow_fork (void)
346 {
347 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
348
349 return target_follow_fork (follow_child);
350 }
351
352 void
353 follow_inferior_reset_breakpoints (void)
354 {
355 /* Was there a step_resume breakpoint? (There was if the user
356 did a "next" at the fork() call.) If so, explicitly reset its
357 thread number.
358
359 step_resumes are a form of bp that are made to be per-thread.
360 Since we created the step_resume bp when the parent process
361 was being debugged, and now are switching to the child process,
362 from the breakpoint package's viewpoint, that's a switch of
363 "threads". We must update the bp's notion of which thread
364 it is for, or it'll be ignored when it triggers. */
365
366 if (step_resume_breakpoint)
367 breakpoint_re_set_thread (step_resume_breakpoint);
368
369 /* Reinsert all breakpoints in the child. The user may have set
370 breakpoints after catching the fork, in which case those
371 were never set in the child, but only in the parent. This makes
372 sure the inserted breakpoints match the breakpoint list. */
373
374 breakpoint_re_set ();
375 insert_breakpoints ();
376 }
377
378 /* EXECD_PATHNAME is assumed to be non-NULL. */
379
380 static void
381 follow_exec (int pid, char *execd_pathname)
382 {
383 int saved_pid = pid;
384 struct target_ops *tgt;
385
386 if (!may_follow_exec)
387 return;
388
389 /* This is an exec event that we actually wish to pay attention to.
390 Refresh our symbol table to the newly exec'd program, remove any
391 momentary bp's, etc.
392
393 If there are breakpoints, they aren't really inserted now,
394 since the exec() transformed our inferior into a fresh set
395 of instructions.
396
397 We want to preserve symbolic breakpoints on the list, since
398 we have hopes that they can be reset after the new a.out's
399 symbol table is read.
400
401 However, any "raw" breakpoints must be removed from the list
402 (e.g., the solib bp's), since their address is probably invalid
403 now.
404
405 And, we DON'T want to call delete_breakpoints() here, since
406 that may write the bp's "shadow contents" (the instruction
407 value that was overwritten witha TRAP instruction). Since
408 we now have a new a.out, those shadow contents aren't valid. */
409 update_breakpoints_after_exec ();
410
411 /* If there was one, it's gone now. We cannot truly step-to-next
412 statement through an exec(). */
413 step_resume_breakpoint = NULL;
414 step_range_start = 0;
415 step_range_end = 0;
416
417 /* What is this a.out's name? */
418 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
419
420 /* We've followed the inferior through an exec. Therefore, the
421 inferior has essentially been killed & reborn. */
422
423 /* First collect the run target in effect. */
424 tgt = find_run_target ();
425 /* If we can't find one, things are in a very strange state... */
426 if (tgt == NULL)
427 error (_("Could find run target to save before following exec"));
428
429 gdb_flush (gdb_stdout);
430 target_mourn_inferior ();
431 inferior_ptid = pid_to_ptid (saved_pid);
432 /* Because mourn_inferior resets inferior_ptid. */
433 push_target (tgt);
434
435 /* That a.out is now the one to use. */
436 exec_file_attach (execd_pathname, 0);
437
438 /* And also is where symbols can be found. */
439 symbol_file_add_main (execd_pathname, 0);
440
441 /* Reset the shared library package. This ensures that we get
442 a shlib event when the child reaches "_start", at which point
443 the dld will have had a chance to initialize the child. */
444 #if defined(SOLIB_RESTART)
445 SOLIB_RESTART ();
446 #endif
447 #ifdef SOLIB_CREATE_INFERIOR_HOOK
448 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
449 #else
450 solib_create_inferior_hook ();
451 #endif
452
453 /* Reinsert all breakpoints. (Those which were symbolic have
454 been reset to the proper address in the new a.out, thanks
455 to symbol_file_command...) */
456 insert_breakpoints ();
457
458 /* The next resume of this inferior should bring it to the shlib
459 startup breakpoints. (If the user had also set bp's on
460 "main" from the old (parent) process, then they'll auto-
461 matically get reset there in the new process.) */
462 }
463
464 /* Non-zero if we just simulating a single-step. This is needed
465 because we cannot remove the breakpoints in the inferior process
466 until after the `wait' in `wait_for_inferior'. */
467 static int singlestep_breakpoints_inserted_p = 0;
468
469 /* The thread we inserted single-step breakpoints for. */
470 static ptid_t singlestep_ptid;
471
472 /* PC when we started this single-step. */
473 static CORE_ADDR singlestep_pc;
474
475 /* If another thread hit the singlestep breakpoint, we save the original
476 thread here so that we can resume single-stepping it later. */
477 static ptid_t saved_singlestep_ptid;
478 static int stepping_past_singlestep_breakpoint;
479 \f
480
481 /* Things to clean up if we QUIT out of resume (). */
482 static void
483 resume_cleanups (void *ignore)
484 {
485 normal_stop ();
486 }
487
488 static const char schedlock_off[] = "off";
489 static const char schedlock_on[] = "on";
490 static const char schedlock_step[] = "step";
491 static const char *scheduler_enums[] = {
492 schedlock_off,
493 schedlock_on,
494 schedlock_step,
495 NULL
496 };
497 static const char *scheduler_mode = schedlock_off;
498 static void
499 show_scheduler_mode (struct ui_file *file, int from_tty,
500 struct cmd_list_element *c, const char *value)
501 {
502 fprintf_filtered (file, _("\
503 Mode for locking scheduler during execution is \"%s\".\n"),
504 value);
505 }
506
507 static void
508 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
509 {
510 if (!target_can_lock_scheduler)
511 {
512 scheduler_mode = schedlock_off;
513 error (_("Target '%s' cannot support this command."), target_shortname);
514 }
515 }
516
517
518 /* Resume the inferior, but allow a QUIT. This is useful if the user
519 wants to interrupt some lengthy single-stepping operation
520 (for child processes, the SIGINT goes to the inferior, and so
521 we get a SIGINT random_signal, but for remote debugging and perhaps
522 other targets, that's not true).
523
524 STEP nonzero if we should step (zero to continue instead).
525 SIG is the signal to give the inferior (zero for none). */
526 void
527 resume (int step, enum target_signal sig)
528 {
529 int should_resume = 1;
530 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
531 QUIT;
532
533 if (debug_infrun)
534 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
535 step, sig);
536
537 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
538
539
540 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
541 over an instruction that causes a page fault without triggering
542 a hardware watchpoint. The kernel properly notices that it shouldn't
543 stop, because the hardware watchpoint is not triggered, but it forgets
544 the step request and continues the program normally.
545 Work around the problem by removing hardware watchpoints if a step is
546 requested, GDB will check for a hardware watchpoint trigger after the
547 step anyway. */
548 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
549 remove_hw_watchpoints ();
550
551
552 /* Normally, by the time we reach `resume', the breakpoints are either
553 removed or inserted, as appropriate. The exception is if we're sitting
554 at a permanent breakpoint; we need to step over it, but permanent
555 breakpoints can't be removed. So we have to test for it here. */
556 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
557 SKIP_PERMANENT_BREAKPOINT ();
558
559 if (SOFTWARE_SINGLE_STEP_P () && step)
560 {
561 /* Do it the hard way, w/temp breakpoints */
562 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
563 /* ...and don't ask hardware to do it. */
564 step = 0;
565 /* and do not pull these breakpoints until after a `wait' in
566 `wait_for_inferior' */
567 singlestep_breakpoints_inserted_p = 1;
568 singlestep_ptid = inferior_ptid;
569 singlestep_pc = read_pc ();
570 }
571
572 /* If there were any forks/vforks/execs that were caught and are
573 now to be followed, then do so. */
574 switch (pending_follow.kind)
575 {
576 case TARGET_WAITKIND_FORKED:
577 case TARGET_WAITKIND_VFORKED:
578 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
579 if (follow_fork ())
580 should_resume = 0;
581 break;
582
583 case TARGET_WAITKIND_EXECD:
584 /* follow_exec is called as soon as the exec event is seen. */
585 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
586 break;
587
588 default:
589 break;
590 }
591
592 /* Install inferior's terminal modes. */
593 target_terminal_inferior ();
594
595 if (should_resume)
596 {
597 ptid_t resume_ptid;
598
599 resume_ptid = RESUME_ALL; /* Default */
600
601 if ((step || singlestep_breakpoints_inserted_p)
602 && (stepping_past_singlestep_breakpoint
603 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
604 {
605 /* Stepping past a breakpoint without inserting breakpoints.
606 Make sure only the current thread gets to step, so that
607 other threads don't sneak past breakpoints while they are
608 not inserted. */
609
610 resume_ptid = inferior_ptid;
611 }
612
613 if ((scheduler_mode == schedlock_on)
614 || (scheduler_mode == schedlock_step
615 && (step || singlestep_breakpoints_inserted_p)))
616 {
617 /* User-settable 'scheduler' mode requires solo thread resume. */
618 resume_ptid = inferior_ptid;
619 }
620
621 if (CANNOT_STEP_BREAKPOINT)
622 {
623 /* Most targets can step a breakpoint instruction, thus
624 executing it normally. But if this one cannot, just
625 continue and we will hit it anyway. */
626 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
627 step = 0;
628 }
629 target_resume (resume_ptid, step, sig);
630 }
631
632 discard_cleanups (old_cleanups);
633 }
634 \f
635
636 /* Clear out all variables saying what to do when inferior is continued.
637 First do this, then set the ones you want, then call `proceed'. */
638
639 void
640 clear_proceed_status (void)
641 {
642 trap_expected = 0;
643 step_range_start = 0;
644 step_range_end = 0;
645 step_frame_id = null_frame_id;
646 step_over_calls = STEP_OVER_UNDEBUGGABLE;
647 stop_after_trap = 0;
648 stop_soon = NO_STOP_QUIETLY;
649 proceed_to_finish = 0;
650 breakpoint_proceeded = 1; /* We're about to proceed... */
651
652 /* Discard any remaining commands or status from previous stop. */
653 bpstat_clear (&stop_bpstat);
654 }
655
656 /* This should be suitable for any targets that support threads. */
657
658 static int
659 prepare_to_proceed (void)
660 {
661 ptid_t wait_ptid;
662 struct target_waitstatus wait_status;
663
664 /* Get the last target status returned by target_wait(). */
665 get_last_target_status (&wait_ptid, &wait_status);
666
667 /* Make sure we were stopped either at a breakpoint, or because
668 of a Ctrl-C. */
669 if (wait_status.kind != TARGET_WAITKIND_STOPPED
670 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
671 && wait_status.value.sig != TARGET_SIGNAL_INT))
672 {
673 return 0;
674 }
675
676 if (!ptid_equal (wait_ptid, minus_one_ptid)
677 && !ptid_equal (inferior_ptid, wait_ptid))
678 {
679 /* Switched over from WAIT_PID. */
680 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
681
682 if (wait_pc != read_pc ())
683 {
684 /* Switch back to WAIT_PID thread. */
685 inferior_ptid = wait_ptid;
686
687 /* FIXME: This stuff came from switch_to_thread() in
688 thread.c (which should probably be a public function). */
689 flush_cached_frames ();
690 registers_changed ();
691 stop_pc = wait_pc;
692 select_frame (get_current_frame ());
693 }
694
695 /* We return 1 to indicate that there is a breakpoint here,
696 so we need to step over it before continuing to avoid
697 hitting it straight away. */
698 if (breakpoint_here_p (wait_pc))
699 return 1;
700 }
701
702 return 0;
703
704 }
705
706 /* Record the pc of the program the last time it stopped. This is
707 just used internally by wait_for_inferior, but need to be preserved
708 over calls to it and cleared when the inferior is started. */
709 static CORE_ADDR prev_pc;
710
711 /* Basic routine for continuing the program in various fashions.
712
713 ADDR is the address to resume at, or -1 for resume where stopped.
714 SIGGNAL is the signal to give it, or 0 for none,
715 or -1 for act according to how it stopped.
716 STEP is nonzero if should trap after one instruction.
717 -1 means return after that and print nothing.
718 You should probably set various step_... variables
719 before calling here, if you are stepping.
720
721 You should call clear_proceed_status before calling proceed. */
722
723 void
724 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
725 {
726 int oneproc = 0;
727
728 if (step > 0)
729 step_start_function = find_pc_function (read_pc ());
730 if (step < 0)
731 stop_after_trap = 1;
732
733 if (addr == (CORE_ADDR) -1)
734 {
735 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
736 /* There is a breakpoint at the address we will resume at,
737 step one instruction before inserting breakpoints so that
738 we do not stop right away (and report a second hit at this
739 breakpoint). */
740 oneproc = 1;
741 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
742 && gdbarch_single_step_through_delay (current_gdbarch,
743 get_current_frame ()))
744 /* We stepped onto an instruction that needs to be stepped
745 again before re-inserting the breakpoint, do so. */
746 oneproc = 1;
747 }
748 else
749 {
750 write_pc (addr);
751 }
752
753 if (debug_infrun)
754 fprintf_unfiltered (gdb_stdlog,
755 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
756 paddr_nz (addr), siggnal, step);
757
758 /* In a multi-threaded task we may select another thread
759 and then continue or step.
760
761 But if the old thread was stopped at a breakpoint, it
762 will immediately cause another breakpoint stop without
763 any execution (i.e. it will report a breakpoint hit
764 incorrectly). So we must step over it first.
765
766 prepare_to_proceed checks the current thread against the thread
767 that reported the most recent event. If a step-over is required
768 it returns TRUE and sets the current thread to the old thread. */
769 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
770 oneproc = 1;
771
772 if (oneproc)
773 /* We will get a trace trap after one instruction.
774 Continue it automatically and insert breakpoints then. */
775 trap_expected = 1;
776 else
777 {
778 insert_breakpoints ();
779 /* If we get here there was no call to error() in
780 insert breakpoints -- so they were inserted. */
781 breakpoints_inserted = 1;
782 }
783
784 if (siggnal != TARGET_SIGNAL_DEFAULT)
785 stop_signal = siggnal;
786 /* If this signal should not be seen by program,
787 give it zero. Used for debugging signals. */
788 else if (!signal_program[stop_signal])
789 stop_signal = TARGET_SIGNAL_0;
790
791 annotate_starting ();
792
793 /* Make sure that output from GDB appears before output from the
794 inferior. */
795 gdb_flush (gdb_stdout);
796
797 /* Refresh prev_pc value just prior to resuming. This used to be
798 done in stop_stepping, however, setting prev_pc there did not handle
799 scenarios such as inferior function calls or returning from
800 a function via the return command. In those cases, the prev_pc
801 value was not set properly for subsequent commands. The prev_pc value
802 is used to initialize the starting line number in the ecs. With an
803 invalid value, the gdb next command ends up stopping at the position
804 represented by the next line table entry past our start position.
805 On platforms that generate one line table entry per line, this
806 is not a problem. However, on the ia64, the compiler generates
807 extraneous line table entries that do not increase the line number.
808 When we issue the gdb next command on the ia64 after an inferior call
809 or a return command, we often end up a few instructions forward, still
810 within the original line we started.
