]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/irix5-nat.c
* symfile.c (symbol_file_add): Move reinit_frame_cache call to
[thirdparty/binutils-gdb.git] / gdb / irix5-nat.c
1 /* Native support for the SGI Iris running IRIX version 5, for GDB.
2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
4 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
5 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
6 Implemented for Irix 4.x by Garrett A. Wollman.
7 Modified for Irix 5.x by Ian Lance Taylor.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
24
25 #include "defs.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "target.h"
29
30 #include <sys/time.h>
31 #include <sys/procfs.h>
32 #include <setjmp.h> /* For JB_XXX. */
33
34 /* Size of elements in jmpbuf */
35
36 #define JB_ELEMENT_SIZE 4
37
38 /*
39 * See the comment in m68k-tdep.c regarding the utility of these functions.
40 *
41 * These definitions are from the MIPS SVR4 ABI, so they may work for
42 * any MIPS SVR4 target.
43 */
44
45 void
46 supply_gregset (gregsetp)
47 gregset_t *gregsetp;
48 {
49 register int regi;
50 register greg_t *regp = &(*gregsetp)[0];
51
52 for(regi = 0; regi <= CTX_RA; regi++)
53 supply_register (regi, (char *)(regp + regi));
54
55 supply_register (PC_REGNUM, (char *)(regp + CTX_EPC));
56 supply_register (HI_REGNUM, (char *)(regp + CTX_MDHI));
57 supply_register (LO_REGNUM, (char *)(regp + CTX_MDLO));
58 supply_register (CAUSE_REGNUM, (char *)(regp + CTX_CAUSE));
59 }
60
61 void
62 fill_gregset (gregsetp, regno)
63 gregset_t *gregsetp;
64 int regno;
65 {
66 int regi;
67 register greg_t *regp = &(*gregsetp)[0];
68
69 for (regi = 0; regi <= CTX_RA; regi++)
70 if ((regno == -1) || (regno == regi))
71 *(regp + regi) = *(greg_t *) &registers[REGISTER_BYTE (regi)];
72
73 if ((regno == -1) || (regno == PC_REGNUM))
74 *(regp + CTX_EPC) = *(greg_t *) &registers[REGISTER_BYTE (PC_REGNUM)];
75
76 if ((regno == -1) || (regno == CAUSE_REGNUM))
77 *(regp + CTX_CAUSE) = *(greg_t *) &registers[REGISTER_BYTE (PS_REGNUM)];
78
79 if ((regno == -1) || (regno == HI_REGNUM))
80 *(regp + CTX_MDHI) = *(greg_t *) &registers[REGISTER_BYTE (HI_REGNUM)];
81
82 if ((regno == -1) || (regno == LO_REGNUM))
83 *(regp + CTX_MDLO) = *(greg_t *) &registers[REGISTER_BYTE (LO_REGNUM)];
84 }
85
86 /*
87 * Now we do the same thing for floating-point registers.
88 * We don't bother to condition on FP0_REGNUM since any
89 * reasonable MIPS configuration has an R3010 in it.
90 *
91 * Again, see the comments in m68k-tdep.c.
92 */
93
94 void
95 supply_fpregset (fpregsetp)
96 fpregset_t *fpregsetp;
97 {
98 register int regi;
99
100 for (regi = 0; regi < 32; regi++)
101 supply_register (FP0_REGNUM + regi,
102 (char *)&fpregsetp->fp_r.fp_regs[regi]);
103
104 supply_register (FCRCS_REGNUM, (char *)&fpregsetp->fp_csr);
105
106 /* FIXME: how can we supply FCRIR_REGNUM? SGI doesn't tell us. */
107 }
108
109 void
110 fill_fpregset (fpregsetp, regno)
111 fpregset_t *fpregsetp;
112 int regno;
113 {
114 int regi;
115 char *from, *to;
116
117 for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++)
118 {
119 if ((regno == -1) || (regno == regi))
120 {
121 from = (char *) &registers[REGISTER_BYTE (regi)];
122 to = (char *) &(fpregsetp->fp_r.fp_regs[regi - FP0_REGNUM]);
123 memcpy(to, from, REGISTER_RAW_SIZE (regi));
124 }
125 }
126
127 if ((regno == -1) || (regno == FCRCS_REGNUM))
128 fpregsetp->fp_csr = *(unsigned *) &registers[REGISTER_BYTE(FCRCS_REGNUM)];
129 }
130
131
132 /* Figure out where the longjmp will land.
