]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
* infrun.c [TDESC]: Remove remaining tdesc code (see ChangeLog
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior process.
2 Copyright 1986, 1987, 1988, 1989, 1991, 1992, 1993
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Notes on the algorithm used in wait_for_inferior to determine if we
22 just did a subroutine call when stepping. We have the following
23 information at that point:
24
25 Current and previous (just before this step) pc.
26 Current and previous sp.
27 Current and previous start of current function.
28
29 If the starts of the functions don't match, then
30
31 a) We did a subroutine call.
32
33 In this case, the pc will be at the beginning of a function.
34
35 b) We did a subroutine return.
36
37 Otherwise.
38
39 c) We did a longjmp.
40
41 If we did a longjump, we were doing "nexti", since a next would
42 have attempted to skip over the assembly language routine in which
43 the longjmp is coded and would have simply been the equivalent of a
44 continue. I consider this ok behaivior. We'd like one of two
45 things to happen if we are doing a nexti through the longjmp()
46 routine: 1) It behaves as a stepi, or 2) It acts like a continue as
47 above. Given that this is a special case, and that anybody who
48 thinks that the concept of sub calls is meaningful in the context
49 of a longjmp, I'll take either one. Let's see what happens.
50
51 Acts like a subroutine return. I can handle that with no problem
52 at all.
53
54 -->So: If the current and previous beginnings of the current
55 function don't match, *and* the pc is at the start of a function,
56 we've done a subroutine call. If the pc is not at the start of a
57 function, we *didn't* do a subroutine call.
58
59 -->If the beginnings of the current and previous function do match,
60 either:
61
62 a) We just did a recursive call.
63
64 In this case, we would be at the very beginning of a
65 function and 1) it will have a prologue (don't jump to
66 before prologue, or 2) (we assume here that it doesn't have
67 a prologue) there will have been a change in the stack
68 pointer over the last instruction. (Ie. it's got to put
69 the saved pc somewhere. The stack is the usual place. In
70 a recursive call a register is only an option if there's a
71 prologue to do something with it. This is even true on
72 register window machines; the prologue sets up the new
73 window. It might not be true on a register window machine
74 where the call instruction moved the register window
75 itself. Hmmm. One would hope that the stack pointer would
76 also change. If it doesn't, somebody send me a note, and
77 I'll work out a more general theory.
78 bug-gdb@prep.ai.mit.edu). This is true (albeit slipperly
79 so) on all machines I'm aware of:
80
81 m68k: Call changes stack pointer. Regular jumps don't.
82
83 sparc: Recursive calls must have frames and therefor,
84 prologues.
85
86 vax: All calls have frames and hence change the
87 stack pointer.
88
89 b) We did a return from a recursive call. I don't see that we
90 have either the ability or the need to distinguish this
91 from an ordinary jump. The stack frame will be printed
92 when and if the frame pointer changes; if we are in a
93 function without a frame pointer, it's the users own
94 lookout.
95
96 c) We did a jump within a function. We assume that this is
97 true if we didn't do a recursive call.
98
99 d) We are in no-man's land ("I see no symbols here"). We
100 don't worry about this; it will make calls look like simple
101 jumps (and the stack frames will be printed when the frame
102 pointer moves), which is a reasonably non-violent response.
103 */
104
105 #include "defs.h"
106 #include <string.h>
107 #include <ctype.h>
108 #include "symtab.h"
109 #include "frame.h"
110 #include "inferior.h"
111 #include "breakpoint.h"
112 #include "wait.h"
113 #include "gdbcore.h"
114 #include "gdbcmd.h"
115 #include "target.h"
116
117 #include <signal.h>
118
119 /* unistd.h is needed to #define X_OK */
120 #ifdef USG
121 #include <unistd.h>
122 #else
123 #include <sys/file.h>
124 #endif
125
126 /* Prototypes for local functions */
127
128 static void
129 signals_info PARAMS ((char *, int));
130
131 static void
132 handle_command PARAMS ((char *, int));
133
134 static void
135 sig_print_info PARAMS ((int));
136
137 static void
138 sig_print_header PARAMS ((void));
139
140 static void
141 remove_step_breakpoint PARAMS ((void));
142
143 static void
144 insert_step_breakpoint PARAMS ((void));
145
146 static void
147 resume_cleanups PARAMS ((int));
148
149 static int
150 hook_stop_stub PARAMS ((char *));
151
152 /* GET_LONGJMP_TARGET returns the PC at which longjmp() will resume the
153 program. It needs to examine the jmp_buf argument and extract the PC
154 from it. The return value is non-zero on success, zero otherwise. */
155 #ifndef GET_LONGJMP_TARGET
156 #define GET_LONGJMP_TARGET(PC_ADDR) 0
157 #endif
158
159
160 /* Some machines have trampoline code that sits between function callers
161 and the actual functions themselves. If this machine doesn't have
162 such things, disable their processing. */
163 #ifndef SKIP_TRAMPOLINE_CODE
164 #define SKIP_TRAMPOLINE_CODE(pc) 0
165 #endif
166
167 /* For SVR4 shared libraries, each call goes through a small piece of
168 trampoline code in the ".init" section. IN_SOLIB_TRAMPOLINE evaluates
169 to nonzero if we are current stopped in one of these. */
170 #ifndef IN_SOLIB_TRAMPOLINE
171 #define IN_SOLIB_TRAMPOLINE(pc,name) 0
172 #endif
173
174 /* On some systems, the PC may be left pointing at an instruction that won't
175 actually be executed. This is usually indicated by a bit in the PSW. If
176 we find ourselves in such a state, then we step the target beyond the
177 nullified instruction before returning control to the user so as to avoid
178 confusion. */
179
180 #ifndef INSTRUCTION_NULLIFIED
181 #define INSTRUCTION_NULLIFIED 0
182 #endif
183
184 /* Tables of how to react to signals; the user sets them. */
185
186 static unsigned char *signal_stop;
187 static unsigned char *signal_print;
188 static unsigned char *signal_program;
189
190 #define SET_SIGS(nsigs,sigs,flags) \
191 do { \
192 int signum = (nsigs); \
193 while (signum-- > 0) \
194 if ((sigs)[signum]) \
195 (flags)[signum] = 1; \
196 } while (0)
197
198 #define UNSET_SIGS(nsigs,sigs,flags) \
199 do { \
200 int signum = (nsigs); \
201 while (signum-- > 0) \
202 if ((sigs)[signum]) \
203 (flags)[signum] = 0; \
204 } while (0)
205
206
207 /* Command list pointer for the "stop" placeholder. */
208
209 static struct cmd_list_element *stop_command;
210
211 /* Nonzero if breakpoints are now inserted in the inferior. */
212
213 static int breakpoints_inserted;
214
215 /* Function inferior was in as of last step command. */
216
217 static struct symbol *step_start_function;
218
219 /* Nonzero => address for special breakpoint for resuming stepping. */
220
221 static CORE_ADDR step_resume_break_address;
222
223 /* Pointer to orig contents of the byte where the special breakpoint is. */
224
225 static char step_resume_break_shadow[BREAKPOINT_MAX];
226
227 /* Nonzero means the special breakpoint is a duplicate
228 so it has not itself been inserted. */
229
230 static int step_resume_break_duplicate;
231
232 /* Nonzero if we are expecting a trace trap and should proceed from it. */
233
234 static int trap_expected;
235
236 /* Nonzero if the next time we try to continue the inferior, it will
237 step one instruction and generate a spurious trace trap.