811
812 An attempt was made to have init_execution_control_state () refresh
813 the prev_pc value before calculating the line number. This approach
814 did not work because on platforms that use ptrace, the pc register
815 cannot be read unless the inferior is stopped. At that point, we
816 are not guaranteed the inferior is stopped and so the read_pc ()
817 call can fail. Setting the prev_pc value here ensures the value is
818 updated correctly when the inferior is stopped. */
819 prev_pc = read_pc ();
820
821 /* Resume inferior. */
822 resume (oneproc || step || bpstat_should_step (), stop_signal);
823
824 /* Wait for it to stop (if not standalone)
825 and in any case decode why it stopped, and act accordingly. */
826 /* Do this only if we are not using the event loop, or if the target
827 does not support asynchronous execution. */
828 if (!target_can_async_p ())
829 {
830 wait_for_inferior ();
831 normal_stop ();
832 }
833 }
834 \f
835
836 /* Start remote-debugging of a machine over a serial link. */
837
838 void
839 start_remote (int from_tty)
840 {
841 init_thread_list ();
842 init_wait_for_inferior ();
843 stop_soon = STOP_QUIETLY;
844 trap_expected = 0;
845
846 /* Always go on waiting for the target, regardless of the mode. */
847 /* FIXME: cagney/1999-09-23: At present it isn't possible to
848 indicate to wait_for_inferior that a target should timeout if
849 nothing is returned (instead of just blocking). Because of this,
850 targets expecting an immediate response need to, internally, set
851 things up so that the target_wait() is forced to eventually
852 timeout. */
853 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
854 differentiate to its caller what the state of the target is after
855 the initial open has been performed. Here we're assuming that
856 the target has stopped. It should be possible to eventually have
857 target_open() return to the caller an indication that the target
858 is currently running and GDB state should be set to the same as
859 for an async run. */
860 wait_for_inferior ();
861
862 /* Now that the inferior has stopped, do any bookkeeping like
863 loading shared libraries. We want to do this before normal_stop,
864 so that the displayed frame is up to date. */
865 post_create_inferior (&current_target, from_tty);
866
867 normal_stop ();
868 }
869
870 /* Initialize static vars when a new inferior begins. */
871
872 void
873 init_wait_for_inferior (void)
874 {
875 /* These are meaningless until the first time through wait_for_inferior. */
876 prev_pc = 0;
877
878 breakpoints_inserted = 0;
879 breakpoint_init_inferior (inf_starting);
880
881 /* Don't confuse first call to proceed(). */
882 stop_signal = TARGET_SIGNAL_0;
883
884 /* The first resume is not following a fork/vfork/exec. */
885 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
886
887 clear_proceed_status ();
888
889 stepping_past_singlestep_breakpoint = 0;
890 }
891 \f
892 /* This enum encodes possible reasons for doing a target_wait, so that
893 wfi can call target_wait in one place. (Ultimately the call will be
894 moved out of the infinite loop entirely.) */
895
896 enum infwait_states
897 {
898 infwait_normal_state,
899 infwait_thread_hop_state,
900 infwait_nonstep_watch_state
901 };
902
903 /* Why did the inferior stop? Used to print the appropriate messages
904 to the interface from within handle_inferior_event(). */
905 enum inferior_stop_reason
906 {
907 /* We don't know why. */
908 STOP_UNKNOWN,
909 /* Step, next, nexti, stepi finished. */
910 END_STEPPING_RANGE,
911 /* Found breakpoint. */
912 BREAKPOINT_HIT,
913 /* Inferior terminated by signal. */
914 SIGNAL_EXITED,
915 /* Inferior exited. */
916 EXITED,
917 /* Inferior received signal, and user asked to be notified. */
918 SIGNAL_RECEIVED
919 };
920
921 /* This structure contains what used to be local variables in
922 wait_for_inferior. Probably many of them can return to being
923 locals in handle_inferior_event. */
924
925 struct execution_control_state
926 {
927 struct target_waitstatus ws;
928 struct target_waitstatus *wp;
929 int another_trap;
930 int random_signal;
931 CORE_ADDR stop_func_start;
932 CORE_ADDR stop_func_end;
933 char *stop_func_name;
934 struct symtab_and_line sal;
935 int current_line;
936 struct symtab *current_symtab;
937 int handling_longjmp; /* FIXME */
938 ptid_t ptid;
939 ptid_t saved_inferior_ptid;
940 int step_after_step_resume_breakpoint;
941 int stepping_through_solib_after_catch;
942 bpstat stepping_through_solib_catchpoints;
943 int new_thread_event;
944 struct target_waitstatus tmpstatus;
945 enum infwait_states infwait_state;
946 ptid_t waiton_ptid;
947 int wait_some_more;
948 };
949
950 void init_execution_control_state (struct execution_control_state *ecs);
951
952 void handle_inferior_event (struct execution_control_state *ecs);
953
954 static void step_into_function (struct execution_control_state *ecs);
955 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
956 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
957 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
958 struct frame_id sr_id);
959 static void stop_stepping (struct execution_control_state *ecs);
960 static void prepare_to_wait (struct execution_control_state *ecs);
961 static void keep_going (struct execution_control_state *ecs);
962 static void print_stop_reason (enum inferior_stop_reason stop_reason,
963 int stop_info);
964
965 /* Wait for control to return from inferior to debugger.
966 If inferior gets a signal, we may decide to start it up again
967 instead of returning. That is why there is a loop in this function.
968 When this function actually returns it means the inferior
969 should be left stopped and GDB should read more commands. */
970
971 void
972 wait_for_inferior (void)
973 {
974 struct cleanup *old_cleanups;
975 struct execution_control_state ecss;
976 struct execution_control_state *ecs;
977
978 if (debug_infrun)
979 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
980
981 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
982 &step_resume_breakpoint);
983
984 /* wfi still stays in a loop, so it's OK just to take the address of
985 a local to get the ecs pointer. */
986 ecs = &ecss;
987
988 /* Fill in with reasonable starting values. */
989 init_execution_control_state (ecs);
990
991 /* We'll update this if & when we switch to a new thread. */
992 previous_inferior_ptid = inferior_ptid;
993
994 overlay_cache_invalid = 1;
995
996 /* We have to invalidate the registers BEFORE calling target_wait
997 because they can be loaded from the target while in target_wait.
998 This makes remote debugging a bit more efficient for those
999 targets that provide critical registers as part of their normal
1000 status mechanism. */
1001
1002 registers_changed ();
1003
1004 while (1)
1005 {
1006 if (deprecated_target_wait_hook)
1007 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
1008 else
1009 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1010
1011 /* Now figure out what to do with the result of the result. */
1012 handle_inferior_event (ecs);
1013
1014 if (!ecs->wait_some_more)
1015 break;
1016 }
1017 do_cleanups (old_cleanups);
1018 }
1019
1020 /* Asynchronous version of wait_for_inferior. It is called by the
1021 event loop whenever a change of state is detected on the file
1022 descriptor corresponding to the target. It can be called more than
1023 once to complete a single execution command. In such cases we need
1024 to keep the state in a global variable ASYNC_ECSS. If it is the
1025 last time that this function is called for a single execution
1026 command, then report to the user that the inferior has stopped, and
1027 do the necessary cleanups. */
1028
1029 struct execution_control_state async_ecss;
1030 struct execution_control_state *async_ecs;
1031
1032 void
1033 fetch_inferior_event (void *client_data)
1034 {
1035 static struct cleanup *old_cleanups;
1036
1037 async_ecs = &async_ecss;
1038
1039 if (!async_ecs->wait_some_more)
1040 {
1041 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1042 &step_resume_breakpoint);
1043
1044 /* Fill in with reasonable starting values. */
1045 init_execution_control_state (async_ecs);
1046
1047 /* We'll update this if & when we switch to a new thread. */
1048 previous_inferior_ptid = inferior_ptid;
1049
1050 overlay_cache_invalid = 1;
1051
1052 /* We have to invalidate the registers BEFORE calling target_wait
1053 because they can be loaded from the target while in target_wait.
1054 This makes remote debugging a bit more efficient for those
1055 targets that provide critical registers as part of their normal
1056 status mechanism. */
1057
1058 registers_changed ();
1059 }
1060
1061 if (deprecated_target_wait_hook)
1062 async_ecs->ptid =
1063 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1064 else
1065 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1066
1067 /* Now figure out what to do with the result of the result. */
1068 handle_inferior_event (async_ecs);
1069
1070 if (!async_ecs->wait_some_more)
1071 {
1072 /* Do only the cleanups that have been added by this
1073 function. Let the continuations for the commands do the rest,
1074 if there are any. */
1075 do_exec_cleanups (old_cleanups);
1076 normal_stop ();
1077 if (step_multi && stop_step)
1078 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1079 else
1080 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1081 }
1082 }
1083
1084 /* Prepare an execution control state for looping through a
1085 wait_for_inferior-type loop. */
1086
1087 void
1088 init_execution_control_state (struct execution_control_state *ecs)
1089 {
1090 ecs->another_trap = 0;
1091 ecs->random_signal = 0;
1092 ecs->step_after_step_resume_breakpoint = 0;
1093 ecs->handling_longjmp = 0; /* FIXME */
1094 ecs->stepping_through_solib_after_catch = 0;
1095 ecs->stepping_through_solib_catchpoints = NULL;
1096 ecs->sal = find_pc_line (prev_pc, 0);
1097 ecs->current_line = ecs->sal.line;
1098 ecs->current_symtab = ecs->sal.symtab;
1099 ecs->infwait_state = infwait_normal_state;
1100 ecs->waiton_ptid = pid_to_ptid (-1);
1101 ecs->wp = &(ecs->ws);
1102 }
1103
1104 /* Return the cached copy of the last pid/waitstatus returned by
1105 target_wait()/deprecated_target_wait_hook(). The data is actually
1106 cached by handle_inferior_event(), which gets called immediately
1107 after target_wait()/deprecated_target_wait_hook(). */
1108
1109 void
1110 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1111 {
1112 *ptidp = target_last_wait_ptid;
1113 *status = target_last_waitstatus;
1114 }
1115
1116 void
1117 nullify_last_target_wait_ptid (void)
1118 {
1119 target_last_wait_ptid = minus_one_ptid;
1120 }
1121
1122 /* Switch thread contexts, maintaining "infrun state". */
1123
1124 static void
1125 context_switch (struct execution_control_state *ecs)
1126 {
1127 /* Caution: it may happen that the new thread (or the old one!)
1128 is not in the thread list. In this case we must not attempt
1129 to "switch context", or we run the risk that our context may
1130 be lost. This may happen as a result of the target module
1131 mishandling thread creation. */
1132
1133 if (debug_infrun)
1134 {
1135 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1136 target_pid_to_str (inferior_ptid));
1137 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1138 target_pid_to_str (ecs->ptid));
1139 }
1140
1141 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1142 { /* Perform infrun state context switch: */
1143 /* Save infrun state for the old thread. */
1144 save_infrun_state (inferior_ptid, prev_pc,
1145 trap_expected, step_resume_breakpoint,
1146 step_range_start,
1147 step_range_end, &step_frame_id,
1148 ecs->handling_longjmp, ecs->another_trap,
1149 ecs->stepping_through_solib_after_catch,
1150 ecs->stepping_through_solib_catchpoints,
1151 ecs->current_line, ecs->current_symtab);
1152
1153 /* Load infrun state for the new thread. */
1154 load_infrun_state (ecs->ptid, &prev_pc,
1155 &trap_expected, &step_resume_breakpoint,
1156 &step_range_start,
1157 &step_range_end, &step_frame_id,
1158 &ecs->handling_longjmp, &ecs->another_trap,
1159 &ecs->stepping_through_solib_after_catch,
1160 &ecs->stepping_through_solib_catchpoints,
1161 &ecs->current_line, &ecs->current_symtab);
1162 }
1163 inferior_ptid = ecs->ptid;
1164 flush_cached_frames ();
1165 }
1166
1167 static void
1168 adjust_pc_after_break (struct execution_control_state *ecs)
1169 {
1170 CORE_ADDR breakpoint_pc;
1171
1172 /* If this target does not decrement the PC after breakpoints, then
1173 we have nothing to do. */
1174 if (DECR_PC_AFTER_BREAK == 0)
1175 return;
1176
1177 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1178 we aren't, just return.
1179
1180 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1181 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1182 by software breakpoints should be handled through the normal breakpoint
1183 layer.
1184
1185 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1186 different signals (SIGILL or SIGEMT for instance), but it is less
1187 clear where the PC is pointing afterwards. It may not match
1188 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1189 these signals at breakpoints (the code has been in GDB since at least
1190 1992) so I can not guess how to handle them here.
1191
1192 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1193 would have the PC after hitting a watchpoint affected by
1194 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1195 in GDB history, and it seems unlikely to be correct, so
1196 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1197
1198 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1199 return;
1200
1201 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1202 return;
1203
1204 /* Find the location where (if we've hit a breakpoint) the
1205 breakpoint would be. */
1206 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1207
1208 if (SOFTWARE_SINGLE_STEP_P ())
1209 {
1210 /* When using software single-step, a SIGTRAP can only indicate
1211 an inserted breakpoint. This actually makes things
1212 easier. */
1213 if (singlestep_breakpoints_inserted_p)
1214 /* When software single stepping, the instruction at [prev_pc]
1215 is never a breakpoint, but the instruction following
1216 [prev_pc] (in program execution order) always is. Assume
1217 that following instruction was reached and hence a software
1218 breakpoint was hit. */
1219 write_pc_pid (breakpoint_pc, ecs->ptid);
1220 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1221 /* The inferior was free running (i.e., no single-step
1222 breakpoints inserted) and it hit a software breakpoint. */
1223 write_pc_pid (breakpoint_pc, ecs->ptid);
1224 }
1225 else
1226 {
1227 /* When using hardware single-step, a SIGTRAP is reported for
1228 both a completed single-step and a software breakpoint. Need
1229 to differentiate between the two as the latter needs
1230 adjusting but the former does not.