133 We expect the first arg to be a pointer to the jmp_buf structure from which
134 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
135 This routine returns true on success. */
136
137 int
138 get_longjmp_target (pc)
139 CORE_ADDR *pc;
140 {
141 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
142 CORE_ADDR jb_addr;
143
144 jb_addr = read_register (A0_REGNUM);
145
146 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
147 TARGET_PTR_BIT / TARGET_CHAR_BIT))
148 return 0;
149
150 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
151
152 return 1;
153 }
154
155 void
156 fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
157 char *core_reg_sect;
158 unsigned core_reg_size;
159 int which; /* Unused */
160 unsigned int reg_addr; /* Unused */
161 {
162 if (core_reg_size != REGISTER_BYTES)
163 {
164 warning ("wrong size gregset struct in core file");
165 return;
166 }
167
168 memcpy ((char *)registers, core_reg_sect, core_reg_size);
169 }
170 \f
171 /* Irix 5 uses what appears to be a unique form of shared library
172 support. This is a copy of solib.c modified for Irix 5. */
173
174 #include <sys/types.h>
175 #include <signal.h>
176 #include <string.h>
177 #include <sys/param.h>
178 #include <fcntl.h>
179
180 /* <obj.h> includes <sym.h> and <symconst.h>, which causes conflicts
181 with our versions of those files included by tm-mips.h. Prevent
182 <obj.h> from including them with some appropriate defines. */
183 #define __SYM_H__
184 #define __SYMCONST_H__
185 #include <obj.h>
186
187 #include "symtab.h"
188 #include "bfd.h"
189 #include "symfile.h"
190 #include "objfiles.h"
191 #include "command.h"
192 #include "frame.h"
193 #include "regex.h"
194 #include "inferior.h"
195 #include "language.h"
196
197 /* We need to set a breakpoint at a point when we know that the
198 mapping of shared libraries is complete. dbx simply breaks at main
199 (or, for FORTRAN, MAIN__), so we do the same. We can not break at
200 the very beginning of main, because the startup code will jump into
201 main after the GP initialization instructions. SOLIB_BKPT_OFFSET
202 is used to skip those instructions. */
203
204 #define SOLIB_BKPT_OFFSET 12
205
206 static char *bkpt_names[] = {
207 "main",
208 "MAIN__",
209 NULL
210 };
211
212 /* The symbol which starts off the list of shared libraries. */
213 #define DEBUG_BASE "__rld_obj_head"
214
215 /* How to get the loaded address of a shared library. */
216 #define LM_ADDR(so) ((so)->lm.o_praw)
217
218 char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
219
220 struct so_list {
221 struct so_list *next; /* next structure in linked list */
222 struct obj_list ll;
223 struct obj lm; /* copy of link map from inferior */
224 struct obj_list *lladdr; /* addr in inferior lm was read from */
225 CORE_ADDR lmend; /* upper addr bound of mapped object */
226 char symbols_loaded; /* flag: symbols read in yet? */
227 char from_tty; /* flag: print msgs? */
228 struct objfile *objfile; /* objfile for loaded lib */
229 struct section_table *sections;
230 struct section_table *sections_end;
231 struct section_table *textsection;
232 bfd *abfd;
233 };
234
235 static struct so_list *so_list_head; /* List of known shared objects */
236 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
237 static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
238
239 /* Local function prototypes */
240
241 static void
242 sharedlibrary_command PARAMS ((char *, int));
243
244 static int
245 enable_break PARAMS ((void));
246
247 static int
248 disable_break PARAMS ((void));
249
250 static void
251 info_sharedlibrary_command PARAMS ((char *, int));
252
253 static int
254 symbol_add_stub PARAMS ((char *));
255
256 static struct so_list *
257 find_solib PARAMS ((struct so_list *));
258
259 static struct obj_list *
260 first_link_map_member PARAMS ((void));
261
262 static CORE_ADDR
263 locate_base PARAMS ((void));
264
265 static void
266 solib_map_sections PARAMS ((struct so_list *));
267
268 /*
269
270 LOCAL FUNCTION
271
272 solib_map_sections -- open bfd and build sections for shared lib
273
274 SYNOPSIS
275
276 static void solib_map_sections (struct so_list *so)
277
278 DESCRIPTION
279
280 Given a pointer to one of the shared objects in our list
281 of mapped objects, use the recorded name to open a bfd
282 descriptor for the object, build a section table, and then
283 relocate all the section addresses by the base address at
284 which the shared object was mapped.