238 This is used to compensate for a bug in HP-UX. */
239
240 static int trap_expected_after_continue;
241
242 /* Nonzero means expecting a trace trap
243 and should stop the inferior and return silently when it happens. */
244
245 int stop_after_trap;
246
247 /* Nonzero means expecting a trap and caller will handle it themselves.
248 It is used after attach, due to attaching to a process;
249 when running in the shell before the child program has been exec'd;
250 and when running some kinds of remote stuff (FIXME?). */
251
252 int stop_soon_quietly;
253
254 /* Nonzero if pc has been changed by the debugger
255 since the inferior stopped. */
256
257 int pc_changed;
258
259 /* Nonzero if proceed is being used for a "finish" command or a similar
260 situation when stop_registers should be saved. */
261
262 int proceed_to_finish;
263
264 /* Save register contents here when about to pop a stack dummy frame,
265 if-and-only-if proceed_to_finish is set.
266 Thus this contains the return value from the called function (assuming
267 values are returned in a register). */
268
269 char stop_registers[REGISTER_BYTES];
270
271 /* Nonzero if program stopped due to error trying to insert breakpoints. */
272
273 static int breakpoints_failed;
274
275 /* Nonzero after stop if current stack frame should be printed. */
276
277 static int stop_print_frame;
278
279 #ifdef NO_SINGLE_STEP
280 extern int one_stepped; /* From machine dependent code */
281 extern void single_step (); /* Same. */
282 #endif /* NO_SINGLE_STEP */
283
284 \f
285 /* Things to clean up if we QUIT out of resume (). */
286 /* ARGSUSED */
287 static void
288 resume_cleanups (arg)
289 int arg;
290 {
291 normal_stop ();
292 }
293
294 /* Resume the inferior, but allow a QUIT. This is useful if the user
295 wants to interrupt some lengthy single-stepping operation
296 (for child processes, the SIGINT goes to the inferior, and so
297 we get a SIGINT random_signal, but for remote debugging and perhaps
298 other targets, that's not true).
299
300 STEP nonzero if we should step (zero to continue instead).
301 SIG is the signal to give the inferior (zero for none). */
302 void
303 resume (step, sig)
304 int step;
305 int sig;
306 {
307 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
308 QUIT;
309
310 #ifdef NO_SINGLE_STEP
311 if (step) {
312 single_step(sig); /* Do it the hard way, w/temp breakpoints */
313 step = 0; /* ...and don't ask hardware to do it. */
314 }
315 #endif
316
317 /* Handle any optimized stores to the inferior NOW... */
318 #ifdef DO_DEFERRED_STORES
319 DO_DEFERRED_STORES;
320 #endif
321
322 target_resume (step, sig);
323 discard_cleanups (old_cleanups);
324 }
325
326 \f
327 /* Clear out all variables saying what to do when inferior is continued.
328 First do this, then set the ones you want, then call `proceed'. */
329
330 void
331 clear_proceed_status ()
332 {
333 trap_expected = 0;
334 step_range_start = 0;
335 step_range_end = 0;
336 step_frame_address = 0;
337 step_over_calls = -1;
338 step_resume_break_address = 0;
339 stop_after_trap = 0;
340 stop_soon_quietly = 0;
341 proceed_to_finish = 0;
342 breakpoint_proceeded = 1; /* We're about to proceed... */
343
344 /* Discard any remaining commands or status from previous stop. */
345 bpstat_clear (&stop_bpstat);
346 }
347
348 /* Basic routine for continuing the program in various fashions.
349
350 ADDR is the address to resume at, or -1 for resume where stopped.
351 SIGGNAL is the signal to give it, or 0 for none,
352 or -1 for act according to how it stopped.
353 STEP is nonzero if should trap after one instruction.
354 -1 means return after that and print nothing.
355 You should probably set various step_... variables
356 before calling here, if you are stepping.
357
358 You should call clear_proceed_status before calling proceed. */
359
360 void
361 proceed (addr, siggnal, step)
362 CORE_ADDR addr;
363 int siggnal;
364 int step;
365 {
366 int oneproc = 0;
367
368 if (step > 0)
369 step_start_function = find_pc_function (read_pc ());
370 if (step < 0)
371 stop_after_trap = 1;
372
373 if (addr == (CORE_ADDR)-1)
374 {
375 /* If there is a breakpoint at the address we will resume at,
376 step one instruction before inserting breakpoints
377 so that we do not stop right away. */
378
379 if (!pc_changed && breakpoint_here_p (read_pc ()))
380 oneproc = 1;
381 }
382 else
383 write_pc (addr);
384
385 if (trap_expected_after_continue)
386 {
387 /* If (step == 0), a trap will be automatically generated after
388 the first instruction is executed. Force step one
389 instruction to clear this condition. This should not occur
390 if step is nonzero, but it is harmless in that case. */
391 oneproc = 1;
392 trap_expected_after_continue = 0;
393 }
394
395 if (oneproc)
396 /* We will get a trace trap after one instruction.
397 Continue it automatically and insert breakpoints then. */
398 trap_expected = 1;
399 else
400 {
401 int temp = insert_breakpoints ();
402 if (temp)
403 {
404 print_sys_errmsg ("ptrace", temp);
405 error ("Cannot insert breakpoints.\n\
406 The same program may be running in another process.");
407 }
408 breakpoints_inserted = 1;
409 }
410
411 /* Install inferior's terminal modes. */
412 target_terminal_inferior ();
413
414 if (siggnal >= 0)
415 stop_signal = siggnal;
416 /* If this signal should not be seen by program,
417 give it zero. Used for debugging signals. */
418 else if (stop_signal < NSIG && !signal_program[stop_signal])
419 stop_signal= 0;
420
421 /* Resume inferior. */
422 resume (oneproc || step || bpstat_should_step (), stop_signal);
423
424 /* Wait for it to stop (if not standalone)
425 and in any case decode why it stopped, and act accordingly. */
426
427 wait_for_inferior ();
428 normal_stop ();
429 }
430
431 /* Record the pc and sp of the program the last time it stopped.
432 These are just used internally by wait_for_inferior, but need
433 to be preserved over calls to it and cleared when the inferior
434 is started. */
435 static CORE_ADDR prev_pc;
436 static CORE_ADDR prev_sp;
437 static CORE_ADDR prev_func_start;
438 static char *prev_func_name;
439
440 \f
441 /* Start remote-debugging of a machine over a serial link. */
442
443 void
444 start_remote ()
445 {
446 init_wait_for_inferior ();
447 clear_proceed_status ();
448 stop_soon_quietly = 1;
449 trap_expected = 0;
450 wait_for_inferior ();
451 normal_stop ();
452 }
453
454 /* Initialize static vars when a new inferior begins. */
455
456 void
457 init_wait_for_inferior ()
458 {
459 /* These are meaningless until the first time through wait_for_inferior. */
460 prev_pc = 0;
461 prev_sp = 0;
462 prev_func_start = 0;
463 prev_func_name = NULL;
464
465 trap_expected_after_continue = 0;
466 breakpoints_inserted = 0;
467 mark_breakpoints_out ();
468 stop_signal = 0; /* Don't confuse first call to proceed(). */
469 }
470
471
472 \f
473 /* Wait for control to return from inferior to debugger.
474 If inferior gets a signal, we may decide to start it up again
475 instead of returning. That is why there is a loop in this function.