1231
1232 When the thread to be examined does not match the current thread
1233 context we can't use currently_stepping, so assume no
1234 single-stepping in this case. */
1235 if (ptid_equal (ecs->ptid, inferior_ptid) && currently_stepping (ecs))
1236 {
1237 if (prev_pc == breakpoint_pc
1238 && software_breakpoint_inserted_here_p (breakpoint_pc))
1239 /* Hardware single-stepped a software breakpoint (as
1240 occures when the inferior is resumed with PC pointing
1241 at not-yet-hit software breakpoint). Since the
1242 breakpoint really is executed, the inferior needs to be
1243 backed up to the breakpoint address. */
1244 write_pc_pid (breakpoint_pc, ecs->ptid);
1245 }
1246 else
1247 {
1248 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1249 /* The inferior was free running (i.e., no hardware
1250 single-step and no possibility of a false SIGTRAP) and
1251 hit a software breakpoint. */
1252 write_pc_pid (breakpoint_pc, ecs->ptid);
1253 }
1254 }
1255 }
1256
1257 /* Given an execution control state that has been freshly filled in
1258 by an event from the inferior, figure out what it means and take
1259 appropriate action. */
1260
1261 int stepped_after_stopped_by_watchpoint;
1262
1263 void
1264 handle_inferior_event (struct execution_control_state *ecs)
1265 {
1266 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1267 that the variable stepped_after_stopped_by_watchpoint isn't used,
1268 then you're wrong! See remote.c:remote_stopped_data_address. */
1269
1270 int sw_single_step_trap_p = 0;
1271 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1272
1273 /* Cache the last pid/waitstatus. */
1274 target_last_wait_ptid = ecs->ptid;
1275 target_last_waitstatus = *ecs->wp;
1276
1277 adjust_pc_after_break (ecs);
1278
1279 switch (ecs->infwait_state)
1280 {
1281 case infwait_thread_hop_state:
1282 if (debug_infrun)
1283 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1284 /* Cancel the waiton_ptid. */
1285 ecs->waiton_ptid = pid_to_ptid (-1);
1286 break;
1287
1288 case infwait_normal_state:
1289 if (debug_infrun)
1290 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1291 stepped_after_stopped_by_watchpoint = 0;
1292 break;
1293
1294 case infwait_nonstep_watch_state:
1295 if (debug_infrun)
1296 fprintf_unfiltered (gdb_stdlog,
1297 "infrun: infwait_nonstep_watch_state\n");
1298 insert_breakpoints ();
1299
1300 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1301 handle things like signals arriving and other things happening
1302 in combination correctly? */
1303 stepped_after_stopped_by_watchpoint = 1;
1304 break;
1305
1306 default:
1307 internal_error (__FILE__, __LINE__, _("bad switch"));
1308 }
1309 ecs->infwait_state = infwait_normal_state;
1310
1311 flush_cached_frames ();
1312
1313 /* If it's a new process, add it to the thread database */
1314
1315 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1316 && !ptid_equal (ecs->ptid, minus_one_ptid)
1317 && !in_thread_list (ecs->ptid));
1318
1319 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1320 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1321 {
1322 add_thread (ecs->ptid);
1323
1324 ui_out_text (uiout, "[New ");
1325 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1326 ui_out_text (uiout, "]\n");
1327 }
1328
1329 switch (ecs->ws.kind)
1330 {
1331 case TARGET_WAITKIND_LOADED:
1332 if (debug_infrun)
1333 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1334 /* Ignore gracefully during startup of the inferior, as it
1335 might be the shell which has just loaded some objects,
1336 otherwise add the symbols for the newly loaded objects. */
1337 #ifdef SOLIB_ADD
1338 if (stop_soon == NO_STOP_QUIETLY)
1339 {
1340 /* Remove breakpoints, SOLIB_ADD might adjust
1341 breakpoint addresses via breakpoint_re_set. */
1342 if (breakpoints_inserted)
1343 remove_breakpoints ();
1344
1345 /* Check for any newly added shared libraries if we're
1346 supposed to be adding them automatically. Switch
1347 terminal for any messages produced by
1348 breakpoint_re_set. */
1349 target_terminal_ours_for_output ();
1350 /* NOTE: cagney/2003-11-25: Make certain that the target
1351 stack's section table is kept up-to-date. Architectures,
1352 (e.g., PPC64), use the section table to perform
1353 operations such as address => section name and hence
1354 require the table to contain all sections (including
1355 those found in shared libraries). */
1356 /* NOTE: cagney/2003-11-25: Pass current_target and not
1357 exec_ops to SOLIB_ADD. This is because current GDB is
1358 only tooled to propagate section_table changes out from
1359 the "current_target" (see target_resize_to_sections), and
1360 not up from the exec stratum. This, of course, isn't
1361 right. "infrun.c" should only interact with the
1362 exec/process stratum, instead relying on the target stack
1363 to propagate relevant changes (stop, section table
1364 changed, ...) up to other layers. */
1365 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1366 target_terminal_inferior ();
1367
1368 /* Reinsert breakpoints and continue. */
1369 if (breakpoints_inserted)
1370 insert_breakpoints ();
1371 }
1372 #endif
1373 resume (0, TARGET_SIGNAL_0);
1374 prepare_to_wait (ecs);
1375 return;
1376
1377 case TARGET_WAITKIND_SPURIOUS:
1378 if (debug_infrun)
1379 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1380 resume (0, TARGET_SIGNAL_0);
1381 prepare_to_wait (ecs);
1382 return;
1383
1384 case TARGET_WAITKIND_EXITED:
1385 if (debug_infrun)
1386 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1387 target_terminal_ours (); /* Must do this before mourn anyway */
1388 print_stop_reason (EXITED, ecs->ws.value.integer);
1389
1390 /* Record the exit code in the convenience variable $_exitcode, so
1391 that the user can inspect this again later. */
1392 set_internalvar (lookup_internalvar ("_exitcode"),
1393 value_from_longest (builtin_type_int,
1394 (LONGEST) ecs->ws.value.integer));
1395 gdb_flush (gdb_stdout);
1396 target_mourn_inferior ();
1397 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1398 stop_print_frame = 0;
1399 stop_stepping (ecs);
1400 return;
1401
1402 case TARGET_WAITKIND_SIGNALLED:
1403 if (debug_infrun)
1404 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1405 stop_print_frame = 0;
1406 stop_signal = ecs->ws.value.sig;
1407 target_terminal_ours (); /* Must do this before mourn anyway */
1408
1409 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1410 reach here unless the inferior is dead. However, for years
1411 target_kill() was called here, which hints that fatal signals aren't
1412 really fatal on some systems. If that's true, then some changes
1413 may be needed. */
1414 target_mourn_inferior ();
1415
1416 print_stop_reason (SIGNAL_EXITED, stop_signal);
1417 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1418 stop_stepping (ecs);
1419 return;
1420
1421 /* The following are the only cases in which we keep going;
1422 the above cases end in a continue or goto. */
1423 case TARGET_WAITKIND_FORKED:
1424 case TARGET_WAITKIND_VFORKED:
1425 if (debug_infrun)
1426 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1427 stop_signal = TARGET_SIGNAL_TRAP;
1428 pending_follow.kind = ecs->ws.kind;
1429
1430 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1431 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1432
1433 if (!ptid_equal (ecs->ptid, inferior_ptid))
1434 {
1435 context_switch (ecs);
1436 flush_cached_frames ();
1437 }
1438
1439 stop_pc = read_pc ();
1440
1441 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1442
1443 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1444
1445 /* If no catchpoint triggered for this, then keep going. */
1446 if (ecs->random_signal)
1447 {
1448 stop_signal = TARGET_SIGNAL_0;
1449 keep_going (ecs);
1450 return;
1451 }
1452 goto process_event_stop_test;
1453
1454 case TARGET_WAITKIND_EXECD:
1455 if (debug_infrun)
1456 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1457 stop_signal = TARGET_SIGNAL_TRAP;
1458
1459 /* NOTE drow/2002-12-05: This code should be pushed down into the
1460 target_wait function. Until then following vfork on HP/UX 10.20
1461 is probably broken by this. Of course, it's broken anyway. */
1462 /* Is this a target which reports multiple exec events per actual
1463 call to exec()? (HP-UX using ptrace does, for example.) If so,
1464 ignore all but the last one. Just resume the exec'r, and wait
1465 for the next exec event. */
1466 if (inferior_ignoring_leading_exec_events)
1467 {
1468 inferior_ignoring_leading_exec_events--;
1469 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1470 prepare_to_wait (ecs);
1471 return;
1472 }
1473 inferior_ignoring_leading_exec_events =
1474 target_reported_exec_events_per_exec_call () - 1;
1475
1476 pending_follow.execd_pathname =
1477 savestring (ecs->ws.value.execd_pathname,
1478 strlen (ecs->ws.value.execd_pathname));
1479
1480 /* This causes the eventpoints and symbol table to be reset. Must
1481 do this now, before trying to determine whether to stop. */
1482 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1483 xfree (pending_follow.execd_pathname);
1484
1485 stop_pc = read_pc_pid (ecs->ptid);
1486 ecs->saved_inferior_ptid = inferior_ptid;
1487 inferior_ptid = ecs->ptid;
1488
1489 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1490
1491 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1492 inferior_ptid = ecs->saved_inferior_ptid;
1493
1494 if (!ptid_equal (ecs->ptid, inferior_ptid))
1495 {
1496 context_switch (ecs);
1497 flush_cached_frames ();
1498 }
1499
1500 /* If no catchpoint triggered for this, then keep going. */
1501 if (ecs->random_signal)
1502 {
1503 stop_signal = TARGET_SIGNAL_0;
1504 keep_going (ecs);
1505 return;
1506 }
1507 goto process_event_stop_test;
1508
1509 /* Be careful not to try to gather much state about a thread
1510 that's in a syscall. It's frequently a losing proposition. */
1511 case TARGET_WAITKIND_SYSCALL_ENTRY:
1512 if (debug_infrun)
1513 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1514 resume (0, TARGET_SIGNAL_0);
1515 prepare_to_wait (ecs);
1516 return;
1517
1518 /* Before examining the threads further, step this thread to
1519 get it entirely out of the syscall. (We get notice of the
1520 event when the thread is just on the verge of exiting a
1521 syscall. Stepping one instruction seems to get it back
1522 into user code.) */
1523 case TARGET_WAITKIND_SYSCALL_RETURN:
1524 if (debug_infrun)
1525 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1526 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1527 prepare_to_wait (ecs);
1528 return;
1529
1530 case TARGET_WAITKIND_STOPPED:
1531 if (debug_infrun)
1532 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1533 stop_signal = ecs->ws.value.sig;
1534 break;
1535
1536 /* We had an event in the inferior, but we are not interested
1537 in handling it at this level. The lower layers have already
1538 done what needs to be done, if anything.
1539
1540 One of the possible circumstances for this is when the
1541 inferior produces output for the console. The inferior has
1542 not stopped, and we are ignoring the event. Another possible
1543 circumstance is any event which the lower level knows will be
1544 reported multiple times without an intervening resume. */
1545 case TARGET_WAITKIND_IGNORE:
1546 if (debug_infrun)
1547 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1548 prepare_to_wait (ecs);
1549 return;
1550 }
1551
1552 /* We may want to consider not doing a resume here in order to give
1553 the user a chance to play with the new thread. It might be good
1554 to make that a user-settable option. */
1555
1556 /* At this point, all threads are stopped (happens automatically in
1557 either the OS or the native code). Therefore we need to continue
1558 all threads in order to make progress. */
1559 if (ecs->new_thread_event)
1560 {
1561 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1562 prepare_to_wait (ecs);
1563 return;
1564 }
1565
1566 stop_pc = read_pc_pid (ecs->ptid);
1567
1568 if (debug_infrun)
1569 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1570
1571 if (stepping_past_singlestep_breakpoint)
1572 {
1573 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1574 && singlestep_breakpoints_inserted_p);
1575 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1576 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1577
1578 stepping_past_singlestep_breakpoint = 0;
1579
1580 /* We've either finished single-stepping past the single-step
1581 breakpoint, or stopped for some other reason. It would be nice if
1582 we could tell, but we can't reliably. */
1583 if (stop_signal == TARGET_SIGNAL_TRAP)
1584 {
1585 if (debug_infrun)
1586 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1587 /* Pull the single step breakpoints out of the target. */
1588 SOFTWARE_SINGLE_STEP (0, 0);
1589 singlestep_breakpoints_inserted_p = 0;
1590
1591 ecs->random_signal = 0;
1592
1593 ecs->ptid = saved_singlestep_ptid;
1594 context_switch (ecs);
1595 if (deprecated_context_hook)
1596 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1597
1598 resume (1, TARGET_SIGNAL_0);
1599 prepare_to_wait (ecs);
1600 return;
1601 }
1602 }
1603
1604 stepping_past_singlestep_breakpoint = 0;
1605
1606 /* See if a thread hit a thread-specific breakpoint that was meant for
1607 another thread. If so, then step that thread past the breakpoint,
1608 and continue it. */
1609
1610 if (stop_signal == TARGET_SIGNAL_TRAP)
1611 {
1612 int thread_hop_needed = 0;
1613
1614 /* Check if a regular breakpoint has been hit before checking
1615 for a potential single step breakpoint. Otherwise, GDB will
1616 not see this breakpoint hit when stepping onto breakpoints. */
1617 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1618 {
1619 ecs->random_signal = 0;
1620 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1621 thread_hop_needed = 1;
1622 }
1623 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1624 {
1625 /* We have not context switched yet, so this should be true
1626 no matter which thread hit the singlestep breakpoint. */
1627 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1628 if (debug_infrun)
1629 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1630 "trap for %s\n",
1631 target_pid_to_str (ecs->ptid));
1632
1633 ecs->random_signal = 0;
1634 /* The call to in_thread_list is necessary because PTIDs sometimes
1635 change when we go from single-threaded to multi-threaded. If
1636 the singlestep_ptid is still in the list, assume that it is
1637 really different from ecs->ptid. */
1638 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1639 && in_thread_list (singlestep_ptid))
1640 {
1641 /* If the PC of the thread we were trying to single-step
1642 has changed, discard this event (which we were going
1643 to ignore anyway), and pretend we saw that thread
1644 trap. This prevents us continuously moving the
1645 single-step breakpoint forward, one instruction at a
1646 time. If the PC has changed, then the thread we were
1647 trying to single-step has trapped or been signalled,
1648 but the event has not been reported to GDB yet.
1649
1650 There might be some cases where this loses signal
1651 information, if a signal has arrived at exactly the
1652 same time that the PC changed, but this is the best
1653 we can do with the information available. Perhaps we
1654 should arrange to report all events for all threads
1655 when they stop, or to re-poll the remote looking for
1656 this particular thread (i.e. temporarily enable
1657 schedlock). */
1658 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1659 {
1660 if (debug_infrun)
1661 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1662 " but expected thread advanced also\n");
1663
1664 /* The current context still belongs to
1665 singlestep_ptid. Don't swap here, since that's
1666 the context we want to use. Just fudge our
1667 state and continue. */
1668 ecs->ptid = singlestep_ptid;
1669 stop_pc = read_pc_pid (ecs->ptid);
1670 }
1671 else
1672 {
1673 if (debug_infrun)
1674 fprintf_unfiltered (gdb_stdlog,
1675 "infrun: unexpected thread\n");
1676
1677 thread_hop_needed = 1;
1678 stepping_past_singlestep_breakpoint = 1;
1679 saved_singlestep_ptid = singlestep_ptid;
1680 }
1681 }
1682 }
1683
1684 if (thread_hop_needed)
1685 {
1686 int remove_status;
1687
1688 if (debug_infrun)
1689 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1690
1691 /* Saw a breakpoint, but it was hit by the wrong thread.
1692 Just continue. */
1693
1694 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1695 {
1696 /* Pull the single step breakpoints out of the target. */
1697 SOFTWARE_SINGLE_STEP (0, 0);
1698 singlestep_breakpoints_inserted_p = 0;
1699 }
1700
1701 remove_status = remove_breakpoints ();
1702 /* Did we fail to remove breakpoints? If so, try
1703 to set the PC past the bp. (There's at least
1704 one situation in which we can fail to remove
1705 the bp's: On HP-UX's that use ttrace, we can't
1706 change the address space of a vforking child
1707 process until the child exits (well, okay, not
1708 then either :-) or execs. */
1709 if (remove_status != 0)
1710 {
1711 /* FIXME! This is obviously non-portable! */
1712 write_pc_pid (stop_pc + 4, ecs->ptid);
1713 /* We need to restart all the threads now,
1714 * unles we're running in scheduler-locked mode.
1715 * Use currently_stepping to determine whether to
1716 * step or continue.