285
286 FIXMES
287
288 In most (all?) cases the shared object file name recorded in the
289 dynamic linkage tables will be a fully qualified pathname. For
290 cases where it isn't, do we really mimic the systems search
291 mechanism correctly in the below code (particularly the tilde
292 expansion stuff?).
293 */
294
295 static void
296 solib_map_sections (so)
297 struct so_list *so;
298 {
299 char *filename;
300 char *scratch_pathname;
301 int scratch_chan;
302 struct section_table *p;
303 struct cleanup *old_chain;
304 bfd *abfd;
305 CORE_ADDR offset;
306
307 filename = tilde_expand (so -> lm.o_path);
308 old_chain = make_cleanup (free, filename);
309
310 scratch_chan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0,
311 &scratch_pathname);
312 if (scratch_chan < 0)
313 {
314 scratch_chan = openp (getenv ("LD_LIBRARY_PATH"), 1, filename,
315 O_RDONLY, 0, &scratch_pathname);
316 }
317 if (scratch_chan < 0)
318 {
319 perror_with_name (filename);
320 }
321 /* Leave scratch_pathname allocated. abfd->name will point to it. */
322
323 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
324 if (!abfd)
325 {
326 close (scratch_chan);
327 error ("Could not open `%s' as an executable file: %s",
328 scratch_pathname, bfd_errmsg (bfd_get_error ()));
329 }
330 /* Leave bfd open, core_xfer_memory and "info files" need it. */
331 so -> abfd = abfd;
332 abfd -> cacheable = true;
333
334 if (!bfd_check_format (abfd, bfd_object))
335 {
336 error ("\"%s\": not in executable format: %s.",
337 scratch_pathname, bfd_errmsg (bfd_get_error ()));
338 }
339 if (build_section_table (abfd, &so -> sections, &so -> sections_end))
340 {
341 error ("Can't find the file sections in `%s': %s",
342 bfd_get_filename (exec_bfd), bfd_errmsg (bfd_get_error ()));
343 }
344
345 /* Irix 5 shared objects are pre-linked to particular addresses
346 although the dynamic linker may have to relocate them if the
347 address ranges of the libraries used by the main program clash.
348 The offset is the difference between the address where the object
349 is mapped and the binding address of the shared library. */
350 offset = (CORE_ADDR) LM_ADDR (so) - so -> lm.o_base_address;
351
352 for (p = so -> sections; p < so -> sections_end; p++)
353 {
354 /* Relocate the section binding addresses as recorded in the shared
355 object's file by the offset to get the address to which the
356 object was actually mapped. */
357 p -> addr += offset;
358 p -> endaddr += offset;
359 so -> lmend = (CORE_ADDR) max (p -> endaddr, so -> lmend);
360 if (STREQ (p -> the_bfd_section -> name, ".text"))
361 {
362 so -> textsection = p;
363 }
364 }
365
366 /* Free the file names, close the file now. */
367 do_cleanups (old_chain);
368 }
369
370 /*
371
372 LOCAL FUNCTION
373
374 locate_base -- locate the base address of dynamic linker structs
375
376 SYNOPSIS
377
378 CORE_ADDR locate_base (void)
379
380 DESCRIPTION
381
382 For both the SunOS and SVR4 shared library implementations, if the
383 inferior executable has been linked dynamically, there is a single
384 address somewhere in the inferior's data space which is the key to
385 locating all of the dynamic linker's runtime structures. This
386 address is the value of the symbol defined by the macro DEBUG_BASE.
387 The job of this function is to find and return that address, or to
388 return 0 if there is no such address (the executable is statically
389 linked for example).