476 When this function actually returns it means the inferior
477 should be left stopped and GDB should read more commands. */
478
479 void
480 wait_for_inferior ()
481 {
482 WAITTYPE w;
483 int another_trap;
484 int random_signal;
485 CORE_ADDR stop_sp;
486 CORE_ADDR stop_func_start;
487 char *stop_func_name;
488 CORE_ADDR prologue_pc, tmp;
489 int stop_step_resume_break;
490 struct symtab_and_line sal;
491 int remove_breakpoints_on_following_step = 0;
492 int current_line;
493 int handling_longjmp = 0; /* FIXME */
494 struct symtab *symtab;
495
496 sal = find_pc_line(prev_pc, 0);
497 current_line = sal.line;
498
499 while (1)
500 {
501 /* Clean up saved state that will become invalid. */
502 pc_changed = 0;
503 flush_cached_frames ();
504 registers_changed ();
505
506 target_wait (&w);
507
508 #ifdef SIGTRAP_STOP_AFTER_LOAD
509
510 /* Somebody called load(2), and it gave us a "trap signal after load".
511 Ignore it gracefully. */
512
513 SIGTRAP_STOP_AFTER_LOAD (w);
514 #endif
515
516 /* See if the process still exists; clean up if it doesn't. */
517 if (WIFEXITED (w))
518 {
519 target_terminal_ours (); /* Must do this before mourn anyway */
520 if (WEXITSTATUS (w))
521 printf_filtered ("\nProgram exited with code 0%o.\n",
522 (unsigned int)WEXITSTATUS (w));
523 else
524 if (!batch_mode())
525 printf_filtered ("\nProgram exited normally.\n");
526 fflush (stdout);
527 target_mourn_inferior ();
528 #ifdef NO_SINGLE_STEP
529 one_stepped = 0;
530 #endif
531 stop_print_frame = 0;
532 break;
533 }
534 else if (!WIFSTOPPED (w))
535 {
536 char *signame;
537
538 stop_print_frame = 0;
539 stop_signal = WTERMSIG (w);
540 target_terminal_ours (); /* Must do this before mourn anyway */
541 target_kill (); /* kill mourns as well */
542 #ifdef PRINT_RANDOM_SIGNAL
543 printf_filtered ("\nProgram terminated: ");
544 PRINT_RANDOM_SIGNAL (stop_signal);
545 #else
546 printf_filtered ("\nProgram terminated with signal ");
547 signame = strsigno (stop_signal);
548 if (signame == NULL)
549 printf_filtered ("%d", stop_signal);
550 else
551 /* Do we need to print the number in addition to the name? */
552 printf_filtered ("%s (%d)", signame, stop_signal);
553 printf_filtered (", %s\n", safe_strsignal (stop_signal));
554 #endif
555 printf_filtered ("The program no longer exists.\n");
556 fflush (stdout);
557 #ifdef NO_SINGLE_STEP
558 one_stepped = 0;
559 #endif
560 break;
561 }
562
563 #ifdef NO_SINGLE_STEP
564 if (one_stepped)
565 single_step (0); /* This actually cleans up the ss */
566 #endif /* NO_SINGLE_STEP */
567
568 /* If PC is pointing at a nullified instruction, then step beyond it so that
569 the user won't be confused when GDB appears to be ready to execute it. */
570
571 if (INSTRUCTION_NULLIFIED)
572 {
573 resume (1, 0);
574 continue;
575 }
576
577 stop_pc = read_pc ();
578 set_current_frame ( create_new_frame (read_fp (),
579 read_pc ()));
580
581 stop_frame_address = FRAME_FP (get_current_frame ());
582 stop_sp = read_sp ();
583 stop_func_start = 0;
584 stop_func_name = 0;
585 /* Don't care about return value; stop_func_start and stop_func_name
586 will both be 0 if it doesn't work. */
587 find_pc_partial_function (stop_pc, &stop_func_name, &stop_func_start);
588 stop_func_start += FUNCTION_START_OFFSET;
589 another_trap = 0;
590 bpstat_clear (&stop_bpstat);
591 stop_step = 0;
592 stop_stack_dummy = 0;
593 stop_print_frame = 1;
594 stop_step_resume_break = 0;
595 random_signal = 0;
596 stopped_by_random_signal = 0;
597 breakpoints_failed = 0;
598
599 /* Look at the cause of the stop, and decide what to do.
600 The alternatives are:
601 1) break; to really stop and return to the debugger,
602 2) drop through to start up again
603 (set another_trap to 1 to single step once)
604 3) set random_signal to 1, and the decision between 1 and 2
605 will be made according to the signal handling tables. */
606
607 stop_signal = WSTOPSIG (w);
608
609 /* First, distinguish signals caused by the debugger from signals
610 that have to do with the program's own actions.
611 Note that breakpoint insns may cause SIGTRAP or SIGILL
612 or SIGEMT, depending on the operating system version.
613 Here we detect when a SIGILL or SIGEMT is really a breakpoint
614 and change it to SIGTRAP. */
615
616 if (stop_signal == SIGTRAP
617 || (breakpoints_inserted &&
618 (stop_signal == SIGILL
619 #ifdef SIGEMT
620 || stop_signal == SIGEMT
621 #endif
622 ))
623 || stop_soon_quietly)
624 {
625 if (stop_signal == SIGTRAP && stop_after_trap)
626 {
627 stop_print_frame = 0;
628 break;
629 }
630 if (stop_soon_quietly)
631 break;
632
633 /* Don't even think about breakpoints
634 if just proceeded over a breakpoint.
635
636 However, if we are trying to proceed over a breakpoint
637 and end up in sigtramp, then step_resume_break_address
638 will be set and we should check whether we've hit the
639 step breakpoint. */
640 if (stop_signal == SIGTRAP && trap_expected
641 && step_resume_break_address == 0)
642 bpstat_clear (&stop_bpstat);
643 else
644 {
645 /* See if there is a breakpoint at the current PC. */
646 #if DECR_PC_AFTER_BREAK
647 /* Notice the case of stepping through a jump
648 that lands just after a breakpoint.
