]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/irix5-nat.c
Commit Ilya Golubev's clear_solib() fixes.
[thirdparty/binutils-gdb.git] / gdb / irix5-nat.c
1 /* Native support for the SGI Iris running IRIX version 5, for GDB.
2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
5 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
6 Implemented for Irix 4.x by Garrett A. Wollman.
7 Modified for Irix 5.x by Ian Lance Taylor.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "regcache.h"
31
32 #include "gdb_string.h"
33 #include <sys/time.h>
34 #include <sys/procfs.h>
35 #include <setjmp.h> /* For JB_XXX. */
36
37 /* Prototypes for supply_gregset etc. */
38 #include "gregset.h"
39
40 static void fetch_core_registers (char *, unsigned int, int, CORE_ADDR);
41
42 /* Size of elements in jmpbuf */
43
44 #define JB_ELEMENT_SIZE 4
45
46 /*
47 * See the comment in m68k-tdep.c regarding the utility of these functions.
48 *
49 * These definitions are from the MIPS SVR4 ABI, so they may work for
50 * any MIPS SVR4 target.
51 */
52
53 void
54 supply_gregset (gregset_t *gregsetp)
55 {
56 register int regi;
57 register greg_t *regp = &(*gregsetp)[0];
58 int gregoff = sizeof (greg_t) - MIPS_REGSIZE;
59 static char zerobuf[MAX_REGISTER_RAW_SIZE] =
60 {0};
61
62 for (regi = 0; regi <= CTX_RA; regi++)
63 supply_register (regi, (char *) (regp + regi) + gregoff);
64
65 supply_register (PC_REGNUM, (char *) (regp + CTX_EPC) + gregoff);
66 supply_register (HI_REGNUM, (char *) (regp + CTX_MDHI) + gregoff);
67 supply_register (LO_REGNUM, (char *) (regp + CTX_MDLO) + gregoff);
68 supply_register (CAUSE_REGNUM, (char *) (regp + CTX_CAUSE) + gregoff);
69
70 /* Fill inaccessible registers with zero. */
71 supply_register (BADVADDR_REGNUM, zerobuf);
72 }
73
74 void
75 fill_gregset (gregset_t *gregsetp, int regno)
76 {
77 int regi;
78 register greg_t *regp = &(*gregsetp)[0];
79
80 /* Under Irix6, if GDB is built with N32 ABI and is debugging an O32
81 executable, we have to sign extend the registers to 64 bits before
82 filling in the gregset structure. */
83
84 for (regi = 0; regi <= CTX_RA; regi++)
85 if ((regno == -1) || (regno == regi))
86 *(regp + regi) =
87 extract_signed_integer (&registers[REGISTER_BYTE (regi)],
88 REGISTER_RAW_SIZE (regi));
89
90 if ((regno == -1) || (regno == PC_REGNUM))
91 *(regp + CTX_EPC) =
92 extract_signed_integer (&registers[REGISTER_BYTE (PC_REGNUM)],
93 REGISTER_RAW_SIZE (PC_REGNUM));
94
95 if ((regno == -1) || (regno == CAUSE_REGNUM))
96 *(regp + CTX_CAUSE) =
97 extract_signed_integer (&registers[REGISTER_BYTE (CAUSE_REGNUM)],
98 REGISTER_RAW_SIZE (CAUSE_REGNUM));
99
100 if ((regno == -1) || (regno == HI_REGNUM))
101 *(regp + CTX_MDHI) =
102 extract_signed_integer (&registers[REGISTER_BYTE (HI_REGNUM)],
103 REGISTER_RAW_SIZE (HI_REGNUM));
104
105 if ((regno == -1) || (regno == LO_REGNUM))
106 *(regp + CTX_MDLO) =
107 extract_signed_integer (&registers[REGISTER_BYTE (LO_REGNUM)],
108 REGISTER_RAW_SIZE (LO_REGNUM));
109 }
110
111 /*
112 * Now we do the same thing for floating-point registers.
113 * We don't bother to condition on FP0_REGNUM since any
114 * reasonable MIPS configuration has an R3010 in it.
115 *
116 * Again, see the comments in m68k-tdep.c.
117 */
118
119 void
120 supply_fpregset (fpregset_t *fpregsetp)
121 {
122 register int regi;
123 static char zerobuf[MAX_REGISTER_RAW_SIZE] =
124 {0};
125
126 /* FIXME, this is wrong for the N32 ABI which has 64 bit FP regs. */
127
128 for (regi = 0; regi < 32; regi++)
129 supply_register (FP0_REGNUM + regi,
130 (char *) &fpregsetp->fp_r.fp_regs[regi]);
131
132 supply_register (FCRCS_REGNUM, (char *) &fpregsetp->fp_csr);
133
134 /* FIXME: how can we supply FCRIR_REGNUM? SGI doesn't tell us. */
135 supply_register (FCRIR_REGNUM, zerobuf);
136 }
137
138 void
139 fill_fpregset (fpregset_t *fpregsetp, int regno)
140 {
141 int regi;
142 char *from, *to;
143
144 /* FIXME, this is wrong for the N32 ABI which has 64 bit FP regs. */
145
146 for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++)
147 {
148 if ((regno == -1) || (regno == regi))
149 {
150 from = (char *) &registers[REGISTER_BYTE (regi)];
151 to = (char *) &(fpregsetp->fp_r.fp_regs[regi - FP0_REGNUM]);
152 memcpy (to, from, REGISTER_RAW_SIZE (regi));
153 }
154 }
155
156 if ((regno == -1) || (regno == FCRCS_REGNUM))
157 fpregsetp->fp_csr = *(unsigned *) &registers[REGISTER_BYTE (FCRCS_REGNUM)];
158 }
159
160
161 /* Figure out where the longjmp will land.