1717 */
1718 /* FIXME MVS: is there any reason not to call resume()? */
1719 if (scheduler_mode == schedlock_on)
1720 target_resume (ecs->ptid,
1721 currently_stepping (ecs), TARGET_SIGNAL_0);
1722 else
1723 target_resume (RESUME_ALL,
1724 currently_stepping (ecs), TARGET_SIGNAL_0);
1725 prepare_to_wait (ecs);
1726 return;
1727 }
1728 else
1729 { /* Single step */
1730 breakpoints_inserted = 0;
1731 if (!ptid_equal (inferior_ptid, ecs->ptid))
1732 context_switch (ecs);
1733 ecs->waiton_ptid = ecs->ptid;
1734 ecs->wp = &(ecs->ws);
1735 ecs->another_trap = 1;
1736
1737 ecs->infwait_state = infwait_thread_hop_state;
1738 keep_going (ecs);
1739 registers_changed ();
1740 return;
1741 }
1742 }
1743 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1744 {
1745 sw_single_step_trap_p = 1;
1746 ecs->random_signal = 0;
1747 }
1748 }
1749 else
1750 ecs->random_signal = 1;
1751
1752 /* See if something interesting happened to the non-current thread. If
1753 so, then switch to that thread. */
1754 if (!ptid_equal (ecs->ptid, inferior_ptid))
1755 {
1756 if (debug_infrun)
1757 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1758
1759 context_switch (ecs);
1760
1761 if (deprecated_context_hook)
1762 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1763 }
1764
1765 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1766 {
1767 /* Pull the single step breakpoints out of the target. */
1768 SOFTWARE_SINGLE_STEP (0, 0);
1769 singlestep_breakpoints_inserted_p = 0;
1770 }
1771
1772 /* It may not be necessary to disable the watchpoint to stop over
1773 it. For example, the PA can (with some kernel cooperation)
1774 single step over a watchpoint without disabling the watchpoint. */
1775 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1776 {
1777 if (debug_infrun)
1778 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1779 resume (1, 0);
1780 prepare_to_wait (ecs);
1781 return;
1782 }
1783
1784 /* It is far more common to need to disable a watchpoint to step
1785 the inferior over it. FIXME. What else might a debug
1786 register or page protection watchpoint scheme need here? */
1787 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1788 {
1789 /* At this point, we are stopped at an instruction which has
1790 attempted to write to a piece of memory under control of
1791 a watchpoint. The instruction hasn't actually executed
1792 yet. If we were to evaluate the watchpoint expression
1793 now, we would get the old value, and therefore no change
1794 would seem to have occurred.
1795
1796 In order to make watchpoints work `right', we really need
1797 to complete the memory write, and then evaluate the
1798 watchpoint expression. The following code does that by
1799 removing the watchpoint (actually, all watchpoints and
1800 breakpoints), single-stepping the target, re-inserting
1801 watchpoints, and then falling through to let normal
1802 single-step processing handle proceed. Since this
1803 includes evaluating watchpoints, things will come to a
1804 stop in the correct manner. */
1805
1806 if (debug_infrun)
1807 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1808 remove_breakpoints ();
1809 registers_changed ();
1810 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1811
1812 ecs->waiton_ptid = ecs->ptid;
1813 ecs->wp = &(ecs->ws);
1814 ecs->infwait_state = infwait_nonstep_watch_state;
1815 prepare_to_wait (ecs);
1816 return;
1817 }
1818
1819 /* It may be possible to simply continue after a watchpoint. */
1820 if (HAVE_CONTINUABLE_WATCHPOINT)
1821 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1822
1823 ecs->stop_func_start = 0;
1824 ecs->stop_func_end = 0;
1825 ecs->stop_func_name = 0;
1826 /* Don't care about return value; stop_func_start and stop_func_name
1827 will both be 0 if it doesn't work. */
1828 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1829 &ecs->stop_func_start, &ecs->stop_func_end);
1830 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1831 ecs->another_trap = 0;
1832 bpstat_clear (&stop_bpstat);
1833 stop_step = 0;
1834 stop_stack_dummy = 0;
1835 stop_print_frame = 1;
1836 ecs->random_signal = 0;
1837 stopped_by_random_signal = 0;
1838 breakpoints_failed = 0;
1839
1840 if (stop_signal == TARGET_SIGNAL_TRAP
1841 && trap_expected
1842 && gdbarch_single_step_through_delay_p (current_gdbarch)
1843 && currently_stepping (ecs))
1844 {
1845 /* We're trying to step of a breakpoint. Turns out that we're
1846 also on an instruction that needs to be stepped multiple
1847 times before it's been fully executing. E.g., architectures
1848 with a delay slot. It needs to be stepped twice, once for
1849 the instruction and once for the delay slot. */
1850 int step_through_delay
1851 = gdbarch_single_step_through_delay (current_gdbarch,
1852 get_current_frame ());
1853 if (debug_infrun && step_through_delay)
1854 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1855 if (step_range_end == 0 && step_through_delay)
1856 {
1857 /* The user issued a continue when stopped at a breakpoint.
1858 Set up for another trap and get out of here. */
1859 ecs->another_trap = 1;
1860 keep_going (ecs);
1861 return;
1862 }
1863 else if (step_through_delay)
1864 {
1865 /* The user issued a step when stopped at a breakpoint.
1866 Maybe we should stop, maybe we should not - the delay
1867 slot *might* correspond to a line of source. In any
1868 case, don't decide that here, just set ecs->another_trap,
1869 making sure we single-step again before breakpoints are
1870 re-inserted. */
1871 ecs->another_trap = 1;
1872 }
1873 }
1874
1875 /* Look at the cause of the stop, and decide what to do.
1876 The alternatives are:
1877 1) break; to really stop and return to the debugger,
1878 2) drop through to start up again
1879 (set ecs->another_trap to 1 to single step once)
1880 3) set ecs->random_signal to 1, and the decision between 1 and 2
1881 will be made according to the signal handling tables. */
1882
1883 /* First, distinguish signals caused by the debugger from signals
1884 that have to do with the program's own actions. Note that
1885 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1886 on the operating system version. Here we detect when a SIGILL or
1887 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1888 something similar for SIGSEGV, since a SIGSEGV will be generated
1889 when we're trying to execute a breakpoint instruction on a
1890 non-executable stack. This happens for call dummy breakpoints
1891 for architectures like SPARC that place call dummies on the
1892 stack. */
1893
1894 if (stop_signal == TARGET_SIGNAL_TRAP
1895 || (breakpoints_inserted
1896 && (stop_signal == TARGET_SIGNAL_ILL
1897 || stop_signal == TARGET_SIGNAL_SEGV
1898 || stop_signal == TARGET_SIGNAL_EMT))
1899 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1900 {
1901 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1902 {
1903 if (debug_infrun)
1904 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1905 stop_print_frame = 0;
1906 stop_stepping (ecs);
1907 return;
1908 }
1909
1910 /* This is originated from start_remote(), start_inferior() and
1911 shared libraries hook functions. */
1912 if (stop_soon == STOP_QUIETLY)
1913 {
1914 if (debug_infrun)
1915 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1916 stop_stepping (ecs);
1917 return;
1918 }
1919
1920 /* This originates from attach_command(). We need to overwrite
1921 the stop_signal here, because some kernels don't ignore a
1922 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1923 See more comments in inferior.h. */
1924 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1925 {
1926 stop_stepping (ecs);
1927 if (stop_signal == TARGET_SIGNAL_STOP)
1928 stop_signal = TARGET_SIGNAL_0;
1929 return;
1930 }
1931
1932 /* Don't even think about breakpoints if just proceeded over a
1933 breakpoint. */
1934 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1935 {
1936 if (debug_infrun)
1937 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1938 bpstat_clear (&stop_bpstat);
1939 }
1940 else
1941 {
1942 /* See if there is a breakpoint at the current PC. */
1943 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1944 stopped_by_watchpoint);
1945
1946 /* Following in case break condition called a
1947 function. */
1948 stop_print_frame = 1;
1949 }
1950
1951 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1952 at one stage in the past included checks for an inferior
1953 function call's call dummy's return breakpoint. The original
1954 comment, that went with the test, read:
1955
1956 ``End of a stack dummy. Some systems (e.g. Sony news) give
1957 another signal besides SIGTRAP, so check here as well as
1958 above.''
1959
1960 If someone ever tries to get get call dummys on a
1961 non-executable stack to work (where the target would stop
1962 with something like a SIGSEGV), then those tests might need
1963 to be re-instated. Given, however, that the tests were only
1964 enabled when momentary breakpoints were not being used, I
1965 suspect that it won't be the case.
1966
1967 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1968 be necessary for call dummies on a non-executable stack on
1969 SPARC. */
1970
1971 if (stop_signal == TARGET_SIGNAL_TRAP)
1972 ecs->random_signal
1973 = !(bpstat_explains_signal (stop_bpstat)
1974 || trap_expected
1975 || (step_range_end && step_resume_breakpoint == NULL));
1976 else
1977 {
1978 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1979 if (!ecs->random_signal)
1980 stop_signal = TARGET_SIGNAL_TRAP;
1981 }
1982 }
1983
1984 /* When we reach this point, we've pretty much decided
1985 that the reason for stopping must've been a random
1986 (unexpected) signal. */
1987
1988 else
1989 ecs->random_signal = 1;
1990
1991 process_event_stop_test:
1992 /* For the program's own signals, act according to
1993 the signal handling tables. */
1994
1995 if (ecs->random_signal)
1996 {
1997 /* Signal not for debugging purposes. */
1998 int printed = 0;
1999
2000 if (debug_infrun)
2001 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
2002
2003 stopped_by_random_signal = 1;
2004
2005 if (signal_print[stop_signal])
2006 {
2007 printed = 1;
2008 target_terminal_ours_for_output ();
2009 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2010 }
2011 if (signal_stop[stop_signal])
2012 {
2013 stop_stepping (ecs);
2014 return;
2015 }
2016 /* If not going to stop, give terminal back
2017 if we took it away. */
2018 else if (printed)
2019 target_terminal_inferior ();
2020
2021 /* Clear the signal if it should not be passed. */
2022 if (signal_program[stop_signal] == 0)
2023 stop_signal = TARGET_SIGNAL_0;
2024
2025 if (prev_pc == read_pc ()
2026 && !breakpoints_inserted
2027 && breakpoint_here_p (read_pc ())
2028 && step_resume_breakpoint == NULL)
2029 {
2030 /* We were just starting a new sequence, attempting to
2031 single-step off of a breakpoint and expecting a SIGTRAP.
2032 Intead this signal arrives. This signal will take us out
2033 of the stepping range so GDB needs to remember to, when
2034 the signal handler returns, resume stepping off that
2035 breakpoint. */
2036 /* To simplify things, "continue" is forced to use the same
2037 code paths as single-step - set a breakpoint at the
2038 signal return address and then, once hit, step off that
2039 breakpoint. */
2040 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2041 ecs->step_after_step_resume_breakpoint = 1;
2042 keep_going (ecs);
2043 return;
2044 }
2045
2046 if (step_range_end != 0
2047 && stop_signal != TARGET_SIGNAL_0
2048 && stop_pc >= step_range_start && stop_pc < step_range_end
2049 && frame_id_eq (get_frame_id (get_current_frame ()),
2050 step_frame_id)
2051 && step_resume_breakpoint == NULL)
2052 {
2053 /* The inferior is about to take a signal that will take it
2054 out of the single step range. Set a breakpoint at the
2055 current PC (which is presumably where the signal handler
2056 will eventually return) and then allow the inferior to
2057 run free.
2058
2059 Note that this is only needed for a signal delivered
2060 while in the single-step range. Nested signals aren't a
2061 problem as they eventually all return. */
2062 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2063 keep_going (ecs);
2064 return;
2065 }
2066
2067 /* Note: step_resume_breakpoint may be non-NULL. This occures
2068 when either there's a nested signal, or when there's a
2069 pending signal enabled just as the signal handler returns
2070 (leaving the inferior at the step-resume-breakpoint without
2071 actually executing it). Either way continue until the
2072 breakpoint is really hit. */
2073 keep_going (ecs);
2074 return;
2075 }
2076
2077 /* Handle cases caused by hitting a breakpoint. */
2078 {
2079 CORE_ADDR jmp_buf_pc;
2080 struct bpstat_what what;
2081
2082 what = bpstat_what (stop_bpstat);
2083
2084 if (what.call_dummy)
2085 {
2086 stop_stack_dummy = 1;
2087 }
2088
2089 switch (what.main_action)
2090 {
2091 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2092 /* If we hit the breakpoint at longjmp, disable it for the
2093 duration of this command. Then, install a temporary
2094 breakpoint at the target of the jmp_buf. */
2095 if (debug_infrun)
2096 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2097 disable_longjmp_breakpoint ();
2098 remove_breakpoints ();
2099 breakpoints_inserted = 0;
2100 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
2101 {
2102 keep_going (ecs);
2103 return;
2104 }
2105
2106 /* Need to blow away step-resume breakpoint, as it
2107 interferes with us */
2108 if (step_resume_breakpoint != NULL)
2109 {
2110 delete_step_resume_breakpoint (&step_resume_breakpoint);
2111 }
2112
2113 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2114 ecs->handling_longjmp = 1; /* FIXME */
2115 keep_going (ecs);
2116 return;
2117
2118 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2119 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2120 if (debug_infrun)
2121 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2122 remove_breakpoints ();
2123 breakpoints_inserted = 0;
2124 disable_longjmp_breakpoint ();
2125 ecs->handling_longjmp = 0; /* FIXME */
2126 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2127 break;
2128 /* else fallthrough */
2129
2130 case BPSTAT_WHAT_SINGLE:
2131 if (debug_infrun)
2132 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2133 if (breakpoints_inserted)
2134 {
2135 remove_breakpoints ();
2136 }
2137 breakpoints_inserted = 0;
2138 ecs->another_trap = 1;
2139 /* Still need to check other stuff, at least the case
2140 where we are stepping and step out of the right range. */
2141 break;
2142
2143 case BPSTAT_WHAT_STOP_NOISY:
2144 if (debug_infrun)
2145 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2146 stop_print_frame = 1;
2147
2148 /* We are about to nuke the step_resume_breakpointt via the
2149 cleanup chain, so no need to worry about it here. */
2150
2151 stop_stepping (ecs);
2152 return;
2153
2154 case BPSTAT_WHAT_STOP_SILENT:
2155 if (debug_infrun)
2156 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2157 stop_print_frame = 0;
2158
2159 /* We are about to nuke the step_resume_breakpoin via the
2160 cleanup chain, so no need to worry about it here. */
2161
2162 stop_stepping (ecs);
2163 return;
2164
2165 case BPSTAT_WHAT_STEP_RESUME:
2166 /* This proably demands a more elegant solution, but, yeah
2167 right...
2168
2169 This function's use of the simple variable
2170 step_resume_breakpoint doesn't seem to accomodate
2171 simultaneously active step-resume bp's, although the
2172 breakpoint list certainly can.
2173
2174 If we reach here and step_resume_breakpoint is already
2175 NULL, then apparently we have multiple active
2176 step-resume bp's. We'll just delete the breakpoint we
2177 stopped at, and carry on.