649 Don't confuse that with hitting the breakpoint.
650 What we check for is that 1) stepping is going on
651 and 2) the pc before the last insn does not match
652 the address of the breakpoint before the current pc. */
653 if (prev_pc == stop_pc - DECR_PC_AFTER_BREAK
654 || !step_range_end
655 || step_resume_break_address
656 || handling_longjmp /* FIXME */)
657 #endif /* DECR_PC_AFTER_BREAK not zero */
658 {
659 /* See if we stopped at the special breakpoint for
660 stepping over a subroutine call. If both are zero,
661 this wasn't the reason for the stop. */
662 if (step_resume_break_address
663 && stop_pc - DECR_PC_AFTER_BREAK
664 == step_resume_break_address)
665 {
666 stop_step_resume_break = 1;
667 if (DECR_PC_AFTER_BREAK)
668 {
669 stop_pc -= DECR_PC_AFTER_BREAK;
670 write_pc (stop_pc);
671 }
672 }
673 else
674 {
675 stop_bpstat =
676 bpstat_stop_status (&stop_pc, stop_frame_address);
677 /* Following in case break condition called a
678 function. */
679 stop_print_frame = 1;
680 }
681 }
682 }
683
684 if (stop_signal == SIGTRAP)
685 random_signal
686 = !(bpstat_explains_signal (stop_bpstat)
687 || trap_expected
688 || stop_step_resume_break
689 || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
690 || (step_range_end && !step_resume_break_address));
691 else
692 {
693 random_signal
694 = !(bpstat_explains_signal (stop_bpstat)
695 || stop_step_resume_break
696 /* End of a stack dummy. Some systems (e.g. Sony
697 news) give another signal besides SIGTRAP,
698 so check here as well as above. */
699 || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
700 );
701 if (!random_signal)
702 stop_signal = SIGTRAP;
703 }
704 }
705 else
706 random_signal = 1;
707
708 /* For the program's own signals, act according to
709 the signal handling tables. */
710
711 if (random_signal)
712 {
713 /* Signal not for debugging purposes. */
714 int printed = 0;
715
716 stopped_by_random_signal = 1;
717
718 if (stop_signal >= NSIG
719 || signal_print[stop_signal])
720 {
721 char *signame;
722 printed = 1;
723 target_terminal_ours_for_output ();
724 #ifdef PRINT_RANDOM_SIGNAL
725 PRINT_RANDOM_SIGNAL (stop_signal);
726 #else
727 printf_filtered ("\nProgram received signal ");
728 signame = strsigno (stop_signal);
729 if (signame == NULL)
730 printf_filtered ("%d", stop_signal);
731 else
732 /* Do we need to print the number as well as the name? */
733 printf_filtered ("%s (%d)", signame, stop_signal);
734 printf_filtered (", %s\n", safe_strsignal (stop_signal));
735 #endif /* PRINT_RANDOM_SIGNAL */
736 fflush (stdout);
737 }
738 if (stop_signal >= NSIG
739 || signal_stop[stop_signal])
740 break;
741 /* If not going to stop, give terminal back
742 if we took it away. */
743 else if (printed)
744 target_terminal_inferior ();
745
746 /* Clear the signal if it should not be passed. */
747 if (signal_program[stop_signal] == 0)
748 stop_signal = 0;
749
750 /* Note that virtually all the code below does `if !random_signal'.
751 Perhaps this code should end with a goto or continue. At least
752 one (now fixed) bug was caused by this -- a !random_signal was
753 missing in one of the tests below. */
754 }
755
756 /* Handle cases caused by hitting a breakpoint. */
757
758 if (!random_signal)
759 {
760 CORE_ADDR jmp_buf_pc;
761 enum bpstat_what what = bpstat_what (stop_bpstat);
762
763 switch (what)
764 {
765 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
766 /* If we hit the breakpoint at longjmp, disable it for the
767 duration of this command. Then, install a temporary
768 breakpoint at the target of the jmp_buf. */
769 disable_longjmp_breakpoint();
770 remove_breakpoints ();
771 breakpoints_inserted = 0;
772 if (!GET_LONGJMP_TARGET(&jmp_buf_pc)) goto keep_going;
773
774 /* Need to blow away step-resume breakpoint, as it
775 interferes with us */
776 remove_step_breakpoint ();
777 step_resume_break_address = 0;
778 stop_step_resume_break = 0;
779
780 #if 0
781 /* FIXME - Need to implement nested temporary breakpoints */
782 if (step_over_calls > 0)
783 set_longjmp_resume_breakpoint(jmp_buf_pc,
784 get_current_frame());
785 else
786 #endif /* 0 */
787 set_longjmp_resume_breakpoint(jmp_buf_pc, NULL);
788 handling_longjmp = 1; /* FIXME */
789 goto keep_going;
790
791 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
792 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
793 remove_breakpoints ();
794 breakpoints_inserted = 0;
795 #if 0
796 /* FIXME - Need to implement nested temporary breakpoints */
797 if (step_over_calls
798 && (stop_frame_address
799 INNER_THAN step_frame_address))
800 {
801 another_trap = 1;
802 goto keep_going;
803 }
804 #endif /* 0 */
805 disable_longjmp_breakpoint();
806 handling_longjmp = 0; /* FIXME */
807 if (what == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
808 break;
809 /* else fallthrough */
810
811 case BPSTAT_WHAT_SINGLE:
812 if (breakpoints_inserted)
813 remove_breakpoints ();
814 remove_step_breakpoint ();
815 breakpoints_inserted = 0;
816 another_trap = 1;
817 /* Still need to check other stuff, at least the case
818 where we are stepping and step out of the right range. */
819 break;
820
821 case BPSTAT_WHAT_STOP_NOISY:
822 stop_print_frame = 1;
823 goto stop_stepping;
824
825 case BPSTAT_WHAT_STOP_SILENT:
826 stop_print_frame = 0;
827 goto stop_stepping;
828
829 case BPSTAT_WHAT_KEEP_CHECKING:
830 break;
831 }
832
833 if (stop_step_resume_break)
834 {
835 /* But if we have hit the step-resumption breakpoint,
836 remove it. It has done its job getting us here.
837 The sp test is to make sure that we don't get hung
838 up in recursive calls in functions without frame
839 pointers. If the stack pointer isn't outside of
840 where the breakpoint was set (within a routine to be
841 stepped over), we're in the middle of a recursive
842 call. Not true for reg window machines (sparc)
843 because the must change frames to call things and
844 the stack pointer doesn't have to change if it
845 the bp was set in a routine without a frame (pc can
846 be stored in some other window).
847
848 The removal of the sp test is to allow calls to
849 alloca. Nasty things were happening. Oh, well,
850 gdb can only handle one level deep of lack of
851 frame pointer. */
852
853 /*
854 Disable test for step_frame_address match so that we always stop even if the
855 frames don't match. Reason: if we hit the step_resume_breakpoint, there is
856 no way to temporarily disable it so that we can step past it. If we leave
857 the breakpoint in, then we loop forever repeatedly hitting, but never
858 getting past the breakpoint. This change keeps nexting over recursive
859 function calls from hanging gdb.
860 */
861 #if 0
862 if (* step_frame_address == 0
863 || (step_frame_address == stop_frame_address))
864 #endif
865 {
866 remove_step_breakpoint ();
867 step_resume_break_address = 0;
868
869 /* If were waiting for a trap, hitting the step_resume_break
870 doesn't count as getting it. */
871 if (trap_expected)
872 another_trap = 1;
873 }
874 }
875 }
876
877 /* We come here if we hit a breakpoint but should not
878 stop for it. Possibly we also were stepping
879 and should stop for that. So fall through and
880 test for stepping. But, if not stepping,
881 do not stop. */
882
883 /* If this is the breakpoint at the end of a stack dummy,
884 just stop silently. */
885 if (!random_signal
886 && PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address))
887 {
888 stop_print_frame = 0;
889 stop_stack_dummy = 1;
890 #ifdef HP_OS_BUG
891 trap_expected_after_continue = 1;
892 #endif
893 break;
894 }
895
896 if (step_resume_break_address)
897 /* Having a step-resume breakpoint overrides anything
898 else having to do with stepping commands until
899 that breakpoint is reached. */
900 ;
901 /* If stepping through a line, keep going if still within it. */
902 else if (!random_signal
903 && step_range_end
904 && stop_pc >= step_range_start
905 && stop_pc < step_range_end
906 /* The step range might include the start of the
907 function, so if we are at the start of the
908 step range and either the stack or frame pointers
909 just changed, we've stepped outside */
910 && !(stop_pc == step_range_start
911 && stop_frame_address
912 && (stop_sp INNER_THAN prev_sp
913 || stop_frame_address != step_frame_address)))
914 {
915 ;
916 }
917
918 /* We stepped out of the stepping range. See if that was due
919 to a subroutine call that we should proceed to the end of. */
920 else if (!random_signal && step_range_end)
921 {
922 /* Did we just take a signal? */
923 if (IN_SIGTRAMP (stop_pc, stop_func_name)
924 && !IN_SIGTRAMP (prev_pc, prev_func_name))
925 {
926 /* This code is needed at least in the following case:
927 The user types "next" and then a signal arrives (before
928 the "next" is done). */
929 /* We've just taken a signal; go until we are back to
930 the point where we took it and one more. */
931 step_resume_break_address = prev_pc;
932 step_resume_break_duplicate =
933 breakpoint_here_p (step_resume_break_address);
934 if (breakpoints_inserted)
935 insert_step_breakpoint ();
936 /* Make sure that the stepping range gets us past
937 that instruction. */
938 if (step_range_end == 1)
939 step_range_end = (step_range_start = prev_pc) + 1;
940 remove_breakpoints_on_following_step = 1;
941 goto save_pc;
942 }
943
944 if (stop_func_start)
945 {
946 /* Do this after the IN_SIGTRAMP check; it might give
947 an error. */
948 prologue_pc = stop_func_start;
949 SKIP_PROLOGUE (prologue_pc);
950 }
951
952 /* ==> See comments at top of file on this algorithm. <==*/
953
954 if ((stop_pc == stop_func_start
955 || IN_SOLIB_TRAMPOLINE (stop_pc, stop_func_name))
956 && (stop_func_start != prev_func_start
957 || prologue_pc != stop_func_start
958 || stop_sp != prev_sp))
959 {
960 /* It's a subroutine call.