162 We expect the first arg to be a pointer to the jmp_buf structure from which
163 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
164 This routine returns true on success. */
165
166 int
167 get_longjmp_target (CORE_ADDR *pc)
168 {
169 char *buf;
170 CORE_ADDR jb_addr;
171
172 buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
173 jb_addr = read_register (A0_REGNUM);
174
175 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
176 TARGET_PTR_BIT / TARGET_CHAR_BIT))
177 return 0;
178
179 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
180
181 return 1;
182 }
183
184 /* Provide registers to GDB from a core file.
185
186 CORE_REG_SECT points to an array of bytes, which were obtained from
187 a core file which BFD thinks might contain register contents.
188 CORE_REG_SIZE is its size.
189
190 Normally, WHICH says which register set corelow suspects this is:
191 0 --- the general-purpose register set
192 2 --- the floating-point register set
193 However, for Irix 5, WHICH isn't used.
194
195 REG_ADDR is also unused. */
196
197 static void
198 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
199 int which, CORE_ADDR reg_addr)
200 {
201 if (core_reg_size == REGISTER_BYTES)
202 {
203 memcpy ((char *) registers, core_reg_sect, core_reg_size);
204 }
205 else if (MIPS_REGSIZE == 4 &&
206 core_reg_size == (2 * MIPS_REGSIZE) * NUM_REGS)
207 {
208 /* This is a core file from a N32 executable, 64 bits are saved
209 for all registers. */
210 char *srcp = core_reg_sect;
211 char *dstp = registers;
212 int regno;
213
214 for (regno = 0; regno < NUM_REGS; regno++)
215 {
216 if (regno >= FP0_REGNUM && regno < (FP0_REGNUM + 32))
217 {
218 /* FIXME, this is wrong, N32 has 64 bit FP regs, but GDB
219 currently assumes that they are 32 bit. */
220 *dstp++ = *srcp++;
221 *dstp++ = *srcp++;
222 *dstp++ = *srcp++;
223 *dstp++ = *srcp++;
224 if (REGISTER_RAW_SIZE (regno) == 4)
225 {
226 /* copying 4 bytes from eight bytes?
227 I don't see how this can be right... */
228 srcp += 4;
229 }
230 else
231 {
232 /* copy all 8 bytes (sizeof(double)) */
233 *dstp++ = *srcp++;
234 *dstp++ = *srcp++;
235 *dstp++ = *srcp++;
236 *dstp++ = *srcp++;
237 }
238 }
239 else
240 {
241 srcp += 4;
242 *dstp++ = *srcp++;
243 *dstp++ = *srcp++;
244 *dstp++ = *srcp++;
245 *dstp++ = *srcp++;
246 }
247 }
248 }
249 else
250 {
251 warning ("wrong size gregset struct in core file");
252 return;
253 }
254
255 registers_fetched ();
256 }
257 \f
258 /* Irix 5 uses what appears to be a unique form of shared library
259 support. This is a copy of solib.c modified for Irix 5. */
260 /* FIXME: Most of this code could be merged with osfsolib.c and solib.c
261 by using next_link_map_member and xfer_link_map_member in solib.c. */
262
263 #include <sys/types.h>
264 #include <signal.h>
265 #include <sys/param.h>
266 #include <fcntl.h>
267
268 /* <obj.h> includes <sym.h> and <symconst.h>, which causes conflicts
269 with our versions of those files included by tm-mips.h. Prevent
270 <obj.h> from including them with some appropriate defines. */
271 #define __SYM_H__
272 #define __SYMCONST_H__
273 #include <obj.h>
274 #ifdef HAVE_OBJLIST_H
275 #include <objlist.h>
276 #endif
277
278 #ifdef NEW_OBJ_INFO_MAGIC
279 #define HANDLE_NEW_OBJ_LIST
280 #endif
281
282 #include "symtab.h"
283 #include "bfd.h"
284 #include "symfile.h"
285 #include "objfiles.h"
286 #include "command.h"
287 #include "frame.h"
288 #include "gdb_regex.h"
289 #include "inferior.h"
290 #include "language.h"
291 #include "gdbcmd.h"
292
293 /* The symbol which starts off the list of shared libraries. */
294 #define DEBUG_BASE "__rld_obj_head"
295
296 /* Irix 6.x introduces a new variant of object lists.
297 To be able to debug O32 executables under Irix 6, we have to handle both
298 variants. */
299
300 typedef enum
301 {
302 OBJ_LIST_OLD, /* Pre Irix 6.x object list. */
303 OBJ_LIST_32, /* 32 Bit Elf32_Obj_Info. */
304 OBJ_LIST_64 /* 64 Bit Elf64_Obj_Info, FIXME not yet implemented. */
305 }
306 obj_list_variant;
307
308 /* Define our own link_map structure.