2178
2179 Correction: what the code currently does is delete a
2180 step-resume bp, but it makes no effort to ensure that
2181 the one deleted is the one currently stopped at. MVS */
2182
2183 if (debug_infrun)
2184 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2185
2186 if (step_resume_breakpoint == NULL)
2187 {
2188 step_resume_breakpoint =
2189 bpstat_find_step_resume_breakpoint (stop_bpstat);
2190 }
2191 delete_step_resume_breakpoint (&step_resume_breakpoint);
2192 if (ecs->step_after_step_resume_breakpoint)
2193 {
2194 /* Back when the step-resume breakpoint was inserted, we
2195 were trying to single-step off a breakpoint. Go back
2196 to doing that. */
2197 ecs->step_after_step_resume_breakpoint = 0;
2198 remove_breakpoints ();
2199 breakpoints_inserted = 0;
2200 ecs->another_trap = 1;
2201 keep_going (ecs);
2202 return;
2203 }
2204 break;
2205
2206 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2207 if (debug_infrun)
2208 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_THROUGH_SIGTRAMP\n");
2209 /* If were waiting for a trap, hitting the step_resume_break
2210 doesn't count as getting it. */
2211 if (trap_expected)
2212 ecs->another_trap = 1;
2213 break;
2214
2215 case BPSTAT_WHAT_CHECK_SHLIBS:
2216 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2217 {
2218 if (debug_infrun)
2219 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2220 /* Remove breakpoints, we eventually want to step over the
2221 shlib event breakpoint, and SOLIB_ADD might adjust
2222 breakpoint addresses via breakpoint_re_set. */
2223 if (breakpoints_inserted)
2224 remove_breakpoints ();
2225 breakpoints_inserted = 0;
2226
2227 /* Check for any newly added shared libraries if we're
2228 supposed to be adding them automatically. Switch
2229 terminal for any messages produced by
2230 breakpoint_re_set. */
2231 target_terminal_ours_for_output ();
2232 /* NOTE: cagney/2003-11-25: Make certain that the target
2233 stack's section table is kept up-to-date. Architectures,
2234 (e.g., PPC64), use the section table to perform
2235 operations such as address => section name and hence
2236 require the table to contain all sections (including
2237 those found in shared libraries). */
2238 /* NOTE: cagney/2003-11-25: Pass current_target and not
2239 exec_ops to SOLIB_ADD. This is because current GDB is
2240 only tooled to propagate section_table changes out from
2241 the "current_target" (see target_resize_to_sections), and
2242 not up from the exec stratum. This, of course, isn't
2243 right. "infrun.c" should only interact with the
2244 exec/process stratum, instead relying on the target stack
2245 to propagate relevant changes (stop, section table
2246 changed, ...) up to other layers. */
2247 #ifdef SOLIB_ADD
2248 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2249 #else
2250 solib_add (NULL, 0, &current_target, auto_solib_add);
2251 #endif
2252 target_terminal_inferior ();
2253
2254 /* Try to reenable shared library breakpoints, additional
2255 code segments in shared libraries might be mapped in now. */
2256 re_enable_breakpoints_in_shlibs ();
2257
2258 /* If requested, stop when the dynamic linker notifies
2259 gdb of events. This allows the user to get control
2260 and place breakpoints in initializer routines for
2261 dynamically loaded objects (among other things). */
2262 if (stop_on_solib_events || stop_stack_dummy)
2263 {
2264 stop_stepping (ecs);
2265 return;
2266 }
2267
2268 /* If we stopped due to an explicit catchpoint, then the
2269 (see above) call to SOLIB_ADD pulled in any symbols
2270 from a newly-loaded library, if appropriate.
2271
2272 We do want the inferior to stop, but not where it is
2273 now, which is in the dynamic linker callback. Rather,
2274 we would like it stop in the user's program, just after
2275 the call that caused this catchpoint to trigger. That
2276 gives the user a more useful vantage from which to
2277 examine their program's state. */
2278 else if (what.main_action
2279 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2280 {
2281 /* ??rehrauer: If I could figure out how to get the
2282 right return PC from here, we could just set a temp
2283 breakpoint and resume. I'm not sure we can without
2284 cracking open the dld's shared libraries and sniffing
2285 their unwind tables and text/data ranges, and that's
2286 not a terribly portable notion.
2287
2288 Until that time, we must step the inferior out of the
2289 dld callback, and also out of the dld itself (and any
2290 code or stubs in libdld.sl, such as "shl_load" and
2291 friends) until we reach non-dld code. At that point,
2292 we can stop stepping. */
2293 bpstat_get_triggered_catchpoints (stop_bpstat,
2294 &ecs->
2295 stepping_through_solib_catchpoints);
2296 ecs->stepping_through_solib_after_catch = 1;
2297
2298 /* Be sure to lift all breakpoints, so the inferior does
2299 actually step past this point... */
2300 ecs->another_trap = 1;
2301 break;
2302 }
2303 else
2304 {
2305 /* We want to step over this breakpoint, then keep going. */
2306 ecs->another_trap = 1;
2307 break;
2308 }
2309 }
2310 break;
2311
2312 case BPSTAT_WHAT_LAST:
2313 /* Not a real code, but listed here to shut up gcc -Wall. */
2314
2315 case BPSTAT_WHAT_KEEP_CHECKING:
2316 break;
2317 }
2318 }
2319
2320 /* We come here if we hit a breakpoint but should not
2321 stop for it. Possibly we also were stepping
2322 and should stop for that. So fall through and
2323 test for stepping. But, if not stepping,
2324 do not stop. */
2325
2326 /* Are we stepping to get the inferior out of the dynamic linker's
2327 hook (and possibly the dld itself) after catching a shlib
2328 event? */
2329 if (ecs->stepping_through_solib_after_catch)
2330 {
2331 #if defined(SOLIB_ADD)
2332 /* Have we reached our destination? If not, keep going. */
2333 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2334 {
2335 if (debug_infrun)
2336 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2337 ecs->another_trap = 1;
2338 keep_going (ecs);
2339 return;
2340 }
2341 #endif
2342 if (debug_infrun)
2343 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2344 /* Else, stop and report the catchpoint(s) whose triggering
2345 caused us to begin stepping. */
2346 ecs->stepping_through_solib_after_catch = 0;
2347 bpstat_clear (&stop_bpstat);
2348 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2349 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2350 stop_print_frame = 1;
2351 stop_stepping (ecs);
2352 return;
2353 }
2354
2355 if (step_resume_breakpoint)
2356 {
2357 if (debug_infrun)
2358 fprintf_unfiltered (gdb_stdlog, "infrun: step-resume breakpoint\n");
2359
2360 /* Having a step-resume breakpoint overrides anything
2361 else having to do with stepping commands until
2362 that breakpoint is reached. */
2363 keep_going (ecs);
2364 return;
2365 }
2366
2367 if (step_range_end == 0)
2368 {
2369 if (debug_infrun)
2370 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2371 /* Likewise if we aren't even stepping. */
2372 keep_going (ecs);
2373 return;
2374 }
2375
2376 /* If stepping through a line, keep going if still within it.
2377
2378 Note that step_range_end is the address of the first instruction
2379 beyond the step range, and NOT the address of the last instruction
2380 within it! */
2381 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2382 {
2383 if (debug_infrun)
2384 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2385 paddr_nz (step_range_start),
2386 paddr_nz (step_range_end));
2387 keep_going (ecs);
2388 return;
2389 }
2390
2391 /* We stepped out of the stepping range. */
2392
2393 /* If we are stepping at the source level and entered the runtime
2394 loader dynamic symbol resolution code, we keep on single stepping
2395 until we exit the run time loader code and reach the callee's
2396 address. */
2397 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2398 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2399 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2400 #else
2401 && in_solib_dynsym_resolve_code (stop_pc)
2402 #endif
2403 )
2404 {
2405 CORE_ADDR pc_after_resolver =
2406 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2407
2408 if (debug_infrun)
2409 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2410
2411 if (pc_after_resolver)
2412 {
2413 /* Set up a step-resume breakpoint at the address
2414 indicated by SKIP_SOLIB_RESOLVER. */
2415 struct symtab_and_line sr_sal;
2416 init_sal (&sr_sal);
2417 sr_sal.pc = pc_after_resolver;
2418
2419 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2420 }
2421
2422 keep_going (ecs);
2423 return;
2424 }
2425
2426 if (step_range_end != 1
2427 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2428 || step_over_calls == STEP_OVER_ALL)
2429 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2430 {
2431 if (debug_infrun)
2432 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2433 /* The inferior, while doing a "step" or "next", has ended up in
2434 a signal trampoline (either by a signal being delivered or by
2435 the signal handler returning). Just single-step until the
2436 inferior leaves the trampoline (either by calling the handler
2437 or returning). */
2438 keep_going (ecs);
2439 return;
2440 }
2441
2442 /* Check for subroutine calls. The check for the current frame
2443 equalling the step ID is not necessary - the check of the
2444 previous frame's ID is sufficient - but it is a common case and
2445 cheaper than checking the previous frame's ID.
2446
2447 NOTE: frame_id_eq will never report two invalid frame IDs as
2448 being equal, so to get into this block, both the current and
2449 previous frame must have valid frame IDs. */
2450 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2451 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2452 {
2453 CORE_ADDR real_stop_pc;
2454
2455 if (debug_infrun)
2456 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2457
2458 if ((step_over_calls == STEP_OVER_NONE)
2459 || ((step_range_end == 1)
2460 && in_prologue (prev_pc, ecs->stop_func_start)))
2461 {
2462 /* I presume that step_over_calls is only 0 when we're
2463 supposed to be stepping at the assembly language level
2464 ("stepi"). Just stop. */
2465 /* Also, maybe we just did a "nexti" inside a prolog, so we
2466 thought it was a subroutine call but it was not. Stop as
2467 well. FENN */
2468 stop_step = 1;
2469 print_stop_reason (END_STEPPING_RANGE, 0);
2470 stop_stepping (ecs);
2471 return;
2472 }
2473
2474 if (step_over_calls == STEP_OVER_ALL)
2475 {
2476 /* We're doing a "next", set a breakpoint at callee's return
2477 address (the address at which the caller will
2478 resume). */
2479 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2480 keep_going (ecs);
2481 return;
2482 }
2483
2484 /* If we are in a function call trampoline (a stub between the
2485 calling routine and the real function), locate the real
2486 function. That's what tells us (a) whether we want to step
2487 into it at all, and (b) what prologue we want to run to the
2488 end of, if we do step into it. */
2489 real_stop_pc = skip_language_trampoline (stop_pc);
2490 if (real_stop_pc == 0)
2491 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2492 if (real_stop_pc != 0)
2493 ecs->stop_func_start = real_stop_pc;
2494
2495 if (
2496 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2497 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2498 #else
2499 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2500 #endif
2501 )
2502 {
2503 struct symtab_and_line sr_sal;
2504 init_sal (&sr_sal);
2505 sr_sal.pc = ecs->stop_func_start;
2506
2507 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2508 keep_going (ecs);
2509 return;
2510 }
2511
2512 /* If we have line number information for the function we are
2513 thinking of stepping into, step into it.
2514
2515 If there are several symtabs at that PC (e.g. with include
2516 files), just want to know whether *any* of them have line
2517 numbers. find_pc_line handles this. */
2518 {
2519 struct symtab_and_line tmp_sal;
2520
2521 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2522 if (tmp_sal.line != 0)
2523 {
2524 step_into_function (ecs);
2525 return;
2526 }
2527 }
2528
2529 /* If we have no line number and the step-stop-if-no-debug is
2530 set, we stop the step so that the user has a chance to switch
2531 in assembly mode. */
2532 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2533 {
2534 stop_step = 1;
2535 print_stop_reason (END_STEPPING_RANGE, 0);
2536 stop_stepping (ecs);
2537 return;
2538 }
2539
2540 /* Set a breakpoint at callee's return address (the address at
2541 which the caller will resume). */
2542 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2543 keep_going (ecs);
2544 return;
2545 }
2546
2547 /* If we're in the return path from a shared library trampoline,
2548 we want to proceed through the trampoline when stepping. */
2549 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2550 {
2551 /* Determine where this trampoline returns. */
2552 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2553
2554 if (debug_infrun)
2555 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2556
2557 /* Only proceed through if we know where it's going. */
2558 if (real_stop_pc)
2559 {
2560 /* And put the step-breakpoint there and go until there. */
2561 struct symtab_and_line sr_sal;
2562
2563 init_sal (&sr_sal); /* initialize to zeroes */
2564 sr_sal.pc = real_stop_pc;
2565 sr_sal.section = find_pc_overlay (sr_sal.pc);
2566
2567 /* Do not specify what the fp should be when we stop since
2568 on some machines the prologue is where the new fp value
2569 is established. */
2570 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2571
2572 /* Restart without fiddling with the step ranges or
2573 other state. */
2574 keep_going (ecs);
2575 return;
2576 }
2577 }
2578
2579 ecs->sal = find_pc_line (stop_pc, 0);
2580
2581 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2582 the trampoline processing logic, however, there are some trampolines
2583 that have no names, so we should do trampoline handling first. */
2584 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2585 && ecs->stop_func_name == NULL
2586 && ecs->sal.line == 0)
2587 {
2588 if (debug_infrun)
2589 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2590
2591 /* The inferior just stepped into, or returned to, an
2592 undebuggable function (where there is no debugging information
2593 and no line number corresponding to the address where the
2594 inferior stopped). Since we want to skip this kind of code,
2595 we keep going until the inferior returns from this
2596 function - unless the user has asked us not to (via
2597 set step-mode) or we no longer know how to get back
2598 to the call site. */
2599 if (step_stop_if_no_debug
2600 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2601 {
2602 /* If we have no line number and the step-stop-if-no-debug
2603 is set, we stop the step so that the user has a chance to
2604 switch in assembly mode. */
2605 stop_step = 1;
2606 print_stop_reason (END_STEPPING_RANGE, 0);
2607 stop_stepping (ecs);
2608 return;
2609 }
2610 else
2611 {
2612 /* Set a breakpoint at callee's return address (the address
2613 at which the caller will resume). */
2614 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2615 keep_going (ecs);
2616 return;
2617 }
2618 }
2619
2620 if (step_range_end == 1)
2621 {
2622 /* It is stepi or nexti. We always want to stop stepping after
2623 one instruction. */
2624 if (debug_infrun)
2625 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2626 stop_step = 1;
2627 print_stop_reason (END_STEPPING_RANGE, 0);
2628 stop_stepping (ecs);
2629 return;
2630 }
2631
2632 if (ecs->sal.line == 0)
2633 {
2634 /* We have no line number information. That means to stop
2635 stepping (does this always happen right after one instruction,
2636 when we do "s" in a function with no line numbers,
2637 or can this happen as a result of a return or longjmp?). */
2638 if (debug_infrun)
2639 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2640 stop_step = 1;
2641 print_stop_reason (END_STEPPING_RANGE, 0);
2642 stop_stepping (ecs);
2643 return;
2644 }
2645
2646 if ((stop_pc == ecs->sal.pc)
2647 && (ecs->current_line != ecs->sal.line
2648 || ecs->current_symtab != ecs->sal.symtab))
2649 {
2650 /* We are at the start of a different line. So stop. Note that
2651 we don't stop if we step into the middle of a different line.
2652 That is said to make things like for (;;) statements work
2653 better. */
2654 if (debug_infrun)
2655 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2656 stop_step = 1;
2657 print_stop_reason (END_STEPPING_RANGE, 0);
2658 stop_stepping (ecs);
2659 return;
2660 }
2661
2662 /* We aren't done stepping.
2663
2664 Optimize by setting the stepping range to the line.
2665 (We might not be in the original line, but if we entered a
2666 new line in mid-statement, we continue stepping. This makes
2667 things like for(;;) statements work better.) */
2668
2669 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2670 {
2671 /* If this is the last line of the function, don't keep stepping
2672 (it would probably step us out of the function).