961 (0) If we are not stepping over any calls ("stepi"), we
962 just stop.
963 (1) If we're doing a "next", we want to continue through
964 the call ("step over the call").
965 (2) If we are in a function-call trampoline (a stub between
966 the calling routine and the real function), locate
967 the real function and change stop_func_start.
968 (3) If we're doing a "step", and there are no debug symbols
969 at the target of the call, we want to continue through
970 it ("step over the call").
971 (4) Otherwise, we want to stop soon, after the function
972 prologue ("step into the call"). */
973
974 if (step_over_calls == 0)
975 {
976 /* I presume that step_over_calls is only 0 when we're
977 supposed to be stepping at the assembly language level. */
978 stop_step = 1;
979 break;
980 }
981
982 if (step_over_calls > 0)
983 goto step_over_function;
984
985 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
986 if (tmp != 0)
987 stop_func_start = tmp;
988
989 /* If we have line number information for the function we
990 are thinking of stepping into, step into it.
991
992 If there are several symtabs at that PC (e.g. with include
993 files), just want to know whether *any* of them have line
994 numbers. find_pc_line handles this. */
995 {
996 struct symtab_and_line tmp_sal;
997
998 tmp_sal = find_pc_line (stop_func_start, 0);
999 if (tmp_sal.line != 0)
1000 goto step_into_function;
1001 }
1002
1003 step_over_function:
1004 /* A subroutine call has happened. */
1005 /* Set a special breakpoint after the return */
1006 step_resume_break_address =
1007 ADDR_BITS_REMOVE
1008 (SAVED_PC_AFTER_CALL (get_current_frame ()));
1009 step_resume_break_duplicate
1010 = breakpoint_here_p (step_resume_break_address);
1011 if (breakpoints_inserted)
1012 insert_step_breakpoint ();
1013 goto save_pc;
1014
1015 step_into_function:
1016 /* Subroutine call with source code we should not step over.
1017 Do step to the first line of code in it. */
1018 SKIP_PROLOGUE (stop_func_start);
1019 sal = find_pc_line (stop_func_start, 0);
1020 /* Use the step_resume_break to step until
1021 the end of the prologue, even if that involves jumps
1022 (as it seems to on the vax under 4.2). */
1023 /* If the prologue ends in the middle of a source line,
1024 continue to the end of that source line.
1025 Otherwise, just go to end of prologue. */
1026 #ifdef PROLOGUE_FIRSTLINE_OVERLAP
1027 /* no, don't either. It skips any code that's
1028 legitimately on the first line. */
1029 #else
1030 if (sal.end && sal.pc != stop_func_start)
1031 stop_func_start = sal.end;
1032 #endif
1033
1034 if (stop_func_start == stop_pc)
1035 {
1036 /* We are already there: stop now. */
1037 stop_step = 1;
1038 break;
1039 }
1040 else
1041 /* Put the step-breakpoint there and go until there. */
1042 {
1043 step_resume_break_address = stop_func_start;
1044
1045 step_resume_break_duplicate
1046 = breakpoint_here_p (step_resume_break_address);
1047 if (breakpoints_inserted)
1048 insert_step_breakpoint ();
1049 /* Do not specify what the fp should be when we stop
1050 since on some machines the prologue
1051 is where the new fp value is established. */
1052 step_frame_address = 0;
1053 /* And make sure stepping stops right away then. */
1054 step_range_end = step_range_start;
1055 }
1056 goto save_pc;
1057 }
1058
1059 /* We've wandered out of the step range (but haven't done a
1060 subroutine call or return). */
1061
1062 sal = find_pc_line(stop_pc, 0);
1063
1064 if (step_range_end == 1 || /* stepi or nexti */
1065 sal.line == 0 || /* ...or no line # info */
1066 (stop_pc == sal.pc /* ...or we're at the start */
1067 && current_line != sal.line)) { /* of a different line */
1068 /* Stop because we're done stepping. */
1069 stop_step = 1;
1070 break;
1071 } else {
1072 /* We aren't done stepping, and we have line number info for $pc.
1073 Optimize by setting the step_range for the line.
1074 (We might not be in the original line, but if we entered a
1075 new line in mid-statement, we continue stepping. This makes
1076 things like for(;;) statements work better.) */
1077 step_range_start = sal.pc;
1078 step_range_end = sal.end;
1079 goto save_pc;
1080 }
1081 /* We never fall through here */
1082 }
1083
1084 if (trap_expected
1085 && IN_SIGTRAMP (stop_pc, stop_func_name)
1086 && !IN_SIGTRAMP (prev_pc, prev_func_name))
1087 {
1088 /* What has happened here is that we have just stepped the inferior
1089 with a signal (because it is a signal which shouldn't make
1090 us stop), thus stepping into sigtramp.
1091
1092 So we need to set a step_resume_break_address breakpoint
1093 and continue until we hit it, and then step. */
1094 step_resume_break_address = prev_pc;
1095 /* Always 1, I think, but it's probably easier to have
1096 the step_resume_break as usual rather than trying to
1097 re-use the breakpoint which is already there. */
1098 step_resume_break_duplicate =
1099 breakpoint_here_p (step_resume_break_address);
1100 if (breakpoints_inserted)
1101 insert_step_breakpoint ();
1102 remove_breakpoints_on_following_step = 1;
1103 another_trap = 1;
1104 }
1105
1106 /* My apologies to the gods of structured programming. */
1107 /* Come to this label when you need to resume the inferior. It's really much
1108 cleaner at this time to do a goto than to try and figure out what the
1109 if-else chain ought to look like!! */
1110
1111 keep_going:
1112
1113 save_pc:
1114 /* Save the pc before execution, to compare with pc after stop. */
1115 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
1116 prev_func_start = stop_func_start; /* Ok, since if DECR_PC_AFTER
1117 BREAK is defined, the
1118 original pc would not have
1119 been at the start of a
1120 function. */
1121 prev_func_name = stop_func_name;
1122 prev_sp = stop_sp;
1123
1124 /* If we did not do break;, it means we should keep
1125 running the inferior and not return to debugger. */
1126
1127 if (trap_expected && stop_signal != SIGTRAP)
1128 {
1129 /* We took a signal (which we are supposed to pass through to
1130 the inferior, else we'd have done a break above) and we
1131 haven't yet gotten our trap. Simply continue. */
1132 resume ((step_range_end && !step_resume_break_address)
1133 || (trap_expected && !step_resume_break_address)
1134 || bpstat_should_step (),
1135 stop_signal);
1136 }
1137 else
1138 {
1139 /* Either the trap was not expected, but we are continuing
1140 anyway (the user asked that this signal be passed to the
1141 child)
1142 -- or --
1143 The signal was SIGTRAP, e.g. it was our signal, but we
1144 decided we should resume from it.