390
391 For SunOS, the job is almost trivial, since the dynamic linker and
392 all of it's structures are statically linked to the executable at
393 link time. Thus the symbol for the address we are looking for has
394 already been added to the minimal symbol table for the executable's
395 objfile at the time the symbol file's symbols were read, and all we
396 have to do is look it up there. Note that we explicitly do NOT want
397 to find the copies in the shared library.
398
399 The SVR4 version is much more complicated because the dynamic linker
400 and it's structures are located in the shared C library, which gets
401 run as the executable's "interpreter" by the kernel. We have to go
402 to a lot more work to discover the address of DEBUG_BASE. Because
403 of this complexity, we cache the value we find and return that value
404 on subsequent invocations. Note there is no copy in the executable
405 symbol tables.
406
407 Irix 5 is basically like SunOS.
408
409 Note that we can assume nothing about the process state at the time
410 we need to find this address. We may be stopped on the first instruc-
411 tion of the interpreter (C shared library), the first instruction of
412 the executable itself, or somewhere else entirely (if we attached
413 to the process for example).
414
415 */
416
417 static CORE_ADDR
418 locate_base ()
419 {
420 struct minimal_symbol *msymbol;
421 CORE_ADDR address = 0;
422
423 msymbol = lookup_minimal_symbol (DEBUG_BASE, symfile_objfile);
424 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
425 {
426 address = SYMBOL_VALUE_ADDRESS (msymbol);
427 }
428 return (address);
429 }
430
431 /*
432
433 LOCAL FUNCTION
434
435 first_link_map_member -- locate first member in dynamic linker's map
436
437 SYNOPSIS
438
439 static struct link_map *first_link_map_member (void)
440
441 DESCRIPTION
442
443 Read in a copy of the first member in the inferior's dynamic
444 link map from the inferior's dynamic linker structures, and return
445 a pointer to the copy in our address space.
446 */
447
448 static struct obj_list *
449 first_link_map_member ()
450 {
451 struct obj_list *lm;
452 struct obj_list s;
453
454 read_memory (debug_base, (char *) &lm, sizeof (struct obj_list *));
455
456 if (lm == NULL)
457 return NULL;
458
459 /* The first entry in the list is the object file we are debugging,
460 so skip it. */
461 read_memory ((CORE_ADDR) lm, (char *) &s, sizeof (struct obj_list));
462
463 return s.next;
464 }
465
466 /*
467
468 LOCAL FUNCTION
469
470 find_solib -- step through list of shared objects
471
472 SYNOPSIS
473
474 struct so_list *find_solib (struct so_list *so_list_ptr)
475
476 DESCRIPTION
477
478 This module contains the routine which finds the names of any
479 loaded "images" in the current process. The argument in must be
480 NULL on the first call, and then the returned value must be passed
481 in on subsequent calls. This provides the capability to "step" down
482 the list of loaded objects. On the last object, a NULL value is
483 returned.
484 */
485
486 static struct so_list *
487 find_solib (so_list_ptr)
488 struct so_list *so_list_ptr; /* Last lm or NULL for first one */
489 {
490 struct so_list *so_list_next = NULL;
491 struct obj_list *lm = NULL;
492 struct so_list *new;
493
494 if (so_list_ptr == NULL)
495 {
496 /* We are setting up for a new scan through the loaded images. */
497 if ((so_list_next = so_list_head) == NULL)
498 {
499 /* We have not already read in the dynamic linking structures
500 from the inferior, lookup the address of the base structure. */
501 debug_base = locate_base ();
502 if (debug_base != 0)
503 {
504 /* Read the base structure in and find the address of the first
505 link map list member. */
506 lm = first_link_map_member ();
507 }
508 }
509 }
510 else
511 {
512 /* We have been called before, and are in the process of walking
513 the shared library list. Advance to the next shared object. */
514 if ((lm = so_list_ptr->ll.next) == NULL)
515 {
516 /* We have hit the end of the list, so check to see if any were
517 added, but be quiet if we can't read from the target any more. */
518 int status = target_read_memory ((CORE_ADDR) so_list_ptr -> lladdr,
519 (char *) &(so_list_ptr -> ll),
520 sizeof (struct obj_list));
521 if (status == 0)
522 {
523 lm = so_list_ptr->ll.next;
524 }
525 else
526 {
527 lm = NULL;
528 }
529 }
530 so_list_next = so_list_ptr -> next;
531 }