309 This will help to share code with osfsolib.c and solib.c. */
310
311 struct link_map
312 {
313 obj_list_variant l_variant; /* which variant of object list */
314 CORE_ADDR l_lladdr; /* addr in inferior list was read from */
315 CORE_ADDR l_next; /* address of next object list entry */
316 };
317
318 /* Irix 5 shared objects are pre-linked to particular addresses
319 although the dynamic linker may have to relocate them if the
320 address ranges of the libraries used by the main program clash.
321 The offset is the difference between the address where the object
322 is mapped and the binding address of the shared library. */
323 #define LM_OFFSET(so) ((so) -> offset)
324 /* Loaded address of shared library. */
325 #define LM_ADDR(so) ((so) -> lmstart)
326
327 char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
328
329 struct so_list
330 {
331 struct so_list *next; /* next structure in linked list */
332 struct link_map lm;
333 CORE_ADDR offset; /* prelink to load address offset */
334 char *so_name; /* shared object lib name */
335 CORE_ADDR lmstart; /* lower addr bound of mapped object */
336 CORE_ADDR lmend; /* upper addr bound of mapped object */
337 char symbols_loaded; /* flag: symbols read in yet? */
338 char from_tty; /* flag: print msgs? */
339 struct objfile *objfile; /* objfile for loaded lib */
340 struct section_table *sections;
341 struct section_table *sections_end;
342 struct section_table *textsection;
343 bfd *abfd;
344 };
345
346 static struct so_list *so_list_head; /* List of known shared objects */
347 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
348 static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
349
350 /* Local function prototypes */
351
352 static void sharedlibrary_command (char *, int);
353
354 static int enable_break (void);
355
356 static int disable_break (void);
357
358 static void info_sharedlibrary_command (char *, int);
359
360 static int symbol_add_stub (void *);
361
362 static struct so_list *find_solib (struct so_list *);
363
364 static struct link_map *first_link_map_member (void);
365
366 static struct link_map *next_link_map_member (struct so_list *);
367
368 static void xfer_link_map_member (struct so_list *, struct link_map *);
369
370 static CORE_ADDR locate_base (void);
371
372 static int solib_map_sections (void *);
373
374 /*
375
376 LOCAL FUNCTION
377
378 solib_map_sections -- open bfd and build sections for shared lib
379
380 SYNOPSIS
381
382 static int solib_map_sections (struct so_list *so)
383
384 DESCRIPTION
385
386 Given a pointer to one of the shared objects in our list
387 of mapped objects, use the recorded name to open a bfd
388 descriptor for the object, build a section table, and then
389 relocate all the section addresses by the base address at
390 which the shared object was mapped.
391
392 FIXMES
393
394 In most (all?) cases the shared object file name recorded in the
395 dynamic linkage tables will be a fully qualified pathname. For
396 cases where it isn't, do we really mimic the systems search
397 mechanism correctly in the below code (particularly the tilde
398 expansion stuff?).
399 */
400
401 static int
402 solib_map_sections (void *arg)
403 {
404 struct so_list *so = (struct so_list *) arg; /* catch_errors bogon */
405 char *filename;
406 char *scratch_pathname;
407 int scratch_chan;
408 struct section_table *p;
409 struct cleanup *old_chain;
410 bfd *abfd;
411
412 filename = tilde_expand (so->so_name);
413 old_chain = make_cleanup (xfree, filename);
414
415 scratch_chan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0,
416 &scratch_pathname);
417 if (scratch_chan < 0)
418 {
419 scratch_chan = openp (getenv ("LD_LIBRARY_PATH"), 1, filename,
420 O_RDONLY, 0, &scratch_pathname);
421 }
422 if (scratch_chan < 0)
423 {
424 perror_with_name (filename);
425 }
426 /* Leave scratch_pathname allocated. abfd->name will point to it. */
427
428 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
429 if (!abfd)
430 {
431 close (scratch_chan);
432 error ("Could not open `%s' as an executable file: %s",
433 scratch_pathname, bfd_errmsg (bfd_get_error ()));
434 }
435 /* Leave bfd open, core_xfer_memory and "info files" need it. */
436 so->abfd = abfd;
437 abfd->cacheable = true;
438
439 if (!bfd_check_format (abfd, bfd_object))
440 {
441 error ("\"%s\": not in executable format: %s.",
442 scratch_pathname, bfd_errmsg (bfd_get_error ()));
443 }
444 if (build_section_table (abfd, &so->sections, &so->sections_end))
445 {
446 error ("Can't find the file sections in `%s': %s",
447 bfd_get_filename (exec_bfd), bfd_errmsg (bfd_get_error ()));
448 }
449
450 for (p = so->sections; p < so->sections_end; p++)
451 {
452 /* Relocate the section binding addresses as recorded in the shared
453 object's file by the offset to get the address to which the
454 object was actually mapped. */
455 p->addr += LM_OFFSET (so);
456 p->endaddr += LM_OFFSET (so);
457 so->lmend = (CORE_ADDR) max (p->endaddr, so->lmend);
458 if (STREQ (p->the_bfd_section->name, ".text"))
459 {
460 so->textsection = p;
461 }
462 }
463
464 /* Free the file names, close the file now. */
465 do_cleanups (old_chain);
466
467 /* must be non-zero */
468 return (1);
469 }
470
471 /*
472
473 LOCAL FUNCTION
474
475 locate_base -- locate the base address of dynamic linker structs
476
477 SYNOPSIS
478
479 CORE_ADDR locate_base (void)
480
481 DESCRIPTION
482
483 For both the SunOS and SVR4 shared library implementations, if the
484 inferior executable has been linked dynamically, there is a single
485 address somewhere in the inferior's data space which is the key to
486 locating all of the dynamic linker's runtime structures. This
487 address is the value of the symbol defined by the macro DEBUG_BASE.