2673 This is particularly necessary for a one-line function,
2674 in which after skipping the prologue we better stop even though
2675 we will be in mid-line. */
2676 if (debug_infrun)
2677 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2678 stop_step = 1;
2679 print_stop_reason (END_STEPPING_RANGE, 0);
2680 stop_stepping (ecs);
2681 return;
2682 }
2683 step_range_start = ecs->sal.pc;
2684 step_range_end = ecs->sal.end;
2685 step_frame_id = get_frame_id (get_current_frame ());
2686 ecs->current_line = ecs->sal.line;
2687 ecs->current_symtab = ecs->sal.symtab;
2688
2689 /* In the case where we just stepped out of a function into the
2690 middle of a line of the caller, continue stepping, but
2691 step_frame_id must be modified to current frame */
2692 #if 0
2693 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2694 generous. It will trigger on things like a step into a frameless
2695 stackless leaf function. I think the logic should instead look
2696 at the unwound frame ID has that should give a more robust
2697 indication of what happened. */
2698 if (step - ID == current - ID)
2699 still stepping in same function;
2700 else if (step - ID == unwind (current - ID))
2701 stepped into a function;
2702 else
2703 stepped out of a function;
2704 /* Of course this assumes that the frame ID unwind code is robust
2705 and we're willing to introduce frame unwind logic into this
2706 function. Fortunately, those days are nearly upon us. */
2707 #endif
2708 {
2709 struct frame_id current_frame = get_frame_id (get_current_frame ());
2710 if (!(frame_id_inner (current_frame, step_frame_id)))
2711 step_frame_id = current_frame;
2712 }
2713
2714 if (debug_infrun)
2715 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2716 keep_going (ecs);
2717 }
2718
2719 /* Are we in the middle of stepping? */
2720
2721 static int
2722 currently_stepping (struct execution_control_state *ecs)
2723 {
2724 return ((!ecs->handling_longjmp
2725 && ((step_range_end && step_resume_breakpoint == NULL)
2726 || trap_expected))
2727 || ecs->stepping_through_solib_after_catch
2728 || bpstat_should_step ());
2729 }
2730
2731 /* Subroutine call with source code we should not step over. Do step
2732 to the first line of code in it. */
2733
2734 static void
2735 step_into_function (struct execution_control_state *ecs)
2736 {
2737 struct symtab *s;
2738 struct symtab_and_line sr_sal;
2739
2740 s = find_pc_symtab (stop_pc);
2741 if (s && s->language != language_asm)
2742 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2743
2744 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2745 /* Use the step_resume_break to step until the end of the prologue,
2746 even if that involves jumps (as it seems to on the vax under
2747 4.2). */
2748 /* If the prologue ends in the middle of a source line, continue to
2749 the end of that source line (if it is still within the function).
2750 Otherwise, just go to end of prologue. */
2751 if (ecs->sal.end
2752 && ecs->sal.pc != ecs->stop_func_start
2753 && ecs->sal.end < ecs->stop_func_end)
2754 ecs->stop_func_start = ecs->sal.end;
2755
2756 /* Architectures which require breakpoint adjustment might not be able
2757 to place a breakpoint at the computed address. If so, the test
2758 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2759 ecs->stop_func_start to an address at which a breakpoint may be
2760 legitimately placed.
2761
2762 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2763 made, GDB will enter an infinite loop when stepping through
2764 optimized code consisting of VLIW instructions which contain
2765 subinstructions corresponding to different source lines. On
2766 FR-V, it's not permitted to place a breakpoint on any but the
2767 first subinstruction of a VLIW instruction. When a breakpoint is
2768 set, GDB will adjust the breakpoint address to the beginning of
2769 the VLIW instruction. Thus, we need to make the corresponding
2770 adjustment here when computing the stop address. */
2771
2772 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2773 {
2774 ecs->stop_func_start
2775 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2776 ecs->stop_func_start);
2777 }
2778
2779 if (ecs->stop_func_start == stop_pc)
2780 {
2781 /* We are already there: stop now. */
2782 stop_step = 1;
2783 print_stop_reason (END_STEPPING_RANGE, 0);
2784 stop_stepping (ecs);
2785 return;
2786 }
2787 else
2788 {
2789 /* Put the step-breakpoint there and go until there. */
2790 init_sal (&sr_sal); /* initialize to zeroes */
2791 sr_sal.pc = ecs->stop_func_start;
2792 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2793
2794 /* Do not specify what the fp should be when we stop since on
2795 some machines the prologue is where the new fp value is
2796 established. */
2797 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2798
2799 /* And make sure stepping stops right away then. */
2800 step_range_end = step_range_start;
2801 }
2802 keep_going (ecs);
2803 }
2804
2805 /* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID.
2806 This is used to both functions and to skip over code. */
2807
2808 static void
2809 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2810 struct frame_id sr_id)
2811 {
2812 /* There should never be more than one step-resume breakpoint per
2813 thread, so we should never be setting a new
2814 step_resume_breakpoint when one is already active. */
2815 gdb_assert (step_resume_breakpoint == NULL);
2816 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2817 bp_step_resume);
2818 if (breakpoints_inserted)
2819 insert_breakpoints ();
2820 }
2821
2822 /* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2823 to skip a potential signal handler.
2824
2825 This is called with the interrupted function's frame. The signal
2826 handler, when it returns, will resume the interrupted function at
2827 RETURN_FRAME.pc. */
2828
2829 static void
2830 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2831 {
2832 struct symtab_and_line sr_sal;
2833
2834 init_sal (&sr_sal); /* initialize to zeros */
2835
2836 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
2837 sr_sal.section = find_pc_overlay (sr_sal.pc);
2838
2839 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2840 }
2841
2842 /* Similar to insert_step_resume_breakpoint_at_frame, except
2843 but a breakpoint at the previous frame's PC. This is used to
2844 skip a function after stepping into it (for "next" or if the called
2845 function has no debugging information).
2846
2847 The current function has almost always been reached by single
2848 stepping a call or return instruction. NEXT_FRAME belongs to the
2849 current function, and the breakpoint will be set at the caller's
2850 resume address.
2851
2852 This is a separate function rather than reusing
2853 insert_step_resume_breakpoint_at_frame in order to avoid
2854 get_prev_frame, which may stop prematurely (see the implementation
2855 of frame_unwind_id for an example). */
2856
2857 static void
2858 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2859 {
2860 struct symtab_and_line sr_sal;
2861
2862 /* We shouldn't have gotten here if we don't know where the call site
2863 is. */
2864 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2865
2866 init_sal (&sr_sal); /* initialize to zeros */
2867
2868 sr_sal.pc = ADDR_BITS_REMOVE (frame_pc_unwind (next_frame));
2869 sr_sal.section = find_pc_overlay (sr_sal.pc);
2870
2871 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2872 }
2873
2874 static void
2875 stop_stepping (struct execution_control_state *ecs)
2876 {
2877 if (debug_infrun)
2878 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2879
2880 /* Let callers know we don't want to wait for the inferior anymore. */
2881 ecs->wait_some_more = 0;
2882 }
2883
2884 /* This function handles various cases where we need to continue
2885 waiting for the inferior. */
2886 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2887
2888 static void
2889 keep_going (struct execution_control_state *ecs)
2890 {
2891 /* Save the pc before execution, to compare with pc after stop. */
2892 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2893
2894 /* If we did not do break;, it means we should keep running the
2895 inferior and not return to debugger. */
2896
2897 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2898 {
2899 /* We took a signal (which we are supposed to pass through to
2900 the inferior, else we'd have done a break above) and we
2901 haven't yet gotten our trap. Simply continue. */
2902 resume (currently_stepping (ecs), stop_signal);
2903 }
2904 else
2905 {
2906 /* Either the trap was not expected, but we are continuing
2907 anyway (the user asked that this signal be passed to the
2908 child)
2909 -- or --
2910 The signal was SIGTRAP, e.g. it was our signal, but we
2911 decided we should resume from it.
2912
2913 We're going to run this baby now! */
2914
2915 if (!breakpoints_inserted && !ecs->another_trap)
2916 {
2917 breakpoints_failed = insert_breakpoints ();
2918 if (breakpoints_failed)
2919 {
2920 stop_stepping (ecs);
2921 return;
2922 }
2923 breakpoints_inserted = 1;
2924 }
2925
2926 trap_expected = ecs->another_trap;
2927
2928 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2929 specifies that such a signal should be delivered to the
2930 target program).
2931
2932 Typically, this would occure when a user is debugging a
2933 target monitor on a simulator: the target monitor sets a
2934 breakpoint; the simulator encounters this break-point and
2935 halts the simulation handing control to GDB; GDB, noteing
2936 that the break-point isn't valid, returns control back to the
2937 simulator; the simulator then delivers the hardware
2938 equivalent of a SIGNAL_TRAP to the program being debugged. */
2939
2940 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2941 stop_signal = TARGET_SIGNAL_0;
2942
2943
2944 resume (currently_stepping (ecs), stop_signal);
2945 }
2946
2947 prepare_to_wait (ecs);
2948 }
2949
2950 /* This function normally comes after a resume, before
2951 handle_inferior_event exits. It takes care of any last bits of
2952 housekeeping, and sets the all-important wait_some_more flag. */
2953
2954 static void
2955 prepare_to_wait (struct execution_control_state *ecs)
2956 {
2957 if (debug_infrun)
2958 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2959 if (ecs->infwait_state == infwait_normal_state)
2960 {
2961 overlay_cache_invalid = 1;
2962
2963 /* We have to invalidate the registers BEFORE calling
2964 target_wait because they can be loaded from the target while
2965 in target_wait. This makes remote debugging a bit more
2966 efficient for those targets that provide critical registers
2967 as part of their normal status mechanism. */
2968
2969 registers_changed ();
2970 ecs->waiton_ptid = pid_to_ptid (-1);
2971 ecs->wp = &(ecs->ws);
2972 }
2973 /* This is the old end of the while loop. Let everybody know we
2974 want to wait for the inferior some more and get called again
2975 soon. */
2976 ecs->wait_some_more = 1;
2977 }
2978
2979 /* Print why the inferior has stopped. We always print something when
2980 the inferior exits, or receives a signal. The rest of the cases are
2981 dealt with later on in normal_stop() and print_it_typical(). Ideally
2982 there should be a call to this function from handle_inferior_event()
2983 each time stop_stepping() is called.*/
2984 static void
2985 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2986 {
2987 switch (stop_reason)
2988 {
2989 case STOP_UNKNOWN:
2990 /* We don't deal with these cases from handle_inferior_event()
2991 yet. */
2992 break;
2993 case END_STEPPING_RANGE:
2994 /* We are done with a step/next/si/ni command. */
2995 /* For now print nothing. */
2996 /* Print a message only if not in the middle of doing a "step n"
2997 operation for n > 1 */
2998 if (!step_multi || !stop_step)
2999 if (ui_out_is_mi_like_p (uiout))
3000 ui_out_field_string
3001 (uiout, "reason",
3002 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3003 break;
3004 case BREAKPOINT_HIT:
3005 /* We found a breakpoint. */
3006 /* For now print nothing. */
3007 break;
3008 case SIGNAL_EXITED:
3009 /* The inferior was terminated by a signal. */
3010 annotate_signalled ();
3011 if (ui_out_is_mi_like_p (uiout))
3012 ui_out_field_string
3013 (uiout, "reason",
3014 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3015 ui_out_text (uiout, "\nProgram terminated with signal ");
3016 annotate_signal_name ();
3017 ui_out_field_string (uiout, "signal-name",
3018 target_signal_to_name (stop_info));
3019 annotate_signal_name_end ();
3020 ui_out_text (uiout, ", ");
3021 annotate_signal_string ();
3022 ui_out_field_string (uiout, "signal-meaning",
3023 target_signal_to_string (stop_info));
3024 annotate_signal_string_end ();
3025 ui_out_text (uiout, ".\n");
3026 ui_out_text (uiout, "The program no longer exists.\n");
3027 break;
3028 case EXITED:
3029 /* The inferior program is finished. */
3030 annotate_exited (stop_info);
3031 if (stop_info)
3032 {
3033 if (ui_out_is_mi_like_p (uiout))
3034 ui_out_field_string (uiout, "reason",
3035 async_reason_lookup (EXEC_ASYNC_EXITED));
3036 ui_out_text (uiout, "\nProgram exited with code ");
3037 ui_out_field_fmt (uiout, "exit-code", "0%o",
3038 (unsigned int) stop_info);
3039 ui_out_text (uiout, ".\n");
3040 }
3041 else
3042 {
3043 if (ui_out_is_mi_like_p (uiout))
3044 ui_out_field_string
3045 (uiout, "reason",
3046 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3047 ui_out_text (uiout, "\nProgram exited normally.\n");
3048 }
3049 /* Support the --return-child-result option. */
3050 return_child_result_value = stop_info;
3051 break;
3052 case SIGNAL_RECEIVED:
3053 /* Signal received. The signal table tells us to print about
3054 it. */
3055 annotate_signal ();
3056 ui_out_text (uiout, "\nProgram received signal ");
3057 annotate_signal_name ();
3058 if (ui_out_is_mi_like_p (uiout))
3059 ui_out_field_string
3060 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3061 ui_out_field_string (uiout, "signal-name",
3062 target_signal_to_name (stop_info));
3063 annotate_signal_name_end ();
3064 ui_out_text (uiout, ", ");
3065 annotate_signal_string ();
3066 ui_out_field_string (uiout, "signal-meaning",
3067 target_signal_to_string (stop_info));
3068 annotate_signal_string_end ();
3069 ui_out_text (uiout, ".\n");
3070 break;
3071 default:
3072 internal_error (__FILE__, __LINE__,
3073 _("print_stop_reason: unrecognized enum value"));
3074 break;
3075 }
3076 }
3077 \f
3078
3079 /* Here to return control to GDB when the inferior stops for real.
3080 Print appropriate messages, remove breakpoints, give terminal our modes.
3081
3082 STOP_PRINT_FRAME nonzero means print the executing frame
3083 (pc, function, args, file, line number and line text).
3084 BREAKPOINTS_FAILED nonzero means stop was due to error
3085 attempting to insert breakpoints. */
3086
3087 void
3088 normal_stop (void)
3089 {
3090 struct target_waitstatus last;
3091 ptid_t last_ptid;
3092
3093 get_last_target_status (&last_ptid, &last);
3094
3095 /* As with the notification of thread events, we want to delay
3096 notifying the user that we've switched thread context until
3097 the inferior actually stops.
3098
3099 There's no point in saying anything if the inferior has exited.
3100 Note that SIGNALLED here means "exited with a signal", not
3101 "received a signal". */
3102 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3103 && target_has_execution
3104 && last.kind != TARGET_WAITKIND_SIGNALLED
3105 && last.kind != TARGET_WAITKIND_EXITED)
3106 {
3107 target_terminal_ours_for_output ();
3108 printf_filtered (_("[Switching to %s]\n"),
3109 target_pid_or_tid_to_str (inferior_ptid));
3110 previous_inferior_ptid = inferior_ptid;
3111 }
3112
3113 /* NOTE drow/2004-01-17: Is this still necessary? */
3114 /* Make sure that the current_frame's pc is correct. This
3115 is a correction for setting up the frame info before doing
3116 DECR_PC_AFTER_BREAK */
3117 if (target_has_execution)
3118 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3119 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3120 frame code to check for this and sort out any resultant mess.
3121 DECR_PC_AFTER_BREAK needs to just go away. */
3122 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3123
3124 if (target_has_execution && breakpoints_inserted)
3125 {
3126 if (remove_breakpoints ())
3127 {
3128 target_terminal_ours_for_output ();
3129 printf_filtered (_("\
3130 Cannot remove breakpoints because program is no longer writable.\n\
3131 It might be running in another process.\n\
3132 Further execution is probably impossible.\n"));
3133 }
3134 }
3135 breakpoints_inserted = 0;
3136
3137 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3138 Delete any breakpoint that is to be deleted at the next stop. */
3139
3140 breakpoint_auto_delete (stop_bpstat);
3141
3142 /* If an auto-display called a function and that got a signal,
3143 delete that auto-display to avoid an infinite recursion. */
3144
3145 if (stopped_by_random_signal)
3146 disable_current_display ();
3147
3148 /* Don't print a message if in the middle of doing a "step n"
3149 operation for n > 1 */
3150 if (step_multi && stop_step)
3151 goto done;
3152
3153 target_terminal_ours ();
3154
3155 /* Set the current source location. This will also happen if we
3156 display the frame below, but the current SAL will be incorrect
3157 during a user hook-stop function. */
3158 if (target_has_stack && !stop_stack_dummy)
3159 set_current_sal_from_frame (get_current_frame (), 1);
3160
3161 /* Look up the hook_stop and run it (CLI internally handles problem
3162 of stop_command's pre-hook not existing). */
3163 if (stop_command)
3164 catch_errors (hook_stop_stub, stop_command,
3165 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3166
3167 if (!target_has_stack)
3168 {
3169
3170 goto done;
3171 }
3172
3173 /* Select innermost stack frame - i.e., current frame is frame 0,
3174 and current location is based on that.