532 if ((so_list_next == NULL) && (lm != NULL))
533 {
534 int errcode;
535 char *buffer;
536
537 /* Get next link map structure from inferior image and build a local
538 abbreviated load_map structure */
539 new = (struct so_list *) xmalloc (sizeof (struct so_list));
540 memset ((char *) new, 0, sizeof (struct so_list));
541 new -> lladdr = lm;
542 /* Add the new node as the next node in the list, or as the root
543 node if this is the first one. */
544 if (so_list_ptr != NULL)
545 {
546 so_list_ptr -> next = new;
547 }
548 else
549 {
550 so_list_head = new;
551 }
552 so_list_next = new;
553 read_memory ((CORE_ADDR) lm, (char *) &(new -> ll),
554 sizeof (struct obj_list));
555 read_memory ((CORE_ADDR) new->ll.data, (char *) &(new -> lm),
556 sizeof (struct obj));
557 target_read_string ((CORE_ADDR)new->lm.o_path, &buffer,
558 INT_MAX, &errcode);
559 if (errcode != 0)
560 memory_error (errcode, (CORE_ADDR)new->lm.o_path);
561 new->lm.o_path = buffer;
562 solib_map_sections (new);
563 }
564 return (so_list_next);
565 }
566
567 /* A small stub to get us past the arg-passing pinhole of catch_errors. */
568
569 static int
570 symbol_add_stub (arg)
571 char *arg;
572 {
573 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
574
575 so -> objfile = symbol_file_add (so -> lm.o_path, so -> from_tty,
576 (unsigned int) so -> textsection -> addr,
577 0, 0, 0);
578 return (1);
579 }
580
581 /*
582
583 GLOBAL FUNCTION
584
585 solib_add -- add a shared library file to the symtab and section list
586
587 SYNOPSIS
588
589 void solib_add (char *arg_string, int from_tty,
590 struct target_ops *target)
591
592 DESCRIPTION
593
594 */
595
596 void
597 solib_add (arg_string, from_tty, target)
598 char *arg_string;
599 int from_tty;
600 struct target_ops *target;
601 {
602 register struct so_list *so = NULL; /* link map state variable */
603
604 /* Last shared library that we read. */
605 struct so_list *so_last = NULL;
606
607 char *re_err;
608 int count;
609 int old;
610 int symbols_added = 0;
611
612 if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL)
613 {
614 error ("Invalid regexp: %s", re_err);
615 }
616
617 /* Add the shared library sections to the section table of the
618 specified target, if any. */
619 if (target)
620 {
621 /* Count how many new section_table entries there are. */
622 so = NULL;
623 count = 0;
624 while ((so = find_solib (so)) != NULL)
625 {
626 if (so -> lm.o_path[0])
627 {
628 count += so -> sections_end - so -> sections;
629 }
630 }
631
632 if (count)
633 {
634 /* Reallocate the target's section table including the new size. */
635 if (target -> to_sections)
636 {
637 old = target -> to_sections_end - target -> to_sections;
638 target -> to_sections = (struct section_table *)
639 xrealloc ((char *)target -> to_sections,
640 (sizeof (struct section_table)) * (count + old));
641 }
642 else
643 {
644 old = 0;
645 target -> to_sections = (struct section_table *)
646 xmalloc ((sizeof (struct section_table)) * count);
647 }
648 target -> to_sections_end = target -> to_sections + (count + old);
649
650 /* Add these section table entries to the target's table. */
651 while ((so = find_solib (so)) != NULL)
652 {
653 if (so -> lm.o_path[0])
654 {
655 count = so -> sections_end - so -> sections;
656 memcpy ((char *) (target -> to_sections + old),
657 so -> sections,
658 (sizeof (struct section_table)) * count);
659 old += count;
660 }
661 }
662 }
663 }
664
665 /* Now add the symbol files. */
666 while ((so = find_solib (so)) != NULL)
667 {
668 if (so -> lm.o_path[0] && re_exec (so -> lm.o_path))
669 {
670 so -> from_tty = from_tty;
671 if (so -> symbols_loaded)
672 {
673 if (from_tty)
674 {
675 printf_unfiltered ("Symbols already loaded for %s\n", so -> lm.o_path);
676 }
677 }
678 else if (catch_errors
679 (symbol_add_stub, (char *) so,
680 "Error while reading shared library symbols:\n",
681 RETURN_MASK_ALL))
682 {
683 so_last = so;
684 so -> symbols_loaded = 1;
685 symbols_added = 1;
686 }
687 }
688 }
689
690 /* Getting new symbols may change our opinion about what is
691 frameless. */
692 if (symbols_added)
693 reinit_frame_cache ();
694 }
695
696 /*
697
698 LOCAL FUNCTION
699
700 info_sharedlibrary_command -- code for "info sharedlibrary"
701
702 SYNOPSIS
703
704 static void info_sharedlibrary_command ()
705
706 DESCRIPTION
707
708 Walk through the shared library list and print information
709 about each attached library.