1145
1146 We're going to run this baby now!
1147
1148 Insert breakpoints now, unless we are trying
1149 to one-proceed past a breakpoint. */
1150 /* If we've just finished a special step resume and we don't
1151 want to hit a breakpoint, pull em out. */
1152 if (!step_resume_break_address &&
1153 remove_breakpoints_on_following_step)
1154 {
1155 remove_breakpoints_on_following_step = 0;
1156 remove_breakpoints ();
1157 breakpoints_inserted = 0;
1158 }
1159 else if (!breakpoints_inserted &&
1160 (step_resume_break_address != 0 || !another_trap))
1161 {
1162 insert_step_breakpoint ();
1163 breakpoints_failed = insert_breakpoints ();
1164 if (breakpoints_failed)
1165 break;
1166 breakpoints_inserted = 1;
1167 }
1168
1169 trap_expected = another_trap;
1170
1171 if (stop_signal == SIGTRAP)
1172 stop_signal = 0;
1173
1174 #ifdef SHIFT_INST_REGS
1175 /* I'm not sure when this following segment applies. I do know, now,
1176 that we shouldn't rewrite the regs when we were stopped by a
1177 random signal from the inferior process. */
1178
1179 if (!bpstat_explains_signal (stop_bpstat)
1180 && (stop_signal != SIGCLD)
1181 && !stopped_by_random_signal)
1182 {
1183 CORE_ADDR pc_contents = read_register (PC_REGNUM);
1184 CORE_ADDR npc_contents = read_register (NPC_REGNUM);
1185 if (pc_contents != npc_contents)
1186 {
1187 write_register (NNPC_REGNUM, npc_contents);
1188 write_register (NPC_REGNUM, pc_contents);
1189 }
1190 }
1191 #endif /* SHIFT_INST_REGS */
1192
1193 resume ((!step_resume_break_address
1194 && !handling_longjmp
1195 && (step_range_end
1196 || trap_expected))
1197 || bpstat_should_step (),
1198 stop_signal);
1199 }
1200 }
1201
1202 stop_stepping:
1203 if (target_has_execution)
1204 {
1205 /* Assuming the inferior still exists, set these up for next
1206 time, just like we did above if we didn't break out of the
1207 loop. */
1208 prev_pc = read_pc ();
1209 prev_func_start = stop_func_start;
1210 prev_func_name = stop_func_name;
1211 prev_sp = stop_sp;
1212 }
1213 }
1214 \f
1215 /* Here to return control to GDB when the inferior stops for real.
1216 Print appropriate messages, remove breakpoints, give terminal our modes.
1217
1218 STOP_PRINT_FRAME nonzero means print the executing frame
1219 (pc, function, args, file, line number and line text).
1220 BREAKPOINTS_FAILED nonzero means stop was due to error
1221 attempting to insert breakpoints. */
1222
1223 void
1224 normal_stop ()
1225 {
1226 /* Make sure that the current_frame's pc is correct. This
1227 is a correction for setting up the frame info before doing
1228 DECR_PC_AFTER_BREAK */
1229 if (target_has_execution)
1230 (get_current_frame ())->pc = read_pc ();
1231
1232 if (breakpoints_failed)
1233 {
1234 target_terminal_ours_for_output ();
1235 print_sys_errmsg ("ptrace", breakpoints_failed);
1236 printf_filtered ("Stopped; cannot insert breakpoints.\n\
1237 The same program may be running in another process.\n");
1238 }
1239
1240 if (target_has_execution)
1241 remove_step_breakpoint ();
1242
1243 if (target_has_execution && breakpoints_inserted)
1244 if (remove_breakpoints ())
1245 {
1246 target_terminal_ours_for_output ();
1247 printf_filtered ("Cannot remove breakpoints because program is no longer writable.\n\
1248 It might be running in another process.\n\
1249 Further execution is probably impossible.\n");
1250 }
1251
1252 breakpoints_inserted = 0;
1253
1254 /* Delete the breakpoint we stopped at, if it wants to be deleted.
1255 Delete any breakpoint that is to be deleted at the next stop. */
1256
1257 breakpoint_auto_delete (stop_bpstat);
1258
1259 /* If an auto-display called a function and that got a signal,
1260 delete that auto-display to avoid an infinite recursion. */
1261
1262 if (stopped_by_random_signal)
1263 disable_current_display ();
1264
1265 if (step_multi && stop_step)
1266 return;
1267
1268 target_terminal_ours ();
1269
1270 /* Look up the hook_stop and run it if it exists. */
1271
1272 if (stop_command->hook)
1273 {
1274 catch_errors (hook_stop_stub, (char *)stop_command->hook,
1275 "Error while running hook_stop:\n", RETURN_MASK_ALL);
1276 }
1277
1278 if (!target_has_stack)
1279 return;
1280
1281 /* Select innermost stack frame except on return from a stack dummy routine,
1282 or if the program has exited. Print it without a level number if
1283 we have changed functions or hit a breakpoint. Print source line
1284 if we have one. */
1285 if (!stop_stack_dummy)
1286 {
1287 select_frame (get_current_frame (), 0);
1288
1289 if (stop_print_frame)
1290 {
1291 int source_only;
1292
1293 source_only = bpstat_print (stop_bpstat);
1294 source_only = source_only ||
1295 ( stop_step
1296 && step_frame_address == stop_frame_address
1297 && step_start_function == find_pc_function (stop_pc));
1298
1299 print_stack_frame (selected_frame, -1, source_only? -1: 1);
1300
1301 /* Display the auto-display expressions. */
1302 do_displays ();
1303 }
1304 }
1305
1306 /* Save the function value return registers, if we care.
1307 We might be about to restore their previous contents. */
1308 if (proceed_to_finish)
1309 read_register_bytes (0, stop_registers, REGISTER_BYTES);
1310
1311 if (stop_stack_dummy)
1312 {
1313 /* Pop the empty frame that contains the stack dummy.