488 The job of this function is to find and return that address, or to
489 return 0 if there is no such address (the executable is statically
490 linked for example).
491
492 For SunOS, the job is almost trivial, since the dynamic linker and
493 all of it's structures are statically linked to the executable at
494 link time. Thus the symbol for the address we are looking for has
495 already been added to the minimal symbol table for the executable's
496 objfile at the time the symbol file's symbols were read, and all we
497 have to do is look it up there. Note that we explicitly do NOT want
498 to find the copies in the shared library.
499
500 The SVR4 version is much more complicated because the dynamic linker
501 and it's structures are located in the shared C library, which gets
502 run as the executable's "interpreter" by the kernel. We have to go
503 to a lot more work to discover the address of DEBUG_BASE. Because
504 of this complexity, we cache the value we find and return that value
505 on subsequent invocations. Note there is no copy in the executable
506 symbol tables.
507
508 Irix 5 is basically like SunOS.
509
510 Note that we can assume nothing about the process state at the time
511 we need to find this address. We may be stopped on the first instruc-
512 tion of the interpreter (C shared library), the first instruction of
513 the executable itself, or somewhere else entirely (if we attached
514 to the process for example).
515
516 */
517
518 static CORE_ADDR
519 locate_base (void)
520 {
521 struct minimal_symbol *msymbol;
522 CORE_ADDR address = 0;
523
524 msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
525 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
526 {
527 address = SYMBOL_VALUE_ADDRESS (msymbol);
528 }
529 return (address);
530 }
531
532 /*
533
534 LOCAL FUNCTION
535
536 first_link_map_member -- locate first member in dynamic linker's map
537
538 SYNOPSIS
539
540 static struct link_map *first_link_map_member (void)
541
542 DESCRIPTION
543
544 Read in a copy of the first member in the inferior's dynamic
545 link map from the inferior's dynamic linker structures, and return
546 a pointer to the link map descriptor.
547 */
548
549 static struct link_map *
550 first_link_map_member (void)
551 {
552 struct obj_list *listp;
553 struct obj_list list_old;
554 struct link_map *lm;
555 static struct link_map first_lm;
556 CORE_ADDR lladdr;
557 CORE_ADDR next_lladdr;
558
559 /* We have not already read in the dynamic linking structures
560 from the inferior, lookup the address of the base structure. */
561 debug_base = locate_base ();
562 if (debug_base == 0)
563 return NULL;
564
565 /* Get address of first list entry. */
566 read_memory (debug_base, (char *) &listp, sizeof (struct obj_list *));
567
568 if (listp == NULL)
569 return NULL;
570
571 /* Get first list entry. */
572 /* The MIPS Sign extends addresses. */
573 lladdr = host_pointer_to_address (listp);
574 read_memory (lladdr, (char *) &list_old, sizeof (struct obj_list));
575
576 /* The first entry in the list is the object file we are debugging,
577 so skip it. */
578 next_lladdr = host_pointer_to_address (list_old.next);
579
580 #ifdef HANDLE_NEW_OBJ_LIST
581 if (list_old.data == NEW_OBJ_INFO_MAGIC)
582 {
583 Elf32_Obj_Info list_32;
584
585 read_memory (lladdr, (char *) &list_32, sizeof (Elf32_Obj_Info));
586 if (list_32.oi_size != sizeof (Elf32_Obj_Info))
587 return NULL;
588 next_lladdr = (CORE_ADDR) list_32.oi_next;
589 }
590 #endif
591
592 if (next_lladdr == 0)
593 return NULL;
594
595 first_lm.l_lladdr = next_lladdr;
596 lm = &first_lm;
597 return lm;
598 }
599
600 /*
601
602 LOCAL FUNCTION
603
604 next_link_map_member -- locate next member in dynamic linker's map
605
606 SYNOPSIS
607
608 static struct link_map *next_link_map_member (so_list_ptr)
609
610 DESCRIPTION
611
612 Read in a copy of the next member in the inferior's dynamic
613 link map from the inferior's dynamic linker structures, and return
614 a pointer to the link map descriptor.
615 */
616
617 static struct link_map *
618 next_link_map_member (struct so_list *so_list_ptr)
619 {
620 struct link_map *lm = &so_list_ptr->lm;
621 CORE_ADDR next_lladdr = lm->l_next;
622 static struct link_map next_lm;
623
624 if (next_lladdr == 0)
625 {
626 /* We have hit the end of the list, so check to see if any were
627 added, but be quiet if we can't read from the target any more. */
628 int status = 0;
629
630 if (lm->l_variant == OBJ_LIST_OLD)
631 {
632 struct obj_list list_old;
633
634 status = target_read_memory (lm->l_lladdr,
635 (char *) &list_old,
636 sizeof (struct obj_list));
637 next_lladdr = host_pointer_to_address (list_old.next);
638 }
639 #ifdef HANDLE_NEW_OBJ_LIST
640 else if (lm->l_variant == OBJ_LIST_32)
641 {
642 Elf32_Obj_Info list_32;
643 status = target_read_memory (lm->l_lladdr,
644 (char *) &list_32,
645 sizeof (Elf32_Obj_Info));
646 next_lladdr = (CORE_ADDR) list_32.oi_next;
647 }
648 #endif
649
650 if (status != 0 || next_lladdr == 0)
651 return NULL;
652 }
653
654 next_lm.l_lladdr = next_lladdr;
655 lm = &next_lm;
656 return lm;
657 }
658
659 /*
660
661 LOCAL FUNCTION
662
663 xfer_link_map_member -- set local variables from dynamic linker's map
664
665 SYNOPSIS
666
667 static void xfer_link_map_member (so_list_ptr, lm)
668
669 DESCRIPTION
670
671 Read in a copy of the requested member in the inferior's dynamic
672 link map from the inferior's dynamic linker structures, and fill
673 in the necessary so_list_ptr elements.