710 */
711
712 static void
713 info_sharedlibrary_command (ignore, from_tty)
714 char *ignore;
715 int from_tty;
716 {
717 register struct so_list *so = NULL; /* link map state variable */
718 int header_done = 0;
719
720 if (exec_bfd == NULL)
721 {
722 printf_unfiltered ("No exec file.\n");
723 return;
724 }
725 while ((so = find_solib (so)) != NULL)
726 {
727 if (so -> lm.o_path[0])
728 {
729 if (!header_done)
730 {
731 printf_unfiltered("%-12s%-12s%-12s%s\n", "From", "To", "Syms Read",
732 "Shared Object Library");
733 header_done++;
734 }
735 printf_unfiltered ("%-12s",
736 local_hex_string_custom ((unsigned long) LM_ADDR (so),
737 "08l"));
738 printf_unfiltered ("%-12s",
739 local_hex_string_custom ((unsigned long) so -> lmend,
740 "08l"));
741 printf_unfiltered ("%-12s", so -> symbols_loaded ? "Yes" : "No");
742 printf_unfiltered ("%s\n", so -> lm.o_path);
743 }
744 }
745 if (so_list_head == NULL)
746 {
747 printf_unfiltered ("No shared libraries loaded at this time.\n");
748 }
749 }
750
751 /*
752
753 GLOBAL FUNCTION
754
755 solib_address -- check to see if an address is in a shared lib
756
757 SYNOPSIS
758
759 int solib_address (CORE_ADDR address)
760
761 DESCRIPTION
762
763 Provides a hook for other gdb routines to discover whether or
764 not a particular address is within the mapped address space of
765 a shared library. Any address between the base mapping address
766 and the first address beyond the end of the last mapping, is
767 considered to be within the shared library address space, for
768 our purposes.
769
770 For example, this routine is called at one point to disable
771 breakpoints which are in shared libraries that are not currently
772 mapped in.
773 */
774
775 int
776 solib_address (address)
777 CORE_ADDR address;
778 {
779 register struct so_list *so = 0; /* link map state variable */
780
781 while ((so = find_solib (so)) != NULL)
782 {
783 if (so -> lm.o_path[0])
784 {
785 if ((address >= (CORE_ADDR) LM_ADDR (so)) &&
786 (address < (CORE_ADDR) so -> lmend))
787 {
788 return (1);
789 }
790 }
791 }
792 return (0);
793 }
794
795 /* Called by free_all_symtabs */
796
797 void
798 clear_solib()
799 {
800 struct so_list *next;
801 char *bfd_filename;
802
803 while (so_list_head)
804 {
805 if (so_list_head -> sections)
806 {
807 free ((PTR)so_list_head -> sections);
808 }
809 if (so_list_head -> abfd)
810 {
811 bfd_filename = bfd_get_filename (so_list_head -> abfd);
812 bfd_close (so_list_head -> abfd);
813 }
814 else
815 /* This happens for the executable on SVR4. */
816 bfd_filename = NULL;
817
818 next = so_list_head -> next;
819 if (bfd_filename)
820 free ((PTR)bfd_filename);
821 free (so_list_head->lm.o_path);
822 free ((PTR)so_list_head);
823 so_list_head = next;
824 }
825 debug_base = 0;
826 }
827
828 /*
829
830 LOCAL FUNCTION
831
832 disable_break -- remove the "mapping changed" breakpoint
833
834 SYNOPSIS
835
836 static int disable_break ()
837
838 DESCRIPTION
839
840 Removes the breakpoint that gets hit when the dynamic linker
841 completes a mapping change.