1314 POP_FRAME ends with a setting of the current frame, so we
1315 can use that next. */
1316 POP_FRAME;
1317 select_frame (get_current_frame (), 0);
1318 }
1319 }
1320
1321 static int
1322 hook_stop_stub (cmd)
1323 char *cmd;
1324 {
1325 execute_user_command ((struct cmd_list_element *)cmd, 0);
1326 return (0);
1327 }
1328
1329 \f
1330 static void
1331 insert_step_breakpoint ()
1332 {
1333 if (step_resume_break_address && !step_resume_break_duplicate)
1334 target_insert_breakpoint (step_resume_break_address,
1335 step_resume_break_shadow);
1336 }
1337
1338 static void
1339 remove_step_breakpoint ()
1340 {
1341 if (step_resume_break_address && !step_resume_break_duplicate)
1342 target_remove_breakpoint (step_resume_break_address,
1343 step_resume_break_shadow);
1344 }
1345 \f
1346 int signal_stop_state (signo)
1347 int signo;
1348 {
1349 return ((signo >= 0 && signo < NSIG) ? signal_stop[signo] : 0);
1350 }
1351
1352 int signal_print_state (signo)
1353 int signo;
1354 {
1355 return ((signo >= 0 && signo < NSIG) ? signal_print[signo] : 0);
1356 }
1357
1358 int signal_pass_state (signo)
1359 int signo;
1360 {
1361 return ((signo >= 0 && signo < NSIG) ? signal_program[signo] : 0);
1362 }
1363
1364 static void
1365 sig_print_header ()
1366 {
1367 printf_filtered ("Signal\t\tStop\tPrint\tPass to program\tDescription\n");
1368 }
1369
1370 static void
1371 sig_print_info (number)
1372 int number;
1373 {
1374 char *name;
1375
1376 if ((name = strsigno (number)) == NULL)
1377 printf_filtered ("%d\t\t", number);
1378 else
1379 printf_filtered ("%s (%d)\t", name, number);
1380 printf_filtered ("%s\t", signal_stop[number] ? "Yes" : "No");
1381 printf_filtered ("%s\t", signal_print[number] ? "Yes" : "No");
1382 printf_filtered ("%s\t\t", signal_program[number] ? "Yes" : "No");
1383 printf_filtered ("%s\n", safe_strsignal (number));
1384 }
1385
1386 /* Specify how various signals in the inferior should be handled. */
1387
1388 static void
1389 handle_command (args, from_tty)
1390 char *args;
1391 int from_tty;
1392 {
1393 char **argv;
1394 int digits, wordlen;
1395 int sigfirst, signum, siglast;
1396 int allsigs;
1397 int nsigs;
1398 unsigned char *sigs;
1399 struct cleanup *old_chain;
1400
1401 if (args == NULL)
1402 {
1403 error_no_arg ("signal to handle");
1404 }
1405
1406 /* Allocate and zero an array of flags for which signals to handle. */
1407
1408 nsigs = signo_max () + 1;
1409 sigs = (unsigned char *) alloca (nsigs);
1410 memset (sigs, 0, nsigs);
1411
1412 /* Break the command line up into args. */
1413
1414 argv = buildargv (args);
1415 if (argv == NULL)
1416 {
1417 nomem (0);
1418 }
1419 old_chain = make_cleanup (freeargv, (char *) argv);
1420
1421 /* Walk through the args, looking for signal numbers, signal names, and
1422 actions. Signal numbers and signal names may be interspersed with
1423 actions, with the actions being performed for all signals cumulatively
1424 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
1425
1426 while (*argv != NULL)
1427 {
1428 wordlen = strlen (*argv);
1429 for (digits = 0; isdigit ((*argv)[digits]); digits++) {;}
1430 allsigs = 0;
1431 sigfirst = siglast = -1;
1432
1433 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
1434 {
1435 /* Apply action to all signals except those used by the
1436 debugger. Silently skip those. */
1437 allsigs = 1;
1438 sigfirst = 0;
1439 siglast = nsigs - 1;
1440 }
1441 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
1442 {
1443 SET_SIGS (nsigs, sigs, signal_stop);
1444 SET_SIGS (nsigs, sigs, signal_print);
1445 }
1446 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
1447 {
1448 UNSET_SIGS (nsigs, sigs, signal_program);
1449 }
1450 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
1451 {
1452 SET_SIGS (nsigs, sigs, signal_print);
1453 }
1454 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
1455 {
1456 SET_SIGS (nsigs, sigs, signal_program);
1457 }
1458 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
1459 {
1460 UNSET_SIGS (nsigs, sigs, signal_stop);
1461 }
1462 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
1463 {
1464 SET_SIGS (nsigs, sigs, signal_program);
1465 }
1466 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
1467 {
1468 UNSET_SIGS (nsigs, sigs, signal_print);
1469 UNSET_SIGS (nsigs, sigs, signal_stop);
1470 }
1471 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
1472 {
1473 UNSET_SIGS (nsigs, sigs, signal_program);
1474 }
1475 else if (digits > 0)
1476 {
1477 sigfirst = siglast = atoi (*argv);
1478 if ((*argv)[digits] == '-')
1479 {
1480 siglast = atoi ((*argv) + digits + 1);
1481 }
1482 if (sigfirst > siglast)
1483 {
1484 /* Bet he didn't figure we'd think of this case... */
1485 signum = sigfirst;
1486 sigfirst = siglast;
1487 siglast = signum;
1488 }
1489 if (sigfirst < 0 || sigfirst >= nsigs)
1490 {
1491 error ("Signal %d not in range 0-%d", sigfirst, nsigs - 1);
1492 }
1493 if (siglast < 0 || siglast >= nsigs)
1494 {
1495 error ("Signal %d not in range 0-%d", siglast, nsigs - 1);
1496 }
1497 }
1498 else if ((signum = strtosigno (*argv)) != 0)
1499 {
1500 sigfirst = siglast = signum;
1501 }
1502 else
1503 {
1504 /* Not a number and not a recognized flag word => complain. */
1505 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
1506 }
1507
1508 /* If any signal numbers or symbol names were found, set flags for
1509 which signals to apply actions to. */
1510
1511 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
1512 {
1513 switch (signum)
1514 {
1515 case SIGTRAP:
1516 case SIGINT:
1517 if (!allsigs && !sigs[signum])
1518 {
1519 if (query ("%s is used by the debugger.\nAre you sure you want to change it? ", strsigno (signum)))
1520 {
1521 sigs[signum] = 1;
1522 }
1523 else
1524 {
1525 printf ("Not confirmed, unchanged.\n");
1526 fflush (stdout);
1527 }
1528 }
1529 break;
1530 default:
1531 sigs[signum] = 1;
1532 break;
1533 }
1534 }
1535
1536 argv++;
1537 }
1538
1539 target_notice_signals();
1540
1541 if (from_tty)
1542 {
1543 /* Show the results. */
1544 sig_print_header ();
1545 for (signum = 0; signum < nsigs; signum++)
1546 {
1547 if (sigs[signum])
1548 {
1549 sig_print_info (signum);
1550 }
1551 }
1552 }
1553
1554 do_cleanups (old_chain);
1555 }
1556
1557 /* Print current contents of the tables set by the handle command. */
1558
1559 static void
1560 signals_info (signum_exp, from_tty)
1561 char *signum_exp;
1562 int from_tty;
1563 {
1564 register int i;
1565 sig_print_header ();
1566
1567 if (signum_exp)
1568 {
1569 /* First see if this is a symbol name. */
1570 i = strtosigno (signum_exp);
1571 if (i == 0)
1572 {
1573 /* Nope, maybe it's an address which evaluates to a signal
1574 number. */
1575 i = parse_and_eval_address (signum_exp);
1576 if (i >= NSIG || i < 0)
1577 error ("Signal number out of bounds.");
1578 }
1579 sig_print_info (i);
1580 return;
1581 }
1582
1583 printf_filtered ("\n");
1584 for (i = 0; i < NSIG; i++)
1585 {
1586 QUIT;
1587
1588 sig_print_info (i);
1589 }
1590
1591 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
1592 }
1593 \f
1594 /* Save all of the information associated with the inferior<==>gdb
1595 connection. INF_STATUS is a pointer to a "struct inferior_status"
1596 (defined in inferior.h). */
1597
1598 void
1599 save_inferior_status (inf_status, restore_stack_info)
1600 struct inferior_status *inf_status;
1601 int restore_stack_info;
1602 {
1603 inf_status->pc_changed = pc_changed;
1604 inf_status->stop_signal = stop_signal;
1605 inf_status->stop_pc = stop_pc;
1606 inf_status->stop_frame_address = stop_frame_address;
1607 inf_status->stop_step = stop_step;
1608 inf_status->stop_stack_dummy = stop_stack_dummy;
1609 inf_status->stopped_by_random_signal = stopped_by_random_signal;
1610 inf_status->trap_expected = trap_expected;
1611 inf_status->step_range_start = step_range_start;
1612 inf_status->step_range_end = step_range_end;
1613 inf_status->step_frame_address = step_frame_address;
1614 inf_status->step_over_calls = step_over_calls;
1615 inf_status->step_resume_break_address = step_resume_break_address;
1616 inf_status->stop_after_trap = stop_after_trap;
1617 inf_status->stop_soon_quietly = stop_soon_quietly;
1618 /* Save original bpstat chain here; replace it with copy of chain.