674 */
675
676 static void
677 xfer_link_map_member (struct so_list *so_list_ptr, struct link_map *lm)
678 {
679 struct obj_list list_old;
680 CORE_ADDR lladdr = lm->l_lladdr;
681 struct link_map *new_lm = &so_list_ptr->lm;
682 int errcode;
683
684 read_memory (lladdr, (char *) &list_old, sizeof (struct obj_list));
685
686 new_lm->l_variant = OBJ_LIST_OLD;
687 new_lm->l_lladdr = lladdr;
688 new_lm->l_next = host_pointer_to_address (list_old.next);
689
690 #ifdef HANDLE_NEW_OBJ_LIST
691 if (list_old.data == NEW_OBJ_INFO_MAGIC)
692 {
693 Elf32_Obj_Info list_32;
694
695 read_memory (lladdr, (char *) &list_32, sizeof (Elf32_Obj_Info));
696 if (list_32.oi_size != sizeof (Elf32_Obj_Info))
697 return;
698 new_lm->l_variant = OBJ_LIST_32;
699 new_lm->l_next = (CORE_ADDR) list_32.oi_next;
700
701 target_read_string ((CORE_ADDR) list_32.oi_pathname,
702 &so_list_ptr->so_name,
703 list_32.oi_pathname_len + 1, &errcode);
704 if (errcode != 0)
705 memory_error (errcode, (CORE_ADDR) list_32.oi_pathname);
706
707 LM_ADDR (so_list_ptr) = (CORE_ADDR) list_32.oi_ehdr;
708 LM_OFFSET (so_list_ptr) =
709 (CORE_ADDR) list_32.oi_ehdr - (CORE_ADDR) list_32.oi_orig_ehdr;
710 }
711 else
712 #endif
713 {
714 #if defined (_MIPS_SIM_NABI32) && _MIPS_SIM == _MIPS_SIM_NABI32
715 /* If we are compiling GDB under N32 ABI, the alignments in
716 the obj struct are different from the O32 ABI and we will get
717 wrong values when accessing the struct.
718 As a workaround we use fixed values which are good for
719 Irix 6.2. */
720 char buf[432];
721
722 read_memory ((CORE_ADDR) list_old.data, buf, sizeof (buf));
723
724 target_read_string (extract_address (&buf[236], 4),
725 &so_list_ptr->so_name,
726 INT_MAX, &errcode);
727 if (errcode != 0)
728 memory_error (errcode, extract_address (&buf[236], 4));
729
730 LM_ADDR (so_list_ptr) = extract_address (&buf[196], 4);
731 LM_OFFSET (so_list_ptr) =
732 extract_address (&buf[196], 4) - extract_address (&buf[248], 4);
733 #else
734 struct obj obj_old;
735
736 read_memory ((CORE_ADDR) list_old.data, (char *) &obj_old,
737 sizeof (struct obj));
738
739 target_read_string ((CORE_ADDR) obj_old.o_path,
740 &so_list_ptr->so_name,
741 INT_MAX, &errcode);
742 if (errcode != 0)
743 memory_error (errcode, (CORE_ADDR) obj_old.o_path);
744
745 LM_ADDR (so_list_ptr) = (CORE_ADDR) obj_old.o_praw;
746 LM_OFFSET (so_list_ptr) =
747 (CORE_ADDR) obj_old.o_praw - obj_old.o_base_address;
748 #endif
749 }
750
751 catch_errors (solib_map_sections, (char *) so_list_ptr,
752 "Error while mapping shared library sections:\n",
753 RETURN_MASK_ALL);
754 }
755
756
757 /*
758
759 LOCAL FUNCTION
760
761 find_solib -- step through list of shared objects
762
763 SYNOPSIS
764
765 struct so_list *find_solib (struct so_list *so_list_ptr)
766
767 DESCRIPTION
768
769 This module contains the routine which finds the names of any
770 loaded "images" in the current process. The argument in must be
771 NULL on the first call, and then the returned value must be passed
772 in on subsequent calls. This provides the capability to "step" down
773 the list of loaded objects. On the last object, a NULL value is
774 returned.