3175 Don't do this on return from a stack dummy routine,
3176 or if the program has exited. */
3177
3178 if (!stop_stack_dummy)
3179 {
3180 select_frame (get_current_frame ());
3181
3182 /* Print current location without a level number, if
3183 we have changed functions or hit a breakpoint.
3184 Print source line if we have one.
3185 bpstat_print() contains the logic deciding in detail
3186 what to print, based on the event(s) that just occurred. */
3187
3188 if (stop_print_frame && deprecated_selected_frame)
3189 {
3190 int bpstat_ret;
3191 int source_flag;
3192 int do_frame_printing = 1;
3193
3194 bpstat_ret = bpstat_print (stop_bpstat);
3195 switch (bpstat_ret)
3196 {
3197 case PRINT_UNKNOWN:
3198 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3199 (or should) carry around the function and does (or
3200 should) use that when doing a frame comparison. */
3201 if (stop_step
3202 && frame_id_eq (step_frame_id,
3203 get_frame_id (get_current_frame ()))
3204 && step_start_function == find_pc_function (stop_pc))
3205 source_flag = SRC_LINE; /* finished step, just print source line */
3206 else
3207 source_flag = SRC_AND_LOC; /* print location and source line */
3208 break;
3209 case PRINT_SRC_AND_LOC:
3210 source_flag = SRC_AND_LOC; /* print location and source line */
3211 break;
3212 case PRINT_SRC_ONLY:
3213 source_flag = SRC_LINE;
3214 break;
3215 case PRINT_NOTHING:
3216 source_flag = SRC_LINE; /* something bogus */
3217 do_frame_printing = 0;
3218 break;
3219 default:
3220 internal_error (__FILE__, __LINE__, _("Unknown value."));
3221 }
3222 /* For mi, have the same behavior every time we stop:
3223 print everything but the source line. */
3224 if (ui_out_is_mi_like_p (uiout))
3225 source_flag = LOC_AND_ADDRESS;
3226
3227 if (ui_out_is_mi_like_p (uiout))
3228 ui_out_field_int (uiout, "thread-id",
3229 pid_to_thread_id (inferior_ptid));
3230 /* The behavior of this routine with respect to the source
3231 flag is:
3232 SRC_LINE: Print only source line
3233 LOCATION: Print only location
3234 SRC_AND_LOC: Print location and source line */
3235 if (do_frame_printing)
3236 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3237
3238 /* Display the auto-display expressions. */
3239 do_displays ();
3240 }
3241 }
3242
3243 /* Save the function value return registers, if we care.
3244 We might be about to restore their previous contents. */
3245 if (proceed_to_finish)
3246 /* NB: The copy goes through to the target picking up the value of
3247 all the registers. */
3248 regcache_cpy (stop_registers, current_regcache);
3249
3250 if (stop_stack_dummy)
3251 {
3252 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3253 ends with a setting of the current frame, so we can use that
3254 next. */
3255 frame_pop (get_current_frame ());
3256 /* Set stop_pc to what it was before we called the function.
3257 Can't rely on restore_inferior_status because that only gets
3258 called if we don't stop in the called function. */
3259 stop_pc = read_pc ();
3260 select_frame (get_current_frame ());
3261 }
3262
3263 done:
3264 annotate_stopped ();
3265 observer_notify_normal_stop (stop_bpstat);
3266 }
3267
3268 static int
3269 hook_stop_stub (void *cmd)
3270 {
3271 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3272 return (0);
3273 }
3274 \f
3275 int
3276 signal_stop_state (int signo)
3277 {
3278 return signal_stop[signo];
3279 }
3280
3281 int
3282 signal_print_state (int signo)
3283 {
3284 return signal_print[signo];
3285 }
3286
3287 int
3288 signal_pass_state (int signo)
3289 {
3290 return signal_program[signo];
3291 }
3292
3293 int
3294 signal_stop_update (int signo, int state)
3295 {
3296 int ret = signal_stop[signo];
3297 signal_stop[signo] = state;
3298 return ret;
3299 }
3300
3301 int
3302 signal_print_update (int signo, int state)
3303 {
3304 int ret = signal_print[signo];
3305 signal_print[signo] = state;
3306 return ret;
3307 }
3308
3309 int
3310 signal_pass_update (int signo, int state)
3311 {
3312 int ret = signal_program[signo];
3313 signal_program[signo] = state;
3314 return ret;
3315 }
3316
3317 static void
3318 sig_print_header (void)
3319 {
3320 printf_filtered (_("\
3321 Signal Stop\tPrint\tPass to program\tDescription\n"));
3322 }
3323
3324 static void
3325 sig_print_info (enum target_signal oursig)
3326 {
3327 char *name = target_signal_to_name (oursig);
3328 int name_padding = 13 - strlen (name);
3329
3330 if (name_padding <= 0)
3331 name_padding = 0;
3332
3333 printf_filtered ("%s", name);
3334 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3335 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3336 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3337 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3338 printf_filtered ("%s\n", target_signal_to_string (oursig));
3339 }
3340
3341 /* Specify how various signals in the inferior should be handled. */
3342
3343 static void
3344 handle_command (char *args, int from_tty)
3345 {
3346 char **argv;
3347 int digits, wordlen;
3348 int sigfirst, signum, siglast;
3349 enum target_signal oursig;
3350 int allsigs;
3351 int nsigs;
3352 unsigned char *sigs;
3353 struct cleanup *old_chain;
3354
3355 if (args == NULL)
3356 {
3357 error_no_arg (_("signal to handle"));
3358 }
3359
3360 /* Allocate and zero an array of flags for which signals to handle. */
3361
3362 nsigs = (int) TARGET_SIGNAL_LAST;
3363 sigs = (unsigned char *) alloca (nsigs);
3364 memset (sigs, 0, nsigs);
3365
3366 /* Break the command line up into args. */
3367
3368 argv = buildargv (args);
3369 if (argv == NULL)
3370 {
3371 nomem (0);
3372 }
3373 old_chain = make_cleanup_freeargv (argv);
3374
3375 /* Walk through the args, looking for signal oursigs, signal names, and
3376 actions. Signal numbers and signal names may be interspersed with
3377 actions, with the actions being performed for all signals cumulatively
3378 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3379
3380 while (*argv != NULL)
3381 {
3382 wordlen = strlen (*argv);
3383 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3384 {;
3385 }
3386 allsigs = 0;
3387 sigfirst = siglast = -1;
3388
3389 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3390 {
3391 /* Apply action to all signals except those used by the
3392 debugger. Silently skip those. */
3393 allsigs = 1;
3394 sigfirst = 0;
3395 siglast = nsigs - 1;
3396 }
3397 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3398 {
3399 SET_SIGS (nsigs, sigs, signal_stop);
3400 SET_SIGS (nsigs, sigs, signal_print);
3401 }
3402 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3403 {
3404 UNSET_SIGS (nsigs, sigs, signal_program);
3405 }
3406 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3407 {
3408 SET_SIGS (nsigs, sigs, signal_print);
3409 }
3410 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3411 {
3412 SET_SIGS (nsigs, sigs, signal_program);
3413 }
3414 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3415 {
3416 UNSET_SIGS (nsigs, sigs, signal_stop);
3417 }
3418 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3419 {
3420 SET_SIGS (nsigs, sigs, signal_program);
3421 }
3422 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3423 {
3424 UNSET_SIGS (nsigs, sigs, signal_print);
3425 UNSET_SIGS (nsigs, sigs, signal_stop);
3426 }
3427 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3428 {
3429 UNSET_SIGS (nsigs, sigs, signal_program);
3430 }
3431 else if (digits > 0)
3432 {
3433 /* It is numeric. The numeric signal refers to our own
3434 internal signal numbering from target.h, not to host/target
3435 signal number. This is a feature; users really should be
3436 using symbolic names anyway, and the common ones like
3437 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3438
3439 sigfirst = siglast = (int)
3440 target_signal_from_command (atoi (*argv));
3441 if ((*argv)[digits] == '-')
3442 {
3443 siglast = (int)
3444 target_signal_from_command (atoi ((*argv) + digits + 1));
3445 }
3446 if (sigfirst > siglast)
3447 {
3448 /* Bet he didn't figure we'd think of this case... */
3449 signum = sigfirst;
3450 sigfirst = siglast;
3451 siglast = signum;
3452 }
3453 }
3454 else
3455 {
3456 oursig = target_signal_from_name (*argv);
3457 if (oursig != TARGET_SIGNAL_UNKNOWN)
3458 {
3459 sigfirst = siglast = (int) oursig;
3460 }
3461 else
3462 {
3463 /* Not a number and not a recognized flag word => complain. */
3464 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3465 }
3466 }
3467
3468 /* If any signal numbers or symbol names were found, set flags for
3469 which signals to apply actions to. */
3470
3471 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3472 {
3473 switch ((enum target_signal) signum)
3474 {
3475 case TARGET_SIGNAL_TRAP:
3476 case TARGET_SIGNAL_INT:
3477 if (!allsigs && !sigs[signum])
3478 {
3479 if (query ("%s is used by the debugger.\n\
3480 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3481 {
3482 sigs[signum] = 1;
3483 }
3484 else
3485 {
3486 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3487 gdb_flush (gdb_stdout);
3488 }
3489 }
3490 break;
3491 case TARGET_SIGNAL_0:
3492 case TARGET_SIGNAL_DEFAULT:
3493 case TARGET_SIGNAL_UNKNOWN:
3494 /* Make sure that "all" doesn't print these. */
3495 break;
3496 default:
3497 sigs[signum] = 1;
3498 break;
3499 }
3500 }
3501
3502 argv++;
3503 }
3504
3505 target_notice_signals (inferior_ptid);
3506
3507 if (from_tty)
3508 {
3509 /* Show the results. */
3510 sig_print_header ();
3511 for (signum = 0; signum < nsigs; signum++)
3512 {
3513 if (sigs[signum])
3514 {
3515 sig_print_info (signum);
3516 }
3517 }
3518 }
3519
3520 do_cleanups (old_chain);
3521 }
3522
3523 static void
3524 xdb_handle_command (char *args, int from_tty)
3525 {
3526 char **argv;
3527 struct cleanup *old_chain;
3528
3529 /* Break the command line up into args. */
3530
3531 argv = buildargv (args);
3532 if (argv == NULL)
3533 {
3534 nomem (0);
3535 }
3536 old_chain = make_cleanup_freeargv (argv);
3537 if (argv[1] != (char *) NULL)
3538 {
3539 char *argBuf;
3540 int bufLen;
3541
3542 bufLen = strlen (argv[0]) + 20;
3543 argBuf = (char *) xmalloc (bufLen);
3544 if (argBuf)
3545 {
3546 int validFlag = 1;
3547 enum target_signal oursig;
3548
3549 oursig = target_signal_from_name (argv[0]);
3550 memset (argBuf, 0, bufLen);
3551 if (strcmp (argv[1], "Q") == 0)
3552 sprintf (argBuf, "%s %s", argv[0], "noprint");
3553 else
3554 {
3555 if (strcmp (argv[1], "s") == 0)
3556 {
3557 if (!signal_stop[oursig])
3558 sprintf (argBuf, "%s %s", argv[0], "stop");
3559 else
3560 sprintf (argBuf, "%s %s", argv[0], "nostop");
3561 }
3562 else if (strcmp (argv[1], "i") == 0)
3563 {
3564 if (!signal_program[oursig])
3565 sprintf (argBuf, "%s %s", argv[0], "pass");
3566 else
3567 sprintf (argBuf, "%s %s", argv[0], "nopass");
3568 }
3569 else if (strcmp (argv[1], "r") == 0)
3570 {
3571 if (!signal_print[oursig])
3572 sprintf (argBuf, "%s %s", argv[0], "print");
3573 else
3574 sprintf (argBuf, "%s %s", argv[0], "noprint");
3575 }
3576 else
3577 validFlag = 0;
3578 }
3579 if (validFlag)
3580 handle_command (argBuf, from_tty);
3581 else
3582 printf_filtered (_("Invalid signal handling flag.\n"));
3583 if (argBuf)
3584 xfree (argBuf);
3585 }
3586 }
3587 do_cleanups (old_chain);
3588 }
3589
3590 /* Print current contents of the tables set by the handle command.
3591 It is possible we should just be printing signals actually used
3592 by the current target (but for things to work right when switching
3593 targets, all signals should be in the signal tables). */
3594
3595 static void
3596 signals_info (char *signum_exp, int from_tty)
3597 {
3598 enum target_signal oursig;
3599 sig_print_header ();
3600
3601 if (signum_exp)
3602 {
3603 /* First see if this is a symbol name. */
3604 oursig = target_signal_from_name (signum_exp);
3605 if (oursig == TARGET_SIGNAL_UNKNOWN)
3606 {
3607 /* No, try numeric. */
3608 oursig =
3609 target_signal_from_command (parse_and_eval_long (signum_exp));
3610 }
3611 sig_print_info (oursig);
3612 return;
3613 }
3614
3615 printf_filtered ("\n");
3616 /* These ugly casts brought to you by the native VAX compiler. */
3617 for (oursig = TARGET_SIGNAL_FIRST;
3618 (int) oursig < (int) TARGET_SIGNAL_LAST;
3619 oursig = (enum target_signal) ((int) oursig + 1))
3620 {
3621 QUIT;
3622
3623 if (oursig != TARGET_SIGNAL_UNKNOWN
3624 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3625 sig_print_info (oursig);
3626 }
3627
3628 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3629 }
3630 \f
3631 struct inferior_status
3632 {
3633 enum target_signal stop_signal;
3634 CORE_ADDR stop_pc;
3635 bpstat stop_bpstat;
3636 int stop_step;
3637 int stop_stack_dummy;
3638 int stopped_by_random_signal;
3639 int trap_expected;
3640 CORE_ADDR step_range_start;
3641 CORE_ADDR step_range_end;
3642 struct frame_id step_frame_id;
3643 enum step_over_calls_kind step_over_calls;
3644 CORE_ADDR step_resume_break_address;
3645 int stop_after_trap;
3646 int stop_soon;
3647 struct regcache *stop_registers;
3648
3649 /* These are here because if call_function_by_hand has written some
3650 registers and then decides to call error(), we better not have changed
3651 any registers. */
3652 struct regcache *registers;
3653
3654 /* A frame unique identifier. */
3655 struct frame_id selected_frame_id;
3656
3657 int breakpoint_proceeded;
3658 int restore_stack_info;
3659 int proceed_to_finish;
3660 };
3661
3662 void
3663 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3664 LONGEST val)
3665 {
3666 int size = register_size (current_gdbarch, regno);
3667 void *buf = alloca (size);
3668 store_signed_integer (buf, size, val);
3669 regcache_raw_write (inf_status->registers, regno, buf);
3670 }
3671
3672 /* Save all of the information associated with the inferior<==>gdb
3673 connection. INF_STATUS is a pointer to a "struct inferior_status"
3674 (defined in inferior.h). */
3675
3676 struct inferior_status *
3677 save_inferior_status (int restore_stack_info)
3678 {
3679 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3680
3681 inf_status->stop_signal = stop_signal;
3682 inf_status->stop_pc = stop_pc;
3683 inf_status->stop_step = stop_step;
3684 inf_status->stop_stack_dummy = stop_stack_dummy;
3685 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3686 inf_status->trap_expected = trap_expected;
3687 inf_status->step_range_start = step_range_start;
3688 inf_status->step_range_end = step_range_end;
3689 inf_status->step_frame_id = step_frame_id;
3690 inf_status->step_over_calls = step_over_calls;
3691 inf_status->stop_after_trap = stop_after_trap;
3692 inf_status->stop_soon = stop_soon;
3693 /* Save original bpstat chain here; replace it with copy of chain.