842
843 */
844
845 static int
846 disable_break ()
847 {
848 int status = 1;
849
850
851 /* Note that breakpoint address and original contents are in our address
852 space, so we just need to write the original contents back. */
853
854 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
855 {
856 status = 0;
857 }
858
859 /* For the SVR4 version, we always know the breakpoint address. For the
860 SunOS version we don't know it until the above code is executed.
861 Grumble if we are stopped anywhere besides the breakpoint address. */
862
863 if (stop_pc != breakpoint_addr)
864 {
865 warning ("stopped at unknown breakpoint while handling shared libraries");
866 }
867
868 return (status);
869 }
870
871 /*
872
873 LOCAL FUNCTION
874
875 enable_break -- arrange for dynamic linker to hit breakpoint
876
877 SYNOPSIS
878
879 int enable_break (void)
880
881 DESCRIPTION
882
883 Both the SunOS and the SVR4 dynamic linkers have, as part of their
884 debugger interface, support for arranging for the inferior to hit
885 a breakpoint after mapping in the shared libraries. This function
886 enables that breakpoint.
887
888 For SunOS, there is a special flag location (in_debugger) which we
889 set to 1. When the dynamic linker sees this flag set, it will set
890 a breakpoint at a location known only to itself, after saving the
891 original contents of that place and the breakpoint address itself,
892 in it's own internal structures. When we resume the inferior, it
893 will eventually take a SIGTRAP when it runs into the breakpoint.
894 We handle this (in a different place) by restoring the contents of
895 the breakpointed location (which is only known after it stops),
896 chasing around to locate the shared libraries that have been
897 loaded, then resuming.
898
899 For SVR4, the debugger interface structure contains a member (r_brk)
900 which is statically initialized at the time the shared library is
901 built, to the offset of a function (_r_debug_state) which is guaran-
902 teed to be called once before mapping in a library, and again when
903 the mapping is complete. At the time we are examining this member,
904 it contains only the unrelocated offset of the function, so we have
905 to do our own relocation. Later, when the dynamic linker actually
906 runs, it relocates r_brk to be the actual address of _r_debug_state().
907
908 The debugger interface structure also contains an enumeration which
909 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
910 depending upon whether or not the library is being mapped or unmapped,
911 and then set to RT_CONSISTENT after the library is mapped/unmapped.
912
913 Irix 5, on the other hand, has no such features. Instead, we
914 set a breakpoint at main.
915 */
916
917 static int
918 enable_break ()
919 {
920 int success = 0;
921 struct minimal_symbol *msymbol;
922 char **bkpt_namep;
923 CORE_ADDR bkpt_addr;
924
925 /* Scan through the list of symbols, trying to look up the symbol and
926 set a breakpoint there. Terminate loop when we/if we succeed. */
927
928 breakpoint_addr = 0;
929 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
930 {
931 msymbol = lookup_minimal_symbol (*bkpt_namep, symfile_objfile);
932 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
933 {
934 bkpt_addr = SYMBOL_VALUE_ADDRESS (msymbol);
935 #ifdef SOLIB_BKPT_OFFSET
936 /* We only want to skip if bkpt_addr is currently pointing
937 at a GP setting instruction. */
938 {
939 char buf[4];
940
941 if (target_read_memory (bkpt_addr, buf, 4) == 0)
942 {
943 unsigned long insn;
944
945 insn = extract_unsigned_integer (buf, 4);
946 if ((insn & 0xffff0000) == 0x3c1c0000) /* lui $gp,n */
947 bkpt_addr += SOLIB_BKPT_OFFSET;
948 }
949 }
950 #endif
951 if (target_insert_breakpoint (bkpt_addr, shadow_contents) == 0)
952 {
953 breakpoint_addr = bkpt_addr;
954 success = 1;
955 break;
956 }
957 }
958 }
959
960 return (success);
961 }
962
963 /*
964
965 GLOBAL FUNCTION
966
967 solib_create_inferior_hook -- shared library startup support
968
969 SYNOPSIS
970
971 void solib_create_inferior_hook()