775 */
776
777 static struct so_list *
778 find_solib (struct so_list *so_list_ptr)
779 {
780 struct so_list *so_list_next = NULL;
781 struct link_map *lm = NULL;
782 struct so_list *new;
783
784 if (so_list_ptr == NULL)
785 {
786 /* We are setting up for a new scan through the loaded images. */
787 if ((so_list_next = so_list_head) == NULL)
788 {
789 /* Find the first link map list member. */
790 lm = first_link_map_member ();
791 }
792 }
793 else
794 {
795 /* We have been called before, and are in the process of walking
796 the shared library list. Advance to the next shared object. */
797 lm = next_link_map_member (so_list_ptr);
798 so_list_next = so_list_ptr->next;
799 }
800 if ((so_list_next == NULL) && (lm != NULL))
801 {
802 new = (struct so_list *) xmalloc (sizeof (struct so_list));
803 memset ((char *) new, 0, sizeof (struct so_list));
804 /* Add the new node as the next node in the list, or as the root
805 node if this is the first one. */
806 if (so_list_ptr != NULL)
807 {
808 so_list_ptr->next = new;
809 }
810 else
811 {
812 so_list_head = new;
813 }
814 so_list_next = new;
815 xfer_link_map_member (new, lm);
816 }
817 return (so_list_next);
818 }
819
820 /* A small stub to get us past the arg-passing pinhole of catch_errors. */
821
822 static int
823 symbol_add_stub (void *arg)
824 {
825 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
826 CORE_ADDR text_addr = 0;
827 struct section_addr_info section_addrs;
828
829 memset (&section_addrs, 0, sizeof (section_addrs));
830 if (so->textsection)
831 text_addr = so->textsection->addr;
832 else if (so->abfd != NULL)
833 {
834 asection *lowest_sect;
835
836 /* If we didn't find a mapped non zero sized .text section, set up
837 text_addr so that the relocation in symbol_file_add does no harm. */
838
839 lowest_sect = bfd_get_section_by_name (so->abfd, ".text");
840 if (lowest_sect == NULL)
841 bfd_map_over_sections (so->abfd, find_lowest_section,
842 (PTR) &lowest_sect);
843 if (lowest_sect)
844 text_addr = bfd_section_vma (so->abfd, lowest_sect) + LM_OFFSET (so);
845 }
846
847
848 section_addrs.other[0].name = ".text";
849 section_addrs.other[0].addr = text_addr;
850 so->objfile = symbol_file_add (so->so_name, so->from_tty,
851 &section_addrs, 0, 0);
852 /* must be non-zero */
853 return (1);
854 }
855
856 /*
857
858 GLOBAL FUNCTION
859
860 solib_add -- add a shared library file to the symtab and section list
861
862 SYNOPSIS
863
864 void solib_add (char *arg_string, int from_tty,
865 struct target_ops *target)
866
867 DESCRIPTION
868
869 */
870
871 void
872 solib_add (char *arg_string, int from_tty, struct target_ops *target)
873 {
874 register struct so_list *so = NULL; /* link map state variable */
875
876 /* Last shared library that we read. */
877 struct so_list *so_last = NULL;
878
879 char *re_err;
880 int count;
881 int old;
882
883 if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL)
884 {
885 error ("Invalid regexp: %s", re_err);
886 }
887
888 /* Add the shared library sections to the section table of the
889 specified target, if any. */
890 if (target)
891 {
892 /* Count how many new section_table entries there are. */
893 so = NULL;
894 count = 0;
895 while ((so = find_solib (so)) != NULL)
896 {
897 if (so->so_name[0])
898 {
899 count += so->sections_end - so->sections;
900 }
901 }
902
903 if (count)
904 {
905 old = target_resize_to_sections (target, count);
906
907 /* Add these section table entries to the target's table. */
908 while ((so = find_solib (so)) != NULL)
909 {
910 if (so->so_name[0])
911 {
912 count = so->sections_end - so->sections;
913 memcpy ((char *) (target->to_sections + old),
914 so->sections,
915 (sizeof (struct section_table)) * count);
916 old += count;
917 }
918 }
919 }
920 }
921
922 /* Now add the symbol files. */
923 while ((so = find_solib (so)) != NULL)
924 {
925 if (so->so_name[0] && re_exec (so->so_name))
926 {
927 so->from_tty = from_tty;
928 if (so->symbols_loaded)
929 {
930 if (from_tty)
931 {
932 printf_unfiltered ("Symbols already loaded for %s\n", so->so_name);
933 }
934 }
935 else if (catch_errors
936 (symbol_add_stub, (char *) so,
937 "Error while reading shared library symbols:\n",
938 RETURN_MASK_ALL))
939 {
940 so_last = so;
941 so->symbols_loaded = 1;
942 }
943 }
944 }
945
946 /* Getting new symbols may change our opinion about what is
947 frameless. */
948 if (so_last)
949 reinit_frame_cache ();
950 }
951
952 /*
953
954 LOCAL FUNCTION
955
956 info_sharedlibrary_command -- code for "info sharedlibrary"
957
958 SYNOPSIS
959
960 static void info_sharedlibrary_command ()
961
962 DESCRIPTION
963
964 Walk through the shared library list and print information
965 about each attached library.