3694 If caller's caller is walking the chain, they'll be happier if we
3695 hand them back the original chain when restore_inferior_status is
3696 called. */
3697 inf_status->stop_bpstat = stop_bpstat;
3698 stop_bpstat = bpstat_copy (stop_bpstat);
3699 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3700 inf_status->restore_stack_info = restore_stack_info;
3701 inf_status->proceed_to_finish = proceed_to_finish;
3702
3703 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3704
3705 inf_status->registers = regcache_dup (current_regcache);
3706
3707 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
3708 return inf_status;
3709 }
3710
3711 static int
3712 restore_selected_frame (void *args)
3713 {
3714 struct frame_id *fid = (struct frame_id *) args;
3715 struct frame_info *frame;
3716
3717 frame = frame_find_by_id (*fid);
3718
3719 /* If inf_status->selected_frame_id is NULL, there was no previously
3720 selected frame. */
3721 if (frame == NULL)
3722 {
3723 warning (_("Unable to restore previously selected frame."));
3724 return 0;
3725 }
3726
3727 select_frame (frame);
3728
3729 return (1);
3730 }
3731
3732 void
3733 restore_inferior_status (struct inferior_status *inf_status)
3734 {
3735 stop_signal = inf_status->stop_signal;
3736 stop_pc = inf_status->stop_pc;
3737 stop_step = inf_status->stop_step;
3738 stop_stack_dummy = inf_status->stop_stack_dummy;
3739 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3740 trap_expected = inf_status->trap_expected;
3741 step_range_start = inf_status->step_range_start;
3742 step_range_end = inf_status->step_range_end;
3743 step_frame_id = inf_status->step_frame_id;
3744 step_over_calls = inf_status->step_over_calls;
3745 stop_after_trap = inf_status->stop_after_trap;
3746 stop_soon = inf_status->stop_soon;
3747 bpstat_clear (&stop_bpstat);
3748 stop_bpstat = inf_status->stop_bpstat;
3749 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3750 proceed_to_finish = inf_status->proceed_to_finish;
3751
3752 /* FIXME: Is the restore of stop_registers always needed. */
3753 regcache_xfree (stop_registers);
3754 stop_registers = inf_status->stop_registers;
3755
3756 /* The inferior can be gone if the user types "print exit(0)"
3757 (and perhaps other times). */
3758 if (target_has_execution)
3759 /* NB: The register write goes through to the target. */
3760 regcache_cpy (current_regcache, inf_status->registers);
3761 regcache_xfree (inf_status->registers);
3762
3763 /* FIXME: If we are being called after stopping in a function which
3764 is called from gdb, we should not be trying to restore the
3765 selected frame; it just prints a spurious error message (The
3766 message is useful, however, in detecting bugs in gdb (like if gdb
3767 clobbers the stack)). In fact, should we be restoring the
3768 inferior status at all in that case? . */
3769
3770 if (target_has_stack && inf_status->restore_stack_info)
3771 {
3772 /* The point of catch_errors is that if the stack is clobbered,
3773 walking the stack might encounter a garbage pointer and
3774 error() trying to dereference it. */
3775 if (catch_errors
3776 (restore_selected_frame, &inf_status->selected_frame_id,
3777 "Unable to restore previously selected frame:\n",
3778 RETURN_MASK_ERROR) == 0)
3779 /* Error in restoring the selected frame. Select the innermost
3780 frame. */
3781 select_frame (get_current_frame ());
3782
3783 }
3784
3785 xfree (inf_status);
3786 }
3787
3788 static void
3789 do_restore_inferior_status_cleanup (void *sts)
3790 {
3791 restore_inferior_status (sts);
3792 }
3793
3794 struct cleanup *
3795 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3796 {
3797 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3798 }
3799
3800 void
3801 discard_inferior_status (struct inferior_status *inf_status)
3802 {
3803 /* See save_inferior_status for info on stop_bpstat. */
3804 bpstat_clear (&inf_status->stop_bpstat);
3805 regcache_xfree (inf_status->registers);
3806 regcache_xfree (inf_status->stop_registers);
3807 xfree (inf_status);
3808 }
3809
3810 int
3811 inferior_has_forked (int pid, int *child_pid)
3812 {
3813 struct target_waitstatus last;
3814 ptid_t last_ptid;
3815
3816 get_last_target_status (&last_ptid, &last);
3817
3818 if (last.kind != TARGET_WAITKIND_FORKED)
3819 return 0;
3820
3821 if (ptid_get_pid (last_ptid) != pid)
3822 return 0;
3823
3824 *child_pid = last.value.related_pid;
3825 return 1;
3826 }
3827
3828 int
3829 inferior_has_vforked (int pid, int *child_pid)
3830 {
3831 struct target_waitstatus last;
3832 ptid_t last_ptid;
3833
3834 get_last_target_status (&last_ptid, &last);
3835
3836 if (last.kind != TARGET_WAITKIND_VFORKED)
3837 return 0;
3838
3839 if (ptid_get_pid (last_ptid) != pid)
3840 return 0;
3841
3842 *child_pid = last.value.related_pid;
3843 return 1;
3844 }
3845
3846 int
3847 inferior_has_execd (int pid, char **execd_pathname)
3848 {
3849 struct target_waitstatus last;
3850 ptid_t last_ptid;
3851
3852 get_last_target_status (&last_ptid, &last);
3853
3854 if (last.kind != TARGET_WAITKIND_EXECD)
3855 return 0;
3856
3857 if (ptid_get_pid (last_ptid) != pid)
3858 return 0;
3859
3860 *execd_pathname = xstrdup (last.value.execd_pathname);
3861 return 1;
3862 }
3863
3864 /* Oft used ptids */
3865 ptid_t null_ptid;
3866 ptid_t minus_one_ptid;
3867
3868 /* Create a ptid given the necessary PID, LWP, and TID components. */
3869
3870 ptid_t
3871 ptid_build (int pid, long lwp, long tid)
3872 {
3873 ptid_t ptid;
3874
3875 ptid.pid = pid;
3876 ptid.lwp = lwp;
3877 ptid.tid = tid;
3878 return ptid;
3879 }
3880
3881 /* Create a ptid from just a pid. */
3882
3883 ptid_t
3884 pid_to_ptid (int pid)
3885 {
3886 return ptid_build (pid, 0, 0);
3887 }
3888
3889 /* Fetch the pid (process id) component from a ptid. */
3890
3891 int
3892 ptid_get_pid (ptid_t ptid)
3893 {
3894 return ptid.pid;
3895 }
3896
3897 /* Fetch the lwp (lightweight process) component from a ptid. */
3898
3899 long
3900 ptid_get_lwp (ptid_t ptid)
3901 {
3902 return ptid.lwp;
3903 }
3904
3905 /* Fetch the tid (thread id) component from a ptid. */
3906
3907 long
3908 ptid_get_tid (ptid_t ptid)
3909 {
3910 return ptid.tid;
3911 }
3912
3913 /* ptid_equal() is used to test equality of two ptids. */
3914
3915 int
3916 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3917 {
3918 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3919 && ptid1.tid == ptid2.tid);
3920 }
3921
3922 /* restore_inferior_ptid() will be used by the cleanup machinery
3923 to restore the inferior_ptid value saved in a call to
3924 save_inferior_ptid(). */
3925
3926 static void
3927 restore_inferior_ptid (void *arg)
3928 {
3929 ptid_t *saved_ptid_ptr = arg;
3930 inferior_ptid = *saved_ptid_ptr;
3931 xfree (arg);
3932 }
3933
3934 /* Save the value of inferior_ptid so that it may be restored by a
3935 later call to do_cleanups(). Returns the struct cleanup pointer
3936 needed for later doing the cleanup. */
3937
3938 struct cleanup *
3939 save_inferior_ptid (void)
3940 {
3941 ptid_t *saved_ptid_ptr;
3942
3943 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3944 *saved_ptid_ptr = inferior_ptid;
3945 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3946 }
3947 \f
3948
3949 static void
3950 build_infrun (void)
3951 {
3952 stop_registers = regcache_xmalloc (current_gdbarch);
3953 }
3954
3955 void
3956 _initialize_infrun (void)
3957 {
3958 int i;
3959 int numsigs;
3960 struct cmd_list_element *c;
3961
3962 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3963 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3964
3965 add_info ("signals", signals_info, _("\
3966 What debugger does when program gets various signals.\n\
3967 Specify a signal as argument to print info on that signal only."));
3968 add_info_alias ("handle", "signals", 0);
3969
3970 add_com ("handle", class_run, handle_command, _("\
3971 Specify how to handle a signal.\n\
3972 Args are signals and actions to apply to those signals.\n\
3973 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3974 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3975 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3976 The special arg \"all\" is recognized to mean all signals except those\n\
3977 used by the debugger, typically SIGTRAP and SIGINT.\n\
3978 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3979 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3980 Stop means reenter debugger if this signal happens (implies print).\n\
3981 Print means print a message if this signal happens.\n\
3982 Pass means let program see this signal; otherwise program doesn't know.\n\
3983 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3984 Pass and Stop may be combined."));
3985 if (xdb_commands)
3986 {
3987 add_com ("lz", class_info, signals_info, _("\
3988 What debugger does when program gets various signals.\n\
3989 Specify a signal as argument to print info on that signal only."));
3990 add_com ("z", class_run, xdb_handle_command, _("\
3991 Specify how to handle a signal.\n\
3992 Args are signals and actions to apply to those signals.\n\
3993 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3994 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3995 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3996 The special arg \"all\" is recognized to mean all signals except those\n\
3997 used by the debugger, typically SIGTRAP and SIGINT.\n\
3998 Recognized actions include \"s\" (toggles between stop and nostop), \n\
3999 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4000 nopass), \"Q\" (noprint)\n\
4001 Stop means reenter debugger if this signal happens (implies print).\n\
4002 Print means print a message if this signal happens.\n\
4003 Pass means let program see this signal; otherwise program doesn't know.\n\
4004 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4005 Pass and Stop may be combined."));
4006 }
4007
4008 if (!dbx_commands)
4009 stop_command = add_cmd ("stop", class_obscure,
4010 not_just_help_class_command, _("\
4011 There is no `stop' command, but you can set a hook on `stop'.\n\
4012 This allows you to set a list of commands to be run each time execution\n\
4013 of the program stops."), &cmdlist);
4014
4015 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4016 Set inferior debugging."), _("\
4017 Show inferior debugging."), _("\
4018 When non-zero, inferior specific debugging is enabled."),
4019 NULL,
4020 show_debug_infrun,
4021 &setdebuglist, &showdebuglist);
4022
4023 numsigs = (int) TARGET_SIGNAL_LAST;
4024 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4025 signal_print = (unsigned char *)
4026 xmalloc (sizeof (signal_print[0]) * numsigs);
4027 signal_program = (unsigned char *)
4028 xmalloc (sizeof (signal_program[0]) * numsigs);
4029 for (i = 0; i < numsigs; i++)
4030 {
4031 signal_stop[i] = 1;
4032 signal_print[i] = 1;
4033 signal_program[i] = 1;
4034 }
4035
4036 /* Signals caused by debugger's own actions
4037 should not be given to the program afterwards. */
4038 signal_program[TARGET_SIGNAL_TRAP] = 0;
4039 signal_program[TARGET_SIGNAL_INT] = 0;
4040
4041 /* Signals that are not errors should not normally enter the debugger. */
4042 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4043 signal_print[TARGET_SIGNAL_ALRM] = 0;
4044 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4045 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4046 signal_stop[TARGET_SIGNAL_PROF] = 0;
4047 signal_print[TARGET_SIGNAL_PROF] = 0;
4048 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4049 signal_print[TARGET_SIGNAL_CHLD] = 0;
4050 signal_stop[TARGET_SIGNAL_IO] = 0;
4051 signal_print[TARGET_SIGNAL_IO] = 0;
4052 signal_stop[TARGET_SIGNAL_POLL] = 0;
4053 signal_print[TARGET_SIGNAL_POLL] = 0;
4054 signal_stop[TARGET_SIGNAL_URG] = 0;
4055 signal_print[TARGET_SIGNAL_URG] = 0;
4056 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4057 signal_print[TARGET_SIGNAL_WINCH] = 0;
4058
4059 /* These signals are used internally by user-level thread
4060 implementations. (See signal(5) on Solaris.) Like the above
4061 signals, a healthy program receives and handles them as part of
4062 its normal operation. */
4063 signal_stop[TARGET_SIGNAL_LWP] = 0;
4064 signal_print[TARGET_SIGNAL_LWP] = 0;
4065 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4066 signal_print[TARGET_SIGNAL_WAITING] = 0;
4067 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4068 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4069
4070 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4071 &stop_on_solib_events, _("\
4072 Set stopping for shared library events."), _("\
4073 Show stopping for shared library events."), _("\
4074 If nonzero, gdb will give control to the user when the dynamic linker\n\
4075 notifies gdb of shared library events. The most common event of interest\n\
4076 to the user would be loading/unloading of a new library."),
4077 NULL,
4078 show_stop_on_solib_events,
4079 &setlist, &showlist);
4080
4081 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4082 follow_fork_mode_kind_names,
4083 &follow_fork_mode_string, _("\
4084 Set debugger response to a program call of fork or vfork."), _("\
4085 Show debugger response to a program call of fork or vfork."), _("\
4086 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4087 parent - the original process is debugged after a fork\n\
4088 child - the new process is debugged after a fork\n\
4089 The unfollowed process will continue to run.\n\
4090 By default, the debugger will follow the parent process."),
4091 NULL,
4092 show_follow_fork_mode_string,
4093 &setlist, &showlist);
4094
4095 add_setshow_enum_cmd ("scheduler-locking", class_run,
4096 scheduler_enums, &scheduler_mode, _("\
4097 Set mode for locking scheduler during execution."), _("\
4098 Show mode for locking scheduler during execution."), _("\
4099 off == no locking (threads may preempt at any time)\n\
4100 on == full locking (no thread except the current thread may run)\n\
4101 step == scheduler locked during every single-step operation.\n\
4102 In this mode, no other thread may run during a step command.\n\
4103 Other threads may run while stepping over a function call ('next')."),
4104 set_schedlock_func, /* traps on target vector */
4105 show_scheduler_mode,
4106 &setlist, &showlist);
4107
4108 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4109 Set mode of the step operation."), _("\
4110 Show mode of the step operation."), _("\
4111 When set, doing a step over a function without debug line information\n\
4112 will stop at the first instruction of that function. Otherwise, the\n\
4113 function is skipped and the step command stops at a different source line."),
4114 NULL,
4115 show_step_stop_if_no_debug,
4116 &setlist, &showlist);
4117
4118 /* ptid initializations */
4119 null_ptid = ptid_build (0, 0, 0);
4120 minus_one_ptid = ptid_build (-1, 0, 0);
4121 inferior_ptid = null_ptid;
4122 target_last_wait_ptid = minus_one_ptid;
4123 }