972
973 DESCRIPTION
974
975 When gdb starts up the inferior, it nurses it along (through the
976 shell) until it is ready to execute it's first instruction. At this
977 point, this function gets called via expansion of the macro
978 SOLIB_CREATE_INFERIOR_HOOK.
979
980 For SunOS executables, this first instruction is typically the
981 one at "_start", or a similar text label, regardless of whether
982 the executable is statically or dynamically linked. The runtime
983 startup code takes care of dynamically linking in any shared
984 libraries, once gdb allows the inferior to continue.
985
986 For SVR4 executables, this first instruction is either the first
987 instruction in the dynamic linker (for dynamically linked
988 executables) or the instruction at "start" for statically linked
989 executables. For dynamically linked executables, the system
990 first exec's /lib/libc.so.N, which contains the dynamic linker,
991 and starts it running. The dynamic linker maps in any needed
992 shared libraries, maps in the actual user executable, and then
993 jumps to "start" in the user executable.
994
995 For both SunOS shared libraries, and SVR4 shared libraries, we
996 can arrange to cooperate with the dynamic linker to discover the
997 names of shared libraries that are dynamically linked, and the
998 base addresses to which they are linked.
999
1000 This function is responsible for discovering those names and
1001 addresses, and saving sufficient information about them to allow
1002 their symbols to be read at a later time.
1003
1004 FIXME
1005
1006 Between enable_break() and disable_break(), this code does not
1007 properly handle hitting breakpoints which the user might have
1008 set in the startup code or in the dynamic linker itself. Proper
1009 handling will probably have to wait until the implementation is
1010 changed to use the "breakpoint handler function" method.
1011
1012 Also, what if child has exit()ed? Must exit loop somehow.
1013 */
1014
1015 void
1016 solib_create_inferior_hook()
1017 {
1018 if (!enable_break ())
1019 {
1020 warning ("shared library handler failed to enable breakpoint");
1021 return;
1022 }
1023
1024 /* Now run the target. It will eventually hit the breakpoint, at
1025 which point all of the libraries will have been mapped in and we
1026 can go groveling around in the dynamic linker structures to find
1027 out what we need to know about them. */
1028
1029 clear_proceed_status ();
1030 stop_soon_quietly = 1;
1031 stop_signal = 0;
1032 do
1033 {
1034 target_resume (-1, 0, stop_signal);
1035 wait_for_inferior ();
1036 }
1037 while (stop_signal != SIGTRAP);
1038 stop_soon_quietly = 0;
1039
1040 /* We are now either at the "mapping complete" breakpoint (or somewhere
1041 else, a condition we aren't prepared to deal with anyway), so adjust
1042 the PC as necessary after a breakpoint, disable the breakpoint, and
1043 add any shared libraries that were mapped in. */
1044
1045 if (DECR_PC_AFTER_BREAK)
1046 {
1047 stop_pc -= DECR_PC_AFTER_BREAK;
1048 write_register (PC_REGNUM, stop_pc);
1049 }
1050
1051 if (!disable_break ())
1052 {
1053 warning ("shared library handler failed to disable breakpoint");
1054 }
1055
1056 solib_add ((char *) 0, 0, (struct target_ops *) 0);
1057 }
1058
1059 /*
1060
1061 LOCAL FUNCTION
1062
1063 sharedlibrary_command -- handle command to explicitly add library
1064
1065 SYNOPSIS
1066
1067 static void sharedlibrary_command (char *args, int from_tty)
1068
1069 DESCRIPTION
1070
1071 */
1072
1073 static void
1074 sharedlibrary_command (args, from_tty)
1075 char *args;
1076 int from_tty;
1077 {
1078 dont_repeat ();
1079 solib_add (args, from_tty, (struct target_ops *) 0);
1080 }
1081
1082 void
1083 _initialize_solib()
1084 {
1085
1086 add_com ("sharedlibrary", class_files, sharedlibrary_command,
1087 "Load shared object library symbols for files matching REGEXP.");
1088 add_info ("sharedlibrary", info_sharedlibrary_command,
1089 "Status of loaded shared object libraries.");
1090 }