966 */
967
968 static void
969 info_sharedlibrary_command (char *ignore, int from_tty)
970 {
971 register struct so_list *so = NULL; /* link map state variable */
972 int header_done = 0;
973
974 if (exec_bfd == NULL)
975 {
976 printf_unfiltered ("No executable file.\n");
977 return;
978 }
979 while ((so = find_solib (so)) != NULL)
980 {
981 if (so->so_name[0])
982 {
983 if (!header_done)
984 {
985 printf_unfiltered ("%-12s%-12s%-12s%s\n", "From", "To", "Syms Read",
986 "Shared Object Library");
987 header_done++;
988 }
989 printf_unfiltered ("%-12s",
990 local_hex_string_custom ((unsigned long) LM_ADDR (so),
991 "08l"));
992 printf_unfiltered ("%-12s",
993 local_hex_string_custom ((unsigned long) so->lmend,
994 "08l"));
995 printf_unfiltered ("%-12s", so->symbols_loaded ? "Yes" : "No");
996 printf_unfiltered ("%s\n", so->so_name);
997 }
998 }
999 if (so_list_head == NULL)
1000 {
1001 printf_unfiltered ("No shared libraries loaded at this time.\n");
1002 }
1003 }
1004
1005 /*
1006
1007 GLOBAL FUNCTION
1008
1009 solib_address -- check to see if an address is in a shared lib
1010
1011 SYNOPSIS
1012
1013 char *solib_address (CORE_ADDR address)
1014
1015 DESCRIPTION
1016
1017 Provides a hook for other gdb routines to discover whether or
1018 not a particular address is within the mapped address space of
1019 a shared library. Any address between the base mapping address
1020 and the first address beyond the end of the last mapping, is
1021 considered to be within the shared library address space, for
1022 our purposes.
1023
1024 For example, this routine is called at one point to disable
1025 breakpoints which are in shared libraries that are not currently
1026 mapped in.
1027 */
1028
1029 char *
1030 solib_address (CORE_ADDR address)
1031 {
1032 register struct so_list *so = 0; /* link map state variable */
1033
1034 while ((so = find_solib (so)) != NULL)
1035 {
1036 if (so->so_name[0])
1037 {
1038 if ((address >= (CORE_ADDR) LM_ADDR (so)) &&
1039 (address < (CORE_ADDR) so->lmend))
1040 return (so->so_name);
1041 }
1042 }
1043 return (0);
1044 }
1045
1046 /* Called by free_all_symtabs */
1047
1048 void
1049 clear_solib (void)
1050 {
1051 struct so_list *next;
1052 char *bfd_filename;
1053
1054 disable_breakpoints_in_shlibs (1);
1055
1056 while (so_list_head)
1057 {
1058 if (so_list_head->sections)
1059 {
1060 xfree (so_list_head->sections);
1061 }
1062 if (so_list_head->abfd)
1063 {
1064 remove_target_sections (so_list_head->abfd);
1065 bfd_filename = bfd_get_filename (so_list_head->abfd);
1066 if (!bfd_close (so_list_head->abfd))
1067 warning ("cannot close \"%s\": %s",
1068 bfd_filename, bfd_errmsg (bfd_get_error ()));
1069 }
1070 else
1071 /* This happens for the executable on SVR4. */
1072 bfd_filename = NULL;
1073
1074 next = so_list_head->next;
1075 if (bfd_filename)
1076 xfree (bfd_filename);
1077 xfree (so_list_head->so_name);
1078 xfree (so_list_head);
1079 so_list_head = next;
1080 }
1081 debug_base = 0;
1082 }
1083
1084 /*
1085
1086 LOCAL FUNCTION
1087
1088 disable_break -- remove the "mapping changed" breakpoint
1089
1090 SYNOPSIS
1091
1092 static int disable_break ()
1093
1094 DESCRIPTION
1095
1096 Removes the breakpoint that gets hit when the dynamic linker
1097 completes a mapping change.
1098
1099 */
1100
1101 static int
1102 disable_break (void)
1103 {
1104 int status = 1;
1105
1106
1107 /* Note that breakpoint address and original contents are in our address
1108 space, so we just need to write the original contents back. */
1109
1110 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
1111 {
1112 status = 0;
1113 }
1114
1115 /* For the SVR4 version, we always know the breakpoint address. For the
1116 SunOS version we don't know it until the above code is executed.
1117 Grumble if we are stopped anywhere besides the breakpoint address. */
1118
1119 if (stop_pc != breakpoint_addr)
1120 {
1121 warning ("stopped at unknown breakpoint while handling shared libraries");
1122 }
1123
1124 return (status);
1125 }
1126
1127 /*
1128
1129 LOCAL FUNCTION
1130
1131 enable_break -- arrange for dynamic linker to hit breakpoint
1132
1133 SYNOPSIS
1134
1135 int enable_break (void)
1136
1137 DESCRIPTION
1138
1139 This functions inserts a breakpoint at the entry point of the
1140 main executable, where all shared libraries are mapped in.
1141 */
1142
1143 static int
1144 enable_break (void)
1145 {
1146 if (symfile_objfile != NULL
1147 && target_insert_breakpoint (symfile_objfile->ei.entry_point,
1148 shadow_contents) == 0)
1149 {
1150 breakpoint_addr = symfile_objfile->ei.entry_point;
1151 return 1;
1152 }
1153
1154 return 0;
1155 }
1156
1157 /*
1158
1159 GLOBAL FUNCTION
1160
1161 solib_create_inferior_hook -- shared library startup support
1162
1163 SYNOPSIS
1164
1165 void solib_create_inferior_hook()
1166
1167 DESCRIPTION
1168
1169 When gdb starts up the inferior, it nurses it along (through the
1170 shell) until it is ready to execute it's first instruction. At this
1171 point, this function gets called via expansion of the macro
1172 SOLIB_CREATE_INFERIOR_HOOK.
1173
1174 For SunOS executables, this first instruction is typically the
1175 one at "_start", or a similar text label, regardless of whether
1176 the executable is statically or dynamically linked. The runtime
1177 startup code takes care of dynamically linking in any shared
1178 libraries, once gdb allows the inferior to continue.