1619 If caller's caller is walking the chain, they'll be happier if we
1620 hand them back the original chain when restore_i_s is called. */
1621 inf_status->stop_bpstat = stop_bpstat;
1622 stop_bpstat = bpstat_copy (stop_bpstat);
1623 inf_status->breakpoint_proceeded = breakpoint_proceeded;
1624 inf_status->restore_stack_info = restore_stack_info;
1625 inf_status->proceed_to_finish = proceed_to_finish;
1626
1627 memcpy (inf_status->stop_registers, stop_registers, REGISTER_BYTES);
1628
1629 record_selected_frame (&(inf_status->selected_frame_address),
1630 &(inf_status->selected_level));
1631 return;
1632 }
1633
1634 void
1635 restore_inferior_status (inf_status)
1636 struct inferior_status *inf_status;
1637 {
1638 FRAME fid;
1639 int level = inf_status->selected_level;
1640
1641 pc_changed = inf_status->pc_changed;
1642 stop_signal = inf_status->stop_signal;
1643 stop_pc = inf_status->stop_pc;
1644 stop_frame_address = inf_status->stop_frame_address;
1645 stop_step = inf_status->stop_step;
1646 stop_stack_dummy = inf_status->stop_stack_dummy;
1647 stopped_by_random_signal = inf_status->stopped_by_random_signal;
1648 trap_expected = inf_status->trap_expected;
1649 step_range_start = inf_status->step_range_start;
1650 step_range_end = inf_status->step_range_end;
1651 step_frame_address = inf_status->step_frame_address;
1652 step_over_calls = inf_status->step_over_calls;
1653 step_resume_break_address = inf_status->step_resume_break_address;
1654 stop_after_trap = inf_status->stop_after_trap;
1655 stop_soon_quietly = inf_status->stop_soon_quietly;
1656 bpstat_clear (&stop_bpstat);
1657 stop_bpstat = inf_status->stop_bpstat;
1658 breakpoint_proceeded = inf_status->breakpoint_proceeded;
1659 proceed_to_finish = inf_status->proceed_to_finish;
1660
1661 memcpy (stop_registers, inf_status->stop_registers, REGISTER_BYTES);
1662
1663 /* The inferior can be gone if the user types "print exit(0)"
1664 (and perhaps other times). */
1665 if (target_has_stack && inf_status->restore_stack_info)
1666 {
1667 fid = find_relative_frame (get_current_frame (),
1668 &level);
1669
1670 /* If inf_status->selected_frame_address is NULL, there was no
1671 previously selected frame. */
1672 if (fid == 0 ||
1673 FRAME_FP (fid) != inf_status->selected_frame_address ||
1674 level != 0)
1675 {
1676 #if 1
1677 /* I'm not sure this error message is a good idea. I have
1678 only seen it occur after "Can't continue previously
1679 requested operation" (we get called from do_cleanups), in
1680 which case it just adds insult to injury (one confusing
1681 error message after another. Besides which, does the
1682 user really care if we can't restore the previously
1683 selected frame? */
1684 fprintf (stderr, "Unable to restore previously selected frame.\n");
1685 #endif
1686 select_frame (get_current_frame (), 0);
1687 return;
1688 }
1689
1690 select_frame (fid, inf_status->selected_level);
1691 }
1692 }
1693
1694 \f
1695 void
1696 _initialize_infrun ()
1697 {
1698 register int i;
1699 register int numsigs;
1700
1701 add_info ("signals", signals_info,
1702 "What debugger does when program gets various signals.\n\
1703 Specify a signal number as argument to print info on that signal only.");
1704 add_info_alias ("handle", "signals", 0);
1705
1706 add_com ("handle", class_run, handle_command,
1707 "Specify how to handle a signal.\n\
1708 Args are signal numbers and actions to apply to those signals.\n\
1709 Signal numbers may be numeric (ex. 11) or symbolic (ex. SIGSEGV).\n\
1710 Numeric ranges may be specified with the form LOW-HIGH (ex. 14-21).\n\
1711 The special arg \"all\" is recognized to mean all signals except those\n\
1712 used by the debugger, typically SIGTRAP and SIGINT.\n\
1713 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
1714 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
1715 Stop means reenter debugger if this signal happens (implies print).\n\
1716 Print means print a message if this signal happens.\n\
1717 Pass means let program see this signal; otherwise program doesn't know.\n\
1718 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1719 Pass and Stop may be combined.");
1720
1721 stop_command = add_cmd ("stop", class_obscure, not_just_help_class_command,
1722 "There is no `stop' command, but you can set a hook on `stop'.\n\
1723 This allows you to set a list of commands to be run each time execution\n\
1724 of the program stops.", &cmdlist);
1725
1726 numsigs = signo_max () + 1;
1727 signal_stop = (unsigned char *)
1728 xmalloc (sizeof (signal_stop[0]) * numsigs);
1729 signal_print = (unsigned char *)
1730 xmalloc (sizeof (signal_print[0]) * numsigs);
1731 signal_program = (unsigned char *)
1732 xmalloc (sizeof (signal_program[0]) * numsigs);
1733 for (i = 0; i < numsigs; i++)
1734 {
1735 signal_stop[i] = 1;
1736 signal_print[i] = 1;
1737 signal_program[i] = 1;
1738 }
1739
1740 /* Signals caused by debugger's own actions
1741 should not be given to the program afterwards. */
1742 signal_program[SIGTRAP] = 0;
1743 signal_program[SIGINT] = 0;
1744
1745 /* Signals that are not errors should not normally enter the debugger. */
1746 #ifdef SIGALRM
1747 signal_stop[SIGALRM] = 0;
1748 signal_print[SIGALRM] = 0;
1749 #endif /* SIGALRM */
1750 #ifdef SIGVTALRM
1751 signal_stop[SIGVTALRM] = 0;
1752 signal_print[SIGVTALRM] = 0;
1753 #endif /* SIGVTALRM */
1754 #ifdef SIGPROF
1755 signal_stop[SIGPROF] = 0;
1756 signal_print[SIGPROF] = 0;
1757 #endif /* SIGPROF */
1758 #ifdef SIGCHLD
1759 signal_stop[SIGCHLD] = 0;
1760 signal_print[SIGCHLD] = 0;
1761 #endif /* SIGCHLD */
1762 #ifdef SIGCLD
1763 signal_stop[SIGCLD] = 0;
1764 signal_print[SIGCLD] = 0;
1765 #endif /* SIGCLD */
1766 #ifdef SIGIO
1767 signal_stop[SIGIO] = 0;
1768 signal_print[SIGIO] = 0;
1769 #endif /* SIGIO */
1770 #ifdef SIGURG
1771 signal_stop[SIGURG] = 0;
1772 signal_print[SIGURG] = 0;
1773 #endif /* SIGURG */
1774 }