1179
1180 For SVR4 executables, this first instruction is either the first
1181 instruction in the dynamic linker (for dynamically linked
1182 executables) or the instruction at "start" for statically linked
1183 executables. For dynamically linked executables, the system
1184 first exec's /lib/libc.so.N, which contains the dynamic linker,
1185 and starts it running. The dynamic linker maps in any needed
1186 shared libraries, maps in the actual user executable, and then
1187 jumps to "start" in the user executable.
1188
1189 For both SunOS shared libraries, and SVR4 shared libraries, we
1190 can arrange to cooperate with the dynamic linker to discover the
1191 names of shared libraries that are dynamically linked, and the
1192 base addresses to which they are linked.
1193
1194 This function is responsible for discovering those names and
1195 addresses, and saving sufficient information about them to allow
1196 their symbols to be read at a later time.
1197
1198 FIXME
1199
1200 Between enable_break() and disable_break(), this code does not
1201 properly handle hitting breakpoints which the user might have
1202 set in the startup code or in the dynamic linker itself. Proper
1203 handling will probably have to wait until the implementation is
1204 changed to use the "breakpoint handler function" method.
1205
1206 Also, what if child has exit()ed? Must exit loop somehow.
1207 */
1208
1209 void
1210 solib_create_inferior_hook (void)
1211 {
1212 if (!enable_break ())
1213 {
1214 warning ("shared library handler failed to enable breakpoint");
1215 return;
1216 }
1217
1218 /* Now run the target. It will eventually hit the breakpoint, at
1219 which point all of the libraries will have been mapped in and we
1220 can go groveling around in the dynamic linker structures to find
1221 out what we need to know about them. */
1222
1223 clear_proceed_status ();
1224 stop_soon_quietly = 1;
1225 stop_signal = TARGET_SIGNAL_0;
1226 do
1227 {
1228 target_resume (pid_to_ptid (-1), 0, stop_signal);
1229 wait_for_inferior ();
1230 }
1231 while (stop_signal != TARGET_SIGNAL_TRAP);
1232
1233 /* We are now either at the "mapping complete" breakpoint (or somewhere
1234 else, a condition we aren't prepared to deal with anyway), so adjust
1235 the PC as necessary after a breakpoint, disable the breakpoint, and
1236 add any shared libraries that were mapped in. */
1237
1238 if (DECR_PC_AFTER_BREAK)
1239 {
1240 stop_pc -= DECR_PC_AFTER_BREAK;
1241 write_register (PC_REGNUM, stop_pc);
1242 }
1243
1244 if (!disable_break ())
1245 {
1246 warning ("shared library handler failed to disable breakpoint");
1247 }
1248
1249 /* solib_add will call reinit_frame_cache.
1250 But we are stopped in the startup code and we might not have symbols
1251 for the startup code, so heuristic_proc_start could be called
1252 and will put out an annoying warning.
1253 Delaying the resetting of stop_soon_quietly until after symbol loading
1254 suppresses the warning. */
1255 if (auto_solib_add)
1256 solib_add ((char *) 0, 0, (struct target_ops *) 0);
1257 stop_soon_quietly = 0;
1258 }
1259
1260 /*
1261
1262 LOCAL FUNCTION
1263
1264 sharedlibrary_command -- handle command to explicitly add library
1265
1266 SYNOPSIS
1267
1268 static void sharedlibrary_command (char *args, int from_tty)
1269
1270 DESCRIPTION
1271
1272 */
1273
1274 static void
1275 sharedlibrary_command (char *args, int from_tty)
1276 {
1277 dont_repeat ();
1278 solib_add (args, from_tty, (struct target_ops *) 0);
1279 }
1280
1281 void
1282 _initialize_solib (void)
1283 {
1284 add_com ("sharedlibrary", class_files, sharedlibrary_command,
1285 "Load shared object library symbols for files matching REGEXP.");
1286 add_info ("sharedlibrary", info_sharedlibrary_command,
1287 "Status of loaded shared object libraries.");
1288
1289 add_show_from_set
1290 (add_set_cmd ("auto-solib-add", class_support, var_zinteger,
1291 (char *) &auto_solib_add,
1292 "Set autoloading of shared library symbols.\n\
1293 If nonzero, symbols from all shared object libraries will be loaded\n\
1294 automatically when the inferior begins execution or when the dynamic linker\n\
1295 informs gdb that a new library has been loaded. Otherwise, symbols\n\
1296 must be loaded manually, using `sharedlibrary'.",
1297 &setlist),
1298 &showlist);
1299 }
1300 \f
1301
1302 /* Register that we are able to handle irix5 core file formats.
1303 This really is bfd_target_unknown_flavour */
1304
1305 static struct core_fns irix5_core_fns =
1306 {
1307 bfd_target_unknown_flavour, /* core_flavour */
1308 default_check_format, /* check_format */
1309 default_core_sniffer, /* core_sniffer */
1310 fetch_core_registers, /* core_read_registers */
1311 NULL /* next */
1312 };
1313
1314 void
1315 _initialize_core_irix5 (void)
1316 {
1317 add_core_fns (&irix5_core_fns);
1318 }